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Abstract

Musculoskeletal injuries can severely impact the ability to produce and control body motion. In

order to regain function, rehabilitation is often required. Wearable smart devices are currently

under development to provide therapy and assistance for people with impaired arm function.

Electromyography (EMG) signals are used as an input to pattern recognition systems to determine

intended movements. However, there is a gap between the accuracy of pattern recognition systems

in constrained laboratory settings, and usability when used for detecting dynamic unconstrained

movements. Motion factors such as limb position, interaction force, and velocity, are known to

have a negative impact on the pattern recognition. A possible solution lies in the use of data

from other sensors along with the EMG signals, such as signals from accelerometers (ACC), in the

training and use of classifiers in order to improve classification accuracy. The objectives of this

study were to quantify the impact of motion factors on ACC signals, and to use these ACC signals

along with EMG signals for classifying categories of motion factors. To address these objectives, a

dataset containing EMG and ACC signals while individuals performed unconstrained arm motions

was studied. Analyses of the EMG and accelerometer signals and their use in training classification

models to predict characteristics of intended motion were completed.

The results show that the combination of EMG and ACC provided a statistically significant

improvement in the performance of motion intention detection. Prediction of movement (stationary

and movement) ranged from 75.80 to 91.01% during elbow flexion–extension motion.

Future work should expand on motion factors and EMG–ACC sensor fusion to identify inter-

actions between a person and the environment, in order to guide tuning of control models working

towards controlling wearable mechatronic devices during dynamic movements.
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Lay Summary

Injuries to the bones, muscles and/or connective tissues of the body can severely limit the ability

to perform daily life activities, such as dressing or pouring water into a glass. Rehabilitation is

often required to recover from these injuries. Technology has been under development to provide

solutions that help with the treatment. Wearable robotic devices offer a potential tool for providing

physical therapy to the arm without the need of going to the clinic. These devices are controlled

by measuring the electrical signals of the muscles in order to predict the subject’s intention to

move the arm. However, these devices suffer from the limitation of not performing well when used

during complex movements. Several factors, including the speed of the movement and external

forces (for example, the increased weight when carrying a bag) decrease the capability to predict

movement intention. One important suggestion is to incorporate signals from other sensors, such

as accelerometers (devices that measure acceleration), that may provide additional information for

the prediction. This work provides an analysis of accelerometer signals obtained during complex

arm movements and demonstrates an increased prediction rate when using both muscle activity

and acceleration information to predict arm movement intention. Motion intention could be dis-

tinguished between stationary and moving during arm movement with less than 10% error. This

could be used to further improve the control of a wearable robotic device.
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Chapter 1

Introduction

Musculoskeletal (MSK) conditions are disorders or injuries that affect bones, joints, muscles and/or

connective tissues of the body. They negatively impact the ability to produce and control mo-

tion. These conditions are a leading cause of long-term disability, affecting over 1.2 billion people

worldwide [1] and 11 million Canadians annually [2]. In order to recover, assistance is needed.

Professional care may be required from a few weeks up to years. Consequently, MSK conditions

cause long-term physical, psychological and financial burdens [3]. MSK disorders are estimated to

cost the Canadian economy over $22 billion per year, and MSK injuries contribute to an additional

$15 billion each year [2]. Direct costs including health professional visits, drugs and other expen-

ditures related to rehabilitation represent 20% of the total cost while over 80% of the cost is due

to absence from work and loss of productivity. Moreover, with obesity anticipated to rise over the

coming decade and an aging population, the incidence of MSK conditions is expected to increase

worldwide [4]. By 2031, an estimated 15 million Canadians will be affected annually by MSK

conditions [2]. Innovative strategies must be developed to restrict the impact of these conditions

on the economy, health care and social care systems. In this regard, technological advancements

can assist in rehabilitation, working towards the goal of improved mobility and quality of life.

1
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1.1 Motivation

When this type of accidents happen, the patient can recover with the aid of rehabilitative therapy,

a process that allows the patient to improve muscle strength and relearn the best possible use of

their limbs [5]. Conventional rehabilitative therapy involves a series of repetitive exercises executed

by the patient with the aid of a therapist, who may manually assist the patient to move or provide

resistance during the training [6]. When the patient is not in the therapy session, orthotic braces

are often used to progressively increase joint range of motion and prevent stiffness that occurs after

trauma, as well as prevent further injury [7]. However, poor adherence to rehabilitation programs,

including not attending the therapy sessions or not performing home-based exercises, poses a bar-

rier to health improvement [8]. Technology has been under development to provide solutions that

aid with the treatment of MSK conditions. Mechatronic devices, made from mechanical structures

with electrical and computational components, have recently emerged as an alternative of their

purely mechanical predecessors [9]. These devices can be used to guide repetitive exercises and

reduce manual labour, allowing therapists to focus on other aspects of the patient’s rehabilita-

tion. Rehabilitative mechatronic devices have been under clinical evaluation for the better part

of two decades and have shown that they can provide motion assistance equivalent to that of a

therapist [10, 11] . Wearable versions of these devices have also been launched, showing promise

when used in rehabilitation programs for stroke survivors [12, 13]. These devices can accomplish

even higher accuracy and repeatability of motion patterns than expert therapists if programmed

and controlled properly [14]. However, in order to control these devices, it is necessary to detect

the intended motions of the user. There are currently challenges in accurately detecting intended

motions during unconstrained dynamic movements [18].

1.2 General Problem Statement

Currently, research groups are working on developing wearable smart devices to provide therapy

and assistance for people with impaired arm function [14]. Wearable mechatronic devices allow for

the rehabilitation of specific groups of muscles by applying different torques at certain joints of the

upper limb [5]. Such devices can interface with the patients by measuring EMG (electromyography)
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signals, which allow the device to track muscle activity [15]. Based on the EMG signals, pattern

recognition models are used to classify intended motion. Once intended motions are identified,

wearable devices can be commanded to assist with these motions and provide therapeutic training

[16]. There is a significant body of research describing the use of pattern recognition of EMG

signals to control assistive devices. However, EMG signals are very sensitive to both physical

and physiological variations [17] and it has been noted that there is a gap between the accuracy

of pattern recognition systems in constrained laboratory settings, and usability in unconstrained

daily activities [18]. On the other hand, body-worn accelerometers have become popular tools for

measuring physical activity [19–23]. A possible solution then lies in the use of data from other

sensors along with the EMG signals, such as signals from accelerometers, in the training and use

of classifiers, in order to improve classification accuracy [18]. This work aims to evaluate the effect

of motion characteristics on accelerometer signals to inform the development of better motion

classification models.

1.3 Research Objectives and Scope

The main goal of this thesis is to assess the feasibility of classifying categories of motion character-

istics, such as position or force, using electromyography and accelerometer data, working towards

a smart wearable elbow brace. To achieve this objective, the work has focused on the following

specific objectives:

1. To analyse EMG and dynamic data from subjects performing diverse movements while in-

teracting with the environment in order to extract meaningful features.

2. To train several pattern recognition algorithms using the sets of extracted features and then

evaluate their classification performance.

1.4 Overview of the Thesis

The structure of this thesis is summarized in the outline below:

Chapter 1 Introduction: The introductory chapter.
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Chapter 2 Literature Review: Presents a review of elbow rehabilitation, elbow biome-

chanics, rehabilitation robotics, myoelectric control of assistive devices, and

challenge issues in EMG control systems.

Chapter 3 Experimental protocol, Pre-Processing and Statistical Analysis: Outlines the

measurement systems and methods of data collection of the dataset utilized

for feature extraction. Describes the process of extracting relevant features

from EMG and accelerometer signals. Features with statistical significance

related to motion characteristics are discussed.

Chapter 4 Motion Characteristic Classification and Applications: Presents the results of

the training of pattern recognition models to classify motion characteristics

using EMG and accelerometer signal inputs and explains their significance.

Chapter 5 Conclusions and Future Work: Emphasizes the contributions of this work and

provides recommendations for future work.

Appendix A MATLAB Code: Describes the MATLAB code used for data analysis.

Appendix B Statistical Analysis Tables: Includes the consolidated statistical analyses of

ACC signals.

Appendix C Ethics Permissions and Approvals: Includes ethics permission and approval.



Chapter 2

Literature Review

2.1 Introduction

To provide a knowledge base for the remainder of this thesis, this chapter presents a review of

the literature in the areas of elbow rehabilitation, robot assisted therapy, elbow biomechanics and

motion.

2.2 Elbow Rehabilitation

A non-functional elbow extremely hinders the ability to perform activities of daily living (ADLs)

[24], which are common movements performed repeatedly during daily life. They are goal oriented,

performed with the purpose of completing a task, for example dressing, pouring water into a glass,

and picking up a coin. During rehabilitation, clinicians work with patients to regain functional

ability [25]. The specific rehabilitation practices and exercises to perform depend on the type of

injury to the elbow and on the stages of healing [7]. A general guideline includes four overlap-

ping phases: immediate motion, an intermediate phase, advanced strengthening, and return to

activity. In the first phase, pain and edema are managed [7, 26] since the elbow tissues undergo

an inflammatory phase. Mobilization of the elbow is important to prevent joint stiffness [7, 27].

The intermediate phase focuses on restoring typical elbow function and range of motion (ROM)

[7, 26, 28]. Next, the advanced strengthening stage introduces strengthening exercises to reduce

5
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muscle weakness [7]. Muscle weakness due to pain, soft tissue injury, and/or immobilization is

a common problem following an elbow fracture. It can persist up to 6 months following injury,

long after bone healing has occurred [26]. Strengthening exercises should begin when the ROM is

complete and painless [7]. The muscles are strengthened progressively, for example, via resistance

training [29]. Return to normal activity is achieved gradually, by increasing intensity of activities

and joint use [6].

2.2.1 Rehabilitative Braces

There are several types of braces that may be required during elbow trauma rehabilitation [30], as

follows:

1. Immobilization braces are used to protect the limb by completely restricting its movement.

Their use is indicated at the beginning of treatment when early movement cannot be allowed.

2. Restriction braces allow a controlled ROM. After trauma, this type of brace enables early

movement that can be adjusted according to the type of lesion, or surgery performed.

3. Mobilization braces are used to maintain or increase the ROM. They exert distractive forces

on the soft tissues, exploiting their viscous-elastic properties.

2.2.2 Elbow Rehabilitation Challenges

As mentioned, professionals in rehabilitation are focused on returning patient’s function lost to im-

pairments, so that they improve their independence in the performance of ADLs. Some challenges

for traditional rehabilitative approaches persist, including a lack of patient adherence to therapy,

and the lack of evidence-based methods and objective outcome measures.

2.2.3 Adherence to Therapy

In order to achieve a therapeutic result, patient adherence to therapy is required. It is well

recognized that non-adherence can reduce the effectiveness of the treatment, increase the risk of

disability and bias assessment of treatment efficacy. Mutual collaboration between the patient

and therapist reduces the risks of non-adherence and improves the patient’s healthcare outcomes
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[31]. Social determinants of health, such as poverty, unemployment or lack of social support, and

the cost of travel and treatment are associated with factors that affect adherence to long-term

therapies [32].

2.2.4 Assessment and Outcome Measures

Clinical assessments used by therapists assist in diagnosing problems, tracking patient progress

over time (monitoring), and predicting therapeutic outcomes [25]. Assessments generally comprise

a defined set of questions, tasks, objects, and/or instructions that are quantified according to spe-

cific scales or metrics. Most clinical assessments evaluate ADLs or closely related tasks involving

movement. These tests convey a measure of patient’s independence in ADLs and/or the quality

of their performance [25]. A subset of measures to assess movement include the Functional Inde-

pendence Measure, the Barthel Index, the Arm Motor Ability Test, the Fugl-Meyer assessment,

and the Wolf Motor Function Test [33]. In addition, tests may be tailored to specific patient

populations and injuries. For example, the Wolf Motor Function Test has repeatedly been used

to study chronic stroke patients [34]. The current clinical outcome measures are self-reported or

observer-reported and often depend on the therapist’s perspective. For example, the Patient Rated

Elbow Evaluation allows patients to rate pain, and their ability to perform 32 activities on an 11

point scale, while the American Shoulder and Elbow Surgeons elbow scale consists of a patient

questionnaire and an assessment from the physician [35]. Subjective outcome measures pose diffi-

culties for accurately assessing the effectiveness of therapy. As well, observer-rated measures are

time-consuming for the caregiver to perform [36].

2.2.5 Robotic Rehabilitation

Robot-assisted therapy, used as a complementary method to conventional rehabilitation techniques,

has the potential to achieve significant improvements in the rehabilitation outcomes [37]. Thanks

to technological advances, two forms of robotic assistive devices, capable of providing consistent

training [38], have become popular over the last few decades: the end-effector robot and the robotic

exoskeleton. The former is based on the use of a robotic manipulator, with an end effector that

is attached to an extremity of the patient, for example the hand. It produces motion through
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a series of joints and links and assists the user when needed to complete tasks [39]. Due to

their large size, these systems are mounted on rigid surfaces such as the floor or a wall. The

effectiveness of these robots comes from their large workspace that enables to practice various

ADLs. Many research projects have led to the development of end-effector robots for rehabilitation

purposes, including popular systems such as MIT-MANUS [40], GENTLE/s [41], and Rehabrob

[42]. One major concern is the inability of these systems to control the user’s joints independently.

Rehabilitative therapy usually begins by retraining joint motion separately until the patient is

capable of completing more complex multi-joint tasks. However, end-effector robots in general,

can only provide multi-joint motion therapy.

Due to an increased level of ability to assist with the production of motion compared to

end-effector robots, robotic exoskeletons have become the most common form of assistive devices.

Exoskeleton-based systems originated in 1883 with the purpose of complementing the ability of the

human limb [16]. Their joints and links correspond to the human joints and limbs respectively, and

robot axes are aligned with the anatomical axes of the human limb. Upper limb exoskeletons aiding

with musculoskeletal rehabilitation tasks have shown a similar level of effectiveness compared to

the same amount of exercise performed by trained therapists [10, 11]. However, the size and cost

of end-effector robots and robotic exoskeletons limit where they can be used. The large size of the

systems requires the patients to travel to the clinic to reap the benefits, and only medical centers

with large budgets can afford to purchase these expensive systems. Consequently, research and

industrial sectors are now moving towards the development of wearable assistive devices to benefit

a larger portion of society. A comparison on rehabilitative systems was made in 2014, revealing

the shift towards wearable devices [43]. Examples of assistive devices are shown in Figure 2.1.

Wearable assistive devices, designed so that their joints match those of the user, combine the

advantages of the leading robotic technologies, such as high accuracy of motions and high repeata-

bility, while maintaining independence from the clinical environment. They allow for rehabilitation

of specific groups of muscles by applying torques at certain joints of the upper limb [5]. For the

wearable devices to work properly, it is necessary to apply effective control strategies, which, on

top of the intrinsic mechanical behaviour of the devices, will dictate the human–robot interac-

tions [44]. Different kinds of control modalities have been used during robot-assisted therapies, as
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Figure 2.1: Example of robotic devices that can be used during upper limb rehabilitation. The
KUKA LBR, an end-effector robot (Left), and an elbow wearable powered brace
(Right).

summarized in Table 2.1.

Table 2.1: Control modalities used during robot-assisted therapy [45]

Modality Specifications

Assistive The subject’s voluntary activity is required
during the entire movement. The robot can
assist providing forces to the impaired limb
to complete the task.

Active The robot is only used as a measurement
device, without providing any force to the
subject’s limb.

Passive The robot moves the impaired limb without
the need for the patient to start the action.

Passive-mirrored The robot mimics the behaviour of the
healthy limb to synchronously drag the im-
paired limb.

Active-assistive Assistance towards task completion is pro-
vided only when the subject has not been
able to perform actively.

Corrective The robot is only active when the patient
is not performing the intended motion in a
correct manner.

Path guidance The robot guides the subject when deviat-
ing from a pre-defined trajectory.

Resistive The robot provides forces opposing the
movement.

The human elbow is a popular choice for developing wearable assistive systems due to the avail-

ability of the major muscles that move the elbow and the large area for placement of components.

Thus, many devices are aimed at assisting with elbow motion [12, 46–50]. An understanding of
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elbow motion is required for developing assistive devices [24].

2.2.6 Elbow Motion

The elbow is a complex structure acting as the mechanical link in the upper limb between the

wrist and shoulder. Its main function is to position the hand in a stable manner relative at

varying shoulder positions while allowing flexion and extension as well as pronation and supination

[51]. Such stability is derived from a contribution of bony, soft tissue and dynamic stabilizers.

The bony anatomy consists of 3 articulations: the humeroulnar and humeroradial joints and

the proximal radioulnar articulation [52]. During the flexion–extension movement, the hinged

articulation formed by the humeroulnar joint moves through a centerline of rotation [51]. Flexion

increases the angle of the joint, while extension decreases the angle of the joint, as shown in

Figure 2.2.

Figure 2.2: An elbow joint fully extended (Left), and flexed 90° (Right).

For their part, the proximal radioulnar and humeroradial joints are pivoting joints that allow

forearm rotation (pronation–supination), as shown in Figure 2.3.

Other portions of the upper limb anatomy are involved in radial–ulnar deviation of the wrist,

as shown in Figure 2.4. Major shoulder motions, adduction–abduction and flexion–extension, are

shown in Figure 2.5.

