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Shape Complexes: The Intersection of Label Orderings and Star
Convexity Constraints in Continuous Max-Flow Medical Image
Segmentation

John S.H. Baxterab, Jiro Inouea, Maria Drangovaab, & Terry M. Petersab
aRobarts Research Institute, Western University, Canada;
bBiomedical Engineering Graduate Program, Western University, Canada

Abstract. Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow

have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation

while retaining global optimality. However, these two considerations, topological and geometric, have yet to be com-

bined in a unified manner. This paper presents the concept of shape complexes, which combine geodesic star convexity

with extendable continuous max-flow solvers. These shape complexes allow more complicated shapes to be created

through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering.

These problems can be optimized using extendable continuous max-flow solvers. Previous approaches required com-

putationally expensive co-ordinate system warping which are ill-defined and ambiguous in the general case. These

shape complexes are demonstrated in a set of synthetic images as well as vessel segmentation in ultrasound, valve

segmentation in ultrasound, and atrial wall segmentation from contrast-enhanced CT. Shape complexes represent a

new, extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical

image segmentation problems.

Keywords: continuous max-flow segmentation, star convexity constraint, optimization-based segmentation, convex

optimization, ASETS library.

1 Introduction

Encoding shape information and constraining the shape of possible segmented objects has long

been considered fundamental to incorporating anatomical knowledge in segmentation. Active

shape models1, 2 and the general family of statistical shape models3 use shape information to con-

strain or guide the evolution of segmentation contours to adhere to a pre-defined point distribu-

tion model for either boundary or skeleton points. Multi-level statistical shape models4 embed

hierarchical label orderings as a method of simplifying or sparsifying this information for multi-

compartment objects or multiple objects in a single scene. Level-set based shape methods do not
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require an intermediate point representation, but constrain shape information directly on the la-

beling function.5 In atlas-registration based segmentation approaches, the shape information is

implicitly encoded in the atlas and constraints on the registration algorithm.6 Atlas combination

methods such as shape-based averaging7 attempt to preserve shape information when multiple at-

lases are used for segmentation. An important disadvantage common to all of these approaches

is that the shape information, such as the pre-defined point distribution model or the shape atlas,

is composed of a training set of segmented images. This training set must contain the necessary

variability to capture pathology but limit excessive variability that would degrade performance.

More recently, image segmentation based on Markov Random Field (MRF) modeling has re-

ceived a great deal of interest, especially following the development of efficient graph-cut based

solvers8 that guarantee optimality for MRFs with the property of submodularity.9 Shape informa-

tion from training images has been incorporated into graph-cuts10, 11 using an iterative approach

similar to that of its level-set predecessors.5 These methods guarantee local optimality, but no

longer have the global optimality guarantee from traditional graph-cuts.

However, graph-cut techniques are a sufficiently flexible paradigm to encode shape informa-

tion that is independent of training data. Of particular note are star-shape constraints or simple

star convexity constraints12 in which every point in an object must be connected to a single van-

tage point using a linear path. (Examples of simple star convex objects are shown in Figure 1.)

These can be extended to geodesic star convexity constraints,13 in which the path no longer has to

be strictly linear, but follow a predefined geodesic. Egger et al. have developed template-based

frameworks which perform a discrete analog of a co-ordinate system transformation. These can be

used to ensure a particular pre-defined 2D14, 15 or 3D16, 17 shape or extrapolate a shape from user in-

teraction.18 As these methods use minimal or no a priori training information, often relying solely

on the identification of the vantage point, they are better suited for problems where a sufficient

body of training segmentations cannot be collected. In addition, they retain the guarantee of global

optimality for foreground-background segmentation problems.

