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Abstract 
Sample size estimation is usually the first step in planning a research study. Too small 

a study cannot adequately address the objectives, while too large a study may waste 

resources or be unethical. For binary outcomes, several sample size estimation 

methods are available based on logistic regression models, which focusing on odds 

ratios. In prospective studies, risk ratios are preferable for ease of interpretation and 

communication. In this thesis, we compared the power difference between the logistic 

regression model and the modified Poisson regression model via simulation studies. 

We then proposed sample size estimation formulas based on the modified Poisson 

regression model for estimating risk ratios. Simulation results suggested that both 

models have similar performance in terms of Type I error and power. The empirical 

evaluation indicated that the proposed sample size formulas are reliable in a wide 

range of scenarios. The sample size estimation procedure was illustrated using a 

subset of data from the Diabetes Control and Complications Trial. 
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Summary for the Lay Audience 
Medical and epidemiological research rests largely on assessment of risks. One key 

measure in such studies is the ratio of odds, which is commonly estimated using 

logistic regression models. However, ratio of odds has been commonly interpreted as 

ratio of risks. Since by definition odds is larger than risk numerically, this practice can 

exaggerate study results, especially when risk of event is not rare as in many 

prospectively studies. The modified Poisson regression model was proposed as a 

method to estimate risk ratio directly. The model has become increasingly applied in 

medical and epidemiological research. To facilitate its use, this thesis compares power 

of the modified Passion regression to that of the logistic regression using simulation 

studies. The results suggest equivalent power between the two models. The thesis 

further proposed and evaluated sample size formulas based on the modified Poisson 

model. Simulation results suggest the formulas performed well, providing an 

important tool for study planning.  
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Chapter 1 Introduction 
Any research inquiry begins with study planning. To ensure scientific validity, a study 

should be designed to meet clearly defined objectives. Determination of sample size is 

an important component in the design of epidemiological and medical studies. A 

study should be large enough to address the research questions but not too large to be 

wasteful or unethical in putting participants in harm. 

Effect measure is an important element of study planning and sample size 

estimation. The choice of appropriate effect measures is crucial for research to address 

meaningful objectives adequately. This decision usually rests on the types of outcome 

data.  Binary outcomes are prevalent in epidemiological and medical inquiries. Thus, 

this thesis focuses on this outcome. There are various effect measures for binary 

outcomes, including odds ratio, risk difference, and risk ratio. Due to its availability in 

case-control studies and its connection with logistic regression models, odds ratios 

have been the predominant effect measure when the outcome is binary. However, the 

risk difference and risk ratio are easier to understand and communicate. Regression 

models for risk differences and risk ratios are less well known. The modified Poisson 

regression model for risk ratios has been increasingly adopted in epidemiological and 

medical studies (Spiegelman & Hertzmark, 2005; Zou, 2004).   

A variety of sample size formulas exist for the logistic regression models with 

the odds ratio as the parameter of interest. Whittemore (1981) proposed a sample size 

formula by applying the maximum likelihood procedure for the logistic regression. 

Hsieh et al. (1998) described sample size methods based on the odds ratio for two-

group comparison studies. There is a paucity of sample size formulas based on the 

modified Poisson model for estimating risk ratios. 

This chapter begins with the description of the binary outcome, followed by a 

discussion on the choice of effect measures for binary outcomes in Section 1.2. 

Section 1.3 summarizes the effect measures related to regression models. Section 1.4 

provides a brief review of the literature concerning sample size estimation. The final 

section describes the objectives and organization of the thesis.   
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1.1. Binary outcome in medical and epidemiological 

research 

Binary data can arise in at least two ways. First, binary outcomes arrive naturally to 

describe two states of nature. Examples include the diagnostic test for a subject being 

positive or negative, presence or absence of a disease condition, and alive or dead of a 

subject. Second, binary outcomes can arise from dichotomizing continuous data. The 

use of dichotomized data has several drawbacks, including loss of information, 

subsumption of variability for the original outcome, and concealment of variable 

associations (Altman & Royston, 2006). Thus, dichotomization requires adequate 

justification, often based on well-accepted criteria and for ease of interpretation. For 

instance, blood pressure can be categorized into hypertensive if a blood pressure 

above 130/90 mmHg, or normotensive otherwise. Another example is that diabetes is 

defined by a glucose level greater than 125 mg/dL.  

In practice, the event of interest is usually denoted as 1 while the non-event is 

denoted as 0 in data analysis. This designation should not be used lightly, as it could 

have important implications for interpreting research results. Sheps (1958) discussed 

that the interpretation of results could be affected by the choice of the reference state. 

For example, one could report a small relative difference in survival rate but a large 

relative difference in death rate for the same male and female groups. While the 

absolute difference of the survival or death rate between males and females is the 

same for death and survival, the denominator state of relative comparison changed the 

interpretation. Treating alive or dead as the state of interest brings a vastly different 

impression, although the two states are complementary. 

1.2. Effect measures for binary outcomes 

The general goal of a study is to assess the associations between exposures and 

outcomes. In this thesis, we focus on situations where both exposure and outcome are 

binary, but covariates can be of multiple types. Measures of these associations are 

commonly referred to as effect measures. For ease of communications, effect 

measures for binary outcomes are usually defined in the context of binary exposure, 

such as exposure versus unexposed, treatment or control, and one level versus another 
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level of continuous exposure. The common effect measures include the risk difference 

(RD), risk ratio (RR), and odds ratio (OR). Risk difference is defined as the absolute 

difference in probabilities of outcomes between two exposure groups. Risk ratio is 

defined as the ratio of the two probabilities, while OR is the ratio of the two odds, 

with odds defined as a probability divided by its complement. In the case of rare 

events of event probability less than 0.1, RR is approximately equivalent to OR in 

magnitude. 

Regarding the effect measure selection, Lachin (2011, p. 21) pointed out that 

all three types of effect measures could reflect differences between groups, and the 

measurement choice should not influence research conclusions when the sample size 

is large. Nonetheless, there is empirical evidence that the choice of effect measures 

could impact the results of a clinical trial. For example, Bobbio et al. (1994) reported 

on the willingness of physicians prescribing drugs and showed that the decision of 

prescription depended on the choice of effect measures. Five types of effect measures 

were presented to physicians. For each measurement, physicians rated their 

willingness to prescribe a drug on a 0 to 100 scale, and more than half of the 

physicians would tend to prescribe based on the RR. The relative comparison of risks 

of getting diseases leaves the impression of a more significant benefit if the medicine 

is used to treat patients compared to other measures. Bobbio et al. (1994) also 

reported that physicians might misinterpret the reported results, as many of them were 

not trained to differentiate the differences among effect measures.  

Walter (2000) categorized the properties of the effect measures into six aspects: 

simplicity, symmetry, range of predicted event rates, biased or unbiased estimate, 

estimation efficiency, and estimation model availability. Each effect measure has 

favorable features. For instance, the RD is simple and easy to interpret. In contrast, 

the interpretation of OR can be confusing for non-statisticians, but the OR is 

applicable in various clinical studies due to its mathematical properties. Walter (2000) 

suggested that the choice of effect measure should not rely solely on the mathematical 

convenience or the anticipation of the comprehensibility of a specific effect measure 

when selecting an effect measure to use. A suitable effect measure should be chosen 

based on the fitness of the actual data to a specific effect measure model. 
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1.3. Estimation of effect measures with multivariable 

regression models 

The difficulty of estimating effect measures often arises in studies involving multiple 

independent variables in which effect measures of interest are usually estimated using 

regression models. Logistic regression is widely accepted and used to estimate OR in 

prospective, retrospective, and case-control studies. The logistic regression model 

connects the probability of binary outcome with a linear combination of the predictors 

using a logit function, where the logarithm of ORs is estimated with the maximum 

likelihood method. 

When risk ratios are of interest in prospective studies, the RR can be estimated 

using the log-binomial model (Wacholder, 1986) or a Poisson model (McNutt et al., 

2003). However, the former can encounter convergence problems during maximum 

likelihood iteration, while the latter results in overestimated standard errors. The 

modified Poisson model with robust error variance overcomes both problems (Zou, 

2004). This model has also been extended to studies with correlated binary outcomes 

(Yelland et al., 2011; Zou & Donner, 2013).  

Inspired by the modified Poisson model for risk ratios, Cheung (2007) 

proposed the modified least-squares regression for risk differences using the robust 

standard error in the binomial regression with an identity link. Spiegelman and 

Hertzmark (2005) suggested using estimates from the Poisson regression and log-

binominal model as the starting values for the iteration algorithm to improve the 

efficiency of both the modified Poisson model and the modified least square model. 

1.4. Estimation of effect measures and sample size 

There are various approaches to determine the sample size for different effect 

measures. For example, Whittemore (1981) found a sample size for the OR by 

approximating the Fisher information matrix in logistic regression with a small 

response probability. Hsieh et al. (1998) presented sample size formulas for the OR 

for comparing two groups using the logistic regression model. Donner (1984) 

reviewed sample size formulas for assessing risk differences and risk ratios in 
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randomized control trials. There is a paucity of sample size formulas for RD and RR 

in the context of regression models. 

Four parameters are commonly included in the power analysis: effect size, 

significance level, statistical power, and sample size. The significance level is the 

probability of rejecting the null hypothesis when it is true, and is also called the alpha 

level (𝛼), which is commonly set at 0.05. The value of any of the remaining three 

parameters can be determined by knowing the other two. 

1.5. Objectives and outlines 

The primary focus of this thesis is on power and sample size with respect to the 

modified Poisson regression model. We aim to derive a sample size formula for 

estimating RR using the modified Poisson model. The performance of the derived 

sample size is assessed through simulations and illustrated using real data 

applications. 

The thesis has three main objectives: 

1. To assess the power of the modified Poisson model in comparison with the 

logistic regression model. 

2. To derive a simple and closed-form sample size formula for estimating risk 

ratios using the modified Poisson model. 

3. To assess the proposed sample size formula using simulation studies. The 

assessment environment is assumed to fit the modified Poisson model. 

The thesis has six chapters. Chapter 2 discusses the three major effect measures 

and concentrates on the benefits and drawbacks of three regression models for binary 

outcomes, the general principle of sample size, and various sample size equations. 

Chapter 3 contains the development of the sample size for estimating RR. In Chapter 

4, we conduct two simulation experiments for power comparisons. In Chapter 5, an 

application is designed to test the feasibility of the sample size and power formulas 

derived from Chapter 3, using a subset of data from the Diabetes Control and 

Complications Trial (Diabetes Control and Complications Trial Research Group, 

1993). In Chapter 6, we discuss the implications and limitations of the research as 

well as potential future studies. 
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Chapter 2 Literature Review 
This chapter reviews the literature, beginning with the three common effect measures 

in Section 2.1. Section 2.2 discusses the regression models which are used for 

estimating effect measures. The chapter closes with sample size formulas based on 

two-sample comparison and maximum likelihood procedure in Section 2.3.  

2.1. Effect measures for binary outcomes 

Recall that there are three common effect measures with binary outcomes: the RD, the 

RR, and the OR. Table 2.1 presents a 2 x 2 frequency table from a total number of 

subjects of 𝑛. Let 𝑥 serve as an indicator of exposure (1) or non-exposure (0); 𝑦 is the 

possible binary outcome of an individual, with 1 denoting event and 0 denoting non-

event.  

Table 2.1 General 2 x 2 table for binary 𝑥 and 𝑦 

 𝑦 = 1 𝑦 = 0 

𝑥 = 1 𝑎 𝑏 

𝑥 = 0 𝑐 𝑑 

The three measures can be defined as follows:  

𝑅𝐷 = 𝑎/(𝑎 + 𝑏) − 𝑐/(𝑐 + 𝑑) = 𝑃ଵ − 𝑃, 

𝑅𝑅 =
𝑎/(𝑎 + 𝑏)

𝑐/(𝑐 + 𝑑)
=

𝑃ଵ

𝑃
, 

𝑂𝑅 =
𝑎/𝑏

𝑐/𝑑
=

𝑃ଵ/(1 − 𝑃ଵ)

𝑃/(1 − 𝑃)
, 

where 𝑎, 𝑏, 𝑐, 𝑑 are the numbers of individuals for (𝑥, 𝑦) combinations, and 𝑃ଵ and 𝑃 

are probabilities of 𝑦 = 1 for the exposed and non-exposed 𝑥 groups, respectively. 

Each effect measure has its own properties. The RD is an absolute and 

straightforward measure, quantifying the net risk (Sinclair & Bracken, 1994). The 

estimator of the RD is unbiased if the two variables are independent binomials. In 

contrast to the RD, the estimators for RR and OR are not unbiased, but they are 
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consistent, meaning that the bias is negligible with a large sample size. The RD has a 

symmetric property meaning that the group difference stays unchanged or has a sign 

difference when interchanging successes and failures. For example, if the disease 

probabilities of the treatment and control groups are 0.1 and 0.2, respectively, the RD 

is −0.1. Switching the two groups in the RD calculation gives RD = 0.1, which only 

has a negative sign difference with RD = −0.1. The RD can produce risk probabilities 

that are out of range. If RD is 0.1 when using the treatment group as the baseline, and 

the mortality of the control group is 0.09, the mortality of the treatment group is -0.01.  

The risk ratio is an effect measure commonly used in prospective studies, 

especially in randomized clinical trials. Compared to OR, clinicians would prefer to 

use the RR when comparing the risk of disease between the treatment and control 

groups instead of asking for the odds comparison (Sinclair & Bracken, 1994). Another 

benefit is that RR is straightforward in interpretation and easy to explain by the 

public.  

As pointed out by Greenland (1987), the risk ratio is the ratio of two 

cumulative incidences between exposed and unexposed groups, and it is only 

interpretable as the effect on average risk. The RD can be interpreted as an average 

effect on risk or an effect on average risk, and the OR can represent neither. The RR 

produced a predicted event probability out of range. If an individual patient in the 

control group has an outcome event probability of 0.5, the patient will have an 

outcome event probability of 1.5 in the treatment group when RR equals 3 (treatment 

vs. control). In addition, the RR is not symmetric, as the RR of the mortality rate 

between the two groups is not a reciprocal of the RR of the survival rate between the 

same groups.  

The odds ratio has some advantages that the other two measures do not have. 

Unlike the RR, the OR is symmetrical when interchanging the two groups (Walter, 

2000). Switching two groups brings an OR that is the reciprocal of the pre-

interchanged OR. Thus, when the log function is applied to the OR, researchers only 

need to change the sign of the log(OR). Predictions of probability based on OR has a 

restriction of [0,1], while that based on RR and RD may be out of the 0 to 1 range. 
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The odds ratio is the most popular measure among the three measures in 

statistical analyses. One of the reasons is that researchers can estimate the OR in 

prospective, retrospective, and case-control studies (Walter, 2000). The ratio between 

odds of exposure in cases and controls and the ratio between odds of the outcome in 

exposed and unexposed groups are equal mathematically (Cornfield, 1951). If the 

defined study populations are the same, researchers could have the same OR estimates 

from a case-control study or a prospective study for exposure and disease.  Cornfield 

(1951) pointed out that the OR could be used for estimating the RR when the disease 

is rare, but the disease and control groups should represent the corresponding groups 

in the general population. Another reason for the popularity of OR is that the OR can 

be estimated and tested using the widely adapted logistic regression.  

The odds ratio may have some disadvantages in practice. The OR is the 

indirect measure for estimating risks compared to the other two effect measures. 

Greenland (1987) argued that the OR is a useful effect measure when applying it in 

estimating the RR, as only the RD or RR can directly measure the influence of an 

intervention on average risk. However, the OR estimates can be influenced by the 

outcome event probability of the control group, so using the OR as a substitute of RR 

can be misleading in communicating the results from cohort studies (Nurminen, 1995; 

Sinclair & Bracken, 1994). Another downside of the odds ratio is its non-collapsible 

property. The non-collapsibility refers to when the marginal and conditional odds 

ratios are different in magnitudes even in the absence of confounding (Greenland et 

al., 1999).  

It is widely recognized that when the outcome event is rare, the OR can 

approximate the RR. However, under the common disease or the unstable probability 

of exposure environment, the approximation can be biased (Nurminen, 1995). The OR 

approximately equals the RR when the baseline risk is less than 10% (Sinclair & 

Bracken, 1994). However, there are other requirements for the approximation besides 

the low outcome event probability. Greenland (1987) discussed that the 

approximation requires the probability of 𝑦 = 1 to be small in each covariate 

category, not only for the overall probability to be small. This relationship can be 

illustrated as following: 
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𝑎/𝑏

𝑐/𝑑
= ቆ

𝑎/(𝑎 + 𝑏)

𝑐/(𝑐 + 𝑑)
ቇ ൬

1 + 𝑎/𝑏

1 + 𝑐/𝑑
൰. 

The OR can be written as the RR times an additional term. If the odds from each 

group do not exceed the value M, the value of the additional term is within the 

(1 ± M) range. The approximated RR is closer to the OR with a smaller M value.   

In practice, it is not uncommon to find examples where the OR has been 

interpreted as RR. For example, in a study of the effects of race and sex on the referral 

rate for cardiac catheterization, an estimate of OR = 0.60 was interpreted as RR, 

suggesting a black female patient would have 40% less probability of being referral 

compared to a white counterpart (Schwartz et al., 1999). This result caused heated 

debate regarding racial discrimination in several US mass media, while the RR 

estimate was 0.93 and the referral rate reduction was only 7%. 

2.2. Multiple regression models for binary outcomes 

The effect measures in the studies with a binary outcome can be estimated by using 

regression models. This is important for adjusting for potential confounding and/or 

improve estimation precision. We review the logistic regression, log-binomial model, 

and the modified Poisson model. The logistic regression is widely used in analyses to 

estimate the OR. The log-binomial and modified Poisson models are for the RR, 

which is the effect measure that we focus on in this thesis. 

2.2.1. Logistic regression for estimating odds ratios 

Consider a regression with 𝑘 covariates. Let 𝑥ଵ, … 𝑥 be the individual covariates. The 

logistic regression is usually written as 

log ൬
𝑝

1 − 𝑝
൰ = 𝛽 + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + ⋯ + 𝛽𝑥, (2.1) 

where 𝑝 is the probability of outcome events given covariates. The regression 

coefficient 𝛽 represents the log of odds or log of odds ratio in the logistic regression.  
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The logistic regression has several assumptions, and some of the assumptions 

are similar to those of linear regression. Linear regression requires a linear 

relationship between dependent and independent variables. The logistic regression 

does not require a linear relationship between the dependent and independent 

variables. Instead, the linear relationship is assumed between log odds and 

independent variables. Another assumption for both linear and logistic regressions is 

that the observations should be independent of each other. The last assumption is the 

absence of multicollinearity for both regression models. Multicollinearity can be 

detected by using the variance inflation factor (VIF). Mansfield and Helms (1982) 

recommended that the VIF should not be too far from 1.0. The common cutoff for 

determining multicollinearity is VIF=10 (Hair, et al., 1998, p. 200).  

Vinttinghoff et al. (2012, pp. 141-144) pointed out several advantages of using 

the logistic regression to estimate the OR. First, the predicted outcome event 

probability from the logistic regression will not be out of [0,1] range. Another 

advantage of logistic regression is that the coefficients can be expressed as the log of 

the odds or log of the OR. The model has a multiplicative property so that the odds for 

a treatment group could be calculated using the anti-log function of the corresponding 

regression coefficient and the odds of the control group. The popularity of the logistic 

regression is due largely to the software availability of model fitting.  

The logistic regression model has been regarded as a universal method in 

different epidemiological studies. However, the model has potential disadvantages. 

Sinclair and Bracken (1994) considered that the OR could be misinterpreted or even 

mislabeled as RR. Misinterpreting may lead to the confusion of the size of the 

covariate effect. As evidenced in the example from Sinclair and Bracken (1994), a 

study of the association between hemoglobin level and mortality described a relative 

comparison of mortality between low and high hemoglobin groups, but the actual 

effect measure used was OR. The calculated true RR from the same study was about 

half of the reported number. Again, misinterpretating OR as RR has been vividly 

demonstrated by the high-profile study regarding influences of race and sex on the 

referral rate for cardiac catheterization (Schwartz et al., 1999). 

The non-collapsibility of the OR, as described in Section 2.1, is another 

problem. Having the stratification variable z be independent of other covariates cannot 
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guarantee the collapsibility when the link function is logistic (Greenland et al., 1999). 

Falsely interpreting the marginal effect as a stratum-specific effect could lead to an 

inappropriate conclusion. 