Many muscles are attached to the elbow joint. They act as the dynamic stabilizers of the elbow,

by reducing the forces that the elbow is experiencing [51], and oversee joint movement. Groups of

muscles are often activated to contribute to a particular movement [53]; for example, the biceps

and brachioradialis, acting synergistically, are the main muscles in charge of elbow flexion [54].
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Figure 2.3: A forearm at 90° pronation (Top), neutral position (Middle), and at 90° supination
(Bottom).

Figure 2.4: Wrist radial deviation (Left) and ulnar deviation (Right).

Thus, muscles are often classified according to the main function they perform, such as flexors,

extensors or stabilizers [52]. However, human motion is complex, and muscles do not always fall

into these strict categories. During ADLs, where motions are used to perform a task, several

muscles are coordinated and motions from multiple joints may be included at the same time to

cause a resultant movement.

Motions can be divided into isometric movements and dynamic movements with muscles in

different kinds of contraction, which are defined by the changes in length of the muscle. During

isometric contractions, the joint angle and muscle length stay constant. During dynamic move-

ments, the joint angle and muscle length may vary. There are two kinds of dynamic movements:

concentric and eccentric. If the activated muscle is shortening, working to move the joint in the

direction of the motion, the muscle is performing concentric contractions. On the other hand,

if the muscle is lengthening, resisting the direction of joint movement, the muscle is performing
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Figure 2.5: Shoulder adduction–abduction and flexion–extension.

eccentric contractions.

Arm movements are caused by a coordination of muscle groups. When performing or attempt-

ing to perform a motion or muscle contraction, electromyography can be used to detect levels of

muscle activation.

With regards to arm rehabilitation, the muscles described in Table 2.2 and shown in Fig. 2.6 are

commonly measured using EMG to detect intended arm motions and control devices [57, 61–67].

Figure 2.6: Upper extremity muscles commonly measured using sEMG, anterior view (Left) and
posterior view (Right).
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Table 2.2: Muscles commonly measured to control assistive devices.

Muscle Main function [68–70]

Biceps brachii short head Flexor of elbow, forearm supinator, in-
volved in flexing shoulder

Biceps brachii long head Flexor of elbow, supinator

Brachialis Flexor of elbow

Brachioradialis Flexor of elbow, pronator

Pronator teres Elbow extension, forearm pronator

Infraspinatus Shoulder rotator, stabilizer in rotator cuff

Latissimus dorsi Involved in adduction, extension and inter-
nal rotation of the arm at the shoulder

Upper trapezius Depresor of shoulder

Rhomboid major Assists to fix scapula

Pectoralis major Shoulder rotation and transversal adduc-
tion

Anterior deltoid Shoulder vertical and horizontal flexion,
shoulder rotation

Lateral deltoid Shoulder abduction

Posterior deltoid Shoulder vertical and horizontal extension,
shoulder rotation

Teres major Adducts and internally rotates the arm

Teres minor Provides stability to the shoulder joint

Triceps brachii long head Elbow extension

Triceps brachii lateral head Elbow extension

Triceps brachii medial head Elbow extension

Extensor carpi ulnaris Wrist extension

Flexor carpi ulnaris Wrist flexion

Extensor carpi radialis Wrist extension

Flexor carpi radialis Wrist flexion

Palmaris longus Wrist flexion

Anconeus Extension of the forearm

Extensor digitorum Wrist extension

Flexor digitorum Wrist flexion

2.3 EMG signals

Electromyography (EMG) refers to the recording of electrical activity of the muscles. During

muscle contractions, multiple motor units are activated, generating motor unit action potentials

(MUAPs). MUAPs produce extracellular currents that extend from the cell membrane to the

surface of the skin. Electrodes can be placed on the surface of the skin over the underlying

muscles of interest, this is referred to as surface electromyography (sEMG). This way, the ionic
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potentials generated by the muscles can be converted into voltages [55], which are measured on a

millivolt scale. Electrodes can also penetrate the skin and muscle of interest with intramuscular

EMG electrodes. This method allows for individual MUAPs to be recorded, but it is invasive and

only useful in a clinical setting. sEMG sensors can vary in shape, size, material, inter-electrode

distance, and construction. Electrode placement can vary with skin preparation, location and

orientation of the electrodes, and fixation method. Hermens et al. have provided recommendations

for best practices by looking at a variety of methods used and results [56]. By evaluating the

signals recorded from the electrodes, information related to the muscle activation can be gathered.

However, it should be noted that certain limitations exist.

2.3.1 Limitations of EMG signals

EMG signals are sensitive to both physical and physiological variations [17]. An important limiting

factor is that there can be crosstalk between signals gathered from muscles close to each other.

Specially when the muscle activation is measured on the surface of the skin, the signals can have

interference from surrounding muscles. However, if the crosstalk remains somewhat constant, it

can provide additional information [57]. Electrodes attached to the surface of the skin can also

shift with respect to the muscle underneath, adding undesirable and difficult to remove signal

variation [58]. Other factors affecting the quality of the EMG signals measured are altered skin

conditions, temperature changes, sweat on the skin surface [59] and electrode impedance changes

[60]. Even with these limitations, EMG signals have many applications, including their use in

control of robotic assistive devices.

2.3.2 EMG Control of Assistive Devices

EMG signals have been introduced as inputs to the control systems of assistive devices to de-

termine intended movements. Whenever a person intends to move a joint, different muscle fibers

corresponding to the muscles of that joint, produce different patterns of contraction and relaxation.

Motion intention detection works by identifying those patterns and classifying them into different

categories. In turn, output commands are produced according to the classification stage and fed

to the robot or assistive device [71]. Several studies have managed to utilize motion intention de-
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tection as a sophisticated control method. For example, Ryser et al. developed a wearable robotic

hand orthosis controlled using motion intention detection based on EMG signals [72]. The device

detected patterns produced by the activation of different muscles while performing specific hand

gestures and then, these patterns were utilized to control a wrist wearable mechatronic device.

Other controllers not based on pattern recognition include proportional control, finite state ma-

chines, and onset analysis [59]. Finite state machines involve states, transitions, and commands.

The transitions are associated with the input signals and the states are motion commands [60].

These controllers are simple and can be intuitive to use and implement, comparing EMG signal

levels to set thresholds, but are limited in the number of commands that can be implemented.

In general, the development of an EMG-based pattern recognition system follows the procedure

summarized in Figure 2.7 [59, 71].

Figure 2.7: Stages for developing pattern recognition systems

2.3.3 EMG Data Pre-Processing

Once obtained, the EMG signal must be preprocessed. Since EMG signals are in the order of

millivolts, the first preprocessing step consists of amplifying with a gain in the range of 1000 to

10000 [73]. After being amplified, the EMG signal is then filtered using a bandpass filter with cut

off values between 10 or 20 Hz for the low frequency cut off and 500 Hz for the high frequency cut

off [74]. Furthermore, a notch filter with a cut-off frequency of 60 Hz is also applied to remove

power line interference.

2.3.4 EMG Data Segmentation

Following the amplification and filtering of the raw EMG signal, the next step of the pattern

recognition process consists of segmenting the preprocessed signal so that it can be analyzed for

real-time applications. Segmenting the EMG signal allows for the extraction of information from

the active segments of the signal, i.e., segments where the motion is being performed. First, it is
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necessary to detect the moment when the muscle goes from an idle or relaxed state to a contracted

stat. This process is known as the EMG onset detection and is important because it can be

used as the trigger to start the analysis. Typical EMG onset detection methods use threshold-

based algorithms. These algorithms include single-threshold approaches [75], and double-threshold

approaches [76]. While single-threshold based approaches rely on detecting the instant when

the amplitude of the signal surpasses a predefined value, double-threshold approaches take this

concept even further by ignoring false-alarm triggers. This is achieved by counting the number of

consecutive samples in which the amplitude of the EMG signal is above a predefined threshold, after

the first motion trigger event happens. For the information to be used in real-time applications,

segments must be divided into windows, which may be either continuous or with overlap. From

these windows, features used on the latest stages of the EMG pattern recognition are extracted. If

the system were to work in real time, the length of the windows should account for the maximum

tolerated delay (300 ms) between processing the information and controlling a myoelectric device

[77]. Furthermore, depending on the application, a trade-off between classification accuracy and

delay exists, which can affect the choice of the window length. In this sense, continuous windows

with lengths of 200 ms provide better classification accuracies, while overlapped windows with

lengths above 200 ms, and 150 ms of overlap, provide a faster response with a noticeable increase

in the classification error [78].

2.3.5 EMG Feature Extraction

The feature extraction stage transforms the raw signal into a feature vector by highlighting im-

portant data. Three types of features are used in EMG control systems: time domain features,

frequency domain features, and time-frequency domain features. Time domain features are the

predominant features used in applications involving wearable mechatronic devices and most my-

oelectrical devices. Their popularity comes from their relatively fast computation due to not re-

quiring any type of transformation [79]. On the other hand, frequency domain features are mostly

used in applications that study muscle fatigue and are based on the signal’s estimated power

spectrum density (PSD) [71, 79]. Finally, time-frequency domain features are used to extract the

signal’s energy information in time and frequency simultaneously. However, both frequency and
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time-frequency domain features require transformations that can be computationally expensive

[71].

2.3.5.1 Time Domain Features

Some of the most used time domain features used in the literature are listed below [60, 79, 80]:

Mean Absolute Value (MAV) The MAV feature represents the mean absolute value of the

signal amplitude, calculated as follows:

MAV =
1

N

N∑
i=1

|xi| (2.1)

where N is the length of the signal, and xi is the ith sample of the signal.

Waveform Length (WL) This feature represents the accumulative length of the signal over a

time segment [79], defined as follows:

WL =

N−1∑
i=1

|xi+1 − xi| (2.2)

where N is the length of the signal, and xi is the ith sample of the signal.

Slope Sign Changes (SSC) The SSC refers to the number of times the slope of the signal

changes from positive to negative to positive, calculated as follows:

SSC =

N−1∑
i=2

f [(xi − xi−1)× (xi − xi+1)] (2.3)

where the function f(x) is defined as follows:

f(x) =


1 if x ≥ threshhold

0 otherwise

(2.4)
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Zero Crossings (ZC) ZC refers to the number of times the amplitude of the signal crossed

zero. It is calculated as follows:

ZC =
N−1∑
i=1

f(xi, xi+1) (2.5)

f(x, y) =


1 if (x× y) < 0 ∩ |x− y| ≥ threshold

0 otherwise

(2.6)

Root Mean Square (RMS) RMS is found by squaring the signal amplitude values, taking the

mean of these squares over a window, and then calculating the square root, as follows:

RMS =

√√√√ 1

N

N∑
i=1

xi2 (2.7)

Auto-regressive (AR) Coefficients An AR model represents each sample xi of the EMG

signal as the linear combination of each previous xi−k samples and white noise wi [79]. The AR

model is defined as follows:

xi =
n∑

k=1

akxi−k + wi (2.8)

where n is the AR order and the coefficients ak are used as the EMG features.

Wilson Amplitude (WAMP) For WAMP, the difference in EMG amplitude between two

segments is found. WAMP is the number of times this difference exceeds a threshold, obtained as

follows:

WAMP =

N−1∑
i=1

f(xi − xi−1) (2.9)

where the function f(x) is defined as follows:
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f(x) =


1 if x ≥ threshhold

0 otherwise

(2.10)

2.3.5.2 Frequency Domain Features

Although it has been found that frequency domain features are not well suited for EMG signal

classification due to some of the features having the same discrimination as most time domain

features while requiring more computational time [79], some features in the frequency domain do

have the ability to provide useful information for EMG signal classification. Frequency domain

features are described below.

Mean Frequency (MNF) The MNF is the average frequency of the EMG signal in the power

spectrum, obtained as follows:

MNF =
M∑
j=1

fjPi

/
M∑
i=0

Pj (2.11)

where M is the length of the frequency bin, fj is the frequency of the power spectrum at bin j,

and P is the EMG power spectrum at frequency bin j.

Median Frequency (MDF) The MDF is the median frequency of the EMG signal in the power

spectrum, calculated as follows:

MDF∑
j=1

Pj =
M∑

j=MDF

Pj =
1

2

M∑
j=1

Pj (2.12)

where M is the length of the frequency bin, fj is the frequency of the power spectrum at bin j,

and P is the EMG power spectrum at frequency bin j.

Power Spectrum Ratio (PSR) The power spectrum ratio represents the ratio between the

maximum value of the power spectrum and the whole energy of the power spectrum. The PSR is

calculated as follows:
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PSR =
P0

P
=

f0+l∑
i=f0−l

Pi

/
E2∑

i=E1

Pi (2.13)

where P is the energy of the power spectrum, which can lie within the range of E1=20 Hz and

E2=500 Hz. On the other hand, P0 is the energy near the maximum value of the power spectrum,

l is the integral limit, and f0 is the frequency with the maximum power spectrum in a frequency

bin of length M .

2.3.5.3 Dimensionality Reduction

Once the feature vector is obtained, it is necessary to reduce its dimensionality by eliminating the

redundant data from it. The resulting vector is called reduced feature vector. There are two main

strategies for dimensionality reduction [81]:

1. Feature selection: This strategy chooses the best subset of the original feature vector accord-

ing to some criteria for deciding whether one subset is better than another.

2. Feature projection: This method tries to determine the best combination of the original

features to form a new feature set. Principal component analysis (PCA) can be used as a

feature projection technique. PCA aims to find a subset of features by projecting the original

features along the directions of their greatest variances [82].

2.3.6 Classification Methods

Once the features have been extracted from the raw signal, and redundant information has been

reduced, classifiers should be deployed to detect motion intention. This section reviews some of

the common pattern recognition classification methods used for the control of wearable assistive

devices.

2.3.6.1 Linear Discriminant Analysis (LDA)

First, Linear Discriminant Analysis (LDA) is a robust classifier that uses hyperplanes to separate

the feature space into linear decision regions. It minimizes the distances between feature vectors
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of the same class and maximizes the distances between different classes. It assumes that the

observations within each class come from Gaussian distribution, and that the covariance of all

classes is equal. The decision regions must be linearly separable, otherwise the LDA will not work

[83]. LDA provides fast predictions and small memory usages. It has been applied to a variety of

EMG classification problems [18].

2.3.6.2 Quadratic Discriminant Analysis (QDA)

Quadratic Discriminant Analysis (QDA) is an extension of LDA that provides non-linear quadratic

decision boundaries. It is best for large data sets as it may overfit data sets with a low number

of observations and high variance. In general, the performance of QDA is comparable to LDA

[84, 85].

2.3.6.3 Support Vector Machines (SVM)

Linear models such as LDA and QDA are simple and fast but perform poorly if the relationships

between features are non-linear or complex. Support Vector Machines (SVM) solve this issue by

using kernel functions. These functions allow the data samples to be separated into hyperplanes,

where similar data are grouped together. This allows to treat the classification problem as a linear

classification problem. Commonly used kernel functions include the linear kernel, the polynomial

kernel, and the Gaussian or radial basis function kernel [86]. If a hyperplane cannot be constructed

to separate all classes, a margin can be tuned to allow for some violations.

The SVM typically allows for better classifications than LDA, but the prediction speeds and

memory usage are worse. SVM classifiers have been used in many applications, including motion

classification for the control of wearable devices [78, 87].

2.3.6.4 K-Nearest Neighbours Classification (K-NN)

The K-Nearest Neighbours (K-NN) classifier is another method that works well on data that are

not linearly separable. K-NN is an unsupervised learning method that allows unlabeled data to be

organized into “clusters.” Data samples are assigned to the clusters such that the the sum of the
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squares of the distances of each data sample to the centre of the cluster is at a minimum. K-NN

has been effectively used to distinguish between upper-limb motions [84].

2.3.6.5 Decision Trees (DT)

Decision Trees (DT) are simple models that can outperform classical approaches when classifying

non-linear data [83]. The outcome of a single decision tree is determined by a series of splitting

rules. However, a single decision tree is susceptible to a lack of robustness. In other words, a

small change in the data can cause a large change in the final estimated tree [83]. The predictive

performance can be substantially improved by aggregating many decision trees, using methods

like bagging, random forests, and boosting [83]. These methods use trees as building blocks to

construct more powerful prediction models. The tree bagging method builds hundreds to thousands

of decision trees by taking repeated samples from the data set. The most common decision obtained

from the trees is then used as the final output. The random forest algorithm is an improvement

upon the tree bagging method. It applies a tweak that prevents the models from considering most

of the available predictors at each split [88]. This ensures that decision trees will not be highly

correlated due to the influence of very strong predictors. For its part, the boosting method works

in a similar way to bagging, except that the trees are grown sequentially: decision trees grown

using information from previously grown trees [83]. Each tree is fit on a modified version of the

original data set. AdaBoost, short for Adaptive Boosting, is a boosting algorithm that creates a

more powerful predictor by iteratively adding weak learners [89]. It obtains the combined classifier

by means of a weighted majority voting scheme, given an ensemble of weak classifiers [90].

2.3.6.6 Artificial Neural Networks (ANN)

Another important classification method is the Artificial Neural Network (ANN) classification

algorithm. It also works well with data that are not linearly separable, or when the classes of the

training data are unknown. ANNs are designed to imitate the networks of neurons in the brain.

The output is determined by a non-linear function of the sum of its inputs. ANNs have high

generalization abilities over large datasets [91] and can meet real-time constraints, which are an

important feature in control systems. ANN models have been used for the classification of motions
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[92].

