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Abstract
The investigations into LIBOR have highlighted that it is subject to manipulation. We exam-

ine a new method for constructing LIBOR that produces an unbiased estimator of the true rate.
LIBOR itself is based solely on transactions. We allow for fines when a bank’s transaction is
different than a comparison rate, which depends on the set of transactions and non-manipulated
rates elicited by a revealed preference mechanism. These non-manipulated rates will always
be used in the fines, but transactions may not. We address how this approach applies to other
financial benchmarks and how it works even in markets in which there are few transactions.
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1 Introduction

The London Interbank Offered Rate (LIBOR) is supposed to represent the average rate at which

banks can borrow in the unsecured market. It is computed by taking the trimmed mean of the daily

reported borrowing rates of the banks on the LIBOR panel.1 Panel banks may want to manipulate

LIBOR to profit off of their exposure to the benchmark. Manipulating one of the rates by even a

fraction of a basis point can bring substantial gains: the market for derivative and loan products that

use LIBOR rates has been estimated at greater than $300 trillion (Wheatley, 2012). The ongoing

LIBOR scandal has already resulted in fines of over $9 billion for inappropriate submissions and

repeated attempts to manipulate LIBOR.2

There is a clear need to reform the process that determines LIBOR. Regulators and ICE, the

current administrator of LIBOR, have pushed to make LIBOR more transaction-based.3 We take

this as our starting point, and then refine it using two tools. First, we propose to add a revelation

mechanism, which we call the ‘revealed preference algorithm’. This will elicit the rates at which

the banks on the LIBOR panel would lend to one another at a given point in time. Second, we

create a comparison rate using the elicited rates and the set of transactions to define which banks’

transactions appear to be manipulated and issue fines to those banks. This reduces manipulation and

produces an unbiased estimate of the true rate. We set the fines and the comparison rate to minimize

the variance of this estimate. The optimal choice may involve using only the elicited rates for fines

(and will always involve those rates).

The model works as follows. First, the administrator designs the fines and the comparison rate.

Banks choose their transactions, taking into account that they can potentially manipulate LIBOR but

may be fined for doing so. The administrator sets LIBOR using only the banks’ transactions. Then,

the administrator elicits rates at which each bank would lend to one another using the ‘revealed

preference algorithm’ (RPA). The RPA requests the rate at which every other bank would lend to

a given bank. To ensure truthful reporting, a threshold rate is then chosen randomly, and if the

offered rate was below this threshold rate, then the offering bank must (synthetically) lend with

positive probability.4 As the LIBOR calculation does not include RPA rates, banks cannot influence

1Currently, this is done by removing the top and bottom quartiles of rates submitted, and taking the arithmetic mean
of the rest. See ICE, ‘LIBOR: Frequently asked questions’, https://www.theice.com/publicdocs/IBA LIBOR FAQ.pdf.

2To date, the scandal has hit a range of global banks, with the largest fines imposed on Deutsche Bank ($3.5 billion)
and UBS ($1.5 billion). Further investigations are still underway, and the scandal has been linked to manipulation of
other benchmark rates. At the time of this writing, one trader had been convicted of criminal charges in relation to
LIBOR manipulation, receiving a prison sentence of 11 years. See Council on Foreign Relations, “Understanding the
LIBOR Scandal,” http://www.cfr.org/united-kingdom/understanding-libor-scandal/p28729.

3See, e.g., https://www.theice.com/publicdocs/ICE LIBOR Roadmap0316.pdf
4Lending would be to the LIBOR administrator, and the promised repayment would be made only if an equivalent

loan to the bank would have been repaid. Thus, a synthetic bank loan may be created, which market participants will
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LIBOR by their actions in the algorithm. Finally, the administrator may fine any of the banks for a

transaction that it considers manipulated, using both the complete set of transactions and the elicited

RPA rates in the comparison rate to determine if the transaction was, indeed, manipulated.

The model has several novel features. First, there are two sources of information about banks

that the administrator doesn’t know: banks’ LIBOR exposures and banks’ borrowing costs. To

simplify the model, we assume that banks know each other’s borrowing costs (but LIBOR exposures

remain private information). Second, we note that banks may bias rates either to manipulate the

LIBOR rate or to avoid any punishments that the LIBOR administrator chooses to impose.5 Third,

we show that in situations in which there are very few transactions, such as crisis times, the revealed

preference algorithm can be used directly to generate the LIBOR benchmark.6

We examine the issue of collusion in the context of our model. Clearly, the events of the past

few years have shown that a LIBOR reporting mechanism is potentially subject to inappropriate

submissions both by banks in isolation7 and by banks colluding.8 We define collusion as an agree-

ment by two or more banks that is not enforceable in a court of law, and we show that collusion may

still exist in our mechanism although some elements of the mechanism serve as mitigants.

The LIBOR manipulation scandal triggered investigations into the manipulation of other bench-

marks. We discuss how our model applies to other benchmarks that have been subject to manipula-

tion, such as the WM/Reuters 4pm Foreign Exchange fix and ISDAFIX. In short, our model could

also be used quite easily in those fixings with very little adaptation.

Our approach is complementary to the proposals made in recent regulatory reviews. Martin

Wheatley (2012), in his review initiated by the British Chancellor of the Exchequer (the “Wheatley

Review”), made three principal suggestions: (1) maintain LIBOR as based on a reporting mecha-

nism; (2) tie LIBOR reports more to actual transactions; and (3) reduce the number of tenors (matu-

rities) and currencies for which a LIBOR rate exists when there are limited transactions. This third

point has already been implemented. The Financial Stability Board (2014), in a more recent and

wider-reaching review (the “FSB Review”), suggested: (1) retaining the LIBOR rate but strengthen-

ing it by tying it “to the greatest extent possible [to] transactions data”; and (2) augmenting LIBOR

view as equivalent to lending directly to the bank in question. We discuss this further in the text.
5Another motivation for banks to manipulate the rates they submitted was to disguise their credit risk. Until recently,

LIBOR rates submitted by banks were published immediately. This created the potential for stigma, particularly during
the height of the financial crisis. Recent reforms now mean that LIBOR submissions are made public only after three
months, so this incentive has been reduced and we do not consider it here.

6Duffie and Stein (2015) show this to be a relevant consideration: in 2012, even in USD, there were days on which no
transactions occurred in either the one-month or the six-month tenor.

7In the case against UBS, for example, the Financial Services Authority (FSA) found more than 1000 examples of
inappropriate submissions by UBS acting alone (Financial Services Authority, 2012).

8Liam Vaughan, Gavin Finch, and Lindsay Fortado, “UBS Trader Hayes exposed at core of LIBOR investigation,”
Bloomberg, 19 December 2012.
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with additional, nearly risk-free reference rates.

We take the imperative to retain the LIBOR rate as a primary benchmark as given, as both

reviews describe the drawbacks of moving to other measures.9 These drawbacks include the law-

suits that could arise from a wholesale transition to a new benchmark, substantial transaction costs,

and even the potential for broader financial instability.10 Keeping in mind the two reviews’ goal

to increase the relevance of transactions to the benchmark, our approach uses transactions directly

to calculate LIBOR. However, we show that transaction data are best augmented with the data

generated through the revealed preference algorithm when assigning fines to banks for potential

manipulation, to the point where transaction data is often best replaced entirely by the output of the

RPA. Finally, while we do not dispute the potential benefits of augmenting LIBOR with additional

benchmarks, improving the LIBOR mechanism reduces the need for a costly transition.

1.1 Related Literature

Since the LIBOR scandal came to light, some papers have examined the evidence on LIBOR manip-

ulation. Kuo, Skeie, and Vickery (2012) find that LIBOR tracks alternative measures of interbank

borrowing costs (the Federal Reserve’s Term Auction Facility, Fedwire, and ICAP’s New York

Funding Rate) but was lower at the height of the recent crisis despite the expectation that it would

be higher. LIBOR is also less diffuse than these other measures. These results suggest some degree

of manipulation. Similarly, Snider and Youle (2014) demonstrate in a theoretical model that rate

manipulation should lead to the bunching of reports around the cutoffs for the interquartile range,

and then show that the LIBOR data have this property. Finally, using an econometric model identi-

fied by banks’ rank order of LIBOR submissions, Youle (2014) finds that manipulation downwardly

biased the benchmark by eight basis points in the period between 2007 and 2009.

Some papers examine possible reforms to LIBOR. Duffie and Dworczak (2014) look at a mech-

anism design problem in which the administrator decides on optimal weights to assign to transac-

tions that may have been manipulated. In contrast to our paper, only one bank’s transactions are

considered, and the administrator is restricted to not impose fines and does not elicit information

from the banks themselves. Moreover, Duffie and Dworczak allow loan sizes to vary (we do not

study this aspect) and the mechanism designer assigns greater weight to larger loans. Eisl, Jankow-

9Duffie, Dworczak, and Zhu (2016) show that, in general, benchmarks may increase trade, improve matching, and
reduce search costs.

10Moreover, while other benchmarks exist, they measure subtly different things than LIBOR. For example, while a
benchmark based on CDS premia would accurately compile information about bank credit risk, it would fail to account
for costs of funding (liquidity). Similarly, a benchmark based on repo rates would reflect bank funding costs, but fail to
fully account for bank credit risk. Both reviews point out that LIBOR cannot be replicated by any single pre-existing
instrument.
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itsch, and Subrahmanyam (2014) show that setting LIBOR equal to the median submission (the ex-

treme version of a trimmed mean) lowers the benefits of manipulation. Youle (2014) also argues for

using the median submission and shows that it could reduce manipulation by a substantial amount.

Duffie, Skeie, and Vickery (2013) show that the absence of current transactions may be mitigated

by using a sample window of previous transactions. Unlike these papers, however, ours focuses

on eliciting information through the revealed preference algorithm and using that information (with

fines for misreporting) alongside transaction data to improve the accuracy of the mechanism.

Both the Vickrey-Clarke-Groves (VCG) and d’Aspremont and Gerard-Varet (AGV) mecha-

nisms can incentivize agents to truthfully report their private information. These mechanisms do

not work in the LIBOR setting, however, as they fail when there is more than one source of private

information. In the LIBOR case, there are two important sources of private information: banks’

exposures to LIBOR and banks’ actual borrowing costs.11

The mechanism design literature also includes a number of possible approaches when agents

have some information over each other’s type. In this type of problem, for example, the principal

may wish to maximize social welfare but does not know the individual agents’ utility functions.