The consequence of non-collapsibility was emphasized by Gail et al. (1984) 

and Neuhaus and Jewell (1993) that the estimation of the regression coefficients 

would be affected by the omitted covariate in randomized studies. Neuhaus and 

Jewell (1993) demonstrated that the bias can arise even when the omitted covariate is 

independent of the other covariates. The direction of the bias relates to the concave or 

convex status of the link functions. The magnitude of the bias depends on the variance 

of the omitted covariate effect. The larger the variability, the larger the bias. Omitting 

covariates that are correlated to those included covariates also affects the regression 

coefficients, as the included and omitted covariates may not be conditionally 

independent given the outcome. Researchers choose covariates based on their needs 

and they may not include all possible variables related to the outcome, and the 

regression coefficient estimation can be biased.  

2.2.2. Log-binomial model for estimating risk ratios 

It is not hard to find many studies with common outcome. In such cases, using OR to 

approximate RR can be misleading. The RR could be directly estimated using log-

binomial models. Such a model uses a log link to connect covariates and the 

probability of the outcome events, whereas the logistic regression applies a logit link 

in between. The model can be written as follows (Wacholder, 1986):  

log(𝑝) = 𝛽 + 𝛽ଵ𝑥ଵ + ⋯ 𝛽𝑥, (2.2) 

where 𝛽 represents the log of baseline risk and 𝛽ଵ, … , 𝛽 are the log of the risk ratios.  

As a member in the family of generalized linear models, one advantage of the 

log-binominal model is that it uses maximum likelihood estimation approach and thus 

provides efficient estimates of risk ratios. The log-binominal model has a good 

property that excluding or including uncorrelated independent variables to the 

variable of interest would not materially change the estimate of risk ratio for the 

variable of the interest, due to the log link function (Neuhaus & Jewell, 1993).  



12 
 

 

However, the log-binomial model may face the issue of non-convergence. The 

convergence error during the maximum likelihood iteration could occur when the 

right side of Equation (2.2) becomes higher than zero for some individual 

observations. The RRs are not estimable from the log-binomial model in this case. 

The problem implies that the selected model is inappropriate for fitting the data 

(Wacholder, 1986).  

2.2.3. Modified Poisson model for estimating risk ratios 

McNutt et al. (2003) proposed estimating risk ratio by the Poisson regression, and 

found that this model overestimates standard errors, due to the misspecification of the 

Poisson model for binary outcome. The overestimation happens when the disease is 

common. The standard errors from the Poisson model and the log-binomial model are 

similar when the disease is rare, as 𝑝 ≈ 𝑝(1 − 𝑝). To correct for model 

misspecification, Zou (2004) proposed the modified Poisson model using a robust 

sandwich estimator for variance estimation.  

The robust sandwich variance estimator can be expressed as 𝐼ିଵ𝐽𝐼ିଵ, where I 

is the Fisher information matrix from the Poisson regression, and 𝐽 is the empirical 

estimate of the covariance matrix. For the data in Table 2.1, we can fit the modified 

Poisson model with only one binary covariate x: 

log൫𝐸(𝑌)൯ = 𝛽 + 𝛽ଵ𝑥, 

where the 𝛽 is the intercept, and 𝛽ଵ is the regression coefficient of the interest. The 

binary outcome vector 𝑌 and the design matrix X are  

𝑌 = ൦

1

0

1

0ௗ

൪           𝑋 = ൦

1 1

1 1

1 0

1ௗ 0ௗ

൪,  

where the 1 is a vector of ones with the length of 𝑎, and the 0 is a vector of zeros 

with the length of b. The Fisher information matrix I can be showed as 

𝐼 = ቈ
(𝑎 + 𝑏)𝑒ఉబାఉభ + (𝑐 + 𝑑)𝑒ఉబ (𝑎 + 𝑏)𝑒ఉబାఉభ

(𝑎 + 𝑏)𝑒ఉబାఉభ (𝑎 + 𝑏)𝑒ఉబାఉభ
, 
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where 𝑒ఉబାఉభ and 𝑒ఉబ are estimated as 𝑎/(𝑎 + 𝑏) and 𝑐/(𝑐 + 𝑑), respectively. The 

inverse of the Fisher information matrix can be estimated as 

𝐼ିଵ = ൦

1

𝑐
−

1

𝑐

−
1

𝑐

1

𝑐
+

1

𝑎

൪. 

The covariance matrix, 𝐽, can be empirically estimated as 

𝐽 = 𝑋ᇱ𝑑𝑖𝑎𝑔(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠)ଶ𝑋 

=

⎣
⎢
⎢
⎢
⎡𝑎 ቀ1 −

𝑎

𝑎 + 𝑏
ቁ

ଶ

+ 𝑏
𝑎ଶ

(𝑎 + 𝑏)ଶ
+ 𝑐 ቀ1 −

𝑐

𝑐 + 𝑑
ቁ

ଶ

+ 𝑑
𝑐ଶ

(𝑐 + 𝑑)ଶ
𝑎 ቀ1 −

𝑎

𝑎 + 𝑏
ቁ

ଶ

+ 𝑏
𝑎ଶ

(𝑎 + 𝑏)ଶ

𝑎 ቀ1 −
𝑎

𝑎 + 𝑏
ቁ

ଶ

+ 𝑏
𝑎ଶ

(𝑎 + 𝑏)ଶ
𝑎 ቀ1 −

𝑎

𝑎 + 𝑏
ቁ

ଶ

+ 𝑏
𝑎ଶ

(𝑎 + 𝑏)ଶ⎦
⎥
⎥
⎥
⎤

,   

where the residuals are obtained as 𝑌 − 𝜇, and 𝜇 is estimated by eఉబାఉభ௫. The 

diag(residuals) in the covariance matrix represents the diagonal matrix of residuals. 

Putting the matrices together, the robust sandwich variance estimator is estimated as 

𝐼ିଵ𝐽𝐼ିଵ = ൦

1

𝑐
−

1

𝑐

−
1

𝑐

1

𝑐
+

1

𝑎

൪ ൦

𝑎𝑏

𝑎 + 𝑏
+

𝑐𝑑

𝑐 + 𝑑

𝑎𝑏

𝑎 + 𝑏
𝑎𝑏

𝑎 + 𝑏

𝑎𝑏

𝑎 + 𝑏

൪ ൦

1

𝑐
−

1

𝑐

−
1

𝑐

1

𝑐
+

1

𝑎

൪ 

=

⎣
⎢
⎢
⎡

𝑑

𝑐(𝑐 + 𝑑)
−

𝑑

𝑐(𝑐 + 𝑑)

− 
𝑑

𝑐(𝑐 + 𝑑)

𝑏

𝑎(𝑎 + 𝑏)
+

𝑑

𝑐(𝑐 + 𝑑)⎦
⎥
⎥
⎤

. 

Then, the (2,2)th element of the 𝐼ିଵ𝐽𝐼ିଵ brings the estimated variance of the 

regression coefficient of the interest: 

Var ൫𝛽ଵ
൯ =

1

𝑎
−

1

𝑎 + 𝑏
+

1

𝑐
−

1

𝑐 + 𝑑
 . 

The robust sandwich estimator provides consistent covariance estimates when 

heteroskedasticity exists, and it can correct the inconsistency due to model 

misspecification (White, 1980). The modified Poisson regression was shown to 
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provide equivalent variance estimates with that of the log-binominal regression, but 

without convergence problems.  

Ritz and Spiegelman (2004) suggested to use the robust sandwich estimator in 

a marginal model to adjust a random effect from omitting a covariate when the 

response probability follows a Poisson distribution. The modified Poisson model uses 

a working marginal Poisson distribution (Zou & Donner, 2013), and the estimation of 

the standard errors is not influenced by omitting a covariate when confounding is 

absent as in randomization trials. Ritz and Spiegelman (2004) also recommended a 

generalized estimating equation (GEE) approach in the marginal model when the link 

function is the identity or log, as it provides consistent regression coefficient estimates 

when the working correlation structure is inappropriate.  

Yelland et al. (2011) evaluated the modified Poisson model with clustered 

prospective data using simulation. In the study, the exposure status was independent 

of the clusters, and it was assigned to the individual level. The GEE procedure with an 

exchangeable correlation structure was applied to accommodate the clustering. The 

performance of the modified Poisson regression with the GEE was similar to that of 

the log-binomial model when the log-binomial model did not have a convergence 

problem.  

Zou and Donner (2013) extended the modified Poisson model to the correlated 

binary outcomes for longitudinal or clustered randomized trial studies, where the 

entire clusters were randomized into either exposed or non-exposed group. The 

sandwich variance estimator with the adjustment based on clusters was applied, and 

the GEE was also used. The model performed well with the correlated binary 

outcome. Meanwhile, the model could accommodate situations in which the log-

binomial regression had convergence problems.  

The modified Poisson model has some other benefits. It is appealing to many 

clinicians because it estimates the RR, which is easier to interpret. As discussed in 

Section 2.1, the RR is collapsible, so that the modified Poisson model could benefit 

from the collapsibility. The modified Poisson model can still be applied when the log-

binomial model faces a convergence issue, as the modified Poisson model is not likely 

to have convergence difficulties (Yelland et al., 2011). 
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Zou and Donner (2013) suggested that the modified Poisson model may not be 

capable of predicting individual risks, because for an individual 𝑖 (𝑖 = 1 … 𝑛), the 

right side of the equation log(𝑝) = 𝛽 + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + ⋯ + 𝛽𝑥 could be 

estimated greater than 0, which results in meaningless individual probability 𝑝 > 1.  

Compared to the log-binomial model, the modified Poisson model rarely has 

convergence problems and can be used as an alternative model to the log-binomial 

model in various situations to estimate the RR.   

2.3. Sample size and power for studies with binary 

outcomes 

The sample size determination is an essential element in planning a medical research 

study. The literature has suggested many methods in finding adequate sample sizes. 

Based on odds ratios, Whittemore (1981), Lachin (1981), and many others have 

addressed the sample size formula with the two-group comparison and maximum 

likelihood methods. We review the general theory and various methodologies in this 

section.  

2.3.1. General principle 

Consider a hypothesis testing to detect the difference between two means. Let 𝜇 

represent the difference of two group means; and the statistic 𝑆 be a consistent 

estimator of 𝜇. The null hypothesis is 𝜇 equals to 𝜇, and the statistic follows 

𝑁(𝜇, 𝛴
ଶ) under the null. Under the alternative hypothesis, 𝜇 equals to 𝜇ଵ, and it is 

distributed with 𝑁(𝜇ଵ, 𝛴ଵ
ଶ). The 𝛴

ଶ and 𝛴ଵ
ଶ can be written as 𝜎

ଶ/𝑛 and 𝜎ଵ
ଶ/𝑛, 

respectively. The 𝜎
ଶ and 𝜎ଵ

ଶ are the variance of the individual observations under the 

null and the alternative, respectively, and 𝑛 stands for the total sample size. Two types 

of errors exist in hypothesis testing. The 𝛼 represents the Type I error or significance 

level, which is the probability of rejecting the null hypothesis when it is true. The 

Type II error is defined as the probability of not rejecting the null hypothesis when the 

alternative hypothesis is true. The 𝛾 represents the power which is related to the Type 

II error (𝛾 = 1 − Type II error), and the power is the probability of rejecting the null 

hypothesis H when the alternative hypothesis Hଵ is true. In hypothesis testing, a test 
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statistic is used to evaluate the probability that the observations could happen by 

chance (Lachin, 2011, p.87). For rejecting H, the two-tailed significance test for 𝜇 

needs to satisfy the following relationship under the null hypothesis (Lachin, 2011, 

pp. 87-91)  

|𝑇| = ฬ
S − 𝜇

𝜎
ฬ >  Zଵିఈ/ଶ. 

From the test, the power (𝛾) can be expressed as follows: 

𝛾 = Prൣ|𝑇| > 𝑍ଵିఈ/ଶหHଵ൧, (2.3) 

where 𝑇 represents the test statistic that follows a standard normal distribution under 

the null and 𝑍ଵିఈ/ଶ is the critical value of the standard normal distribution at 𝛼 

significance level (Lachin, 2011, p. 89).  

For finding a sample size, the power of a hypothesis test can be used. The 

calculation of the test statistics 𝑇 contains the variance of the estimated 𝑆. The 

estimation of the variance involves a sample size 𝑛. By inverting Equation (2.3), 𝑛 

can be found. Investigators can use various hypothesis tests, such as the Chi-square 

test, Wald test, and Score test, but the general principle for finding the sample size 

remains the same. 

2.3.2. Two-group comparison studies 

Many clinical trial studies involve two-group comparisons, and the hypothesis test is 

based on the difference between the two group means. Lachin (1981; 2011) derived 

the formulas for the sample size n and the power 𝛾 from the two-tailed test by solving 

for 𝑛 and 𝑍ఊ from the difference |𝜇ଵ − 𝜇| = 𝑍ଵିఈ/ଶ𝛴 + 𝑍ఊ𝛴ଵ. as the following: 

𝑛 = ൬
𝑍ଵିఈ/ଶ𝜎 + 𝑍ఊ𝜎ଵ

𝜇ଵ − 𝜇
൰

ଶ

, (2.4) 

𝑍ఊ =
√𝑛|𝜇ଵ − 𝜇| − 𝑍ଵିఈ/ଶ𝜎

𝜎ଵ
 . 

Lachin (1981) also extended the general sample size formula to test the 

difference between two proportions. The null hypothesis is that there is no difference 



17 
 

 

between the two proportions. The alternative hypothesis is that the two proportions 

are different. The variances under the null and alternative hypotheses are calculated to 

replace 𝜎
ଶ and 𝜎ଵ

ଶ in Equation (2.4).  

For the risk ratio, Donner (1984) reviewed sample size formulas with the 

randomized clinical trial design. The null hypothesis is H: 𝑅𝑅 = 1. The test statistics 

come from the Chi-square test. The square root of the Chi-square statistics follows a 

standard normal distribution. The sample size for RR is obtained by 

𝑛 =

⎝

⎛
𝑍ଵିఈ/ଶඥ𝑃(1 + 𝑅𝑅)(1 − 𝑃ത) + 𝑍ఊට𝑃൫1 + 𝑅𝑅 − 𝑃(1 + 𝑅𝑅ଶ)൯

𝑃(1 − 𝑅𝑅)

⎠

⎞

ଶ

, (2.5) 

where 𝑃, 𝑃ଵ, 𝑃ത are the probability of the outcome event for the control group, the 

intervention group, and the average of the outcome probability of the two groups, 

respectively.  

 Hsieh et al. (1998) presented a sample size formula based on the logistic 

regression for OR with one covariate, assuming the covariate follows a standard 

normal or binomial distribution. The covariate distributions in each binary response 

group and the overall covariate distribution are presumed to be the same. When the 

covariate is binary, the sample size for a simple logistic regression can be written in 

terms of 𝑃 and 𝑃ଵ, where 𝑃 and 𝑃ଵ are also the outcome event probabilities from the 

control and intervention groups, respectively. The 𝑃௫ is the probability for 𝑥 = 1, and 

p is the overall prevalence of the outcome event. With a two-tailed test, the sample 

size is 

𝑛 =
൫𝑍ଵିఈ/ଶඥ𝑝(1 − 𝑝)/𝑃௫ + 𝑍ఊඥ𝑃(1 − 𝑃) + 𝑃ଵ(1 − 𝑃ଵ)(1 − 𝑃௫)/𝑃௫൯

ଶ

(𝑃 − 𝑃ଵ)ଶ(1 − 𝑃௫)
. 

To account for the situation in which multiple risk factors are present, Hsieh et 

al. (1998; 2003) applied the variance inflation factor (VIF) to the sample size 

formulas to adjust for more than one covariate situation in the model. The VIF is 

VIF =
1

1 − 𝑟ଵ,ଶ…
ଶ , (2.6) 
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where 𝑟ଵ,ଶ…
ଶ  is the coefficient of determination that comes from the model that the 

factor of interest regresses on the other covariates. The reason for the adjustment is 

that the null hypothesis is H: [𝛽ଵ, 𝛽ଶ … 𝛽] = [0, 𝛽ଶ … 𝛽], and it is not only H: 𝛽ଵ =

0. Hsieh et al. (2003) pointed out that both the variance of the residuals and the 

variance of other covariates can influence the variance and covariance of the factor of 

interest, which leads to a power reduction. Thus, the power is adjusted by the VIF to 

account for the association between the factor of interest and other covariates.  

Alam et al. (2010) considered that when the null hypothesis is not true, the 

assumption by Hsieh et al. (1998) of identical conditional distributions (𝑋|𝑌) for each 

response group (𝑌 = 1 or 𝑌 = 0) might not be true. Under the alternative hypothesis, 

if 𝑋 follows a normal distribution, the distributions for (𝑋|𝑌 = 1) and (𝑋|𝑌 = 0) can 

be non-normal, and the variances may vary. In addition to the non-standard two-

sample framework, the sample size from Hsieh et al. (1998), which assumes the 

intercept of the logistic regression is known, is unstable and sensitive to minor 

changes in the intercept 𝛽. Alam et al. (2010) also illustrated that the method by 

Hsieh et al. (1998) is not accurate when the covariate follows a Bernoulli distribution. 

2.3.3. Sample size based on maximum likelihood estimation 

Apart from the efforts of Hsieh et al. (1998), much of the literature pursued other 

sample size methods of the odds ratio for the logistic regression model. The variance 

of the estimator in the sample size approximation can be related to the variance-

covariance matrix from the maximum likelihood method. Let 𝜃 be a vector of the 

unknown parameters in the logistic regression model and they are estimated by the 

maximum likelihood method.  

Whittemore (1981) estimated the sample size by approximating the Fisher 

information matrix of the maximum likelihood estimates in a closed form when the 

response probability is small and the covariates follow a family of the multivariate 

distribution. The VIF was applied to reduce the complexity of the variance-covariance 

matrix of the estimates. Alam et al. (2010) pointed out that the small response 

probability assumption introduces severe restrictions on regression coefficients. Hsieh 

(1989) relaxed the condition by simplifying the sample size derived by Whittemore 

(1981) with the assumption of [𝜃ଶ = ⋯ = 𝜃 = 0] and the use of VIF.  
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Another sample size method was proposed by Self and Mauritsen (1988) 

based on score statistics under the alternative hypothesis Hଵ. The standard score 

statistics, 𝑈(𝜃)ଶ/𝐼(𝜃), is evaluated under the null hypothesis H: 𝜃 = 𝜃, where 𝜃 

can be zero or other fixed values. Self and Mauritsen (1988) implemented the 

standard Taylor series in approximating the score test statistics under the alternative 

hypothesis and used the non-central Chi-square distribution for approximating the 

power of the score test.  

The score test is one of the likelihood-based tests that can be applied in the 

sample size estimation. The other two tests are the likelihood ratio test and Wald test. 

Demidenko (2007) suggested the Wald test should be applied to approximate the 

sample size because it is commonly used to test the significance of a regression 

coefficient in the data analysis stage. Demidenko (2007) replaced the variance 𝜎
ଶ 

under the null hypothesis with the variance 𝜎ଵ
ଶ under the alternative hypothesis in the 

sample size equation based on the Wald test: 

𝑛 =
൫𝑍ଵିఈ/ଶ𝜎 + 𝑍ఊ𝜎ଵ൯

ଶ

(𝛽
∗ − 𝛽

)ଶ
=

൫𝑍ଵିఈ/ଶ + 𝑍ఊ൯
ଶ

𝜎ଵ
ଶ

(𝛽
∗ − 𝛽

)ଶ
, 

where 𝛽
 is the value of 𝛽 under the null hypothesis, and 𝛽

∗ is the value of 𝛽 under 

the alternative hypothesis. The replacement was proposed because the Wald test 

statistics uses the variance estimated at MLE, not under the null hypothesis. Using the 

variance under the null hypothesis may lead to a biased sample size. The variance 

under the alternative hypothesis is numerically computed depending on the covariate 

distribution. The sample size method by Demidenko (2007) is beneficial to logistic 

regression with any types of covariate distributions. However, the sample size for 

regressions with non-binary covariates requires numerical calculation because there is 

no closed form.  

Unlike the method proposed by Demidenko (2007), Alam et al. (2010) applied 

variances under both null and alternative hypotheses into sample size determination. 

This method is a variation of the sample size approach by Whittemore (1981), and the 

estimated sample size also varies with the changes in the logistic regression intercept. 

The proposed method provided a better power estimation than the method by Hsieh et 
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al. (1998) under the same settings when the covariate followed a Bernoulli 

distribution.  

