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Abstract

Arbitrary-precision integer arithmetic computations are driven by applications in solving sys-
tems of polynomial equations and public-key cryptography. Such computations arise when
high precision is required (with large input values that �t into multiple machine words), or
to avoid coe�cient over�ow due to intermediate expression swell. Meanwhile, the growing
demand for faster computation alongside the recent advances in the hardware technology
have led to the development of a vast array of many-core and multi-core processors, acceler-
ators, programming models, and language extensions (e.g., CUDA and OpenCL for GPUs, and
OpenMP and Cilk for multi-core CPUs). The massive computational power of parallel pro-
cessors makes them attractive targets for carrying out arbitrary-precision integer arithmetic.
At the same time, developing parallel algorithms, followed by implementing and optimizing
them as multi-threaded parallel programs imposes a set of challenges. This work explains
the current state of research on parallel arbitrary-precision integer arithmetic on GPUs and
CPUs, and proposes a number of solutions for some of the challenging problems related to
this subject.

Keywords: Arbitrary-precision integer arithmetic, FFT, GPU, Multi-core
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Summary

Arbitrary-precision integer arithmetic computations are driven by applications in solving sys-
tems of polynomial equations and public-key cryptography. Such computations arise when
high precision is required. Meanwhile, the growing demand for faster computation alongside
the recent advances in the hardware technology have led to the development of a vast array
of many-core and multi-core processors, accelerators, programming models, and language
extensions. The massive computational power of parallel processors makes them attractive
targets for carrying out arbitrary-precision integer arithmetic. At the same time, developing
parallel algorithms, followed by implementing and optimizing them as multi-threaded paral-
lel programs imposes a set of challenges. This work explains the current state of research on
parallel arbitrary-precision integer arithmetic on GPUs and CPUs, and proposes a number of
solutions for some of the challenging problems related to this subject.
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1 Introduction

1.1 Background and motivation

Arbitrary-precision integer arithmetic is driven by applications in solving systems of polyno-
mial equations and cryptography. Those arithmetic calculations arise when high precision is
required either because of large input values that �t into multiple machine words, or because
of possible coe�cient over�ow due to intermediate expression swell. The main di�culty
with the implementation of arbitrary-precision arithmetic is to sharply control hardware re-
sources, which translates in scheduling and parallelization challenges. Meanwhile, the grow-
ing demand for faster computation alongside the recent advances in the hardware technology
have led to the development of a vast array of many-core and multi-core processors, accelera-
tors, programming models, and language extensions (e.g., CUDA and OpenCL for GPUs, and
OpenMP and Cilk for multi-core CPUs). The massive computational power of the parallel
processors, specially GPUs, makes them viable targets for carrying out arbitrary-precision
integer arithmetic.

At the same time, developing parallel algorithms, followed by implementing and optimizing
them as multi-threaded parallel programs imposes a set of challenges. This thesis explains
the current state of research on a number of a problems in arbitrary-precision arithmetic
on CUDA-enabled GPUs as well as multi-core CPUs, also, proposes a number of solutions
for some of the challenging problems related to this subject. The solutions include paral-
lel algorithms, complexity analysis, experimental results, and �nally, critical implementation
tricks for each problem. Combining the solutions together, the goal is to maximize the perfor-
mance of arbitrary-precision integer arithmetic on parallel hardware. This work is inspired
by the previous research papers, algorithms and software libraries in code generation and
optimization such as SPIRAL [5] and FFTW [6, 7], auto-tuning such as ATLAS [8], and the
mathematical libraries such as GMP [9], FLINT [10], and NTL [11].

Note that the emphasis on arbitrary-precision arithmetic is to distinguish the proposed solu-
tions from the ones for �xed multi-precision arithmetic, where the implementation is speci�-
cally tuned for numbers that �t in s machine words, where s is a prescribed and small power
of 2, typically between 1 and 8. In our work, this number s of machine words is

• either prescribed in advance but the value of s can be arbitrary large, or

1



2 Chapter 1. Introduction

• not prescribed in advance, thus implying that, for an arithmetic operation, input and
output numbers may use di�erent values of s.

In the former case, our arithmetic operations take place in a prime �eldZ/pZwhere p �ts into
multiple machine words. Meanwhile, in the latter case, we work over the ring Z of integers.

1.2 Challenges and objectives

In this section, �rst, we review the common objectives among the subjects that we have stud-
ied. Then, we provide a brief summary of the problems and the proposed solutions.

Common objectives

The primary objective is an end-to-end optimization e�ort for better use of the hardware
resources. To put it another way, maximizing the performance by minimizing the running
time throughout the entire system. To be more speci�c, the main focus in each of the studied
problems is to provide a set of ideas, implementation tricks, and experimental results in the
following order of priority:

• to design new algorithms, or to adapt existing ones for parallel architectures,
• to use memory hierarchy e�ciently in order to minimize the communication overhead,

and �nally,
• to apply device-speci�c optimizations to reach to the peak performance on a device; this

includes but not limited to loop unrolling, kernel decomposition, using inline assembly,
writing code with respect to the way the hardware works (e.g., taking into account the
scheduler, instruction-level parallelism, and pipelining features of the device).

Big prime �eld FFT on GPUs

We consider prime �elds of large characteristic Z/pZ where p �ts on k machine words and
k is a power of 2. When the characteristic of these �elds is restricted to a subclass of the gen-
eralized Fermat numbers, we show that arithmetic operations in such �elds o�er attractive
performance, both in terms of algebraic complexity and parallelism. In particular, these op-
erations can be vectorized, leading to e�cient implementation of fast Fourier transforms on
graphics processing units. This work demonstrates the potential of GPUs and their huge com-
putational capacity for tackling an essential computational algebra problem, that is, directly
computing FFT over large prime �elds as a competitive alternative to modular computation of
FFT based on the Chinese Remainder Theorem (CRT). We explain more details in Chapter 2.



1.2 Challenges and objectives 3

Big prime �eld FFT on Multi-core

This work extends the previous study realized on GPUs to multi-core processors. In this new
context, we overcome the less �ne control of hardware resources by successively using FFT
in support of the multiplication in those �elds. We obtain favorable speedup factors (up to
6.9x on a 6-core, 12 threads node, and 4.3x on a 4-core, 8 threads node) of our parallel im-
plementation compared to the serial implementation for the overall application thanks to the
low memory footprint and the sharp control of arithmetic instructions of our implementation
of generalized Fermat prime �elds. We explain more details in Chapter 3.

KLARAPTOR:ATool forDynamically FindingOptimalKernel Launch
Parameters Targeting CUDA Programs

We present KLARAPTOR (Kernel LAunch parameters RAtional Program estimaTOR), a tool
built on top of the LLVM Pass Framework and NVIDIA CUPTI API to dynamically determine
the optimal values of kernel launch parameters of a CUDA kernel. We describe a technique
to build at the compile-time of a CUDA program a so-called rational program. The ratio-
nal program, based on some performance prediction model, and knowing particular data and
hardware parameters at runtime, can be executed to automatically and dynamically deter-
mine the values of launch parameters for the CUDA program that will yield nearly optimal
performance. Our underlying technique could be applied to parallel programs in general,
given a performance prediction model which accounts for program and hardware parame-
ters. We have implemented and tested our technique in the context of GPU kernels written
in CUDA. We explain more details in Chapter 4.

Arbitrary-precision Integer Multiplication on GPUs

In this work, we propose a new �ne-grained parallel algorithm for multiplying arbitrary-
precision integers of k digits on. This solution is based on classical O(k2) algorithm. We
explain more details in Chapter 5.



2 Big Prime Field FFT on GPUs

2.1 Introduction

Prime �eld arithmetic plays a central role in computer algebra by supporting computation in
Galois �elds. The prime �elds that are used in computer algebra systems, in particular in the
implementation of modular methods, are often of small characteristic, that is, based on prime
numbers that �t in a machine word. Increasing precision beyond the machine word size can be
done via the Chinese Remainder Theorem (CRT) or Hensel Lemma. However, using machine-
word size, thus small, prime numbers yields major issues in certain modular methods, in
particular for solving systems of non-linear equations. Indeed, in such circumstances, the so-
called unlucky primes are to be avoided, see for instance [12, 13] as well as Section 2.9. This
makes using larger primes desirable.

We consider prime �elds of large characteristic, typically �tting on k machine words, where k
is a power of 2. In practice, k typically ranges from 2 to 1024. When the characteristic of these
�elds is restricted to a subclass of the generalized Fermat numbers, we show that arithmetic
operations in such �elds o�er attractive performance both in terms of algebraic complexity
and parallelism. In particular, these operations can be vectorized, leading to e�cient imple-
mentation of fast Fourier transforms on graphics processing units (GPUs).

We present algorithms for arithmetic operations in a “big” prime �eld Z/pZ, where p is a
generalized Fermat number of the form p � rk + 1 where r �ts a machine-word and k is a
power of 2. We report on a GPU implementation of those algorithms as well as a GPU imple-
mentation of a Fast Fourier Transform (FFT) over such a big prime �eld. Our experimental
results show that

1. computing an FFT of size N , over a big prime �eld for p �tting on k 64-bit machine-
words, and

2. computing 2k FFTs of size N , over a small prime �eld (that is, where the prime �ts a
32-bit half-machine-word) followed by a combination (i.e. CRT-like) of those FFTs

are two competitive approaches in terms of running time. Since the former approach has the
advantage of reducing the occurrence of unlucky primes when applying modular methods (in
particular in the area of polynomial system solving), we view this experimental observation
as a promising result.

4



2.2 Complexity analysis 5

The reasons for a GPU implementation are as follows. First, the model of computations and
the hardware performance provide interesting opportunities for big prime �eld arithmetic,
in particular in terms of vectorization of the program code. Secondly, highly optimized FFTs
over small prime �elds have been implemented on GPUs by Wei Pan [14, 15] in the CUMODP
library, see www.cumodp.org, and we use them in our experimental comparison.

Section 3.5 reports on various comparative experimentations. First, a comparison of the above
two approaches implemented on GPU, exhibiting an advantage for the FFT over a big prime
�eld. Second, a comparison between the two same approaches implemented on a single-core
CPU, exhibiting an advantage for the CRT-based FFT over small prime �elds. Third, from the
two previous comparisons, one deduces a comparison of the FFT over a big prime �eld (resp.
the CRT-based FFT over small prime �elds) implemented on GPU and CPU, exhibiting a clear
advantage for the GPU implementations. Overall, the big prime �eld FFT on the GPU is the
best approach.

A discrete Fourier transform (DFT) over Z/pZ, when p is a generalized Fermat prime, can be
seen as a generalization of the FNT (Fermat number transform), which is a speci�c case of the
NTT (number theoretic transform). However, the computation of a DFT over Z/pZ implies
additional considerations, which are not taken into account in the literature on NTT or FNT
computations [16, 17].

The computation of a NTT can be done via various methods used for a DFT, among them is
the radix-2 Cooley-Tukey, for example. However, the �nal complexity depends on the way a
given DFT is computed. It appears that, in the context of generalized Fermat primes, there
is a better choice than the radix-2 Cooley-Tukey. The method used in the present paper is
related to the article [18], which is derived from Fürer’s algorithm [19] for the multiplication
of large integers. The practicality of this latter algorithm is an open question. And, in fact,
the work reported in our paper is a practical contribution responding to this open question.

The paper [16] discusses the idea of using Fermat number transform for computing convolu-
tions, thus working modulo numbers of the form F � 2b + 1, where b is a power of 2. This
is an e�ective way to avoid round-o� error caused by twiddle factor multiplication in com-
puting DFT over the �eld of complex numbers. The paper [17] considers generalized Fermat
Mersenne (GFM) prime numbers that prime of the form (qpn −1)/(q−1)where, typically, q is
2 and both p and n are small. These numbers are di�erent from the primes used in our paper,
which have the form rk + 1 where r is typically machine-word long and k is a power of 2 so
that r is a 2k-th primitive root of unity, see Section 2.3.

2.2 Complexity analysis

Consider a prime �eld Z/pZ and N , a power of 2, dividing p − 1. Then, the �nite �eld Z/pZ
admits an N-th primitive root of unity (see Section 2.4 for this notion). Denote by ω such an
element. Let f ∈ Z/pZ[x] be of degree at most N−1. Then, computing the DFT of f at ω via

www.cumodp.org
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an FFT, following the standard 2-way divide-and-conquer algorithm, (see Chapter 8 in [20])
amounts to:

1. N log(N) additions in Z/pZ,
2. (N/2) log(N) multiplications by a power of ω in Z/pZ.

If the bit-size of p is k machine words, then

1. each addition in Z/pZ costs O(k) machine-word operations,
2. each multiplication by a power of ω costs O(M(k)) machine-word operations,

where n 7−→ M(n) is a multiplication time as de�ned in [20]. Therefore, multiplication by
a power of ω becomes a bottleneck as k grows. To overcome this di�culty, we consider the
following trick proposed by Martin Fürer in [19, 21]. We assume that N � Ke holds for some
“small” K, say K � 32 and an integer e ≥ 2. Further, we de�ne η � ωN/K , with J � Ke−1 and
assume that multiplying an arbitrary element of Z/pZ by ηi , for any i � 0, . . . , K − 1, can
be done within O(k) machine-word operations. Consequently, every arithmetic operation
(addition, multiplication) involved in a DFT of size K, using η as a primitive root, amounts
to O(k) machine-word operations. Therefore, such DFT of size K can be performed with
O(K log(K) k) machine-word operations. As we shall see in Section 2.3, this latter result
holds whenever p is a so called generalized Fermat number.

Returning to the DFT of size N at ω and using the factorization formula of Cooley and Tukey,
we have

DFTJK � (DFTJ ⊗ IK)DJ,K(IJ ⊗ DFTK)L JK
J , (2.1)

see Section 2.4. Hence, the DFT of f at ω is essentially performed by:

1. Ke−1 DFT’s of size K (that is, DFT’s on polynomials of degree at most K − 1),
2. N multiplications by a power of ω (coming from the diagonal matrix DJ,K) and
3. K DFT’s of size Ke−1.

Unrolling Formula (2.1) so as to replace DFTJ by DFTK and the other linear operators involved
(the diagonal matrix D and the permutation matrix L) one can see that a DFT of size N � Ke

reduces to:

1. e Ke−1 DFT’s of size K, and
2. (e − 1)N multiplication by a power of ω.

Recall that the assumption on the cost of a multiplication by ηi , for 0 ≤ i < K, makes
the cost for one DFT of size K to O(K log2(K) k) machine-word operations. Hence, all the
DFT’s of size K together amount to O(e N log2(K)k) machine-word operations. That is,
O(N log2(N) k) machine-word operations. Meanwhile, the total cost of the multiplication
by a power of ω is O(e N M(k)) machine-word operations, that is, O(N logK(N)M(k))
machine-word operations. Indeed, multiplying an arbitrary element of Z/pZ by an arbitrary
power of ω requires O(M(k))machine-word operations. Therefore, under our assumption, a
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DFT of size N at ω amounts to

O(N log2(N) k + N logK(N)M(k)) (2.2)

machine-word operations. When using generalized Fermat primes, we have K � 2k and the
above estimate becomes

O(N log2(N) k + N logk(N)M(k)) (2.3)

The second term in the big-O notation dominates the �rst one. However, we keep both terms
for reasons that will appear shortly.

Without our assumption, as discussed earlier, the same DFT would run in O(N log2(N)M(k))
machine-word operations. Therefore, using generalized Fermat primes brings a speedup fac-
tor of log(K) w.r.t. the direct approach using arbitrary prime numbers.

At this point, it is natural to ask what would be the cost of a comparable computation using
small primes and the CRT. To be precise, let us consider the following problem. Let p1, . . . , pk
be pairwise di�erent prime numbers of machine-word size and let m be their product. Assume
that N divides each of p1−1, . . . , pk −1 such that each of �elds Z/p1Z, . . . ,Z/pkZ admits an
N-th primitive roots of unity, ω1, . . . , ωk . Then, ω � (ω1, . . . , ωk) is an N-th primitive root
of Z/mZ. Indeed, the ring Z/p1Z⊗· · ·⊗Z/pkZ is a direct product of �elds. Let f ∈ Z/mZ[x]
be a polynomial of degree N − 1. One can compute the DFT of f at ω in three steps:

1. Compute the images f1 ∈ Z/p1Z[x], . . . , fk ∈ Z/pkZ[x] of f .
2. Compute the DFT of fi at ωi in Z/piZ[x], for i � 1, . . . , k,
3. Combine the results using CRT so as to obtain a DFT of f at ω.

The �rst and the third above steps will run within O(N ×M(k) log2(k)) machine-word op-
erations meanwhile the second one amount to O(k × N log(N)) machine-word operations,
yielding a total of

O(N log2(N) k + N M(k) log2(k)) (2.4)

These estimates yield a running-time ratio between the two approaches of log(N)/log22(k),
which suggests that for k large enough the big prime �eld approach may outperform the CRT-
based approach. We believe that this analysis is part of the explanation for the observation
that the two approaches are, in fact, competitive in practice, as we shall see in Section 3.5.

We conclude this section by observing that, in the above, we have focused our discussion on
algebraic complexity, thus not considering the question of cache complexity. We note that for
small prime �elds, FFTs that are optimal in terms of cache complexity can be derived easily
from the results of [22]. For big prime �elds, the same results could be adapted to derive cache
complexity optimal FFTs. We leave that for future work. Nevertheless, we can already observe
that when the big prime is large enough for one multiplication in the big prime �eld to fully
occupy the L1 cache, then the naive 2-way divide-and-conquer FFT becomes essentially cache
complexity optimal.
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2.3 Generalized Fermat numbers

The n-th Fermat number, denoted by Fn , is given by Fn � 22n
+ 1. This sequence plays an

important role in number theory and, as mentioned in the introduction, in the development
of asymptotically fast algorithms for integer multiplication [23, 21].

Arithmetic operations modulo a Fermat number are simpler than modulo an arbitrary positive
integer. In particular 2 is a 2n+1-th primitive root of unity modulo Fn . Unfortunately, F4 is
the largest Fermat number which is known to be prime. Hence, when computations require
the coe�cient ring be a �eld, Fermat numbers are no longer interesting. This motivates the
introduction of other family of Fermat-like numbers, see, for instance, Chapter 2 in the text
book Guide to elliptic curve cryptography [24].

Numbers of the form a2
n
+ b2

n where a > 1, b ≥ 0 and n ≥ 0 are called generalized Fermat
numbers. An odd prime p is a generalized Fermat number if and only if p is congruent to 1
modulo 4. The case b � 1 is of particular interest and, by analogy with the ordinary Fermat
numbers, it is common to denote the generalized Fermat number a2

n
+ 1 by Fn(a). So 3 is

F0(2). We call a the radix of Fn(a). Note that, Landau’s fourth problem asks if there are
in�nitely many generalized Fermat primes Fn(a) with n > 0.

In the �nite ring Z/Fn(a)Z, the element a is a 2n+1-th primitive root of unity. However, when
using binary representation for integers on a computer, arithmetic operations in Z/Fn(a)Z
may not be as easy to perform as in Z/FnZ. This motivates the following.

De�nition 1 We call sparse radix generalized Fermat number, any integer of the form Fn(r)
where r is either 2w + 2u or 2w − 2u , for some integers w > u ≥ 0. In the former case, we denote
Fn(r) by F+

n (w , u) � 2w + 2u and in the latter by F−n (w , u) � 2w − 2u .

Table 2.1 lists sparse radix generalized Fermat numbers (SRGFNs) that are prime. For each
such number p, we give the largest power of 2 dividing p − 1, that is, the maximum length N
of a vector to which a radix-K FFT algorithm where K is an appropriate power of 2.

Notation 1 In the sequel, we consider p � Fn(r), a �xed SRGFN. We denote by 2e the largest
power of 2 dividing p − 1 and we de�ne k � 2n , so that p � rk + 1 holds.

As we shall see in the sequel of this section, for any positive integer N which is a power of
2 such that N divides p − 1, one can �nd an N-th primitive root of unity ω ∈ Z/pZ such
that multiplying an element x ∈ Z/pZ by ωi(N/2k) for 0 ≤ i < 2k can be done in linear time
w.r.t. the bit size of x. Combining this observation with an appropriate factorization of the
DFT transform on N points over Z/pZ, we obtain an e�cient FFT algorithm over Z/pZ.
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Table 2.1: SRGFNs of practical interest.

p max{2e s.t. 2e | p − 1}

(263 + 253)2 + 1 2106

(264 − 250)4 + 1 2200

(263 + 234)8 + 1 2272

(262 + 236)16 + 1 2576

(262 + 256)32 + 1 21792

(263 − 240)64 + 1 22560

(264 − 228)128 + 1 23584

2.3.1 Representation of Z/pZ

We represent each element x ∈ Z/pZ as a vector ®x � (xk−1, xk−2, . . . , x0) of length k and
with non-negative integer coe�cients such that we have

x ≡ xk−1 rk−1
+ xk−2 rk−2

+ · · · + x0 mod p. (2.5)

This representation is made unique by imposing the following constraints

1. either xk−1 � r and xk−2 � · · · � x1 � 0,
2. or 0 ≤ xi < r for all i � 0, . . . , (k − 1).

We also map x to a univariate integer polynomial fx ∈ Z[T] de�ned by fx �
∑k−1

i�0 xi t i such
that x ≡ fx(r) mod p.

Now, given a non-negative integer x < p, we explain how the representation ®x can be com-
puted. The case x � rk is trivially handled, hence we assume x < rk . For a non-negative
integer z such that z < r2

i holds for some positive integer i ≤ n � log2(k), we denote by
vec(z , i) the unique sequence of 2i non-negative integers (z2i−1, . . . , z0) such that we have
0 ≤ z j < r and z � z2i−1r2

i−1 + · · · + z0. The sequence vec(z , i) is obtained as follows:

1. if i � 1, we have vec(z , i) � (q , s),
2. if i > 1, then vec(z , i) is the concatenation of vec(q , i − 1) followed by vec(s , i − 1),

where q and s are the quotient and the remainder in the Euclidean division of z by r2
i−1 .