Demski and Sappington (1984) show that, while a traditional mechanism design approach gener-

ates a mechanism that can achieve the societal first-best and maximize the principal’s payoff, this

mechanism is plagued by problems of multiple equilibria. Ma, Moore and Turnbull (1988), Cremer

and McLean (1985), Ma (1998), and Moore and Repullo (1998) consider similar problems. The use

of the revealed preference algorithm that we propose bears some similarity to Moore and Repullo

(1998), as we use a mechanism to generate information from panel banks that we then use to punish

a reporting bank if it is deemed to have manipulated. However, we do not require as they do that

all agents to have all information about other agents; in our model, LIBOR exposures are private

information.

2 Assumptions and definitions

We begin by describing the market for loans. We take a reduced form approach that is similar to

the setup in Duffie and Dworczak (2014). As in their paper, manipulation of transactions cannot

be eliminated, but a mechanism can be designed to minimize it. Our model differs from theirs in

three important respects. First, we allow the administrator to impose a fine on banks when they

are suspected of manipulation, while they rule out the use of fines. Second, we consider a panel

11Chen (2016) demonstrates that the AGV mechanism can solve misreporting incentives when all banks have known
exposures in the same direction. We allow for exposures to be private information (and to be in either direction for any
bank) and make banks’ borrowing costs private, thus making the AGV and VCG mechanisms inapplicable.
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of banks, whereas they consider one representative bank. This is important, as: (i) we consider the

use of all banks’ transactions to determine whether an individual bank is manipulating; and (ii) we

must, therefore, consider the problem where there is a strategic interaction between banks’ choices

of their transaction rates. Third, we introduce a mechanism (the revealed preference algorithm) that

elicits information that is used by the LIBOR administrator to detect and punish manipulation.

There are n banks on the LIBOR panel. LIBOR is set daily at 11am. Each bank i, where

i ∈ {1, ...,n}, carries out T transactions of size ≥ q̄ with other banks during the reporting window.

A transaction consists of the bank borrowing an amount at a fixed rate from another bank in the

interbank market. The lender need not be a LIBOR panel bank. We discuss the determination of the

rate below.

The reporting window lasts from the previous setting of LIBOR until 10:59am. The amount q̄

is the threshold size above which the administrator wishes to include transaction rates in LIBOR. It

is exogenously determined and common knowledge.

We assume that there is a true market rate Y that measures the market risk underlying all

transactions for the reporting window. The true market rate Y is unobserved by any bank or the

administrator. Write:

Y = y+ζ, (1)

where y is known to be the mean, and ζ is an error term with mean zero and variance σ2
Y .

Let t ∈ {1, ...,T} index the transactions. The index t does not refer to time, but simply to the

t−th transaction for a given bank. Let X t
i be the market rate for each transaction t — that is, the

market clearing rate at which bank i can borrow when there is no manipulation.

Each market rate X t
i consists of two parts:

X t
i = Y + ε

t
i, (2)

where Y is the true market rate and is unobserved, and εt
i is an error term that is independent and

identically distributed with mean zero and variance σ2
ε .12

We make the following assumption on the information structure:

Assumption 1. All of the banks are endowed with knowledge of the market rates {X t
i }∀i,t . The

administrator does not know this information.

We assume that banks’ knowledge of market rates comes from their participation in the money

12Our results are robust to including a bank-specific premium term — i.e. X t
i = Y +βi + εt

i , where βi is constant for
each bank and can be observed by the administrator. There are good reasons to think that such a term, if not time-varying,
may be observable by an administrator with a large archive of historical transaction data.
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markets and their monitoring of counterparties. This assumption represents the fact that the banks

are likely to know much more about the market than the administrator does. In reality, it is likely

that banks may know only a subset of the market rates; that is, (a) bank i knows all of its own market

rates (the {X t
i }∀t), and (b) banks j 6= i know those market rates X t

i where they are either the bank

who is lending to bank i or they were bidding to lend to bank i but lost out. Assumption 1 makes the

model more tractable by assuming that all banks have symmetric information about market rates.

Define X̄i as the average market rate for bank i:

X̄i :=
1
T

T

∑
t=1

X t
i = Y + ε̄i, where ε̄i :=

1
T

T

∑
t=1

ε
t
i, (3)

and X̂ as the average market rate for all banks:

X̂ :=
1
n

n

∑
i=1

X̄i = Y + ε̂, where ε̂ :=
1
n

n

∑
i=1

ε̄i. (4)

Each bank i privately observes Ri, its own exposure to LIBOR. This exposure may be positive

or negative.13 We assume that this exposure is linear — i.e., the payoff from a change in LIBOR is

Ri multiplied by the change in LIBOR. Each Ri is independent and identically distributed with zero

mean and variance σ2
R and is independent of all the other random variables.14 Let R̂ = 1

n ∑
n
i=1 Ri, the

average LIBOR exposure across the banks.

Every bank i chooses a transaction rate st
i for each transaction t. This is the actual rate at which

the bank borrows, and is observed in the market and used for the LIBOR calculation. If st
i is different

from X t
i , then we say that bank i is manipulating. Manipulation costs the bank an amount d(st

i−X t
i ),

where d(·) is a convex symmetric non-negative function. Broadly, this cost may represent borrowing

at an uneconomic rate or needing to compensate a counterparty for lending at an uneconomic rate.

We assume that it is quadratic, and d(x) = δ

2 x2, where δ > 0 is a fixed parameter.

We assume for simplicity that all banks choose their transaction rates simultaneously.

For a given bank i, let s̄i be the simple average of its transaction rates:

s̄i :=
1
T

T

∑
t=1

st
i. (5)

13The term Ri represents bank i’s exposure to the LIBOR benchmark. Banks write contracts which are indexed to
LIBOR, and so are exposed to changes in the benchmark. For example, a bank may issue a ”fixed for floating” swap in
which it enters into an agreement to pay a counterparty a stream of payments indexed to LIBOR, in exchange for a stream
of payments at an agreed fixed rate. This contract moves out of the money as LIBOR rises and moves into the money as
LIBOR falls. For the issuing bank Ri is negative, while for the counterparty Ri is positive.

14Our results are robust to assuming a non-zero mean for Ri.
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After the banks carry out their transactions, the LIBOR calculation process begins. Banks’

transaction rates {st
i}∀i,t are automatically submitted. Let the set of all transaction rates be S. The

administrator uses these to compute LIBOR according to an aggregation function L(S). We assume

that the LIBOR aggregation function is a simple average of the banks’ transaction rates.

Assumption 2 (LIBOR aggregation function). The LIBOR aggregation function is a simple average

of banks’ transaction rates; i.e.,

L(S) :=
1

nT

n

∑
j=1

T

∑
t=1

st
j. (6)

This assumption of a simple average is an approximation to what is done in practice, where

LIBOR is a trimmed mean of the submitted rates. As long as the number of outliers discarded is

small compared to the number of banks n, a simple average is a reasonable approximation for the

trimmed mean.

The revealed preference algorithm (RPA) is run immediately after LIBOR is calculated. At the

time that the RPA is run, a given bank j’s willingness to lend to bank i is assumed to be distributed

identically to the market rates X t
i . Let the lowest rate at which bank j still profits from making a

loan of size q̄ to bank i be the willingness to lend wi j = Y + εw
i , with εw

i distributed identically to εt
i

(implying, most importantly, that the variance of εw
i is equal to σ2

ε). The output of the RPA is the

lowest stated rate at which bank j is willing to lend to bank i, χi j, where j ∈ {1, ..i−1, i+1, ..,n}.
We will show that the unique equilibrium involves the stated rate equalling the willingness to lend,

i.e., χi j = wi j .

The administrator then may use the actual transactions and the rates elicited from the RPA to

determine whether a bank manipulated its transactions. We will later define a comparison rate, Ŷi,

that the administrator develops for this purpose. When bank i transacts at a rate which deviates from

this comparison rate by an amount st
i−Ŷi, the administrator will fine the bank an amount p(st

i−Ŷi).

We make the following assumption about the fine:

Assumption 3. We assume that the fine is quadratic in form and that there is zero fine when a

bank’s transaction rate matches the comparison rate; i.e., p(st
i− Ŷi) =

a
2(s

t
i− Ŷi)

2, where a ∈ [0,A]

is a choice function of the administrator.

The constraint a≤ A in Assumption 3 implies that the LIBOR administrator cannot levy arbi-

trarily high punishments. One reason for this could be industry lobbying; another could be that a

financial stability regulator forbids punishments that are so large that they could threaten a bank’s

solvency. Similarly, a ≥ 0 means that the administrator cannot levy a negative punishment — that

is, reward a bank for transacting at rates close to the comparison rate.15 Finally, as the setup of the

15One justification for this assumption is that public opinion prevents the administrator from paying banks simply for
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problem is symmetric, the administrator considers only symmetric punishment functions.

We now summarize the timing of the model:

1. The administrator sets the parameter for the fine a and the structure of the comparison rate Ŷi.

2. A true market rate Y is realized for the reporting window.

3. For each bank i ∈ {1, . . . ,n}, its LIBOR exposure Ri is realized and observed by bank i.

4. For each transaction t ∈ {1, . . . ,T}, bank i’s market rate X t
i is realized and observed by all

banks.

5. The transaction rates st
i are chosen simultaneously by all banks i for all t.

6. The administrator observes all transactions and sets LIBOR as L(S).
7. The administrator runs the revealed preference algorithm, which generates n−1 stated rates

{χi j} for each bank i, where j ∈ {1, ..i−1, i+1, ..,n}.
8. The administrator calculates a comparison rate Ŷi using the set of transactions S and the stated

rates generated by the RPA {χi j}. The administrator levies fines p(st
i − Ŷi) based on the

deviation of transaction rates from the comparison rate st
i− Ŷi.

While it is standard to proceed by solving the game backwards, we will begin by going through

the revealed preference algorithm, as it is useful to understand how the algorithm elicits rates truth-

fully, and as it will be used as an input for the administrator to construct the comparison rate for

fining misbehaving banks. We use Perfect Bayesian Equilibrium as our solution concept.