Similarly, continuous max-flow segmentation, a continuous-space analog to the discrete “graph
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Fig 1: Simple star convex objects with vantage points indicated with an ‘X’.

space” of traditional MRFs, has gained traction with the development of highly parallelizable

duality-based optimization approaches.19 Simple and geodesic star convexities in this continu-

ous space have also been investigated. Yuan et al.20 used an additional multiplier to allow for

unconstrained flow along a predefined geodesic, allowing a single star convex label to represent

the prostate. Ukwatta et al.21 developed a max-flow propagated level-sets framework using a co-

ordinate system warping approach to ensure star convexity for both the blood vessel as a whole

and the lumen. (This co-ordinate system warping can be seen as a continuous analog to Egger

et al.’s14, 18 discrete graph template approach.) Ukwatta’s approach is conceptually important, in

that it used a combination of geodesic star convex labellings to ensure a more complex ring-shaped

vessel wall. However, using co-ordinate system warping to reformulate shape constraints into topo-

logical equivalents introduces a series of problems including computational expense and possible

ill-definition and ambiguity when performed on multiple or branching vessels.

The aim of this paper is to develop a framework allowing what we call shape complexes, which

are geodesic star convexity constraints placed on a combination of multiple labels and a label order-

ing, rather than considering a single individual label (as demonstrated by Yuan et al.20). This ap-

proach takes advantage of recent advances regarding multi-label topological constraints in contin-

uous max-flow segmentation theory, and in directed acyclic graph continuous max-flow (DAGMF)

segmentation22 in particular. By using both star convexity constraints and label orderings in tan-

dem, much more expressive, yet still general-purpose, shape information can be encoded. As with

their predecessors, shape complexes require minimal training data, relying solely on the definition

of the label ordering and the placement of vantage points. This makes shape complexes ideal for

medical image segmentation problems in which there is complex anatomy (either in the object-of-
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interest or in adequately modeling the background objects) or anatomy with walls, such as vessels

and cardiac structures, where multiple star convexity constraints need to be applied in tandem.

2 Background and Methods

For shape complexes, we refine the approach taken by Yuan et al.20 of incorporating geodesic star

convexity along a single labeling and combine it with that of Baxter et al.22 of organizing labels

in a rooted weighted directed acyclic graph in a strict generalization of hierarchical orderings.23, 24

Both take a primal-dual optimization approach using augmented Lagrangian multipliers.

2.1 Prior Work on Geodesic Star Convexity Constraints in Max-Flow

In the model developed by Yuan et al.,20 an additional set of multipliers is used to permit flow in a

predefined direction, yielding:

min
ps,pt,q,λ

∫
Ω

ps(x)dx

s.t. |q′(x)| ≤ R(x),

λ(x) ≥ 0,

ps(x) ≤ Ds(x), pt(x) ≤ Dt(x),

div (q′(x) + λ(x)e(x))− ps(x) + pt(x) = 0

(1)

where Ds(x) and Dt(x) are foreground and background data terms respectively, R(x) is the regu-

larization or smoothness term, e is the local direction of the geodesic path, and q, ps, and pt are all

flow variables. In this formulation, the foreground background labelings, u and 1− u respectively,

are derived from the multipliers on the constraints pt(x) ≤ Dt(x) and ps(x) ≤ Ds(x) respectively.

In Yuan et al.’s framework, λ, the amount of flow along the predefined direction, is explicitly stored

and optimized over. This explicit representation can be problematic in that it requires additional

memory to store, and that, if not implemented in a similar approach as the spatial flow variables,

determining the divergence of the field q′(x)+λ(x)e(x) may be difficult. Ultimately, these limita-
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tions necessitate a framework in which the variable λ is represented and optimized over implicitly,

rather than explicitly.

2.2 Implementation of Geodesic Star Convexity on a Single Label

The additional optimization and storage of the λ variables is not required because λ(x), assuming

it is non-negative, can be determined exactly as:

λ(x)e(x) = Proje(x) (q
′(x) + λ(x)e(x)) where q′(x) · e(x) = 0

given that all other variables are fixed. By defining a grouped spatial flow term, q(x) = q′(x) +

λ(x)e(x), the optimization problem expressed in Eq. 1 is equivalent to the more computationally

efficient formula:
min
ps,pt,q

∫
Ω

ps(x)dx

s.t. |q(x)− λ(x)e(x)| ≤ R(x) ,

λ(x) = max {q(x)·e(x)/|e(x)|2, 0} ,

ps(x) ≤ Ds(x), pt(x) ≤ Dt(x),

div q(x)− ps(x) + pt(x) = 0

(2)

assuming that the vector field e(x) is normalized to unit length if non-zero, which can be achieved

through an initialization step. This memory saving is crucial as multiple star convexity constraints

are likely to be present even in a simple shape complex.