Clearly, vec(x , n) � ®x holds.

We observe that the sparse binary representation of r facilitates the Euclidean division of a
non-negative integer z by r, when performed on a computer. Referring to the notations in
De�nition 1, let us assume that r is 2w + 2u , for some integers w > u ≥ 0. (The case 2w − 2u

would be handled in a similar way.) Let zhigh and zlow be the quotient and the remainder in
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the Euclidean division of z by 2w . Then, we have

z � 2w zhigh + zlow � r zhigh + zlow − 2u zhigh. (2.6)

Let s � zlow − 2uzhigh and q � zhigh. Three cases arise:

(S1) if 0 ≤ s < r, then q and s are the quotient and remainder of z by r,
(S2) if r ≤ s, then we perform the Euclidean division of s by r and deduce the desired

quotient and remainder,
(S3) if s < 0, then (q , s) is replaced by (q + 1, s + r) and we go back to Step (S1).

Since the binary representations of r2 can still be regarded as sparse, a similar procedure can
be done for the Euclidean division of a non-negative integer z by r2. For higher powers of r,
we believe that Montgomery multiplication [25] is the way to go, though this remains to be
explored.

2.3.2 Finding primitive roots of unity in Z/pZ

Notation 2 Let N be a power of 2, say 2` , dividing p−1 and let g ∈ Z/pZ be an N-th primitive
root of unity.

Recall that such an N-th primitive root of unity can be obtained by a simple probabilistic
procedure. Write p � qN + 1. Pick a random α ∈ Z/pZ and let ω � αq . Little Fermat
theorem implies that either ωN/2 � 1 or ωN/2 � −1 holds. In the latter case, ω is an N-th
primitive root of unity. In the former, another random α ∈ Z/pZ should be considered. In our
various software implementation of �nite �eld arithmetic [26, 27, 28], this procedure �nds an
N-th primitive root of unity after a few tries and has never been a performance bottleneck.

In the following, we consider the problem of �nding an N-th primitive root of unity ω such
that ωN/2k � r holds. The intention is to speed up the portion of FFT computation that
requires to multiply elements of Z/pZ by powers of ω.

Proposition 1 InZ/pZ, the element r is a 2k-th primitive root of unity. Moreover, the following
algorithm computes an N-th primitive root of unity ω ∈ Z/pZ such that we have ωN/2k � r in
Z/pZ.

Proof Since gN/2k is a 2k-th root of unity, it is equal to r i0 (modulo p) for some 0 ≤ i0 < 2k
where i0 is odd. Let j be a non-negative integer. Observe that we have

g j2`/2k
� (g i g2 k q)2`/2k

� g i2`/2k
� r i i0 , (2.7)

where q and i are quotient and the remainder of j in the Euclidean division by 2k. By de�ni-
tion of g, the powers g i2`/2k , for 0 ≤ i < 2k, are pairwise di�erent. It follows from Formula
(2.7) that the elements r i i0 are pairwise di�erent as well, for 0 ≤ i < 2k. Therefore, one of



2.3 Generalized Fermat numbers 11

Algorithm 1 Find a primitive N-th root of unity ω ∈ Z/pZ such that ωN/2k � r.
input:

- Exponent N .
- Radix r and exponent k from p � rk + 1.
- An N-th root of unity g ∈ Z/pZ.

output:
- An N-th primitive root of unity ω ∈ Z/pZ such that ωN/2k � r.

procedure PrimitiveRootAsRootOf(N, r, k , g)
α :� gN/2k

β :� α
j :� 1
while β , r do

β :� αβ
j :� j + 1

end while
ω :� g j

return (ω)
end procedure

those latter elements is r itself. Hence, we have j1 with 0 ≤ j1 < 2k such that g j1N/2k � r.
Then, ω � g j1 is as desired and Algorithm 1 computes it. �

2.3.3 Addition and subtraction in Z/pZ

Let x , y ∈ Z/pZ represented by ®x , ®y, see Section 2.3.1 for this latter notation. Algorithm 2
computes the representation −−−−→x + y of the element (x + y) mod p.

Proof At Step (1), ®x and ®y, regarded as vectors over Z, are added component-wise. At Steps
(2) and (3), the carry, if any, is propagated. At Step (4), there is no carry beyond the leading
digit zk−1, hence (zk−1, . . . , z0) represents x + y. Step (5) handles the special case where
x + y � p − 1 holds. Step (6) is the over�ow case which is handled by subtracting 1 mod p
to (zk−1, . . . , z0), �nally producing −−−−→x + y. �

A similar procedure computes the vector −−−−→x − y representing the element (x − y) ∈ Z/pZ.
Recall that we explained in Section 2.3.1 how to perform the Euclidean divisions at Step (S3)
in a way that exploits the sparsity of the binary representation of r.

In practice, the binary representation of the radix r �ts a machine word, see Table 2.1. Con-
sequently, so does each of the “digit” in the representation ®x of every element x ∈ Z/pZ.
This allows us to exploit machine arithmetic in a sharper way. In particular, the Euclidean
divisions at Step (S3) can be further optimized.
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Algorithm 2 Computing x + y ∈ Z/pZ for x , y ∈ Z/pZ
input:

- Elements x , y ∈ Z/pZ represented by ®x , ®y.
- Radix r and exponent k from p � rk + 1.

output:
- Result of addition x + y.

procedure BigPrimeFieldAddition(®x , ®y , r, k)
1: compute zi � xi + yi in Z, for i � 0, . . . , k − 1,
2: let zk � 0,
3: for i � 0, . . . , k − 1, compute the quotient qi and the remainder si in the Euclidean

division of zi by r, then replace (zi+1, zi) by (zi+1 + qi , si),
4: if zk � 0 then return (zk−1, . . . , z0),
5: if zk � 1 and zk−1 � · · · � z0 � 0, then let zk−1 � r and return (zk−1, . . . , z0),
6: let i0 be the smallest index, 0 ≤ i0 ≤ k, such that zi0 , 0, then let zi0 � zi0 − 1, let

z0 � · · · � zi0−1 � r − 1 and return (zk−1, . . . , z0).
end procedure

2.3.4 Multiplication by a power of r in Z/pZ

Before considering the multiplication of two arbitrary elements x , y ∈ Z/pZ, we assume
that one of them, say y, is a power of r, say y � r i for some 0 < i < 2k. Note that the cases
i � 0 � 2k are trivial. Indeed, recall that r is a 2k-th primitive root of unity in Z/pZ. In
particular, rk � −1 in Z/pZ. Hence, for 0 < i < k, we have rk+i � −r i in Z/pZ. Thus, let us
consider �rst the case where 0 < i < k holds. We also assume 0 ≤ x < rk holds in Z, since
the case x � rk is easy to handle. From Equation (2.5) we have:

xr i ≡ (xk−1 rk−1+i + · · · + x0 r i) mod p

≡
j�k−1∑

j�0
x j r j+i mod p

≡
h�k−1+i∑

h�i
xh−i rh mod p

≡ (
h�k−1∑

h�i
xh−irh −

h�k−1+i∑
h�k

xh−i rh−k) mod p

The case k < i < 2k can be handled similarly. Also, in the case i � k we have xr i � x(p−1) �
−x in Z/pZ. It follows, that for all 0 < i < 2k, computing the product x r i simply reduces to
computing a subtraction. This fact, combined with Proposition 1, motivates the development
of FFT algorithms over Z/pZ.
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2.3.5 Multiplication in Z/pZ

Let again x , y ∈ Z/pZ represented by ®x , ®y and consider the univariate polynomials fx , fy ∈
Z[T] associated with x , y; see Section 2.3.1 for this notation. To compute the product x y in
Z/pZ, we proceed as follows.

Algorithm 3 Computing x y ∈ Z/pZ for x , y ∈ Z/pZ
input:

- Polynomials fx , fy ∈ Z[T] associated with x , y ∈ Z/pZ.

- Radix r and exponent k from p � rk + 1.
output:

- Result of multiplication x y.
procedure BigPrimeFieldMultiplication( fx , fy , r, k)

1: We compute the polynomial product fu � fx fy in Z[T] modulo Tk + 1.

2: Writing fu �

k−1∑
i�0

uiT i , we observe that for all 0 ≤ i ≤ k − 1 we have 0 ≤ ui ≤

kr2 and compute a representation −→ui of ui in Z/pZ using the method explained in
Section 2.3.1.

3: We compute uir i in Z/pZ using the method of Section 2.3.4.

4: Finally, we compute the sum
k−1∑
i�0

uir i in Z/pZ using Algorithm 2.

end procedure

For large values of k, fx fy mod Tk + 1 in Z[T] can be computed by asymptotically fast
algorithms (see the paper [29, 18]). However, for small values of k (say k ≤ 8), using plain
multiplication is reasonable.

2.4 FFT Basics

We review the Discrete Fourier Transform over a �nite �eld, and its related concepts. See [21]
for details.

Primitive and principal roots of unity. Let R be a commutative ring with units. Let N > 1
be an integer. An element ω ∈ R is a primitive N-th root of unity if for 1 < k ≤ N we have
ωk � 1 ⇐⇒ k � N . The element ω ∈ R is a principal N-th root of unity if ωN � 1 and
for all 1 ≤ k < N we have

N−1∑
j�0

ω jk
� 0. (2.8)
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In particular, if N is a power of 2 and ωN/2 � −1, then ω is a principal N-th root of unity. The
two notions coincide in �elds of characteristic 0. For integral domains every primitive root
of unity is also a principal root of unity. For non-integral domains, a principal N-th root of
unity is also a primitive N-th root of unity unless the characteristic of the ring R is a divisor
of N .

The discrete Fourier transform (DFT). Let ω ∈ R be a principal N-th root of unity. The
N-point DFT at ω is the linear function, mapping the vector ®a � (a0, . . . , aN−1)T to ®b �

(b0, . . . , bN−1)T by ®b � Ω®a, where Ω � (ω jk)0≤ j,k≤N−1. If N is invertible in R, then the
N-point DFT at ω has an inverse which is 1/N times the N-point DFT at ω−1.

The fast Fourier transform. Let ω ∈ R be a principal N-th root of unity. Assume that N can
be factorized to JK with J, K > 1. Recall Cooley-Tukey factorization formula [30]

DFTJK � (DFTJ ⊗ IK)DJ,K(IJ ⊗ DFTK)L JK
J , (2.9)

where, for two matrices A, B over R with respective dimensions m × n and q × s, we denote
by A ⊗ B an mq × ns matrix over R called the tensor product of A by B and de�ned by

A ⊗ B � [ak`B]k ,` with A � [ak`]k ,` . (2.10)

In the above formula, DFTJK , DFTJ and DFTK are respectively the N-point DFT at ω, the
J-point DFT at ωK and the K-point DFT at ω J . The stride permutation matrix L JK

J permutes
an input vector x of length JK as follows

x[i J + j] 7→ x[ jK + i], (2.11)

for all 0 ≤ j < J, 0 ≤ i < K. If x is viewed as a K× J matrix, then L JK
J performs a transposition

of this matrix. The diagonal twiddle matrix DJ,K is de�ned as

DJ,K �

J−1⊕
j�0

diag(1, ω j , . . . , ω j(K−1)), (2.12)

Formula (2.9) implies various divide-and-conquer algorithms for computing DFTs e�ciently,
often referred to as fast Fourier transforms (FFTs). See the papers [5] and [7] by the authors
of the SPIRAL and FFTW projects, respectively. This formula also implies that, if K divides J,
then all involved multiplications are by powers of ωK .

2.5 Blocked FFT on the GPU

In the sequel of this section, let ω ∈ R be a principal N-th root of unity. In the factorization
of the matrix DFTJK , viewing the size K as a base case and assuming that J is a power of K,



2.5 Blocked FFT on the GPU 15

Formula (2.9) translates into a recursive algorithm. This recursive formulation is, however,
not appropriate for generating code targeting many-core GPU-like architectures for which,
formulating algorithms iteratively facilitates the division of the work into kernel calls and
thread-blocks. To this end, we shall unroll Formula (2.9).

Notation 3 Assuming c � 0, that is, N � Ke , we de�ne the following linear operators, for
i � 0, . . . , e − 1:

Ui(ω) �

(
IK i ⊗ DFTK(ωKe−1) ⊗ IKe−i−1

)
·(

IK i ⊗ DK,Ke−i−1(ωK i )
)
,

Vi(ω) � IK i ⊗ LKe−i

K ,

Wi(ω) � IK i ⊗
(
LKe−i

Ke−i−1 · DK,Ke−i−1(ωK i )
)
.

(2.13)

Remark 1 We recall two classical formulas for tensor products of matrices. If A and B are
square matrices over R with respective orders a and b, then we have

A ⊗ B � Lab
a · (B ⊗ A) Lab

b . (2.14)

If C and D are two other square matrices over R with respective orders a and b, then we have

(A ⊗ B) · (C ⊗ D) � (A · C) ⊗ (B · D). (2.15)

Our GPU implementation reported in Section 2.6 is based on the following two results. We
omit the proofs, which can easily be derived from Remark 1 and the Cooley-Tukey factoriza-
tion formula; see [14]. Computer program code can be generated from Proposition 3 using
the techniques of [5].

Proposition 2 For i � 0, . . . , e − 1, we have

Ui(ω) � Vi(ω)
(
IKe−1 ⊗ DFTK(ωKe−1)

)
Wi(ω) (2.16)

The following formula reduces the computation of a DFT on Ke points to computing e DFT’s
on K points.

Proposition 3 The following factorization of DFTKe (ω) holds:

DFTKe (ω) � U0(ω) · · ·Ue−1(ω)Ve−1(ω) · · ·V0(ω). (2.17)
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2.6 Implementation

In this section, we discuss implementation techniques. Our experimental results are reported
in Section 3.5. We have realized a GPU implementation in the CUDA language of the algo-
rithms presented in Sections 2.3 and 2.5. We have used the third and the fourth Generalized
Fermat primes from Table 1, namely P3 :� (263+ 234)8+ 1 and P4 :� (262+236)16+ 1. We have
tested our code and collected the experimental data on three di�erent types of GPU cards.

Parallelization. Performing arithmetic operations on vectors of elements of Z/pZ has in-
herent data parallelism, which is ideal for implementation on GPUs. In our implementation,
each arithmetic operation is computed by one thread. An alternative approach would be to
use multiple threads for computing one operation. However, this would not improve per-
formance mostly due to overhead of handling carry propagation (in the case of addition and
subtraction), or increased latency because of frequent accesses to global memory (in the case
of twiddle factor multiplications).

Memory-bound kernels. Performance of our GPU kernels are limited by frequent accesses
to memory. Therefore, we have considered solutions for minimizing memory latency, max-
imizing occupancy (i.e. number of active warps on each streaming multiprocessor) to hide
latency, and maximizing IPC (instructions per clock cycle).

Location of data. At execution time, each thread needs to perform computation on at least
one element of Z/pZ, meaning that it will read/write at least k digits of machine-word size.
Often, in such a scenario, shared memory is utilized as an auxiliary memory, but this approach
has two shortcomings. First, on a GPU, each streaming multiprocessor has a limited amount
of shared memory which might not be large enough for allowing each thread to keep at least
one element of Z/pZ (since the value of k can be quite large). Second, using a huge amount
of shared memory will reduce occupancy. At the same time, there is no opportunity for using
texture memory or constant memory when computing over Z/pZ. Conclusively, the only
remaining solution is to keep all data on global memory.

Maximizing global memory e�ciency. Assume that for a vector of N elements of Z/pZ,
consecutive digits of each element of Z/pZ are stored in adjacent memory addresses. There-
fore, such a vector can be considered as the row-major layout of a matrix with N rows and
k columns. In practice, this data structure will hurt performance due to increased memory
overhead, caused by non-coalesced accesses to global memory. In this case, an e�ective solu-
tion is to apply a stride permutation LkN

k on all input vectors (if data is stored in a row-major
layout, this permutation is equivalent to transposing the input to a matrix of k rows and N
columns). Therefore, all kernels are written with the assumption that consecutive digits of
the same element are N steps away from each other in the memory. As a result, accesses to
global memory will be coalesced, increasing memory load and store e�ciency, and lowering
the memory overhead.

Decomposing computation into multiple kernels. Inside a kernel, consuming too many reg-
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isters per thread can lower occupancy, or even worse, lead to register spilling. In order to
prevent from register spilling, register-intensive kernels are broken into multiple smaller ker-
nels.

Size of thread blocks. Our GPU kernels do not depend on the size of a thread block. So, we
choose a con�guration for a thread block that will maximize the percentage of occupancy, the
value of IPC (instruction per clock cycle), and bandwidth-related performance metrics such
as the load and store throughput. We have achieved the best experimental results for thread
blocks of 128 threads, or 256 threads.

E�ect of GPU instructions on performance. Our current implementation is optimized for
the primes P3 :� (263 + 234)8 + 1 and P4 :� (262 + 236)16 + 1. Therefore, we rely on 64-bit
instructions on GPUs. As it is explained in [31], even though 64-bit integer instructions are
supported on NVIDIA GPUs, at compile time, all arithmetic and memory instructions will �rst
be converted to a sequence of 32-bit equivalents. This might have a negative impact on the
overall performance of our implementation. Specially, compared to addition and subtraction,
64-bit multiplication is computed through a longer sequence of 32-bit instructions. Finally,
using 32-bit arithmetic provides more opportunities for optimization such as instruction level
parallelism.

2.7 Experimentation

We compare our implementation of FFT over a big prime �eld against a comparable approach
based on FFTs over small prime �elds. To be precise, we implement the two approaches
discussed in Section 2.2. Recall that the �rst approach computes an FFT of size N over a
big prime �eld of the form Z/pZ where p is a SRGFN of size k machine words. The second
approach uses s � 2 k half-machine word primes p1, . . . , ps and proceeds as follows:

1. projection: compute the image fi of f in Z/p1Z[x], . . . , Z/pkZ[x], for i � 1, . . . , k,
2. images: compute the DFT of fi at ωi in Z/piZ[x], for i � 1, . . . , k (using the CUMODP

library [14]),
3. combination: combine the results using CRT so as to obtain a DFT of f at ω.

We use half-machine word primes (instead of machine-word primes as discussed in Sec-
tion 2.2) because the small prime �eld FFTs of the CUMODP library impose this choice. Ex-
perimental results are gathered in Section 2.7.1.

We also have implemented and tested a sequential, CPU version of both approaches. For the
small prime �eld approach, we use the NTL library [11], supporting FFT modulo machine-
word size primes of 60 bits. However, for the big prime �eld approach, we have implemented
our own arithmetic in a sequential C program. Experimental results are gathered in Sec-
tion 2.7.2.
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2.7.1 Big prime vs. small prime on the GPU

The output of the two approaches is the DFT of a vector of size N over a ring R which is either
a prime �eld or a direct product of prime �elds, and for which each element spans k machine-
words. Hence these two approaches are equivalent building blocks in a modular method.
For realizing the benchmark, �rst, we perform the reduction step, followed by computing
s � 2k FFTs of size N over small prime �elds. In the small �eld case, we use the highly
optimized implementation of the following FFT algorithms from the CUMODP library (see
[14, 15] and [28]): the Cooley-Tukey FFT algorithm (CT), the Cooley-Tukey FFT algorithm
with precomputed powers of the primitive root (CT-pow), and the Stockham FFT algorithm.
The above codes compute DFTs for input vectors of 2n elements, where 20 ≤ n ≤ 26 is
typical.

Our CUDA implementation of the big prime �eld approach computes DFT over Z/pZ, for
P3 :� (263 + 234)8 + 1 and P4 :� (262 + 236)16 + 1, and input vectors of size N � Ke where
K � 16 for P3, and K � 32 for P4. Furthermore, for P3, we have 2 ≤ e ≤ 5, while for P4 (due
to the limited size of global memory on a GPU card), we have 2 ≤ e ≤ 4.

The benchmark is computed on an NVIDIA Geforce GTX 760M (CC 3.0), an NVIDIA Tesla
C2075 (CC 2.0), and an NVIDIA Tesla M2050 (CC 2.0). The �rst card has e�ective bandwidth
of 48 GB/s, with 4 streaming multiprocessor, and the total number of 768 CUDA cores.

Figures 2.1 and 2.2 show the speedup of the big prime �eld FFT compared to the small prime
�eld approach, measured on the �rst GPU card. Moreover, Table 2.2 presents the running
times of computing the benchmark on the mentioned GPU cards. In each table, the �rst three
columns give the running times for computing the small prime �eld FFT based on the Cooley-
Tukey algorithm, the Cooley-Tukey FFT algorithm with precomputed powers of the primitive
root, and the Stockham algorithm, respectively. Meanwhile, the last column presents the
running time for computing the big prime �eld FFT.

As it is reported in [14], the FFT algorithms of the CUMODP library gain speedup factors
for vectors of the size 216 and larger, therefore, the input vector should be large enough to
keep the GPU device busy, and thus, provide a high percentage of occupancy. This explains
the results displayed on Figures 2.1 and 2.2; for both primes P3 and P4, when N � K2 and
N � K3, our big prime �eld FFT approach signi�cantly outperforms the small prime �eld FFT
approach.

More importantly, for both primes P3 and P4, and with vectors of size N � K4, our exper-
imental results demonstrate that computing the big prime �eld FFT is competitive with the
small prime �eld approach in terms of running time. For both primes P3 and P4, we can com-
pute FFT for an input vector of size N � K4, which is equivalent of 216 and 220 elements,
respectively, and is large enough to cover many practical applications.

Eventually, for P3, and for a vector of size N � K5, the Cooley-Tukey (with precomputation)
and Stockham FFT codes are slightly faster than the big prime �eld FFT. Nevertheless, for each
of the tested big primes, there is a bit size range of input vectors over which the big prime
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�eld approach outperforms the small prime approach, which is coherent with the analysis of
Section 2.2. For P3 :� (263 + 234)8 + 1, this range is [212, 216] while for P4 :� (262 + 236)16 + 1,
this range is [215, 220]. Our GPU implementation of the big prime �eld arithmetic is generic
and thus can support larger SRGFNs, see Table 1.