3 The Revealed Preference Algorithm

The revealed preference algorithm (RPA) is a mechanism designed to elicit the market rates from

banks.16 It is run for each bank i ∈ {1, ...,n}. First, each bank j ∈ {1, ..i−1, i+1, ..,n} is asked the

lowest rate at which it would be willing to lend q̄ to bank i at the time the algorithm is run. The rate

stated by bank j is denoted by χi j. Then, the administrator chooses a threshold rate vi according to

a probability distribution F(·). The administrator commits to F(·) in advance and this is common

knowledge. F(·) has full support.17 The selection of the threshold vi is independent of all of the

stated rates χi j — i.e., it is not impacted by banks’ statements of willingness to lend to bank i. If

no bank j states χi j ≤ vi, the algorithm ends. Otherwise, one of the banks j that states χi j ≤ vi is

chosen with equal probability. This bank must ‘synthetically’ lend an amount q̄ to bank i at a rate

of vi. At this point, the algorithm ends.

honest participation in the market.
16In Coulter and Shapiro (2015), we use a more elaborate mechanism, entitled the whistleblower mechanism, to elicit

borrowing costs.
17While the particular distribution chosen will have implications for the cost of the mechanism to the administrator

(we discuss this below), any distribution with full support is sufficient.
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The synthetic loan is the key part of this mechanism. It occurs with a positive probability

and thus incentivizes banks to put their money where their mouth is. This is where the concept of

revealed preference is used. That is, if a bank is willing to lend at any amount greater than or equal

to its willingness to lend wi j, its optimal strategy is to state a rate that is equal to its willingness to

lend, i.e. χi j = wi j. Bank j is required to make a synthetic loan only if vi ≥ χi j, so the bank will

almost surely profit from the synthetic loan. This induces bank j to reveal all rates at which it makes

a positive profit, in order to secure the loan.

We state that the loan must be synthetic, because it would be difficult for the LIBOR adminis-

trator to force a panel bank to take on a loan. Instead, we envision that the administrator would itself

take on the loan. The administrator demands a loan of q̄, which is repaid with interest if and only if

a similar loan to bank i would have been repaid. Therefore, this is payoff-equivalent to lending to

the reporting bank itself, and could be achieved through some sort of escrow account.18 Note that

the administrator does not have to force the lending bank to make the loan, as the lending bank will

find it strictly beneficial to do so.

We formally define the revealed preference algorithm as follows:

Revealed Preference Algorithm
The revealed preference algorithm is run for all banks i = 1, ...,n within the LIBOR panel. For each

bank i:

1. The administrator commits to using a distribution F(·) with full support to choose threshold

rate vi.

2. All non-i banks j state the lowest rate at which they are willing to lend an amount q̄ to

(synthetic) bank i. This is the ‘output’ variable χi j.

3. The administrator chooses a threshold rate vi. If no bank j expressed willingness to lend at

this rate or below, the algorithm ends. Otherwise, one bank, selected randomly from the set

of banks that stated χi j ≤ vi, must lend q̄ to (synthetic) bank i at the rate vi.

We now prove that truthtelling is the unique equilibrium.

Proposition 1. The unique Perfect Bayesian equilibrium of the revealed preference algorithm is

truthful reporting — that is, for every bank j to state χi j = wi j with respect to every other bank i.

Proof. See the Appendix.

Therefore, by Proposition 1, the revealed preference algorithm stated rates {χi j} is equivalent

to the set of willingnesses to lend {wi j} at the time the algorithm is run. This output can be used by

18Another potential way to structure this exposure would be to have the lender sell a credit default swap on the reporting
bank to the administrator, with the payment adjusted accordingly. This would mean less cash out initially.
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the administrator to set the comparison rate and thus calibrate the fine for each bank.

The proof demonstrates that by revealed preference, all banks have a strict incentive to reveal

the rates wi j since the algorithm provides them with a positive probability of making a profitable

loan by doing so.

We have not placed much importance on the distribution F(·) from which the threshold rate vi

is chosen. This distribution does not directly impact the mechanism — banks report truthfully no

matter what the distribution is, as long as it has full support. However, when loans are probabilis-

tically required at higher and higher rates (a thicker right-tail of the distribution), this has a cost to

the administrator, who has to take the synthetic loan at a rate that is far off-market.19

With the RPA defined, we next turn to the full mechanism.

4 A mechanism to minimize manipulation

The revealed preference algorithm elicits rates that are reported truthfully. However, they are still

noisy estimates of the underlying true rate. Gathering more of those estimates would be better, but

it may be costly to run the algorithm multiple times. Instead, the administrator can exploit its access

to a large source of data that has information on borrowing rates: the transactions themselves.

Regulators (see Financial Stability Board, 2014) and ICE, the current administrator of LIBOR,

have determined that LIBOR should be based on transactions to the greatest extent possible. We take

that as a given in our model and base LIBOR only on transaction data. Nevertheless, it is obvious

that it is still possible to manipulate LIBOR since a bank may transact at rates that it chooses.20 We

counter this by allowing the administrator to set fines for transactions that appear to be manipulated.

In order to determine which transactions may be manipulated, we compare each transaction to a

comparison rate, consisting of a weighted average of (i) the complete set of transactions and (ii) the

rates elicited from the RPA.

We will demonstrate that this produces an unbiased estimate of the true rate. Thus, the admin-

istrator sets the weights so as to minimize the variance of the benchmark. We show that the RPA

rates will always be used in order to detect manipulation, while the transaction rates may not be

used.
19Interestingly, this could make the mechanism revenue neutral in expectation, as the administrator receives the fines

but pays excessive returns in the RPA.
20For example, a borrowing bank could refuse the lowest offers (to push up LIBOR) or solicit lower than market offers

by offering direct compensation on other transactions.
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4.1 The comparison rate for bank i

The administrator can impose a fine on each reporting bank i if the transaction rates deviate from

a comparison rate for bank i, chosen by the administrator. We assume that, for a transaction st
i , the

administrator uses a comparison rate Ŷi consisting of a linear combination of the average transaction

rate of all banks other than i, and the average of all RPA rates other than those stated by bank i:

Ŷi := α · 1
(n−1) ∑

j 6=i
s̄ j +(1−α) · 1

(n−1)2

n

∑
k=1

∑
j 6=k,i

χk j, (7)

where α ∈ [0,1] is a weighting parameter chosen by the administrator, s̄ j is the average transaction

rate submitted by bank j, and χk j is the rate at which bank j stated that it would lend to k in the

RPA.21 The fine for each transaction is then given by the function p(st
i− Ŷi) defined in Assumption

3. Note that Ŷi is independent of t.

In Equation (7), we include all RPA rates that are not influenced by bank i. These comprise all

of the RPA rates at which other banks state they would lend to bank i, plus all of the RPA rates for

lending to non-i banks, other than those stated by bank i. In fact, given the setup, we could use any

subset of these rates, rather than all of them. This is because when choosing a transaction rate, bank

i will take expectations over Ŷi. The expectation of each of the χk j in Equation (7) is the same: it is

the expectation of Y given bank i’s information.22 Therefore it makes no difference which subset of

RPA rates are used in Equation (7).23

Since the comparison rate Ŷi is independent of all transaction rates chosen by i and all RPA

rates input by i, it cannot be directly manipulated and creates no incentive to strategically lie about

lending rates in the RPA. Furthermore, there are no LIBOR-related incentives for the banks to

manipulate the RPA rates as these rates are not included in the LIBOR calculation.

21As a robustness check, we have considered a more general comparison rate which includes bank i’s own transaction
rates for all u 6= t; i.e. it takes the following form:

Ŷ t
i := α1 ·

1
(n−1) ∑

j 6=i
s̄ j +α2 ·

1
(T −1) ∑

u 6=t
su

i +(1−α1−α2) ·
1

(n−1)2

n

∑
k=1

∑
j 6=k,i

χk j,

where we have added a t index to the comparison rate because there is now a dependence on t. It turns out that the
administrator finds it optimal to set α2 to zero, in order to prevent the possibility of bank i being able to manipulate
its own comparison rate. Therefore, we do not consider this formulation in our paper. The derivation is available upon
request.

22We will discuss this expectation in detail in the following subsection.
23In fact, there are situations (not modelled) in which including as many RPA rates as possible would be useful. For

example, suppose that the administrator faces an expected net revenue constraint, so that the expected amount of money
raised from fines must not exceed the expected amount paid out in the RPA mechanism. As the fine is quadratic in form,
its expectation is related to the variance of the comparison rate, which is strictly decreasing in the number of rates used.
Thus including more RPA rates loosens the constraint.
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In choosing the weight on transactions α, the administrator faces a trade-off. Increasing the

value of α places more weight on the (n− 1)T transaction rates submitted by all other banks, but

these can be distorted by those banks’ manipulations. In contrast, the RPA rates are free from

manipulation by any bank. However, there is an issue with the RPA rates. When the banks take

expectations of the RPA rates, those expectations will use two sources of information. First, there

will be information the administrator doesn’t know; i.e., the market rates. It is good for the admin-

istrator for the bank to use this information when setting its transaction rate. Second, there will be

information the administrator does know; i.e., the mean y of the true rate Y . It isn’t useful to the

administrator for the bank to use this information when setting its transaction rate, as it is common

knowledge. Depending on how the banks weight these two sources of information, the administra-

tor may benefit more from using the transactions in the comparison rate than from using the RPA

rates.

4.2 The bank’s problem

When banks choose their transactions rates, they do not know the value of the true market rate Y

but can infer it from two pieces of information. First, they know its unconditional mean y. Second,

they know all of the banks’ market rates {X t
i }, and each of these is an unbiased estimate of Y . As

all banks know these two pieces of information, they have the same expected value of Y .24

Let each bank’s expectation of the true market rate Y be:

e := Ei[Y ] = γy+(1− γ)X̂ , ∀i = 1, . . . ,n, (8)

where Ei[·] reflects expectations given bank i’s information {{X t
j}∀ j,t ,Ri} and the term γ ∈ [0,1] is

a weighting parameter. The term X̂ is the average of all the banks’ market rates.