2.3 Inclusion into Extendable Max-Flow Framework with Label Orderings

The single-label formulation can be generalized to a framework in which labels are organized in

a rooted, weighted directed acyclic graph as described by Baxter et al.,22 necessitating a novel
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optimization framework extending DAGMF. This framework optimizes the primal-dual equation:

min
u

max
p,q

∫
Ω

pS(x)dx+
∑
∀L6=S

∫
Ω

uL(x)GL(x)dx

where GL(x) = div qL(x) + pL(x)−
∑
∀L′∈L.P

w(L′,L)pL′(x)

s.t. |qL(x)− λL(x)eL(x)| ≤ RL(x),

λL(x) = max {qL(x)·eL(x)/|eL(x)|2, 0} given L 6= S,

pL(x) ≤ DL(x), given L ∈ leaves

(3)

This optimization can be addressed using augmented Langrangian multipliers as shown in Algo-

rithm 1 using the subroutines presented in Algorithms 2 and 3. This algorithm is trivially paralleliz-

able, making it suitable for acceleration using general purpose programing on graphics processing

units (GPGPU). More detailed technical information and a proof-of-correctness for Algorithm 1

Algorithm 1: Augmented Langrangian solution algorithm for Eq. (3).

Topological sort the DAG into ordering O (begins with source label S) with reverse ordering O−1 (ends with source label S);
InitializeSolution() ;
while not converged do

UpdateFlows() ;
for ∀L do

∀x, uL(x)← uL(x)− c (div qL(x)− ζL(x) + pL(x)) ;
end

end

Algorithm 2: InitializeSolution() subroutine in Algorithm 1.

InitializeSolution()
Clear uL(x), qL(x) for all labels;
for each L in order O−1 do

∀x, eL(x)← eL(x)/|eL(x)|;
∀x, pL(x)← min

L′.C=∅
DL′ (x) ;

∀x, ζL(x)← min
L′.C=∅

DL′ (x) ;

if L.C = ∅ then
if L ∈ arg min

L′.C=∅
DL′ (x) then

∀x, uL(x)← 1/|arg min
L′.C=∅

DL′ (x)| ;

else
∀x, uL(x)← 0 ;

end
end
for each L′ ∈ L.P/{S} do

∀x, uL′ (x)← uL′ (x) + w(L′,L)uL(x) ;
end

end
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Algorithm 3: UpdateFlows() subroutine in Algorithm 1.

UpdateFlows()
for ∀L 6= S do

∀x, qL(x)← qL + τ∇ (div qL(x) + pL(x)− pL.P (x)− uL(x)/c) ;
∀x, λ(x)← max{0, qL(x) · eL(x)} ;
∀x, qL(x)← qL − λ(x)eL(x) ;
∀x, qL(x)← Proj|qL(x)|≤RL(x) (qL) ;
∀x, qL(x)← qL + λ(x)eL(x) ;

end
Clear ζL(x) for all labels ;
for each L in order O do

for each L′ ∈ L.C do
∀x, ζL′ (x)← ζL′ (x) + w(L,L′)pL(x) ;

end
if L.C 6= ∅ and L.P 6= ∅ then

∀x, σL(x)← ζ(x)− div qL(x) + uL(x)/c ;
else if L = S then

∀x, σS(x)← 1/c ;
end

end
for each L in order O−1 do

if L.C = ∅ then
∀x, pL(x)← min{DL(x), ζL(x)− div qL(x) + uL(x)/c} ;
for L′ ∈ L.P do

∀x, σL′ (x)← σL′ (x) + w(L′,L)

(
div qL′ (x) + pL′ (x)− ζL′ (x) + w(L′,L)pL(x)

)
;

end
else if L = S then

∀x, pS(x)← 1∑
L′∈S.C w2

(S,L′)
σS(x) ;

else
∀x, pL(x)← 1

1+
∑

L′∈L.C w2
(L,L′)

σL(x) ;

for L′ ∈ L.P do
∀x, σL′ (x)← σL′ (x) + w(L′,L)

(
div qL′ (x) + pL′ (x)− ζL′ (x) + w(L′,L)pL(x)

)
;

end
end

end

are provided in the corresponding technical report.25 GPGPU-accelerated MATLAB implementa-

tions of shape complexes are provided in the ASETS library26for both 2D image and 3D volume

segmentation problems.