2.3.7 Evaluation of Classification Model Accuracy

After developing predictive classification models, as the ones presented above, it is necessary to

evaluate their performance, that is, how good are the models in predicting the outcome of new

observations. In order to estimate the model prediction accuracy and prediction errors, training

sets and validation sets should be used [93]. The models are initially fit on a training set, and then

they are used to predict the classes of the validation set.

k–fold cross-validation can be used to determine the classification error. It divides the data set

into k groups, or folds. The first fold consists of the validation set and the remaining k–1 folds are

the training set. This is repeated k times until the average of the classification error is obtained

[83].

Another option, suitable for data sets with a low number of observations, is to use leave-one-

subject-out (LOSO) cross-validation. In this case, a single observation is used as the validation

set, and the remaining observations are used as the training set. The procedure is repeated until

each observation has been used as the validation set, and the average of the classification error is

obtained. With this method, the bias in determining the classification error is decreased [83].

2.3.8 Challenge Issues in EMG Control Systems

EMG-based control systems have a great potential for improving the quality of life of persons

with limb deficiency. However, despite the huge amount of academic achievements regarding

pattern recognition-based classification techniques, the clinical and commercial impact of assistive

devices is still limited [94]. Training periods are required for the motion classifiers to associate

EMG patterns with the motion classes. Current pattern recognition models are limited by long

training periods and poor reliability that prevent them for being used in clinical situations, in

which the signals are not conditioned as well as in research laboratories [95]. In laboratory settings,

classification systems using EMG inputs generally have a higher accuracy than the same systems

used in unconstrained daily activities [96]. Frequently, in training these systems, motions are very

constrained, and variables are controlled, for example, body movements are performed at very
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specific limb positions. In contrast, the functional movements of a limb involved for achieving a task

are generally complex. Motion characteristics, such as limb position, joint velocity and interaction

force can all have an impact in the accuracy of motion classification systems as demonstrated in a

study performed by Stanbury et al. [97], where these factors significantly impacted the activation

of a variety of arm and shoulder muscles, as seen in variations of up to 11 EMG feature values. In

addition, analyzing signals gathered from different motion segments (static muscle activation vs.

time-varying portions) and other noise factors may cause the accuracy of the systems to differ as

well.

2.3.9 Factors

Many factors alter EMG signals, and in turn, affect the accuracy of motion classification algo-

rithms. Some of the factors are external to the actual muscle performance, meaning that they can

cause noise and drift or change the output signals when there are not real changes in the mus-

cle activations [98]. Examples of these factors are the electrodes (type, material, style, electrode

spacing, sweating, skin cleanliness), placement (position of electrodes over muscle bodies, shift-

ing of electrode location during use, crosstalk mixing signals from surrounding muscles) and the

recording system itself (amplification, filtering). In addition, they may only affect the signals in-

termittently. On the other hand, factors affecting the accuracy of motion classification algorithms

that are related to the actual muscle performance and motion, include the limb position, joint

velocity, interaction force and the training protocol. They are described further in the following

sections.

2.3.9.1 Limb Position

In studies, EMG data are generally collected in very constrained laboratory settings. Participants

are measured with their arms supported in specific positions, resulting in repeatable contractions

[99]. Shoulder movements are restrained by fixing the upper arm to the body trunk and other body

movements are avoided by sitting the participants in chairs and fixing their arms to measurement

devices that restrict motion to a single DOF [100]. Whereas in task-oriented situations or activities

of daily living, limbs take on a variety of changing postures during contractions [18]. Muscle
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activations can change with limb posture and indirect joint angles [97]. This is reflected in the

accuracies of pattern recognition of motion reducing with limb position variation [18]. Yang et

al. reported that collecting EMG signals on dynamic arm postures influenced the classification

rate of finger motions [96]. Khushaba et al. [17] studied the combined effect of muscle contraction

and forearm orientation on the generalizability of the EMG pattern recognition and observed that

changing the forearm orientation had a profound impact on the classification results. In addition,

different limb positions can cause activations in muscles not usually involved in the motion of

interest. For example, during trials of repetitive hand gripping while the arm was positioned

with four shoulder flexion–extension angles and three elbow flexion–extension angles, EMG signal

features of the extensor carpi radialis brevis (ECRB), which is located in the forearm and its main

function is extending the wrist, were not significantly different for different positions except for one

feature [101]. So, despite the ECRB not playing an active role in controlling elbow and shoulder

joint angles, one of the EMG features was affected by those joint positions. Similarly, muscles may

not be affected by position in the same way. Depending on the joint angles, muscles can play a

larger or smaller role during motions and may need to activate to counteract several forces. In

another study, the mean normalized sEMG envelope feature of the brachioradialis did not change

with changes in elbow joint angles [99]. Systems using EMG with the arm in varying positions

could use these signal changes as control inputs, or be designed to be robust and not affected by

them.

EMG readings can also change with limb position without being caused by changes in true

muscle activation. When limbs move dynamically, the muscles contract or stretch, changing shape,

and shifting beneath the skin. The movement of muscles under the electrodes may alter the

measurement conditions (such as distance from electrode to muscle), making electrode readings

appear different even if the true muscle activation is not changing [58].

2.3.9.2 Force

Force is another factor that affects motion and EMG signals. In one study, a dramatic increase of

classification error of an LDA model predicting hand actions based on EMG signals was observed

when forces were introduced [60]. In order to cause movement or provide stabilization during
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isometric contractions, activated muscles apply forces to the joints. Such forces are produced by

increased recruitment of motor units and increase firing rate of those motor units [102]. Levels

of muscle activation measured through sEMG can be related to force output, with higher signal

amplitudes typically related to higher levels of force output [54]. However, it has been noted

that this relationship is not always linear above force thresholds. For example, the shape of the

force-sEMG relationship of the muscles controlling finger movement has more of a parabolic shape

[102]. During controlled isometric contractions of the biceps, sEMG has been non-linearly related

to force output at the wrist as well [54]. Changes in EMG signals with motion type at constant

force values are consistent. Levels of muscle activation are higher during concentric motions, lower

during isometric contractions, and lowest during eccentric motions [102]. An important example

of the force-EMG relationship changing with motion is the dependence of force on changes in

elbow joint angle [102]. External forces also have an impact on muscle activation. They can cause

torques in the same direction of the joint rotation during movement or can oppose the joint motion,

causing torques acting in the opposite direction of the intended joint motion. During activities

of daily living, external forces acting on the limbs can also cause torques that are not necessarily

aligned with the axis of rotation of the joints. In turn, these different loadings can cause changes

in the muscle activations patterns. Understanding the relationships between sEMG signals and

generated force can be used to predict intended force based on EMG signals and then control

assistive devices to produce desired force levels. For example, Hashemi et al. [103] calibrated a

parallel cascade identification model to estimate the force induced at the wrist during upper limb

movements.

2.3.9.3 Velocity

In addition to position and force, varying motion activation patterns can be related to varying

joint rotation velocities. The effects of velocity on muscle activation mostly depend on the specific

muscle and the type of motion. For example, muscle activation of the biceps and brachioradialis

has been observed to increase with increasing velocities during elbow flexion [99]. However, during

fine-tuning tasks (extension of the elbow), muscle activation of the biceps decreased with increas-

ing velocities, while the brachioradialis mean normalized sEMG envelope feature increased with
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increasing angular velocity [99]. Changes in velocity can deteriorate the pattern recognition rate

of EMG-based systems. The root mean square error of a parallel cascade identification model esti-

mating forces at the wrist based on EMG inputs, increased from 8.3%, when forces and velocities

were not varied, to 33.3%, when variation in forces and velocities were introduced [103]. Stanbury

et al. [97] studied the combined effect of position, force and velocity on the motion characteristic

classification accuracy and observed that velocity was the most difficult factor to classify during

both flexion–extension arm movements and ADLs.

2.3.9.4 Fatigue

Pattern recognition rates are also degraded by muscular fatigue [104]. Muscle fatigue is a condition

in which muscles fail to maintain the required or expected force after a sustained contraction, this

is accompanied by changes in muscle electrical activity [105]. Changes in sEMG due to muscle

fatigue are due to various factors that include the accumulation of lactic acid in the muscle, which

causes a reduction in the action potential conduction velocity, the recruitment of fast twitch muscle

fibers, synchronization of motor units with the onset of muscle fatigue, and nonlinear motor unit

recruitment patterns in response to pain sensation [106, 107]. The overall effect of these factors

on sEMG is the spectral shift towards low-frequency regions and increased amplitude in signals

[54, 102]. In studies, rest periods are commonly given during trials between contractions, and

motions are performed in randomized orders to minimize the effects of fatigue. For example, in

one study, 60 second rest periods were given between 45 second contractions [99]. However, the

reasoning behind why these durations are chosen is unclear. On the other hand, rest times for

fatigue avoidance can greatly increase training periods when sets of contractions are performed

to train systems for control of devices. In training an artificial neural network for prosthesis

control, 5 minutes of rest allotted between 25 second contractions to avoid fatigue was presented

as a limitation [57]. Robust pattern classifiers for human-machine interaction are currently under

development to avoid muscular fatigue effects [104].
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2.3.9.5 Training Protocol

While designing and testing EMG controlled devices, pattern recognition classifiers are usually

trained for long periods of time in very controlled lab settings. However, during ADLs and func-

tional tasks, the body is not constrained in the same way, with the previously discussed factors

affecting the EMG signals and intended movements not exactly matching the movement profiles

used in the training period. Improved training protocols are being studied to make pattern recog-

nition control systems more generalizable to arm movements outside of laboratory settings [96].

Lorrain et al. [95] showed that EMG signals recorded during dynamic contractions could be ac-

curately classified for the control of multi-function prostheses. They included data from dynamic

portions of muscle contractions in the training protocol of LDA and SVM classifiers, instead of

only static portions. In another study, it was found that SVM models trained with data from both

dynamic arm positions and levels of muscle contractions performed better at classifying finger

motions under a variety of conditions, including external disturbance forces [96]. An important

suggestion for improving classification accuracy is to incorporate data from other sensors, such as

accelerometers, in the training and use of classifiers [18]. This is known as sensor fusion. Blana

et al. [108] demonstrated the use of sensor fusion for prosthesis control in a simulated virtual

reality environment (VRE). They developed a controller based on two time-delayed artificial neu-

ral networks that combined EMG and kinematic signals from the proximal humerus to predict

the movement of the forearm. However, the workspace was quite small, and the range of tasks

examined, limited by the lack of interaction with the environment allowed by the VRE, did not

represent functional tasks or ADLs. More research efforts should be directed to investigate whether

sensor fusion could provide a reliable alternative or complementary medium for motor intention

detection when the quality of EMG signals deteriorates [17].

2.4 Conclusion

This chapter reviewed methods of arm rehabilitation and functional assessments, the use of EMG

pattern recognition in assistive devices, EMG control systems, and the motivation for incorporating

additional data, such as signals from accelerometers, with the surface EMG signals in the training
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and use of pattern recognition classifiers. In the following chapters, an accelerometer and EMG-

based sensor fusion technique for motion intention detection will be explored.



Chapter 3

Data Collection and Processing

This chapter describes the procedures for processing EMG and accelerometer data. A database

from a previous study, which investigated the impact of motion characteristics on EMG signals

from several arm and shoulder muscles [97], was used. The database contains kinematic and

sEMG data from the upper limb of 24 subjects, while performing various ADLs and unconstrained

activities. The collected data were processed and statistical analyses were performed to inform the

use of combined sensor modalities in detecting characteristics of intended motion. The following

sections review the equipment used and experimental procedures of the previous study [97] and

present a description of the data processing and statistical analyses performed in the current work.

The experimental procedures were subject to approval by the Human Research Ethics Board at

Western University. Refer to Appendix C for the Ethics Approval.

3.1 Experimental Procedures

3.1.1 Equipment

3.1.1.1 Acquisition System

Participants were asked to complete a series of isometric exercises, flexion–extension movements

and ADL’s in a simulated environment. Measurements were recorded using a commercial wireless

myoelectric system (Trigno Wireless system, Delsys Inc., USA). The Trigno system includes a base

30
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station that interfaces with 16 wireless radio frequency sensors (Figure 3.1). Each 27 Ö 37 Ö 15

mm sensor is composed of four silver bar electrodes and a triaxial (3 DOF) accelerometer. The

EMG sampling frequency was 1925.93 Hz, and the accelerometer sampling frequency was 148.1

Hz. The sensors were affixed to the surface of the skin above the main bulky area of the muscles of

Figure 3.1: The Trigno wireless myoelectric system

interest using Trigno Sensor Skin Interface double-sided adhesive stickers, as shown in Figure 3.2.

The use of a wireless system ensured for more natural movements and the use of silver electrodes

eliminated the need for gel, which simplified the data acquisition process.

3.1.1.2 Data Recording and Analysis Software

The proprietary software provided by Delsys, EMGworks Acquisition, was utilized to collect and

save the data. Afterwards, using EMGworks Analysis, the raw files were converted into comma-

separated format to be easily accessed.

Figure 3.2: Trigno EMG sensors attached to the muscles of interest
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3.1.1.3 Collaborative robot

A KUKA LBR iiwa collaborative robot (KUKA, Germany), shown in Figure 3.3, was used to

implement and measure force levels during human movements. The KUKA LBR is a lightweight

robot capable of safely interacting with humans. It has 6 joints with an extra turning flange,

providing redundancy as it moves with 6 degrees of freedom (x, y, z translation, α, β, γ rotation).

Torque sensors in each joint provide torque and force feedback [109]. The robot was programmed

using the KUKA Sunrise Workbench software provided by the manufacturer. Three Cartesian

Impedance Control Modes were configured [110] to simulate environment interaction. The code of

the programs can be found in [97]. The data collected during runtime of the program were written

to log files on the robot controller. A USB was inserted into the robot controller to access the files

and transfer them to a computer.

Because the KUKA robot and the Trigno system were not connected at the time of the trials,

data points from the separate systems were required to be synchronized offline after collection.

Timestamps recorded by each system were used to match data points obtained from the different

systems. When viewing the files in the Trigno software, a real world time timestamp for the

beginnning of the measurement was available and recorded. In the case of the KUKA robot, each

data point in the log files was labeled with an epoch timestamp to relate it to data collected with

the Trigno system.

Figure 3.3: The KUKA LBR robot.
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3.1.1.4 Participant Interface

A handle end effector was used as an interface between the user and equipment. The same handle

was used by every participant during all the motion trials. No wrist braces were worn by the

participants to constrict movements. Participants were merely instructed to hold their forearm

and wrist in a constant neutral position.

3.1.2 Muscles Measured

The prime elbow flexion–extension muscles, as well as other muscles in the arm and shoulder area,

were measured. Muscles involved with shoulder abduction and flexion were considered to study the

effect of arm position. Effects of pronation and supination of the forearm were not investigated

in detail. Thus, during most tasks the forearm was held in a neutral position. Nonetheless, it

should be noted that forearm stabilization involves a variety of arm muscles, including those that

are responsible for forearm rotation, which might also be activated during elbow flexion–extension

[97]. For this reason, selected forearm muscles, including wrist flexors and extensors, were also

measured. Table 3.1 lists the selected muscles for which measurements were studied.

Table 3.1: Studied muscles

Channel Muscle Acronym

1 biceps brachii short head BBS

2 biceps brachii long head BBL

3 brachialis BRA

4 brachioradialis BRD

5 triceps brachii long head TRILO

6 triceps brachii lateral head TRILAT

7 triceps medial head TRIM

8 infraspinatus ISPI

9 anterior deltoid AD

10 lateral deltoid LD

11 posterior deltoid PD

12 extension carpi ulnaris ECU

13 extensor carpi radialis ECR

14 flexor carpi ulnaris FCU

15 flexor carpi radialis FCR
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3.1.3 Motion Sets

In the experiment, muscle activation was measured and kinematic information was collected during

isometric exercises and dynamic movements [97]. The dynamic movements were divided into

simple elbow flexion–extension movements, and more complex activities of daily living (ADLs).

Arm position, resistance force, and velocity were the observed movement factors. These factors

were varied through multiple levels in multiple combinations during the motion trial movements.

3.1.3.1 Isometric Exercises

During isometric exercises, the participants were expected to hold their arm still. The elbow angle

did not change during the muscle contraction; however, separate isometric contractions were held

with the elbow fully extended, or the elbow flexed 90°. These contractions were held with the arm

in three different positions (shoulder orientations), and three different forces were applied to the

hand.

3.1.3.2 Maximum Voluntary Contractions

Maximum Voluntary Contraction (MVC) measurements were included as part of the isometric

exercises. EMG signals are commonly measured in studies during maximum muscle contraction

to allow for comparisons of EMG patterns between subjects, not only within subjects [111]. In

this experiment, MVC was measured by holding the upper arm against the torso with the elbow

flexed 90° while the hand gripped the handle of the robot (Fig 3.4). The robot was stiff, resisting

movement, and the participants maximally contracted the arm for one trial, attempting to flex

the elbow (raise the hand), and a second trial, attempting to extend the elbow (lower the hand),

each for a 5 second duration.

3.1.3.3 Elbow Flexion–Extension

In the flexion–extension trials, the arm was held in the starting position with the elbow fully

extended, the elbow joint was rotated to 90° flexion, then extended again. One repetition consisted

of the full movement from extended elbow, to flexed elbow, and return to extended elbow. These
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Figure 3.4: The MVC start position for a right-handed participant holding the robot handle in-
terface.

flexion–extension movements expanded on the isometric contractions, by being performed with

the arm held in the three corresponding arm positions (shoulder orientations), three force levels

applied to the hand, and at two velocities (slow, fast).