Table 2.2: Running time of computing the benchmark for N � Ke on GPU (timings in mil-
liseconds).

Computing the benchmark for N � Ke

for P3 :� (263 + 234)8 + 1 (K � 16)
Measured on a NVIDIA GTX-760M GPU

e CT CT-pow Stockham Big FFT
2 8.30 2.73 5.29 0.05
3 10.96 6.49 8.55 1.24
4 50.49 30.29 34.37 26.06
5 820.82 444.07 490.72 558.22

Computing the benchmark for N � Ke

for P4 :� (262 + 236)16 + 1 (K � 32)
Measured on NVIDIA GTX-760M GPU

e CT CT-pow Stockham Big FFT
2 18.30 9.33 12.26 0.37
3 62.98 39.74 46.72 20.40
4 1772.9 974.01 1042.62 971.28
5 N.A. N.A. N.A. N.A.

Measured on a NVIDIA Tesla C2075 GPU
e CT CT-pow Stockham Big FFT
2 9.44 2.93 5.16 0.03
3 11.72 6.27 7.54 0.89
4 31.85 15.57 19.07 17.71
5 418.58 191.57 205.13 371.48

Measured on NVIDIA Tesla C2075 GPU
e CT CT-pow Stockham Big FFT
2 19.82 9.56 11.56 0.27
3 44.50 23.39 27.98 15.16
4 891.35 437.29 464.69 695.02
5 N.A. N.A. N.A. N.A.

Measured on a NVIDIA Tesla M2050 GPU
e CT CT-pow Stockham Big FFT
2 12.92 3.12 5.35 0.03
3 15.35 6.66 8.00 0.88
4 35.59 15.93 19.62 17.41
5 424.98 198.46 206.71 364.88

Measured on NVIDIA Tesla M2050 GPU
e CT CT-pow Stockham Big FFT
2 27.22 9.91 11.62 0.27
3 51.81 23.93 28.60 14.80
4 902.35 449.53 465.51 678.34
5 N.A. N.A. N.A. N.A.

Figure 2.3 shows the percentage of time spent in each operation in order to compute the big
prime �eld FFT on a randomly generated input vector of size N � K4 (measured for both
primes and on the �rst mentioned GPU card). As illustrated, for both primes, computation
follows a similar pattern, where multiplication by twiddle factors is the main bottleneck. Fi-
nally, Table 2.3 presents the pro�ling data for computing the base-case DFTK on a GTX 760M
GPU.

Table 2.4 presents the de�nitions of nvprof metrics according to [4].

2.7.2 CPU vs. GPU implementations

Table 2.5 gathers running times for computing FFT sequentially with both small prime and big
prime approaches, on three di�erent CPUs (measured in milliseconds). In addition, Table 2.6
shows the speedup range for computing the small and the big prime �eld approaches on CPU
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Table 2.3: Pro�ling results for computing base-case DFTK on a GTX 760M GPU (collected
using NVIDIA nvprof).

Measured on a GTX760M GPU P3 � (263 + 234)8 + 1 (K � 16)
Metric Mult by r Add/Sub
Achieved Occupancy 74% 45%
Executed IPC 0.72 2.41
Instruction Replay Overhead 0.47 0.13
Global Load Throughput 24.57 GB/s 20.91 GB/s
Global Store Throughput 22.08 GB/s 20.74 GB/s
Global Memory Load E�ciency 90.44% 43.60%
Global Memory Store E�ciency 94.95% 43.75%

P4 � (262 + 236)16 + 1 (K � 32)
Mult by r Add/Sub
62% 46%
0.78 4.56
0.53 0.028
46.39 GB/s 10.22 GB/s
44.42 GB/s 9.91 GB/s
48.70% 98.86%
49.35% 99.99%

Table 2.4: De�nitions of NVIDIA nvprof metrics according to [4].

Metric Description
Achieved Occupancy "Ratio of the average active warps per active cycle

to the maximum number of warps supported on
a multiprocessor."

Executed IPC "Instructions executed per cycle."
Replayed instructions ratio #Instructions issued - #Instructions executed

#Instructions issued

Instruction Replay Overhead "Average number of replays for each instruction
executed."

Global Load Throughput "Global memory load throughput" (including ef-
fects of cache.)

Global Store Throughput "Global memory store throughput" (including ef-
fects of cache.)

Global Memory Load E�ciency "Ratio of requested global memory load through-
put to required global memory load throughput
expressed as percentage."

Global Memory Store E�ciency "Ratio of requested global memory store through-
put to required global memory store throughput
expressed as percentage."

and GPU. For each prime, the �rst and the second column show the lowest and the highest
running time of the same approach on CPU and GPU, respectively. Also, the last column
contains the lowest and the highest speedup ratio of computing the same approach on CPU
to its counterpart on GPU .
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Figure 2.1: Speedup diagram for computing the benchmark for a vector of size N � Ke
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Table 2.5: Running time of computing the benchmark for N � Ke using sequential C code on
CPU (timings in milliseconds).

Measured on
Intel Xeon X5650 @ 2.67GHz CPU

Computing the benchmark for N � Ke

for P3 :� (263 + 234)8 + 1 (K � 16)
e NTL Small FFT C Big FFT
2 2.51 1.85
3 23.19 35.08
4 372.19 750.40

Measured on
AMD FX(tm)-8350 @ 2.40GHz CPU

Computing the benchmark for N � Ke

for P3 :� (263 + 234)8 + 1 (K � 16)
e NTL Small FFT C Big FFT
2 4.06 4.13
3 16.06 20.01
4 296.00 528.00

Measured on
Intel Core i7-4700HQ @ 2.40GHz CPU
Computing the benchmark for N � Ke

for P3 :� (263 + 234)8 + 1 (K � 16)
e NTL Small FFT C Big FFT
2 3.12 0.73
3 14.19 21.06
4 232.76 505.96

Computing the benchmark for N � Ke

for P4 :� (262 + 236)16 + 1 (K � 32)
e NTL Small FFT C Big FFT
2 14.94 12.91
3 384.10 692.16
4 11303.76 33351.29

Computing the benchmark for N � Ke

for P4 :� (262 + 236)16 + 1 (K � 32)
e NTL Small FFT C Big FFT
2 12.00 8.00
3 296.00 396.00
4 10128.00 22992.00

Computing the benchmark for N � Ke

for P4 :� (262 + 236)16 + 1 (K � 32)
e NTL Small FFT C Big FFT
2 12.48 9.79
3 233.26 496.03
4 7573.65 26089.53

Table 2.6: Speedup ratio ( TCPU
TGPU

) for computing the benchmark for N � Ke for P3 and P4
(timings in milliseconds).

Computing the benchmark for N � Ke for
P3 :� (263 + 234)8 + 1 (K � 16) (timings in milliseconds)
e NTL Small FFT Small FFT GPU Speed-up
2 2.51 - 4.06 2.73 - 12.92 0.19X - 1.48X
3 14.19 - 23.19 6.27 - 15.35 0.92X - 3.69X
4 232.76 - 372.19 15.57 - 50.49 4.61X - 23.90X
e C Big FFT BigFFT GPU Speed-up
2 0.73-4.13 0.03-0.05 14.6X - 137.6X
3 20.01-35.08 0.88-1.24 16.13X - 39.86X
4 505.96 - 750.40 17.41-26.06 19.41X - 43.10X

Computing the benchmark for N � Ke for
P4 :� (262 + 236)16 + 1 (K � 32) (timings in milliseconds)

e NTL Small FFT Small FFT GPU Speed-up
2 12.00 - 14.94 9.33 - 27.22 0.44X - 1.60X
3 233.26 - 384.10 23.39 - 62.98 3.70X - 16.42X
4 7573.65 - 11303.76 437.29 - 1772.92 4.27X - 25.84X
e C Big FFT BigFFT GPU Speed-up
2 8.00 - 12.91 0.27 - 0.37 21.62X - 47.81X
3 396.00 - 692.16 14.80 - 20.80 19.03X - 46.76X
4 22992.00 - 33351.29 695.02 - 971.28 23.67X - 479.62X

2.8 Conclusion

Our results show the advantage of the big prime �eld approach. To be precise, for a range
of vector sizes, one can �nd a suitable large prime modulo which FFTs outperform the CRT-
based approach. The CUDA code presented in this article is part of the CUMODP library
freely available at http://www.cumodp.org.

2.9 Appendix: modular methods and unlucky primes

In computer algebra, the so-called modular methods are the main application of prime �eld
arithmetic. Let us give a simple example of such methods.

Consider a square matrix A of order n with coe�cients in the ring Z of integers. It is well-

http://www.cumodp.org
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known that det(A), the determinant of A, can be computed in at most 2n3 arithmetic oper-
ations in the �eld Q of rational numbers, by means of Gaussian elimination. However the
cost of each of those operations is not the same and, in fact, depends on the bit size of the
rational numbers involved. It can be proved that, if B is the maximum absolute value of a
coe�cient in A then computing the determinant of A directly (that is, over Z) can be done
within O(n5 (logn+ logB)2)machine-word operations, see the landmark book [20]. If a mod-
ular method is used, based on the Chinese Remainder Theorem (CRT), one can reduce the
cost to O(n4 log2(nB) (log2n + log2B)) machine-word operations.

Let us explain how this works. Let d be the determinant of A and let us choose a prime
number p ∈ Z such that the absolute value | d | of d satis�es

2 | d |< p.

Let r be the determinant of A regarded as a matrix overZ/pZ and let us represent the elements
of Z/pZ within the symmetric range [− p−1

2 · · ·
p−1
2 ]. Hence we have

−
p
2
< r <

p
2

and −
p
2
< d <

p
2

(2.18)

leading to
− p < d − r < p (2.19)

Observe that det(A) is a polynomial expression in the coe�cients of A. For instance with
n � 2 we have

det(A) � a11 a22 − a12 a21. (2.20)

Denoting by xp the residue class in Z/pZ of any x ∈ Z, we have

x + yp
� xp

+ yp and x yp
� xp yp , (2.21)

for all x , y ∈ Z. It follows for n � 2, and using standard notations, that we have

det(A)
p
� a11

p a22
p − a12

p a21
p . (2.22)

More generally, we have
det(A)

p
� det(A mod p), (2.23)

that is, d ≡ r mod p. This with Relation (2.19) leads to

d � r. (2.24)

In summary, the determinant of A as a matrix over Z is equal to the determinant of A re-
garded as a matrix over Z/pZ provided that 2 | d |< p holds. Therefore, the computation
of the determinant of A as a matrix over Z can be done modulo p, which provides a way of
controlling expression swell in the intermediate computations.
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But if d is what we want to compute, the condition 2 | d |< p is not that helpful for choosing
p. However, Hadamard’s inequality tells us that, if B is the maximum absolute value of an
entry of A, then we have

| d | ≤ nn/2 Bn . (2.25)

One can then choose a prime number p satisfying 2nn/2 Bn < p. Of course, such prime may
be very large and thus the expected bene�t of controlling expression swell may be limited.

An alternative approach is to consider pairwise di�erent prime numbers p1, . . . , pe such that
their product exceeds 2nn/2 Bn , and each of them �ts on a machine-word. Then, computing
the determinants of A regarded as a matrix over Z/p1Z, . . . ,Z/peZ leads to values r1, . . . , re ,
respectively. Finally, applying the CRT yields d.

The advantage of this alternative approach is that for a prime number p �tting in the machine-
word of computer, arithmetic operations modulo p can be implemented e�ciently using hard-
ware integer operations.

For an example of a modular method incurring unlucky primes, let us consider the simple
problem of computing a Greatest Common Divisor (GCD) of two univariate polynomials with
integer coe�cients. Let f � fnxn + · · · + f0 and g � gm xm + · · · + g0 be polynomials in
x, with respective degrees n and m, and with coe�cients in a unique factorization domain
(UFD) R. The following matrix is called the Sylvester matrix of f and g.

Sylv( f , g) �

©­­­­­­­­­­­­­­­­­«

f0 g0
...

. . .
...

fn−i f0
...

. . .
...

. . .
...

. . . gm−i
. . . . . . g0

fn fn−i f0
...

. . .
...

. . .
...

. . .
... gm

. . .
...

fn fn−i
. . . gm−i

. . .
...

...
fn gm

ª®®®®®®®®®®®®®®®®®¬

(2.26)

Its determinant is an element of R called the resultant of f and g. This determinant is usually
denoted by res( f , g) and enjoys the following property: a GCD h of f and g has degree zero
(that is, h is simply an element of R) if and only the res( f , g) , 0 holds. In other words, f
and g have a non-trivial GCD (that is, a GCD of positive degree) if and only the res( f , g) � 0
holds.

Assume now that R is the ring Z of the integer numbers and that res( f , g) , 0 holds. Suppose
that this latter fact is not known and that one is computing a GCD of f and g by means of
a modular method based on the CRT. More precisely, we are computing GCDs of f and g
modulo su�ciently many prime numbers p1, . . . , pe , obtaining polynomials h1, . . . , he in
Z/p1Z[x], . . . ,Z/peZ[x]. If none of the prime numbers p1, . . . , pe divides res( f /h , g/h),
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nor the leading coe�cients of fn and gm , then combining h1, . . . , he by CRT yields a GCD of
f and g (which, under the assumption res( f , g) , 0 turns out to be a constant). However, if
one of the prime numbers p1, . . . , pe , say pi , divides res( f /h , g/h) (even if it does not divide
fn nor gm) then hi has a positive degree. It follows that hi is not a modular image of a GCD
of f and g in Z[x]. Therefore, this prime pi should not be used in our CRT scheme and for
this reason is called unlucky.

Note that as the coe�cients of f and g grow, so will res( f , g). As a consequence, small
primes are likely to be unlucky for input data with large coe�cients. While there are tricks to
overcome the noise introduced by unlucky primes, this can become a serious computational
bottleneck. To summarize, certain modular methods, when applied to challenging problems,
require the use of prime numbers that do not necessarily �t in a machine-word. This obser-
vation motivated the work presented in this chapter.



3 Big PrimeField FFTonMulti-core Pro-
cessors

3.1 Introduction

Prime �eld arithmetic plays a central role in computer algebra by supporting computation
in Galois �elds. The prime �elds that are used in computer algebra systems, in particular in
the implementation of modular methods, are often of single precision. Increasing precision
beyond the machine word size can be done via the Chinese Remainder Theorem (CRT) or
Hensel Lemma. However, using machine-word size, thus small, prime numbers has serious
inconveniences in certain modular methods, in particular for solving systems of non-linear
equations. Indeed, in such circumstances, the so-called unlucky primes are to be avoided, see
for instance [12, 13].

We consider prime �elds of large characteristic, typically �tting on k machine words, where k
is a power of 2. When the characteristic of these �elds is restricted to a subclass of the general-
ized Fermat numbers, the authors of [1] have shown, in an ISSAC 2017 paper, that arithmetic
operations in such �elds o�er attractive performance, both in terms of algebraic complexity
and parallelism. In particular, these operations can be vectorized, leading to an e�cient im-
plementation of fast Fourier transforms on graphics processing units (GPUs), reported in that
same paper.

In the present work, we turn our attention to the most commonly used processors of today’s
laptops and desktops, namely multi-core processors. These architectures are, in principle, not
suitable for �ne grained parallelism, in contrast with GPUs. GPUs and multi-core processors
di�er in memory hierachies as well as communication and synchronization mechanisms be-
tween threads. Moreover, GPU architectures o�er programmers a �ner control of hardware
resources than multi-core processors and thus more opportunities to reach high performance.
These features of GPU architectures have been essential in the implementation of arithmetic
operations of generalized Fermat prime �elds. Hence, the implementation techniques devel-
oped in [1] can not be easily ported and applied to the context of multi-core processors.

This leads us to a �rst question: can a serial implementation (written in C programming
language) take advantage of the properties of those �nite �elds towards an implementation

26
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of fast Fourier transform (FFT) over those �elds? The answer is yes, however, the route that
we took is, of course, quite di�erent than in the GPU case. Instead of performing many
batches of arithmetic operations (a natural way of doing things in a GPU implementation)
we have focused our e�ort in optimizing the multiplication between two arbitrary elements
of our generalized Fermat prime �elds. Consider a generalized Fermat prime number of the
form p � rk + 1, where k is a power of 2 and r is of machine-word size. As mentioned
in [1], multiplying by a power of r modulo p can be done in O(k) machine-word operations.
However, multiplying two arbitrary elements ofZ/pZ is a non-trivial operation. Note that we
encode elements of Z/pZ in radix r expansion. Thus, multiplying two arbitrary elements of
Z/pZ requires computation of the product of two univariate polynomials in Z[X], of degree
less than k, modulo Xk + 1. In [1], this is done by using plain multiplication, thus Θ(k2)
machine-word operations. In Section 3.3, we explain how to multiply two arbitrary elements
x , y of Z/pZ via FFT.

A second natural question is whether a multi-threaded implementation of big prime �eld
FFT can deliver interesting speedup factors. While obtaining e�cient multi-threaded im-
plementation of FFTs with coe�cients in single or double precision is a standard research
topic [33, 34, 35, 36], the case of higher precision has received little attention so far. With
coe�cients in the generalized Fermat prime �eld Z/pZ, our FFT is in the spirit of the algo-
rithms of Schönhage and Strassen [23] and Fürer [21], where fast multiplication is achieved
by “composing” FFTs operating on di�erent vector sizes.

The practicality of Fürer’s algorithm is still an open question, a question that we touch in this
thesis, without fully addressing it. Several algorithms, similar to Fürer’s, have been proposed
since. For example, in [37, 38] De et al. gave a similar algorithm which relies on �nite �eld
arithmetic and achieves the same running time as Fürer’s algorithm. Later, Harvey, Van der
Hœven and Lecerf proposed, for the integer multiplication, a theoretical improvement to
Fürer’s algorithm in [39] based on Bluestein’s chirp transform. In [40], they also propose a
similar algorithm for the multiplication over �nite �elds, achieving a Fürer-like complexity.
This work led to an e�cient implementation in [41], using multiplication of polynomials
over the special �eld F260 . In [42], Covanov and Thomé proposed an algorithm based on
generalized Fermat primes and the same scheme as Fürer’s algorithm, to multiply integers
with a Fürer-like complexity.

Returning to our second question, addressing the parallel execution of FFT over big prime
�elds on multi-cores, the answer is yes. On a 4-core processor and on a 6-core processor, both
equipped with hyper-threading technology, we reached nearly linear speedup for the largest
input data that we tried.

To measure the bene�ts of our optimized implementation of the generalized Fermat prime
�eld Z/pZ, we have realized a naive implementation of the same �eld, where the radix repre-
sentation is not used. In this second implementation, the sum a + b mod p and the product
a × b mod p are simply computed by calling the modular sum and modular product func-
tions from the GNU Multiple Precision Arithmetic Library (GMP) [9]. The performance of
our big prime �eld FFT degrades substantially with this second implementation of Z/pZ.
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The di�erence in the performance of the optimized implementation can be attributed to, by
our measurements, the sharp management of computing resources (i.e. specialized arithmetic
and minimal usage of memory).

The experimental results reported in Section 3.5 support the positive answers to our two
questions. Our code is part of the Basic Polynomial Algebra Subprograms, also known as the
BPAS library [43] and is publicly available at http://www.bpaslib.org/.

3.2 Generalized Fermat prime �elds

The residue classes modulo p, where p is a prime number, form a �eld (unique up to isomor-
phism) called the prime �eld with p elements, denoted by GF(p) or Z/pZ. Single-precision
and multi-precision primes are referred to as small primes and big primes.

Since modular methods for polynomial systems rely on polynomial arithmetic, these large
prime numbers must support FFT-based algorithms, such as FFT-based polynomial multipli-
cation. Therefore, we consider the so-called generalized Fermat prime numbers. The detailed
introduction of generalized Fermat prime numbers can be found in the previous work of our
research group [1].

In this paper, we denote a generalized Fermat prime number p as p � rk + 1, and Z/pZ to
represent the �nite �eld GF(p). In particular, in the �eld Z/pZ, r is a 2 k-th primitive root of
unity. Each element x ∈ Z/pZ is represented by a vector ®x � (xk−1, . . . , x0) of length k. We
can also use a univariate polynomial fx ∈ Z[R] to represent x: we write fx �

∑k−1
i�0 xi Ri ,

such that x ≡ fx(r) mod p. The basic arithmetic algorithms in Z/pZ are also introduced
in [1] Section 3.

As we have mentioned above, for p � rk + 1, r is a 2 k-th primitive root unity in Z/pZ,
Section 3.3 of [1] has provided a very e�cient algorithm for multiplication between elements
x , y ∈ Z/pZ, where one of them is a power of r. We assume that y � r i for some 0 ≤ i ≤ 2k.
The cases i � 0 and i � 2k are trivial, since r is a 2k-th primitive root of unity in Z/pZ, we
have r0 � r2k � 1. Also we have rk � −1 in Z/pZ, so that for i � k, we have x � −x and for
k < i < 2k, r i � −r i−k holds. Now let us only consider the case 0 < i < k, where we have
the following equation:

xr i ≡ (xk−1 rk−1+i + · · · + x0 r i) mod p

≡
j�k−1∑

j�0
x j r j+i mod p ≡

h�k−1+i∑
h�i

xh−i rh mod p

≡ (
h�k−1∑

h�i
xh−irh −

h�k−1+i∑
h�k

xh−i rh−k) mod p

We see that for all 0 ≤ i ≤ 2k, the product x · r i is reduced to a shift and a subtraction. We
call this process cyclic shift.

http://www.bpaslib.org/
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The C implementation can be found in the BPAS library [43], we refer to this function as
MulPowR in this paper. Our main motivation for using generalized Fermat primes is that,
thanks to cyclic shifts, multiplications of elements of Z/pZ by a power of r are computa-
tionally cheap; this o�ers the opportunity to reduce the average time spent in multiplication
operations during the execution of FFT algorithm over such �nite �elds. Multiplication be-
tween two arbitrary elements in Z/pZ can be very complicated and expensive, our previous
work [1] gave a theoretical algorithm of computing the product x y ∈ Z/pZ using polyno-
mial multiplication (See Algorithm 3 in [1]). In the following section, we will discuss the
multiplication between arbitrary elements in more detail, and explain the C implementation.

