




4.2 Neonatal Cranial MRI Segmentation

Neonatal brain images display some unique challenges for automated segmentation in that there
are relatively few compared to adult brain images, making machine learning-based or atlas-based
segmentation approaches infeasible. In addition, bleeds in the ventricular system further compli-
cated segmentation. In this context, interactive interfaces can be extremely useful since manual
segmentation or correction is largely unavoidable. Figure 3 displays visual results of neonatal

Fig 4: Pathological Neonatal Ventricle Segmentation with (a) the MR, (b) the manual segmenta-
tion, and (c) interactive segmentation results. (d) shows surface renderings of both the fully manual
(left) and interactive (right) segmentation results.

Fig 5: Hierarchies used in (a) healthy and (b) pathological neonatal ventricle segmentation.
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ventricle segmentation using this interface.
To demonstrate the interactive segmentation interface’s robustness to pathology, the previous

experiment was extended to a neonatal MR image in which a severe ventricular bleed changes the
intensity distribution of the ventricle to an extreme degree. The segmentation results are given in
Figure 4. Note that the hyper-intense ventricular bleed is closer in intensity to white- and grey-
matter than to the ventricles, and it’s appearance on the boundary of the ventricles would likely
cause severe registration artifacts. The segmentation of the ventricle was achieved by partitioning
it into two components; a healthy component (CSF) and the ventricular bleeding (Bl). The union
of these components could then be regularized similar to the ventricle (Ve) in Figure 3. The Ve
label (the union of the CSF and Bl labels) for the pathological case is given in Figure 4 In the
hierarchies used in this segmentation problem, which are given in Figure 5, the remaining labels
are K which refers to the background, He to the head, and Br to the brain.

5 Automatic Hierarchy Refinement

Although determining an appropriate hierarchy merely from grouping information is a compu-
tationally difficult problem, due to the mathematical formulation, it is possible to automatically
refine a user-provided hierarchy for improved computational efficiency without compromising seg-
mentation quality. This involves the contraction and removal of vertices in the hierarchy with zero

Fig 6: Example of automatic hierarchy segmentation. (a) is the original hierarchy reproduced
from10 and (b) the optimized version, (c) an LGE-MRI with (d) manual segmentation and (e)
interactive segmentations results.
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regularization or where zero regularization can be induced without changing the optimization func-
tional. One specific example of is that when the source node has only two children, whereby one
can be contracted by transferring its smoothness value to the other. To demonstrate this, we per-
formed automatic hierarchy optimization on the method presented by Rachl et al.10 using Late
Gadolinium Enhanced Magnetic Resonance Imaging (LGE-MRI). This segmentation problem in-
volved partitioning the image into thoracic background (T) and cardiac (C) labels, the latter being
subdivided into blood (Bl), healthy myocardium (M) and scar tissue (Sc) as shown in Figure 6a.
The cardiac label, C, was automatically contracted, resulting in Figure 6b and an estimated 20%
improvement in speed.

As with the previous experiments, the results (recorded in Table 2) were comparable to those
presented by Rachl et al.10and was within the range of inter-operator variability. However, this level
of accuracy was achieved without post-processing steps, such as connected components analysis,
or other modifications that would make the interface specific to cardiac or LGE-MRI segmentation.

Table 2: Scar Tissue Segmentation Results
(n = 10) Accuracy
Scar AVD (%) 26.9 ± 15.6
Scar rMSE (mm) 1.30 ± 0.32
Scar DSC (%) 74.1 ± 3.5
Scar DSC from10 (%) 76.0 ± 3.0
Inter-operator variability
from10 - Scar DSC (%) 76.2 ± 2.6
Intra-operator variability
from10 - Scar DSC (%) 75.2 ± 2.8

6 Discussion

Improvements in interactive segmentation interfaces can have a distinct impact in clinical contexts
in which automated segmentation is not feasible. Several clinical applications require manual seg-
mentation due to pathology such as tumours in radio-oncological applications or bleeds in neonatal
cranial imaging. These applications require a user to manually delineate some anatomy in order to
perform relevant measurements such as tumour volume. In these applications, accurate segmenta-
tion may be necessary for robust, correct measurements, and the use of interactive segmentation
can have a distinct benefit, conserving user time while encouraging accurate results, which will
in turn improve patient outcomes by improving the diagnostic capabilities of these measurements
(compared to manual segmentation) in single acquisition and longitudinal studies.

The primary advantage of this interface over other interactive segmentation programs is that it
allows the user to interactively specify both segmentation hierarchy and initial seeds. The former
means that the interface is very general purpose, allowing for arbitary regions to be defined, while
incorporating anatomical knowledge in a direct manner. This gives it a distinct advantage over
other interactive segmentation interfaces which either limit the number or type of regions, or do
not allow the user to specify abstract anatomical knowledge. The latter takes advantage of a paint-
brush mechanism which allows for large regions of the interior of the object to be seeded with
minimal user effort thus improving the probabilistic data terms.
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The second major advantage is that the algorithm is founded in optimization principles, en-
suring robustness and repeatability across images. The formulation of the costs also allow for the
regional and boundary uncertainty (UR and UB) identified in6 to be actively addressed by the seg-
mentation process, making plane selection simpler and more efficient. Plane selection is further
improved by selecting only axis-aligned planes in which the user is accustomed.