3 Validation

In order to validate the shape complex framework, while maintaining a general focus, several

distinct segmentation experiments are employed, including:

1. Synthetic images created to validate the basic properties of the shape complexes framework

in comparison to the corresponding DAGMF models. These experiments demonstrate sev-

eral important features of the algorithm such as improved accuracy and regularization param-

eter robustness in a controlled setting. The first of these synthetic experiments is designed to

7



mimic the appearance of vessels in ultrasound;

2. Ultrasound images of the carotid artery were collected to verify that the behavior seen in

the synthetic images is reproducible in a medical context. Thus, a similar accuracy and

robustness evaluation is performed;

3. Synthetic images mimicking the mitral valve and corresponding trans-esophageal ultrasound

images showing more complicated shape complexes; and

4. Cardiac CT images were collected to test an extreme-case of the algorithm with the presence

of a very highly heterogeneous background with star convexity constraints applied to a very

thin object-of-interest, specifically the left atrial wall.

Fig 2: Synthetic image segmentation problem using DAGMF (2e) and DAGMF augmented with
shape complexes (2f) according to the label ordering in (2d) with α referring to the level of reg-
ularization. (* a simple star convexity constraint is applied to this label.) Any overlap between
segmentations can cause false colors, e.g. green occurs when the result is 50% exterior (cyan) and
50% interior (yellow). The ‘X’ marks the vantage point for the simple star convexity constraint.
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3.1 Synthetic Image Segmentation

To demonstrate this approach, synthetic volumes where constructed, consisting of a medium in-

tensity background with an embedded structure and white Gaussian noise. This structure has a

slightly hypo-intense center surrounded by a hyper-intense boundary. The contrast-to-noise ratio

(CNR) between the background and the center is CNR ≈ 10% and between the hyper-intense

boundary and each other region is CNR ≈ 100%. Due to the low CNR, segmentation of these

images with minimal prior information can be challenging. These images were segmented with a

simple hierarchical model using DAGMF22 and using our novel shape complexes as shown in Fig-

ure 2, with a manually picked centroid or vantage point to define a simple star convexity constraint

by. The same intensity-based data terms and uniform regularization were used in both images.

This experiment was repeated for a range of regularization values between 10−1 and 101, and

Fig 3: Quantitative segmentation results for each region based on regularization strength. The Dice
similarity coefficients are shown on a logarithmic scale approaching 100% DSC.

9



the Dice Similarity Coefficient (DSC) measured for each of the tree labels as shown in Figure 3. As

expected, the segmentation with shape complexes consistently outperforms the segmentation with-

out shape complexes for all regularization values, and displays an additional degree of robustness

to the regularization value chosen. This is especially important as star complexes allow for much

lower regularization values to be used without sacrificing segmentation quality, which is desirable

in terms of preserving less smooth portions of an object.

A second synthetic experiment, shown in Figure 4, was performed to illustrate the use of shape-

complexes in a segmentation problem with a distinctly non-hierarchical label ordering. The CNR

between regions in Figure 4b is CNR = 25%. As shown in Figure 4e, the regularization param-

eter was too low to enforce region contiguity under such high noise, which is readily addressed

Fig 4: Venn diagram segmentation with and without shape complexes. The label ordering is given
in Figure 4c (* a simple star convexity constraint is applied to this label) with the vantage point
for the shape complex was the centroid of the region. Similar to Figure 2, any overlap between
segmentations can cause false colors.
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through the addition of a series of star-convexity constraints shown in Figure 4f. Again, keeping

the regularization value low is essential to capturing more tortuous boundaries of a segmented

object without over-smoothing. Efficiently determining the regularization parameter in these seg-

mentation models which neither over-smooths or under-smooths is an area of open research.27