Among various sample size methods for logistic regression, the main target is 

to find an appropriate variance estimator for the test statistics. The literature has 

demonstrated that the maximum likelihood method for estimating the variance of the 

estimated regression coefficients is not simple. The two group comparison methods 

by Lachin (1981) and Donner (1984) did not account for the influence of multiple 

covariates. In the next chapter, we propose an analogous sample size study from 

Vittinghoff et al. (2012, p.74, p.130, p.194) for the RR. The idea of using the Wald 

test by Demidenko (2007) is followed in the sample size formulation. We also 

implement the VIF in the next chapter. 
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Chapter 3 Sample Size for Modified 
Poisson Regression 

This chapter applies the Wald test statistics, the least square estimation, and the Delta 

method to derive a sample size formula for risk ratios. As Vittinghoff et al. (2012, 

p.74, p.130, p.194) derived the OR sample size based on the least-square method, we 

also start the RR sample size derivation with the same method. Following the general 

principle from Chapter 2, we implement the variance inflation factor to account for 

multicollinearity among multiple covariates. We assume that the parameter estimate 

of interest is 𝛽ଵ
 in the multiple regression, representing the log of RR or regression 

coefficient of the risk factor 𝑥ଵ. 

3.1. Derivation of variance 

If there is no difference in the probability of the outcome event between groups 𝑥ଵ =

1 and 𝑥ଵ = 0, the Wald test statistic for the null hypothesis of no effect is given by   

Wald =
൫𝛽ଵ

 − 0൯
ଶ

Var൫𝛽ଵ
൯

. (3.1) 

To find the appropriate estimator and its variance, we first apply the least-

square method on the linear regression. Let X and Y represent the covariate matrix 

and outcome vector, 𝜺 be a vector of the true unobserved residuals, and 𝜷 be a vector 

of unknown population parameters.  The simple version of the matrix equation is 𝒀 =

𝑿𝜷 + 𝜺. The estimated minimum sum of square of residuals is 𝒆ᇱ𝒆 = ൫𝒀 − 𝑿𝜷൯
ᇱ
൫𝒀 −

𝑿𝜷൯, where 𝜷 is the estimate of 𝜷,  𝒆 is a vector of residuals that can be observed, and 

𝒆ᇱ𝒆 is a scalar or a number. Taking the derivative of 𝒆ᇱ𝒆 with respect to 𝜷, and 𝜷 =

(𝑿ᇱ𝑿)ିଵ𝑿ᇱ𝒀 after setting the derivative equation to 0. 

Assuming homoskedasticity (constant residual variance) and no correlation in 

the unobserved  , we obtain 𝐸(𝜺ᇱ𝜺|𝑿) = 𝜎ఌ
ଶ𝑰, where 𝜎ఌ

ଶ is the residual variance and 𝑰 

is the identity matrix. The expected variance covariance matrix of  𝜷 can be 

calculated as 
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Cov൫𝜷൯ = E ൬൫𝜷 − 𝜷൯൫𝜷 − 𝜷൯
ᇱ
൰ 

= (𝑿ᇱ𝑿)ିଵ𝑿ᇱ(𝜎ఌ
ଶ𝑰)𝑿(𝑿ᇱ𝑿)ିଵ 

= 𝜎ఌ
ଶ(𝑿ᇱ𝑿)ିଵ. (3.2) 

The variance of the unbiased estimator 𝛽ଵ
 is   

Var൫𝛽ଵ
൯ =

𝑛𝜎ఌ
ଶ

𝑛 ∑ 𝑥ଵ
ଶ − (∑ 𝑥ଵ)ଶ

 

=
𝜎ఌ

ଶ

∑(𝑥ଵ − �̅�ଵ)ଶ
 

=
𝜎ఌ

ଶ

(𝑛 − 1)𝜎௫భ
ଶ

, 

where 𝑥ଵ is the 𝑖th element of the 𝑥ଵ vector (𝑖 ∈ (1,2, … 𝑛)), �̅�ଵ is the average of the 

𝑥ଵ variable, and 𝜎௫భ
ଶ  represents the variance of the 𝑥ଵ. 

When there is only one covariate, the relationship among the variance of the 

response variable 𝜎௬
ଶ, the variance of residuals 𝜎ఌ

ଶ, and the coefficient of 

determination 𝑟௬,ଵ
ଶ  can be expressed as (Hsieh et al., 2003) 

𝜎ఌ
ଶ = 𝜎௬

ଶ൫1 − 𝑟௬,ଵ
ଶ ൯, (3.4) 

where 𝑟௬,ଵ
ଶ  shows the proportion to which the covariate 𝑥ଵ can explain the variation of 

response in the regression model. If there is no covariate in the model, the 𝑟௬,ଵ
ଶ  will 

become zero, and the variation of the response variable is equal to the variance of 

residuals. If there is more than one covariate in the regression model, the VIF is 

applied for adjustment of multicollinearity among covariates in replacement of 

൫1 − 𝑟௬,ଵ
ଶ ൯. The VIF is expressed as 1/൫1 − 𝑟ଵ,ଶ,…,

ଶ ൯, where 𝑟ଵ,ଶ…
ଶ  is the coefficient of 

determination from regressing 𝑥ଵ on other covariates 𝑥ଶ, … , 𝑥. We can extend the 

equation as   

𝜎ఌ
ଶ =

𝜎௬
ଶ

1 − 𝑟ଵ,ଶ…
ଶ . (3.5) 



23 
 

 

In the modified Poisson regression model, the probability of the outcome 

event is modeled as a function of covariates using a log link. Let 𝑝 be the overall 

prevalence for the binary outcome, the variance of the log(p) can be obtained using 

Delta method 

𝜎௬
ଶ = Var ൫log(𝑝)൯ 

= ቆ
𝜕log(𝑝)

𝜕𝑝
ቇ

ଶ

Var(𝑝) 

= ൬
1

𝑝
൰

ଶ

𝑝(1 − 𝑝) 

=
1 − 𝑝

𝑝
. (3.6) 

By replacing the 𝜎ఌ
ଶ and 𝜎௬

ଶ and using 𝑛 to approximate 𝑛 − 1, the variance of 

𝛽ଵ
 can be obtained by accommodating the influence of having multiple covariates: 

Var൫𝛽ଵ
൯ =

1

𝑛𝜎௫భ
ଶ

1 − 𝑝

𝑝

1

1 − 𝑟ଵ,ଶ…
ଶ . (3.7) 

3.2. Sample size, power, and minimal detectable effect 

Now we derive the formulas for sample size, power and minimal detectable effect for 

testing risk ratios in the modified Poisson regression model. The minimum detectable 

effect is the smallest value of the regression coefficient of interest, provided the 

sample size and power to reject the null hypothesis (Vittinghoff et al., 2012, p.131). 

We refer to the general principle for finding a sample size by using the power 

calculation of a hypothesis test. The null hypothesis is when the parameter of interest 

𝛽ଵ = 0, and the alternative hypothesis is 𝛽ଵ ≠ 0. The Wald test statistic is used in test. 

Assuming the parameter of interest under the alternative hypothesis is positive, 

Pr൫𝛽ଵ
/SE൫𝛽ଵ

൯ < 𝑍ఈ/ଶ|Hଵ൯ ≈ 0. Let 𝛽ଵ
∗ be the value of the population parameter of 

interest under the alternative hypothesis, we add an extra term of  𝛽ଵ
∗/SE൫𝛽ଵ

൯ to the 

both sides of the inequality in Equation (3.8) and obtain the power of the Wald test as 

𝛾 ≈ Pr ቆ
𝛽ଵ
 − 0

SE൫𝛽ଵ
൯

> 𝑍ଵିఈ/ଶቤHଵቇ (3.8) 
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= Pr ቆ
𝛽ଵ


SE൫𝛽ଵ
൯

−
𝛽ଵ

∗

SE൫𝛽ଵ
൯

> 𝑍ଵିఈ/ଶ −
𝛽ଵ

∗

SE൫𝛽ଵ
൯

ቇ, 

where ൫𝛽ଵ
 − 𝛽ଵ

∗൯/SE൫𝛽ଵ
൯ follows a standard normal Z-distribution. Let Φ be the 

cumulative distribution function of the standard normal distribution. Replacing the 

SE൫𝛽ଵ
൯ with the square root of the estimated variance, the sample size is given by 

𝛾 = Φ ቆ
𝛽ଵ

∗

SE൫𝛽ଵ
൯

− 𝑍ଵିఈ/ଶቇ 

𝛽ଵ
∗

𝑍ଵିఈ/ଶ + 𝑍ఊ
= SE൫𝛽ଵ

൯ 

(𝛽ଵ
∗)ଶ

൫𝑍ଵିఈ/ଶ + 𝑍ఊ൯
ଶ =

1

𝑛𝜎௫భ
ଶ

1 − 𝑝

𝑝

1

1 − 𝑟ଵ,ଶ…
ଶ  

𝑛 =
൫𝑍ଵିఈ/ଶ + 𝑍ఊ൯

ଶ

(𝛽ଵ
∗)ଶ𝜎௫భ

ଶ

1 − 𝑝

𝑝

1

1 − 𝑟ଵ,ଶ…
ଶ . (3.9) 

The power and minimal detectable effect are obtained as 

𝛾 = 1 − Φ ቌ𝑍ଵିఈ/ଶ − |𝛽ଵ
∗|𝜎௫భඨ𝑛

𝑝

1 − 𝑝
൫1 − 𝑟ଵ,ଶ…

ଶ ൯ቍ , (3.10) 

±𝛽ଵ
∗ =

𝑍ଵିఈ/ଶ + 𝑍ఊ

𝜎௫భට𝑛
𝑝

1 − 𝑝 ൫1 − 𝑟ଵ,ଶ…
ଶ ൯

. (3.11)
 

Equations (3.9) to (3.11) are derived formulas for sample size, power and 

minimum detectable effect that account for the influence of covariates other than the 

factor of interest. All derivations are based on asymptotics. We conduct a simulation 

study to evaluate the performance of the power formula in Equation (3.10) in Chapter 

4. 
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Chapter 4 Simulation Study 
In this chapter, we conduct a simulation study to evaluate the proposed sample size 

formula for the modified Poisson model under practical situations. The main 

objectives of the simulation study are: 

1. To evaluate the empirical power of the modified Poisson model for detecting 

the effect of a risk factor when the response is generated from the logistic 

model. 

2. To examine the performance of the proposed sample size and power formulas 

for the modified Poisson model. 

4.1. Simulation design and data generation 

The simulation study consists of two parts. The first part compares the empirical 

powers from the logistic regression and modified Poisson model when the response 

probabilities are generated from the logistic model. The second part assesses the 

adequacy of the proposed sample size formula for the modified Poisson model.    

In each part, we consider five scenarios: two scenarios are with a single 

covariate, and the other three scenarios with two covariates. With a single covariate 𝑥, 

the covariate is considered to be binary or continuous. With two-covariates (𝑥ଵ, 𝑥ଶ), 

the scenarios are based on two binary covariates, two continuous covariates, or a 

mixture of one binary (𝑥ଵ) and one continuous (𝑥ଶ) covariate, where the risk factor of 

interest is 𝑥ଵ. The two-covariate scenarios are designed to evaluate the power of 

detecting the effect of the risk factor when adjusting for the other covariate 𝑥ଶ. In the 

two-covariate scenarios, we denote by 𝑟 the correlation between the two covariates. 

Then the coefficient of determination obtained from the model of 𝑥ଵ regressing on 𝑥ଶ 

is expressed as 𝑟ଶ.  

As SAS® is widely used in the pharmaceutical industry, it is used as the tool 

for the simulation study. In Sections 4.1.1 to 4.1.3, we describe the detailed steps of 

the data-generating and simulation processes. 
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4.1.1. Generating covariates 

Prior to generating response variables, we generate the covariates. A single covariate, 

𝑥 is generated using the RAND function from SAS 9.4 with Bernoulli or normal 

distribution. For the two-covariate scenarios, the correlated covariates are generated 

based on the RandMVBinary, RandNormal, and Cholesky transformation from 

SAS/IML software (Wicklin, 2013, pp. 133-157, 176-177). The RandMVBinary 

function generates multivariate binary data. The RandNormal function in SAS/IML is 

used for simulating correlated multivariate normal data with a predetermined mean 

and covariance matrix. In scenarios with one binary and one continuous covariate, the 

data is simulated using the Cholesky transformation. The Cholesky transformation 

uses a given covariance structure to simulate multivariate normal data. The simulated 

data for 𝑥ଵ is converted to binary, and 𝑥ଵ = 1 if the generated value is greater than 

zero. There is no additional adjustment applied to the correlation reduction due to the 

dichotomization in the generated data.  

The binary covariates were generated with the probability of 0.5 (exposed = 1 

and unexposed = 0). The continuous covariates were generated from a standard 

normal distribution with parameters 𝜇 = 0 and 𝜎ଶ = 1. The correlation coefficients 

used for generating two covariates were 0, 0.3, and 0.6 to represent no, medium and 

large correlations (Cohen, 1988, pp. 79-81). 

4.1.2. Simulation settings for empirical power comparison 

In the simulation study for the first objective to compare empirical power of the 

modified Poisson model to that of the logistic model, we considered the total sample 

size of 300 and first generated the covariates with pre-specified probability of 0.5 for 

binary covariates or mean of 0 and variance of 1 for continuous covariates and 

correlation coefficient 𝑟 of 0, 0.3, 0.6 for two covariate scenarios. Then, we generated 

the response variables based on the response probability obtained from the logstic 

regression model with fixed covariates, odds ratio values of 𝑂𝑅௫భ
= 1, 1.5, 2, and 2.5 

for the risk factor of interest 𝑥ଵ, 𝑂𝑅௫మ
= 1, 1.5, and 2 for 𝑥ଶ, and the baseline 

response probability 𝑝 of 0.1, 0.2, 0.3, and 0.4 for one covariate scenarios or 0.1 and 

0.4 for two covariate scenarios, where 𝑝 = Pr(𝑌|𝑥 = 0) or 𝑝 = Pr(𝑌|𝑥ଵ = 𝑥ଶ = 0). 

We set the significance level 𝛼 to be 0.05. 
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To be more specific, pre-specified odds ratios, baseline response probability 

and fixed values of covariates were considered, the individual response probability 

was calculated from the logistic regression model as: 𝑝 = 𝑒ఉబାఉభ௫/ൣ1 + 𝑒ఉబାఉభ௫൧ 

for one-covariate scenarios or  𝑝 = 𝑒ఉబାఉభ௫భାఉమ௫మ/ൣ1 + 𝑒ఉబାఉభ௫భାఉమ௫మ൧ for two-

covariate scenarios. The 𝛽 was obtained as the log of 𝑝/(1 − 𝑝) and the 𝛽ଵ as the 

log of 𝑂𝑅௫ or 𝑂𝑅௫భ
, and 𝛽ଶ as the log of 𝑂𝑅௫మ

. The individual response 𝑦 was 

simulated with a random Bernoulli function given 𝑝.   

4.1.3. Simulation settings for sample size examination 

The simulation setting for evaluating the proposed risk ratio power formula for the 

modified Poisson model is similar to that was described in the previous section. The 

pre-specified parameters, the generated covariates, and the 𝛼 value remained the 

same. The sample sizes were fixed as 300 and 500.  

For second part of the simulation, the modified Poisson model was used in 

generating the responses. The response probabilities 𝑝 were obtained by using anti-

log link, preset RRs, and given covariate values. Individual 𝑝 equaled 𝑒ఉబାఉభ௫ or 

𝑒ఉబାఉభ௫భାఉమ௫మ. The 𝛽 was the log of 𝑝, where  𝑝 = Pr(𝑌|𝑥 = 0) or 𝑝 =

Pr(𝑌|𝑥ଵ = 𝑥ଶ = 0). The baseline response probability 𝑝 varied at 0.1, 0.2, 0.3, and 

0.4. The 𝑅𝑅௫ or 𝑅𝑅௫భ
 for x or 𝑥ଵ varied at 1, 1.5, 2, and 2.5, 𝑅𝑅௫మ

∈ (1, 1.5, 2), and 

the regression coefficients 𝛽ଵ and 𝛽ଶ were determined by the logarithms of RRs. 

Because an anti-log link was used to obtain the response probability, it could 

be greater than one. For example, in scenarios with two binary covariates, when 𝑝 =

0.3, 𝑅𝑅௫భ
= 𝑅𝑅௫మ

= 2.5 and 𝑥ଵ = 𝑥ଶ = 1, the corresponding response probability 

becomes greater than one, thus, we excluded this parameter value combination in the 

simulation. For the scenarios of one binary or two binary covariates, we considered 

only workable parameter value combinations that make the response probability less 

than one. For the scenarios involving a continuous covariate, following Yelland et al. 

(2011), the covariate values were regenerated when the individual 𝑝 was greater than 

one to avoid the response generation errors.  
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4.2. Assessment criteria 

For each simulation setting, we evaluated the power of the modified Poisson model 

using 1000 simulations of a given sample size in terms of empirical powers 

comparing to nominal powers. The same number of runs was used in similar 

simulation studies (Hsieh et al., 1998; Zou, 2004). Each run had the same generated 

covariate values, but individual 𝑦 varied. The Genmod procedure from SAS 9.4 was 

used to fit the logistic regression and modified Poisson models to analyze the same 

data set in each run. For both models, the null hypothesis of testing the significance of 

the regression coefficient is H: 𝛽ଵ = 0. The powers of the two models are 

comparable since the null hypothesis is identical. The empirical power in both parts of 

the simulation study was calculated as the times of rejecting the null hypothesis out of 

1000 simulation runs when the P-value < 0.05. In part one, if the empirical powers 

from the logistic regression and the modified Poisson model have a less than 5% 

difference, we consider the two powers are equivalent.  

In the first part of simulation, the nominal powers for detecting the odds ratios 

of a given sample size were obtained for the logistic regression model for comparison 

using the following formula (Vittinghoff et al., 2012, p. 195): 

𝛾 = 1 − Φ ቆ𝑍ଵିఈ/ଶ − |𝛽ଵ
∗|𝜎௫భ

ට𝑛𝑝(1 − 𝑝)൫1 − 𝑟ଵ,ଶ…
ଶ ൯ቇ . (4.1) 

We used the weighted average as the overall prevalence 𝑝 for the outcome when the 

covariate was binary, with weight as the group size of 𝑥 = 1 or 𝑥 = 0, since using the 

weighted average is more accurate than using an arithmetic average. Weight can be 

calculated as the number of 𝑥 = 1 or 𝑥 = 0 divided by n. For a balanced design, equal 

weights were used. For one binary covariate scenario, the weight was 0.5. For the two 

binary covariate scenario, since Pr(𝑥ଵ = 1) = Pr(𝑥ଶ = 1) = 0.5, the weight for each 

𝑥ଵ and 𝑥ଶ  combined category was 0.25. In the scenarios with a continuous covariate, 

the average of 300 individual 𝑝 was used as 𝑝. The standard deviation of the binary 

covariate of interest was calculated as the square root of Pr(𝑥ଵ = 1)൫1 − Pr(𝑥ଵ = 1)൯. 

For the interested continuous covariate, the standard deviation was √𝜎ଶ = 1. The 

other values required to find the nominal power were pre-specified. For one-covariate 
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scenarios, the 𝑥ଵ in the Equation (4.1) represents the only covariate 𝑥, and the squared 

correlation coefficient 𝑟ଵ,ଶ…
ଶ  was not included in calculating the nominal power. For 

other scenarios, the correlation coefficient in the power equation was a preset value of 

0, 0.3 or 0.6. In practice, the correlation coefficient for two covariates can be 

estimated by the Pearson correlation in the sample data. 

In the second part, the proposed power formula was used to calculate the 

nominal power for detecting risk ratios. The weighted average or the mean of 𝑝 was 

used as the overall prevalence 𝑝 in different scenarios. The standard deviation of the 

binary covariate was calculated as 0.5, since the probability for 𝑥 or 𝑥ଵ = 1 was set as 

0.5. The standard deviation of the continuous covariate equaled 𝜎 = 1. The other 

parameter values applied in the proposed power formula were preset from Section 

4.1.3.  

For comparing the empirical power of the logistic regression to its nominal 

power and the empirical power of the modified Poisson model to the nominal power 

for detecting RR, we consider the power difference is acceptable if the difference 

between the nominal and empirical powers is less than 10%.  

4.3. Simulation results 

We summarize the simulation results for the two objectives in separate sections. 