3.3 Optimizingmultiplication in generalized Fermat prime
�elds

In this section, we discuss how we can e�ciently multiply two arbitrary elements in Z/pZ
(when p is a generalized Fermat prime) using FFT. In Section 3.3.1, we outline an algorithm
based on polynomial multiplication via FFT. In Section 3.3.2 we present an implementation
of the FFT-based multiplication, then, proceed by explaining each sub-routine.

3.3.1 Algorithms

For a generalized Fermat prime p, our approach follows the concepts from Section 3.2, which
treats any two elements x and y of Z/pZ as polynomials fx and fy , then, uses polynomial
multiplication algorithms to obtain the product x y. In practice, there are more details to be
considered in order to reach high-performance. For instance, how do we e�ciently convert
a positive integer in the range (0, r3) into radix-r representation.

Consider u � x y mod p with x , y , u ∈ Z/pZ. We use the polynomial representation of the
elements in the �eld, that is, fx(R) � xk−1 Rk−1 + · · · + x1 R + x0 and fy(R) � yk−1 Rk−1 +
· · · + y1 R + y0. The �rst step is to multiply the two polynomials fx and fy . Computing
fu(R) � fx(R) · fy(R) mod (Rk + 1) can be interpreted as a negacyclic convolution. A cyclic
convolution computes f (x) · g(x) mod (xn − 1) for two polynomials f and g with degree
less than n. Fast algorithms for computing cyclic convolutions via discrete Fourier transform
(DFT) are presented, for instance, in [44]. Similar approaches can be used for computing
negacyclic convolutions.

Let q be a prime, ω be an n-th primitive root of unity in Z/qZ, and θ be a 2n-th primitive
root of unity in Z/qZ. Also, we have two polynomials f (x) and g(x)with degree less than n,
we use ®a and ®b to represent the coe�cient vector of the f and g. The negacyclic convolution
of f and g can be computed as follows:

®A′ · InverseDFT(DFT( ®A · ®a) · DFT( ®A · ®b)) (3.1)
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where ®A � (1, θ, . . . , θn−1) and ®A′ � (1, θ−1, . . . , θ1−n). All the dots between vectors are
point-wise multiplications. The InverseDFT and DFTs are all computed at k points. In our
implementation, we use unrolled DFTs (similar to the base-case DFTs given in Section 3.4.3
but relying on prime �eld arithmetic for a single machine word).

Notice that for fx and fy inZ/pZ, the size of each coe�cient must be at most 63 bits wide. This
implies that when we compute fu(R) � fx(R)· fy(R) mod (Rk+1), the size of the coe�cients
of fu will be at most log2 k + (2 × 63) � log2 k + 126, which is more than one machine word.
We overcome this situation by means of a scheme based on the Chinese Remainder Theorem
(CRT).

For k small enough, we use two machine word size primes p1 and p2 satisfying the relation of
R ≤ p1 p2−1

2 where R � k r2 is greater or equal than each of |u0 |, . . . , |uk−1 |. Let m1 and m2
be two integers such that p1 m1+ p2 m2 � 1. Then, each coe�cient ui of fu can be computed
using the Chinese Remaindering Theorem.

Now each coe�cient ui of fu is the combination of k terms, so the absolute value of each ui
is bounded over by k · r2 which implies that it needs at most blog2 kr2c + 1bits to be encoded.
Since k is usually between 4 to 256, a radix r representation of ui of length 3 is su�cient to
encode ui . Hence, we denote by [ci , hi , li] the 3 integers uniquely given by ui � cir2+hir+li ,
where 0 ≤ hi , li < r and ci ∈ [−(k − 1), k].
Then, we can rewrite:

fu(R) � fx(R) · fy(R) mod (Rk
+ 1) �

k−1∑
i�0

(ci R2+i
+ hi R1+i

+ li Ri).

Now, we have all the coe�cients of fu in the form of [l , h , c]. Rearranging the k [l , h , c]
vectors gives us three vectors ®l � [l0, . . . , lk−1], ®h � [h0, . . . , hk−1] and ®c � [c0, . . . , ck−1].

Finally, we compute ®l + ®h.r + ®c.r2 to get the �nal result of x y ∈ Z/pZ. We refer to this
approach of multiplying two arbitrary elements in Z/pZ as the FFT-based multiplication in
the generalized Fermat prime �eld. The complete solution is presented in Algorithm 4.

3.3.2 Implementation in C

In this section, we describe our implementation of the FFT-based multiplication for two arbi-
trary elements of Z/pZ. We follow the ideas of Algorithm 4 and take care of implementation
details.

Note that Algorithm 4 heavily relies on single-precision modular multiplications, especially
in the convolution step. To maximize practical performance, we use Montgomery’s tricks
from [45] for performing operations in Z/pZ, in particular multiplication. We use the im-
proved Montgomery multiplication (similar to an algorithm from [46]) which we have im-
plemented using inline assembly in C. The code can be found in the BPAS library.
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Algorithm 4 FFT-based multiplication for two arbitrary elements in Z/pZ.
1: input:

- two vectors ®x and ®y representing the two elements x and y in Z/pZ,
- two number r and k such that p � rk + 1 is a generalized Fermat number.

2: output:
- a vector ®u representing the result of x · y ∈ Z/pZ.

3: constant values:
- two machine word size primes p1 and p2,
- two numbers m1 and m2 such that p1 m1 + p2 m2 � 1 holds.

4: procedure FFT-basedMultiplication(®x , ®y , r, k)
5: ®z1 :� NegacyclicConvolution(®x , ®y , p1, k)
6: ®z2 :� NegacyclicConvolution(®x , ®y , p2, k)
7: for 0 ≤ i < k do
8: [s0 i , s1 i] :� CRT(p1, p2,m1,m2, z1 i , z2 i)
9: [li , hi , ci] :� LHC(s0 i , s1 i , r)

10: end for
11: ®c :� MulPowR(®c , 2, k , r)
12: ®h :� MulPowR(®h , 1, k , r)
13: ®u :� BigPrimeFieldAddition(®l , ®h , k , r)
14: ®u :� BigPrimeFieldAddition(®u , ®c , k , r)
15: return ®u
16: end procedure

Note that in Algorithm 4, both the convolution and CRT steps require a large number of
modular multiplication operations. With that in mind, before performing either of the con-
volutions, we convert the two vectors ®x and ®y into Montgomery representation, once for p1
and once for p2. After that, we compute the negacyclic convolutions. Once the convolution
is carried out, we need to retrieve the result from the Montgomery representation. This step
is performed as part of the CRT computation:

a′2 � (a2 m1) mod p2,

a′1 � (a1 m2) mod p1.

In the next step, we compute the second part of the CRT algorithm:

a′2 p1 + a′1 p2

Note that here we need to perform two 64-bit multiplications (thus using two 128-bit num-
bers), then, add the results via 128-bit arithmetic. Once again for the sake of e�ciency, we
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turn to inline assembly in C (the implementation code can be found in theBPAS Library [43]).
Finally, for ui (0 ≤ i < k) as a coe�cient of fu � fx · fy mod (Rk + 1) ∈ Z, the result is
stored as a pair of 64-bit numbers [s0, s1] so that we have ui � s1 264 + s0.

At this point, as we discussed in Section 3.3.1, we need to convert the coe�cients of fu into
radix-based representation (l , h , c). Provided that the following relations are satis�ed:

s0 � q0 r + m0 with q0,m0 < r, (3.2)
s1 � q1 r + m1 with q1,m1 < r, (3.3)
264 � q2 r + m2 with q2,m2 < r, (3.4)

we proceed by computing the triple [l′, h′, c′] as follows:

[l′, h′, c′] � (q0 r + m0) + (q1 r + m1) (q2 r + m2)
� q1 q2 r2 + (m1 q2 + m2 q1 + q0) r + (m0 + m1 m2)
� c′ r2 + h′ r + l′

Notice that the triple [l′, h′, c′] is still not the �nal result since either of h′ or l′ can be greater
than r. For that matter, we need to compute the quotient and the remainder of h′ (resp. l′) by
r. As the value of r remains constant during the whole computation, we use an adaptation
of Barret reduction [47] using 128-bit arithmetic for computing the division by r (for more
details, see function div_by_const_R_ptr in [43]). Then, we have

l′ � h1.r + l1 and h′ � h2.r + l2

The �nal result is computed by the following additions:

l + h.r + c.r2 � [l1, h1, 0] + [l2, h2, 0].r + [0, 0, c′]

To this end, we have explained the full implementation of the FFT-based multiplication for
multiplying two arbitrary elements in Z/pZ. In Section 3.5, we present experimental results
for comparing our implementation against that of the GMP library [9].

3.4 A generic implementation of FFT over prime �elds

In Section 3.4.1, we �rst review the tensor algebra formulation of FFT, following the presen-
tation of [48]. In Section 3.4.2, we explain how one can use the recursive formulation of the
six-step DFT to derive an iterative algorithm in which all DFT computations are performed
via a �xed size base-case. In the context of Generalized Fermat prime �elds, this reduction
allows us to take advantage of the “cheap” multiplication by powers of the radix r introduced
in Section 3.2. Finally, in Section 3.4.3, we discuss the implementation of e�cient routines for
computing the base-case DFTK .
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3.4.1 The tensor algebra formulation of FFT

In this section, we review the tensor formulation of FFT. Recall that over a commutative ring
R, an n-point DFTn is a linear map from Rn to Rn . For N � JK, we use the six-step FFT
factorization presented in [48]:

DFTN � LN
K (IJ ⊗ DFTK)LN

J DK, J (IK ⊗ DFTJ) LN
K with N � J K (3.5)

De�nition 2 The stride permutation LK J
K permutes an input vector ®x of length K J as follows,

with 0 ≤ i < K and 0 ≤ j < J:

®x[i J + j] 7→ ®x[ jK + i] (3.6)

For an input vector ®x of length K J, if we look at the vector as a row-major J × K matrix M,
then, the stride permutation LK J

K is equivalent to performing a transposition on M:

LK J
K (MJ×K) � (MJ×K)T (3.7)

For example, let ®x8 � [0, 1, 2, 3, 4, 5, 6, 7], we compute L2×4
2 (®x). We can rearrange ®x as a

row-major 4 × 2 matrix M, then, perform a transpose:

MT
4×2 �


0 1
2 3
4 5
6 7


T

�

[
0 2 4 6
1 3 5 7

]
We retrieve the result by reading the consequent rows of M. Therefore, we have L2×4

2 (®x) �
[0, 2, 4, 6, 1, 3, 5, 7].

De�nition 3 The twiddle factor DK, J is a matrix of the powers of ω:

DK, J �

K−1⊕
j�0

dia g (1, ω j
i , . . . , ω

j(J−1)
i ) (3.8)

3.4.2 The BPAS implementation of the FFT

The dominant cost during computation of FFT over Z/pZ is the time spent in the multipli-
cation by twiddle factors (powers of root of unity). Even though we can compute all the
twiddle factor multiplications with Algorithm 4, however, inspired by the ideas discussed in
Fürer’s paper [21], our goal is to e�ciently compute FFT on a vector of size N � Ke through
base-case DFTK’s. We face three main challenges. First, we need an algorithm to reduce the
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computation of DFTN to base-case DFTK’s. Second, we need an e�cient implementation of
the base-case DFTK which relies on cheap multiplications by K-th primitive roof of unity (as
it is explained in Section 3.2). Finally, we need to have an FFT implementation which can
be parallelized on a multi-core CPU, therefore the choice of the FFT algorithm is critical to
achieve high performance.

In the BPAS library, and with respect to the above challenges, we decided to implement DFT
over Z/pZ based on the six-step FFT factorization of [48] (see Equation (3.5) in Section 3.4.1).
The six-step FFT factorization provides an easy solution to the �rst challenge: we simply
unroll Equation (3.5) until all DFT computations are performed through a sequence of DFTK’s.
The process of reduction to the base-case is as follows. For computing the product IK ⊗DFTJ ,
we can further expand it until we reach the base-case DFTK . The derived solution is presented
in Algorithm 5.

Regarding the parallelization, Algorithm 5 is iterative and it has no recursive calls, it only
includes a number of nested for-loops. This makes the whole implementation suitable for a
parallel implementation on a multi-core CPU. In fact, the inner for-loop nests at Lines L5, L10,
L16, L21, L25 can be executed in parallel. On that basis, we have parallelized our implemen-
tations of FFT over Z/pZ using Intel CilkPlus. Experimental results for comparing
parallel and serial implementations are reported in Section 3.5.

3.4.3 E�cient implementation of DFTK

Once again, we bene�t from reduction to a base-case. This time, for computing DFTK , we
reduce the whole computation to a sequence of base-case DFT2’s which are de�ned in the
following way:

DFT2(x0, x1) � (x0 + x1, x0 − x1) (3.9)

Then, for K � 2n , we recursively apply the following factorization until all DFT computations
are in DFT2:

DFT2n � L2n

2 (I2n−1 ⊗ DFT2) L2n

2n−1 D2,2n−1 (I2 ⊗ DFT2n−1) L2n

2 (3.10)

Now, let us consider the example of base-case DFT8 in Z/pZwhen p � r4+ 1. Let us assume
that ω0 is an 8-th primitive root of unity (thus ω0

8 � 1). Also, let ω1 � ω0
2, thus a 4-th

primitive root of unity (then, ω1
4 � ω0

8 � 1).

DFT8(ω0) � L8
2(I4 ⊗ DFT2) L8

4 D2,4 (I2 ⊗ DFT4) L8
2 (3.11)

DFT4(ω1) � L4
2 (I2 ⊗ DFT2) L4

2 D2,2 (I2 ⊗ DFT2) L4
2. (3.12)



3.4 A generic implementation of FFT over prime fields 35

Algorithm 5 Computing DFT on Ke points in Z/pZ.
1: input:

- size of the base-case K (8, 16, 32, 64, 128, or 256),
- a positive integer e ,
- a vector ®x of size Ke ,
- ω which is a Ke-th primitive root of unity in Z/pZ.

2: output:
- the �nal result stored in ®x

3: procedure DFT_general(®x , K, e , ω)
4: for 0 ≤ i < e − 1 do
5: for 0 ≤ j < K i do . Can be replaced with Parallel-For.
6: stride_permutation(x jKe−i , K, Ke−i−1) . Step 1
7: end for
8: end for
9: ωa :� ωKe−1

10: for 0 ≤ j < Ke−1 do . Can be replaced with Parallel-For.
11: idx :� jK
12: DFT_K(xidx, ωa) . Step 2
13: end for
14: for e − 2 ≥ i ≥ 0 do
15: ωi :� ωK i

16: for 0 ≤ j < K i do . Can be replaced with Parallel-For.
17: idx :� j Ke−i

18: twiddle(xidx, Ke−i−1, K, ωi) . Step 3
19: stride_permutation(xidx, Ke−i−1, K) . Step 4
20: end for
21: for 0 ≤ j < Ke−1 do . Can be replaced with Parallel-For.
22: idx :� jK
23: DFT_K(xidx, ωa) . Step 5
24: end for
25: for 0 ≤ j < K i do . Can be replaced with Parallel-For.
26: idx :� jKe−i

27: stride_permutation(xidx, K, Ke−i−1) . Step 6
28: end for
29: end for
30: end procedure

Substituting Equation (3.12) in Equation (3.11), we have:

DFT8(ω0) �L8
2 (I4 ⊗ DFT2) L8

4 D2,4 (I2 ⊗ L4
2)(I4 ⊗ DFT2) (3.13)

(I2 ⊗ L4
2)(I2 ⊗ D2,2)(I4 ⊗ DFT2)(I2 ⊗ L4

2)(L8
2).
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The unrolled Equation (3.13) follows from a sequence of basic operations, which helps us in
the following ways. First, we avoid performing the permutation and actually moving data
around. Instead, we precompute the position of elements after each permutation and hard-
code those values in the algorithm for computing the base-case. Also, we reduce the number
of multiplications in the base-case. Moreover, each multiplication in the base-case can be
reduced to a cyclic shift (as explained in Section 3.2).

Avoiding stride permutations in DFTK

In our example for DFT8, there are 4 permutation steps in Equation (3.13). We begin by the two
right-most ones, (I2 ⊗ L4

2)(L8
2). Rather than moving the data, we precompute the position of

permuted elements. Let ®M � (0, 1, 2, 3, 4, 5, 6, 7) be the vector containing the initial position
of the elements of ®x. Then,

®M1 � L8
2
®M � (0, 2, 4, 6, 1, 3, 5, 7) (3.14)

®M2 � (I2 ⊗ L4
2) ®M1 � (0, 4, 2, 6)(1, 5, 3, 7) (3.15)

Moving from right to left in Equation (3.13), when we reach I4 ⊗ DFT2 (the third statement
in Equation (3.13)), we apply four DFT2’s on elements of ®x, while we retrieve the order of
elements as recorded in M2:

DFT2(0, 4) → DFT2(2, 6) → DFT2(1, 5) → DFT2(3, 7) (3.16)

Following this trend, we reach L8
4 and L8

2 on the left-most side of Equation (3.13):

®M3 � (L8
4) ®M2 � (0, 1, 4, 5, 2, 3, 6, 7) (3.17)

®M4 � (L8
2) ®M3 � (0, 4, 2, 6, 1, 5, 3, 7) (3.18)

At the very end, we need to swap some elements of ®x in order to correct their position in the
result vector. That means the position of elements in the result vector must be updated from
what they are in ®M4 to the values in Mout in the following way:

®M4 � (0, 4, 2, 6, 1, 5, 3, 7)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

®Mout � (0, 1, 2, 3, 4, 5, 6, 7)

Here, rather than permuting the whole vector, we only need to swap the elements that are
shown in the same color. For case of DFT8, we end up swapping only 4 out of 8 elements.



3.5 Experimentation 37

Twiddle multiplications in the DFTK

Remember Equation (3.8):

DK, J �

K−1⊕
j�0

dia g (1, ω j
i , . . . , ω

j(J−1)
i )

Then, we have the following twiddle matrices as part of DFT8:

D2,2 � (1, 1, ω0
1 , ω

1
1) (3.19)

D2,4 � (1, 1, 1, 1, ω0
0 , ω

1
0 , ω

2
0 , ω

3
0) (3.20)

As we are computing over Z/pZ where the prime is p � r4 + 1, then, the radix r is the 8-th
root of unity, therefore, can be used for computation of DFT8. Let ω0 � r and ω1 � r2, then,
the twiddle matrices are updated as follows:

D2,4 �(1, 1, 1, 1, 1, r, r2, r3) (3.21)
D2,2 �(1, 1, 1, r2) (3.22)

We see that more than half of the multiplications in the DFT8 are by 1 and do not require any
actual computation.

More importantly, the multiplications by the powers of the radix are done by cyclic shift from
Section 3.2. In a similar way, this argument is valid for any DFTK as long as we are computing
modulo a generalized Fermat prime of the form p � rk + 1.

At the end, putting all the optimizations together, and following Equation (3.13) from right
to left, we get an unrolled algorithm presented in Algorithm 6 for computing DFT8. The
algorithm computes the DFT of a vector of size 8 over a generalized Fermat prime in the
form of p � r4 + 1, note that r is an 8-th primitive root of unity of p. Following the above
process, we have implemented base-cases for K equal to 8, 16, 32, 64, 128, and 256 in theBPAS
library. We believe that the currently implemented base-case sizes are large enough for real
world applications. Thus, we have skipped prime sizes larger than 128 machine-words in our
current implementation.

3.5 Experimentation

In this section, �rst, we brie�y describe the setup used in our experimentation. Then, in
Section 3.5.2, we present the comparison of the two implementations of the multiplication in
Z/pZ introduced in Section 3.3. Section 3.5.3 reports on the results for computing FFT over
the big prime �elds with the BPAS library. Finally, in Section 3.5.4, we analyze speedup that
we gain for parallelizing each approach. All the experimental results have been veri�ed using
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Algorithm 6 Unrolled base-case DFT8 over Z/pZ for p � r4 + 1.
1: input:

- a vector ®x of 8 elements of Z/pZ,
- the radix r from p � r4 + 1.

2: output:
- the �nal result stored in ®x.

3: procedure DFT8(®x,r)
4: DFT2(x0, x4); DFT2(x2, x6); . DFT on permuted indexes.
5: DFT2(x1, x5); DFT2(x3, x7); . DFT on permuted indexes.
6: x6 := x6 r2; . Twiddle multiplication x6 r2.
7: x7 := x7 r2; . Twiddle multiplication x7 r2.
8: DFT2(x0, x2); DFT2(x4, x6); . DFT on permuted indexes.
9: DFT2(x1, x3); DFT2(x5, x7); . DFT on permuted indexes.

10: x5 := x5 r1; . Twiddle multiplication x5 r1.
11: x3 := x3 r2; . Twiddle multiplication x3 r2.
12: x7 := x7 r3; . Twiddle multiplication x7 r3.
13: DFT2(x0, x1); DFT2(x4, x5); . DFT on permuted indexes.
14: DFT2(x2, x3); DFT2(x6, x7); . DFT on permuted indexes.
15: Swap(x1, x4); Swap(x3, x6); . Final permutation.
16: return ®x;
17: end procedure

equivalent code written in GMP [9].

3.5.1 Experimental setup

Table 3.1 provides the set of prime numbers we use for di�erent base-cases. The k is between
4 and 128 (i.e. up to 128 machine-words).