3.1.3.4 Activities of Daily Living

Several ADLs were tested to consider more complex scenarios. As mentioned previously, various

sets of ADLs are usually performed for the assessment of upper extremity kinematics, dynamics,

and functionality. The specific ADLs included can vary. In this case, motions that produced

variations in elbow flexion–extension were of interest. The following two activities of daily living

(Figure 3.5) were selected as a sample of arm movements to measure: lowering and raising arm

above horizontal (reaching above shoulder level in front of body) and moving the hand to mouth

(simulating eating and drinking). Resistance force was varied between two levels and the velocity

at which the motion was performed varied between two levels. The levels of the motion factors

are described further in the following section.

3.1.4 Levels of Motion Factors

3.1.4.1 Arm Position

For isometric exercises and flexion–extension motions, the orientation of the upper arm was held

in three different positions. P1 consisted on the arm placed down along the torso (0° abduction, 0°

flexion). In P2, the arm was placed horizontal and stretched forwards (90° flexion). In P3, the arm
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Figure 3.5: The ADL 1 and ADL 2 start positions for a right-handed participant holding the robot
handle interface.

was also horizontal but stretched to side (90° abduction). The patients were instructed to remain

stationary, but their shoulder and torso were not physically constrained. This allowed for some

movement of the upper arm to occur naturally, which was reflective of how motions are performed

during daily activities.

3.1.4.2 Resistance Force

The three force levels during isometric contractions and elbow flexion–extension, were 0 N, 22 N

in the direction resisting elbow flexion, and 22 N resisting elbow extension. The value of 22 N was

chosen to represent the weight felt to lift objects, such as a bag of potatoes or textbooks. During

activities of daily living, two force levels (11 N and 22 N) were applied to the participant’s hand.

The 11 N or 22 N forces were applied directly downwards to simulate the force of gravity acting

on objects a person may carry.

3.1.4.3 Velocity

Movements were performed at three different velocities: 0°/sec during isometric contractions, a

slow quasi-static speed (approximately 11°/sec), and a faster speed (approximately 23°/sec). In

order to perform the motions at two different speeds, participants were instructed to perform the

slow trials in about 8 seconds (duration from full extension to 90° elbow flexion), and complete

the motion segment in about 4 seconds for the faster speed.
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3.1.4.4 Fatigue

Three repetitions of each trial were performed. To prevent extreme muscle fatigue and discomfort

due to overworked muscles, rest periods were given between each repetition, and between each set.

Ten seconds of rest were given between each repetition, and approximately 1 minute of rest was

given between motion sets.

3.2 Pre-Processing and Statistical Analysis

The previous section reviewed the data collection procedures as described in [97]. The work pre-

sented in this thesis extends the results of the previous study by quantifying the impact of motion

characteristics on accelerometer signals from arm and shoulder muscles. Data were processed of-

fline, not in real time, using MATLAB R2020a (MathWorks, USA). The scripts of the computer

programs used in this section are shown in Appendix A.

3.2.0.1 Filtering

Collected EMG data were filtered using a 60 Hz notch filter to remove power line interference, and

a 4th order Butterworth band-pass filter with a lower boundary of 20 Hz and an upper boundary

of 450 Hz to remove any motion artifact [112]. Accelerometer data were filtered using a 4th order

Butterworth band-pass filter with cut-off frequencies of 0.2 Hz and 15 Hz to remove the effect of

gross orientation changes from the signals as well as high frequency noise components affecting the

data [113].

3.2.0.2 Segmenting Repetitions

Timestamps recorded from the KUKA robot, indicating the beginning and end of each repetition

were identified and then synchronized to the EMG files. Accordingly, the EMG signals were

segmented into separate repetitions. ACC data were upsampled so that the number of samples of

these data were the same as the EMG data. Then, the previously obtained onset and offset indices

of the EMG were matched to the upsampled data, and the ACC signals were segmented.
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3.2.0.3 Normalizing EMG Signals

To allow comparison of the signals between participants and muscles, the filtered signals were

normalized relative to the absolute maximum of the EMG signals gathered from the corresponding

muscle during the maximum voluntary contraction exercises.

3.2.0.4 Choice of Feature Sets

Various features were investigated in this study to implement classification of motion characteris-

tics. In order to extract the features, each active segment of the data was divided into windows

of approximately 250 ms with an overlap of 125 ms, following the recommendations of Englehart

and Hudgins, who stated that the maximum acceptable controller delay of upper-limb myoelectric

devices should be 300 ms [80]. The effects of window size and overlap were not of interest in this

study and thereby held constant. The first feature set consisted of a time domain multi-feature

set, known as the Hudgins feature set, widely used for extracting information from EMG signals

to be used as inputs to classifiers for motion classification [57, 79, 80]. This set includes the MAV,

SSC, WL and ZC. A second group of time domain features, often seen in the literature [78, 114],

consisted of RMS and AR. Additionally, two frequency domain features were extracted from the

EMG data: the MNF and MDF. These were included to provide more frequency information

than is represented in the SSC and ZC time domain features. A description of these features was

provided as part of Chapter 2.

Finally, a feature set based on accelerometer data was computed. This set included the Signal

Magnitude Area (SMA) and the Signal Vector Magnitude (here SMV to avoid confusion with the

SVM classifier). We adopted the SMA to extract a feature quantity according to:

SMA =
1

N

N∑
i=1

(|xi|+ |yi|+ |zi|) (3.1)

where xi, yi and zi indicate the values of x axis, y axis, and z axis acceleration signals after

preprocessing.

The SMA can indicate the fluctuation degree of the acceleration signal; the higher the value is,

the more violent the fluctuation is [115]. It has been previously used as a basis for distinguishing
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periods of activity and rest, in order to identify when the subject is undertaking activities and

when they are immobile [21, 116]. This feature is related to the gross amount of activity and to

energy expenditure [21, 117].

For its part, the SMV was calculated as follows:

SMV =
1

N

N∑
i=1

√
xi2 + yi2 + zi2, (3.2)

where xi, yi and zi again indicate the values of x axis, y axis, and z axis acceleration signals after

preprocessing. The SMV indicates the degree of movement intensity [118], and has also been used

to predict energy expenditure [21].

3.2.1 Statistical Analysis

Following the feature extraction procedures, the feature values were averaged over the entire repeti-

tions of the corresponding movement, and then, the mean of the repetition averages were collected

to give one value for the feature per movement. Data from flexion–extension motions and isomet-

ric exercises were grouped together. Similarly, motion trials for ADL1 were grouped together, as

well as motion trials for ADL2. A statistical analysis was performed using the Statistical Package

for Social Sciences v.24 (SPSS) software in order to assess if motion factor levels can be distin-

guished using the accelerometer features. A series of three-way repeated measures ANOVA, with a

Bonferroni correction for multiple comparisons [119], were run to identify if there were significant

differences among the means of the features for each of the motion factors. This procedure was

completed for each subject. Each muscle and feature were analyzed separately. The results of all

statistical analyses described are presented in the next section.

3.2.1.1 Flexion–Extension Statistical Results

For flexion–extension, there were many significant differences between all position levels, between

all force levels, and between all velocity levels for both the SMA and SMV features, as ilustrated

in Figure 3.6.

However, several muscles, including the BRD, TRILO, TRIM, ISPI, LD, PD, ECU, ECR, FCU
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Figure 3.6: Comparisons among mean SMA values for the TRILO. Significant differences between
all positions levels, all forces levels and all velocity levels were observed. Asterisks
denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001). Error bars represent
standard deviation.

and FCR, did not show significant differences between P2 and P3, as ilustrated in Figure 3.7. The

differences in arm position between P1, P2, and P3 were shoulder flexion angles and shoulder

abduction angles. Motions in P2 and P3 were both performed with the arm horizontal. In terms

of gross motion, the difference may have not been abrupt and thus it was not distinguished with

the SMA and SMV features.

Similarly, some muscles, including the BBS, BBL, BRD, AD, ECU, ECR, FCU and FCR did

not show significant differences between F2 and F3, as ilustrated in Figure 3.8. The levels of force

applied in F2 and F3 were 22 N resisting elbow flexion, and 22 N resisting elbow extension. The

main difference between F2 and F3 was the direction of the force applied. For the SMA and SMV

features, absolute and squared values were calculated and the sign (representing direction) of the

force was lost, which explains why the difference between F2 and F3 was not distinguished.

A full comparison of mean ACC feature values for each muscle, and significant differences in

these values corresponding to varying levels of arm position, force, and velocity during the studied

movements, is provided in Appendix B.
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Figure 3.7: Comparisons among mean SMA values for the TRIM. P2 and P3 were not significantly
different. Asterisks denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001)

whereas “n.s.” is written above non-significant comparisons. Error bars represent
standard deviation.

3.2.1.2 ADL’s Statistical Results

For ADLs 1 and 2, there were fewer feature and muscle combinations that had significant differences

for the force levels, when compared to the flexion–extension results.

For ADL1, which consisted in lowering and raising arm above horizontal, there were not sig-

nificant differences between force levels, except for ISPI. Anatomically, the ISPI contributes to

shoulder rotation [65]. It was expected that it would play an essential role in such kind of motions.

On the other hand, significant differences between velocity levels were found for all the muscles.

For ADL2, significant differences between velocity levels were found for all the muscles. No

statistically significant differences were found between force levels for either SMA or SMV.

3.2.1.3 Discussion

As expected, accelerometer features differed across motion factors. Overall, the impact of the

motion factors on the accelerometer signals was strong especially for the velocity factor, where all
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Figure 3.8: Comparisons among mean SMA values for the LD. F2 and F3 were not significantly
different. Asterisks denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001)

whereas “n.s.” is written above non-significant comparisons. Error bars represent
standard deviation.

of the muscles showed significant mean differences. Velocity levels influenced accelerometer signals

in a more consistent manner compared to force. In contrast, EMG signals have been found to be

more influenced by force levels than by velocity levels [97]. The faster velocities and higher forces

were represented by the highest values of SMA and SMV. This result was anticipated based on the

increased intensity of the chosen tasks. The velocity impact on accelerometer signals was consistent

for both ADL motions and flexion–extension movements. This suggests that accelerometer features

may be robust if used to detect intended velocity during both simple and complex tasks. In future

studies, more velocity levels could be tested. The post-hoc tests revealed that the feature values

were significantly higher in P2 and P3 than P1. However, not all the muscles showed statistically

significant mean differences between position categories. In addition, force impacted accelerometer

signals for ADL motions in a less consistent manner compared to the basic elbow flexion–extension

motion. This was expected, as the ADL motions involved more complex movements. These findings

suggest that the accelerometer sensors are sensitive to the increase in joint velocity, interaction

force and have a mild sensitivity to limb position changes.
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Figure 3.9: Comparisons among mean SMA values for the ISPI in two force levels. Asterisks
denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001). Error bars represent
standard deviation.

In conclusion, we demonstrated that accelerometer data varied differently with categories of

motion factors. Therefore, they contain potentially complementary information that should be

useful for motion intention detection techniques. The relationship is explored further and used to

determine intended arm motion in Chapter 4.



Chapter 4

Motion Characteristic Classification

and Applications

Previous studies have demonstrated the impact of motion characteristics, such as limb position,

interaction force, and velocity, on muscle activation [97]. In the previous chapter, it was demon-

strated that motion characteristics, or factors that affect motion, have a significant impact on

accelerometer signals as well. Depending on the motion factor (position, force, velocity) and mo-

tion type (elbow flexion–extension or ADLs), various feature values changed for differing muscles.

In this Chapter, the achieved insight is used to classify levels of motion characteristics by incorpo-

rating ACC signals with muscle activation data. The results of motion characteristic classification

and further applications are described below.

4.1 Classification

EMG and ACC features extracted from the database collected in the previous study [97] were used

in MATLAB to train three types of classifiers, LDA, SVM, and DT Ensemble using an AdaBoost

boosting algorithm [89], to detect classes of motion factors.

Separate models were trained and evaluated for four different motion groups: standard move-

ments (elbow flexion-extension and isometric exercises), ADL1 (lowering and raising arm above

horizontal), ADL2 (moving the hand to mouth), and both ADLs (observations from ADL 1 and

44
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ADL 2 were combined). For the standard movements, three position classes (P1, P2, P3) were

determined. As well, three force classes (0 N, +22 N, -22 N) were classified. With respect to

the velocity factor, motions were classified into three classes (stationary (0°/s), slow, fast) or two

classes (stationary, moving). For the ADL trial groups, these motions were separated into two

force classes (11 N, 22 N), or two velocity classes (slow, fast). Data were separated by type of

motion to train separate models, because the force levels introduced during standard movements

were different from the ones introduced during ADLs [97]. In addition, arm position was not a

controlled variable during ADLs.

The input of the classifiers consisted of predictors (feature values from the various muscles

measured), and labels corresponding to motion factor levels. Two sets of predictors were developed

from the feature vectors. The first one was formed by the EMG feature values (11) for all available

muscles (15), and the second contained all EMG features plus the ACC feature values (2). A

feature-level fusion approach [120] was employed to form the second set, by concatenating each

feature vector to create a single feature vector of 13 features.

Native MATLAB functions, fitcdiscr, fitcecoc, and fitensemble were used to gen-

erate the LDA, SVM and DT Ensemble classifiers, respectively (see Appendix A for MATLAB

scripts). The method for checking the classifier accuracy is outlined in the following section.

4.2 Model Evaluation

A leave-one-subject-out (LOSO) cross-validation technique was used to estimate the accuracy of

each classification model [121]. Accordingly, all the trials from one subject were excluded and

used as a testing set, while the trials from the remaining subjects were used as the training set.

The classifier outputs were compared to the trial labels (that represented what the subject was

actually doing at the time of the respective trial) and the number of correct predictions was used

to calculate an accuracy score for each subject. This process was then repeated for each left-out

subject and the accuracies were averaged across all iterations to obtain a metric for each model.

Once this process was finished, a statistical analysis was performed in order to identify the best

classification methods. The accuracies scores of each subject obtained position, force and velocity



4.3 Results 46

classification were averaged to obtain overall accuracies for each sensing modality (EMG data only,

or combined EMG and ACC data) and classification model (LDA, SVM, DT Ensemble). This was

done to allow for a general comparison of each method. The statistical analysis was performed

using SPSS software to determine if the obtained accuracies showed significant differences between

groups. A tree-by-two repeated measures ANOVA with a Bonferroni correction [119] was performed

on the accuracies to compare means across classification methods. The process was repeated for

each of the motion groups (standard movements, ADL1, ALD2, and both ADLs). The accuracies

of the classification models as well as the results of the statistical analysis are demonstrated in the

next section.

4.3 Results

4.3.1 Position

The three classifiers were first trained with data from the standard movements to determine the

position (P1, P2, P3) of the arm. As it can be seen in Figure 4.1, despite the very diverse training

data with varied force levels and velocity levels, position could be determined with less than 25%

error with the LDA (78.70%) and SVM (83.02%) classifiers. The accuracy of the DT Ensemble

classifier was lower in this case, at 73.45%. The accuracies of the SVM and DT Ensemble remained

the same when ACC were incorporated in the classification, but the accuracy of the LDA classifier

increased by 3%.

The average accuracy results of each sensor modality during position classification can be seen

in Fig. 4.2. A statistically significant difference in accuracy was found between the two modalities,

although the overall improvement was small (about 1%). The average accuracy results for each

classifier during position classification can be seen in Fig. 4.3. There was not any significant

difference between the LDA and SVM classifiers but a significant difference was found for the

Decision Tree Ensemble classifier, whose performance was worse in this case.
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Figure 4.1: Classification accuracies of the trained models identifying positions during standard
movements.
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Figure 4.2: Mean position classification accuracies of each sensor modality during standard move-
ments. Asterisks denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001).
Error bars represent standard deviation.
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Figure 4.3: Mean position classification accuracies of each classifier during standard movements.
Asterisks denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001) whereas
“n.s.” is written above non-significant comparisons. Error bars represent standard
deviation.

4.3.2 Force

The results of force classification during standard movements are shown in Figure 4.4. The ac-

curacies were lower for LDA (73.77%) and SVM (74.54%) but a small increase in accuracy was

observed with the DT Ensemble classifier (75.92%). Using this classifier, interaction with the en-

vironment could be determined with less than 25% error when arm position and velocity varied.

Again, incorporating ACC data in the classification did not make much difference, but the LDA

classifier improved by 4%.

The average accuracy results of each sensor modality during force classification can be seen in

Fig. 4.5. A statistically significant difference in accuracy was found between the two modalities.

This indicated that EMG & ACC showed better classification accuracy. The average accuracy

results of each classifier during force classification can be seen in Fig. 4.6. The three classifiers

were found to perform at the same level, showing no statistically significant difference between

means.



4.3 Results 49

Force

EMG

EMG & ACC
EMG EMG & ACC EMG EMG & ACC

LDA SVM DT
0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
 (

%
)

Figure 4.4: Classification accuracies of the trained models identifying force levels during standard
movements.
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Figure 4.5: Mean force classification accuracies of each sensor modality during standard move-
ments. Asterisks denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001).
Error bars represent standard deviation.
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Figure 4.6: Mean force classification accuracies of each classifier during standard movements.
“n.s.” is written above non-significant comparisons. Error bars represent standard
deviation.