3.2 Ultrasound Vessel Segmentation

To demonstrate the applicability of these shape complexes to medical image segmentation, they

were applied to the segmentation of an individual vessel of interest, in particular, the carotid artery,

from an ultrasound image. This image was manually segmented into three regions, the background,

vessel lumen, and vessel blood pool. Similar to the first synthetic experiment in Section 3.1, the

shape complex applied creates a ring-shape prior on the vessel wall. However, this segmentation

model takes into account a multi-component background, with both vessel wall and blood pool

components, handling background heterogeneity. The overall model consists of labels for the

vessel blood pool BV , vessel wall WV , background blood BK , background hyper-intense tissue

such as other vascular walls WK , and other background tissue K. Segmentation results are shown

in Figure 5.

The data terms used are derived from Bayes’ theorem on the voxel intensity:

DL(x) = − lnP (I(x)|x ∈ L)± bias (4)

where P (I(x)|x ∈ L) is the probability of voxel x having intensity I(x) given that it is a part of

label L. The constant bias term (positive for background components and negative for foreground

components) controls for the shrinking bias which is especially severe as the background super-

label contains two components with the same intensity distribution as the vessel of interest, i.e.

labels BK and WK with the same intensity as BV and WV respectively. The user provided seeds

for the blood, vascular wall, and background tissue components are given in Figure 5b. The regu-

larization is a constant applied to all labels and super-labels shown in Figure 5c with the exception

of the vessel wall label, V , which has zero regularization to avoid shrinking bias.
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Fig 5: Vessel segmentation in ultrasound with and without shape complexes. The label ordering
is given in Figure 5c (* a simple star convexity constraint is applied to this label) with the vantage
point for the shape complex is marked with an ‘X’. Similar to Figure 2, any overlap between
segmentations can cause false colors.

An experiment similar to that shown in Figure 3 was performed on the vessel ultrasound

dataset, varying both the regularization and bias parameters. Quantitative results are shown in

Figure 6. Not only did including the star convexity constraint improve the DSC compared to un-

constrained DAGMF at their respective optimal values, but the segmentation became more robust

to parameterization, maintaining similarly high DSC over a much broader range of parameters,

confirming our earlier observation on synthetic images. This is especially important for medical

image segmentation problems in which an exhaustive search through or optimization of the param-

eter space is difficult to perform, or when parameters are selected interactively,28 as the addition of

shape complexes makes selection easier and less sensitive to operator variability.
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Fig 6: Quantitative results for the segmentation problem shown in Fig. 5 varying regularization
and bias parameters. Blue indicates DSC ≈ 0 and yellow indicates DSC ≈ 1 as shown in Fig. 6g.
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3.3 Cardiac Valve Segmentation from Ultrasound

Even more complicated shapes can be created by combining simpler shapes. For example, Figure

4 involved the overlapping of two star convex objects and Figure 2 showed how star shape priors

could be nested to form rings. By combining these two ideas as shown in Figure 7a, we can

create a shape complex that describes the intersection of two ring-shaped objects. This shape

occurs when segmenting structures such as cardiac valve annuli that are a shared boundary between

more readily segmented objects such as blood pools. This model contains six regions: K, the

background region; TB and TW , representing the top blood pool and surrounding wall; BB and

BW , representing the bottom; and V representing the intersection between them.

Figures 7b and c show a synthetic segmentation example for this shape complex. The image

has CNR = 1 with no contrast between the background and blood pools nor between the walls

and the valve. With no contrast between similar objects, the shape information is necessary for

segmentation. The segmentation result demonstrates that the shape complex can adequately local-

ize the synthetic valve, that is, a minimal region separating the blood pools. Without contrast, there

Fig 7: Synthetic valve annulus segmentation. The labelK indicates the background (in cyan), TW
and BW indicates the top and bottom walls respectively (in magenta), TB and BB indicate the
top and bottom blood pools respectively (in yellow), and V indicates the valve annulus (in green).
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Fig 8: Mitral valve labeling using trans-esophageal ultrasound images. The model (Figure 7a -
previous figure) includes label K indicates the background (in cyan), TW and BW indicates the
top and bottom walls respectively (in magenta), TB and BB indicate the top and bottom blood
pools respectively (in yellow), and V indicates the valve annulus.

are few defining features of the valve region defined against the walls, representing a limitation of

the use of shape complexes alone.