We have used two node con�gurations for our benchmarking purposes. The �rst con�gura-
tion which we refer to as Intel-i7-7700K, has an Intel-i7-7700K 4-core processor (with
8 threads when hyper-threading is enabled), clocking at 4.50 GHz, and equipped with 16 GB
of memory (clocking at 2133 MHz). The second con�guration which we refer to as Xeon-
X5650 has an Intel Xeon-X5650 processor with 6 physical cores (and 12 threads when hyper-
threading is enabled) clocking at 2.66 GHz, and is equipped with 48 GB of memory (clocking
at 1133 MHz).
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Table 3.1: The set of big primes of di�erent sizes which are used for experimentations.

prime K(� 2k) k r

P4 8 4 259 + 258 + 211

P8 16 8 259 + 257 + 239

P16 32 16 258 + 255 + 245

P32 64 32 258 + 255 + 217

P64 128 64 257 + 256 + 211

P128 256 128 257 + 252 + 220

3.5.2 Multiplication in generalized Fermat prime �elds

As discussed in Section 3.3, we provide an algorithm for multiplying two arbitrary elements
of the generalized Fermat prime �eld Z/pZ (referred to as GFPF) which relies on negacyclic
convolution using DFTs over small prime �elds. Our goal is to compare the running-time
of our approach with that of the integer arithmetic provided by GMP [9]. To this end, we
provide the same input data to both multiplication functions (randomly generated data, but
the same data passed to all experiments), the multiplication is carried out, and at the end, the
results are veri�ed.

Table 3.2 shows the time (in milliseconds) spent in computation of 106 multiplications using
each of the two implementations (the number 106 is chosen as an input size which is large
enough to reduce the errors in time measurement). Also, Table 3.2 shows the running-time
ratio of GFPF versus the GMP multiplications. The experimentation has been conducted on
Intel-i7-7700K. We observe that the GFPF implementation is slower than GMP multi-
plication, however, the GFPF multiplication becomes faster as the value of k increases.

Table 3.2: The running-time of computing 106 modular multiplications in Z/pZ for P8, P16,
P32, and P64 (measured on Intel-i7-7700K).

prime k GFPF GMP Ratio ( tGFPF
tGMP

)

P8 8 645 (ms) 171(ms) 3.77x

P16 16 1318 (ms) 417 (ms) 3.16x

P32 32 2852 (ms) 1179 (ms) 2.41x

P64 64 6101 (ms) 3452 (ms) 1.76x

Recall that the GFPF multiplication has four steps (see Section 3.3.2):

I. negacyclic convolution (includes converting the vector into Montgomery representa-
tion),

II. Chinese remainder algorithm (includes converting the vector out from Montgomery
representation),
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III. LHC algorithm (fast division of a three machine-word number by radix r), and
IV. cyclic shift, addition, and normalization (carry-handling).

Table 3.3 shows the percentage of time spent in each step of the GFPF multiplication during
multiplication of 106 arbitrary elements of Z/pZ, for primes P8, P16, P32, and P64, collected
on Intel-i7-7700K. It also presents the actual running-time (shown in milliseconds);
clearly, computing the convolution is the dominant cost.

Table 3.3: Time (in milliseconds) and percentage (%) of the total time spent in di�erent steps
of computing 106 GFPF multiplications of arbitrary elements in Z/pZ for primes P8, P16, P32,
and P64 (measured on Intel-i7-7700K).

prime k
Convolution CRT LHC Normalization

Time % Time % Time % Time %

P8 8 323 45 150 21 208 29 35 5

P16 16 851 52 288 18 425 26 64 4

P32 32 2083 57 563 15 847 23 177 5

P64 64 4751 61 1115 14 1497 19 434 6

3.5.3 FFT over big prime �elds

In this section, we provide experimental data for computing FFTs over big prime �elds. As
we have explained in Section 3.4, our FFT implementations which compute DFT on a vector
of size N � Ke over Z/pZ (with p � rk + 1) are based on Algorithm 5. We compare the
running-time of our GFPF implementation versus the GMP implementation, both executed in
serial. Once more, we compare the running-time of the two implementations, this time both
executed in parallel.

Table 3.4 provides the running-time and running-time ratio for our generalized Fermat prime
�elds (GFPF) based implementation versus the GMP implementation of computing FFT of size
N � Ke over Z/pZ (for primes P4, P8, P16, P32, P64, and P128) in sequential and parallel mode.
We skip the case of N � K3 for P128 (K � 256) as it is too large to �t in the memory of either
of our compute nodes. All measurements are completed on Intel-i7-7700K. Table 3.5
provides similar comparisons measured on Xeon-X5650. In the case of Xeon-X5650,
we observe that with more cores and threads, our parallel GFPF implementation gains more
speedup compared to the parallel GMP implementation. For both the serial and parallel cases,
we �nd our implementation using GFPF multiplication is faster than GMP in most cases.
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Table 3.4: The running-time (in milliseconds) and ratio (tGFPF/tGMP) of serial and parallel
computation of FFT on vectors of size N � Ke over Z/pZ for P4, P8, P16, P32, P64, and P128
(measured on Intel-i7-7700K).

prime k K e
Serial Parallel

GFPF GMP tGFPF
tGMP

GFPF GMP tGFPF
tGMP

P4 4 8 2 0.019 0.030 0.63x 0.057 0.118 0.48x
P4 4 8 3 0.314 0.363 0.86x 0.215 0.276 0.77x
P8 8 16 2 0.181 0.202 0.89x 0.117 0.143 0.81x
P8 8 16 3 5.771 5.486 1.05x 1.603 2.247 0.71x
P16 16 32 2 1.644 1.730 0.95x 0.513 0.693 0.74x
P16 16 32 3 103.423 104.620 0.98x 24.052 35.017 0.68x
P32 32 64 2 14.815 20.341 0.72x 3.507 5.411 0.64x
P32 32 64 3 1922.373 2431.867 0.79x 462.746 702.163 0.65x
P64 64 128 2 140.995 278.188 0.50x 33.507 69.879 0.47x
P128 128 256 2 580.961 3745.353 0.15x 154.064 905.799 0.17x

Table 3.5: The running-time (in miliseconds) and ratio (tGFPF/tGMP) of serial and parallel com-
putation of FFT on vectors of size N � Ke over Z/pZ for P4, P8, P16, P32, P64, and P128
(measured on Xeon-X5650).

prime k K e
Serial Parallel

GFPF GMP tGFPF
tGMP

GFPF GMP tGFPF
tGMP

P4 4 8 2 0.051 0.071 0.71x 0.155 0.114 1.35x
P4 4 8 3 0.843 0.917 0.91x 0.452 0.577 0.78x
P8 8 16 2 0.472 0.546 0.86x 0.217 0.320 0.67x
P8 8 16 3 16.661 15.231 1.09x 2.837 4.806 0.59x
P16 16 32 2 4.444 5.085 0.87x 0.877 1.371 0.63x
P16 16 32 3 284.080 297.904 0.95x 41.012 66.635 0.61x
P32 32 64 2 39.809 64.307 0.61x 5.701 11.640 0.48x
P32 32 64 3 4674.079 6501.669 0.71x 696.311 1289.061 0.54x
P64 64 128 2 376.450 909.041 0.41x 53.578 140.610 0.38x
P128 128 256 2 1395.310 13371.369 0.10x 240.362 1811.282 0.13x
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3.5.4 Performance analysis of FFT implementations

In this section we compare the parallel speedup factors for each of GFPF and GMP approaches
compared to their corresponding serial implementations. From the previous section and Ta-
ble 3.2, we know that the GFPF multiplication of two arbitrary elements in Z/pZ is slower
than the GMP implementation. At the same time, Table 3.4 and 3.5 indicate that computing
FFT on large vectors over Z/pZ using GFPF multiplication turns out to be faster than GMP
arithmetic in most cases, for both serial and parallel modes. This interesting result can be
explained as follows.

When we compute DFT using generalized Fermat prime �eld arithmetic (including GFPF mul-
tiplication), the majority of the multiplications are performed in the base-cases, which are
carried out in linear time through cyclic shift (a sequence of data movement, subtraction,
and carry handling; see Section 3.2). Meanwhile, in the case of GMP arithmetic, all of the
multiplications are done using the same function calls, with no consideration for the cheap
multiplications in the base-case DFTK .

Figure 3.1 presents the ratio of time spent in one modular multiplication operation in FFT over
Z/pZ on vectors of size N � Ke between the GFPF implementation and the GMP arithmetic.
We see that for the GFPF implementation the average time spent in one modular multiplica-
tion is much lower than the time spent in the same operation using GMP arithmetic.
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Figure 3.1: Ratio (t/tgmp) of average time spent in one multiplication operation measured
during computation of FFT over Z/pZ on vectors of size N � Ke .

This result agrees with our estimation of increased performance due to Fürer’s trick [21]. As
it is demonstrated, by using cyclic shift for performing cheap multiplications in the base-case,
we can lower the average time spent in multiplications, resulting in faster computation of the
base-case DFTK’s, and consequently, speed up the computation of the whole FFT over Z/pZ.

Now, we take a closer look at the steps involved in the DFT computation. Table 3.6 pro-
vides the running-time data for every step of computing a DFT of size N � K3 (K � 64)
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over Z/pZ for prime P32. The timings are measured for both implementations on Intel-
i7-7700K. As we observe, for both implementations in the serial mode, the time spent in
precomputation and stride permutation is negligible compared to the time spent in twiddle
multiplications and the base-case DFTK’s. Also, parallelization has little impact on precom-
putation and stride permutation. In contrast, parallelization signi�cantly improves the time
spent in twiddle multiplications and the base-case DFTK’s for both approaches.

Finally, Table 3.7 comapres the parallel speedup ratios for each implemenentation on both
Intel-i7-7700K and Xeon-X5650. This table indicates that the parallelization of
the GFPF implementation appears to be slightly more successful than the parallelization of
the GMP implementation. This di�erence in the performance can be attributed to, by our
measurements, the sharp management of computing resources (i.e. specialized arithmetic and
minimal usage of memory). We have repeated the same benchmarks with hyper-threading
disabled; this is also shown in Table 3.7. With hyper-threading disabled the speedup drops
slightly, nevertheless, both implementations still gain nearly linear parellel speedup.

Table 3.6: Time spent (milliseconds) in di�erent steps of serial and parallel computation of
DFT of size N � K3 over Z/pZ, for prime P32 (K � 2k � 64) measured on Intel-i7-
7700K.

Mode Variant Precomputation Permutation DFTK Twiddle
GFPF 14 (ms) 72 (ms) 444 (ms) 1406 (ms)

Serial
GMP 6 (ms) 177 (ms) 1229 (ms) 1026 (ms)
GFPF 14 (ms) 51 (ms) 82 (ms) 330 (ms)

Parallel
GMP 6 (ms) 181 (ms) 284 (ms) 237 (ms)

Table 3.7: Ratio (tserial/tparalle l) for serial vs. parallel execution of each implementation for
N � Ke (K � 2k, e � 3) measured on both Intel-i7-7700K and Xeon-X5650 with
and without hyper-threading enabled.

k
Intel-i7-7700K Xeon-X5650

+ Hyper-threading - Hyper-threading + Hyper-threading - Hyper-threading
GFPF GMP GFPF GMP GFPF GMP GFPF GMP

4 1.37x 1.25x 1.57x 1.31x 1.87x 1.59x 2.35x 1.95x
8 3.64x 2.44x 3.36x 2.34x 5.52x 3.17x 4.99x 3.40x
16 4.31x 2.96x 3.77x 2.69x 6.93x 4.47x 5.66x 4.16x
32 4.15x 3.48x 3.67x 3.07x 6.71x 5.04x 5.65x 4.47x
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3.6 Conclusions and future work

We have presented an implementation of Fast Fourier Transforms over generalized Fermat
prime �elds on multi-threaded processors. Our parallel implementations using both special-
ized arithmetic and integer arithmetic from the GMP library achieve nearly linear parallel
speedup. We noticed that the parallelization of our specialized implementation is slightly
more successful than our GMP implementation. We attribute this higher performance to re-
duced number of arithmetic instructions due to using specialized arithmetic, minimal memory
usage, and unrolling base-case DFT’s and hard coding the constants.

Our results prove that developing specialized arithmetic (e.g. Montgomery multiplication,
Barret reduction, cyclic shift introduced in Section 3.2 and using inline assembly) can be ben-
e�cial. Doing so leads to reduced overhead compared to a more generic implementation such
as large integer arithmetic functions available in GMP, or other libraries on top of GMP. Un-
rolling the base-case DFT’s improves the performance for two main reasons. First, by re-
moving the majority of permutations (all except the last swap), it minimizes data movement.
Second, compared to a naive implementation, a hard coded base-case reduces the number of
multiplications by a power of radix to less than half (by simply avoiding the multiplications
by 1 in the �rst place). Designing our implementation based on the iterative six step FFT
algorithm was crucial; it allowed for more a �nely scheduled parallelization on multi-core
CPUs which obtains good speedup.

As part of our future work we should extend our implementation to arbitrary vector sizes,
that is, the cases where the size N is not in the form Ke . Also, we must consider how to
apply our approach to very large input sizes, for example, when the input vectors are too
large to �t into main memory. Finally, we need to address another bottleneck of the current
implementation, that is, the arbitrary multiplication in the generalized Fermat prime �elds.
We need a better solution for the multiplication between two polynomials with 64-bit integer
coe�cients; indeed, such a multiplication can result in coe�ceints up to 192 bits, requiring
multi-precision arithmetic.



4 KLARAPTOR:ATool forDynamically
Finding Optimal Kernel Launch Pa-
rameters Targeting CUDA Programs

4.1 Introduction

Programming for high-performance parallel computing is a notoriously di�cult task. Pro-
grammers must be conscious of many factors impacting performance including scheduling,
synchronization, and data locality. Of course, program code itself impacts the program’s per-
formance, however, there are still further parameters which are independent from the code
and greatly in�uence performance. For parallel programs three types of parameters in�uence
performance: (i) data parameters, such as input data and its size; (ii) hardware parameters,
such as cache capacity and number of available registers; and (iii) program parameters, such
as granularity of tasks and the quantities that characterize how tasks are mapped to proces-
sors (e.g. dimension sizes of a thread block for a CUDA kernel).

Data and hardware parameters are independent from program parameters and are determined
by the needs of the user and available hardware resources. Program parameters, however, are
intimately related to data and hardware parameters. The choice of program parameters can
largely in�uence the performance of a parallel program, resulting in orders of magnitude
di�erence in timings (see Section 4.7). Therefore, it is crucial to determine values of program
parameters that yield the best program performance for a given set of hardware and data
parameter values.

In the CUDA programming model the kernel launch parameters, and thus the size and shape
of thread blocks, greatly impact performance. This should be obvious considering that the
memory accesses pattern of threads in a thread block can depend on the block’s dimension
sizes. The same could be said about multithreaded programs on CPU where parallel per-
formance depends on task granularity and number of threads. Our general technique (see
Section 4.4) is applied on top of some performance model to estimate program parameters
which optimize performance. This could be applied to parallel programs in general, where
performance models using program parameters exist. However, we dedicate this chapter to
the discussion of GPU programs written in CUDA.

45
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An important consequence of the impact of kernel launch parameters on performance is that
an optimal thread block format (that is, dimension sizes) for one GPU architecture may not be
optimal for another, as illustrated in [49]. This emphasizes not only the impact of hardware
parameters on program parameters, but also the need for performance portability. That is to
say, enabling users to e�ciently execute the same parallel program on di�erent architectures
that belong to the same hardware platform.

Figure 4.1: Comparing kernel execution time (log-scaled) for the thread block con�guration
chosen by KLARAPTOR versus the minimum and maximum times as determined by an ex-
haustive search over all possible con�gurations. Kernels are part of the PolyBench/GPU
benchmark suite and executed on (1) a GTX 1080Ti with a data size of N � 8192 (except
convolution3d with N � 1024), and (2) a GTX 760M with a data size of N � 2048 (except
convolution3d with N � 512 and gemm with N � 1024).

In this chapter, we describe the development of KLARAPTOR (Kernel LAunch parameters RA-
tional Program estimaTOR), a tool for automatically and dynamically determining the values
of CUDA kernel launch parameters which optimize the kernel’s performance, for each kernel
invocation independently. That is to say, based on the actual data and target device of a kernel
invocation. The accuracy of KLARAPTOR’s prediction is illustrated in Figure 4.1 where exe-
cution times are given for each kernel in the the PolyBench/GPU benchmark suite [50] on two
di�erent architectures. For each kernel, execution times are shown for three di�erent thread
block con�gurations: one chosen by KLARAPTOR, one resulting in the minimum time, and
one resulting in the maximum time. The latter two are decided by an exhaustive search. In
most cases, KLARAPTOR’s prediction is very close to optimal; notice that the y-axis is log
scaled. Further experimental results are reported in Section 4.7.

KLARAPTOR applies to CUDA a generic technique, also described herein in Section 4.4, to
statically build a so-called rational program which is then used dynamically at runtime to
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determine optimal program parameters for a given multithreaded program on speci�c data
and hardware parameters. The key principle is based on an observation of most performance
metrics. In most performance prediction models, high-level performance metrics, such as exe-
cution time, memory consumption, and hardware occupancy, can be seen as decision trees or
�owcharts based on low-level performance metrics, such as memory bandwidth and cache miss
rate. These low-level metrics are themselves piece-wise rational functions (PRFs) of program,
data, and hardware parameters. This construction could be applied recursively to obtain a
PRF for the high-level metric. We regard a computer program that computes such a PRF as a
rational program, a technical notion de�ned in Section 4.2.

If one could determine these PRFs, then it would be possible to estimate, for example, the run-
ning time of a program based on its program, data, and hardware parameters. Unfortunately,
exact formulas for low-level metrics are often not known, instead estimated through empiri-
cal measures or assumptions, or collected by pro�ling. This is a key challenge our technique
addresses.

In most cases the values of the data parameters are only given at runtime, making it di�cult
to determine optimal values of the program parameters at an earlier stage. On another hand,
a bad choice of program parameters can have drastic consequences. Hence, it is crucial to be
able to determine the optimal program parameters at runtime without much overhead added
to the program execution. This is precisely the intention of the approach proposed here.

4.1.1 Contributions

The goal of this work is to determine values of program parameters which optimize a mul-
tithreaded program’s performance. Towards that goal, the method by which such values are
found must be receptive to changing data and changing hardware parameters. Our contri-
butions encapsulate this requirement through the dynamic use of a rational program. Our
speci�c contributions include:

(i) a technique for devising a mathematical expression in the form of a rational program
to evaluate a performance metric from a set of program and data parameters;

(ii) KLARAPTOR, a tool implementing the rational program technique to dynamically op-
timize CUDA kernels by choosing optimal launch parameters; and

(iii) an empirical and comprehensive evaluation of our tool on kernels from the Poly-
bench/GPU benchmark suite.

4.1.2 Related works

The Parallel Random Access Machine (PRAM) model [51, 52], including PRAM models tailored
to GPU code analysis such as TMM [53] and MCM [54] analyze the performance of parallel
programs at an abstract level. More detailed GPU performance models are proposed such as
MWP-CWP [55, 56], which estimates the execution time of GPU kernels based on the pro�ling
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information of the kernels.

In the context of improving CUDA program performance, other research groups have used
techniques such as loop transformation [57], auto-tuning [58, 59, 60, 61], dynamic instrumen-
tation [62], or a combination of the latter two [63]. Auto-tuning techniques have achieved
great results in projects such as ATLAS [8], FFTW [6], and SPIRAL [64] in which multiple
kernel versions are generated o�-line and then applied and re�ned on-line once the runtime
parameters are known.

Although much research has been devoted to compiler optimizations for kernel source code
or PTX code, previous works such as [65] and [49] suggest that kernel launch parameters
(i.e. thread block con�gurations) have a large impact on performance and must be considered
as a target for optimization. In [66], the authors present an input-adaptive GPU code opti-
mization framework G-ADAPT, which uses statistical learning to �nd a relation between the
input sizes and the thread block sizes. At linking time, the framework predicts the best block
size for a given input size using the linear model obtained from compile time. This approach
only considers the total size of the thread blocks and not their con�guration. Meanwhile, the
authors of [60] use a linear regression model to predict optimal thread block con�gurations
(that is, dimension sizes and not just the total size). However, they assume kernel execution
time scales linearly with data size. The authors in [67] have also developed a method deter-
mining the best thread block con�guration, but similarly, they assume execution time scales
linearly with data size. In [68], machine learning techniques are used in combination with
auto-tuning to search for optimal con�gurations of OpenCL kernels, but their examples are
limited to stencil computations.

4.1.3 Structure of the chapter

The remainder of this chapter is organized as follows. Section 4.2 formalizes and exempli�es
the notion of rational programs and their relation to piece-wise rational functions and per-
formance prediction. Section 4.3 gives on overview of the KLARAPTOR tool which applies
our technique to CUDA kernels. The general algorithm underlying our tool, that is, building
and using a rational program to predict program performance, is given in Section 4.4. Sec-
tion 4.5 shows our specialization of that algorithm to CUDA programs. Our implementation
is detailed in Section 4.6, while our implementation is evaluated in Section 4.7. Lastly, we
draw conclusions and explore future work in Section 4.8.

4.2 Theoretical foundations

Let P be a multithreaded program to be executed on a targeted multiprocessor. Parame-
ters in�uencing its performance include (i) data parameters, describing size and structure of
the data; (ii) hardware parameters, describing hardware resources and their capabilities; and
(iii) program parameters, characterizing parallel aspects of the program (e.g. how tasks are
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mapped to hardware resources).

By �xing the target architecture, the hardware parameters, say, H � (H1, . . . ,Hh) become
�xed and we can assume that the performance of P depends only on data parameters D �

(D1, . . . ,Dd) and program parameters P �
(
P1, . . . , Pp

)
. Moreover, an optimal choice of P

naturally depends on a speci�c choice of D. For example, in programs targeting GPUs the
parameters D are typically dimension sizes of data structures, like arrays, while P typically
speci�es the formats of thread blocks.