For any weight γ, the expectation e is an unbiased estimator of the true market rate Y . As

each bank is risk-neutral, we will not be able to deduce an optimal value for γ, and so it remains

an exogenously-determined parameter. We further assume that all banks choose the same γ, for

tractability. The efficient estimator — i.e., that which minimizes Ei[(e−Y )2] — corresponds to

γ∗ = σ2
ε

nT σ2
Y+σ2

ε

. If the banks had some degree of risk-aversion it would be optimal to choose γ = γ∗.

We will discuss the effect of the parameter γ on the solution.

Given this, all banks k form the same expectations about the RPA rates Ek[χi j] = e for any i

and j. In other words, all banks have the same expectations about all banks’ RPA rates, including

their own.
24The only information that banks do not share are their own LIBOR exposures Ri, but there is no rationale for a bank

to base its expectations of the true market rate Y on its own exposure to LIBOR.
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Bank i chooses each transaction rate st
i , where t ∈ {1, . . . ,T}, to maximize its expected payoff:

Πi := RiEi[L(S)−L(S−i,{X t
i })]−

T

∑
t=1

d(st
i−X t

i )−
T

∑
t=1

Ei[p(st
i− Ŷi)], (9)

where (S−i,{X t
i }) is the set of transaction rates with each st

i replaced by the corresponding X t
i for

t ∈ {1, ...,T}; L(·) is the LIBOR aggregation function; d(·) is the cost of manipulation; and p(·)
is the fine function. By choosing a transaction rate different from its market rate, the bank earns a

payoff from manipulating LIBOR, suffers a cost of transacting at an uneconomic rate, and pays a

fine to the regulator in expectation.

Given our assumptions on the quadratic cost of the manipulation and fine functions, the ex-

pected payoff becomes:

Πi := RiEi[L(S)−L(S−i,X t
i )]−

T

∑
t=1

δ

2
(st

i−X t
i )

2−
T

∑
t=1

a
2
Ei[(st

i− Ŷi)
2]. (10)

In order to solve for a bank’s choice of transaction, we must first find a bank’s expectation of other

banks’ transaction rates. We do this in the following Proposition.

Proposition 2 (Expected transaction rates). For any bank j, all other banks i 6= j have the same

expectation of j’s transaction rate Ei[st
j]. This expectation is uniquely determined and is a linear

combination of the parameters of the model and the banks’ market rates:

Ei[st
j] =

δ

δ+a
·X t

j︸ ︷︷ ︸
manipulation

cost effect

+
δ

δ+a(1−α)

(
1− δ+a

δ+a(1+ α

n−1)

)
·
(

∑
l 6= j

X̄l +
aα

δ+a
X̄ j

)
︸ ︷︷ ︸

incentive to be close

to average transaction rate

+
a(1−α)

δ+a(1−α)
· e.︸ ︷︷ ︸

incentive to be close

to average RPA rate

(11)

Proof. See the Appendix for the full proof. We briefly outline the steps of the proof here. A bank

i chooses each of its transaction rates st
i to maximize Equation (10). Since other banks’ transaction

rates affect bank i’s payoff, we need to solve for bank i’s beliefs about each of the other banks’

transaction rates. By taking each bank’s expectation of each other bank’s first-order condition, and

considering that this must be true for all pairs of banks and all parameter values, we can uniquely

find the solution.

Banks have common expectations about each other’s transaction rates because they have almost

entirely overlapping information sets. A bank’s LIBOR exposure Ri is the only private information

that it has and its peers do not. Given the assumption of zero correlation between these exposures,
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a bank would not expect its own exposure to LIBOR to be correlated with other banks’ transaction

rates.

The first term in Equation (11) represents the direct effect of the cost of manipulation δ. When
δ

a is high, the bank’s desire to reduce this cost is more important than the desire to be close to the

comparison rate, and so the market rate X t
j has a larger marginal effect on j’s choice of transaction

rate st
j. When δ

a is low, the bank is much more concerned about the punishment and places relatively

little weight on X t
j .

The second term in Equation (11) reflects the incentive to be close to other banks’ average

transaction rates to reduce the expected fine. The term is increasing in α, the weight placed on

average transaction rates in the comparison rate. When α = 0, the term is equal to zero. The term

∑l 6= j X̄l is the average of other banks’ market rates. However, j also anticipates that other banks’

transaction rates will be affected by its own market rates X̄ j, and it needs to account for these too,

albeit weighted by a term aα

δ+a < 1.

The final term in Equation (11) reflects the incentive to be close to the average RPA rate. The

expected value of each RPA rate is e. The final term in Equation (11) is decreasing in α, as less

weight is placed on the RPA rates in the punishment benchmark, and it equals zero when α = 1 and

no weight is placed on the RPA rates.

Given the expectations found in Proposition 2, we find each bank’s optimal choice of transac-

tion rate and plug those into LIBOR.

Proposition 3 (LIBOR solution). When each bank i chooses its optimal transaction rate st
i , the

LIBOR rate is given by:

L(S) =
δX̂ +a(1−α)e

δ+a(1−α)
+

R̂
nT (δ+a)

. (12)

Proof. See the Appendix. We use Proposition 2 to solve for st
i and then take an average of all banks’

transaction rates over i = 1, . . . ,n and t = 1, . . . ,T .

The first term in the expression for LIBOR (Equation 12) is a weighted average of the average

of the banks’ market rates X̂ and the estimated RPA rates e. If α = 1, then each bank would care

about the direct cost of manipulation and about being close to each other’s transaction rates. As all

other banks have the same concerns, they would all minimize the expected manipulation cost and

choose an average transaction rate closer to the average of the banks’ market rates X̂ . In contrast,

if δ = 0 and α = 0, then banks would care only about anticipating the RPA rates and would choose

transaction rates closer to e.

The second term in Equation (12) reflects the incentive for banks to manipulate their transaction
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rates. This is increasing in the average exposure to LIBOR R̂, and is decreasing in nT , because the

marginal effect on LIBOR of manipulating transactions is decreasing in nT . It is divided through

by δ+a, which reflects the importance of the cost and the fine associated with manipulation.

We now examine the properties of LIBOR and the administrator’s design of the fines.

4.3 The administrator’s problem

The administrator’s objective is to ensure that LIBOR reflects the true market rate Y . Specifically,

the administrator aims to minimize the expected squared difference between LIBOR and Y .25 This

means that the administrator will be willing to tolerate manipulations on the part of individual banks,

so long as they do not have a large aggregate impact on LIBOR. Its loss function is:

Λ := EA

[
(L(S)−Y )2

]
, (13)

where EA[·] denotes expectation with respect to the administrator’s information set. The information

set contains neither the LIBOR exposure terms {Ri}, nor the banks’ market rates {X t
i }.

Examining the argument of the administrator’s loss function, we find:

L(S)−Y =
δ(X̂−Y )+a(1−α)(e−Y )

δ+a(1−α)
+

R̂
nT (δ+a)

,

=
δε̂+a(1−α)(−γζ+(1− γ)ε̂)

δ+a(1−α)
+

R̂
nT (δ+a)

,

(14)

where ε̂ = X̂ −Y and ζ = Y − y represent the error terms of X̂ and Y around their means. We can

prove the following property about LIBOR.

Proposition 4. LIBOR is an unbiased estimator of Y .

This result is straightforward, as the LIBOR exposures {Ri} and the error terms ε̂ and ζ all

have zero mean under the administrator’s information set. Note that this property depends on the

fact that LIBOR is calculated using transactions.

25This is in line with the objective function in Duffie and Dworczak (2014).
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Using this, we can simplify the administrator’s loss function:

Λ = EA[(L(S)−Y )2],

= VarA[L(S)−Y ], as L(S) is an unbiased estimator for Y,

=
( a(1−α)γ

δ+a(1−α)

)2
σ

2
Y︸ ︷︷ ︸

uncertainty about Y

+
(

1− a(1−α)γ

δ+a(1−α)

)2 σ2
ε

nT︸ ︷︷ ︸
asymmetric information

about banks’ market rates

+
σ2

R

n3T 2(δ+a)2︸ ︷︷ ︸
uncertainty about banks’

LIBOR exposures

, (15)

where the final line comes from using the variance operator on Equation (14) and noting that each

term is independent with zero mean.

The three terms in this expression for the administrator’s loss Λ represent the three fundamental

sources of uncertainty that prevent the administrator from accurately estimating the true market rate

Y using our mechanism.

The first term in Equation (15) reflects the uncertainty in the value of Y . Banks make their

transactions closer to the expected RPA rate when 1−α is larger. However, when γ is also large, the

expectation of RPA rates more strongly weights the mean y of Y , which is a noisier estimate when

σ2
Y , the variance of Y , is larger.

The second term in Equation (15) reflects the administrator’s uncertainty about banks’ market

rates relative to Y . This term represents the asymmetric information between the banks and the ad-

ministrator, since the banks know all the market rates with certainty. This becomes more important

as banks focus on the market rates: when the cost of manipulation δ is large, banks transact close

to their market rates to reduce this cost; and when α is large, banks transact close to the average

market rate because the fine is based more on transactions.

The final term in Equation (15) reflects the uncertainty about banks’ private exposures to LI-

BOR, which incentivize manipulation and are unknown to both the administrator and the other

banks. This decreases as the number of panel banks n and sample of transactions T increase.

We now solve for the fine that minimizes the administrator’s expected loss.

Proposition 5 (Optimal fine). To minimize the expected loss from manipulation:

i) The administrator sets the size of fine to its maximum possible value a∗ = A.

ii) If γ≤ (1+ δ

A)γ
∗, where γ∗ = σ2

ε

nT σ2
Y+σ2

ε

, then the administrator sets α∗ = 0 and uses only the

RPA rates in the comparison rate. If γ > (1+ δ

A)γ
∗, then the administrator sets α∗ = 1− δγ∗

A(γ−γ∗) .

As long as σ2
ε > 0,δ > 0 and A < ∞, the administrator will always use the RPA rates in the

mechanism for any finite panel size n and number of transactions T .
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Proof. See the Appendix.