7 Future Work

There are several future directions in which to take this work aside from general improvements to
computational resource usage and performance. Specifically:

• Incorporation of a more extensive model of label organization,

• Incorporation of geometric or shape constraints,

• Improvements to the definition of the smoothness model, and

• Improvements to the plane selection mechanism.

Recently, work has been performed which extends the possibility of label organization in con-
tinuous max-flow from hierarchical models15 to models that allow for any possible label ordering.22

However, there remain issues in terms of how these structures can be specified by a user in run-
time in an intuitive manner as they are defined using a constrained set of rooted, weighted directed
acyclic graphs, which do not have a user-friendly tool already in place.

There has also been increasing interest in the use of generic geometric or shape constraints such
as star-shaped priors in both graph-cuts23 and max-flow image segmentation.24 Shape complexes
have already been proposed which combine the notions of label orderings and star-convex object
constraints to develop complicated models of object geometry from the union and disjunction of
star-convex objects.25 Such frameworks can be readily incorporated into this interactive segmenta-
tion framework with minimal changes to the interface or usability, while contributing a significant
improvement to the segmentation accuracy through the encoding of additional anatomical knowl-
edge.

Currently, the interface allows the user to modify the parameters in the smoothness term, but
does not permit any other manipulation. This could be incorporated through the addition of a con-
touring mechanism similar to that in Intelligent Scissors, TurtleSeg, and ITKSnap. These contours
could supply specific information which can improve the smoothness terms, as well as give the
user complimentary ways to sample regions.

In terms of plane selection, future work could include defining a sequence of planes sensitive to
the distance between them, rather than a single set. This would allow the algorithm to intelligently
inform the user of multiple areas of uncertainty without re-invoking the continuous max-flow seg-
mentation algorithm and allow the user to provide feedback on multiple high uncertainty planes in
a single interaction cycle.
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8 Conclusions

Interactive segmentation helps bridge the gap between manual and automatic segmentation allow-
ing each to address the weaknesses of the other. In this work, we present a novel general-purpose
interactive segmentation interface and applied it to cardiac and neonatal cranial segmentation with
performance comparable to previously published methods specific to said applications.

This interface allows for the user to define a segmentation hierarchy in run-time, taking ad-
vantage of a fast, GPU-accelerated general HMF solver, which in turn allows for more knowledge
of spatial relationships between anatomical regions to be encoded. This encourages the use of
optimization techniques and interactive interfaces in which a user can quickly define and correct
a segmentation, and thereby increase the speed, quality, and robustness of general segmentation
tasks. The ability to modify the hierarchy in run-time allows for the interactive segmentation inter-
face to account for extreme deviations, such as ventricular bleeds, by the addition of multiple labels
to account for them. This interface is the first to allow the user to modify the abstract anatomic
knowledge, i.e. label ordering, provided to the computer in run-time.
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Appendix: NP-Hardness of Hierarchy Definition

Theorem: Consider L to be the set of objects in an image. Determining if there is a hierarchy
with at least k elements from a specified set of group relationships

(
G ⊆ 2L

)
is NP-complete, and

specifying the largest hierarchy is NP-hard.
Proof. Any hierarchy is equivalent to an independent set in a particular, polynomial-time con-

structible graph. To prove this, we will show the construction of this graph and proceed through a
proof by contradiction.

Let G be a graph in which each vertex represents a non-empty set of labels in the segmentation
that are expected to have some regularization, that is, their union forms a meaningful structure or
their grouping is meaningful. In this graph, edges represent conflicts where the vertices refer to sets
that are neither embedded (one is a subset of the other) nor disjoint. For the sake of notation, each
vertex will be denoted via its corresponding element of G, the grouping relationship it represents.

Assume there is a hierarchy where the nodes are selected from the vertices of G, but do not
form an independent set. Consider the edge between two vertices that indicates a dependency,
e = (g1, g2). The two adjacent vertices g1, g2 ∈ G refer to two sets of end-labels that are neither
disjoint nor a subset of each other. (That is, both g1 ∩ g2 and g1 \ g2 are non-empty.) Consider
label A to be an end-label common to both sets. Note since each is a superset of {A}, they must
correspond to ancestors in the hierarchy and both lie on the direct path from {A} to the root of the
hierarchy. This implies that one must be an ancestor of the other, which is a contradiction since
neither is a superset of the other. Thus, any hierarchy must correspond to an independent set in G.

Without loss of generality, assume G is connected. Each independent set can be transformed
into a hierarchy in polynomial time in a top-down manner. At each iteration, we want to grow the
hierarchy by the vertices corresponding to the largest group of end-labels at the lowest tier possible.
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We do this by ordering the vertices in the independent set by the size of group they represent. Then,
perform a breadth-first search through the current tree to find the lowest tier that is a superset of the
node under consideration. We grow the hierarchy by adding the group under consideration to the
identified part of the hierarchy. We repeat this for each node in the set, initializing the hierarchy as
only the root node, equivalent to the full set of end-labels. Lastly, we augment the hierarchy with
the end-labels to make it valid.

Since the maximum hierarchy and maximum independent set problems can be reduced to each
other in polynomial time determining the largest hierarchy must be NP-hard.
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