Figure 8 displays a similar experiment using a trans-esophageal ultrasound image of the anatomy

surrounding the mitral valve. Similar to the synthetic image example, the segmentation algorithm

cannot accurately segment the valve annulus where it is adjacent to the myocardium. Additionally,

the ultrasound image included a partial view of the aorta and aortic valve, which was not accounted

for in the model. Because this was not included in the model, the segmentation algorithm had dif-

ficulty segmenting said region as the signal intensities contradicted the expectation of the shape

term. (The hyper-intense valve did not allow the aortic blood pool to be easily grouped with the

left ventricular blood pool yet its proximity and attached-ness discouraged associating it fully with

the background.) Ambiguity in the segmentation result is evidenced by partial coloring.

Both synthetic and ultrasound experiments used uniform regularization and a relatively simple

data term:

DL(x) =


|I(x)− IB|, ifL ∈ {BB, TB,K}

|I(x)− IW |, ifL ∈ {BWO, TWO}

|I(x)− IW | − biasI , ifL ∈ {I}

(5)

where IB and IK were the average intensity of the blood pools and walls respectively, and biasI was
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a bias term to encourage the expansion of the valve annulus label and avoid partitioning the valve

region between the BWO and TWO labels. Spatial seeding was provided for the background and

two blood pool labels and, for the latter, the centroid of the seed locations was used as the vantage

point for the star convexity constraints.

3.4 Atrial Wall Segmentation from Cardiac CT

This technique can be used to segment anatomy with boundary structures such as the atrial wall in

contrast enhanced CT. A challenging aspect of this problem is that the atrial wall has no contrast

with surrounding muscle, thus requiring shape complexes to constrain it around the more distinc-

tive atrial blood pool. The segmentation was semi-automated, whereby seeds placed by the user in

the atrial blood pool, muscle, fat, and lungs were employed to fit a normal intensity distribution to

each tissue type and define a geodesic star convexity prior for the atrium. A uniform smoothness

term was created with a label-specific uniform regularization. The segmentation model is shown in

Figure 9. Best and worst case results are shown in Figure 10a-c and d-e respectively. Quantitative

results are provided in Table 1.

Despite having the same intensity distribution and therefore the same data terms, the segmenta-

tion successfully differentiated between the atrial and non-atrial blood pools, as well as atrial wall

versus other muscular structures. Currently this segmentation protocol is semi-automatic, requiring

some user initialization. In an automated protocol, the user initialization could be replaced by prior

knowledge about the Hounsfield distribution of different tissue intensities with some mechanism

Fig 9: Atrial wall segmentation DAGMF augmented with shape complexes with α representing
the regularization strength. (* a simple star convexity constraint is applied to this label.)
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Fig 10: Best and worst case atrial wall segmentation results. The atrial blood pool is shown in
magenta and the atrial wall in cyan. The black regions are user-provided seed points for the atrial
blood label.
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Mean Distance Error Mean Distance Error
(n = 10) (Operator 1) (Operator 2)
Blood pool (inner wall) 0.76± 0.51 mm 0.59± 0.36 mm
Whole atrium (outer wall) 1.51± 0.55 mm 1.27± 0.29 mm

Table 1: Mean distance error results for the blood pool and whole atrium labels. These are reflective
of the errors seen on the inner and outer boundary of the atrial wall label.

for automatically estimating the centroid of the atrial blood pool. The smoothness terms allow

the blood pools and walls to closely follow perceptible edges in the image even at high regulation

values.

There is currently a non-negligible degree of user variability in the method as shown by the

difference in accuracy results with respect to the manual segmentation outlined in Table 1. This is

to be expected as the seeding not only provides a spatial anchor for the segmentation and defines

the vantage points for the shape complex, but also affects the probabilistic data terms used in the

optimization process.