4.3.3 Velocity (3 classes)

The three classifier types were very poor at determining velocity (stationary, slow, fast) during

standard movements, as shown in Figure 4.7. However, augmenting the predictor vector with

ACC features reduced the classification error. The accuracy of LDA increased from 43.98% to

58.33%, SVM increased from 47.22% to 52.50% and DT Ensemble classifier increased from 49.84%

to 62.03%. Poor discrimination of velocity classes was expected, as these classes were the goal

velocities at which the participants were instructed to move. During the experiment, the actual

joint rotation and hand speeds varied between and within participants, even though the subjects

were instructed to perform motions over consistent durations [97]. The average accuracy results of

each sensor modality during velocity classification can be seen in Fig. 4.8. A statistically significant

difference in accuracy was found between the two modalities, indicating that EMG & ACC showed

better classification accuracy than EMG. The average accuracy results of each classifier during

velocity classification can be seen in Fig. 4.9. The three classifiers had a similar performance,

showing no statistically significant difference between means.
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Figure 4.7: Classification accuracies of the trained models identifying 3 velocity levels during stan-
dard movements.

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y
 (

%
)

Velocity Classification

EMG EMG & ACC

Figure 4.8: Mean velocity classification (3 classes) accuracies of each sensor modality during stan-
dard movements. Asterisks denote statistical significance (* p <0.05; ** p <0.01; ***

p <0.001). Error bars represent standard deviation.
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Figure 4.9: Mean velocity classification accuracies of each classifier during standard movements.
“n.s.” is written above non-significant comparisons. Error bars represent standard
deviation.

4.3.4 Velocity (2 classes)

It was noted that the classification accuracies considerably increased when only two velocity levels

(stationary, moving) were classified, as shown in Figure 4.10. The accuracy of velocity classification

during standard movements increased up to 91% with the DT Ensemble classifier. The average

accuracy results of each sensor modality during velocity classification (2 classes) can be seen in

Fig. 4.11. A statistically significant difference in accuracy was found between the two modalities,

indicating that EMG & ACC had a better performance than EMG. The average accuracy results

of each classifier during velocity classification (2 classes) can be seen in Fig. 4.12. Statistically

significant differences were found between the DT Ensemble and the other two classifiers, indicating

that the DT Ensemble classifier showed a better accuracy.

4.3.5 ADL 1 Force

The results of training classifiers to detect force levels during ADL 1 are shown in Figure 4.13. Force

classification was worse for ADL 1 motions than the standard movements. This was expected as
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Figure 4.10: Classification accuracies of the trained models identifying 2 velocity levels during
standard movements.
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Figure 4.11: Mean velocity classification (2 classes) accuracies of each sensor modality during stan-
dard movements. Asterisks denote statistical significance (* p <0.05; ** p <0.01; ***

p <0.001). Error bars represent standard deviation.
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Figure 4.12: Mean velocity classification (2 classes) accuracies of each classifier during standard
movements. Asterisks denote statistical significance (* p <0.05; ** p <0.01; ***

p <0.001) whereas “n.s.” is written above non-significant comparisons. Error bars
represent standard deviation.

the motions in the ADL 1 group were more complex; thus, there was more variation in the torques

experienced at the elbow [97]. Plus, the difference between force levels (11 N and 22 N) for

ADLs was smaller compared to the force levels (0 N, +22 N, -22 N). When trained using ACC

data, the LDA classifier had a higher accuracy (4% higher). However, no statistically significant

difference in overall accuracy was found between the two sensor modalities, as it can be seen in

Fig.4.14. Similarly, no statistically significant differences were found between the accuracies of the

3 classifiers, as it can bee seen in Fig.4.15. Neither classifier performed significantly better or worse

than the others with comparable accuracies.

4.3.6 ADL 1 Velocity

The accuracies of velocity classification were modest during ADL 1, as can be seen in Figure

4.16, but increased considerably when ACC data were used. The accuracy of LDA improved from

56.25% to 66.70% and DT Ensemble improved from 53.13 to 78.12%. The average accuracy results
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Figure 4.13: Classification accuracies of the trained models identifying force levels during ADL1.
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Figure 4.14: Mean force classification accuracies of each sensor modality during ADL1 motions.
“n.s.” is written above non-significant comparisons. Error bars represent standard
deviation.
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Figure 4.15: Mean force classification accuracies of each classifier during ADL1 motions. “n.s.” is
written above non-significant comparisons. Error bars represent standard deviation.

of each sensor modality during velocity classification can be seen in Fig. 4.17.

A statistically significant difference in accuracy was found between the two sensor modalities,

which can be observed by the increase in performance when ACC data were used. The average

accuracy results of each classifier during velocity classification can be seen in Fig. 4.18. A statisti-

cally significant difference was observed between the SVM and DT Ensemble classifiers, meaning

that the DT Ensamble performed significantly better than SVM.

4.3.7 ADL 2 Force

The results of force classification during ADL 2 are shown in Figure 4.19. Again, force classification

was worse than the flexion–extension movements. This was also expected due to the complexity

of the movements. When trained using ACC data, the LDA, SVM, and DT Ensemble achieved

accuracies of 60.42%, 60.41%, and 64.60%, respectively. The average accuracy results of each

sensor modality during force classification are shown in Fig. 4.20. No statistically significant

difference in accuracy was found between the two sensor modalities during ADL2. In addition,

there were not any statistically significant differences between the accuracies of the 3 classifiers, as
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Figure 4.16: Classification accuracies of the trained models identifying velocity levels during ADL1.
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Figure 4.17: Mean velocity classification accuracies of each sensor modality during ADL1 motions.
Asterisks denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001). Error
bars represent standard deviation.
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Figure 4.18: Mean velocity classification accuracies of each classifier during ADL1 motions. As-
terisks denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001), whereas
“n.s.” is written above non-significant comparisons. Error bars represent standard
deviation.

shown in Fig. 4.21. Neither classifier performed significantly better or worse than the others with

comparable accuracies.

4.3.8 ADL 2 Velocity

Very modest results were observed for velocity classification, as can bee seen in Figure 4.22. When

training the classification models with both EMG and ACC data, accuracies ranged from 53% to

68.75%. The average accuracy results of each sensor modality during velocity classification are

shown in Fig. 4.23. No statistically significant difference in accuracy was found between the two

sensor modalities during ADL2. In addition, there were not any statistically significant differences

between the accuracies of the 3 classifiers, as shown in Fig. 4.24. Neither classifier performed

significantly better or worse than the others with comparable accuracies.
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Figure 4.19: Classification accuracies of the trained models identifying force levels during ADL2.
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Figure 4.20: Mean force classification accuracies of each sensor modality during ADL2 motions.
“n.s.” is written above non-significant comparisons. Error bars represent standard
deviation.
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Figure 4.21: Mean force classification accuracies of each sensor classifier during ADL2 motions.
“n.s.” is written above non-significant comparisons. Error bars represent standard
deviation.
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Figure 4.22: Classification accuracies of the trained models identifying velocity levels during ADL2.
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Figure 4.23: Mean velocity classification accuracies of each sensor modality during ADL2 motions.
“n.s.” is written above non-significant comparisons. Error bars represent standard
deviation.

4.3.9 ADL 1 and ADL 2 Force

The last group included data from motions during both ADLs. The results of training classifiers

to detect force levels are shown in Figure 4.25. Relatively low discrimination accuracies were

observed. In addition, the accuracy of the LDA classifier decreased when ACC data were used. The

average accuracy results of each sensor modality during force classification can be seen in Fig.4.26.

A statistically significant difference in accuracy was found between the two sensor modalities,

that indicated that EMG & ACC performed significantly worse. The average accuracy results

of each classifier during force classification can be seen in Fig.4.27. A statistically significant

difference between the accuracies of the LDA and DT Ensemble classifiers was found, indicating

that performance of the LDA classifier was worse than the DT Ensemble.

4.3.10 ADL 1 and ADL 2 Velocity

The results of velocity classification during ADL 1 and ADL 2 are shown in Fig. 4.28. Low

discrimination was also observed but the classification accuracies increased considerably when
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Figure 4.24: Mean velocity classification accuracies of each classifier during ADL2 motions. “n.s.”
is written above non-significant comparisons. Error bars represent standard deviation.
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Figure 4.25: Classification accuracies of the trained models identifying force levels during both
ADLs.
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Figure 4.26: Mean force classification accuracies of each sensor modality during both ADLs. As-
terisks denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001). Error bars
represent standard deviation.

ACC were used. The accuracy of LDA increased from 48.99% to 54.63%, SVM increased from

54.17% to 62.50% and DT Ensemble classifier increased from 62.50% to 72.22%. The average

accuracy results of each sensor modality during velocity classification can be seen in Fig. 4.29.

A statistically significant difference in accuracy was found between the two modalities, indi-

cating that EMG & ACC showed better classification accuracy than EMG. The average accuracy

results of each classifier during velocity classification can be seen in Fig. 4.30. Statistically sig-

nificant differences were found between the DT Ensemble and the other two classifiers, indicating

that the DT Ensemble classifier showed a better accuracy.
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Figure 4.27: Mean force classification accuracies of each classifier during both ADLs. Asterisks
denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001), whereas “n.s.” is
written above non-significant comparisons. Error bars represent standard deviation.
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Figure 4.28: Classification accuracies of the trained models identifying velocity levels during both
ADLs.
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Figure 4.29: Mean velocity classification accuracies of each sensor modality during both ADLs.
Asterisks denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001). Error
bars represent standard deviation.
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Figure 4.30: Mean velocity classification accuracies of each classifier during both ADLs. Asterisks
denote statistical significance (* p <0.05; ** p <0.01; *** p <0.001), whereas “n.s.” is
written above non-significant comparisons. Error bars represent standard deviation.



4.4 Conclusion 66

4.4 Conclusion

This chapter presented the results of the implementation of motion characteristic classification

using data collected from healthy subjects during the performance of several arm motions. EMG

features, and a combination of EMG and ACC features, were fed into an LDA, SVM and DT

Ensemble classifiers, which then detected categories of arm position, force levels, or movement.

As expected, it was observed that the combination of sensor modalities resulted in classifiers

of a relatively higher accuracies. Consistent improvements were seen in velocity prediction. For

instance, velocity classification (slow, fast) during ADL 1 was increased from 53.13% to 78.12%

with a Decision Tree ensemble classifier using a boosting algorithm. In addition, the DT Ensemble

classifier was capable of distinguishing velocity, between stationary and moving, during standard

movements with less than 10% error (the maximum rate for a system classifying motions to be

considered usable [60]). It was noted that the accuracy of the classifiers remained lower during

ADLs than during standard movements. The poorer classification of motion characteristics for

ADLs verifies that the control problem of using signals from wearable sensors to determine motion

intention for ADLs is more complex than simple motions with limited movement [97].

The EMG & ACC sensor modality was identified to significantly improve the ability of the

classification models to detect categories of arm position, force levels, and velocities during standard

movements. However, including ACC information did not correspond with a consistent change in

accuracy for identifying force levels during ADL1, ADL2, or the combination of ADL1 and ADL2

movements. It did increase the accuracy of velocity classification during AD1 and the combination

of ADL1 and ADL2 movements. Furthermore, it was observed that, in most of the cases, none

of the classification models performed better than the others. The main exception was the DT

Ensemble classifier, which demonstrated a better ability to detect categories of velocities during

standard movements and ADL1 movements.

Motion classifiers are commonly used to determine intended motion type such as wrist flex-

ion–extension or grabbing objects [122]. In contrast, these results demonstrated that more infor-

mation about intended motion can be determined wearable sensors. This is a potential way of

improving the control of wearable mechatronic devices. Further applications of these findings are
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discussed in the following chapter, along with the main conclusions and contributions from this

work.



Chapter 5

Conclusions and Future Work

In this thesis, evidence that the inclusion of accelerometer information can significantly improve

the classification scores was provided through an experimental evaluation. This is in line with

previous studies employing sensor fusion. The use of accelerometers in EMG decoding was first

proposed by Fougner et al. [18], who demonstrated that when data were collected under multiple

limb positions, the use of accelerometers yielded a significant improvement in motion classification

accuracy.

Accelerometer signals measured from 15 arm and shoulder muscles during motion trials were

processed to extract relevant features. A statistical analysis was performed to quantify the way in

which signal features varied depending on the motion factor (position, force, velocity) and motion

type (standard movements or ADLs). We observed that the means of the features were significantly

different across categories. This insight led to the inclusion of accelerometer features with muscle

activation data in the training of classifiers to detect levels of motion characteristics.

It was demonstrated that a Decision Tree Ensemble classifier, trained with a combined set of

EMG and ACC signal features, was capable of distinguishing isometric contractions from active

motion during elbow flexion–extension with an accuracy of 91%. For comparison, a previous study

distinguished motion from no motion with a classification error of 32.10%, using LDA and SVM

models [97]. The approach presented in this study could be used to guide or tune the control

models of a wearable mechatronic device.

It should be noted that gyroscope data were not used in these experiments. Given the relatively

68
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higher power consumption of gyroscopes [123], it may be better to use EMG or ACC data when

battery life and battery weight are critical factors, which applies for wearable mechatronic devices

[9].

Importantly, there is yet no wearable sensor modality that can capture all aspects of human

motor behaviour [123]. For instance, while accelerometers are sensitive to motion, they are not

directly related to differences in force generation. Similarly, the relationship between muscle acti-

vation and motion is not straightforward.

Eventually, as more sensors capable of quantifying human motion and motor behaviour become

available, a more comprehensive understanding of the relationships between sensor data and human

motion will likely increase the accuracy of pattern recognition systems [123].

5.1 Contributions

The contributions of the work presented in this thesis are as follows:

� The observed effect of motion factors on accelerometer feature values led to the inclusion of

information of this sensor modality into the motion intention detection. Even though other

studies have already looked at the fusion of these sensors signals, this is the first time this

type of fusion is used for motion characteristic classification, during upper limb movements.

This work justifies the consideration of ACC signals as complementary inputs to a control

system detecting intended elbow motion.

� A major contribution is the improvement of the performance of classification models when

using combined ACC and EMG data.

5.2 Recommendations for Future Work

This section explains relevant topics for future work that can be done to effectively implement

these methods during robot-assisted therapies. Suggested directions for future work are as follows:

� Perform feature reduction. The features employed in this study were selected as they are

known to provide meaningful information. Nonetheless, feature reduction could be performed
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to avoid redundant information and further improve the classification models [79].

� Implement sophisticated feature fusion techniques to improve the classifications methods.

There are three main types of multi-sensor fusion: data-level fusion, decision-level fusion, and

feature-level fusion [120]. During data-level fusion, data coming from multiple homogeneous

sensors measuring the same physical phenomena are treated as a single dataset from which

features are extracted. For its part, decision-level fusion refers to the process of selecting

decisions coming from multiple sensors. Features coming from each sensor modality are

classified separately and then, the outputs of these individual classifiers are combined using

statistical methods to make a final decision [120]. In this work, feature-level fusion was

implemented. During feature-level fusion, feature matrices from each sensor modality are

joined into a single multi-dimensional feature vector from which the classification is made.

The main drawback of this technique is that, in most cases, feature reduction algorithms

are required to find an optimal feature vector. Further research should explore the effects of

these fusion levels on the classification performance of motion characteristic classifiers.

� Repeat the study with data from subjects with a musculoskeletal injury or going through the

process of rehabilitation. Investigate differences in EMG and ACC features between subjects

with and without an injury. Since the movements of subjects with an injury may be more

constrained during ADLs, it is expected that fewer significant differences in ACC features

would be observed, since these are indicators of gross motion and movement intensity [118].

Thus, a reduction in the classification performance might also be observed.

� Alternative applications. The methods developed in this study can also be used on other

problems; not only upper-limb devices. They can be used on other joints, such as the knee.

The purpose of this thesis was to implement motion detection classification models using ac-

celerometer and EMG-based sensor fusion. The main objective of this work was to increase the

accuracy of motion intention detection. In this sense, improved accuracies were achieved. Further

work developing more strategies for using sensor fusion techniques to achieve better motion inten-

tion detection will be able to promote long term adoption of wearable mechatronic devices during

rehabilitation.
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[20] A. Godfrey, A. K. Bourke, G. M. Ólaighin, P. van de Ven, and J. Nelson, “Activity classifica-
tion using a single chest mounted tri-axial accelerometer,” Medical Engineering and Physics,
vol. 33, no. 9, pp. 1127–1135, 2011.

[21] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler, “Implemen-
tation of a real-time human movement classifier using a triaxial accelerometer for ambulatory
monitoring,” IEEE Transactions on Information Technology in Biomedicine, vol. 10, no. 1,
pp. 156–167, 2006.

[22] A. Mannini and A. M. Sabatini, “Machine learning methods for classifying human physical
activity from on-body accelerometers,” Sensors, vol. 10, no. 2, pp. 1154–1175, 2010.

[23] D. Rand, J. J. Eng, P. F. Tang, J. S. Jeng, and C. Hung, “How active are people with stroke?:
use of accelerometers to assess physical activity.,” Stroke; a journal of cerebral circulation,
vol. 40, no. 1, pp. 163–168, 2009.



REFERENCES 73

[24] B. F. Morrey, “Anatomy and biomechanics of the elbow joint.,” Instructional course lectures,
vol. 35, no. 4, pp. 59–68, 1986.

[25] C. Shirota, J. Jansa, J. Diaz, S. Balasubramanian, S. Mazzoleni, N. A. Borghese, and
A. Melendez-Calderon, “On the assessment of coordination between upper extremities: To-
wards a common language between rehabilitation engineers, clinicians and neuroscientists,”
Journal of NeuroEngineering and Rehabilitation, vol. 13, no. 1, pp. 1–14, 2016.

[26] J. C. MacDermid, J. I. Vincent, L. Kieffer, A. Kieffer, J. Demaiter, and S. MacIntosh, “A
Survey of Practice Patterns for Rehabilitation Post Elbow Fracture,” The Open Orthopaedics
Journal, vol. 6, no. 1, pp. 429–439, 2012.