Let E be a high-level performance metric for P that we want to optimize. More precisely,
given the values of the data parameters D, the goal is to �nd values of the program parame-
ters P such that the execution of P optimizes E. Performance prediction models attempt to
estimate E from a combination of P, D, H , and some model- or platform-speci�c low-level
metrics L � (L1, . . . , L`). It is natural to assume that these low-level performance metrics
are themselves combinations of P, D, H . This is an obvious observation from models based
on PRAM such as TMM [53] and MCM [54].

Therefore, we look to obtain values for these low- and high-level metrics given values for
program, and data parameters. To address our goal, we compute a mathematical expression
for each metric, parameterized by data and program parameters, in the format of a rational
program at the compile-time of P. At the runtime of P, given the speci�c values of D and
a choice of P, we can evaluate the rational programs to obtain a value for each metric and
thus E. These values can be used to determine which choice of P optimizes overall program
performance. This method is detailed in Section 4.4. We take this section to de�ne the rational
program itself.

One could view a rational program as simply a computer program evaluating some performance-
predicting model. However, as we will see in the following sections, it is more than that.
Speci�cally, the encoding of some model as a �ow chart whose nodes can then be approx-
imated as a rational function is a powerful idea which can be used to simplify models and
extrapolate results.

4.2.1 Rational programs

Let X1, . . . ,Xn ,Y be pairwise di�erent variables1. Let S be a sequence of three-address code
(TAC [69]) instructions such that the set of the variables

1. that occur in S, and
2. are never assigned a value by an instruction of S

is exactly {X1, . . . ,Xn}.
Consider n � 2. The sequence S1 below satis�es the above property while the sequence S2
does not.

1Variables refer to both its mathematical meaning and programming language concept.
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S1 S1
1: Y := X1 + X2 Y := X1 + X2
2: Z := X1 − X2 X1 := X1 − X2
3: Y := Y × Z Y := Y × X1

Indeed, in S2 the variable X1 is assigned.

De�nition We say that the sequence S is rational if every arithmetic operation used in S
is either an addition, a subtraction, a multiplication, or a comparison of integer numbers
in either �xed or arbitrary precision. We say that the sequence S is a rational program in
X1, . . . ,Xn evaluating Y if the following two conditions hold:

1. S is rational, and
2. after specializing each of X1, . . . ,Xn to some integer value in S, the execution of the

specialized sequence always terminates and the last executed instruction assigns an
integer value to Y.

Consider again n � 2. The sequence S3 and S4 are rational programs in X1,X2 evaluating Y
while the sequences S5 is not. In all examples, we use language constructs if, goto and exit
with their standard meaning, instead of more formal three-address code.

S3 S4 S5
1: Y := X1 + X2 Y := X1 Y := X1 + X2
2: Z := X1 − X2 if Y > 0 goto 4 Z := X1/X2
3: Y := Y × Z Y := −Y Y := Y × Z
4: exit exit exit

Indeed, the sequence S5 cannot be specialized at X2 � 0, due to the division X1/X2.

It is worth noting that the above de�nition can easily be extended to include Euclidean divi-
sion, the integer part operations �oor and ceiling, and arithmetic over rational numbers. For
Euclidean division one can write a rational program evaluating the quotient q of integer a
by b, leaving the remainder r to be simply calculated as a − qb. Then, �oor and ceiling can
be computed via Euclidean division. Rational numbers and their associated arithmetic are
easily implemented using only integer arithmetic. Therefore, by adding these operations to
De�nition 4.2.1, the class of rational programs does not change. We regard rational programs
as such henceforth.

4.2.2 Rational programs as �owcharts

For any sequence S of computer program instructions, one can associate S with a control
�ow graph (CFG). In the CFG of S, the nodes are the basic blocks of S. Recall that a �owchart



4.2 Theoretical foundations 51

is another graphic representation of a sequence of computer program instructions. In fact,
CFGs can be seen as particular �owcharts.

If, in a given �owchart C, every arithmetic operation occurring in every (process or decision)
node is either an addition, subtraction, multiplication, or comparison of integers in either
�xed or arbitrary precision, then C is the �owchart of a rational sequence of computer pro-
gram instructions. Therefore, it is meaningful to depict rational programs using �owcharts,
and vice versa, �owcharts as rational programs. For example, one could consider the met-
ric of theoretical hardware occupancy as de�ned by NVIDIA. The following example details
its de�nition, its depiction as a �owchart, as well as its dependency on program, data, and
hardware parameters.

Example Hardware occupancy, as de�ned in the CUDA programming model, is a measure
of a program’s e�ectiveness in using the Streaming Multiprocessors (SMs) of a GPU. Theoretical
occupancy is calculated from a number of hardware parameters, namely:

- the maximum number Rmax of registers per thread block,
- the maximum number Zmax of shared memory words per thread block,
- the maximum number Tmax of threads per thread block,
- the maximum number Bmax of thread blocks per SM and
- the maximum number Wmax of warps per SM,

as well as low-level kernel-dependent performance metrics, namely:

- the number R of registers used per thread and
- the number Z of shared memory words used per thread block,

and a program parameter, namely the number T of threads per thread block. The occupancy
of a CUDA kernel is de�ned as the ratio between the number of active warps per SM and the
maximum number of warps per SM, namely Wactive/Wmax, where

Wactive ≤ min (bBactiveT/32c ,Wmax) (4.1)

and Bactive is given by the �owchart in Figure 4.2. This �owchart shows how one can derive a
rational program computing Bactive from Rmax, Zmax, Tmax, Bmax, Wmax, R, Z, T. It follows from
formula (4.1) that Wactive can also be computed by a rational program from Rmax, Zmax, Tmax,
Bmax, Wmax, R, Z, T. Finally, the same is true for theoretical occupancy of a CUDA kernel using
Wactive and Wmax.

4.2.3 Piece-wise rational functions in rational programs

We begin with an observation describing the fact that a rational program can be viewed as a
piece-wise rational function 2 .

2Here, rational function is in the sense of algebra, see Section 4.6.4.
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T Bmax ≤ 32Wmax and
R T Bmax ≤ Rmax and

Z Bmax ≤ Zmax?

32Wmax ≤ T Bmax, and
32Wmax R ≤ Rmax and
32Wmax Z ≤ Zmax T?

Rmax ≤ R T Bmax and
Rmax ≤ R 32Wmax and
Rmax Z ≤ R T Zmax?

Zmax ≤ Bmax Z and
Zmax T ≤ 32Wmax Z and

Zmax R T ≤ Z Rmax?

Bactive � Bmax

Bactive � b(32Wmax)/Tc

Bactive � b(Rmax/(R T)c

Bactive � bZmax/Zc

Bactive � 0 (Failure to Launch)

No

No

No

No

Yes

Yes

Yes

Yes

Figure 4.2: Rational program (presented as a �ow chart) for the calculation of active blocks in
CUDA.
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Observation 1 Let S be a rational program in X1, . . . ,Xn evaluating Y. Let s be any in-
struction of S other than a branch or an integer part instruction. Hence, this instruction
can be of the form C � −A, C � A + B, C � A − B, C � A × B, where A and B can be
any rational number. Let V1, . . . ,Vv be the variables that are de�ned at the entry point of
the basic block of the instruction s. An elementary proof by induction yields the following
fact. There exists a rational function in V1, . . . ,Vv that we denote by fs(V1, . . . ,Vv) such
that C � fs(V1, . . . ,Vv) for all possible values of V1, . . . ,Vv . From there, one derives the
following observation. There exists a partition T � {T1, T2, . . .} ofQn (whereQ denotes the
�eld of rational numbers) and rational functions f1(X1, . . . ,Xn), f2(X1, . . . ,Xn), . . . such
that, if X1, . . . ,Xn receive respectively the values x1, . . . , xn , then the value of Y returned
by S is one of fi(x1, . . . , xn) where i is such that (x1, . . . , xn) ∈ Ti holds. In other words, S
computes Y as a piece-wise rational function (PRF). Notice that, trivially, if S contains only
one basic block, then S can be given by a single rational function.

Example 4.2.2 shows that the hardware occupancy of a CUDA kernel is given as a piece-
wise rational function in the variables Rmax, Zmax, Tmax, Bmax, Wmax, R, Z, T. Hence, in this
example, we have n � 8, and, as shown by Figure 4.2, its partition of Qn contains 5 parts as
there are 5 terminating nodes in the �owchart.

Suppose that a �owchart C representing the rational programR is partially known; to be pre-
cise, suppose that the decision nodes are known (that is, mathematical expressions de�ning
them are known) while the process nodes are not. Then, from Observation 1, each process
node can be given by a series of one or more rational functions. Trivially, a single formula
can also be seen as a �owchart with a single process node. Determining each of those rational
functions can be achieved by solving an interpolation or curve �tting problem. More generally,
if the sequence of instructions in a process node involves non-rational functions (e.g. log) we
can apply Stone-Weierstrass Theorem [70] to approximate each of those by a PRF.

It then follows that any performance metric, which can be depicted as a �ow chart or a for-
mula, can also be represented as a piece-wise rational function, and thus a rational program.
For high-level performance metrics, which rely on low-level metrics, one could work recur-
sively, �rst determining rational programs for the low-level metrics which depend on P, D,
and H , and then constructing a rational program for the high-level metric from those rational
programs. Hence, by this recursive construction, we can fully determine a rational program
for a high-level metric depending only on P, D, and H . Of course, hardware parameters
could be �xed given a target architecture to yield a rational program which depends only on
P and D. Again, notice that even where formulas for low-level metrics are not known, it is
still possible to estimate them as PRFs, and thus rational programs, via a curve �tting.

As an example, consider occupancy (Example 4.2.2). One could �rst determine PRFs for the
number of registers user per thread and the amount of shared memory used per thread block.
Then, a PRF is determined for the number of active blocks (Figure 4.2) from these two low-
level metrics, and a few more hardware and program parameters. Thus, by recursive con-
struction, we have a PRF depending only on program and hardware parameters.
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Lastly, we make one �nal remark. We assumed that the decision nodes in the �owchart of the
rational program were known, however, we could relax this assumption. Indeed, each deci-
sion node is given by a series of rational functions. Hence, those could also be determined by
solving curve �tting problems. However, we do not discuss this further since it is not needed
in our proposed technique or implementation presented in the remainder of this chapter.

4.3 KLARAPTOR: a dynamic optimization tool for CUDA

The theory of rational programs is put into practice for the CUDA programming model by our
tool KLARAPTOR. KLARAPTOR is a compile-time tool implemented using the LLVM Pass
Framework and the MWP-CWP performance model to dynamically choose a CUDA kernel’s
launch parameters (thread block con�guration) which optimize its performance. Most high-
performance computing applications require computations be as fast as possible and so kernel
performance is simply measured as its execution time.

As mentioned in Section 4.1, thread block con�gurations drastically a�ect the running time of
a kernel. Determining optimal thread block con�gurations typically follows some heuristics,
for example, constraining block size to be a multiple of 32 [71]. However, it is known that the
dimension sizes of a thread block, not only its total size, a�ect performance [49, 65]. Moreover,
since thread block con�gurations are intimately tied to the size of data being operated on,
it is very unlikely that a static thread block con�guration optimizes the performance of all
data sizes. Our tool e�ectively uses rational programs to dynamically determine the thread
block con�guration which minimizes the execution time of a particular kernel invocation,
considering the invocation’s particular data size and target architecture. This is achieved in
two main steps.

1. At the compile-time of a CUDA program, its kernels are analyzed in order to build ra-
tional programs estimating some performance metrics for each individual kernel. Each
rational program, written as code in the C language, is inserted into the code of the
CUDA program so that it is called before the execution of the corresponding kernel.

2. At runtime, immediately preceding the launch of a kernel, where data parameters have
speci�c values, the rational program is evaluated to determine the thread block con�g-
uration which optimizes the performance of the kernel. The kernel is then launched
using this thread block con�guration.

Not only are we concerned with kernel performance, but also programmer performance. By
that, we mean the e�ciency of a programmer to produce optimal code. When a programmer
is attempting to optimize a kernel, choosing optimal launch parameters can either be com-
pletely ignored, performed heuristically, determined by trial and error, or determined by an
exhaustive search. The latter two options quickly become infeasible as data sizes grow large.
Regardless, any choice of optimal thread block con�guration is likely to optimize only a single
data size.
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For KLARAPTOR to be practical, not only does the choice of optimal kernel launch parameters
need to be correct, but its two main steps must also be performed in an manner more e�cient
than trial and error or exhaustive search. Namely, the compile-time analysis cannot add too
much overhead to the the compilation time and the runtime decision of the kernel launch
parameters cannot overwhelm the program execution time. For the former, our analysis is
performed quickly by analyzing kernel performance on only small data sizes, and then results
are extrapolated. The time for this process typically ranges between 30 seconds and 2 minutes
(see Section 4.7). For the later, the rational program evaluation is quick and simple, being
only the evaluation of a few rational functions. Moreover, we maintain a runtime invocation
history to instantly provide results for future kernel launches. Our implementation is detailed
in Section 4.6.

We have made use of the Polybench/GPU benchmark suite as an empirical evaluation of
the correctness of our tool on a range of CUDA programs. In Figure 4.1 we have already seen
that KLARAPTOR accurately predicts the optimal or near-optimal thread block con�guration.
Before presenting more detailed results and experimentation in Section 4.7, we describe the
steps followed by our tool to build and use rational programs for determining a thread block
con�guration which optimizes performance.

4.4 An algorithm to build and deploy rational programs

In this section the notations and hypotheses are the same as in Section 4.2. Namely, E is a
high-level performance metric for the multithreaded programP, L is a set of low-level metrics
of size `, and P, D, H are sets of program, data, and hardware parameters, respectively. Recall
P has size p. Let us assume that the values of H are known at the compile-time ofP while the
values of D are known at runtime. Further, let us assume that P and D take integer values.
Hence the values of P belong to a �nite set F ⊂ Zp . That is to say, the possible values of
P are tuples of the form (π1, . . . , πp) ∈ F, with each πi being an integer. Let us call such a
tuple a con�guration of the program parameters. Due to the nature of program parameters,
those are not necessarily all independent variables For example, in CUDA, the product of the
dimension sizes of a thread block is usually a multiple of the warp size (32).

Given a performance-prediction model for E, one could work recursively to determine a sin-
gle rational program R, depending on only D and P, evaluating E, from a combination of
rational programs constructed for each low-level metric in L and values of D and P. Fol-
lowing Section 4.2.3, each of these rational programs are constructed by computing rational
functions. Without loss of generality, let us assume each low-level metric is given by a sin-
gle formula and thus a single rational function. Hence, we look to determine g1(D ,P), . . .,
g`(D ,P) for the ` low-level metrics. Finally, at runtime, given particular values of D, the
rational program for E can be evaluated for various values of P to determine the optimal.
In the context of CUDA where we look to optimize execution time, the selection of program
parameters leading to optimal performance is a complex task. We leave the discussion of that
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to Section 4.5. In the remainder of this section we describe the general process to build and
use rational programs to determine optimal con�gurations. The entire process is decomposed
into six steps: the �rst three occur at compile-time and the next three at runtime.

1. Data collection: To perform a curve �tting of the rational functions g1(D ,P), . . .,
g`(D ,P) we require data points to �t. These are collected by (i) selecting a subset of
K points from the space of possible values of (D, P); and (ii) executing the program
P, recording the values of the low-level performance metrics L as V � (V1, . . . ,V`),
at each point in K. Data used for executing the programs is generated randomly, but
could follow some scheme provided by the user.

2. Rational function approximation: For each low-level metric Li we use the set of
points K and the corresponding value Vi measured for each point to approximate the
rational function gi(D ,P). We observe that if these values were known exactly the
rational function gi(D ,P) could be determined exactly. In practice, however, these
empirical values are likely to be noisy from pro�ling, and/or numerical approximations.
Consequently, we actually determine a rational function ĝi(D ,P) which approximates
gi(D ,P).

3. Code generation: In order to generate the rational program R, we proceed as follows:

(i) we convert the rational program representing E into code, essentially encoding
the CFG for computing E;

(ii) we convert each ĝi(D ,P) into code, speci�cally sub-routines, estimating Li ; and

(iii) we include those sub-routines into the code computing E, which yields the desired
rational program R, fully constructed, and depending only on D and P.

4. Rational program evaluation: At the runtime of P, the data parameters D are given
particular values. For those speci�ed values of D and for all practically meaningful
values of P from the set F,3 we compute an estimate of E using R. The evaluation of
E over so many di�erent possible program parameters is feasible for three reasons:

(i) the number of program parameters is small, typically p ≤ 3, see Section 4.6;

(ii) the set of meaningful values for P is small (consider that in CUDA the product of
thread block dimension sizes should be a multiple of 32 less than 1024); and

(iii) the program R simply evaluates a few polynomial formulae and thus runs almost
instantaneously.

5. Selection of optimal values of program parameters:
When the search space of values of program parameters P is large, a numerical opti-
mization technique is required for this step. But, as just explained, the total number of
evaluations is quite small and thus an exhaustive search is feasible to determine an opti-
mal con�guration. However, it is possible that several con�gurations, up to some mar-
gin, optimize E. In practice, one can re�ne results by comparing several near-optimal

3The values for P are likely to be constrained by the values D. For example, if P1 , P2 are the two dimension
sizes of a two-dimensional thread block of a CUDA kernel operating on a square matrix of order D1, then
P1P2 ≤ D2

1 is meaningful.
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con�gurations by using secondary metrics, see Section 4.5 for the case of KLARAP-
TOR’s implementation.

6. Program execution: Once an optimal con�guration is selected, the program P can
�nally be executed using this con�guration along with the values of D.

4.5 Runtime selection of thread block con�guration for
a CUDA kernel

In the previous section we examined the general six-step process to build and use a rational
program to select program parameters. We now look to specialize this process to CUDA and
describe precisely the algorithm followed by KLARAPTOR to select program parameters (i.e.
thread block con�gurations) in its attempt to minimize kernel execution time (steps 4 and 5
in the general six-step process).

Here, our high-level performance metricE is execution time, and we make use of the MWP-CWP
model [55, 56] to estimate it. In this model the execution time is estimated as the estimated
number of clock cyclesE_CC. From the previous six-step process, it seems trivial to simply se-
lect the con�guration which minimizes E_CC. However, in some practical examples, this can
lead to a very poor choice of thread block con�guration which does not minimize execution
time. While the MWP-CWP model is a quite comprehensive performance prediction model,
it mainly relies on occupancy for estimating the number of clock cycles. This has a serious
drawback; the calculated occupancy is an upper bound which can be too optimistic and is not
a strong predictor of performance for compute-intensive kernels (see [72] and "Help" sheet
of NVIDIA occupancy calculator spreadsheet, under "Notes on occupancy" [73]). Therefore,
we still make use of MWP-CWP but do not take E_CC directly as the performance predictor.

Using the values of some low-level metrics (also de�ned within the MWP-CWP model), to-
gether with E_CC, we perform a case discussion in order to select a thread block con�gu-
ration. At runtime, the particular value of our data parameters is known, The values for the
low-level metrics are then obtained using the data parameter values and the set of practically
meaningful thread block con�gurations by evaluating the previously obtained rational func-
tions ĝi(D ,P) for them. This yields a dictionary whose keys are con�gurations and values are
a list of estimated performance metrics. The low-level metrics of interest are: (i) the average
number of computational instructions per thread (Comp_Inst), (ii) the average number of
memory instructions per thread (Mem_Inst), (iii) the average number of clock cycles spent
on global memory transactions (Mem_CC), and (iv) the amount of dynamic shared memory
used.We then also compute occupancy and E_CC for each con�guration.

At this point, we look to de�ne a strategy which chooses a subset of con�gurations where
any in the set would give near-optimal performance. Our proposed strategy takes into ac-
count not only occupancy and E_CC, but also the arithmetic intensity and e�ciency of global
memory read/write transactions of a kernel. We de�ne arithmetic intensity as the ratio of
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Comp_Inst/Mem_Inst. The main idea is �rst to determine if the kernel is memory in-
tensive or compute intensive. If the kernel is memory intensive, we look to minimize memory
instructions, otherwise it is assumed to be compute intensive and we look to both minimize
time spent on memory transactions and maximize computational instructions. The latter
might increase the chance of exploiting instruction-level parallelism (ILP) by the hardware
(however, this is not guaranteed to happen at runtime). This strategy is detailed in Algo-
rithm 7.

Algorithm 7 HueristicSelection
1: procedure HueristicSelection(Dictionary D of [key,value] pairs with block con�gurations as

keys and values of performance metrics as values, AME as average memory e�ciency (percentage)
of the kernel)

2: [X, nRepeat]← [10, number of entries in D];
3: D← Stabilize (D, "ArithmeticIntensity", X, nRepeat);
4: . Stabilize D w.r.t. values of Arithmetic Intensity.
5: AAR← Average of arithmetic intensity for entries of D.
6: MET← 25% . Setting the memory e�ciency threshold to 25%.
7: if AME <= MET and AAR ≤ 1.0 then . Memory-intensive
8: [X, nRepeat]← [10, 10];
9: D← Stabilize (D, "E_CC", X, nRepeat);

10: [X, nRepeat]← [10, 1];
11: D← Stabilize (D, "Mem_Inst", X, nRepeat);
12: D← Optimize (D, "MIN", "Mem_Inst", X, nRepeat);
13: D← Stabilize (D, "Comp_Inst", X, nRepeat);
14: else . Compute-intensive
15: [X, nRepeat]← [25, 1];
16: D← Stabilize (D, "Occupancy", X, nRepeat);
17: [X, nRepeat]← [10, 1];
18: D← Optimize (D, "MIN", "Mem_CC", X, nRepeat);
19: D← Optimize (D, "MAX", "Comp_Inst", X, nRepeat);
20: D← Stabilize (D, "Mem_Inst", X, nRepeat);
21: end if
22: Return D;
23: end procedure

Certain subroutines are used within Algorithm 7 in an attempt to �lter outliers and select
candidate con�gurations. The �rst function, Stabilize, removes outliers by iteratively
�ltering out con�gurations. The iteartion proceeds until the standard deviation of the values
of the target metric no longer changes, or a maximum number of iterations is reached. To
remove outliers, con�gurations whose value of the chosen metric falls in the top or bottom
X% of values are removed. Note that standard deviation should indeed eventually reach some
�xed value since the metrics take �nitely many values. The next function, Optimize, sim-
ply gets the subset of con�gurations whose value for a particular metric falls in the top X%
(if “MAX” is speci�ed) or the bottom X% (if “MIN” is speci�ed).