4 Discussion & Future Work

The addition of geodesic star convexity and related topological considerations in a general-purpose

and application-agnostic manner improves the expressiveness of possible anatomical information

that can be encoded in a segmentation problem. This encoded knowledge can greatly improve seg-

mentation without requiring higher regularization which can obscure fine structures and detail on

the segmented objects. The use of shape complexes to improve the robustness of the optimization

algorithm to regularization parameter may be especially useful in these scenarios in which numeric

parameterization may be opaque and unintuitive for clinical users. The mitigation of variations in

accuracy may also be helpful in further validation and comparison with other algorithms, as less

effort is required to generate acceptable performance.

Because of the emphasis on maintaining a single continuous-space, there is no additional com-

putational expense or ambiguity due to co-ordinate system warping, permitting the segmentation

of multiple objects simultaneously and well as branching objects, both of which complicate co-

ordinate system warping approaches. This is in stark contrast to prior approaches21 in which such
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warping is necessary, preventing specific types of shape complexes to be solved due to co-ordinate

system ambiguity. Generally speaking, these co-ordinate system difficulties are avoided by dis-

crete approaches,12, 13 but by maintaining a continuous-space image domain, issues of metrication

are avoided entirely, especially those resulting from the placement of infinite-cost edges associated

with discrete domain star convexity constraints.

These priors however require some form of intelligent initialization to infer the geodesic di-

rection field, eL(x). In both the synthetic and medical image segmentation experiments, this in-

formation was provided by the user through picking the centroid (as in Sections 3.2 and 3.1) or

by seeding the region of interest (as in Section 3.4). Although these methods may be suitable for

HMF-based interactive segmentation,28 different approaches will be required for fully automated

segmentation pipelines. Currently, the use of manual region-of-interest seeding is likely a large

cause of variability in complex problems such atrial wall segmentation.

There are four immediate areas of future work for shape complexes:

• Incorporation of multiple star-convexity constraints into a single label, increasing the num-

ber of shape options for each label. For example, constraining a shape to be circular about

a particular vantage point could be implemented with three geodesics, one pointing towards

the center of the circle and two tangent to it, pointing in the clockwise and counter-clockwise

directions respectively. In theory, a similar combinations of geodesics could be used for arbi-

trary shapes provided that the boundary is parametrically defined or in interactive scenarios

where edge information can be extracted and scale-invariance is assumed.18

• Performance improvements including GPGPU acceleration and incorporation of C++ im-

plementations into the ASETS library.26 As stated in Section 2.3, shape complexes can be

implemented in an inherently parallelizable manner suitable for GPGPU acceleration. In-

corporation into C++ would more readily allow its integration into open source libraries for

medical imaging processing and visualization, such as ITK and VTK.

• Incorporation into existing continuous max-flow based interactive segmentation interfaces28
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that use input sampling mechanisms amenable to defining star convexity constraints. Alter-

natively, vantage point placement could be implemented as another secondary mechanism

for user interaction.

• Investigation of automated approaches for defining geodesics based on atlas registration suit-

able for fully-automatic segmentation pipelines. By processing deformation field resulting

from the registration, it may be possible to automatically derive geodesic, rather than simple,

star convexity constraints.

While these initial results are promising, and the additional robustness to parameter selection

widely desirable in an array of medical image segmentation tasks, more validation is required

to establish clinical utility in a particular medical domain. For example, in order to be clinical

applicable for atrial wall segmentation, shape complexes must be augmented with a cost estimation

framework that is robust to CT artifacts, such as those generated by the presence of pacemakers, as

well as variable contrast-to-noise ratios due to the variable dose rates of cardiac CT across clinical

centers and scanners.

5 Conclusions

This paper presents shape complexes, which allow label ordering and geometric considerations

to be used in tandem for segmenting multiple objects with complex shape requirements. This

novel general-purpose segmentation approach, that augments previous extendable max-flow for-

mulations, allows lower regularization values to be employed, preserves the segmented object’s

structure with greater fidelity, and is generally more robust to differing parameter values.
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