[27] L. Q. Zhang, J. Son, H. S. Park, S. H. Kang, Y. Lee, and Y. Ren, “Changes of shoulder,
elbow, and wrist stiffness matrix post stroke,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 25, no. 7, pp. 844–851, 2017.

[28] S. J. Chinchalkar and M. Szekeres, “Rehabilitation of elbow trauma,” Hand Clinics, vol. 20,
no. 4, pp. 363–374, 2004.

[29] J. Kristensen and F.-M. Andy, “Resistance training in musculoskeletal rehabilitation: a
systematic review,” British Journal of Sports Medicine, vol. 46, pp. 719–726, 2012.

[30] A. Marinelli, G. Bettelli, E. Guerra, M. Nigrisoli, and R. Rotini, “Mobilization brace in
post-traumatic elbow stiffness,” Musculoskeletal Surgery, vol. 94, no. SUPP, 2010.

[31] T. Walters-Salas, “The challenge of patient adherence,” Bariatric Nursing and Surgical Pa-
tient Care, vol. 7, no. 4, p. 186, 2012.

[32] L. O’brien, “Adherence to therapeutic splint wear in adults with acute upper limb injuries:
A systematic review,” Hand Therapy, vol. 15, no. 1, pp. 3–12, 2010.

[33] J. Mehrholz, M. Pohl, K. J, and B. Elsner, “Electromechanical and robot-assisted arm train-
ing for improving activities of daily living, arm function, and arm muscle strength after
stroke,” The Cochrane database of systematic reviews, vol. 2015, no. 11, p. CD006876, 2015.

[34] S. L. Wolf, P. A. Thompson, D. M. Morris, D. K. Rose, C. J. Winstein, E. Taub, C. Giuliani,
and S. L. Pearson, “The EXCITE trial: Attributes of the Wolf Motor Function Test in
patients with subacute stroke,” Neurorehabilitation and Neural Repair, vol. 19, no. 3, pp. 194–
205, 2005.

[35] J. I. Vincent, J. C. Macdermid, G. J. King, and R. Grewal, “Linking of the Patient Rated
Elbow Evaluation (PREE) and the American Shoulder and Elbow Surgeons - Elbow ques-
tionnaire (pASES-e) to the International Classification of Functioning Disability and Health
(ICF) and hand core sets,” Journal of Hand Therapy, vol. 28, no. 1, pp. 61–68, 2015.

[36] S. H. Roy, M. S. Cheng, J. Moore, G. De Luca, S. H. Nawab, and C. J. De Luca, “A Com-
bined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 6, pp. 585–594,
2009.



REFERENCES 74
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[110] A. Albu-Schäffer and G. Hirzinger, “Cartesian impedance control techniques for torque con-
trolled light-weight robots,” Proceedings - IEEE International Conference on Robotics and
Automation, vol. 1, no. May, pp. 657–663, 2002.

[111] C. E. Boettcher, K. A. Ginn, and I. Cathers, “Standard maximum isometric voluntary
contraction tests for normalizing shoulder muscle EMG,” Journal of Orthopaedic Research,
vol. 26, no. 12, pp. 1591–1597, 2008.

[112] E. Scheme, B. Lock, L. Hargrove, W. Hill, U. Kuruganti, and K. Englehart, “Motion normal-
ized proportional control for improved pattern recognition-based myoelectric control,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 22, no. 1, pp. 149–157,
2014.

[113] B. Knorr, R. Hughes, and D. Sherrill, “Quantitative Measures of Functional Upper Limb
Movement in Persons after Stroke,” in IEEE 2nd International EMBS Conference on Neural
Engineering, (Arlington), 2005.

[114] A. Phinyomark, C. Limsakul, and P. Phukpattaranont, “A novel feature extraction for robust
EMG pattern recognition,” Journal of Computing, vol. 1, no. 1, 2009.

[115] W. Xiao and Y. Lu, “Daily Human Physical Activity Recognition Based on Kernel Discrim-
inant Analysis and Extreme Learning Machine,” Mathematical Problems in Engineering,
2015.



REFERENCES 80

[116] F. Bianchi, S. J. Redmond, M. R. Narayanan, S. Cerutti, B. G. Celler, and N. H. Lovell, “Falls
event detection using triaxial accelerometry and barometric pressure measurement,” Proceed-
ings of the 31st Annual International Conference of the IEEE Engineering in Medicine and
Biology Society: Engineering the Future of Biomedicine, EMBC 2009, pp. 6111–6114, 2009.

[117] S. Jeran, A. Steinbrecher, and T. Pischon, “Prediction of activity-related energy expendi-
ture using accelerometer-derived physical activity under free-living conditions : a systematic
review,” Nature Publishing Group, no. December 2015, pp. 1187–1197, 2016.

[118] S. D. Bersch, D. Azzi, R. Khusainov, I. E. Achumba, and J. Ries, “Sensor data acquisition and
processing parameters for human activity classification,” Sensors, vol. 14, no. 3, pp. 4239–
4270, 2014.

[119] R. A. Armstrong, “When to use the Bonferroni correction,” Ophthalmic & physiological
optics, vol. 34, pp. 502–508, 2014.

[120] R. Gravina, P. Alinia, H. Ghasemzadeh, and G. Fortino, “Multi-sensor fusion in body sensor
networks: State-of-the-art and research challenges,” Information Fusion, vol. 35, pp. 1339–
1351, 2017.

[121] J. Chiang, Z. J. Wang, and M. J. McKeown, “A hidden Markov, multivariate autoregres-
sive (HMM-mAR) network framework for analysis of surface EMG (sEMG) data,” IEEE
Transactions on Signal Processing, vol. 56, no. 8 II, pp. 4069–4081, 2008.

[122] B. A. Lock, K. Englehart, and B. Hudgins, “Real-time myoelectric control in a virtual
environment to relate usability vs. accuracy,” Proceedings of the 2005 MyoElectric Control-
s/Powered Prosthetics Symposium, no. May 2014, pp. 17–20, 2005.

[123] M. S. Totty and E. Wade, “Muscle Activation and Inertial Motion Data for Noninvasive
Classification of Activities of Daily Living,” IEEE Transactions on Biomedical Engineering,
vol. 65, no. 5, pp. 1069–1076, 2018.



Appendix A

MATLAB Code

A.1 Filtering Data Code

1 function [filtsignal] = accfilter_trigno(rawsignal)

2 fs=1.481481e+002; %ACC Sampling frequency: 1.481481e+002

3 %EMG Sampling frequency 1.925926e+003

4 filtsignal=rawsignal;

5 %4th order Butterworth band-pass filter with cut-off frequencies of

0.2 and 15 Hz

6 [b,a]=butter(4,[0.2/(fs/2),15/(fs/2)]);

7 filtsignal = filtfilt(b,a,filtsignal);

8 %notch filterwear

9 wo = 60/(fs/2);

10 bw = wo/10;

11 [b,a] = iirnotch(wo,bw);

12 % fvtool(b,a);

13 filtsignal = filtfilt(b,a,filtsignal);

A.2 Processing ACC Data Code

81
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1 numstart=0;

2 for i=numstart:24

3 %% assigning variables

4 subNum = i; % set as subject currently being processed

5 numReps = 3;

6

7 startTrial = 1;

8 numTrials = 38; % ONLY THE 38 trials, no need to normalize

9 timeOffsetRepStartT = zeros(numReps, numTrials);

10 timeOffsetRepEndT = zeros(numReps, numTrials);

11 offset = 26; % offset of trigno to get to real time move 2 seconds

back, kuka to real time 28 seconds back, between is 26 seconds

12 [offsetK, offsetKTimezone] = getKOffset(subNum); % time offset of Kuka

, specific for subject

13 offsetKTimezone = offsetKTimezone{1,1};

14

15 %% get time offsets

16 % run assign variables section first

17 fileName = strcat('D:\Data\S',int2str(subNum),'\Trigno\

EMGRecTimestamps.xlsx');

18 [numT, txtT, rawT] = xlsread(fileName,'B1:C40');

19 timestampFileT = datetime(strcat(txtT(:,1),txtT(:,2)),'InputFormat','

yyyy/MM/ddHH:mm:ss.SSSSSSS');

20 timestampFileT.TimeZone = offsetKTimezone; %-4:00 for S1, S2, -3:00 S3

,

21 timestampFileT.Format = 'yyyy/MM/dd HH:mm:ss.SSSSSSS';

22

23 %load KUKA timestamps

24 name1=['D:\Data\Processing\S',int2str(subNum),'\timesStartK.csv'];
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25 name2=['D:\Data\Processing\S',int2str(subNum),'\timesEndK.csv'];

26 TimeStartKFilename = csvread(name1);

27 TimeEndKFilename = csvread(name2);

28

29 timeRepStartFromKfile = TimeStartKFilename;

30 timestampRepStartFromKfile = datetime(timeRepStartFromKfile,'

ConvertFrom','epochtime');

31 timestampRepStartFromKfile.TimeZone = '+00:00';

32 timestampRepStartFromKfile.Format = 'yyyy/MM/dd HH:mm:ss.SSSSSSS';

33

34 timeRepEndFromKfile = TimeEndKFilename;

35 timestampRepEndFromKfile = datetime(timeRepEndFromKfile,'ConvertFrom',

'epochtime');

36 timestampRepEndFromKfile.TimeZone = '+00:00';

37 timestampRepEndFromKfile.Format = 'yyyy/MM/dd HH:mm:ss.SSSSSSS';

38

39 for trial=startTrial:(startTrial - 1 + numTrials)

40 for rep=1:numReps

41 tempTimeOffsetStart = (timestampRepStartFromKfile(rep,

trial)-seconds(offsetK)) - (timestampFileT(trial));

42 timeOffsetRepStartT(rep,trial) = seconds(duration(

tempTimeOffsetStart));

43

44 tempTimeOffsetEnd = (timestampRepEndFromKfile(rep,trial)-

seconds(offsetK)) - (timestampFileT(trial));

45 timeOffsetRepEndT(rep,trial) = seconds(duration(

tempTimeOffsetEnd));

46 end

47 end
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48

49 matOffsetRepStartTEMG = round(timeOffsetRepStartT./(1/1925.926)) + 1;

50 matOffsetRepEndTEMG = round(timeOffsetRepEndT./(1/1925.926)) + 1;

51

52 % get Trigno data, save as separate reps

53 % run assign variables section first

54 for trial=startTrial:(startTrial - 1 + numTrials)

55 for rep=1:numReps

56 if(matOffsetRepStartTEMG(rep,trial)>1) %if offset is not

negative

57 fileName = strcat('D:\Taylor Stanbury\Data\S',int2str(

subNum),'\Trigno\EMG',int2str(trial),'.csv');

58 dataTrigno = csvread(fileName,453,0);

59 if(matOffsetRepStartTEMG(rep,trial)&& matOffsetRepEndTEMG(rep

,trial)<length(dataTrigno)) %if offset is valid

60 l=length(dataTrigno(:,2)); %save length of EMG data

61 % load accelerometer data

62 acc1x=accfilter_trigno(dataTrigno(:,4)); %filter

63 acc1x=acc1x(1:(l/13)); %trim

64 acc1x=interp(acc1x,13); %interpolate

65 acc1y=accfilter_trigno(dataTrigno(:,6)); %filter

66 acc1y=acc1y(1:(l/13)); %trim

67 acc1y=interp(acc1y,13); %interpolate

68 acc1z=accfilter_trigno(dataTrigno(:,8)); %filter

69 acc1z=acc1z(1:(l/13)); %trim

70 acc1z=interp(acc1z,13); %interpolate

71 acc2x=accfilter_trigno(dataTrigno(:,12)); %filter

72 acc2x=acc2x(1:(l/13)); %trim

73 acc2x=interp(acc2x,13); %interpolate
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74 acc2y=accfilter_trigno(dataTrigno(:,14)); %filter

75 acc2y=acc2y(1:(l/13)); %trim

76 acc2y=interp(acc2y,13); %interpolate

77 acc2z=accfilter_trigno(dataTrigno(:,16)); %filter

78 acc2z=acc2z(1:(l/13)); %trim

79 acc2z=interp(acc2z,13); %interpolate

80 acc3x=accfilter_trigno(dataTrigno(:,20)); %filter

81 acc3x=acc3x(1:(l/13)); %trim

82 acc3x=interp(acc3x,13); %interpolate

83 acc3y=accfilter_trigno(dataTrigno(:,22)); %filter

84 acc3y=acc3y(1:(l/13)); %trim

85 acc3y=interp(acc3y,13); %interpolate

86 acc3z=accfilter_trigno(dataTrigno(:,24)); %filter

87 acc3z=acc3z(1:(l/13)); %trim

88 acc3z=interp(acc3z,13); %interpolate

89 acc4x=accfilter_trigno(dataTrigno(:,28)); %filter

90 acc4x=acc4x(1:(l/13)); %trim

91 acc4x=interp(acc4x,13); %interpolate

92 acc4y=accfilter_trigno(dataTrigno(:,30)); %filter

93 acc4y=acc4y(1:(l/13)); %trim

94 acc4y=interp(acc4y,13); %interpolate

95 acc4z=accfilter_trigno(dataTrigno(:,32)); %filter

96 acc4z=acc4z(1:(l/13)); %trim

97 acc4z=interp(acc4z,13); %interpolate

98 acc5x=accfilter_trigno(dataTrigno(:,36)); %filter

99 acc5x=acc5x(1:(l/13)); %trim

100 acc5x=interp(acc5x,13); %interpolate

101 acc5y=accfilter_trigno(dataTrigno(:,38)); %filter

102 acc5y=acc5y(1:(l/13)); %trim
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103 acc5y=interp(acc5y,13); %interpolate

104 acc5z=accfilter_trigno(dataTrigno(:,40)); %filter

105 acc5z=acc5z(1:(l/13)); %trim

106 acc5z=interp(acc5z,13); %interpolate

107 acc6x=accfilter_trigno(dataTrigno(:,44)); %filter

108 acc6x=acc6x(1:(l/13)); %trim

109 acc6x=interp(acc6x,13); %interpolate

110 acc6y=accfilter_trigno(dataTrigno(:,46)); %filter

111 acc6y=acc6y(1:(l/13)); %trim

112 acc6y=interp(acc6y,13); %interpolate

113 acc6z=accfilter_trigno(dataTrigno(:,48)); %filter

114 acc6z=acc6z(1:(l/13)); %trim

115 acc6z=interp(acc6z,13); %interpolate

116 acc7x=accfilter_trigno(dataTrigno(:,52)); %filter

117 acc7x=acc7x(1:(l/13)); %trim

118 acc7x=interp(acc7x,13); %interpolate

119 acc7y=accfilter_trigno(dataTrigno(:,54)); %filter

120 acc7y=acc7y(1:(l/13)); %trim

121 acc7y=interp(acc7y,13); %interpolate

122 acc7z=accfilter_trigno(dataTrigno(:,56)); %filter

123 acc7z=acc7z(1:(l/13)); %trim

124 acc7z=interp(acc7z,13); %interpolate

125 acc8x=accfilter_trigno(dataTrigno(:,60)); %filter

126 acc8x=acc8x(1:(l/13)); %trim

127 acc8x=interp(acc8x,13); %interpolate

128 acc8y=accfilter_trigno(dataTrigno(:,62)); %filter

129 acc8y=acc8y(1:(l/13)); %trim

130 acc8y=interp(acc8y,13); %interpolate

131 acc8z=accfilter_trigno(dataTrigno(:,64)); %filter
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132 acc8z=acc8z(1:(l/13)); %trim

133 acc8z=interp(acc8z,13); %interpolate

134 acc9x=accfilter_trigno(dataTrigno(:,68)); %filter

135 acc9x=acc9x(1:(l/13)); %trim

136 acc9x=interp(acc9x,13); %interpolate

137 acc9y=accfilter_trigno(dataTrigno(:,70)); %filter

138 acc9y=acc9y(1:(l/13)); %trim

139 acc9y=interp(acc9y,13); %interpolate

140 acc9z=accfilter_trigno(dataTrigno(:,72)); %filter

141 acc9z=acc9z(1:(l/13)); %trim

142 acc9z=interp(acc9z,13); %interpolate

143 acc10x=accfilter_trigno(dataTrigno(:,76)); %filter

144 acc10x=acc10x(1:(l/13)); %trim

145 acc10x=interp(acc10x,13); %interpolate

146 acc10y=accfilter_trigno(dataTrigno(:,78)); %filter

147 acc10y=acc10y(1:(l/13)); %trim

148 acc10y=interp(acc10y,13); %interpolate

149 acc10z=accfilter_trigno(dataTrigno(:,80)); %filter

150 acc10z=acc10z(1:(l/13)); %trim

151 acc10z=interp(acc10z,13); %interpolate

152 acc11x=accfilter_trigno(dataTrigno(:,84)); %filter

153 acc11x=acc11x(1:(l/13)); %trim

154 acc11x=interp(acc11x,13); %interpolate

155 acc11y=accfilter_trigno(dataTrigno(:,86)); %filter

156 acc11y=acc11y(1:(l/13)); %trim

157 acc11y=interp(acc11y,13); %interpolate

158 acc11z=accfilter_trigno(dataTrigno(:,88)); %filter

159 acc11z=acc11z(1:(l/13)); %trim

160 acc11z=interp(acc11z,13); %interpolate



A.2 Processing ACC Data Code 88

161 acc12x=accfilter_trigno(dataTrigno(:,92)); %filter

162 acc12x=acc12x(1:(l/13)); %trim

163 acc12x=interp(acc12x,13); %interpolate

164 acc12y=accfilter_trigno(dataTrigno(:,94)); %filter

165 acc12y=acc12y(1:(l/13)); %trim

166 acc12y=interp(acc12y,13); %interpolate

167 acc12z=accfilter_trigno(dataTrigno(:,96)); %filter

168 acc12z=acc12z(1:(l/13)); %trim

169 acc12z=interp(acc12z,13); %interpolate

170 acc13x=accfilter_trigno(dataTrigno(:,100)); %filter

171 acc13x=acc13x(1:(l/13)); %trim

172 acc13x=interp(acc13x,13); %interpolate

173 acc13y=accfilter_trigno(dataTrigno(:,102)); %filter

174 acc13y=acc13y(1:(l/13)); %trim

175 acc13y=interp(acc13y,13); %interpolate

176 acc13z=accfilter_trigno(dataTrigno(:,104)); %filter

177 acc13z=acc13z(1:(l/13)); %trim

178 acc13z=interp(acc13z,13); %interpolate

179 acc14x=accfilter_trigno(dataTrigno(:,108)); %filter

180 acc14x=acc14x(1:(l/13)); %trim

181 acc14x=interp(acc14x,13); %interpolate

182 acc14y=accfilter_trigno(dataTrigno(:,110)); %filter

183 acc14y=acc14y(1:(l/13)); %trim

184 acc14y=interp(acc14y,13); %interpolate

185 acc14z=accfilter_trigno(dataTrigno(:,112)); %filter

186 acc14z=acc14z(1:(l/13)); %trim

187 acc14z=interp(acc14z,13); %interpolate

188 acc15x=accfilter_trigno(dataTrigno(:,116)); %filter

189 acc15x=acc15x(1:(l/13)); %trim
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190 acc15x=interp(acc15x,13); %interpolate