Section 4.3.1 evaluates the empirical powers for the modified Poisson model 

compared to those from the logistic regression. Section 4.3.2 assesses the proposed 

sample size and power formulas for the modified Poisson model comparing their 

nominal and empirical powers.  

4.3.1. Empirical power examination 

The simulation results to evaluate the first objective of the simulation study are 

summarized in Table 4.1 to 4.5. The power of detecting the effect of a risk factor 

using the modified Poisson was evaluated when the response data were generated 

from the logistic model under different scenarios. For all simulation settings, the 

significance level was set as 𝛼 = 0.05 and a two-sided test was used. 
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4.3.1.1. Power for a binary risk factor 

The simulation results for one binary covariate scenario are summarized in Table 4.1 

to compare the power of the modified Poisson model to that of the logistic regression. 

In general, we observed that the differences between the empirical powers of the two 

models are negligible regardless the effect size and the baseline response probability 

𝑝,. The power of the logistic model was closely estimated to the nominal power. As 

expected, the nominal and empirical powers increase as 𝑂𝑅௫ increases when 𝑝 is 

fixed, and also as the 𝑝 increases when 𝑂𝑅௫ is fixed. 

Table 4.2 presents the simulation results for the power of detecting the effect 

of the risk factor of interest when adjusting for a binary covariate 𝑥ଶ. The same results 

are visually illustrated in Figure 4.1 for each 𝑂𝑅௫మ
, 𝑝 and 𝑟 combinations when 𝑂𝑅௫భ

 

varies. As expected, the simulation results with 𝑂𝑅௫మ
= 1, 𝑟 = 0 are similar to those 

from the one-covariate scenario in Table 4.1. The empirical powers from the logistic 

regression and the modified Poisson model agree with each other for all combinations 

of 𝑝, 𝑂𝑅௫భ
, 𝑂𝑅௫మ

, 𝑟. The differences between the two empirical powers are 

negligible, although the empirical power from the modified Poisson model is slightly 

lower than that from the logistic regression when the correlation between the two 

covariates is high. The difference between the nominal and empirical powers of the 

logistic regression is small. When 𝑟 reaches 0.6, the empirical power is slightly higher 

than the nominal power.  

Likewise, when adjusting for a continuous covariate 𝑥ଶ, Table 4.3 represents 

the simulation results under the same parameter setups used for a binary covariate 

adjustment as shown in Table 4.2. Figure 4.2 graphically displays the power trend 

using the results from Table 4.3. The differences between empirical powers from the 

logistic regression and modified Poisson model are negligible. The empirical power 

from the logistic regression is close to its nominal power in most of settings except 

when the correlation is large. The difference between the nominal and empirical 

powers was ranged between (0%, 7.4%), and the highest difference occurred at 

𝑂𝑅௫భ
= 2.5, 𝑂𝑅௫మ

= 2, 𝑟 = 0.6, 𝑝 = 0.1. When the correlation increases, the 

empirical power was decreased due to a multicollinearity problem. The power trend 
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of varying 𝑂𝑅௫భ
 for the scenario of one binary and one continuous covariates shows 

the minor difference between the nominal power for estimating OR and the empirical 

power of the logistic regression. The empirical power of the logistic regression is 

slightly lower than the nominal power when 𝑂𝑅௫మ
 and 𝑟 increase. The empirical 

powers of the logistic regression and modified Poisson model remain close to each 

other for every 𝑂𝑅௫మ
 and 𝑟 combinations. 
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Table 4.1 Results of the empirical powers from the logistic regression (𝐸𝑃௦௧) and 

the modified Poisson model (𝐸𝑃௦௦) for one binary covariate. The odds ratio 

𝑂𝑅௫ ∈ (1,1.5,2,2.5), the response probability of the baseline group 𝑝 ∈

(0.1,0.2,0.3,0.4), and 𝑝 represents the overall prevalence. The nominal powers (𝑁𝑃) 

are obtained from the logistic model. Empirical powers are estimated based on 1000 

runs, 𝑛 = 300. 

 
𝑝   ORx p NP EPlogistic EPmpoisson 
0.1 1 0.10 5.0 4.1 4.1 

 1.5 0.12 20.8 21.3 20.9 
 2 0.14 55.1 53.4 52.5 
 2.5 0.16 82.6 79.8 79.7 

0.2 1 0.20 5.0 4.7 4.3 
 1.5 0.24 31.9 30.9 30.8 
 2 0.27 75.6 73.8 73.8 
 2.5 0.29 95.0 94.2 94.2 

0.3 1 0.30 5.0 3.7 3.6 
 1.5 0.35 38.5 36.4 36.4 
 2 0.38 83.0 82.8 82.5 
 2.5 0.41 97.4 97.0 97.0 

0.4 1 0.40 5.0 4.1 4.0 
 1.5 0.45 41.5 41.7 41.3 
 2 0.49 85.1 83.8 83.7 
 2.5 0.51 97.8 98.1 98.1 
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Table 4.2 Results of the empirical powers from the logistic regression (𝐸𝑃௦௧) and 

the modified Poisson model (𝐸𝑃௦௦) for two binary covariates. The odds ratios 

𝑂𝑅௫భ
∈ (1,1.5,2,2.5), 𝑂𝑅௫మ

∈ (1,1.5,2), the correlation 𝑟 ∈ (0,0.3,0.6), the response 

probability of the baseline group 𝑝 ∈ (0.1,0.4), and 𝑝 represents the overall 

prevalence. The nominal powers (𝑁𝑃) are obtained from the logistic model. Empirical 

powers are estimated based on 1000 runs, 𝑛 = 300. 

 
 𝑝 = 0.1    𝑝  = 0.4  
ORx1 ORx2 r p NP EPlogistic EPmpoisson p NP EPlogistic EPmpoisson 

1 1 0 0.10 5.0 4.8 4.7 0.40 5.0 4.5 4.3 
1.5 1 0 0.12 20.8 19.2 18.5 0.45 41.5 41.6 41.0 

  0.3 0.12 19.3 19.0 18.6 0.45 38.4 39.4 39.0 
  0.6 0.12 14.8 15.5 16.5 0.45 28.6 30.8 30.3 

1.5 1.5 0 0.15 23.6 24.4 23.3 0.50 41.8 41.8 41.4 
  0.3 0.15 21.9 21.3 20.7 0.50 38.7 39.4 38.3 
  0.6 0.15 16.6 16.3 17.0 0.50 28.9 31.1 29.5 

1.5 2 0 0.17 25.9 27.5 25.7 0.54 41.7 41.1 41.1 
  0.3 0.17 24.0 24.2 23.2 0.54 38.6 40.1 38.5 
  0.6 0.17 18.2 18.5 17.6 0.54 28.8 31.5 29.7 

2 1 0 0.14 55.1 56.0 54.5 0.49 85.1 85.0 84.2 
  0.3 0.14 51.3 51.8 51.8 0.49 81.6 82.9 82.5 
  0.6 0.14 38.6 40.2 41.7 0.49 67.0 71.4 71.2 

2 1.5 0 0.17 61.3 61.9 61.5 0.54 84.9 84.2 84.1 
  0.3 0.17 57.3 57.6 56.8 0.54 81.5 82.3 81.5 
  0.6 0.17 43.6 45.7 45.0 0.54 66.8 71.6 69.9 

2 2 0 0.19 65.8 67.0 66.2 0.57 84.5 84.3 84.3 
  0.3 0.19 61.7 62.3 60.3 0.57 81.0 80.6 79.1 
  0.6 0.19 47.4 50.6 47.5 0.57 66.2 70.8 68.0 

2.5 1 0 0.16 82.6 82.4 81.8 0.51 97.8 97.9 97.7 
  0.3 0.16 79.0 79.9 78.7 0.51 96.6 97.0 96.9 
  0.6 0.16 64.0 68.3 68.3 0.51 88.7 91.5 91.3 

2.5 1.5 0 0.19 87.3 86.4 85.9 0.56 97.6 96.9 96.9 
  0.3 0.19 84.1 84.3 83.8 0.56 96.4 96.4 96.1 
  0.6 0.19 69.9 73.4 71.4 0.56 88.3 91.4 90.2 

2.5 2 0 0.21 90.2 90.7 90.5 0.59 97.4 97.0 97.0 
  0.3 0.21 87.4 87.5 86.4 0.59 96.1 96.7 96.2 
  0.6 0.21 74.0 78.0 75.7 0.59 87.7 91.3 90.3 
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Figure 4.1 Comparison of nominal and empirical powers of testing for the effect of a 

binary risk factor 𝑥ଵ adjusting for a binary covariate 𝑥ଶ based on simulation results 

from 1000 simulations of a sample size of 300 as shown in Table 4.2. The 𝑂𝑅௫భ
 and 

𝑂𝑅௫మ
 represent the odds ratios for 𝑥ଵ and 𝑥ଶ, respectively, 𝑟 represents the correlation 

between the two covariates, 𝑝 is the probability of outcome when both covariates are 

zero. Solid line represents the nominal power of the logistic regression; dash line 

represents the empirical power of the logistic regression; dotted line represents the 

empirical power of the modified Poisson model. 
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Table 4.3 Results of the empirical powers from the logistic regression (𝐸𝑃௦௧) and 

the modified Poisson model (𝐸𝑃௦௦) for one binary and one continuous 

covariates. The odds ratios 𝑂𝑅௫భ
∈ (1,1.5,2,2.5), 𝑂𝑅௫మ

∈ (1,1.5,2), the correlation 

𝑟 ∈ (0,0.3,0.6), the response probability of the baseline group 𝑝 ∈ (0.1,0.4), and 𝑝 

represents the overall prevalence. The nominal powers (𝑁𝑃) are obtained from the 

logistic model. Empirical powers are estimated based on 1000 runs, 𝑛 = 300 

 
 𝑝  = 0.1    𝑝  = 0.4  
ORx1 ORx2 r p NP EPlogistic EPmpoisson p NP EPlogistic EPmpoisson 

1 1 0 0.10 5.0 4.1 4.1 0.40 5.0 4.1 4.0 
1.5 1 0 0.12 20.7 21.4 21.2 0.45 41.5 41.8 41.5 

  0.3 0.12 19.2 19.6 19.5 0.45 38.4 38.3 37.8 
  0.6 0.12 14.8 15.2 16.2 0.45 28.6 27.7 28.5 

1.5 1.5 0 0.13 21.4 21.4 21.3 0.45 41.5 38.2 38.1 
  0.3 0.13 20.1 18.9 17.8 0.45 38.4 36.3 35.2 
  0.6 0.13 15.5 14.8 16.1 0.45 28.6 28.0 27.5 

1.5 2 0 0.14 22.7 21.0 20.8 0.45 41.5 38.2 38.5 
  0.3 0.14 21.4 19.4 17.8 0.45 38.4 34.1 32.8 
  0.6 0.15 16.5 14.9 15.9 0.45 28.7 25.3 26.8 

2 1 0 0.14 54.6 53.4 52.7 0.48 85.1 83.7 83.7 
  0.3 0.14 50.8 49.6 48.8 0.48 81.6 79.5 79.5 
  0.6 0.14 38.2 37.2 37.9 0.48 67.0 66.3 66.0 

2 1.5 0 0.15 56.2 52.7 53.1 0.48 85.1 82.1 82.2 
  0.3 0.15 53.1 50.4 48.8 0.48 81.6 79.4 78.0 
  0.6 0.15 40.8 38.0 37.9 0.48 67.0 63.9 64.3 

2 2 0 0.16 58.9 55.4 55.0 0.48 85.1 81.4 81.9 
  0.3 0.16 56.1 52.0 49.7 0.48 81.6 77.0 75.5 
  0.6 0.17 43.6 39.3 40.8 0.48 67.0 64.8 66.4 

2.5 1 0 0.16 82.1 79.8 79.8 0.51 97.8 98.1 98.1 
  0.3 0.16 78.4 77.6 77.9 0.51 96.6 96.9 96.7 
  0.6 0.16 63.4 60.7 61.6 0.51 88.7 88.0 87.9 

2.5 1.5 0 0.16 83.3 80.4 80.0 0.51 97.8 96.7 96.7 
  0.3 0.17 80.6 78.2 77.1 0.51 96.6 96.0 95.3 
  0.6 0.17 66.8 62.9 62.5 0.51 88.7 87.2 87.0 

2.5 2 0 0.17 85.3 82.2 82.2 0.51 97.8 97.1 97.2 
  0.3 0.18 83.1 79.3 78.0 0.51 96.6 96.1 95.4 
  0.6 0.19 70.1 62.7 65.4 0.51 88.7 85.6 87.5 
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Figure 4.2 Comparison of nominal and empirical powers of testing for the effect of a 

binary risk factor 𝑥ଵ, adjusting for a continuous covariate 𝑥ଶ based on the simulation 

results from 1000 simulations of a sample size of 300 as shown in Table 4.3. The 

𝑂𝑅௫భ
 and 𝑂𝑅௫మ

 represent the odds ratios for 𝑥ଵ and 𝑥ଶ, respectively, 𝑟 represents the 

correlation between the two covariates, 𝑝 is the probability of outcome when both 

covariates are zero. Solid line represents the nominal power of the logistic regression; 

dash line represents the empirical power of the logistic regression; dotted line 

represents the empirical power of the modified Poisson model. 
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4.3.1.2. Power for a continuous risk factor 

Table 4.4 presents the simulation results of the nominal power for detecting OR and 

the empirical powers of the logistic regression and the modified Poisson model under 

one continuous covariate scenario. The greatest difference between the two empirical 

powers is 2.3%. The nominal power and the two empirical powers rise more quickly 

within the 𝑂𝑅௫ range compared to the powers from one binary risk factor scenario. 

One of the reasons for this phenomenon could be that the variance for the continuous 

variable is larger than that of the binary variable. Another reason could be that the 

continuous variable contains more information than a binary variable, it is reasonably 

to have a higher power when the risk factor is a continuous variable (Altman & 

Royston, 2006). The powers are greater than 95% when 𝑂𝑅௫ ≥ 2 for the listed 𝑝. 

Having a continuous factor of interest and adjusting for a continuous covariate 

𝑥ଶ, all setups have the two empirical powers close to each other in Table 4.5. The 

largest difference is 5.6%, which is marginally higher than our power equivalency 

standard. As comparison, the nominal powers are compared to the empirical powers 

based on logistic regression models. The nominal and empirical powers are similar to 

each other in most settings except for the settings with 𝑂𝑅௫భ
= 1.5, 𝑂𝑅௫మ

> 1, 𝑟 =

0.6, 𝑝 = 0.4, in which the nominal power was overestimated greater than 10% than 

the empirical power.  

We note that the settings of different combinations of 𝑝, 𝑂𝑅௫భ
, 𝑂𝑅௫మ

, and 𝑟 

did not yield any warnings during simulations in Tables 4.1 to 4.5. There were some 

settings with 100.0% power for the two continuous covariates scenario. The higher 

power could be caused by the large effect sizes used in the simulation. Another reason 

could be that the sample size was larger than the needed 𝑛. For example, in Table 4.5, 

with 𝑝 = 0.1, O𝑅௫భ
= O𝑅௫మ

= 2, 𝑟 = 0, reduced sample size of 𝑛 = 200 provided 

92.1% nominal power, and 86.8% and 90.8% empirical powers for the logistic 

regression and the modified Poisson models, respectively. In general, the empirical 

powers from both regression models were close to each other in various scenarios.  
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Table 4.4 Results of the empirical powers from the logistic regression (𝐸𝑃௦௧) and 

the modified Poisson model (𝐸𝑃௦௦) for one continuous covariate. The odds ratio 

𝑂𝑅௫ ∈ (1,1.5,2,2.5), the response probability of the baseline group 𝑝 ∈

(0.1,0.2,0.3,0.4), and 𝑝 represents the overall prevalence. The nominal powers (𝑁𝑃) 

are obtained from the logistic model. Empirical powers are estimated based on 1000 

runs, 𝑛 = 300. 

 
𝑝 ORx p NP EPlogistic EPmpoisson 
0.1 1 0.10 5.0 4.3 5.5 

 1.5 0.11 58.6 58.0 60.3 
 2 0.12 97.4 98.2 97.8 
 2.5 0.13 100.0 100.0 100.0 

0.2 1 0.20 5.0 3.9 5.2 
 1.5 0.21 81.7 79.0 81.1 
 2 0.23 99.9 99.8 99.8 
 2.5 0.24 100.0 100.0 100.0 

0.3 1 0.30 5.0 4.5 5.0 
 1.5 0.31 90.1 88.0 88.8 
 2 0.32 100.0 100.0 100.0 
 2.5 0.34 100.0 100.0 100.0 

0.4 1 0.40 5.0 4.6 5.2 
 1.5 0.41 93.2 90.6 91.4 
 2 0.42 100.0 100.0 100.0 
 2.5 0.42 100.0 100.0 100.0 
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Table 4.5 Results of the empirical powers from the logistic regression (𝐸𝑃௦௧) and 

the modified Poisson model (𝐸𝑃௦௦) for two continuous covariates. The odds 

ratios 𝑂𝑅௫భ
∈ (1,1.5,2,2.5), 𝑂𝑅௫మ

∈ (1,1.5,2), the correlation 𝑟 ∈ (0,0.3,0.6), the 

response probability of the baseline group 𝑝 ∈ (0.1,0.4), and 𝑝 represents the overall 

prevalence. The nominal powers (𝑁𝑃) are obtained from the logistic model. Empirical 

powers are estimated based on 1000 runs, 𝑛 = 300 

 

 𝑝  = 0.1    𝑝  = 0.4  
ORx1 ORx2 r p NP EPlogistic EPmpoisson p NP EPlogistic EPmpoisson 

1 1 0 0.10 5.0 3.7 5.8 0.40 5.0 3.9 4.9 
1.5 1 0 0.11 57.9 52.4 56.9 0.40 93.1 90.8 91.1 

  0.3 0.11 53.9 46.7 50.5 0.40 90.7 85.7 86.6 
  0.6 0.11 40.8 33.8 36.0 0.40 78.6 70.6 72.1 

1.5 1.5 0 0.11 59.6 54.1 **59.4 0.41 93.1 89.9 91.1 
  0.3 0.11 56.8 51.5 54.2 0.41 90.8 84.0 86.4 
  0.6 0.12 44.0 35.8 36.1 0.41 *78.8 67.6 68.1 

1.5 2 0 0.12 62.8 54.8 **60.4 0.41 93.2 86.8 88.5 
  0.3 0.13 60.4 50.6 54.7 0.41 90.9 82.8 84.2 
  0.6 0.13 47.5 37.8 36.6 0.42 *79.0 64.7 61.5 

2 1 0 0.12 97.1 95.0 95.6 0.41 100.0 100.0 100.0 
  0.3 0.12 95.7 91.7 93.3 0.41 100.0 99.9 100.0 
  0.6 0.12 86.9 80.2 82.7 0.41 99.7 99.0 99.2 

2 1.5 0 0.12 97.5 94.7 96.1 0.41 100.0 100.0 100.0 
  0.3 0.13 96.8 92.7 94.1 0.42 100.0 99.8 99.8 
  0.6 0.13 90.1 81.8 81.7 0.42 99.7 98.3 98.0 

2 2 0 0.13 98.2 95.9 96.6 0.42 100.0 100.0 100.0 
  0.3 0.14 97.7 93.6 94.8 0.42 100.0 99.6 99.9 
  0.6 0.15 92.5 82.6 79.1 0.42 99.7 97.3 96.2 

2.5 1 0 0.13 100.0 99.6 99.7 0.42 100.0 100.0 100.0 
  0.3 0.13 100.0 99.5 99.5 0.42 100.0 100.0 100.0 
  0.6 0.13 98.8 97.0 96.8 0.42 100.0 100.0 100.0 

2.5 1.5 0 0.13 100.0 99.8 99.8 0.42 100.0 100.0 100.0 
  0.3 0.14 99.9 99.8 99.9 0.42 100.0 100.0 100.0 
  0.6 0.14 99.4 96.9 95.8 0.42 100.0 100.0 99.9 

2.5 2 0 0.14 100.0 99.7 99.7 0.42 100.0 100.0 100.0 
  0.3 0.15 100.0 99.9 99.9 0.43 100.0 100.0 100.0 
  0.6 0.16 99.6 97.5 95.6 0.43 100.0 100.0 99.7 

* The difference between 𝑁𝑃 and 𝐸𝑃௦௧ >=  10% 

** The difference between 𝐸𝑃௦௧ and 𝐸𝑃௦௦ ≥ 5% 
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4.3.2. Performance of sample size formulas for estimating risk ratios  

In this section, we summarize the simulation results to evaluate the proposed power 

formula for the modified Poisson model in Tables 4.6 to 4.10. The nominal and 

empirical powers of detecting the effect of a risk factor based on the modified Poisson 

were evaluated when the response data were generated from the modified Poisson 

model. The sample sizes were set at 300 and 500. 

