




Fig 10: Best and worst case atrial wall segmentation results. The atrial blood pool is shown in
magenta and the atrial wall in cyan. The black regions are user-provided seed points for the atrial
blood label.
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Mean Distance Error Mean Distance Error
(n = 10) (Operator 1) (Operator 2)
Blood pool (inner wall) 0.76± 0.51 mm 0.59± 0.36 mm
Whole atrium (outer wall) 1.51± 0.55 mm 1.27± 0.29 mm

Table 1: Mean distance error results for the blood pool and whole atrium labels. These are reflective
of the errors seen on the inner and outer boundary of the atrial wall label.

for automatically estimating the centroid of the atrial blood pool. The smoothness terms allow

the blood pools and walls to closely follow perceptible edges in the image even at high regulation

values.

There is currently a non-negligible degree of user variability in the method as shown by the

difference in accuracy results with respect to the manual segmentation outlined in Table 1. This is

to be expected as the seeding not only provides a spatial anchor for the segmentation and defines

the vantage points for the shape complex, but also affects the probabilistic data terms used in the

optimization process.

4 Discussion & Future Work

The addition of geodesic star convexity and related topological considerations in a general-purpose

and application-agnostic manner improves the expressiveness of possible anatomical information

that can be encoded in a segmentation problem. This encoded knowledge can greatly improve seg-

mentation without requiring higher regularization which can obscure fine structures and detail on

the segmented objects. The use of shape complexes to improve the robustness of the optimization

algorithm to regularization parameter may be especially useful in these scenarios in which numeric

parameterization may be opaque and unintuitive for clinical users. The mitigation of variations in

accuracy may also be helpful in further validation and comparison with other algorithms, as less

effort is required to generate acceptable performance.

Because of the emphasis on maintaining a single continuous-space, there is no additional com-

putational expense or ambiguity due to co-ordinate system warping, permitting the segmentation

of multiple objects simultaneously and well as branching objects, both of which complicate co-

ordinate system warping approaches. This is in stark contrast to prior approaches21 in which such
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warping is necessary, preventing specific types of shape complexes to be solved due to co-ordinate

system ambiguity. Generally speaking, these co-ordinate system difficulties are avoided by dis-

crete approaches,12, 13 but by maintaining a continuous-space image domain, issues of metrication

are avoided entirely, especially those resulting from the placement of infinite-cost edges associated

with discrete domain star convexity constraints.

These priors however require some form of intelligent initialization to infer the geodesic di-

rection field, eL(x). In both the synthetic and medical image segmentation experiments, this in-

formation was provided by the user through picking the centroid (as in Sections 3.2 and 3.1) or

by seeding the region of interest (as in Section 3.4). Although these methods may be suitable for

HMF-based interactive segmentation,28 different approaches will be required for fully automated

segmentation pipelines. Currently, the use of manual region-of-interest seeding is likely a large

cause of variability in complex problems such atrial wall segmentation.

There are four immediate areas of future work for shape complexes:

• Incorporation of multiple star-convexity constraints into a single label, increasing the num-

ber of shape options for each label. For example, constraining a shape to be circular about

a particular vantage point could be implemented with three geodesics, one pointing towards

the center of the circle and two tangent to it, pointing in the clockwise and counter-clockwise

directions respectively. In theory, a similar combinations of geodesics could be used for arbi-

trary shapes provided that the boundary is parametrically defined or in interactive scenarios

where edge information can be extracted and scale-invariance is assumed.18

• Performance improvements including GPGPU acceleration and incorporation of C++ im-

plementations into the ASETS library.26 As stated in Section 2.3, shape complexes can be

implemented in an inherently parallelizable manner suitable for GPGPU acceleration. In-

corporation into C++ would more readily allow its integration into open source libraries for

medical imaging processing and visualization, such as ITK and VTK.

• Incorporation into existing continuous max-flow based interactive segmentation interfaces28
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that use input sampling mechanisms amenable to defining star convexity constraints. Alter-

natively, vantage point placement could be implemented as another secondary mechanism

for user interaction.

• Investigation of automated approaches for defining geodesics based on atlas registration suit-

able for fully-automatic segmentation pipelines. By processing deformation field resulting

from the registration, it may be possible to automatically derive geodesic, rather than simple,

star convexity constraints.

While these initial results are promising, and the additional robustness to parameter selection

widely desirable in an array of medical image segmentation tasks, more validation is required

to establish clinical utility in a particular medical domain. For example, in order to be clinical

applicable for atrial wall segmentation, shape complexes must be augmented with a cost estimation

framework that is robust to CT artifacts, such as those generated by the presence of pacemakers, as

well as variable contrast-to-noise ratios due to the variable dose rates of cardiac CT across clinical

centers and scanners.

5 Conclusions

This paper presents shape complexes, which allow label ordering and geometric considerations

to be used in tandem for segmenting multiple objects with complex shape requirements. This

novel general-purpose segmentation approach, that augments previous extendable max-flow for-

mulations, allows lower regularization values to be employed, preserves the segmented object’s

structure with greater fidelity, and is generally more robust to differing parameter values.
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