191 acc15y=accfilter_trigno(dataTrigno(:,118)); %filter

192 acc15y=acc15y(1:(l/13)); %trim

193 acc15y=interp(acc15y,13); %interpolate

194 acc15z=accfilter_trigno(dataTrigno(:,120)); %filter

195 acc15z=acc15z(1:(l/13)); %trim

196 acc15z=interp(acc15z,13); %interpolate

197 acc16x=accfilter_trigno(dataTrigno(:,124)); %filter

198 acc16x=acc16x(1:(l/13)); %trim

199 acc16x=interp(acc16x,13); %interpolate

200 acc16y=accfilter_trigno(dataTrigno(:,126)); %filter

201 acc16y=acc16y(1:(l/13)); %trim

202 acc16y=interp(acc16y,13); %interpolate

203 acc16z=accfilter_trigno(dataTrigno(:,128)); %filter

204 acc16z=acc16z(1:(l/13)); %trim

205 acc16z=interp(acc16z,13); %interpolate

206 %get portion of Trigno data for specific rep, specific

trial

207 tempDataTrignoEMGRep = [

208 acc1x(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...%BicepsBrachiiShortHead

209 acc1y(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

210 acc1z(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

211 acc2x(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...%BicepsBrachiiLongHead

212 acc2y(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...
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213 acc2z(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

214 acc3x(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...%Brachialis

215 acc3y(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

216 acc3z(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

217 acc4x(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...%Brachioradialis

218 acc4y(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

219 acc4z(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

220 acc5x(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...%TricepsBrachiiLongHead

221 acc5y(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

222 acc5z(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

223 acc6x(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...%TricepsLateralHead

224 acc6y(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

225 acc6z(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

226 acc7x(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...%TricepsMedialHead

227 acc7y(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG
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(rep,trial)),...

228 acc7z(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

229 acc8x(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...%PronatorTeres

230 acc8y(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

231 acc8z(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

232 acc9x(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...%Infraspinatus

233 acc9y(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

234 acc9z(matOffsetRepStartTEMG(rep,trial):matOffsetRepEndTEMG

(rep,trial)),...

235 acc10x(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...%AnteriorDeltoid

236 acc10y(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

237 acc10z(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

238 acc11x(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...%LateralDeltoid

239 acc11y(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

240 acc11z(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

241 acc12x(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...%PosteriorDeltoid
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242 acc12y(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

243 acc12z(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

244 acc13x(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...%ExtCarpiUlnaris

245 acc13y(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

246 acc13z(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

247 acc14x(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...%ExtCarpiRadialis

248 acc14y(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

249 acc14z(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

250 acc15x(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...%FlexCarpiUlnaris

251 acc15y(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

252 acc15z(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

253 acc16x(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...%FlexCarpiRadialis

254 acc16y(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial)),...

255 acc16z(matOffsetRepStartTEMG(rep,trial):

matOffsetRepEndTEMG(rep,trial))];

256



A.3 Average Feature Values 93

257 saveTrignoEmgRepFilename = strcat('D:\S',int2str(subNum),'

\AccRepsFilt\ACCT',int2str(trial),'R',int2str(rep),'.

csv');

258 dlmwrite(saveTrignoEmgRepFilename,tempDataTrignoEMGRep,'

precision',16);

259 end

260 end

261 end

262 end

263 end

A.3 Average Feature Values

1 function [ ] = getAveFeats( sTrial,eTrial, openFold, saveFold,

featName, subNumber)

2 %averages feature values of given feature for given subject

3 % inputs are start and end trial, folder names, feature, subject

number

4 % average specified feature over trials for given subject, save csv

file,

5 % rows are trial, columns are muscle

6 clear ACCAveFeat ACCAveFeatAll

7 for trial = sTrial:eTrial

8 clear tempDataACCFeat ACCFeat

9 repsStartEnd = getSubReps(subNumber);

10 numRepsToAve = 0;

11 for rep=repsStartEnd(trial,1):repsStartEnd(trial,2)

12 numRepsToAve = numRepsToAve +1;

13 filename = strcat('D:\data\S',int2str(subNumber),'\',
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openFold,'\ACCFeatT',int2str(trial),'R',int2str(rep),

featName,'.csv');

14 tempDataACCFeat = csvread(filename);

15 ACCFeat(numRepsToAve,:) = mean(tempDataACCFeat,1);

16 end

17 ACCAveFeat = mean(ACCFeat,1);

18 ACCAveFeatAll(trial,:) = ACCAveFeat;

19 end

20 saveAveFeatAllTrial = strcat('D:\data\S',int2str(subNumber),'\',

saveFold,'\',featName,'.csv');

21 dlmwrite(saveAveFeatAllTrial,ACCAveFeatAll,'precision',16);

22 end

A.4 Classification Code

Adapted from [97].

1 numSubjects = 24;

2 numTrials = 38;

3

4 featNames = {'mav500_250'

5 'ssc500_250'

6 'wl500_250'

7 'zc500_250'

8 'rms500_250'

9 'ar500_250'

10 'ar500_250'

11 'ar500_250'

12 'ar500_250'

13 'mnf500_250'
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14 'mdf500_250'

15 'sma'

16 'svm'};

17

18 openFolders={'EMGMeanHudginsFeatOfNorm500_250'

19 'EMGMeanOskoeiFeatOfNorm500_250'

20 'EMGMeanFreqFeatOfNorm500_250'

21 'AccMeanFeat500_250'};

22

23 clear featuresAll

24 for subNum = 1:numSubjects

25 for feat = 1:size(featNames,1)

26 if feat < 5

27 folder = openFolders{1};

28 elseif feat < 10

29 folder = openFolders{2};

30 elseif feat < 12

31 folder = openFolders{3};

32 else

33 folder = openFolders{4};

34 end

35 filename = strcat('F:\Data\Processing\S',int2str(subNum),'\',

folder,'\',featNames{feat},'.csv');

36 tempDataFeat = csvread(filename);

37

38 if feat < 6 % put in zeros for S7 M9, S9 M7 (unreliable data

because of disconnecting sensor)

39 if subNum == 7

40 tempDataFeat(:,9)=0;
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41 elseif subNum == 9

42 tempDataFeat(:,7)=0;

43 end

44

45 featuresAll(((subNum-1)*38 +1):subNum*38,((feat-1)*15 +1):

feat*15) = [tempDataFeat(:,1:7),tempDataFeat(:,9:16)];

46 elseif feat < 10

47 subFeat = feat - 5;

48 tempSubFeat(:,1:15) = [tempDataFeat(:,subFeat),

tempDataFeat(:,subFeat+4),tempDataFeat(:,subFeat+(2*4))

,tempDataFeat(:,subFeat+(3*4)),tempDataFeat(:,subFeat

+(4*4)),tempDataFeat(:,subFeat+(5*4)),tempDataFeat(:,

subFeat+(6*4)),tempDataFeat(:,subFeat+(8*4)),

tempDataFeat(:,subFeat+(9*4)),tempDataFeat(:,subFeat

+(10*4)),tempDataFeat(:,subFeat+(11*4)),tempDataFeat(:,

subFeat+(12*4)),tempDataFeat(:,subFeat+(13*4)),

tempDataFeat(:,subFeat+(14*4)),tempDataFeat(:,subFeat

+(15*4))];

49

50 % put in zeros for S7 M9, S9 M7 (unreliable data because

of disconnecting sensor)

51 if subNum == 7

52 tempSubFeat(:,8)=0; % data muscle 8 was already

excluded

53 elseif subNum == 9

54 tempSubFeat(:,7)=0;

55 end

56
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57 featuresAll(((subNum-1)*38 +1):subNum*38,((feat-1)*15 +1):

feat*15) = tempSubFeat;

58

59 else

60 % put in zeros for S7 M9, S9 M7 (unreliable data because

of disconnecting sensor)

61 if subNum == 7

62 tempDataFeat(:,9)=0;

63 elseif subNum == 9

64 tempDataFeat(:,7)=0;

65 end

66

67 featuresAll(((subNum-1)*38 +1):subNum*38,((feat-1)*15 +1):

feat*15) = [tempDataFeat(:,1:7),tempDataFeat(:,9:16)];

68 end

69 end

70 end

71 trial_labels = [

72 1,1,1,1,4,0,1,1,1

73 2,1,2,1,2,0,1,1,2

74 3,1,3,1,3,0,1,1,2

75 4,0,1,1,4,0,1,1,1

76 5,0,2,1,2,0,1,1,2

77 6,0,3,1,3,0,1,1,2

78 7,2,1,1,4,0,1,2,1

79 8,2,2,1,2,0,1,2,2

80 9,2,3,1,3,0,1,2,2

81 10,3,1,1,4,0,1,3,1

82 11,3,2,1,2,0,1,3,2
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83 12,3,3,1,3,0,1,3,2

84 13,1,1,2,4,1,2,1,1

85 14,1,1,3,4,2,2,1,1

86 15,1,2,2,2,1,2,1,2

87 16,1,2,3,2,2,2,1,2

88 17,1,3,2,4,1,2,1,2

89 18,1,3,3,4,2,2,1,2

90 19,2,1,2,4,1,2,2,1

91 20,2,1,3,4,2,2,2,1

92 21,2,2,2,2,1,2,2,2

93 22,2,2,3,2,2,2,2,2

94 23,2,3,2,3,1,2,2,2

95 24,2,3,3,3,2,2,2,2

96 25,3,1,2,4,1,2,3,1

97 26,3,1,3,4,2,2,3,1

98 27,3,2,2,2,1,2,3,2

99 28,3,2,3,2,2,2,3,2

100 29,3,3,2,3,1,2,3,2

101 30,3,3,3,3,2,2,3,2

102 31,4,4,2,1,1,2,4,2

103 32,4,4,3,1,2,2,4,2

104 33,4,2,2,2,1,2,4,2

105 34,4,2,3,2,2,2,4,2

106 35,5,4,2,1,1,2,5,2

107 36,5,4,3,1,2,2,5,2

108 37,5,2,2,2,1,2,5,2

109 38,5,2,3,2,2,2,5,2

110 ];

111
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112 trials = [

113 1,1,0,0,0,1,1,0

114 2,1,0,0,0,1,1,0

115 3,1,0,0,0,1,1,0

116 4,0,0,0,0,1,0,0

117 5,0,0,0,0,1,0,0

118 6,0,0,0,0,1,0,0

119 7,1,0,0,0,1,0,0

120 8,1,0,0,0,1,0,0

121 9,1,0,0,0,1,0,0

122 10,1,0,0,0,1,0,0

123 11,1,0,0,0,1,0,0

124 12,1,0,0,0,1,0,0

125 13,1,0,0,1,1,1,0

126 14,1,0,0,1,1,1,0

127 15,1,0,0,1,1,1,0

128 16,1,0,0,1,1,1,0

129 17,1,0,0,1,1,1,0

130 18,1,0,0,1,1,1,1

131 19,1,0,0,1,1,0,0

132 20,1,0,0,1,1,0,0

133 21,1,0,0,1,1,0,0

134 22,1,0,0,1,1,0,0

135 23,1,0,0,1,1,0,0

136 24,1,0,0,1,1,0,0

137 25,1,0,0,1,1,0,0

138 26,1,0,0,1,1,0,0

139 27,1,0,0,1,1,0,0

140 28,1,0,0,1,1,0,0
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141 29,1,0,0,1,1,0,0

142 30,1,0,0,1,1,0,0

143 31,0,1,0,0,1,0,1

144 32,0,1,0,0,1,0,1

145 33,0,1,0,0,1,0,1

146 34,0,1,0,0,1,0,1

147 35,0,0,1,0,1,0,1

148 36,0,0,1,0,1,0,1

149 37,0,0,1,0,1,0,1

150 38,0,0,1,0,1,0,1

151 ];

152

153 muscles_feats_factors = zeros(13,15); %feature,muscle

154

155 clear predictors_v1

156 column = 1;

157 for feature = 1:13

158 for muscle = 1:15

159 if muscles_feats_factors(feature,muscle) == 1

160 predictors_v1(:,column) = featuresAll(:,(feature-1)*15 +

muscle);

161 column = column+1;

162 end

163 end

164

165 end

166

167 model = 'TEns'; % 'LDA' 'SVM'

168 trialSet=2; %trials, select flexion extension, ADLs etc
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169 labelSet =7; %variable

170

171 clear predictors_v2

172 for sub = 1:numSubjects

173 trialCount = 1;

174 for trialCounter = 1:38

175 if trials(trialCounter,trialSet) == 1

176 predictors_v2((sub-1)*sum(trials(:,trialSet))+trialCount

,:)= predictors_v1((sub-1)*38 + trialCounter,:);

177 trialCount = trialCount +1;

178 end

179 end

180 end

181

182 clear labels_v1

183 for sub = 1:numSubjects

184 trialCount = 1;

185 for trialCounter = 1:38

186 if trials(trialCounter,trialSet) == 1

187 labels_v1((sub-1)*sum(trials(:,trialSet))+trialCount,:)=

trial_labels(trialCounter,labelSet);

188 trialCount = trialCount +1;

189 end

190 end

191 end

192

193 clear predictors_full labels_full train_predictors train_labels

test_predictors test_labels labels_mdl

194 clear Mdl
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195 match= 0;

196 for sub = 1:numSubjects

197 sub

198 trials_per_sub = sum(trials(:,trialSet)); %select trials per

subject(from 38trials)

199 predictors_full = predictors_v2;

200 labels_full = labels_v1;

201

202 train_predictors = predictors_full;

203 train_predictors((sub-1)*trials_per_sub+1:sub*trials_per_sub,:)

=[];

204 train_labels = labels_v1;

205 train_labels((sub-1)*trials_per_sub+1:sub*trials_per_sub,:)=[];

206

207 test_predictors = predictors_full((sub-1)*trials_per_sub+1:sub*

trials_per_sub,:); %predictors by trials

208 test_labels = labels_full((sub-1)*trials_per_sub+1:sub*

trials_per_sub,1);

209

210 switch model

211 case 'LDA'

212 Mdl = fitcdiscr(train_predictors,train_labels);

213 case 'SVM'

214 Mdl = fitcecoc(train_predictors,train_labels);

215 case 'TEns' %decision tree ensemble using AdaBoost Multiclass

216 Mdl = fitensemble(train_predictors,train_labels,'AdaBoostM1

',300,'Tree'); %100 200MORE %M2 for multiclass

217

218 end
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219

220 labels_mdl(:,sub) = predict(Mdl,test_predictors);

221

222 labels_result(sub) = sum(eq(labels_mdl(:,sub), test_labels)); %

verify if predicted and test labels match

223

224 match= match+labels_result(sub);%alex test

225

226 A(sub) = labels_result(sub)/trials_per_sub; %accurate predicted

labels divided by trials

227

228 cp = cvpartition(train_labels,'KFold',10);

229 cvmdl = crossval(Mdl,'CVPartition',cp);

230 CVErr(sub) = kfoldLoss(cvmdl);

231 a_cv(sub) = 1 - CVErr(sub);