4.3.2.1. Power for a binary risk factor 

We first evaluated the proposed RR power formula for the modified Poisson model 

with one binary covariate. The simulated results are summarized in Table 4.6. The 

results showed that the empirical powers are close to nominal powers across all 

settings. As expected, power increased with increasing sample sizes, provided other 

parameter values were fixed. For example, the nominal and empirical powers both 

increased from 50% to around 70% when 𝑛 is increased from 300 to 500 for 𝑝 =

0.2, 𝑅𝑅௫ = 1.5. 

For cases involving two covariates, the simulation results adjusting for a 

binary covariate 𝑥ଶ are presented in Table 4.7. The results suggest that the empirical 

power values are fairly closed to the nominal values, with a maximum difference of 

5.4% observed at 𝑝 = 0.3, 𝑅𝑅௫భ
= 1.5, 𝑅𝑅௫మ

= 1, 𝑟 = 0.6, 𝑛 = 300. When 𝑛 =

300, 𝑝 = 0.2, 𝑅𝑅௫మ
= 1.5, there is a more than 30% increase in both nominal power 

and empirical power by increasing 𝑅𝑅௫భ
 from 1.5 to 2 for each 𝑟 category. With fixed 

𝑝, 𝑅𝑅௫భ
 and 𝑅𝑅௫మ

, the nominal and empirical powers decrease when 𝑟 is stronger. 

For instance, the nominal power decreases from 93.9% to 80.1% for 𝑛 = 500, 

𝑅𝑅௫భ
= 1.5, 𝑅𝑅௫మ

= 2 and the empirical power drops from 97% to 79.8% when 𝑟 

jumps from zero to strong for 𝑝 = 0.2.   

Table 4.8 presents simulation results when the factor of interest is binary, and 

𝑥ଶ is continuous. The results show a similar power pattern as that for the two binary 

covariates scenario. The nominal and empirical power difference is less than 8.7%. 

Both powers drop when 𝑟 goes up for the same parameter combination. 
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The simulation results from Tables 4.7 and 4.8 are also graphically presented 

in Figures 4.3 and 4.4 for the easy viewing purpose when 𝑝 = 0.1. Figures present 

that the nominal powers and empirical powers are similar to each other for detecting 

𝑅𝑅௫భ
effect for all 𝑅𝑅௫మ

 and r combinations. The figures display the similarity 

between the nominal power and empirical power. When 𝑥ଶ is a continuous variable, 

the difference between the two powers is more obvious in Figure 4.4 compared to 

Figure 4.3, and the empirical power underestimates the nominal power slightly when 

the correlation is strong. The power trends for 𝑝 other than 0.1 are similar to the 

trend in Figures 4.3 and 4.4. 
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Table 4.6 Results of the nominal power from the proposed power formula 

(𝑁𝑃௦ௗ) for estimating RR, and the empirical power from the modified Poisson 

model (𝐸𝑃௦௦) for one binary covariate. The risk ratio 𝑅𝑅௫ ∈ (1,1.5,2,2.5), the 

response probability of the baseline group 𝑝 ∈ (0.1,0.2,0.3,0.4), and 𝑝 represents the 

overall prevalence. Empirical power is based on 1000 runs, 𝑛 ∈ (300,500). 

 

 n = 300   n = 500  
𝑝   RRx p NPproposed EPmpoisson p NPproposed EPmpoisson 

0.1 1 0.10 5.0 4.1 0.10 5.0 3.7 
 1.5 0.12 26.3 25.5 0.12 40.2 38.9 
 2 0.15 71.2 68.7 0.15 90.2 88.5 
 2.5 0.17 95.5 93.5 0.17 99.7 99.4 

0.2 1 0.20 5.0 4.3 0.20 5.0 4.3 
 1.5 0.25 52.6 49.7 0.25 74.4 72.3 
 2 0.30 97.6 96.8 0.30 99.9 99.7 
 2.5 0.35 100.0 100.0 0.35 100.0 100.0 

0.3 1 0.30 5.0 3.7 0.30 5.0 3.7 
 1.5 0.37 77.5 75.7 0.37 93.9 93.0 
 2 0.45 100.0 100.0 0.45 100.0 100.0 
 2.5 0.52 100.0 100.0 0.52 100.0 100.0 

0.4 1 0.40 5.0 4.0 0.40 5.0 4.9 
 1.5 0.50 93.9 94.3 0.50 99.5 99.2 
 2 0.60 100.0 100.0 0.60 100.0 100.0 
 2.5 0.70 100.0 100.0 0.70 100.0 100.0 
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Table 4.7 Results of the nominal power from the proposed power formula 

(𝑁𝑃௦ௗ) for estimating RR, and the empirical power from the modified Poisson 

model (𝐸𝑃௦௦) for two binary covariates. The risk ratios 𝑅𝑅௫భ
∈

(1,1.5,2,2.5), 𝑅𝑅௫మ
∈ (1,1.5,2), the correlation 𝑟 ∈ (0,0.3,0.6), the probability of the 

baseline group 𝑝 ∈ (0.1,0.2,0.3,0.4), and 𝑝 represents the overall prevalence. 

Empirical power is based on 1000 runs, 𝑛 ∈ (300, 500). 

 
 n = 300   n = 500  

𝑝   RRx1 RRx2 r p NPproposed EPmpoisson p NPproposed EPmpoisson 
0.1 1 1 0 0.10 5.0 4.7 0.10 5.0 4.9 

 1.5 1 0 0.13 26.3 24.6 0.13 40.2 39.1 
   0.3 0.13 24.3 23.7 0.13 37.1 37.3 
   0.6 0.13 18.4 20.3 0.13 27.7 30.8 
 1.5 1.5 0 0.16 32.6 32.9 0.16 49.5 51.6 
   0.3 0.16 30.1 30.3 0.16 45.9 46.8 
   0.6 0.16 22.6 22.2 0.16 34.4 35.3 
 1.5 2 0 0.19 39.1 41.0 0.19 58.5 61.5 
   0.3 0.19 36.2 36.6 0.19 54.5 55.9 
   0.6 0.19 27.0 26.5 0.19 41.3 41.7 
 2 1 0 0.15 71.2 69.7 0.15 90.2 90.6 
   0.3 0.15 67.2 66.8 0.15 87.4 86.9 
   0.6 0.15 52.2 55.7 0.15 74.0 74.2 
 2 1.5 0 0.19 82.2 81.4 0.19 96.1 96.6 
   0.3 0.19 78.5 77.7 0.19 94.4 94.6 
   0.6 0.19 63.5 65.1 0.19 84.5 83.7 
 2 2 0 0.23 89.8 90.9 0.23 98.7 98.5 
   0.3 0.23 86.9 87.0 0.23 97.8 97.9 
   0.6 0.23 73.4 73.6 0.23 91.6 91.7 
 2.5 1 0 0.18 95.5 94.3 0.18 99.7 99.8 
   0.3 0.18 93.6 92.1 0.18 99.4 99.2 
   0.6 0.18 83.2 83.7 0.18 96.5 95.8 
 2.5 1.5 0 0.22 98.7 98.2 0.22 100.0 100.0 
   0.3 0.22 97.9 97.4 0.22 100.0 99.9 
   0.6 0.22 91.9 91.3 0.22 99.1 99.0 
 2.5 2 0 0.26 99.7 99.9 0.26 100.0 100.0 
   0.3 0.26 99.5 99.3 0.26 100.0 100.0 
   0.6 0.26 96.6 96.9 0.26 99.8 99.9 

0.2 1 1 0 0.20 5.0 3.2 0.20 5.0 4.4 
 1.5 1 0 0.25 52.6 52.3 0.25 74.4 75.5 
   0.3 0.25 48.9 50.0 0.25 70.3 71.8 
   0.6 0.25 36.7 40.2 0.25 55.2 58.1 
 1.5 1.5 0 0.31 65.7 67.9 0.31 86.3 87.9 
   0.3 0.31 61.6 63.2 0.31 82.9 83.8 
   0.6 0.31 47.3 48.6 0.31 68.5 69.7 
 1.5 2 0 0.38 77.5 80.2 0.38 93.9 97.0 
   0.3 0.38 73.6 76.9 0.38 91.7 94.4 
   0.6 0.38 58.5 59.3 0.38 80.1 79.8 
 2 1 0 0.30 97.6 97.2 0.30 99.9 100.0 
   0.3 0.30 96.3 96.4 0.30 99.8 99.9 
   0.6 0.30 88.2 90.6 0.30 98.2 98.6 
 2 1.5 0 0.38 99.6 99.7 0.38 100.0 100.0 
   0.3 0.38 99.3 99.5 0.38 100.0 100.0 
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   0.6 0.38 96.1 96.9 0.38 99.8 99.7 
 2 2 0 0.45 100.0 99.9 0.45 100.0 100.0 
   0.3 0.45 99.9 99.9 0.45 100.0 100.0 
   0.6 0.45 99.1 99.5 0.45 100.0 100.0 
 2.5 1 0 0.35 100.0 100.0 0.35 100.0 100.0 
   0.3 0.35 100.0 100.0 0.35 100.0 100.0 

   0.6 0.35 99.7 99.5 0.35 100.0 100.0 
 2.5 1.5 0 0.44 100.0 100.0 0.44 100.0 100.0 
   0.3 0.44 100.0 100.0 0.44 100.0 100.0 
   0.6 0.44 100.0 100.0 0.44 100.0 100.0 
 2.5 2 0 0.53 100.0 100.0 0.53 100.0 100.0 
   0.3 0.53 100.0 100.0 0.53 100.0 100.0 
   0.6 0.53 100.0 100.0 0.53 100.0 100.0 

0.3 1 1 0 0.30 5.0 4.9 0.30 5.0 5.2 
 1.5 1 0 0.38 77.5 77.1 0.38 93.9 94.4 
   0.3 0.38 73.6 74.1 0.38 91.7 92.2 
   0.6 0.38 58.4 63.8 0.38 80.1 81.0 
 1.5 1.5 0 0.47 90.9 91.6 0.47 98.9 99.2 
   0.3 0.47 88.1 88.7 0.47 98.2 98.6 
   0.6 0.47 75.0 77.4 0.47 92.5 93.0 
 1.5 2 0 0.56 97.8 99.2 0.56 99.9 100.0 
   0.3 0.56 96.7 98.3 0.56 99.8 100.0 
   0.6 0.56 88.9 92.8 0.56 98.4 99.5 
 2 1 0 0.45 100.0 99.9 0.45 100.0 100.0 
   0.3 0.45 99.9 99.9 0.45 100.0 100.0 
   0.6 0.45 99.1 99.2 0.45 100.0 100.0 
 2 1.5 0 0.56 100.0 100.0 0.56 100.0 100.0 
   0.3 0.56 100.0 100.0 0.56 100.0 100.0 
   0.6 0.56 100.0 99.9 0.56 100.0 100.0 
 2.5 1 0 0.53 100.0 100.0 0.53 100.0 100.0 
   0.3 0.53 100.0 100.0 0.53 100.0 100.0 
   0.6 0.53 100.0 100.0 0.53 100.0 100.0 

0.4 1 1 0 0.40 5.0 4.3 0.40 5.0 4.2 
 1.5 1 0 0.50 93.9 92.8 0.50 99.5 99.5 
   0.3 0.50 91.7 92.1 0.50 99.1 99.5 
   0.6 0.50 80.1 83.5 0.50 95.2 95.7 
 1.5 1.5 0 0.63 99.5 99.4 0.63 100.0 100.0 
   0.3 0.63 99.1 99.3 0.63 100.0 100.0 
   0.6 0.63 95.2 96.5 0.63 99.7 99.8 
 2 1 0 0.60 100.0 100.0 0.60 100.0 100.0 
   0.3 0.60 100.0 100.0 0.60 100.0 100.0 
   0.6 0.60 100.0 100.0 0.60 100.0 100.0 
 2.5 1 0 0.70 100.0 100.0 0.70 100.0 100.0 
   0.3 0.70 100.0 100.0 0.70 100.0 100.0 
   0.6 0.70 100.0 100.0 0.70 100.0 100.0 
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Table 4.8 Results of the nominal power from the proposed power formula 

(𝑁𝑃௦ௗ) for estimating RR, and the empirical power from the modified Poisson 

model (𝐸𝑃௦௦) for one binary and one continuous covariates. The risk ratios 

𝑅𝑅௫భ
∈ (1,1.5,2,2.5), 𝑅𝑅௫మ

∈ (1,1.5,2), the correlation 𝑟 ∈ (0,0.3,0.6), the response 

probability of the baseline group 𝑝 ∈ (0.1,0.2,0.3,0.4), and 𝑝 represents the overall 

prevalence. Empirical power is based on 1000 runs, 𝑛 ∈ (300,500). 

 
    n = 300   n = 500   

𝑝   RRx1 RRx2 r p NPproposed EPmpoisson p NPproposed EPmpoisson 
0.1 1 1 0 0.10 5.0 4.0 0.10 5.0 3.6 

 1.5 1 0 0.12 26.0 25.7 0.12 39.8 38.9 
   0.3 0.12 24.1 25.5 0.12 36.8 37.3 
   0.6 0.12 18.3 20.5 0.12 27.5 28.2 
 1.5 1.5 0 0.13 28.2 28.5 0.14 44.1 42.8 
   0.3 0.14 26.4 24.7 0.14 41.5 38.4 
   0.6 0.14 20.2 19.0 0.14 31.4 29.1 
 1.5 2 0 0.16 32.7 37.4 0.16 51.4 56.5 
   0.3 0.16 30.8 30.1 0.17 48.8 48.6 
   0.6 0.16 23.5 19.8 0.17 37.4 30.7 
 2 1 0 0.15 70.4 68.8 0.15 89.7 88.3 
   0.3 0.15 66.4 66.4 0.15 86.8 86.0 
   0.6 0.15 51.5 53.9 0.15 73.3 74.2 
 2 1.5 0 0.16 74.3 75.2 0.16 93.0 94.1 
   0.3 0.16 71.9 71.4 0.17 91.7 91.2 
   0.6 0.17 58.4 54.4 0.17 81.4 76.5 
 2 2 0 0.18 80.6 84.1 0.19 96.4 98.1 
   0.3 0.19 78.3 79.7 0.20 95.6 95.1 
   0.6 0.20 66.1 57.4 0.21 88.7 81.6 
 2.5 1 0 0.17 95.0 93.3 0.17 99.7 99.4 
   0.3 0.17 93.1 92.1 0.17 99.4 98.7 
   0.6 0.17 82.3 81.7 0.17 96.2 94.6 
 2.5 1.5 0 0.18 96.5 97.1 0.19 99.9 100.0 
   0.3 0.19 95.9 96.2 0.20 99.8 99.6 
   0.6 0.20 88.9 85.4 0.21 98.7 97.5 
 2.5 2 0 0.20 97.6 97.0 0.21 100.0 100.0 
   0.3 0.21 97.5 98.3 0.22 99.9 99.9 
   0.6 0.23 93.1 88.5 0.23 99.5 98.4 

0.2 1 1 0 0.20 5.0 4.6 0.20 5.0 4.5 
 1.5 1 0 0.25 52.1 50.5 0.25 73.9 72.4 
   0.3 0.25 48.4 48.9 0.25 69.8 69.0 
   0.6 0.25 36.3 37.8 0.25 54.8 53.7 
 1.5 1.5 0 0.27 56.7 58.7 0.28 79.9 82.6 
   0.3 0.27 53.6 56.4 0.28 76.6 79.5 
   0.6 0.28 41.2 40.1 0.28 62.7 56.9 
 1.5 2 0 0.29 60.3 67.1 0.30 84.0 88.6 
   0.3 0.29 56.4 61.8 0.30 80.2 88.4 
   0.6 0.30 45.2 46.1 0.31 67.6 69.3 
 2 1 0 0.30 97.3 97.2 0.30 99.9 99.7 
   0.3 0.30 96.0 95.9 0.30 99.8 99.6 
   0.6 0.30 87.5 88.2 0.30 98.0 98.2 
 2 1.5 0 0.32 98.3 98.8 0.32 100.0 100.0 
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   0.3 0.32 97.5 98.0 0.33 99.9 100.0 
   0.6 0.33 92.3 92.4 0.34 99.4 99.0 
 2 2 0 0.33 98.8 99.5 0.34 100.0 100.0 
   0.3 0.34 98.3 99.4 0.34 100.0 100.0 
   0.6 0.32 91.9 97.6 0.33 99.2 100.0 

 2.5 1 0 0.34 100.0 100.0 0.34 100.0 100.0 
   0.3 0.34 100.0 100.0 0.34 100.0 100.0 
   0.6 0.34 99.6 99.9 0.34 100.0 100.0 
 2.5 1.5 0 0.36 100.0 100.0 0.36 100.0 100.0 
   0.3 0.37 100.0 100.0 0.37 100.0 100.0 
   0.6 0.38 99.9 99.8 0.39 100.0 100.0 
 2.5 2 0 0.35 100.0 100.0 0.36 100.0 100.0 
   0.3 0.34 100.0 100.0 0.34 100.0 100.0 
   0.6 0.33 99.3 100.0 0.33 100.0 100.0 

0.3 1 1 0 0.30 5.0 3.9 0.30 5.0 3.8 
 1.5 1 0 0.37 76.9 76.2 0.37 93.6 93.1 
   0.3 0.37 73.0 74.2 0.37 91.3 91.4 
   0.6 0.37 57.8 58.1 0.37 79.5 79.8 
 1.5 1.5 0 0.39 80.4 83.0 0.40 95.9 97.4 
   0.3 0.40 77.5 84.0 0.40 94.4 96.3 
   0.6 0.40 63.8 63.8 0.41 85.4 83.3 
 1.5 2 0 0.40 81.9 88.3 0.41 96.3 98.7 
   0.3 0.37 73.1 81.1 0.38 92.5 96.7 
   0.6 0.39 61.4 64.6 0.38 81.7 87.4 
 2 1 0 0.44 100.0 100.0 0.44 100.0 100.0 
   0.3 0.44 99.9 100.0 0.44 100.0 100.0 
   0.6 0.44 99.0 99.2 0.44 100.0 100.0 
 2 1.5 0 0.46 100.0 100.0 0.46 100.0 100.0 
   0.3 0.45 99.9 100.0 0.45 100.0 100.0 
   0.6 0.44 98.9 99.8 0.44 100.0 100.0 
 2.5 1 0 0.51 100.0 100.0 0.51 100.0 100.0 
   0.3 0.51 100.0 100.0 0.51 100.0 100.0 
   0.6 0.51 100.0 100.0 0.51 100.0 100.0 

0.4 1 1 0 0.40 5.0 4.5 0.40 5.0 4.9 
 1.5 1 0 0.50 93.5 94.4 0.50 99.4 99.2 
   0.3 0.50 91.2 93.5 0.50 99.0 99.1 
   0.6 0.50 79.4 82.7 0.50 94.9 96.1 
 1.5 1.5 0 0.51 94.8 96.6 0.51 99.6 99.9 
   0.3 0.50 91.9 96.6 0.51 99.2 99.7 
   0.6 0.50 79.8 81.2 0.50 95.1 96.7 
 2 1 0 0.59 100.0 100.0 0.59 100.0 100.0 
   0.3 0.59 100.0 100.0 0.59 100.0 100.0 
   0.6 0.59 100.0 100.0 0.59 100.0 100.0 
 2.5 1 0 0.40 100.0 100.0 0.40 100.0 100.0 
   0.3 0.40 100.0 100.0 0.40 100.0 100.0 
   0.6 0.40 99.9 100.0 0.40 100.0 100.0 



47 
 

 

 

Figure 4.3 Comparison of nominal and empirical powers of testing for the effect of a 

binary risk factor 𝑥ଵ, adjusting for a binary covariate 𝑥ଶ based on the simulation 

results from 1000 simulations of a sample size of 300 or 500 for 𝑝 = 0.1 as shown in 

Table 4.7. The 𝑅𝑅௫భ
 and 𝑅𝑅௫మ

 represent the risk ratios for 𝑥ଵ and 𝑥ଶ, respectively, 𝑟 

represents the correlation between the two covariates, 𝑝 is the probability of outcome 

when both covariates are zero. Solid line represents the nominal power from Equation 

(3.10); dash line represents the empirical power of the modified Poisson model
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Figure 4.4 Comparison of nominal and empirical powers of testing for the effect of a 

binary risk factor 𝑥ଵ, adjusting for a continuous covariate 𝑥ଶ based on the simulation 

results from 1000 simulations of a sample size of 300 or 500 for 𝑝 = 0.1 as shown in 

Table 4.8. The 𝑅𝑅௫భ
 and 𝑅𝑅௫మ

 represent the risk ratios for 𝑥ଵ and 𝑥ଶ, respectively, 𝑟 

represents the correlation between the two covariates, 𝑝 is the probability of outcome 

when both covariates are zero. Solid line represents the nominal power from Equation 

(3.10); dash line represents the empirical power of the modified Poisson model 
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4.3.2.2. Power for a continuous risk factor 

Tables 4.9 summarizes the simulation results for the powers of detecting the effect of 

a continuous risk factor, and Table 4.10 presents simulation results when adjusting for 

an additional continuous covariate. In both Tables, the powers reach over 95% when 

𝑅𝑅௫భ
= 1.5, 𝑛 = 300 for 𝑝 above 0.1. When 𝑛 is 500 and 𝑝 = 0.1, 𝑅𝑅௫భ

= 1.5 

brings both powers close to 90%. There are many settings with 100.0% powers in 

Tables 4.9 and 4.10, which means that the sample size used is larger than the sample 

size needed.  