To decide whether a kernel is memory intensive or not, �rst, using a pro�ler (throughnvprof
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or CUPTI), we measure the average value of global memory (load/store) e�ciency for the ker-
nel for a set of block con�gurations. This value, which we will refer to as "Average Memory
E�ciency" (AME) should be less than a certain threshold. This threshold, which we will re-
fer to as "Memory E�ciency Threshold" (MET) can be determined through empirical study.
Currently, we set MET to 25%. Using AME together with the mean arithmetic intensity of
all con�gurations, indicates if a kernel is memory intensive or not. In particular, the mean
arithmetic intensity should be at most equal to 1, that is, for every memory instruction there
is at most one computational instruction performed. Finally, we note that the values for X
and nRepeat in Algorithm 7 have also been determined through experimentation (Lines 2,
8, 10, 16, and 18).

4.6 The implementation of KLARAPTOR

In this section we give an overview of the implementation of our previously presented tech-
nique (Sections 4.4 and 4.5) specialized to CUDA in the KLARAPTOR tool. Our tool is built in
the C language, making use of the LLVM Pass Framework (see Section 4.6.2) and the NVIDIA
CUPTIAPI (see Section 4.6.3). KLARAPTOR is freely available in source at https://github.com/orcca-
uwo/KLARAPTOR.

In the case of a CUDA kernel, the data parameters specify the input data size. In many ex-
amples this is a single parameter, say N , describing the size of an array (or the order of a
multi-dimensional array), the values of which are usually powers of 2. Program parameters
describe the kernel launch parameters, i.e. grid and thread block dimension sizes, and are also
typically powers of 2. For example, a possible thread block con�guration may be 1024× 1× 1
(a one-dimensional thread block), or 16×16×2 (a three-dimensional thread block). Lastly, the
hardware parameters are values speci�c to the target GPU, for example, memory bandwidth,
the number of SMs available, and their clock frequency.

We organize this section as follows. Sections 4.6.1 and 4.6.2 are speci�c to our implementation
and do not correspond to any step of Section 4.4. The compile time steps 1 (data collection)
and 2 (rational function estimation) are re�ected in Sections 4.6.3 and 4.6.4, respectively, while
step 3 requires no explanation. The runtime steps 4 (rational program evaluation) and 6 (pro-
gram execution) are trivial to perform, while step 5 (selection of optimal con�guration) is
clear from the discussion in Section 4.5. Throughout this section we refer to the notion of a
driver program as the code, for each individual kernel, using a rational program to select a
con�guration.

4.6.1 Annotating and preprocessing source code

Beginning with a CUDA program written in C/C++, we minimally annotate the host code to
make it compatible with our pre-processor. We take into account the following points:

https://github.com/orcca-uwo/KLARAPTOR
https://github.com/orcca-uwo/KLARAPTOR
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(i) the code targets at least CUDA Compute Capability (CC) 3.x;
(ii) there should be no CUDA runtime API calls as such calls will interfere with later CUDA

driver API calls used by our tool, for example, cudaSetDevice;
(iii) the block dimensions and grid dimensions must be declared as the typical CUDA dim3

structs.

For each kernel in the CUDA code, we add two pragmas, one specifying the dimension of the
kernel (1, 2, or 3), and one de�ning the index of the kernel input arguments corresponding to
the data size N . As an example, consider the code segment below of a CUDA kernel and the
associated pragmas. This kernel operates of a two-dimensional array of order N , making it a
two-dimensional kernel.

#pragma kernel_info_size_param_idx_Sample = 1;
#pragma kernel_info_dim_sample_kernel = 2;
__global__ void Sample (int *A, int N) {

int tid_x = threadIdx.x + blockIdx.x*blockDim.x;
int tid_y = threadIdx.y + blockIdx.y*blockDim.y;
...

}

Lastly, for each kernel, the user must �ll two formatted con�guration �les which follow
Python syntax. One speci�es the constraints on the thread block con�guration while the
other speci�es the grid dimensions. For example, for the 2D kernel Sample above, one could
specify that its thread block con�guration (bx , b y , bz) must satisfy bx < b y2, bx < N and
b y < N . Since the kernel dimension is given as 2, we assume bz � 1. Similarly, the grid
dimensions (gx , g y , gz), could be speci�ed as gx � d N

bx e, g y � d N
b y e, gz � 1.

Now, a preprocessor processes the annotated source code, replacing CUDA runtime API calls
with driver API kernel launches. This step includes source code analysis in order to extract a
list of kernels, a list of kernel calls in the host code, and �nally, the body of each kernel to be
used for further analysis. A so-called “PTX lookup table” is built to store kernel information
and static parameters. This table will be inserted into the “instrumented binary”, the compiled
CUDA program augmented by the driver programs.

4.6.2 Input/Output builder

The Input/Output builder Pass, or IO-builder, is a compiler pass written in the LLVM Pass
Framework to build the previously mentioned “instrumented binary”. This pass embeds an
IO mechanism (i.e. a function call) to communicate with the driver program of a kernel for
each of its invocations. Thus, at the runtime of the CUDA program being analyzed (step 6
of Section 4.4), an IO function is called before each kernel invocation to return six integers,
(gx , g y , gz , bx , b y , bz), the optimal kernel launch parameters.

The IO-builder pass goes through the following steps:

(i) obtain the LLVM intermediate representation of the instrumented source code and �nd
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all CUDA driver API kernel calls;
(ii) relying on the annotated information for each kernel, determine which variables in the

IR contain the value of N for a corresponding kernel call; and
(iii) insert a call to an IO function immediately before each kernel call in order to pass the

runtime value of N to the corresponding driver program and retrieve the optimal kernel
launch parameters.

4.6.3 Building a driver program: data collection

In order to perform the eventual rational function approximation, we must collect data and
statistics regarding certain performance counters and runtime metrics (see Section 4.5, [55]
and [74]). These metrics can be partitioned into three categories.

Firstly, architecture-speci�c performance counters of a kernel, characteristics in�uenced by the
CC of the target device. These can be obtained at compile-time, since the target CC is spec-
i�ed at this time. These characteristics include the number of registers used per thread, the
amount of static shared memory per thread block, and the number of (arithmetic and memory)
instructions per thread.

Secondly, runtime-speci�c performance counters that depend on the behavior of the kernel at
runtime. This includes values impacted by memory access patterns, namely, the number of
memory accesses per warp, the number of memory instructions of each thread, and the total
number of warps that are being executed. We have developed a customized pro�ler using
NVIDIA’s EVENT API within the CUPTI API to collect the required runtime performance
counters. The pro�ler is customized to collect only the required information, allowing it
to be very lightweight and avoid the huge overheads of a typical pro�ler (e.g. NVIDIA’s
nvprof [4]).

Thirdly, device-speci�c parameters, which describe an actual GPU card, allow us to compute
a more precise performance estimate. A subset of such parameters can be determined by
microbenchmarking the device (see [75] and [76]), this includes the memory bandwidth, and
the departure delay for memory accesses. The remaining parameters can easily obtained by
consulting the vendor’s guide [31], or by querying the device itself via the CUDA driver API.
Such parameters include the number of SMs on the card, the clock frequency of SM cores,
and the instruction delay.

4.6.4 Building a driver program: rational function approximation

Using the runtime data collected in the previous step, we look to determine the rational func-
tions ĝi(D ,P) (see Section 4.4) which estimate the low-level metrics or other intermediate
values in the rational program. For ease of discussion, we replace the parameters D and P
with the generic variables X1, . . . ,Xn .
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A rational function is simply a fraction of two polynomials:

f (X1 , . . . ,Xn) �
α1 · (X0

1 · · ·X0
n) + . . . + αi · (Xu1

1 · · ·X
un
n )

β1 · (X0
1 · · ·X0

n) + . . . + β j · (Xv1
1 · · ·X

vn
n )

(4.2)

With a degree bound (an upper limit on the exponent) on each variable Xk in the numerator
and the denominator, uk and vk , respectively, these polynomials can be de�ned up to some
parameters (using the language of parameter estimation), namely the coe�cients of the poly-
nomials, α1, . . . , αi and β1, . . . , β j . Through algebraic analysis of performance models like
the MWP-CWP model, and empirical evidence, these degree bounds are relatively small.

We perform a parameter estimation (for each rational function) on the coe�cients α1, . . . , αi ,
β1, . . . , β j to determine the rational function precisely. This is a simple linear regression
which can be solved by an over-determined system of linear equations, say by the method
of linear least squares. However, the system su�ers from multicollinearity (see [77, Chapter
23]) and can become rank-de�cient. Solving using the typical QR-factorization is impossible;
hence we use the computationally more intensive yet more numerically stable method of
singular value decomposition (SVD; for details see [78, Chapter 4]). Our implementation uses
LAPACK [79] for SVD and the Basic Polynomial Algebra Subprograms (BPAS) library [43] for
e�cient rational function and polynomial implementations.

4.7 Experimentation

In this section we examine the performance of KLARAPTOR by applying it to the CUDA
programs of the Polybench/GPU benchmark suite [58]. We note here that many of the
kernels in this suite perform relatively low amounts of work; they are best suited to being
executed many times from a loop in the host code. Data in this section was collected using a
GTX 1080Ti.

Table 4.1 provides experimental data for the main kernels in the benchmark suite Poly-
bench/GPU. Namely, this table compares the execution times of the thread block con�gu-
ration chosen by KLARAPTOR against the optimal thread block con�guration found though
exhaustive search. The table shows a couple of data sizes in order to highlight that the best
con�guration can change for di�erent input sizes. While it may appear for some examples
that there are large variations between timings of the KLARAPTOR-chosen con�guration and
the optimal, these should be considered within the full range of possible con�gurations. Re-
call from Figure 4.1 that compared to the worst possible timings, the KLARAPTOR-chosen
con�guration and the optimal result in very similar in timings.

In Figure 4.3 we compare the time it takes KLARAPTOR to perform its compile-time analy-
sis and build the rational programs for each example in the PolyBench/GPU suite. This
is compared against determining the optimal thread block con�guration by an exhaustive
search. Since KLARAPTOR’s compile-time analysis is a one-time occurrence which optimizes
for all data sizes, exhaustive search times are given as a sum for data sizes up to N � 8192.
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Table 4.1: KLARAPTOR vs. exhaustive search for thread block con�guration choice for ker-
nels in Polybench/GPU.

Kernel N KLARAPTOR Chosen Optimal Optimal
Time (ms) Con�g. Time (ms) Con�g.

atax K1 4096 2.35 32, 4 0.85 32, 1
8192 27.83 1, 64 4.33 16, 2

atax K2 4096 1.09 16, 2 1.04 32, 1
8192 2.20 32, 1 2.19 64, 1

bicg K1 4096 1.05 256, 1 1.05 32, 1
8192 2.23 256, 1 2.21 64, 1

bicg K2 4096 1.15 8, 4 0.85 32, 1
8192 12.58 256, 4 4.35 512, 1

convolution2d 4096 0.79 256, 1 0.77 32, 4
8192 2.54 256, 4 2.35 32, 4

corr 4096 5700.65 256, 1 5075.77 32, 1
8192 27846.91 256, 1 26024.94 32, 1

covar 4096 5682.96 256, 1 5076.77 32, 1
8192 27865.89 256, 1 26182.65 32, 1

fdtd_step1 4096 0.56 256, 1 0.56 32, 2
8192 2.22 256, 4 2.22 32, 4

fdtd_step2 4096 0.58 256, 1 0.58 512, 1
8192 2.33 32, 16 2.30 512, 1

fdtd_step3 4096 0.77 256, 1 0.77 512, 2
8192 3.06 256, 4 3.05 1024, 1

gemm 4096 723.29 256, 1 386.76 32, 32
8192 7481.13 256, 1 3069.66 32, 16

gesummv 4096 8.19 2, 16 1.62 32, 1
8192 82.21 32, 16 11.58 64, 1

gramschmidt K1 4096 0.09 4, 32 0.09 256, 1
8192 0.20 8, 32 0.17 64, 1

gramschmidt K2 4096 0.01 32, 2 0.01 256, 1
8192 0.01 512, 2 0.01 256, 1

gramschmidt K3 4096 2.15 256, 1 2.11 32, 1
8192 4.68 256, 1 4.61 32, 1

mm2 K1 4096 695.23 256, 1 384.93 32, 32
8192 7531.13 256, 1 3062.26 32, 16

mm2 K2 4096 761.49 256, 1 386.61 32, 32
8192 7533.08 256, 1 3077.75 32, 16

mm3 K1 4096 749.27 256, 1 388.40 32, 32
8192 7531.56 256, 1 3065.34 32, 16

mm3 K2 4096 816.08 256, 1 389.13 32, 16
8192 7532.66 256, 1 3067.87 32, 16

mm3 K3 4096 737.21 256, 1 392.81 32, 16
8192 7530.24 256, 1 3085.43 32, 16

mvt K1 4096 1.15 8, 4 0.86 32, 1
8192 12.90 256, 4 4.35 16, 2

mvt K2 4096 1.05 256, 1 1.05 32, 1
8192 2.23 256, 1 2.21 128, 1

syr2k 4096 7050.62 1, 64 2097.15 4, 32
8192 18013.51 16, 64 17398.88 4, 8

syrk 4096 2973.88 2, 16 1165.24 16, 16
8192 15936.21 32, 16 9368.56 16, 16
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The best and worst execution times for the main kernel in each example (for N � 8192) is
also given to highlight the fact that our optimization step is sometimes faster than even a sin-
gle execution of a kernel with a poor choice of thread block con�guration. We note that for
some kernels, with very quick running times, exhaustive search is not a bad option. However,
some examples such as GRAMSCHMIDT, take an exorbitant amount of time for exhaustive
search. This �gure also shows that the one-time compile-time cost of optimization can often
be amortized by only a few executions of the kernel.

Figure 4.3: Comparing times (log-scaled) for (1) compile-time optimization steps of KLARA-
PTOR, (2) exhaustive search over all thread block con�gurations, the execution time for a
kernel given (3) the best thread block con�guration, and (4) the worst thread block con�gu-
ration. Exhaustive search is given as a sum for values up to N � 8192 (except convolution3d
with N � 1024).

4.8 Conclusions and future work

The performance of a single CUDA program can vary wildly depending on the target GPU
device, the input data size, and the kernel launch parameters. Moreover, a thread block con-
�guration yielding optimal performance for a particular data size or a particular target device
will not necessarily be optimal for a di�erent data size or di�erent target device. In this chap-
ter we have presented the KLARAPTOR tool for determining optimal CUDA thread block
con�gurations for a target architecture, in a way which is adaptive to each kernel invocation
and input data, allowing for dynamic data-dependent performance and portable performance.
This tool is based upon our technique of encoding a performance prediction model as a ra-
tional program. The process of constructing such a rational program is a fast and automatic
compile-time process which occurs simultaneously to compiling the CUDA program by use of
the LLVM Pass framework. Our tool was tested using the kernels of the Polybench/GPU
benchmark suite with great results.

However, one of our biggest challenges (see Section 4.5) is obtaining accurate values for occu-
pancy. Recently, the author of [80] and [72] has suggested a GPU performance model relying
on Little’s law; it measures concurrency as a product of latency and throughput. This model
considers both warp and instruction concurrency while previous models [31, 55, 56, 81] con-
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sider only warp concurrency. The author’s analysis of those models suggests their limitation
is the signi�cant underestimation of occupancy when arithmetic intensity (the number of
arithmetic instructions per memory access) is intermediate. In future work we look to apply
an improved performance prediction model in order to achieve even better results.

The algorithm presented in Section 4.4 is not speci�c to the problem of optimizing program
parameters of CUDA kernels. This algorithm could also be used to help optimizing program
parameters of multithreaded code targeting CPU or multi-process code targeting distributed
systems. The main requirement is to have a mathematical model which expresses the metric
to be optimized, in terms of quantities that can be measured, by means of a piece-wise rational
function.



5 Arbitrary-precision Integer Multipli-
cation on GPUs

5.1 Introduction

Arbitrary-precision integer arithmetic is driven by applications in solving systems of polyno-
mial equations and cryptography. Such computations arise when high precision is required
(that is, when values �t into multiple machine words), or, in order to avoid coe�cient over�ow
due to intermediate expression swell.

Among the arithmetic operations, multiplication of large integers is especially important as it
is at the core of many other algorithms. For the past few decades (beginning with Karatsuba-
O�man in 1962 [82]), numerous algorithms for multiplying long integers have been proposed,
each with various implementations and platform-speci�c optimizations. Multiplication has
been the subject of active research, but recent results have mostly been focused improving
the theoretical lower bound. Table 5.1 presents the complexity estimates for some of the
algorithms used for multiplying two polynomials of degree less than k. Table 5.2 presents
the complexity estimates for some of the algorithms used for multiplying two large integers
with k digits. For more details see [83, 44, 23, 84, 19, 21, 41, 85, 86, 87].

Table 5.1: Comparison of algorithms for multiplying polynomials f (x), g(x) ∈ R[x] of degree
less than k.

Variant Algorithm M(k)
Classical (Toom-1) O(k2)

Non FFT-based Karatsuba-Ofman (Toom-2), 1962 [82] O(klog32) � O(k1.58)
Toom-Cook (Toom-3), 1963 [83] O(klog53) � O(k1.46)

FFT-based NTT/FFT multiplication [44, 23] O(92k log(k))

Meanwhile, the growing demand for faster computation alongside the recent advances in
hardware technology have led to the development of a vast array of many-core and multi-
core processors, programming models, and language extensions (e.g. CUDA and OpenCL for
GPUs, and OpenMP and Cilk for multi-core CPUs). The massive computational power of

66
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Table 5.2: Comparison of algorithms for multiplying k machine word integers.

Variant Algorithm M(k)
Fürer, 2009 [19, 21] O(k log(k)2O(log∗ k)))
Harvey-van der Hoeven-Lecerf, 2015 [41] O(k log(k)23log∗ k))

FFT-based Harvey-van der Hoeven, 2018 [85] O(k log(k)22log∗ k))
(proved as an unconditional bound)
Covanov-Thomé, 2019 [86] O(k log(k)4log∗ k))
Harvey-van der Hoeven, 2019 [87] O(k log(k))

parallel processors, especially GPUs, makes them viable targets for carrying out arbitrary-
precision integer arithmetic.

Nevertheless, developing parallel algorithms, followed by implementing and optimizing them
as multi-threaded parallel programs imposes a set of challenges. In this chapter we explain
the current state of research on arbitrary-precision integer multiplication on CUDA-enabled
GPUs and propose a parallel solution for this problem.

5.2 Essential de�nitions for designing parallel algorithms

We need the following de�nitions for design and analysis of parallel algorithms on many-core
processors such as GPUs. See [88, 89] for more details.

- Data parallelism: executing the same operation or function across a large dataset.
- Work: The total time to execute a task on one processor, denoted as T1.
- Span: Critical path in the DAG of a task, denoted as T∞. In other words, it indicates the

execution time on an in�nite number of processors.
- Parallelism: The ratio of work to span, denoted as T1

T∞ .
- Speedup: For TP , the execution time on P processors, speedup is computed as T1

TP
.

5.3 Choice of algorithm for parallelization

At this point, we face three questions to answer.

1. Which algorithm to choose for a parallel implementation?
2. How to reduce the span and increase the degree of parallelism? In other words, at what

level are the operations executed in a data-parallel fashion?
3. How to maximize the device utilization and avoid wasting clock cycles?

Improvements of the asymptotically fast algorithms such as the variants of FFT-based mul-
tiplication do not necessarily lead to practical outcomes for everyday computing due to the
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fact that such algorithms need very large input sizes to be practically e�cient. Besides that,
even when computing with FFT-based solutions with large input sizes (such as [1] and [2]),
we might still need to multiply large integers that are not as large as the input but still require
multiple machine words. The multiplications of twiddle factors as part of a FFT is a signi�-
cant example of this. This makes less e�cient algorithms (in terms of algebraic complexity)
favorable candidates for parallelization and e�cient implementation.

In this work, we propose a new �ne-grained parallel algorithm for multiplying arbitrary-
precision integers of k digits.

5.4 Problem de�nition

Let X,Y be two vectors of N elements of ring R:

®X � (X0,X1, . . . ,XN−1),
®Y � (Y0,Y1, . . . ,YN−1).

We are interested in a fast solution for pointwise multiplication of X by Y:

®Z � (X0Y0,X1Y1, . . . ,XN−1YN−1)

Let β � 2b , where b is the size of a machine word, R is either Z/mZ for m � βk , or Z/pZ
for p � rk + 1 where the radix r �ts into a machine word. In other words, each element of
R, which we will refer to as a "large integer", �ts into k machine words and is represented
as a vector A � (a0, a1, . . . , ak−1) with each digit ai < β. The value of β depends on the
architecture and is typically either β � 232 or β � 264. For the rest of this work, we assume
β � 232, k is a multiple of 32, and N is a positive integer.

Note that we can encode A, B ∈ R as polynomials A(x) � a0 + a1x + . . . + ak−1xk−1 and
B(x) � b0 + b1x + . . .+ bk−1xk−1 in R[x]. Then, we can compute A×B over R by evaluating
A(x).B(x) at x � β. In practice, evaluation at β does not help with the �nal result as it leads to
a 2k-digit integer that should eventually be represented in the base β. A more e�cient solution
is to to perform a sequence of carry-handling which we will refer to as an `hc-normalization
step.

Now, we consider two possibilities for assigning work to threads that compute the pointwise
multiplication of X by Y. Precisely, this decision will determine the level of data parallelism
in our implementation in the following ways.