The administrator sets the fine to its maximum level by fixing a∗ = A. It is optimal to do this

when banks’ LIBOR exposures are non-zero (σ2
R > 0), in order to disincentivize manipulation.26

The administrator’s loss is everywhere decreasing in the fine size A, so a higher permissible fine

leads to more accurate LIBOR submissions. The administrator’s choice of α∗ (the weight on the

average transaction rate in the comparison rate) is non-decreasing in A and, when γ > γ∗, tends to 1

as A→ ∞. As the punishment becomes larger, banks dare not manipulate, and so the administrator

has fewer concerns about using the average transaction rates.

The administrator always uses the RPA rates in the comparison rate. This demonstrates that

eliciting rates through the algorithm strictly improves upon using transactions. It is not surprising

that the RPA rates would be used, as they provide additional information. The bonus feature that

they are not manipulated can make them strictly more useful than transactions for fining banks.

They elicit banks’ private information very efficiently. We now discuss this in more detail.

The administrator’s optimal weight placed on banks’ transactions α∗ is weakly increasing in γ,

the weight that banks place on y in their estimates of the true market rate. When γ is relatively low,

then e (the banks’ expected value of Y ) assigns more weight to the banks’ private information X̂

and less to the public information y. As this private information is relevant to the estimation of the

true market rate Y , the administrator wants the banks to use it in determining their transaction rates

and thus improve the accuracy of LIBOR as an estimator for Y . The administrator can do this by

placing more weight on the RPA rates (i.e. by reducing α): as the banks’ expectation of each RPA

rate is e, they will use their knowledge of X̂ in selecting a transaction rate. In fact, when bank places

sufficiently low weight γ on y in their estimates of the true market rate Y — and thus sufficiently

high weight on their knowledge of the market rates — then the RPA rates become so accurate that

the administrator does not need to use transaction rates at all in the comparison rate.

As γ increases, banks place more weight on the public information y in their expectations of

the RPA rates, so e becomes a less accurate estimator for Y . The accuracy of the other banks’

transaction rates as an estimator for Y is not affected by the value of γ. Therefore the administrator

places less weight on the RPA rates in the comparison rate and correspondingly more weight on the

average transaction rate; i.e., the administrator increases α with γ.

The cut-off point for γ is related to γ∗, which is the efficient estimator for e — i.e., it is the value

26Note that the solution is not explicitly dependent on σ2
R (except insofar as the proof of Proposition 5 requires that σ2

R >
0) because the banks’ exposures to LIBOR have mean zero. As stated earlier, this solution is robust to this assumption.
Suppose that the banks’ LIBOR exposures had some known non-zero mean ρ. Then, the administrator would subtract a
term in ρ from the average transaction rate in order to produce a LIBOR value that remains an unbiased estimator of Y .
A proof of this is available from the authors on request.
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of γ that minimizes the variance of e−Y . Writing γ∗ = 1− nT σ2
Y

nT σ2
Y+σ2

ε

, we can think of γ∗ as a measure

of the degree of asymmetric information between banks and the administrator. The numerator in

the fraction is the common uncertainty that both banks and the administrator face in anticipating

the value of the true market rate Y . The denominator in the fraction is the total uncertainty faced

by the administrator alone. When γ∗ is high, information asymmetry is high, and the administrator

fears that it will be difficult to determine whether banks are manipulating. The administrator guards

against this by setting α∗ low, as the RPA rates are robust against manipulation by individual banks.

As the cost of manipulation δ increases, α∗ weakly decreases. Equation (12) tells us that the

average transaction rate is a weighted average of the average market rate X̂ (with weight δ) and the

expected RPA rate e (with weight a(1−α)).27 As δ increases, the weight on the average market rate

X̂ increases, so the administrator balances this by raising 1−α. Increasing the cost of manipulation

causes banks to place too much weight on their market rates, so the administrator adjusts for this by

raising the weight on the RPA rates in the comparison rate.

The term γ∗ is decreasing in the number of banks n and the number of transactions T , which

means that α∗ is weakly increasing in n and T . As the panel size or number of transactions increases,

the marginal benefit of manipulation falls, and the administrator is more comfortable about using

the transaction rates in the punishment function. The term γ∗ approaches 0 as nT approaches infinity

but never reaches it for any finite nT , so the administrator will place full weight on the transaction

rates if and only if the panel size or the number of transactions (or both) becomes infinite.

Our results show that it is always optimal to use the RPA rates in the comparison rate. This

is more important when the panel size (n) and the number of transactions (T ) are sufficiently low.

When n and T are high, punishing banks from deviating from each other’s average transaction rates

improves as a disciplining device, so the RPA rates become relatively less useful in the comparison

rate. However, it is always optimal to place at least some weight on the RPA rates.

We have an additional result on the effectiveness of increasing panel size versus increasing the

number of transactions.

Lemma 1 (Increasing the panel size delivers greater benefits than increasing the number of transac-

tions per bank). Consider two pairs (n1,T1) and (n2,T2) such that n1T1 = n2T2 and n1 > n2. Then,

the administrator’s loss is lower under (n1,T1) than under (n2,T2). The difference between the

losses is increasing in σ2
R. The administrator’s loss tends to zero as n or T → ∞.

Proof. See the Appendix.

Lemma 1 tells us that, for a given total number of transactions nT , the administrator’s loss is

lower when the panel size n is high than when the number of transactions per bank T is high. That

27There is also a term in the LIBOR exposures R̂ which is unrelated to the administrator’s choice of α.
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is, it is better for the administrator to increase the panel size than the number of transactions.This is

because of the law of large numbers: as n increases, the sample of Ris themselves gets closer to the

actual distribution and balances out (because the mean is zero). This effect is amplified when σ2
R

increases.

4.4 Quantifying the benefit of the mechanism

In this subsection, we compare the loss of the administrator in our proposed mechanism to an alter-

native: the current plan for LIBOR — that is, basing LIBOR solely on transactions with no fines.

We have already shown that the solution (A,α∗) is optimal, so it is obvious that the administrator

will be worse off in the current plan than in our mechanism. However, it is useful to add some facts

about how the administrator’s loss differential varies with the parameters of the problem.

We start by defining the administrator’s loss for the transaction-based LIBOR with no fines.

Setting a = 0 in Equation (14) gives us:

Λ
plan :=

σ2
ε

nT
+

σ2
R

n3T 2δ2 . (16)

From Proposition 5, the expected loss under our mechanism is:

Λ
∗ =

( Aγ

δ+A)
2σ2

Y +(1− Aγ

δ+A)
2 σ2

ε

nT +
σ2

R
n3T 2(δ+A)2 , if γ≤ (1+ δ

A)γ
∗,

γ∗2σ2
Y +(1− γ∗)2 σ2

ε

nT +
σ2

R
n3T 2(δ+A)2 , if γ > (1+ δ

A)γ
∗.

(17)

We can write this as:

Λ
∗ =C2

σ
2
Y +(1−C)2 σ2

ε

nT
+

σ2
R

n3T 2(δ+A)2 , (18)

where:

C := min
{

γ
∗,

Aγ

δ+A

}
. (19)

The improvement for the administrator from introducing a punishment mechanism is ∆, where:

∆ := Λ
plan−Λ

∗,

= 2C
σ2

ε

nT
−C2

(
σ

2
Y +

σ2
ε

nT

)
+

σ2
R

n3T 2

( 1
δ2 −

1
(δ+A)2

)
.

(20)

It is straightforward to show the following results:

Lemma 2. The difference in losses ∆ between the planned LIBOR and our mechanism is:
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i) increasing in σ2
ε (strictly increasing when C > 0);

ii) decreasing in σ2
Y (strictly decreasing when C > 0); and

iii) strictly increasing in σ2
R.

The improvement from our mechanism, ∆, is increasing in the variance of the errors on the

banks’ market rates σ2
ε . As σ2

ε becomes larger, the average market rate X̂ becomes a less reliable

estimator for the true market rate Y . The administrator prefers to incentivize banks to transact close

to the banks’ estimates of Y , rather than close to their {X t
i }. This can be done by placing more

weight on the RPA rates in the comparison rate (i.e., by reducing α). Banks estimate the RPA rates

using e, which is a more reliable estimate of Y than the administrator can produce alone.

However, the improvement ∆ is weakly decreasing in σ2
Y , the variance of the true market rate.

Banks’ estimates of Y become less accurate as σ2
Y increases, and so it is not optimal to place so

much weight on the RPA rates. Instead, it is better for the administrator to incentivize banks to

transact close to the market rate, which is a more reliable estimator of Y than e.

The benefit of our mechanism is also increasing in σ2
R. In the planned LIBOR, the only disin-

centive to the bank from manipulating comes from the unit cost δ of deviating from its market rate.

With the fine mechanism, the cost per unit of manipulation increases to δ+A.

The differential ∆ is increasing in the overall size of fine A, as we might expect, and decreasing

in the cost of manipulation δ. As manipulation becomes more expensive, the incentive to manipulate

is reduced, and so the punishment mechanism is less useful. Finally, the differential decreases to

zero as the number of banks n and transactions T → ∞, because then the marginal effect on LIBOR

of an individual bank’s manipulation tends to zero.

5 Collusion

In this section, we consider the possibility of collusion between panel banks. Collusion is defined

as an agreement by at least two banks that is not enforceable in a court of law. In the previous

LIBOR mechanism (as administered by the BBA), collusion was problematic. While manipulation

was often caused by banks operating in isolation, subpoenaed traders’ communications show that

banks also worked together to increase the impact of their manipulation on the LIBOR rate.28 These

traders communicated to confirm that they had similar LIBOR exposures (or, potentially, that one

had an exposure and the other was hedged), and then they manipulated LIBOR to mutual benefit.

A key element of collusion is that banks must communicate their LIBOR exposures to one

another to collude. Their LIBOR exposures must have the same sign for collusion to be mutually

28See, for example, the Financial Conduct Authority’s Final Notice regarding Deutsche Bank AG at
https://www.fca.org.uk/publication/final-notices/deutsche-bank-ag-2015.pdf.
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beneficial. However, LIBOR exposures may change over time, making repeated collusion somewhat

more difficult.

Below, we discuss possible techniques for collusion against our mechanism and some miti-

gants. We divide the discussion into an examination of a one-off game, in which it is more difficult

to collude, and a repeated game, which facilitates collusion.