Compared to scenarios of two binary covariates and one binary one 

continuous covariates, the scenario with two continuous covariates shows a similar 

trend of power growth. Increasing the correlation still leads to a decrease in powers 

while fixing other parameter values. The largest difference between the nominal and 

empirical powers was observed at 7.7% when 𝑝 = 0.1, 𝑅𝑅௫భ
= 1.5, 𝑅𝑅௫మ

= 2, 𝑟 =

0.6, 𝑛 = 300.  

The powers are higher in the two continuous covariates scenario than in the 

other two-covariate scenarios when 𝑅𝑅௫భ
> 1, considering the continuous interest 

may contain more information or have a larger variance than a binary interest. For 

example, if 𝑝 = 0.3, 𝑅𝑅௫భ
= 1.5, 𝑅𝑅௫మ

= 2, 𝑟 = 0.6, 𝑛 = 300, the nominal and 

empirical powers are respectively 97.4% and 97.3% when both covariates are 

continuous; 88.9% and 92.8% when both covariates are binary; and 61.4% and 64.6% 

when covariates are one binary and one continuous. If the factor of interest is a 

continuous variable and adjusting for another continuous variable, for obtaining an 

80% power, a smaller sample size may be needed compared to other scenarios when 

𝑅𝑅௫భ
> 1. 
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Table 4.9 Results of the nominal power from the proposed power formula 

(𝑁𝑃௦ௗ) for estimating RR, and the empirical power from the modified Poisson 

model (𝐸𝑃௦௦) for one continuous covariate. The risk ratio 𝑅𝑅௫ ∈ (1,1.5,2,2.5), 

the probability of the baseline group 𝑝 ∈ (0.1,0.2,0.3,0.4), and 𝑝 represents the 

overall prevalence. Empirical power is based on 1000 runs, 𝑛 ∈ (300,500). 

 
 n = 300   n = 500  

𝑝   RRx p NPproposed EPmpoisson p NPproposed EPmpoisson 
0.1 1 0.10 5.0 5.5 0.10 5.0 5.7 

 1.5 0.11 69.7 72.5 0.11 88.6 88.0 
 2 0.13 99.7 99.9 0.13 100.0 100.0 
 2.5 0.15 100.0 100.0 0.14 100.0 100.0 

0.2 1 0.20 5.0 5.2 0.20 5.0 6.0 
 1.5 0.22 96.3 96.9 0.22 99.8 99.6 
 2 0.25 100.0 100.0 0.24 100.0 100.0 
 2.5 0.26 100.0 100.0 0.25 100.0 100.0 

0.3 1 0.30 5.0 4.9 0.30 5.0 5.2 
 1.5 0.33 99.8 99.8 0.32 100.0 100.0 
 2 0.34 100.0 100.0 0.34 100.0 100.0 
 2.5 0.35 100.0 100.0 0.34 100.0 100.0 

0.4 1 0.40 5.0 5.2 0.40 5.0 5.2 
 1.5 0.43 100.0 100.0 0.43 100.0 100.0 
 2 0.44 100.0 100.0 0.43 100.0 100.0 
 2.5 0.40 100.0 100.0 0.39 100.0 100.0 
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Table 4.10 Results of the nominal power from the proposed power formula 

(𝑁𝑃௦ௗ) for estimating RR, and the empirical power from the modified Poisson 

model (𝐸𝑃௦௦) for two continuous covariates. The risk ratios 𝑅𝑅௫భ
∈

(1,1.5,2,2.5), 𝑅𝑅௫మ
∈ (1,1.5,2), the correlation 𝑟 ∈ (0,0.3,0.6), the probability of the 

baseline group 𝑝 ∈ (0.1,0.2,0.3,0.4), and 𝑝 represents the overall prevalence. 

Empirical power is based on 1000 runs, 𝑛 ∈ (300,500). 

 
 n = 300   n = 500  

𝑝   RRx1 RRx2 r p NPproposed EPmpoisson p NPproposed EPmpoisson 
0.1 1 1 0 0.10 5.0 5.8 0.10 5.0 5.3 

 1.5 1 0 0.11 68.7 69.8 0.11 88.6 87.2 
   0.3 0.11 64.6 63.9 0.11 85.5 83.2 
   0.6 0.11 49.9 46.9 0.11 71.6 68.4 
 1.5 1.5 0 0.12 72.3 74.5 0.12 90.5 90.6 
   0.3 0.12 70.7 74.4 0.12 89.5 90.6 
   0.6 0.13 56.7 63.7 0.13 78.7 80.4 
 1.5 2 0 0.13 78.9 84.6 0.13 94.2 95.9 
   0.3 0.14 77.5 79.9 0.14 93.5 94.0 
   0.6 0.15 63.9 71.6 0.14 84.3 86.0 
 2 1 0 0.13 99.6 99.9 0.13 100.0 100.0 
   0.3 0.13 99.2 99.5 0.13 100.0 100.0 
   0.6 0.13 95.5 96.8 0.13 99.7 99.4 
 2 1.5 0 0.13 99.7 99.5 0.13 100.0 100.0 
   0.3 0.14 99.6 98.8 0.14 100.0 100.0 
   0.6 0.14 97.7 97.0 0.14 99.9 99.8 
 2 2 0 0.15 99.9 99.9 0.15 100.0 100.0 
   0.3 0.15 99.8 98.5 0.15 100.0 100.0 
   0.6 0.16 98.6 97.4 0.16 100.0 99.9 
 2.5 1 0 0.14 100.0 100.0 0.14 100.0 100.0 
   0.3 0.14 100.0 100.0 0.14 100.0 100.0 
   0.6 0.14 99.9 99.3 0.14 100.0 100.0 
 2.5 1.5 0 0.14 100.0 100.0 0.14 100.0 100.0 
   0.3 0.15 100.0 99.9 0.15 100.0 100.0 
   0.6 0.16 100.0 99.8 0.15 100.0 100.0 
 2.5 2 0 0.15 100.0 100.0 0.15 100.0 100.0 
   0.3 0.16 100.0 100.0 0.16 100.0 100.0 
   0.6 0.17 100.0 100.0 0.17 100.0 100.0 

0.2 1 1 0 0.20 5.0 5.1 0.20 5.0 5.6 
 1.5 1 0 0.22 95.9 97.0 0.22 99.8 99.9 
   0.3 0.22 94.1 95.3 0.22 99.5 99.7 
   0.6 0.22 84.0 85.1 0.22 96.9 97.3 
 1.5 1.5 0 0.23 97.0 95.7 0.23 99.9 99.8 
   0.3 0.24 96.2 95.1 0.23 99.8 99.7 
   0.6 0.24 88.5 86.6 0.24 98.3 97.9 
 1.5 2 0 0.24 97.8 97.4 0.25 99.9 99.7 
   0.3 0.25 97.1 97.4 0.24 99.8 99.8 
   0.6 0.25 90.5 91.5 0.25 98.7 99.0 
 2 1 0 0.24 100.0 100.0 0.24 100.0 100.0 
   0.3 0.24 100.0 100.0 0.24 100.0 100.0 
   0.6 0.24 100.0 100.0 0.24 100.0 100.0 
 2 1.5 0 0.24 100.0 100.0 0.24 100.0 100.0 
   0.3 0.25 100.0 100.0 0.25 100.0 100.0 
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   0.6 0.25 100.0 100.0 0.25 100.0 100.0 
 2 2 0 0.25 100.0 99.9 0.24 100.0 100.0 
   0.3 0.25 100.0 99.9 0.25 100.0 100.0 
   0.6 0.24 100.0 99.9 0.24 100.0 100.0 
 2.5 1 0 0.25 100.0 100.0 0.25 100.0 100.0 
   0.3 0.25 100.0 100.0 0.25 100.0 100.0 

   0.6 0.25 100.0 100.0 0.25 100.0 100.0 
 2.5 1.5 0 0.26 100.0 100.0 0.25 100.0 100.0 
   0.3 0.26 100.0 100.0 0.26 100.0 100.0 
   0.6 0.26 100.0 100.0 0.25 100.0 100.0 
 2.5 2 0 0.24 100.0 100.0 0.25 100.0 100.0 
   0.3 0.25 100.0 100.0 0.24 100.0 100.0 
   0.6 0.24 100.0 100.0 0.24 100.0 100.0 

0.3 1 1 0 0.30 5.0 6.1 0.30 5.0 4.6 
 1.5 1 0 0.32 99.8 99.5 0.32 100.0 100.0 
   0.3 0.32 99.6 99.0 0.32 100.0 100.0 
   0.6 0.32 97.1 95.5 0.32 99.9 99.7 
 1.5 1.5 0 0.33 99.9 99.7 0.33 100.0 100.0 
   0.3 0.33 99.7 99.0 0.33 100.0 100.0 
   0.6 0.33 97.8 96.6 0.33 99.9 99.9 
 1.5 2 0 0.32 99.8 99.5 0.32 100.0 100.0 
   0.3 0.33 99.6 99.1 0.32 100.0 100.0 
   0.6 0.33 97.4 97.3 0.32 99.9 100.0 
 2 1 0 0.33 100.0 100.0 0.34 100.0 100.0 
   0.3 0.33 100.0 100.0 0.34 100.0 100.0 
   0.6 0.33 100.0 100.0 0.34 100.0 100.0 
 2 1.5 0 0.34 100.0 100.0 0.34 100.0 100.0 
   0.3 0.33 100.0 100.0 0.34 100.0 100.0 
   0.6 0.32 100.0 100.0 0.32 100.0 100.0 
 2.5 1 0 0.34 100.0 100.0 0.34 100.0 100.0 
   0.3 0.34 100.0 100.0 0.34 100.0 100.0 
   0.6 0.34 100.0 100.0 0.34 100.0 100.0 

0.4 1 1 0 0.40 5.0 4.9 0.40 5.0 5.1 
 1.5 1 0 0.42 100.0 100.0 0.43 100.0 100.0 
   0.3 0.42 100.0 100.0 0.43 100.0 100.0 
   0.6 0.42 99.8 99.6 0.43 100.0 100.0 
 1.5 1.5 0 0.42 100.0 99.8 0.41 100.0 100.0 
   0.3 0.41 100.0 99.9 0.41 100.0 100.0 
   0.6 0.41 99.7 99.6 0.41 100.0 100.0 
 2 1 0 0.42 100.0 100.0 0.42 100.0 100.0 
   0.3 0.42 100.0 100.0 0.42 100.0 100.0 
   0.6 0.42 100.0 100.0 0.42 100.0 100.0 
 2.5 1 0 0.39 100.0 100.0 0.39 100.0 100.0 
   0.3 0.39 100.0 100.0 0.39 100.0 100.0 
   0.6 0.39 100.0 100.0 0.39 100.0 100.0 
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4.3.3. Conclusion  

In this chapter, we evaluated the performance of the empirical powers from the 

modified Poisson model and the logistic regression, and we also assessed the 

proposed RR sample size and power formulas. When there is no effect for covariate 𝑥 

or 𝑥ଵ, the power of the hypothesis test should be at the significance level (Burton et 

al., 2006). This was validated from the simulation study that the empirical powers 

were all close to 5% under the scenarios of 𝛽ଵ = 0 as shown in Tables 4.1 to 4.10.  

When the underlying data set was generated using the logistic model, the 

simulation study showed that the empirical powers were similar between the modified 

Poisson model and the logistic regression, suggesting that the modified Poisson model 

can be applied in lieu of the logistic model in prospective studies with binary 

outcomes. The difference between the empirical powers from the two models was less 

than 5.6% in all scenarios considered in Section 4.3.1. However, when the correlation 

between two continuous covariates was large, the nominal power was higher than the 

empirical power for the logistic regression, and the difference could be as large as 

14.3%. It indicates that having stronger correlation influences the actual power more 

when both covariates are continuous variables.   

The simulation study assessed the performance of the proposed sample size 

formulas for the modified Poisson model. The proposed power formula performed 

well in all scenarios considered in Section 4.3.2. The empirical power closely agreed 

with the nominal power with fixed sample sizes. The power difference was less than 

8.7% in all settings. The difference varied in scenarios with one or two continuous 

covariates. For example, the empirical power could be as much as 8.7% lower or 

8.2% higher than the nominal power when 𝑅𝑅௫భ
= 𝑅𝑅௫మ

= 2, 𝑟 = 0.6, 𝑝 = 0.1, 𝑛 =

300 or 𝑅𝑅௫భ
= 1.5, 𝑅𝑅௫మ

= 2, 𝑟 = 0.3, 𝑝 = 0.2, 𝑛 = 500 in one binary and one 

continuous covariates scenario. These discrepancies could be due to the 

multicollinearity problem among covariates or simply due to sampling variations.  
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Chapter 5 Illustrating Examples 
This chapter presents the application on the formula by using a subset of the Diabetes 

Control and Complications Trial (DCCT) database from Lachin (2011, p. 298). Zou 

(2004) also used the same data set for illustrative purposes. Section 5.1 introduces the 

DCCT database and the subset with descriptive statistics. Section 5.2 describes the 

specifications of the analysis and presents the results. 

5.1. The data 

Diabetes mellitus is a disease that relates to metabolic disorders and a high blood 

sugar level. The blood sugar (glucose) level is controlled by the hormone insulin 

produced from the pancreas. There are many possible symptoms of diabetes, 

including extreme hunger, fatigue, and weight loss.  

The DCCT is a controlled randomization trial conducted by the National 

Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The DCCT study 

(1993; 2010) examined the influence of intensive insulin treatment on retinopathy and 

other complications among insulin-dependent diabetes mellitus (IDDM) patients. 

Retinopathy is a complication that may cause vision problems, and it leads to 

blindness if it becomes severe. A patient is more likely to develop such a 

complication when having a long diabetes history. The DCCT study started in August 

1983 and ended in April 1993, and it enrolled 1441 patients, including the primary 

prevention cohort of 726 patients without retinopathy and the secondary intervention 

cohort of 715 patients with mild retinopathy. Each patient was randomly assigned to 

intensive insulin therapy. The average follow-up time was 6.5 years.  

The DCCT research group (1993) provided basic summary statistics in their 

publication. The age of the patients ranged between 13 and 39 years. More than 95% 

of patients in each cohort were white. Besides retinopathy, the NIDDK studied the 

influence of intensive insulin therapy on other neurological, cardiovascular, and renal 

outcomes and found that the intensive insulin therapy was effective in delaying the 

progression of retinopathy and the onset of other complications.   
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Nephropathy (kidney disease) is another serious complication of diabetes. The 

DCCT Nephropathy (Microalbuminuria) subset from Lachin (2011) is used in the 

next section. The DCCT Nephropathy subset contains the records of 172 patients. The 

patients were in the secondary intervention cohort with baseline albumin excretion 

rates between 15 mg/24h and 40 mg/24h. Microalbuminuria (𝑚𝑖𝑐𝑟𝑜24) is the binary 

outcome that was evaluated at six years in the subset (Lachin, 2011, p. 298). The 

𝑚𝑖𝑐𝑟𝑜24 was assigned as 1 if the patient was diagnosed with microalbuminuria, 

otherwise 𝑚𝑖𝑐𝑟𝑜24 = 0. In addition to the microalbuminuria (𝑚𝑖𝑐𝑟𝑜24), treatment 

group (𝑖𝑛𝑡), the baseline HbAଵ (ℎ𝑏𝑎𝑒𝑙, glycated hemoglobin level), the prior 

duration of diabetes (𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) in months, the level of systolic blood pressure (𝑠𝑏𝑝), 

and gender (𝑓𝑒𝑚𝑎𝑙𝑒) are included in the subset. The 𝑖𝑛𝑡 and 𝑓𝑒𝑚𝑎𝑙𝑒 are also binary 

and coded with 1 and 0. HbAଵ is the average level of blood glucose control over the 

preceding 4 to 6 weeks before patients joined the trial. 𝑦𝑒𝑎𝑟𝑠𝑑𝑚 is an additional 

variable that converts the duration from months to years.  

Table 5.1 presents simple descriptive statistics of the variables in the DCCT 

subset. In the subset, the difference in the number of patients between the intensive 

and conventional treatment groups is 6. Within the conventional therapy group, 

37.35% of patients are diagnosed with microalbuminuria, and 12.36% are confirmed 

for microalbuminuria in the intensive therapy group. Each therapy group has slightly 

more male patients than female patients, and 28.72% of male patients and 19.23% of 

female patients have microalbuminuria. 

Table 5.1 Descriptive statistics of DCCT Nephropathy subset. 

Binary variables n୷ୣୱ n୬୭ Mean Var 

Microalbuminuria 42 130 0.244 0.186 

Intensive treatment 89 83 0.517 0.251 

Female 78 94 0.453 0.249 

Continuous variables Mean Var Min Max 

HbAଵ  9.262 2.178 6.660 14.370 

Duration(years) 9.430 11.149 1.333 15.000 

Systolic blood pressure 116.326 116.829 90.000 148.000 
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5.2. Sample size calculation  

In this section, we apply the proposed sample size formulas on the DCCT subset, 

focusing on the influence from intensive insulin treatment or HbAଵ. The treatment 

variable is considered as the factor of interest 𝑥ଵ in Section 5.2.1, and HbAଵ is 

treated as 𝑥ଵ in Section 5.2.2. The intensive therapy group is used as a baseline. The 

derived OR sample size formula from the nominal power equation (Equation 4.1) is 

also applied for comparison. 

5.2.1. Sample size for treatment effect 

Supposing that we are interested in whether the intensive therapy could reduce the 

risk of microalbuminuria, Table 5.2 summarizes the relationship between the two 

variables. The RR and OR of microalbuminuria between the conventional and 

intensive treatment groups were 𝑅𝑅௧ ≈ 3.022 (95% CI: 1.627, 5.614) and 𝑂𝑅௧ ≈

4.227 (95% CI:1.953, 9.150). The coefficient of determination of 𝑖𝑛𝑡 on the other 

four possible risk factors was estimated to be 0.0008. 

Table 5.2 2 x 2 table between Microalbuminuria and treatment therapy. 

 Microalbuminuria (Yes) Microalbuminuria (No) 

Intensive treatment  11 78 

Conventional treatment  31 52 

Applying the logistic regression and the modified Poisson models to the subset 

and adjusting for ℎ𝑏𝑎𝑒𝑙, 𝑦𝑒𝑎𝑟𝑠𝑑𝑚, 𝑠𝑏𝑝, 𝑓𝑒𝑚𝑎𝑙𝑒, the estimated regression coefficients 

of 𝑖𝑛𝑡 were 1.583 (95% CI: 0.747, 2.420) and 1.080 (95% CI:0.484, 1.677), 

respectively. The intensive treatment group was used as the baseline group. The 

corresponding estimated OR and RR were 4.870 and 2.945. Identical results were also 

obtained by Zou (2004). The two estimated values were close to the 𝑂𝑅௧ and 𝑅𝑅௧ 

without adjustment. Both models confirmed that intensive insulin therapy could 

reduce the risk of getting microalbuminuria, as zero was not included in the 

confidence intervals and P-value < 0.05.  