(i) Parallelization at the level of coe�cients: Assume each Xi .Yi product is computed by
exactly one thread. This approach could be e�cient if k is not large enough (e.g. be-
tween 2 to 16 digits), or when an e�cient parallel algorithm is not available.

(ii) Parallelization at the level of digits: This solution is based on parallel arithmetic, that is,
the nontrivial process of parallelizing the operations inside a function. In this case, each
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Xi .Yi product is computed by multiple threads. This approach requires some synchro-
nization mechanism which can cause some overhead if handled carelessly. However,
for large enough values of k (e.g., more than or equal to 32 digits) this can be a more
e�cient solution provided that we have a low span algorithm with a high degree of
parallelism.

We keep in mind the trade-o� between the two approaches with respect to the cost of schedul-
ing threads, global memory communications, and synchronization overhead. In [1], we have
implemented the �rst approach for twiddle factor multiplications. In this work, we study the
second approach both theoretically and experimentally.

5.5 A �ne-grained parallel multiplication algorithm

Algorithm 8 presents a naive algorithm for multiplication of two k-digit large integers.

Algorithm 8 Naive algorithm for computing the product of large k-digit integers A and B.

1: input: Two k-digit integers A and B stored as vectors ®A and ®B.
2: output: Large 2k-digit integer N as the product of A by B.
3: procedure NaiveMult( ®A, ®B, k)
4: M(M0,M1, · · · ,M2k−1) ← ([0,0,0], [0,0,0], · · · , [0,0,0]) . Vector of 2k triple digits.
5: for (i � 0; i < k; i � i + 1) do
6: for (j � 0; j < k; j � j + 1) do
7: M(i+j)← M(i+j) + AiBj . Single-digit multiplication and triple-digit addition.
8: end for
9: end for

10: N← ConvertLHC(M,k) . `hc normalization step.
11: return N
12: end procedure

Algorithm 11 presents an algorithm for a carry handling procedure which we will refer to as
`hc normalization.

Next, Algorithm 9 presents an improved version of Algorithm 8 that takes advantage ofKarat-
suba intermediate products.

Karatsuba intermediate product: The Karatsuba intermediate product for machine word size
digits ai , a j , bi , b j is de�ned as follows:

aib j + a j bi � (ai − a j)(b j − bi) + zi + z j

where zi � aibi and z j � a jb j . There are two main ideas at the core of Algorithm 9:

(i) we precompute the values of zi � aibi for 0 ≤ i < k, and
(ii) the sequence of for-loops I, II, and III are well-structured for parallel execution.
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Note that in Algorithm 9, there are no dependencies between any two iterations in Loops
I and III, this indicates that they are well-suited for parallel execution, and in particular, a
GPU implementation. However, Loop II needs a chunking strategy for e�cient usage of the
global memory. As the chunking strategy, we divide the vector of coe�cients for each of the
operands A and B into chunks of size s. For the sake of simplicity, we assume k is a multiple
of s and s is a multiple of 32.

Rewriting Loop II of Algorithm 9 with a chunking strategy leads to Algorithm 10. We have two
nested loops over SingleCM and DoubleCM routines, which are shown in Algorithm 12
and 13, respectively. Procedure M5Mult in Algorithm 10 is well-suited for parallel imple-
mentation, meanwhile, as we will show in the next section Algorithm 10 has the same work
complexity as Algorithm 9.

Algorithm 9 Sequential algorithm for computing the product of large k-digit integers A and
B while taking advantage of Karatsuba intermediate products.

1: input: Two k-digit integers A and B stored as vectors ®A and ®B.
2: output: Large 2k-digit integer N as the product of A by B.
3: procedure SequentialMult( ®A, ®B, k)
4: M(M0,M1, · · · ,M2k−1) ← ([0,0,0], [0,0,0], · · · , [0,0,0]) . Vector of 2k triple digits.
5: Z(Z0,Z1, · · · ,Zk−1) ← ([0,0], [0,0], · · · , [0,0]) . Vector of k double digits.
6: for (i � 0; i < k; i � i + 1) do . Loop I
7: Zi← AiBi . Single-digit multiplication.
8: end for
9: for (i � 0; i < k; i � i + 1) do . Loop II

10: for (j � i + 1; j < k; j � j + 1) do
11: T← (Ai − Aj)(Bj − Bi) + Zi + Zj . Computing Karatsuba intermediate product.
12: M(i+j)← M(i+j) + T . One triple-digit addition.
13: end for
14: end for
15: for (i � 0; i < k; i � i + 1) do . Loop III
16: M2i← M2i + Zi . Triple-digit addition.
17: end for
18: N← ConvertLHC(M,k) . `hc normalization step.
19: return N
20: end procedure

5.6 Complexity analysis

For simplifying the complexity analysis, we use Table 5.3 which presents the relative cost
of arithmetic operations used in the analysis. In this table, TA1 is considered as the base-
case. Note that η �

TM1
TA1

is de�ned as a measure for comparing the cost of a single-digit
multiplication to a single-digit addition.
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Algorithm 10 Chunk-based algorithm for computing the product of large k-digit integers A
and B while taking advantage of Karatsuba intermediate products.

1: input: Two k-digit integers A and B stored as vectors ®A and ®B.
2: output: Large 2k-digit integer N as the product of A by B.
3: procedure M5Mult( ®A, ®B, k)
4: M(M0,M1, · · · ,M2k−1) ← ([0,0,0], [0,0,0], · · · , [0,0,0]) . Vector of 2k triple digits.
5: Z(Z0,Z1, · · · ,Zk−1) ← ([0,0], [0,0], · · · , [0,0]) . Vector of k double digits.
6: for (i � 0; i < k; i � i + 1) do . Loop I can be executed in parallel.
7: Zi← AiBi
8: end for
9: λ← k

s . Number of chunks.
10: for (ci � 0; ci < λ; ci � ci + 1) do . Can be executed in parallel.
11: M← SingleCM(M,A,B,Z,ci,s)
12: end for
13: for (ci � 0; ci < λ; ci � ci + 1) do . This loop CANNOT be executed in parallel.
14: for (cj � ci + 1; cj < λ; cj � cj + 1) do . Can be executed in parallel.
15: M← DoubleCM(M,A,B,Z,ci,cj,s)
16: end for
17: end for
18: for (i � 0; i < k; i � i + 1) do . Loop III can be executed in parallel.
19: M2i← M2i + Zi
20: end for
21: N← ConvertLHC(M,k) . `hc normalization step.
22: return N
23: end procedure

Table 5.3: Relative cost of arithmetic operations.

Operation Cost De�nition
A1 TA1 (Platform-dependent) Adding two single-digit unsigned integers.
M1 ηTA1 for η ≥ 1 Multiplying two single-digit unsigned integers.
S1 TA1 Subtracting two single-digit unsigned integers.
A3 3TA1 Adding two triple-digit unsigned integers with carries.
M2 2TS1 + TM1 + 2TA3 Computing a Karatsuba intermediate product.

Let λ �
k
s

be the number of chunks. We begin with the work-complexity analysis ofNaiveMult;
it has k2 iterations, each iteration computing a single-digit multiplication and a triple-digit
addition (except the �rst iteration):

TNaiveMult
1 (k) � k2TM1 + (k − 1)2TA3 (5.1)

Then, we compute the work for Loops I, II, and III of SequentialMult as follows. Loop I
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has k iterations, each iteration computing a single-digit multiplication. Loop II has k(k−1)
2 iter-

ations, each computing a Karatsuba intermediate product and a triple-digit addition. Finally,
Loop III has k iterations, each iteration computing a triple-digit addition. To summarize:

TI
1(k) � k.TM1 (5.2)

TII
1 (k) �

k(k − 1)
2
(TM2 + TA3) (5.3)

TIII
1 (k) � k.TA3 (5.4)

In total, the work for SequentialMult is:

TSequentialMult
1 (k) � TI

1(k) + TII
1 (k) + TIII

1 (k) (5.5)

� k.TM1 +
k(k + 1)

2
TA3 +

k(k − 1)
2

TM2

Rewriting (5.1) and (5.5) in terms of single-digit additions and multiplications, then simplify-
ing them solely with respect to single-digit addition we have:

TNaiveMult
1 (k) � k2TM1 + 3(k − 1)2TA1 � (ηk2 + 3(k − 1)2)TA1

TSequentialMult
1 (k) � k(k + 1)

2
TM1 +

11k2 − 5k
2

TA1 �
ηk2 + 11k2 + ηk − 5k

2
TA1

At this step, we compare SequentialMult and M5Mult. First, we should mention that
SingleCM is a special case of DoubleCM that has the advantage of cutting the number of
multiplications in half.

For chunk size s, the execution of SingleCM leads to computation of s .(s−1)
2 Karatsuba inter-

mediate products whereas the execution of DoubleCM results in computing s2 Karatsuba
intermediate products. With that in mind, we prove that together SingleCM and Dou-
bleCM are computationally as expensive as Loop II:

TSingleCM
1 (k) � s .(s − 1)

2
(TM2 + TA3) (5.6)

TDoubleCM
1 (k) � s2(TM2 + TA3) (5.7)

TSingleCM
1 (k) + TDoubleCM

1 (k) � λTSingleCM
1 (k) + λ(λ − 1)

2
TDoubleCM
1 (k) (5.8)

�
λs(λs − 1)

2
(TM2 + TA3)

Note that λs � k, then:

TSingleCM
1 (k) + TDoubleCM

1 (k) � k(k − 1)
2
(TM2 + TA3) � TII

1 (k) (5.9)
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Algorithm 11 Algorithm for applying `hc normalization on a vector ®M of 2k triple digits.

1: input: Vector ®M of 2k triple digits.
2: output: Large 2k-digit integer N as the result of `hc normalization.
3: procedure ConvertLHC( ®M , k)
4: N(N0,N1, · · · ,N2k−1) ← (0,0, · · · ,0) . Vector of 2k digits.
5: L(L0,L1, · · · ,L2k−1) ← (M0[0],M1[0], · · · ,M2k−1[0]) . Vector of 2k digits.
6: H(H0,H1, · · · ,H2k−1) ← (M0[1],M1[1], · · · ,M2k−1[1]) . Vector of 2k digits.
7: C(C0,C1, · · · ,C2k−1) ← (M0[2],M1[2], · · · ,M2k−1[2]) . Vector of 2k digits.
8: for (i � 2k − 1; i ≥ 1; i � i − 1) do . Shift elements of H with stride of 1.
9: Hi← Hi−1

10: end for
11: H0← 0 . Set the �rst element of H equal to zero.
12: for (i � 2k − 1; i ≥ 2; i � i − 1) do . Shift elements of C with stride of 2.
13: Ci← Ci−2
14: end for
15: C0← 0, C1← 0 . Set the �rst two elements of C equal to zero.
16: carry � 0
17: for (i � 0; i < 2k; i � i + 1) do
18: (Ni,t) ← Li + Hi + Ci + carry
19: carry← t
20: end for
21: return N
22: end procedure

Therefore, the work estimates for both M5Mult and SequentialMult are equal:

TM5Mult
1 (k) � TI

1(k) + TSingleCM
1 (k) + TDoubleCM

1 (k) + TIII
1 (k) (5.10)

� TI
1(k) + TII

1 (k) + TIII
1 (k)

� TSequentialMult
1 (k)

Recall that in the previous section we claimed M5Mult is well-structured for parallel exe-
cution. Indeed, the algorithm leads to a low estimated span, and therefore, high degree of
parallelism:

TI
∞(k) � TM1

TSingleCM
∞ (k) � s(s − 1)

2
(TM2 + TA3)

TDoubleCM
∞ (k) � λs2(TM2 + TA3)

TIII
∞ (k) � TA3
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Algorithm 12 The algorithm for computing product of chunk c from both A and B.
1: input:

- Vector ®M of 2k triple digits for storing results.

- Two k-digit integers A and B stored as vectors ®A and ®B.

- Vector ®Z storing precomputed products.
- Chunk index c and chunk size s.

2: output:

- Vector ®M of 2k triple digits with updated results.

3: procedure SingleCM( ®M , ®A, ®B, ®Z, c , s)
4: for (d � 1; d ≤ s

2 ; d � d + 1) do
5: for (i � 0; i < s

2 ; i � i + 1) do
6: for (t � 0; t < 2;t � t + 1) do
7: if d ��

s
2 and t �� 1 then

8: continue
9: end if

10: j← i + d
11: i′← i + t ∗ s2
12: j′← j + t ∗ s2
13: if s ≤ i′ or s ≤ j′ then
14: [i′, j′] ← [j′, i′] . Swap values of i′ and j′.
15: end if
16: i′← i′ + c ∗ s
17: j′← j′ + c ∗ s
18: T← (Ai′ − Aj′)(Bj′ − Bi′) + Zi′ + Zj′

19: . Computing Karatsuba intermediate product.
20: M(i′+j′)← M(i′+j′) + T . One triple-digit addition.
21: end for
22: end for
23: end for
24: return M
25: end procedure

Collectively, the parallelism of M5Mult amounts to:

TM5Mult
∞ (k) � TI

∞(k) + TSingleCM
∞ (k) + TDoubleCM

∞ (k) + TIII
∞ (k)

� TM1 +
s(s − 1)

2
(TM2 + TA3) + (λs2)(TM2 + TA3) + TA3

� TM1 +
((2λ + 1)s2 − s)

2
(TM2 + TA3) + TA3

� (((2λ + 1)s2 − s)
2

+ 1)TM1 + (11
((2λ + 1)s2 − s)

2
+ 3)TA1

�

( (η + 11)(2λs2 + s2 − s)
2

+ (η + 3)
)
TA1 �

( (η + 11)(2ks + s2 − s)
2

+ (η + 3)
)
TA1
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Algorithm 13 The algorithm for computing product of chunks ci and c′ from both A and B.
1: input:

- Vector ®M of 2k triple digits for storing results.

- Two k-digit integers A and B stored as vectors ®A and ®B.

- Vector ®Z storing precomputed products.
- Chunk indices c and c′, and chunk size s.

2: output:

- Vector ®M of 2k triple digits with updated results.

3: procedure DoubleCM( ®M , ®A, ®B, ®Z, c , c′, s)
4: for 0 ≤ i < s do
5: for 0 ≤ j < s do
6: i′← i + c ∗ s
7: j′← j + c′ ∗ s
8: T← (A′i − A

′
j)(B

′
j − B

′
i) + Zi′ + Zj′ . Computing Karatsuba intermediate product.

9: M(i′+j′)← M(i′+j′) + T . One triple-digit addition.
10: end for
11: end for
12: return M
13: end procedure

To conclude, even though both M5Mult and SequentialMult have the same cost in
terms of arithmetic operations, however, M5Mult is well-structured to be parallelized and
has a high degree of parallelism. As it is shown in Figure 5.1, for all the values of 25 ≤ k ≤
214 and 1 ≤ η ≤ 5, TSequentialMult

1 (k) is usually less than TNaiveMult
1 (k). Obviously,

this makes M5Mult unsuitable for a sequential implementation. On the other hand, we
expect that an e�cient parallel implementation of M5Mult on GPUs will lead to high degree
of parallelism. In fact, we can estimate the degree of parallelism by using the complexity
estimates of the previous section for di�erent values of s, k, and η. For example, Figure 5.2
presents the estimates for degree of parallelism for various values of k with s � 32 for η � 5.

5.7 Experimentation

In this section, we present our experimental results for studying the performance of M5Mult.

First, we compare the performance of our GPU implementation of M5Mult against another
GPU implementation of schoolbook multiplication algorithm. The work in [90], up to our
knowledge, is the only other parallelization of schoolbook multiplication; the CUDA im-
plementation of this algorithm, which we will refer to as OptMult, is part of CUMODP
library[90].
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Figure 5.1: Estimated running-time ratio for various values of k and η.

Figure 5.2: Estimated degree of parallelism for various values of k with s � 32 and η � 5.
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Figure 5.3 presents the plot of average running time (in milliseconds) for computing batches
of k � 256 digit integers using OptMult and M5Mult, also, Figure 5.4 presents the ratio
diagram for the same comparison.

To have a better understanding of the performance of M5Mult and OptMult, we have
pro�led the two implementations on a NVIDIA GTX1080Ti for multiplying batches of N �

1024 integers of size k � 256 digits. Tables 5.4 and 5.5 present the performance counters for
M5Mult and OptMult, respectively.

Figure 5.3: The average running time (in milliseconds) for computing batches of k � 256 digit
integer multiplications using OptMult and M5Mult.

Table 5.4: Pro�ling results for computing a batch of N � 210 integers of size k � 256 digits
using M5Mult with s � 256 (λ �

k
s � 1) collected on NVIDIA GTX1080Ti.

Kernel for computing Zi’s (Loop I)
Metric Name Maximum

Achieved Occupancy 77 %
DRAM Read Throughput 163 GB/s
DRAM Write Throughput 149 GB/s

Shared E�ciency 0.00 %
DRAM Utilization High
Branch E�ciency 100.00 %

IPC 0.75
Instruction Replay Overhead 0.016

Shared Load Throughput 0.00 B/s
Shared Store Throughput 0.00 B/s

Kernel for computing SingleCM
Metric Name Maximum

Achieved Occupancy 49 %
DRAM Read Throughput 4.51 GB/s
DRAM Write Throughput 6.41 GB/s

Shared E�ciency 64.86 %
DRAM Utilization Low
Branch E�ciency 95.94 %

IPC 2.68
Instruction Replay Overhead 0.000073

Shared Load Throughput 1697 GB/s
Shared Store Throughput 472 GB/s

Kernel for adding Zi’s (Loop III)
Metric Name Maximum

Achieved Occupancy 80 %
DRAM Read Throughput 175 GB/s
DRAM Write Throughput 141 GB/s

Shared E�ciency 0.00 %
DRAM Utilization High
Branch E�ciency 100.00 %

IPC 0.189
Instruction Replay Overhead 0.007

Shared Load Throughput 0.00 B/s
Shared Store Throughput 0.00 B/s

Alternatively, we have a pragmatic but unfair comparison between our GPU implementation
and the highly optimized CPU implementation of the GMP library [9]. Our current imple-
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Figure 5.4: Comparing ratio of the average running time of OptMult to the average running
time of M5Mult for computing batches of k � 256 digit integer multiplications.

Table 5.5: Pro�ling results for computing a batch of N � 210 integers of size k � 256 digits
using OptMult from CUMODP library, collected on NVIDIA GTX1080Ti.

Kernel for computing OptMult (CUMODP)
Metric Name Max

Achieved Occupancy 68 %
DRAM Read Throughput 504.23 MB/s
DRAM Write Throughput 2.61 MB/s

Shared E�ciency 37.20 %
DRAM Utilization Low
Branch E�ciency 86.71 %

IPC 0.62
Instruction Replay Overhead 0.000586

Shared Load Throughput 173 GB/s
Shared Store Throughput 73 GB/s

mentation has signi�cant slowdown in comparison with GMP for integers larger than 1024
machine words. However, for values of k between 32 and 1024 machine words it demonstrates
promising speedup ratios. For example, Figures 5.5 and 5.6 present the ratio of running time
of GMP to M5Mult for computing multiplication of batches of N integers of 32 ≤ k ≤ 1024.
The results for GMP and M5Mult have been collected on an Intel-i7-7700K and a NVIDIA
GTX1080Ti, respectively.

As it is demonstrated in Figures 5.5 and 5.6, for 32 ≤ k ≤ 1024 M5Mult gains speedup as the
size of a batch increases. On the other hand, the performance of M5Mult drops as k grows
and gets closer to 1024.
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Figure 5.5: Comparing the ratio of the running time of GMP to the running time of M5Mult
for computing batches of N integer multiplications of 32 ≤ k ≤ 128 digits.

Figure 5.6: Comparing the ratio of the running time of GMP to the running time of M5Mult
for computing batches of N integer multiplications of 256 ≤ k ≤ 1024 digits.
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5.8 Discussion

As a future work, we would like to apply this algorithm for carrying out component-wise
multiplication of twiddle factors in computing FFT over large prime �elds. This can further
improve the performance of parallel implementation of FFT over large prime �elds.



6 Conclusion

Our results in Chapter 2 show the advantage of the big prime �eld approach. To be precise,
for a range of vector sizes, one can �nd a suitable large prime modulo which FFTs outperform
the CRT-based approach.

In Chapter 3 we have presented an implementation of Fast Fourier Transforms over gener-
alized Fermat prime �elds on multi-threaded processors. Our parallel implementations using
both specialized arithmetic and integer arithmetic from the GMP library achieve nearly lin-
ear parallel speedup. We noticed that the parallelization of our specialized implementation is
slightly more successful than our GMP implementation. We attribute this higher performance
to reduced number of arithmetic instructions due to using specialized arithmetic, minimal
memory usage, and unrolling base-case DFT’s and hard coding the constants. More precisely,
our results prove that developing specialized arithmetic (e.g. Montgomery multiplication,
Barret reduction, cyclic shift introduced in Section 3.2 and using inline assembly) can be ben-
e�cial. Doing so leads to reduced overhead compared to a more generic implementation such
as large integer arithmetic functions available in GMP, or other libraries on top of GMP.

In Chapter 4, we have presented the KLARAPTOR tool for determining optimal CUDA thread
block con�gurations for a target architecture, in a way which is adaptive to each kernel invo-
cation and input data, allowing for dynamic data-dependent performance and portable per-
formance. This tool is based upon our technique of encoding a performance prediction model
as a rational program. The process of constructing such a rational program is a fast and au-
tomatic compile-time process which occurs simultaneously to compiling the CUDA program
by use of the LLVM Pass framework. Our tool was tested using the kernels of the Poly-
bench/GPU benchmark suite.

Finally, in Chapter 5, we have presented M5Mult which is well-structured to be parallelized
and has a reasonably good degree of parallelism. Obviously, M5Mult is unsuitable for a se-
quential implementation. We have reported our experimental results for comparing the per-
formance of our GPU implementation of M5Mult against another GPU-based implementa-
tion of schoolbook multiplication, as well as integer multiplication of the GMP library which
targets CPUs.
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