5.1 Collusion in a one-off game

Collusion is not possible in the revealed preference algorithm stage in a one-off game. In the re-

vealed preference algorithm, the decisions that banks make about the rates at which they (synthet-

ically) lend are the last decisions that they make in the mechanism. These decisions are made

simultaneously across all banks and have no impact on the LIBOR rate — it has already been set

by this point in the mechanism. Therefore, each bank maximizes its own utility.29 Any collusive

agreement will unravel during the revealed preference algorithm, as banks optimally deviate when

it is their time to act.

Though unable to collude in the revealed preference algorithm stage, banks may still be able to

collude in the loan-making stage. If two banks (say, i and j) discover that they have similar LIBOR

exposures (Ri×R j > 0), then they may be able to make offsetting loans (wash trades) to one another

either above or below their market rates. Assuming that the loans could be executed simultaneously,

they could be enacted without formal contracts and would serve to bias LIBOR. In principle, such

trades could be checked for (or even prohibited in the LIBOR calculations).30 Also, if the loans had

to be executed in sequence, one of the banks would refuse to either make or receive the ‘last’ loan,

thus unraveling the collusion. Furthermore, even though this collusion is feasible, our mechanism

would still punish the banks for transactions that do not correspond with other banks’ transactions

and revealed preference rates. Therefore, the administrator does not need to recognize collusion in

order to punish it.

5.2 Collusion in a repeated game

Banks have additional scope for collusion in a repeated game. In addition to using offsetting (false)

transactions to manipulate LIBOR, collusion in the revealed preference algorithm becomes possible

in a repeated game by using threats of future punishment. Collusion is possible in the revealed

preference algorithm in isolation, or may be paired with collusion in the loan-making stage. For

example, two banks (say, i and j) that collude in making loans could also manipulate their reports
29Similarly, banks have no incentive to reduce other banks’ punishments in a one-off game.
30Nearly offsetting loans, and/or ‘circles’ of loans, could be more difficult to detect but would still become clear over

time.
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in the revealed preference algorithm to bias the comparison rates Ŷi and Ŷj and reduce their punish-

ments. These strategies rely on the future value of the collusive agreement to incentivize adherence

and coordination on punishment mechanisms.

6 Application to other financial benchmarks

While we have designed our mechanism to improve the current LIBOR reporting mechanism, it

has applicability to a wide range of financial benchmarks. Many of these benchmarks have been

potentially subject to the same sorts of manipulation as occurred in the LIBOR benchmark since as

far back as the early 1990s.31

LIBOR represents the rate at which a selection of global banks can borrow. Therefore, our

mechanism is most easily applicable to similar borrowing and lending-based benchmarks. For ex-

ample, ISDAFIX, now the ICE Swap Rate, is a benchmark of the rate at which banks are willing

to enter into interest rate swap transactions. As a benchmark based primarily on self-reporting,

ISDAFIX was found in 2013 to have been manipulated by inappropriate submissions, just as the

LIBOR benchmark was.32 Given the similarities between the bilateral nature of LIBOR loans and

interest rate swaps, our mechanism could be applied to the ICE Swap Rate benchmark almost ex-

actly as defined. The ICE Swap Rate could be calculated off of realized swap transactions, while

comparison rates could be created using transactions and the revealed preference algorithm. The

RPA could provide a second check by asking each bank the rate at which it would be willing to

swap fixed-for-floating with a specified counterparty.

The broad insights of our mechanism can also be applied to other benchmarks. Gold, silver,

foreign exchange, and many other commodities have benchmarks — and many have seen similar

benchmark-fixing scandals.33 Our mechanism can actually be simplified to apply to commodity

benchmarks: whereas LIBOR is the average of the rate at which a number of banks can borrow,

commodities transactions are invariant with respect to seller and buyer. An ounce of gold is the

same regardless of the seller and buyer; the same is not true of a loan or a swap.

As an example, consider applying our mechanism to the foreign exchange (Forex) benchmark

— likely the second largest recent manipulation scandal.34 For a given bank i, the comparison rate Ŷi

could again include all Forex transactions that did not involve bank i as either buyer or seller. Then,

the revealed preference algorithm could be run, but in a substantially simplified form. Rather than

31Douglas Keenan, “My thwarted attempt to tell of Libor shenanigans,” Financial Times, 27 July 2012.
32Matthew Leising, Lindsay Fortado, and Jim Brunsden, “Meet ISDAFIX, the LIBOR Scandal’s Sequel,” Bloomberg,

18 April 2013.
33Matt Taibbi, “Everything is Rigged: The Biggest Price-Fixing Scandal Ever,” Rolling Stone, 25 April 2013.
34Matt Levine, “Banks Manipulated Foreign Exchange in Ways You Can’t Teach,” Bloomberg, 12 November 2014.
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requiring each bank to submit the level at which it would lend to every other bank, the administrator

would simply request the price at which each bank would be willing to purchase or sell the foreign

currency. (Whether the request is to purchase or sell could alternate daily, or banks could even

be asked for their indifference point between buying and selling.) These offers would be matched

up with positive probability (possibly involving the administrator as intermediary), removing the

need for the ‘synthetic’ loan. Our mechanism would thus allow the benchmark to be based off

of the volume of everyday transactions, while still generating the revealed preference algorithm

results as a secondary check. The imposition of fines based on this combined information would

encourage accurate transacting and discourage manipulation of the benchmarks. A larger number

of transactions (in our mechanism, higher n and higher T ) would help further.

Unfortunately, though, these changes would not necessarily stop collusion. Collusion was

one of the main underlying causes of the recent Forex manipulation, and our mechanism can only

discourage, not solve, issues of collusion. As discussed in Morrison and Shapiro (2016), changing

the underlying culture — something that a single mechanism likely cannot do — may be necessary

to solve manipulation in these benchmarks.35

Therefore, while our mechanism can be applied to a wide selection of benchmarks, collusion

remains a potential problem.

7 Using the RPA when there are no transactions

An extra benefit of the revealed preference algorithm is that it allows the LIBOR mechanism to

continue operating even if there are no transactions (or a sufficiently low number that the adminis-

trator chooses to ignore them). As Duffie and Stein (2015) show, this is a real concern: in 2012,

even in USD, there were instances when no transactions took place at both 1-month and 6-month

tenors. In less liquid currencies, and in more stressed market situations, zero-trade days are even

more frequent and the problem is exacerbated.

Adapting the mechanism to a situation with few or no transactions requires two changes to

the mechanism. First, rather than using realized transaction rates st
i to calculate LIBOR, each bank

must instead report the rate at which it could have borrowed in the LIBOR market.36 Banks are

presumably aware of the rate at which they could borrow through activities in the market and past

transactions. This is, in fact, the way that LIBOR has been calculated since its inception. Second,

the comparison rates for punishment Ŷi will be set entirely using rates from the revealed preference

35In June 2016, ICE published a code of conduct for LIBOR panel banks to encourage good governance and behavior.
36If there are no transactions at all, this is the rate at which it could have borrowed, but did not choose to do so.

Otherwise, the borrowing cost can be set to infinite (we discuss this at length in Coulter and Shapiro (2015)).
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algorithm (i.e., setting α = 0). In this situation, each bank reports the rate at which it could have

borrowed, and the LIBOR rate is set. Then, the revealed preference algorithm is run; the comparison

rates Ŷi are determined; and fines are levied for banks that reported transaction rates st
i sufficiently

different from Ŷi. As before, by setting LIBOR early in the mechanism, LIBOR exposures are

immaterial when the revealed preference algorithm is reached. Therefore, banks are incentivized to

report their information truthfully.37

8 Conclusion

As a wealth of court evidence and subsequent fines have demonstrated, LIBOR rates have been

subject to serious manipulation. In this paper, we propose a robust LIBOR mechanism that produces

an unbiased estimator of the true market rate and minimizes the variance of its estimate. LIBOR

itself is based solely on transactions. We augment this by allowing for fines based on a comparison

rate that consists of the set of transaction rates, along with rates elicited from the panel banks using a

revealed preference algorithm. The algorithm provides rates that are not manipulated, serving as an

essential check on the transactions. We also discuss how this approach would be directly applicable

to other financial benchmarks and how it would work even in the absence of transactions, which can

occur in illiquid markets.

Since the scandals surrounding benchmarks began, panel sizes for benchmarks have been de-

clining as banks have grown more aware of reputational risks. In addition, lower liquidity in certain

markets has caused the number of transactions to drop, reducing incentives to participate on bench-

mark panels. There is a vicious circle here, as liquidity in certain markets depends on the availability

of accurate benchmarks which, in turn, depends on panel participation. Both academics and pol-

icymakers have highlighted these issues (e.g., Powell, 2016, and Duffie and Stein, 2015). Our

proposed mechanism will be more efficient and accurate than a purely transactions-based LIBOR

system. A more accurate benchmark will improve liquidity and incentivize greater participation in

the benchmark panel. Thus our proposed mechanism can help break the vicious circle.
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9 Appendix: proofs

9.1 Proof of Proposition 1

LIBOR is set previous to the revealed preference algorithm, and the RPA is invariant to banks’

transaction choices. Therefore, LIBOR exposure is immaterial to the outcome of the RPA.

Call the strategy χi j = wi j the ‘truthtelling strategy’. Let the cumulative distribution function

of vi be F(·). Now, consider some other potential strategy, χi j = wi j +ξ where ξ 6= 0. We shall show

that any such strategy generates lower expected profitability than the truthtelling strategy χi j = wi j,

regardless of the strategies of the other banks.

First, suppose that the bank’s strategy is to choose ξ > 0. If vi ≥ wi j +ξ, then both this strategy

and the truthtelling strategy result in the bank lending (synthetically) at vi with equal probability.

(This is the probability that bank j is selected randomly among the set of banks that all stated

willingness to lend at vi or lower.) Similarly, if vi < wi j, then neither strategy results in a synthetic

loan being made. A difference arises only if wi j ≤ vi < wi j + ξ. In this interval, the truthtelling

strategy implies a positive probability of a synthetic loan at vi ≥ wi j, for a non-negative profit.

However, the strategy ξ > 0 does not result in lending when vi lies in this interval. As vi falls within

this interval with probability F(wi j + ξ)−F(wi j) > 0, this implies that a strategy ξ > 0 forgoes

possible profit and cannot be optimal.