The proposed risk ratio sample size formula and the OR sample size equation 

from Vittinghoff et al. (2012) were utilized in finding 𝑛. We assumed that researchers 
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could use either RR or OR sample size equation in study planning. As well as the 

unadjusted 𝑅𝑅௧ and 𝑂𝑅௧, we assumed the mean of 𝑚𝑖𝑐𝑟𝑜24, and the variance of 

𝑖𝑛𝑡 from Table 5.1 could represent the population parameter values. The subset came 

from a randomized clinical trial, so the coefficient of determination between 𝑖𝑛𝑡 and 

other covariates was assumed to be zero. To achieve 80% power at 𝛼 = 0.05, the 

sample sizes required for RR and OR, respectively, are 

𝑛ோோ =
൫𝑍ଵିఈ/ଶ + 𝑍ఊ൯

ଶ

(𝛽ଵ
∗)ଶ𝜎௫భ

ଶ

1 − 𝑝

𝑝

1

1 − 𝑟ଵ,ଶ…
ଶ  

=
(1.96 + 0.84)ଶ

൫𝑙𝑛(3.022)൯
ଶ

0.251

1 − 0.244

0.244

1

1 − 0
 

≈ 80, 

𝑛ைோ =
൫𝑍ଵିఈ/ଶ + 𝑍ఊ൯

ଶ

(𝛽ଵ
∗)ଶ𝜎௫భ

ଶ

1

𝑝(1 − 𝑝)

1

1 − 𝑟ଵ,ଶ…
ଶ  

=
(1.96 + 0.84)ଶ

൫𝑙𝑛(4.227)൯
ଶ

0.251

1

(1 − 0.244)0.244

1

1 − 0
 

≈ 82. 

The 𝑛 for a study estimating RR is 80, and the 𝑛 for an OR study is 82. The two 

sample sizes are close to each other from the calculation.  

Table 5.3 presents nominal powers for different sample sizes. With the same 

number of patients, the nominal power for a study with RR is almost same as that for 

the OR. Researchers need a sample size between 80 and 100 to obtain a power 

between 80% and 90% to detect the influence of intensive insulin treatment when 

using RR or OR. 

Table 5.3 Nominal power (𝑁𝑃) for measuring the influence of intensive therapy with 

fixed sample sizes, effect measures are 𝑅𝑅௧ = 3.022 and 𝑂𝑅௧ = 4.227, 𝑝 =

0.244, 𝜎௧
ଶ = 0.251, 𝑟ଶ = 0. 

 

𝑛୬୲ 𝑁𝑃ோோ 𝑁𝑃ைோ 

80 80.3 79.2 

90 84.7 83.7 
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100 88.2 87.3 

Varying the 𝑅𝑅௧ within the range of its confidence interval and having a 

fixed 80% power for the same population parameter values, the calculated sample 

sizes are presented in Table 5.4. When RR increases, the sample size decreases 

quickly.  

Table 5.4 Sample size (𝑛) for measuring intensive treatment effect with 80% power, 

𝑝 = 0.244, 𝜎௧
ଶ = 0.251, 𝑟ଶ = 0, 𝑅𝑅௧ varies. 

 

𝑅𝑅௧ 𝑛௧ 

2.0 202 

3.0 81 

4.0 51 

With the sample size of 150, the minimum detectable effect for the treatment 

is 0.803 when the power is 80%, while keeping other parameter values unchanged. 

The minimum detectable effect of 0.803 corresponds to the risk ratio of 2.233, which 

represents the smallest RR to be detected with a sample size of 150 and an 80% of 

power under a two-tailed test.  

5.2.2. Sample size for HbA𝟏𝒄 effect 

Consider that researchers wish to study the influence of HbAଵ on microalbuminuria, 

we calculated the sample sizes for the continuous factor of interest HbAଵ, and this 

illustration is more related to an observational study. From Table 5.1, the mean of 

𝑚𝑖𝑐𝑟𝑜24 is 0.244, and the variance of HbAଵ is 2.178. From the modified Poisson 

and logistic regression models applied on the DCCT subset, the unadjusted regression 

coefficients for the two models were 0.292 (95% CI:0.136, 0.447) and 0.433 (95 % 

CI: 0.187, 0.679) respectively. The corresponding effect measures are 𝑅𝑅HbAభ
=

1.339 (95% CI: 1.146, 1.563) and 𝑂𝑅ுభ
= 1.542 (95% CI: 1.206, 1.971). The 

coefficient of determination of HbAଵ on other covariates was 0.066.  
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We assumed the mean of 𝑚𝑖𝑐𝑟𝑜24, the variance of HbAଵ, the coefficient of 

determination between HbAଵ and other covariates, and the unadjusted regression 

coefficients for 𝑅𝑅HbAభ
 and 𝑂𝑅HbAభ

 from the subset can represent the population 

parameter values. At 80% power, the calculated sample sizes are 

𝑛ோோ =
൫𝑍ଵିఈ/ଶ + 𝑍ఊ൯

ଶ

(𝛽ଵ
∗)ଶ𝜎௫భ

ଶ

1 − 𝑝

𝑝

1

1 − 𝑟ଵ,ଶ…
ଶ  

=
(1.96 + 0.84)ଶ

(0.292)ଶ2.178

1 − 0.244

0.244

1

1 − 0.066
 

≈ 141, 

𝑛ைோ =
൫𝑍ଵିఈ/ଶ + 𝑍ఊ൯

ଶ

(𝛽ଵ
∗)ଶ𝜎௫భ

ଶ

1

𝑝(1 − 𝑝)

1

1 − 𝑟ଵ,ଶ…
ଶ  

=
(1.96 + 0.84)ଶ

(0.433)ଶ2.178

1

(1 − 0.244)0.244

1

1 − 0.066
 

≈ 112. 

There is a difference of 29 patients between the two sample sizes. If the multiple 

correlation coefficient is increased to 0.3, the sample size required would be 144 with 

the proposed RR sample size formula, and 115 with the OR sample size formula. We 

also calculated nominal powers for the sample sizes of 141, 160, and 180 in Table 5.5. 

Given the sample sizes, the test based on RR provided slightly less power than that 

based on OR, where the nominal power difference is less than 10%. 

Table 5.5 Nominal power (𝑁𝑃) for measuring the influence of gender with fixed 

sample sizes, and effect measures are 𝑅𝑅ு భ
= 1.339 and 𝑂𝑅ுభ

= 1.542, 𝑝 =

0.244, 𝜎ுభ

ଶ = 2.178, 𝑟ଶ = 0.066. 

 

𝑛HbAభ
 𝑁𝑃ோோ 𝑁𝑃ைோ 

141 80.2 88.3 

160 84.9 91.9 

180 88.8 94.5 

 

Varying the risk ratio of HbAଵ within the range of its confidence interval 

while having a fixed 80% power for the same assumed population parameter values 



60 
 

 

for the mean of 𝑚𝑖𝑐𝑟𝑜24, the variance of HbAଵ, and coefficient of determination, 

the calculated sample sizes are summarized in Table 5.6. The sample size needed is 

fewer when 𝑅𝑅HbAభ
= 1.5 than when 𝑅𝑅HbAభ

= 1.2. 

Table 5.6 Sample size for measuring HbAଵୡ effect with 80% power, p =

0.244, 𝜎HbAభ

ଶ = 2.178, 𝑟ଶ = 0.066, 𝑅𝑅HbAభ
 varies. 

 

𝑅𝑅HbAభ
 𝑛HbAభ

 

1.2 360 

1.4 106 

1.5 73 

Using 𝑛 = 200, the minimum detectable effect of hemoglobin level (HbAଵୡ) 

is 0.244, assuming the coefficient of determination was 0.066, variance of 

hemoglobin level was at 2.178, and the prevalence of macroalbuminuria was 0.244. It 

corresponds to the risk ratio of 1.277, which represents the smallest RR to be detected 

with a sample size of 200 and an 80% of power to reject the null hypothesis under a 

two-tailed test.  

𝛽HbAభ

∗ =
𝑍ଵିఈ/ଶ + 𝑍ఊ

𝜎௫భට𝑛
𝑝

1 − 𝑝 ൫1 − 𝑟ଵ,ଶ…
ଶ ൯

 

=
1.96 + 0.84

√2.178ට200
0.244

1 − 0.244
(1 − 0.066)

 

= 0.244 

From the two examples, the application on the binary factor of interest showed 

that the calculated OR and RR sample sizes were close to each other. The application 

on the continuous factor of interest, on the other hand, produced distinctive OR and 

RR sample sizes. The application on the HbAଵ showed the sample sizes of detecting 

the effect when using OR and RR were different. This situation could belong to the 

simulation settings when the OR was 1.5 and correlation equaled 0, where the 

empirical power difference between the logistic regression and the modified Poisson 
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model was greater than 5%, meanwhile the nominal powers of OR and RR were close 

to their empirical powers when the correlation was zero in Chapter 4.  
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Chapter 6 Discussion 

The sample size determination is a critical question that researchers will face in 

planning a study. The existing literature describes many sample size methodologies 

for a study using the logistic regression to estimate OR. For a modified Poisson model 

to estimate RR, we derived the power and sample size formulas adjusting for a 

variance inflation factor for regression models with multiple covariates. 

 We first examined the power performance of the logistic regression and 

modified Poisson models via simulation studies. Our simulation study showed that the 

modified Poisson model provided equivalent power as the logistic model in the 

presence of multiple covariates in the model. We also evaluated the proposed power 

formula for the modified Poisson model by comparing their nominal power and 

empirical powers. Our simulation study showed that the proposed power formula 

performed well in most simulation settings, suggesting that the proposed power and 

sample size equations are adequate to estimate the number of subjects needed for 

perspective studies.  

There are some limitations of the simulation study. First of all, the covariates 

in the simulation study were derived from the Bernoulli and standard normal 

distributions. We are uncertain about the power behavior of the proposed formula 

under other covariate distributions. Væth and Skovlund (2004) conducted a power 

analysis for the logistic and Cox regression models and showed that the nominal and 

empirical powers could still match when the Gamma distribution was applied in data-

generating instead of a normal distribution. It can be anticipated that the empirical 

power would be close to the nominal power for the proposed sample size method if 

the Gamma distribution is implemented. Second, we did not consider negative 

regression coefficient values in the simulation. As the proposed RR sample size 

equation uses an absolute or a squared  𝛽ଵ
∗ value, having a negative RR in the 

calculation should not affect the sample size results.  

With the DCCT nephropathy data, we provided usages of the RR sample size 

formula in practice. Depending on the purpose of a study, researchers should carefully 

select a sample size for a specific effect measure to obtain plausible research results. 
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The application on a binary or continuous factor of interest showed that the proposed 

sample size equation does not require an additional numerical approximation in the 

calculation. Researchers may merely plug-in preset parameter values as they need. 

The application also presented the proposed sample size equation can be implemented 

when multiple covariates are involved. Since many healthcare studies containing 

more than two covariates, the proposed equation is beneficial when constructing 

similar research studies.   

We assumed binary outcomes in a study are independent in the derivations. 

Since clustered binary outcomes are quite common, arising either from studies with 

repeated measures or clinical trials randomizing intact social units instead of 

individuals. Thus, a new research topic is to develop sample size estimation methods 

for such situations in the context of the model proposed by Zou and Donner (2013). 
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Appendix: SAS coding 
 /*one binary covariate, logit link*/; 
options nocenter nonotes formdlim=' ';  
/*output delivery system options on or off*/; 
%macro ODSOff();  
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
%macro ODSOn();  
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
ODS TRACE ON;    
  
%macro simdata(runs=, px=, b0=, b1=, n=); 
 %ODSOFF;  
/*generate data for one binary covariate*/ 
data covariates;  
 call streaminit(123456); /*input random seeds*/; 
   do i=1 to &n;      
    pt=i; 
     x = rand("bernoulli", &px);  
  linpred = &b0 + &b1* x ; 
  pi = logistic(linpred); 
    output; 
 end; 
run; 
 
/*calculate NP_logi using OR sample size equation(4.1)*/ 
data formula_logi;  
overallp=logistic(&b0)*(1-&px)+logistic(&b0+&b1)*&px; 
  inside = 1.96 - abs( &b1 )* sqrt(&px*(1-&px)) * 
     sqrt( &n * overallp*(1- overallp)  );  
  Power = (1 - probnorm(inside))*100; 
  /*keep power; 
run;  
 
/*generate response with the same covariate for 1000 runs*/; 
 data sim; 
    call streaminit(123456); 
     set covariates; 
     do run=1 to &runs; 
  yi = rand("bernoulli", pi); 
  keep run yi x pt; 
     output; 
end; 
run; 
 
proc sort; by run;   
run; 
 
/*apply the logistic regression on 1000 runs for EP_logi*/; 
proc genmod data=sim desc;  
     by run; 
     model yi = x /dist=b link=logit; 
     ods output ParameterEstimates=est_logi 
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         (where = (Parameter='x     ')  keep=run Parameter 
ProbChiSq ); 
run; 
 
/*apply the modified Poisson model on 1000 runs for EP_mpo*/;  
proc genmod data=sim desc;  
     by run; 
  class pt; 
     model yi = x/ dist=poisson link=log; 
     repeated subject=pt/type=unstr; 
     ods output GEEEmpPEst=est_mpo  
         (where = (Parm='x')  keep=run Parm ProbZ ); 
run; 
 
 
/*calculate the number of rejections of H_0 in 1000 runs*/; 
data results_logi; 
   set est_logi; 
 rej = (ProbChiSq <0.05)*100; 
run; 
  
 
data results_mpo; 
   set est_mpo; 
 rej = (ProbZ <0.05)*100; 
run; 
%ODSOn; 
 
/*print NP_logi and EP_logi and EP_mpo results*/; 
proc print data=formula_logi; 
   var overallp power; 
   title Formula Power_logi; 
run; 
 
proc means n mean data = results_logi; 
  var rej; 
  title Empirical Power_logi; 
run; 
 
proc means n mean data = results_mpo; 
  var rej; 
  title Empirical Power_mpo; 
run; 
%mend simdata; 
 
/*input parameter values*/; 
%simdata(runs= 1000, px=0.5, b0=-2.197, b1=0.693, n=300); 
 

/*one continous covariate, logit link*/; 
options nocenter nonotes formdlim=' ';  
%macro ODSOff();  
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
 
%macro ODSOn();  
ods graphics on; 
ods exclude none; 
ods results; 
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%mend; 
ODS TRACE ON;    
%macro simdata(runs=, xmu=, xvar=,b0=, b1=,  n=); 
 %ODSOFF;  
data covariates;  
  call streaminit(123456); 
   do i=1 to &N;      
    pt=i; 
       x=rand('normal',&xmu,&xvar); 
     linpred = &b0 + &b1* x ; 
   pi = logistic(linpred); 
 
    output; 
 end; 
run; 
 
data pp; 
  call streaminit(123456); 
  set covariates;   
     linpred = &b0 + &b1* x ; 
   pi = logistic(linpred); 
   yi = rand("bernoulli", pi); 
   keep yi x;  
 run; 
  
ods output summary=avg_pi(keep= pi_mean ); 
proc means mean var data=covariates;var pi; run; 
 
data formula_logi;  
 set avg_pi; 
  inside = 1.96 - abs( &b1 )* sqrt(&xvar) * 
     sqrt( &n * pi_mean*(1- pi_mean) );  
  Power = (1 - probnorm(inside))*100; 
run;  
 
 data sim; 
    call streaminit(123456); 
     set covariates; 
     do run=1 to &runs; 
      
   yi = rand("bernoulli", pi); 
    keep run yi x pt; 
     output; 
end; 
run; 
 
proc sort; by run;   
run; 
 
proc genmod data=sim desc;  
     by run; 
     model yi = x /dist=b; 
     ods output ParameterEstimates=est_logi 
         (where = (Parameter='x     ')  keep=run Parameter 
ProbChiSq ); 
run; 
  
proc genmod data=sim desc;  
     by run; 
  class pt; 
     model yi = x/ dist=poisson link=log; 
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     repeated subject=pt/type=unstr; 
     ods output GEEEmpPEst=est_mpo  
 
         (where = (Parm='x')  keep=run Parm ProbZ ); 
run; 
 
 
data results_mpo; 
   set est_mpo; 
 rej = (ProbZ <0.05)*100; 
run; 
  
data results_logi; 
   set est_logi; 
 rej = (ProbChiSq <0.05)*100; 
run; 
  
 
%ODSOn; 
 
proc print data=formula_logi; 
   var pi_mean power; 
   title Formula Power_logi; 
run; 
 
 
proc means n mean data = results_logi; 
  var rej; 
  title Empirical Power_logi; 
run; 
 
proc means n mean data = results_mpo; 
  var rej; 
  title Empirical Power_mpo; 
run; 
 
%mend simdata; 
 
%simdata(runs= 1000,xmu=0,xvar=1, b0=-2.197,b1=0.405,n=300); 
 
/*2 binary covariates scenario, logit link*/; 
/*The plug in SAS coding piece of RandMVBinary program can be 
downloaded from 
https://communities.sas.com/t5/SAS-IML-File-Exchange/Simulate-
Correlated-Multivariate-Binary-Variables/ta-p/221225*/; 
/*the actual directory of the downloaded RandMVBinary program needs 
to be input into %include "" in the following coding*/; 
options nocenter nonotes formdlim=' ';  
%macro ODSOff();  
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
%macro ODSOn();  
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
%include "C:\...\RandMVBinary.sas"; 
 
%macro simdata(runs=, px1=, px2=,rho=,b0=, b1=, b2=,n=); 
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 %ODSOFF;  
proc iml; 
load module=_all_; 
call randseed(123456); 
/* from Wicklin (2013) _Simulating Data with SAS_, p. 157 */; 
p = {&px1 &px2 };       
R = { 1    &rho , 
     &rho   1   }; /* correlations */; 
X = RandMVBinary(&n, p, R); 
/* check results */ 
DiffMean = p - mean(X); 
DiffCorr = R - corr(X); 
 
create multix from X[colname={"x1" "x2" }];; /* create data set */; 
append from X;       /* write data in vectors */; 
close multix; /* close the data set */; 
quit; 
 
data covariates; 
set multix; 
linpred = &b0 + &b1* x1 +&b2*x2;; 
pi = logistic(linpred); 
pt=_N_; 
run; 
 
data formula_logi;  
overallp=logistic(&b0)*(1-&px1)*(1-
&px2)+logistic(&b0+&b1+&b2)*&px1*&px2+logistic(&b0+&b1)*&px1*(1-
&px2)+logistic(&b0+&b2)*(1-&px1)*&px2; 
  inside = 1.96 - abs( &b1 )* sqrt(&px1*(1-&px1)) * 
     sqrt( &n * overallp*(1- overallp) *( 1- &rho**2) );  
  Power = (1 - probnorm(inside))*100; 
run;  
 
data sim; 
    call streaminit(123456); 
     set covariates; 
     do run=1 to &runs; 
   yi = rand("bernoulli", pi); 
    keep run yi x1 x2 pt; 
     output; 
end; 
run; 
 
proc sort; by run;   
run; 
   
proc genmod data=sim desc;  
     by run; 
     model yi = x1 x2 /dist=b; 
     ods output ParameterEstimates=est_logi 
         (where = (Parameter='x1     ')  keep=run Parameter 
ProbChiSq ); 
run; 
 
proc genmod data=sim desc;  
     by run; 
  class pt; 
     model yi = x1 x2/ dist=poisson link=log; 
     repeated subject=pt/type=unstr ; 
     ods output GEEEmpPEst=est_mpo  
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         (where = (Parm='x1')  keep=run Parm ProbZ ); 
run; 
 
data results_logi; 
   set est_logi; 
 rej = (ProbChiSq <0.05)*100; 
run; 
  
data results_mpo; 
   set est_mpo; 
 rej = (ProbZ <0.05)*100; 
run; 
  
%ODSOn; 
 
proc print data=formula_logi; 
   var overallp power; 
   title Formula Power_logi; 
run; 
 
proc means n mean data = results_logi; 
  var rej; 
  title Empirical Power_logi; 
run; 
 
proc means n mean data = results_mpo; 
  var rej; 
  title Empirical Power_mpo; 
run; 
  
%mend simdata; 
 
%simdata(runs=1000, px1=0.5, px2=0.5,b0=-2.197, b1=0.405, 
b2=0.405,rho=0.6,n=300); 
 
/*check actual correlation between covariates if necessary, proc corr 
data=covariates; run;*/; 
 
/*1 binary 1 continuous, logit link*/; 
/*The SAS program is revised based on the open source coding from 
https://www.researchgate.net/post/Simulating-correlated-categorical-
and-continuous-variables-in-SAS*/; 
/*the coding from the author Paul Anthony Dennis was based on 
CORR2DATA from UCLA 
https://stats.idre.ucla.edu/sas/sas/macros/sas-macros-corr2data/*/; 
options nocenter nonotes formdlim=' ';  
%macro ODSOff();  
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
 