232 end

233 Accuracy = (match/size(predictors_full,1))*100; %accuracy = match/N

*100



Appendix B

Statistical Analysis Tables

B.1 Consolidated statistical analysis of ACC signals during flex-

ion–extension motions

Muscle Flexion–Extension Level Mean Std Error Significance

Feature Factor L1 L2 L3 L1 L2 L3 L 1-2 L 1-3 L 2-3

BBS SMA Position 0.054 0.068 0.073 0.003 0.004 0.004 <0.001 <0.001 0.006

Force 0.046 0.073 0.077 0.003 0.005 0.004 <0.001 <0.001 0.501

Velocity 0.048 0.066 0.083 0.003 0.004 0.005 <0.001 <0.001 <0.001

SMV Position 0.036 0.046 0.049 0.002 0.003 0.003 <0.001 <0.001 0.006

Force 0.031 0.048 0.052 0.002 0.003 0.003 <0.001 <0.001 0.296

Velocity 0.032 0.044 0.055 0.002 0.003 0.003 <0.001 <0.001 <0.001

BBL SMA Position 0.054 0.067 0.072 0.003 0.004 0.004 <0.001 <0.001 0.003

Force 0.045 0.070 0.077 0.002 0.004 0.005 <0.001 <0.001 0.157

Velocity 0.047 0.064 0.081 0.003 0.004 0.005 <0.001 <0.001 <0.001

SMV Position 0.036 0.045 0.048 0.002 0.002 0.003 <0.001 <0.001 0.003

Force 0.030 0.047 0.052 0.002 0.003 0.003 <0.001 <0.001 0.191

Velocity 0.032 0.043 0.055 0.002 0.003 0.003 <0.001 <0.001 <0.001

BRA SMA Position 0.057 0.071 0.075 0.003 0.004 0.004 <0.001 <0.001 0.003

Force 0.048 0.073 0.082 0.003 0.004 0.005 <0.001 <0.001 0.01

104
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Velocity 0.048 0.067 0.088 0.003 0.004 0.005 <0.001 <0.001 <0.001

SMV Position 0.038 0.047 0.050 0.002 0.002 0.003 0.001 0.001 0.001

Force 0.032 0.049 0.054 0.002 0.003 0.003 <0.001 <0.001 0.037

Velocity 0.032 0.045 0.058 0.002 0.003 0.003 <0.001 <0.001 <0.001

BRD SMA Position 0.064 0.078 0.079 0.003 0.004 0.004 <0.001 <0.001 0.908

Force 0.059 0.080 0.082 0.003 0.005 0.005 <0.001 <0.001 0.990

Velocity 0.044 0.073 0.103 0.003 0.004 0.006 <0.001 <0.001 <0.001

SMV Position 0.043 0.052 0.053 0.002 0.003 0.003 <0.001 <0.001 0.871

Force 0.040 0.054 0.054 0.002 0.003 0.003 <0.001 <0.001 1.000

Velocity 0.030 0.049 0.069 0.002 0.003 0.004 <0.001 <0.001 <0.001

TRILO SMA Position 0.055 0.074 0.071 0.003 0.004 0.004 0.002 0.002 0.001

Force 0.046 0.071 0.083 0.003 0.004 0.005 <0.001 <0.001 0.002

Velocity 0.054 0.065 0.081 0.003 0.004 0.005 0.001 <0.001 <0.001

SMV Position 0.037 0.050 0.048 0.002 0.003 0.003 <0.001 <0.001 0.367

Force 0.031 0.048 0.056 0.002 0.003 0.003 <0.001 <0.001 0.001

Velocity 0.037 0.044 0.055 0.002 0.003 0.003 0.002 <0.001 <0.001

TRILAT SMA Position 0.054 0.069 0.066 0.003 0.004 0.004 <0.001 <0.001 0.005

Force 0.044 0.069 0.076 0.002 0.004 0.004 <0.001 <0.001 0.052

Velocity 0.048 0.062 0.079 0.003 0.004 0.004 <0.001 <0.001 <0.001

SMV Position 0.036 0.047 0.044 0.002 0.003 0.003 <0.001 <0.001 0.004

Force 0.030 0.046 0.052 0.002 0.003 0.003 <0.001 <0.001 0.033

Velocity 0.033 0.041 0.053 0.002 0.003 0.003 <0.001 <0.001 <0.001

TRIM SMA Position 0.053 0.071 0.068 0.004 0.005 0.005 <0.001 <0.001 0.104

Force 0.046 0.068 0.079 0.003 0.005 0.006 <0.001 <0.001 <0.011

Velocity 0.050 0.063 0.079 0.004 0.005 0.006 0.001 <0.001 <0.001

SMV Position 0.035 0.047 0.045 0.003 0.003 0.003 <0.001 <0.001 0.114

Force 0.030 0.045 0.052 0.002 0.004 0.004 <0.001 <0.001 0.012

Velocity 0.033 0.042 0.053 0.003 0.003 0.004 0.001 <0.001 <0.001

ISPI SMA Position 0.026 0.035 0.035 0.002 0.003 0.003 <0.001 <0.001 0.925
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Force 0.028 0.031 0.037 0.002 0.003 0.003 0.012 <0.001 <0.001

Velocity 0.025 0.032 0.040 0.002 0.003 0.003 <0.001 <0.001 <0.001

SMV Position 0.017 0.023 0.024 0.002 0.002 0.002 <0.001 <0.001 0.990

Force 0.019 0.021 0.024 0.002 0.002 0.002 0.011 <0.001 0.001

Velocity 0.016 0.021 0.026 0.001 0.002 0.002 <0.001 <0.001 <0.001

AD SMA Position 0.04 0.05 0.054 0.003 0.003 0.003 0.001 0.001 0.002

Force 0.035 0.053 0.057 0.002 0.004 0.004 <0.001 <0.001 <0.001

Velocity 0.037 0.048 0.060 0.003 0.003 0.004 <0.001 <0.001 <0.001

SMV Position 0.027 0.033 0.036 0.002 0.002 0.002 <0.001 <0.001 <0.001

Force 0.024 0.035 0.037 0.002 0.002 0.002 0.011 <0.001 0.507

Velocity 0.024 0.032 0.040 0.002 0.002 0.003 <0.001 <0.001 <0.001

LD SMA Position 0.042 0.054 0.055 0.003 0.004 0.004 <0.001 <0.001 0.990

Force 0.037 0.054 0.061 0.003 0.004 0.004 <0.001 <0.001 0.043

Velocity 0.038 0.050 0.063 0.003 0.004 0.004 <0.001 <0.001 <0.001

SMV Position 0.028 0.037 0.037 0.002 0.002 0.002 <0.001 <0.001 0.783

Force 0.025 0.036 0.041 0.002 0.003 0.003 <0.001 <0.001 0.783

Velocity 0.026 0.034 0.042 0.002 0.002 0.003 <0.001 <0.001 <0.001

PD SMA Position 0.038 0.050 0.050 0.003 0.003 0.003 <0.001 <0.001 1.000

Force 0.036 0.047 0.056 0.002 0.003 0.004 <0.001 <0.001 0.001

Velocity 0.036 0.046 0.057 0.002 0.003 0.004 <0.001 <0.001 <0.001

SMV Position 0.026 0.034 0.034 0.002 0.002 0.002 <0.001 <0.001 1.000

Force 0.024 0.031 0.037 0.002 0.002 0.003 <0.001 <0.001 0.001

Velocity 0.024 0.031 0.038 0.002 0.002 0.003 <0.001 <0.001 <0.001

ECU SMA Position 0.064 0.077 0.076 0.003 0.004 0.004 <0.001 <0.001 0.990

Force 0.062 0.078 0.077 0.003 0.005 0.004 <0.001 0.001 0.990

Velocity 0.045 0.069 0.104 0.003 0.004 0.005 <0.001 <0.001 <0.001

SMV Position 0.042 0.052 0.051 0.002 0.003 0.003 <0.001 <0.001 0.990

Force 0.041 0.052 0.052 0.002 0.003 0.003 <0.001 <0.001 0.990
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Velocity 0.030 0.046 0.069 0.002 0.003 0.004 <0.001 <0.001 <0.001

ECR SMA Position 0.064 0.076 0.076 0.003 0.004 0.004 <0.001 <0.001 1.000

Force 0.060 0.077 0.078 0.003 0.005 0.005 <0.001 <0.001 0.990

Velocity 0.043 0.070 0.103 0.004 0.005 0.005 <0.001 <0.001 <0.001

SMV Position 0.042 0.051 0.051 0.002 0.003 0.003 <0.001 <0.001 1.000

Force 0.040 0.052 0.052 0.002 0.003 0.003 <0.001 <0.001 1.000

Velocity 0.029 0.046 0.069 0.002 0.003 0.004 <0.001 <0.001 <0.001

FCU SMA Position 0.062 0.077 0.077 0.003 0.004 0.004 <0.001 <0.001 1.000

Force 0.062 0.078 0.076 0.003 0.005 0.005 <0.001 0.002 0.990

Velocity 0.046 0.068 0.102 0.003 0.004 0.005 <0.001 <0.001 <0.001

SMV Position 0.042 0.052 0.052 0.002 0.003 0.003 <0.001 <0.001 1.000

Force 0.042 0.053 0.051 0.002 0.003 0.003 <0.001 0.002 0.990

Velocity 0.032 0.046 0.069 0.002 0.003 0.004 <0.001 <0.001 <0.001

FCR SMA Position 0.062 0.074 0.076 0.003 0.004 0.004 <0.001 <0.001 0.485

Force 0.060 0.076 0.075 0.003 0.005 0.005 <0.001 <0.001 1.00

Velocity 0.044 0.068 0.099 0.003 0.004 0.005 <0.001 <0.001 <0.001

SMV Position 0.041 0.050 0.051 0.002 0.003 0.003 <0.001 <0.001 0.701

Force 0.040 0.051 0.050 0.002 0.003 0.003 <0.001 0.001 0.990

Velocity 0.029 0.046 0.067 0.002 0.003 0.003 <0.001 <0.001 <0.001

B.2 Consolidated statistical analysis of ACC signals during ADL

1 motions

Muscle ADL 1 Level Mean Std Error Significance

Feature Factor L1 L2 L1 L2 L 1-2

BBS SMA Force 0.156 0.162 0.009 0.009 0.367

Velocity 0.112 0.206 0.008 0.012 <0.001

SMV Force 0.102 0.106 0.006 0.006 0.323

Velocity 0.074 0.134 0.005 0.008 <0.001
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BBL SMA Force 0.147 0.154 0.009 0.010 0.274

Velocity 0.107 0.195 0.008 0.013 <0.001

SMV Force 0.097 0.102 0.006 0.007 0.273

Velocity 0.071 0.129 0.005 0.009 <0.001

BRA SMA Force 0.149 0.157 0.008 0.010 0.237

Velocity 0.112 0.194 0.007 0.012 <0.001

SMV Force 0.098 0.103 0.006 0.006 0.244

Velocity 0.074 0.128 0.005 0.008 <0.001

BRD SMA Force 0.143 0.149 0.008 0.010 0.432

Velocity 0.109 0.183 0.008 0.011 <0.001

SMV Force 0.097 0.10 0.005 0.007 0.472

Velocity 0.073 0.124 0.005 0.008 <0.001

TRILO SMA Force 0.143 0.152 0.009 0.009 0.184

Velocity 0.106 0.189 0.008 0.012 <0.001

SMV Force 0.096 0.101 0.006 0.006 0.181

Velocity 0.071 0.127 0.005 0.008 <0.001

TRILAT SMA Force 0.141 0.148 0.008 0.009 0.337

Velocity 0.103 0.187 0.007 0.012 <0.001

SMV Force 0.093 0.097 0.006 0.006 0.301

Velocity 0.068 0.122 0.005 0.008 <0.001

TRIM SMA Force 0.136 0.145 0.007 0.007 0.209

Velocity 0.102 0.179 0.008 0.014 <0.001

SMV Force 0.089 0.095 0.007 0.007 0.181

Velocity 0.067 0.117 0.005 0.009 <0.001

ISPI SMA Force 0.044 0.051 0.004 0.004 0.004

Velocity 0.039 0.056 0.004 0.004 <0.001

SMV Force 0.029 0.034 0.002 0.003 0.004

Velocity 0.026 0.037 0.002 0.003 <0.001

AD SMA Force 0.116 0.122 0.007 0.009 0.308
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Velocity 0.082 0.155 0.006 0.011 <0.001

SMV Force 0.077 0.081 0.005 0.006 0.309

Velocity 0.055 0.104 0.004 0.007 <0.001

LD SMA Force 0.108 0.115 0.008 0.008 0.237

Velocity 0.080 0.143 0.006 0.011 <0.001

SMV Force 0.072 0.077 0.005 0.006 0.178

Velocity 0.053 0.096 0.004 0.007 <0.001

PD SMA Force 0.093 0.099 0.006 0.007 0.180

Velocity 0.068 0.124 0.005 0.010 <0.001

SMV Force 0.062 0.066 0.004 0.005 0.178

Velocity 0.046 0.082 0.003 0.006 <0.001

ECU SMA Force 0.149 0.155 0.008 0.010 0.392

Velocity 0.106 0.198 0.008 0.010 <0.001

SMV Force 0.098 0.103 0.005 0.007 0.390

Velocity 0.071 0.130 0.005 0.008 <0.001

ECR SMA Force 0.146 0.149 0.008 0.009 0.631

Velocity 0.106 0.188 0.007 0.012 <0.001

SMV Force 0.099 0.101 0.005 0.007 0.584

Velocity 0.072 0.129 0.005 0.008 <0.001

FCU SMA Force 0.144 0.152 0.008 0.010 0.296

Velocity 0.104 0.191 0.007 0.012 <0.001

SMV Force 0.099 0.103 0.005 0.007 0.338

Velocity 0.071 0.131 0.005 0.008 <0.001

FCR SMA Force 0.088 0.093 0.006 0.005 0.265

Velocity 0.065 0.116 0.005 0.008 <0.001

SMV Force 0.059 0.062 0.004 0.004 0.357

Velocity 0.043 0.078 0.003 0.005 <0.001
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B.3 Consolidated statistical analysis of ACC signals during ADL

2 motions

Muscle ADL 2 Level Mean Std Error Significance

Feature Factor L1 L2 L1 L2 L 1-2

BBS SMA Force 0.076 0.08 0.005 0.005 0.343

Velocity 0.061 0.095 0.005 0.006 <0.001

SMV Force 0.050 0.053 0.003 0.003 0.282

Velocity 0.040 0.062 0.003 0.004 <0.001

BBL SMA Force 0.069 0.073 0.005 0.005 0.333

Velocity 0.057 0.085 0.004 0.004 <0.001

SMV Force 0.046 0.048 0.003 0.003 0.336

Velocity 0.038 0.056 0.003 0.003 <0.001

BRA SMA Force 0.075 0.081 0.005 0.005 0.194

Velocity 0.062 0.094 0.004 0.006 <0.001

SMV Force 0.062 0.066 0.004 0.004 0.249

Velocity 0.041 0.062 0.003 0.004 <0.001

BRD SMA Force 0.094 0.1 0.007 0.006 0.176

Velocity 0.072 0.122 0.005 0.009 <0.001

SMV Force 0.062 0.066 0.004 0.004 0.207

Velocity 0.048 0.081 0.004 0.006 <0.001

TRILO SMA Force 0.072 0.076 0.006 0.005 0.332

Velocity 0.059 0.088 0.005 0.005 <0.001

SMV Force 0.047 0.050 0.004 0.003 0.296

Velocity 0.039 0.058 0.004 0.004 <0.001

TRILAT SMA Force 0.069 0.073 0.005 0.005 0.276

Velocity 0.056 0.086 0.005 0.005 <0.001

SMV Force 0.046 0.048 0.003 0.003 0.29

Velocity 0.037 0.057 0.003 0.004 <0.001



B.3 Consolidated statistical analysis of ACC signals during ADL 2 motions 111

TRIM SMA Force 0.068 0.072 0.006 0.006 0.374

Velocity 0.055 0.085 0.005 0.005 <0.001

SMV Force 0.045 0.047 0.004 0.004 0.415

Velocity 0.037 0.056 0.003 0.005 <0.001

ISPI SMA Force 0.034 0.036 0.006 0.006 0.350

Velocity 0.029 0.041 0.003 0.004 <0.001

SMV Force 0.023 0.025 0.002 0.002 0.375

Velocity 0.02 0.028 0.002 0.003 <0.001

AD SMA Force 0.054 0.057 0.004 0.004 0.276

Velocity 0.044 0.067 0.004 0.004 <0.001

SMV Force 0.036 0.038 0.003 0.003 0.283

Velocity 0.029 0.044 0.003 0.003 <0.001

LD SMA Force 0.052 0.055 0.004 0.004 0.258

Velocity 0.043 0.064 0.004 0.005 <0.001

SMV Force 0.035 0.037 0.003 0.003 0.226

Velocity 0.029 0.043 0.003 0.003 <0.001

PD SMA Force 0.048 0.051 0.004 0.004 0.230

Velocity 0.040 0.059 0.004 0.004 <0.001

SMV Force 0.032 0.034 0.003 0.003 0.234

Velocity 0.027 0.040 0.003 0.003 <0.001

ECU SMA Force 0.090 0.094 0.007 0.006 0.447

Velocity 0.065 0.119 0.005 0.009 <0.001

SMV Force 0.060 0.062 0.004 0.004 0.431

Velocity 0.043 0.079 0.003 0.006 <0.001

ECR SMA Force 0.089 0.092 0.006 0.005 0.515

Velocity 0.066 0.115 0.005 0.007 <0.001

SMV Force 0.059 0.061 0.004 0.004 0.451

Velocity 0.044 0.077 0.003 0.005 <0.001

FCU SMA Force 0.092 0.097 0.006 0.006 0.282
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Velocity 0.066 0.122 0.005 0.009 <0.001

SMV Force 0.061 0.064 0.004 0.004 0.304

Velocity 0.044 0.081 0.003 0.006 <0.001

FCR SMA Force 0.088 0.093 0.006 0.005 0.265

Velocity 0.065 0.116 0.005 0.005 <0.001

SMV Force 0.059 0.062 0.004 0.004 0.357

Velocity 0.043 0.078 0.003 0.005 <0.001
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