Similarly, a strategy ξ < 0 results in the same payoff as the truthtelling strategy whenever

vi ≥ wi j (both result in a positive probability of a synthetic loan) and whenever vi < wi j + ξ (zero

probability of a loan). However, it results in a positive probability of unprofitable lending whenever

wi j + ξ ≤ vi < wi j, while the truthtelling strategy results in a zero payoff. This case occurs with

non-zero probability F(wi j)−F(wi j +ξ). Therefore, the strategy ξ < 0 has a lower expected payoff

than the truthtelling strategy and cannot be optimal.

Therefore, the unique optimal strategy is to state willingness to lend truthfully: χi j = wi j.
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9.2 Proof of Proposition 2

Differentiating Πi with respect to st
i , bank i has the following first-order condition for each t:

Ri

nT
= δ(st

i−X t
i )+aEi[st

i− Ŷi],

= (δ+a)st
i−δX t

i −aEi[Ŷi].
(21)

Now,

Ei[Ŷi] =
α

n−1 ∑
j 6=i

Ei[s̄ j]+
(1−α)

(n−1)2

n

∑
k=1

∑
j 6=k,i

Ei[χk j],

=
α

n−1 ∑
j 6=i

Ei[s̄ j]+ (1−α)e.
(22)

We can substitute this into (21) to obtain:

Ri

nT
= (δ+a)st

i−δX t
i −

aα

(n−1)T ∑
j 6=i

T

∑
u=1

Ei[su
j ]−a(1−α)e. (23)

We need to solve the system of equations given by (23) for every i and t. To do this, we need to find

a solution for Ei[st
j]. Let us write:

fi jt(Pi) := Ei

[
st

j

∣∣Pi

]
, ∀ j 6= i. (24)

For any i, j, t, the function fi jt is a function of the known parameters of the system, which is

the set Pi := {y,γ,Ri,{Xv
l }∀l,v}. With a slight abuse of notation, we write fi jt(y) when we want to

denote fi jt as a univariate function of y, holding the other members of Pi constant. Similarly, we

write fi jt(Ri) to denote fi jt as a univariate function of Ri, and so forth for the other parameters. We

shall prove the Proposition by showing that fi jt is uniquely determined, independent of i, and has

the solution given in the statement of the Proposition.38

Equation (23) becomes:

Ri

nT
= (δ+a)st

i−δX t
i −

aα

(n−1)T ∑
j 6=i

T

∑
u=1

fi ju(Pi)−a(1−α)e. (25)

38Our proof will not require us to assume that fi jt is continuous or differentiable with respect to the members of Pi.
However, we shall show that it is as part of our result.
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Choose another bank k 6= i and form expectations of Equation (25) with respect to k’s information:

0 = (δ+a) fkit(Pk)−δX t
i −

aα

(n−1)T ∑
j 6=i

T

∑
u=1

Ek

[
fi ju(Pi)

]
−a(1−α)

(
γy+(1− γ)X̂

)
. (26)

Here, we have decomposed e using (8).

Suppose that banks have different beliefs about st
j. Then fi jt(Pi) must depend on elements

that are members of Pi but not Pk,∀k 6= i — i.e., private information that i has and the other banks

lack. The only such private information is Ri, but we shall show that fi jt is invariant with Ri. This

means that all banks must have the same beliefs.

Equation (26) is valid for all t and all k 6= i and all feasible parameter values, so it is an identity.

Choose any pair Rk 6= R′k. Then:

0 = (δ+a)
(

fkit(R′k)− fkit(Rk)
)
− aα

(n−1)T ∑
j 6=i

T

∑
u=1

Ek

[
fi ju(R′k)− fi ju(Rk)

]
. (27)

fi ju(Pi) cannot depend on Rk because Rk /∈Pi. Therefore, the second term in Equation (27)

must be equal to zero, and so fkit must be constant with respect to Rk. In other words, bank k

does not use its private knowledge about Rk when forming expectations about other banks. This

is because the banks’ exposures to LIBOR are independent of one another and so do not provide

signals about each other’s values. That proves the first part of the Proposition.

This means that we can drop the i index and rewrite f jt(P) = Ei[st
j|P], for all i 6= j, where

P = {y,γ,{Xv
l }∀l,v} (i.e., the common intersection of all the banks’ information sets). Equation

(26) becomes:

0 = (δ+a) fit(P)−δX t
i −

aα

(n−1)T ∑
j 6=i

T

∑
u=1

f ju(P)−a(1−α)
(

γy+(1− γ)X̂
)
, (28)

where Ek[ f ju(P)] = f ju(P) because all banks have the same beliefs and use the same information

set.

For notational shorthand, define:

∆it(y,y′) = fit(y)− fit(y′), (29)

and, similarly, ∆it(γ,γ
′) and so forth for the other parameters.

As before, Equation (26) is valid for all i and t and all possible parameter values, so it is an
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identity. For any pair y 6= y′, we have:

0 = (δ+a)∆it(y,y′)−
aα

(n−1)T ∑
j 6=i

T

∑
u=1

∆ ju(y,y′)−a(1−α)γ(y− y′). (30)

For any given pair (y,y′), Equation (30) is true for all i and all t. This means that, for each

such pair, we have a linear system with nT equations. We have nT unknown variables, which are

the expressions ∆it(y,y′) for each i, t. The system of equations is linearly independent, so it has at

most one solution. Thus, if we can find a solution, it must be unique. It is easy to check that there is

indeed a solution, which occurs when each of the unknown variables has the same value:

∆it(y,y′) =
a(1−α)γ

δ+a(1−α)
· (y− y′). (31)

Therefore, a solution exists, and it must be unique. As this expression holds for all (y,y′), we can

see that fit is a linear function of y with slope a(1−α)γ
δ+a(1−α) .

We can employ a similar argument to show that the slope of fit with respect to any of the other

parameters in P is constant, and so fit is linear with respect to each of these parameters. This

occurs because the system of equations defined by Equation (28), ∀i, t, is linear with respect to all

of these parameters and the functions fit . We go through each of these in turn.

For the terms in X , the situation is a little more complicated. We can take differences of

Equation (28) with respect to X t
i :

0 = (δ+a)∆it(X t
i ,X

t
i
′
)−δ(X t

i −X t
i
′
)− aα

(n−1)T ∑
j 6=i

T

∑
u=1

∆ ju(X t
i ,X

t
i
′
)−a(1−α)

1− γ

nT
(X t

i −X t
i
′
),

(32)

and with respect to Xv
l , where at least one of l 6= i or v 6= t is true:

0 = (δ+a)∆it(Xv
l ,X

v
l
′)− aα

(n−1)T ∑
j 6=i

T

∑
u=1

∆ ju(Xv
l ,X

v
l
′)−a(1−α)

1− γ

nT
(Xv

l −Xv
l
′). (33)

Equations (32) and (33) together define a system of n2T 2 linear equations in n2T 2 unknowns.

Again, any solution must be unique. To solve this system, first note that, as Equation (33) is true for
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all i, t and all (l,v) 6= (i, t), it implies that the following two equations are true for all k 6= i and v 6= t:

0 = (δ+a)∆kt(X t
i ,X

t
i
′
)− aα

(n−1)T ∑
j 6=k

T

∑
u=1

∆ ju(X t
i ,X

t
i
′
)−a(1−α)

1− γ

nT
(X t

i −X t
i
′
),

0 = (δ+a)∆iv(X t
i ,X

t
i
′
)− aα

(n−1)T ∑
j 6=i

T

∑
u=1

∆ ju(X t
i ,X

t
i
′
)−a(1−α)

1− γ

nT
(X t

i −X t
i
′
).

(34)

We will guess and verify a solution, which must be unique. Let us postulate the following:

∀u,v 6= t : ∆iu(X t
i ,X

t
i
′
) = ∆iv(X t

i ,X
t
i
′
),

∀u,v,∀ j,k 6= i : ∆ ju(X t
i ,X

t
i
′
) = ∆kv(X t

i ,X
t
i
′
).

(35)

The first line in (35) postulates that the effect of changing X t
i on E[su

i ] is the same for all u 6= t.

The second postulates that its effect does not depend on j, for all j 6= i. The intuition behind the

first is that a change in X t
i affects a transaction rate su

i via the cost of manipulation (which applies

only if u = t) and via the effect of X t
i on e and, thus, the estimation of the RPA rates. In the latter

channel, X t
i matters only via its effect on X̂ and is not dependent on u. The intuition behind the

second equation is that, for j 6= i, a change in X t
i affects j’s transaction rate su

j via its effect on e

and via its effect on i’s average transaction rate (which affects the comparison rate for j). Thus, the

marginal effect of a change in X t
i is the same for all j 6= i and all u.39

Using (35), equations (32) and (34) become:(
δ+a(1−α)

1− γ

nT

)
(X t

i −X t
i
′
) = (δ+a)∆it(X t

i ,X
t
i
′
)−aα∆ jt(X t

i ,X
t
i
′
),

a(1−α)
1− γ

nT
(X t

i −X t
i
′
) = (δ+a)∆ jt(X t

i ,X
t
i
′
)

− aα

(n−1)T

(
∆it(X t

i ,X
t
i
′
)+(T −1)∆iu(X t

i ,X
t
i
′
)+(n−2)T ∆ jt(X t

i ,X
t
i
′
)
)
,

a(1−α)
1− γ

nT
(X t

i −X t
i
′
) = (δ+a)∆iu(X t

i ,X
t
i
′
)−aα∆ jt(X t

i ,X
t
i
′
)

(36)

for all t and all j 6= i.

39Equations (35) do not represent an assumption. We know that any solution is unique, so if (35) were invalid, then
they would not be consistent with any solution. However, we shall show that they do indeed lead to a solution, and so
must be correct.
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The system of equations (36) has the following unique solution, for all j 6= i and all v 6= t:

∆ jt(X t
i ,X

t
i
′
) =

1
T (δ+a(1−α))

(
a(1−α)

1− γ

n
+δ

(
1− δ+a

δ+a(1+ α

n−1)

))
· (X t

i −X t
i
′
),

∆iv(X t
i ,X

t
i
′
) =

1
T (δ+a(1−α))

(
a(1−α)

1− γ

n
+

δaα

δ+a

(
1− δ+a

δ+a(1+ α

n−1)

))
· (X t

i −X t
i
′
),

∆it(Xv
i ,X

v
i
′) = ∆it(X t

i ,X
t
i
′
)+

δ

δ+a
(X t

i −X t
i
′
).