%macro ODSOn();  
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
 
%macro simdata(runs=, px=,xmu=,xvar=,rho=,b0=, b1=, b2=,n=); 
   
 %ODSOFF;  
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proc iml ; 
 call randseed(123456); 
C={1 &rho ,  
    &rho 1 };  
p = root(C); /*using a Cholesky transformation*/; 
dim = nrow(C); 
A = j(&n,1,.);  
B = j(&n,1,.);  
call randgen(A, 'BERNOULLI', &px);  
call randgen(B, 'NORMAL',&xmu,&xvar);  
myvar = A||B;  
do i = 1 to dim;  
myvar[, i] = myvar[,i]-(sum(myvar[,i])/&n); 
end; 
XX = (t(myvar)*myvar)/(&n-1); 
U = root(inv(XX)); 
Y = myvar*T(U); 
T = Y*p; 
create outdata from T;  
append from T; 
quit; 
 
data covariates;  
set outdata; 
if col1<0 then x1=0; 
else if col1>0 then x1=1; 
x2=col2; 
drop col1-col2; 
linpred = &b0 + &b1* x1 +&b2*x2;; 
pi = logistic(linpred); 
pt=_N_; 
run; 
 
ods output summary=avg_pi(keep=x1_var pi_mean ); 
proc means mean var data=covariates;var x1 pi; run; 
 
data formula_logi;  
set avg_pi; 
 
 inside = 1.96 - abs( &b1 )* sqrt(&px*(1-&px)) * 
     sqrt( &n * pi_mean*(1- pi_mean)*( 1- &rho**2) );  
  Power = (1 - probnorm(inside))*100; 
run;  
 
 data sim; 
    call streaminit(123456); 
     set covariates; 
     do run=1 to &runs; 
   yi = rand("bernoulli", pi); 
    keep run yi x1 x2 pt; 
     output; 
end; 
run; 
 
proc sort; by run;   
run; 
  
proc genmod data=sim desc;  
     by run; 
  class pt; 
     model yi = x1 x2/ dist=poisson link=log; 
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     repeated subject=pt/type=unstr ; 
     ods output GEEEmpPEst=est_mpo  
         (where = (Parm='x1')  keep=run Parm ProbZ ); 
run; 
  
proc genmod data=sim desc;  
     by run; 
     model yi = x1 x2 /dist=b; 
     ods output ParameterEstimates=est_logi 
         (where = (Parameter='x1     ')  keep=run Parameter 
ProbChiSq ); 
run; 
 
data results_mpo; 
   set est_mpo; 
 rej = (ProbZ <0.05)*100; 
run; 
  
data results_logi; 
   set est_logi; 
 rej = (ProbChiSq <0.05)*100; 
run; 
  
%ODSOn; 
 
proc print data=formula_logi; 
   var pi_mean power; 
   title Formula Power_logi; 
run; 
 
proc means n mean data = results_logi; 
  var rej; 
  title Empirical Power_logi; 
run; 
 
proc means n mean data = results_mpo; 
  var rej; 
  title Empirical Power_mpo; 
run; 
 
%mend simdata; 
 
%simdata(runs=1000, px=0.5,xmu=0,xvar=1,b0=-0.405, b1=0.405, 
b2=0.693,rho=0.6,n=300); 
 
 
/*two continuous covariates, logit link*/; 
/*the program uses the RandNormal function in SAS iml */; 
options nocenter nonotes formdlim=' '; 
%macro ODSOff();  
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
%macro ODSOn();  
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
ODS TRACE ON;    
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%macro simdata(runs=, xmu1=,xvar1=,xmu2=,xvar2=,rho=, b0=, b1=,b2=,  
n=); 
 %ODSOFF;  
 
proc iml; 
call randseed(123456); 
Z={. . . .}; 
create covariates1 from Z[colname={'x1' 'x2' 'linpred' 'pi'}];   
do i=1 to &n; 
 
/* specify the mean and covariance of the population */; 
Mean = {&xmu1, &xmu2}; 
R={1 &rho, 
  &rho 1};  /*correlation matrix*/ 
sd1=sqrt(%SYSEVALF(&xvar1)); 
sd2=sqrt(%SYSEVALF(&xvar2)); 
SD=sd1||sd2; 
Cov = Corr2Cov(R, sd); /* population covariances */; 
X = RandNormal(1, Mean, Cov); /* generate covariates values*/; 
x1=X[1,1]; 
x2=X[1,2]; 
linpred = &b0 + &b1* x1 +&b2*x2; 
pi = logistic(linpred); 
Z=X||linpred||pi; 
 
append from Z;                             
end; 
 
close; 
quit; 
 
data covariates; 
set covariates1; 
pt=_N_; 
run; 
 
ods output summary=avg_pi(keep=x1_var pi_mean ); 
proc means mean var data=covariates;var x1 pi; run; 
 
data formula_logi;  
set avg_pi; 
 inside = 1.96 - abs( &b1 )* sqrt(&xvar1) * 
     sqrt( &n * pi_mean*(1- pi_mean)*( 1- &rho**2) );  
  Power = (1 - probnorm(inside))*100; 
run;  
 
 data sim; 
    call streaminit(123456); 
     set covariates; 
     do run=1 to &runs; 
   yi = rand("bernoulli", pi); 
    keep run yi x1 x2 pt; 
     output; 
end; 
run; 
 
proc sort; by run;   
run; 
 
proc genmod data=sim desc;  
     by run; 
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     model yi = x1 x2 /dist=b; 
     ods output ParameterEstimates=est_logi 
         (where = (Parameter='x1     ')  keep=run Parameter 
ProbChiSq ); 
run; 
 
proc genmod data=sim desc;  
     by run; 
  class pt; 
     model yi = x1 x2/ dist=poisson link=log; 
     repeated subject=pt/type=unstr ; 
     ods output GEEEmpPEst=est_mpo  
 
         (where = (Parm='x1')  keep=run Parm ProbZ ); 
run; 
 
/*rejection decision for H_0*/; 
data results_mpo; 
   set est_mpo; 
 rej = (ProbZ <0.05)*100; 
run; 
data results_logi; 
   set est_logi; 
 rej = (ProbChiSq <0.05)*100; 
run; 
 
%ODSOn; 
 
proc print data=formula_logi; 
   var pi_mean power; 
   title Formula Power_logi; 
run; 
proc means n mean data = results_logi; 
  var rej; 
  title Empirical Power_logi; 
run; 
proc means n mean data = results_mpo; 
  var rej; 
  title Empirical Power_mpo; 
run; 
  
%mend simdata; 
 
%simdata(runs=1000, xmu1=0,xvar1=1,xmu2=0,xvar2=1, b0=-2.197, 
b1=0.405,b2=0.405, rho=0.3, n=300); 
 
 
/*1 binary, anti log link*/; 
options nocenter nonotes formdlim=' ';  
%macro ODSOff();  
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
%macro ODSOn();  
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
ODS TRACE ON;    
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%macro simdata(runs=, px=, b0=, b1=, n=); 
   
 %ODSOFF;  
data covariates;  
 
 call streaminit(123456); 
   do i=1 to &n;      
    pt=i; 
     x = rand("bernoulli", &px);  
     linpred = &b0 + &b1* x ; 
     pi = exp(linpred); 
    output; 
 end; 
run; 
 
data formula_mpo;  
overallp=(1-&px)*exp(&b0)+&px*exp(&b0+&b1); 
 inside = 1.96 - abs( &b1 )* sqrt(&px*(1-&px)) * 
     sqrt( &n * overallp/(1- overallp) );  
  Power = (1 - probnorm(inside))*100; 
run;  
 
 data sim; 
    call streaminit(123456); 
     set covariates; 
     do run=1 to &runs; 
   yi = rand("bernoulli", pi); 
    keep run yi x pt; 
     output; 
end; 
run; 
 
proc sort; by run;   
run; 
 
proc genmod data=sim desc;  
     by run; 
  class pt; 
     model yi = x/ dist=poisson link=log; 
     repeated subject=pt/type=unstr; 
     ods output GEEEmpPEst=est_mpo  
 
         (where = (Parm='x')  keep=run Parm ProbZ ); 
run; 
 
data results_mpo; 
   set est_mpo; 
 rej = (ProbZ <0.05)*100; 
run; 
  
%ODSOn; 
 
proc print data=formula_mpo; 
   var overallp power; 
   title Formula Power_mpo; 
run; 
 
proc means n mean data = results_mpo; 
  var rej; 
  title Empirical Power_mpo; 
run; 
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%mend simdata; 
 
%simdata(runs= 1000, px=0.5, b0=-2.303, b1=0.405, n=500); 
 
/*1 continuous, anti log link*/; 
 
options nocenter nonotes formdlim=' ';  
%macro ODSOff();  
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
%macro ODSOn();  
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
ODS TRACE ON;    
 
%macro simdata(runs=, xmu=, xvar=,b0=, b1=,  n=); 
  
 %ODSOFF;  
data covariates;  
  call streaminit(123456); 
   do i=1 to &N;      
    pt=i; 
     do until (pi<1); 
       x=rand('normal',&xmu,&xvar); 
     linpred = &b0 + &b1* x ; 
     pi = exp(linpred); 
    end; 
    output; 
 end; 
run; 
 
ods output summary=avg_pi (keep= pi_mean); 
proc means mean var data=covariates;var pi; run; 
 
data formula_avgpi;  
set avg_pi; 
 inside = 1.96 - abs( &b1 )* sqrt(&xvar) * 
     sqrt( &n * pi_mean/(1- pi_mean) );  
  Power = (1 - probnorm(inside))*100; 
  
run;  
 
 data sim; 
    call streaminit(123456); 
     set covariates; 
     do run=1 to &runs; 
      
   yi = rand("bernoulli", pi); 
    keep run yi x pt; 
     output; 
end; 
run; 
 
proc sort; by run;   
run; 
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proc genmod data=sim desc;  
     by run; 
  class pt; 
     model yi = x/ dist=poisson link=log; 
     repeated subject=pt/type=unstr; 
     ods output GEEEmpPEst=est_mpo  
         (where = (Parm='x')  keep=run Parm ProbZ ); 
run; 
  
data results_mpo; 
   set est_mpo; 
 rej = (ProbZ <0.05)*100; 
run; 
 
%ODSOn; 
 
proc print data=formula_avgpi; 
   var pi_mean power; 
   title Formula Power_avgpi; 
run; 
 
proc means n mean data = results_mpo; 
  var rej; 
  title Empirical Power_mpo; 
run; 
 
%mend simdata; 
%simdata(runs= 1000,xmu=0,xvar=1, b0=-2.303,b1=0.405,  n=300); 
 
 
/*2 binary covariates scenario, anti log link*/; 
/*The plug in SAS coding piece of RandMVBinary program can be 
downloaded from 
https://communities.sas.com/t5/SAS-IML-File-Exchange/Simulate-
Correlated-Multivariate-Binary-Variables/ta-p/221225*/; 
/*the actual directory of the downloaded RandMVBinary program needs 
to be input into %include "" in the following coding*/; 
options nocenter nonotes formdlim=' ';  
%macro ODSOff();  
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
%macro ODSOn();  
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
%include "C:\...\RandMVBinary.sas"; 
 
%macro simdata(runs=, px1=, px2=,rho=,b0=, b1=, b2=,n=); 
 %ODSOFF;  
proc iml; 
load module=_all_; 
call randseed(123456); 
p = {&px1 &px2 };      
R = { 1    &rho , 
     &rho   1   }; /* correlations */; 
X = RandMVBinary(&n, p, R); 
 
DiffMean = p - mean(X); 
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DiffCorr = R - corr(X); 
 
create multix from X[colname={"x1" "x2" }]; 
append from X;        
close multix;  
quit; 
 
data covariates; 
set multix; 
linpred = &b0 + &b1* x1 +&b2*x2;; 
pi = exp(linpred); 
pt=_N_; 
run; 
 
data formula_mpo;  
overallp=exp(&b0)*(1-&px1)*(1-
&px2)+exp(&b0+&b1+&b2)*&px1*&px2+exp(&b0+&b1)*&px1*(1-
&px2)+exp(&b0+&b2)*(1-&px1)*&px2; 
 inside = 1.96 - abs( &b1 )* sqrt(&px1*(1-&px1)) * 
     sqrt( &n * overallp/(1- overallp)*( 1- &rho**2) );  
  Power = (1 - probnorm(inside))*100; 
run;  
 
data sim; 
    call streaminit(123456); 
     set covariates; 
     do run=1 to &runs; 
   yi = rand("bernoulli", pi); 
    keep run yi x1 x2 pt; 
     output; 
end; 
run; 
 
proc sort; by run;   
run; 
 
proc genmod data=sim desc;  
     by run; 
  class pt; 
     model yi = x1 x2/ dist=poisson link=log; 
     repeated subject=pt/type=unstr ; 
     ods output GEEEmpPEst=est_mpo  
         (where = (Parm='x1')  keep=run Parm ProbZ ); 
run; 
 
data results_mpo; 
   set est_mpo; 
 rej = (ProbZ <0.05)*100; 
run; 
%ODSOn; 
  
proc print data=formula_mpo; 
   var overallp power; 
   title Formula formula_mp; 
run; 
 
proc means n mean data = results_mpo; 
  var rej; 
  title Empirical Power_mpo; 
run; 
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%mend simdata; 
 
%simdata(runs=1000, px1=0.5, px2=0.5,b0=-2.303, b1=0.405, 
b2=0.405,rho=0.6,n=300); 
 
/*1 binary 1 continous, anti log link*/; 
/*The SAS program is revised based on the open source coding from 
https://www.researchgate.net/post/Simulating-correlated-categorical-
and-continuous-variables-in-SAS*/; 
/*the coding from the author Paul Anthony Dennis was based on 
CORR2DATA from UCLA 
https://stats.idre.ucla.edu/sas/sas/macros/sas-macros-corr2data/*/; 
 
options nocenter nonotes formdlim=' '; * mprint; 
%macro ODSOff();  
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
 
%macro ODSOn();  
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
 
%macro simdata(runs=, px1=,xmu2=,xvar2=,rho=,b0=, b1=, b2=,n=); 
 
 %ODSOFF;  
 
proc iml ; 
 call randseed(123456); 
C={1 &rho ,  
    &rho 1 };  
p = root(C);  
dim = nrow(C); 
A = j(10000,1,.); /*generate 10k for filtering pi>1 later*/; 
B = j(10000,1,.);  
call randgen(A, 'BERNOULLI', &px1);  
call randgen(B, 'NORMAL',&xmu2,&xvar2);  
myvar = A||B;  
do i = 1 to dim;  
myvar[, i] = myvar[,i]-(sum(myvar[,i])/10000); 
end; 
XX = (t(myvar)*myvar)/(10000-1); 
U = root(inv(XX)); 
Y = myvar*T(U); 
T = Y*p; 
create outdata from T;  
append from T; 
quit; 
 
data covariates1;  
set outdata; 
if col1<0 then x1=0; 
else if col1>0 then x1=1; 
x2=col2; 
drop col1-col2; 
linpred = &b0 + &b1* x1 +&b2*x2;; 
pi = exp(linpred); 
pt=_N_; 
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run; 
 
data covariates2; 
set covariates1; 
if pi<1; 
run; 
 
data covariates; 
set covariates2 (obs=&n); 
run; 
 
ods output summary=avg_pi(keep=x1_var pi_mean ); 
proc means mean var data=covariates;var x1 pi; run; 
 
data formula_avgpi;  
set avg_pi; 
 
 inside = 1.96 - abs( &b1 )* sqrt(&px1*(1-&px1)) * 
     sqrt( &n * pi_mean/(1- pi_mean)*( 1- &rho**2) );  
  Power = (1 - probnorm(inside))*100; 
run;  
 
 data sim; 
    call streaminit(123456); 
     set covariates; 
     do run=1 to &runs; 
   yi = rand("bernoulli", pi); 
    keep run yi x1 x2 pt; 
     output; 
end; 
run; 
 
proc sort; by run;   
run; 
 
proc reg data=sim; 
    model x1= x2; 
  ods output  FitStatistics = bb  ( where=(Label2='R-Square')  
                                      keep= Label2 nValue2   
                                      rename=(nValue2=Rsquare)); 
quit; 
 
proc genmod data=sim desc;  
     by run; 
  class pt; 
     model yi = x1 x2/ dist=poisson link=log; 
     repeated subject=pt/type=unstr ; 
     ods output GEEEmpPEst=est_mpo  
         (where = (Parm='x1')  keep=run Parm ProbZ ); 
run; 
 
data results_mpo; 
   set est_mpo; 
 rej = (ProbZ <0.05)*100; 
run; 
%ODSOn; 
 
proc print data=formula_avgpi; 
   var pi_mean power; 
   title Formula Power_avgpi; 
run; 
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proc means n mean data = results_mpo; 
  var rej; 
  title Empirical Power_mpo; 
run; 
%mend simdata; 
 
%simdata(runs=1000, px1=0.5,xmu2=0,xvar2=1, b0=-1.609, 
b1=0.405,b2=0.405, rho=0.6, n=300); 
 
/*two continuous covariates, anti log link*/; 
/*the program uses the RandNormal function in SAS iml */; 
options nocenter nonotes formdlim=' ';  
%macro ODSOff();  
ods graphics off; 
ods exclude all; 
ods noresults; 
%mend; 
%macro ODSOn();  
ods graphics on; 
ods exclude none; 
ods results; 
%mend; 
ODS TRACE ON;    
 
%macro simdata(runs=, xmu1=,xvar1=,xmu2=,xvar2=,rho=, b0=, b1=,b2=,  
n=); 
 %ODSOFF;  
proc iml; 
call randseed(123456); 
Z={. . . .}; 
create covariates1 from Z[colname={'x1' 'x2' 'linpred' 'pi'}];   
do i=1 to &n; 
do until (pi<1); 
/* specify the mean and covariance of the population */ 
Mean = {&xmu1, &xmu2}; 
R={1 &rho, 
  &rho 1};  /*correlation matrix*/ 
sd1=sqrt(%SYSEVALF(&xvar1)); 
sd2=sqrt(%SYSEVALF(&xvar2)); 
SD=sd1||sd2; 
Cov = Corr2Cov(R, sd); /* population covariances */ 
X = RandNormal(1, Mean, Cov);  
x1=X[1,1]; 
x2=X[1,2]; 
linpred = &b0 + &b1* x1 +&b2*x2; 
pi = exp(linpred); 
Z=X||linpred||pi; 
end; 
 
append from Z;                             
end; 
 
close; 
quit; 
 
data covariates; 
set covariates1; 
pt=_N_; 
run; 
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ods output summary=avg_pi(keep=x1_var pi_mean ); 
proc means mean var data=covariates;var x1 pi; run; 
 
data formula_avgpi;  
set avg_pi; 
 
 inside = 1.96 - abs( &b1 )* sqrt(&xvar1) * 
     sqrt( &n * pi_mean/(1- pi_mean)*( 1- &rho**2) );  
  Power = (1 - probnorm(inside))*100; 
run;  
 
 data sim; 
    call streaminit(123456); 
     set covariates; 
     do run=1 to &runs; 
   yi = rand("bernoulli", pi); 
    keep run yi x1 x2 pt; 
     output; 
end; 
run; 
 
proc sort; by run;   
run; 
 
proc reg data=sim; 
    model x1= x2; 
  ods output  FitStatistics = bb  ( where=(Label2='R-Square')  
                                      keep= Label2 nValue2   
                                      rename=(nValue2=Rsquare)); 
quit; 
 
proc genmod data=sim desc;  
     by run; 
  class pt; 
     model yi = x1 x2/ dist=poisson link=log; 
     repeated subject=pt/type=unstr ; 
     ods output GEEEmpPEst=est_mpo  
 
         (where = (Parm='x1')  keep=run Parm ProbZ ); 
run; 
 
data results_mpo; 
   set est_mpo; 
 rej = (ProbZ <0.05)*100; 
run; 
%ODSOn; 
 
proc print data=formula_avgpi; 
   var pi_mean power; 
   title Formula Power_avgpi; 
run; 
 
proc means n mean data = results_mpo; 
  var rej; 
  title Empirical Power_mpo; 
run;  
%mend simdata; 
%simdata(runs=1000, xmu1=0,xvar1=1,xmu2=0,xvar2=1, b0=-2.303, 
b1=0.405,b2=0.405, rho=0.6, n=500); 
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