(37)

The first and second equations imply that:

∆it(Xv
l ,X

v
l
′) =

1
T (δ+a(1−α))

(
a(1−α)

1− γ

n
+δ

(
1− δ+a

δ+a(1+ α

n−1)

))
· (Xv

l −Xv
l
′),

∆it(Xv
i ,X

v
i
′) =

1
T (δ+a(1−α))

(
a(1−α)

1− γ

n
+

δaα

δ+a

(
1− δ+a

δ+a(1+ α

n−1)

))
· (Xv

i −Xv
i
′).

(38)

Combining Equations (31), (37) and (38), we obtain the following solution for fit(P):

fit(P) = K +
a(1−α)γ

δ+a(1−α)
· y

+
1

T (δ+a(1−α))

(
a(1−α)

1− γ

n
+δ

(
1− δ+a

δ+a(1+ α

n−1)

))
·∑

l 6=i

T

∑
v=1

Xv
l

+
1

T (δ+a(1−α))

(
a(1−α)

1− γ

n
+

δaα

δ+a

(
1− δ+a

δ+a(1+ α

n−1)

))
·

T

∑
v=1

Xv
i +

δ

δ+a
·X t

i ,

(39)

where K is a constant unrelated to these parameters. When all of the parameters are set to zero,

Equation (28) implies that fit = 0, so we can infer that K = 0.

Our final step is to set K = 0 and rearrange Equation (39):

fit(P) =
δ

δ+a
X t

i +
δ

δ+a(1−α)

(
1− δ+a

δ+a(1+ α

n−1)

)(
∑
l 6=i

1
T

T

∑
v=1

Xv
l +

1
T

T

∑
v=1

Xv
i

)
+

a(1−α)

δ+a(1−α)

(
γy+

(1− γ)

nT

( n

∑
l=1

T

∑
v=1

Xv
l

))
.

(40)

Writing the sums of the X terms using Equations (3) and (4), we obtain the required result.

As a final check, we can take differences of Equation (28) with respect to γ (a parameter which

was not used) and note that the resulting system of equations is satisfied by the solution. The set of

equations produced by differencing with respect to γ is not linearly independent of those we have
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already studied.

For the purposes of this paper going forward, we require only the expected transaction rate,

so we do not write out an exact solution for st
i here. This formulation can be easily derived by

substituting Equation (40) into Equation (25).

9.3 Proof of Proposition 3

Take the average of Equation (23) over all i = 1, . . . ,n and t = 1, . . . ,T to obtain:

R̂
nT

= (δ+a)
1

nT

n

∑
i=1

T

∑
t=1

st
i−δX̂− aα

n(n−1)T 2

n

∑
i=1

∑
j 6=i

T

∑
t=1

T

∑
u=1

Ei[su
j ]−a(1−α)e, (41)

which becomes:

R̂
nT

= (δ+a)L(S)−δX̂− aα

nT

n

∑
i=1

T

∑
t=1

fit(P)−a(1−α)e. (42)

Using Proposition 2, we have:

fit(P) =
δ

δ+a
·X t

i +
δ

δ+a(1−α)

(
1− δ+a

δ+a(1+ α

n−1)

)
·
(
∑
l 6=i

X̄l +
aα

δ+a
X̄i

)
+

a(1−α)

δ+a(1−α)
· e.

(43)

Now,

1
nT

n

∑
i=1

T

∑
t=1

(
δ

δ+a
·X t

i +
δ

δ+a(1−α)

(
1− δ+a

δ+a(1+ α

n−1)

)
·
(
∑
l 6=i

X̄l +
aα

δ+a
X̄i

))
,

=
δ

δ+a
X̂ +

δ

δ+a(1−α)

(
1− δ+a

δ+a(1+ α

n−1)

)(
(n−1)X̂ +

aα

δ+a
X̂
)
,

=
(

δ

δ+a
+

δ

δ+a(1−α)
·

aα

n−1

δ+a(1+ α

n−1)
· (n−1)(δ+a)+aα

δ+a

)
X̂ ,

=
(

δ

δ+a
+

δ

δ+a(1−α)
· aα

(n−1)(δ+a)+aα
· (n−1)(δ+a)+aα

δ+a

)
X̂ ,

=
(

δ

δ+a
+

δaα

(δ+a(1−α))(δ+a)

)
X̂ ,

=
δ

(δ+a(1−α))(δ+a)

(
δ+a(1−α)+aα

)
X̂ ,

=
δ

δ+a(1−α)
X̂ .

(44)
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We use Equations (43) and (44) in Equation (42) to obtain:

R̂
nT

= (δ+a)L(S)−δX̂−aα

(
δ

δ+a(1−α)
X̂ +

a(1−α)

δ+a(1−α)
e
)
−a(1−α)e,

= (δ+a)L(S)−
(

1+
aα

δ+a(1−α)

)(
δX̂ +a(1−α)e

)
,

= (δ+a)L(S)−
(

δ+a
δ+a(1−α)

)(
δX̂ +a(1−α)e

)
,

(45)

which gives the required result.

9.4 Proof of Proposition 5

The administrator wishes to solve the following problem:

min
a∈[0,A],α∈[0,1]

Λ(a,α) :=
( a(1−α)γ

δ+a(1−α)

)2
σ

2
Y +

(
1− a(1−α)γ

δ+a(1−α)

)2 σ2
ε

nT
+

σ2
R

n3T 2(δ+a)2 . (46)

Λ is continuous and differentiable everywhere in the feasible region. Optimizing with respect

to α:

∂Λ

∂α
= 2
( a(1−α)γ

δ+a(1−α)
σ

2
Y −

(
1− a(1−α)γ

δ+a(1−α)

) σ2
ε

nT

)
· −δaγ

(δ+a(1−α))2 ,

=
−2δaγ

nT (δ+a(1−α))2

( a(1−α)γ

δ+a(1−α)

(
nT σ

2
Y +σ

2
ε

)
−σ

2
ε

)
.

(47)

Consider, first, the case γ≤ γ∗. Then:

γ
(
nT σ

2
Y +σ

2
ε

)
≤ σ

2
ε ,

⇒ a(1−α)

δ+a(1−α)
γ
(
nT σ

2
Y +σ

2
ε

)
< σ

2
ε ,

⇒ ∂Λ

∂α
> 0. (48)

Then the administrator sets α∗ = 0, and only RPA rates are used in the punishment function. This

means that:

Λ(a,α∗) =
( aγ

δ+a

)2
σ

2
Y +

(
1− aγ

δ+a

)2 σ2
ε

nT
+

σ2
R

n3T 2(δ+a)2 , (49)
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and:

∂Λ

∂a

∣∣∣
α=0

=
2δγ

(δ+a)2

( aγ

δ+a
σ

2
Y −

(
1− aγ

δ+a

) σ2
ε

nT

)
− 2σ2

R

n3T 2(δ+a)3 ,

=
2δγ

nT (δ+a)2

( aγ

δ+a

(
nT σ

2
Y +σ

2
ε

)
−σ

2
ε

)
− 2σ2

R

n3T 2(δ+a)3 ,

≤ 2δγ

nT (δ+a)2

( aγ∗

δ+a

(
nT σ

2
Y +σ

2
ε

)
−σ

2
ε

)
− 2σ2

R

n3T 2(δ+a)3 ,

<
2δγ

nT (δ+a)2

(
γ
∗(nT σ

2
Y +σ

2
ε

)
−σ

2
ε

)
− 2σ2

R

n3T 2(δ+a)3 ,

< 0.

(50)

Then the administrator sets a to its maximum value A.

Next, consider the case γ > γ∗. Using Equation (47), we can see that Λ has a local minimum

with respect to α when:

∂Λ

∂α
= 0,

⇒ a(1−α)γ

δ+a(1−α)
(nT σ

2
Y +σ

2
ε) = σ

2
ε ,

⇒ a(1−α)γ

δ+a(1−α)
= γ
∗,

⇒ a(1−α) =
δγ∗

γ− γ∗
. (51)

This solution satisfies the second-order conditions for a minimum. It is feasible only when
δγ∗

γ−γ∗ ∈ [0,A]. As γ > γ∗, this condition would be violated only if δγ∗

γ−γ∗ > A. In that case, the boundary

condition would bind and the administrator would set a(1−α) = A. Thus the following condition

must hold at the optimum:

a∗(1−α
∗) = min

{
A,

δγ∗

γ− γ∗

}
:= M. (52)

When a(1−α) = M is satisfied, then:

Λ(a,α) =
( Mγ

δ+M

)2
σ

2
Y +

(
1− Mγ

δ+M

)2 σ2
ε

nT
+

σ2
R

n3T 2(δ+a)2 ,

⇒ ∂Λ

∂a

∣∣∣
a=a∗,α=α∗

=− 2σ2
R

n3T 2(δ+a)3 ,

< 0,

(53)
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so the administrator sets a to its maximum value A. Thus, the solution is a∗ = A and α∗ = 1− M
A ,

which implies that α∗ = 0 when γ≤ (1+ δ

A)γ
∗ and is equal to 1− δγ∗

A(γ−γ∗) otherwise.

α∗ = 1 only if γ∗ = 0, which occurs if and only if σ2
ε = 0. The proof is complete.

9.5 Proof of Lemma 1

The solution found in Proposition 5 depends only on the value of nT . As n1T1 = n2T2, the adminis-

trator chooses the same values of a and α in both cases.

Let Λ1 be the loss in case (n1,T1) and Λ2 be the loss in case (n2,T2). Then, using Equation

(46):

Λ1−Λ2 =
σ2

R

n3
1T 2

1 (δ+A)2
− σ2

R

n3
2T 2

2 (δ+A)2
,

=
σ2

R

n2
1T 2

1 (δ+A)2

( 1
n1
− 1

n2

)
,

< 0.

(54)

We can see immediately from Equation (46) that Λ→ 0 as nT → ∞.
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