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Abstract 

Vascular tissue engineering (VTE) is an emerging alternative therapeutic intervention 

strategy to treat diseases such as atherosclerosis. While the ultimate goal of VTE is 

designing tissues to serve as graft substitutes, they can also serve as powerful tools to study 

tissue and disease development and drug discovery.  

In this work, engineered vascular tissues from fibrin gel, mouse embryonic multipotent 

progenitor cell line (10T1/2 cells), and rat embryonic thoracic artery smooth muscle cells 

(A-10 cells) were used as models to study the Notch signaling pathway and vascular 

calcification. The 10T1/2 cells were successfully differentiated into vascular smooth 

muscle cells with TGFβ1 treatment and compacted the tubular gel significantly owing to 

the contractile cytoskeletal stress fibers. Notch signaling studies in engineered vascular 

tissues from A-10 cells demonstrated cis-inhibition while 10T1/2 cells activated Notch and 

its downstream targets Hes-1 and the smooth muscle α-actin genes.  

The results from the calcification studies showed that vascular tissues fabricated from both 

progenitor and differentiated 10T1/2 cells calcified in response to high inorganic phosphate 

concentrations and expressed the osteopontin protein. Treatment of the tissues with a model 

therapeutic agent, Vitamin K, led to the reduction of calcium deposits and osteopontin 

expression, suggesting its potential protective role. In addition, vitamin K treated 

engineered tissues resulted in the restoration of smooth muscle cells contractile markers. 

The effect of elastin degradation on calcification was simulated using exogenous elastin 
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and showed that while elastin alone did not impact the undifferentiated tissues, it led to an 

increase in osteogenic markers in the differentiated counterparts. 

This work also investigated the role of endothelial cell vimentin in the regulation of Notch 

signaling and neovascularization in coculture tissue models. The preliminary results 

showed that vimentin might enhance the Notch signaling strength since the inhibition of 

vimentin using a chemical inhibitor or siRNA did not completely inhibit the signal. 

Notwithstanding this, vimentin appeared to be essential for new micro-vasculature 

formation.  

The data collectively presented in this thesis demonstrated the potential of engineered 

vascular tissues as a novel tool to study cell signaling, vascular calcification, and 

therapeutic discovery. 

Key words: Vascular tissue engineering, vascular disease modeling, Notch signaling, 

fibrin gel, smooth muscle cells, endothelial cells, progenitor cells, vimentin, vascular 

calcification. 
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Summary for Lay Audience 

The lack of organ donors has brought about the need for engineering tissues from the lab 

bench. Whether patients require a blood vessel, bone, a patch of skin, liver, or even a heart, 

tissue engineering provides a practical alternative to the lack of donated tissues and organs. 

This research focused on engineering vascular tissues (blood vessels).  While the main 

purpose of tissue engineering is to replace damaged or diseased organs, the use of 

engineered vascular tissues to study cell communication and diseases that affect the human 

vasculature is a target application. The clotting protein fibrinogen, which is naturally found 

in the blood of mammals, was used to entrap precursor cells and to form a tube-shaped 

tissue that resembles blood vessels. 

Communication between cells is called signaling, and it is a defined “dialogue” that carries 

instructions from one cell to another in a process called signaling pathway. In vascular 

tissues, a vital Notch signaling occurs between endothelial cells and smooth muscle cells 

and dictates vital functions such as cell division and survival, among other functions. In 

this research, the Notch signaling was studied by comparing two different cell types 

responses to endothelial cells in the engineered tissues. It was found that while one type of 

cell was responsive, the other type was not. This has implications for the use of certain cell 

types that are capable of communicating the proper signal for the proper development of 

engineered tissues. Furthermore, by using the engineered tissues as models, a common 

problem that occurs in arteries, vascular calcification was studied. The results in this work 

showed that engineered tissues were capable of calcification just like natural tissues and 
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that there is a potential of using vitamin K to reduce the negative effects of calcification. 

This will help us study diseases and discover treatments for vascular diseases. 

In conclusion, engineered vascular tissues have the potential to provide insight into human 

vasculature physiology and pathology. In this research, it has been shown that engineered 

vascular tissues provide excellent platforms to study cell signaling, vascular diseases, and 

potential drug discovery. 
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Chapter 1 

Introduction 

1.1 Overview 

The role of the vasculature may be seen as a delivery system for blood to transport nutrients, 

oxygen, waste, and carbon dioxide to and from various tissues and organs. However, the 

mechanism and regulation of the processes that govern this seemingly simple task are 

everything but simple. Certainly, regulation of the vascular system to stay in homeostasis 

is critical, and deviation from homeostasis might lead to cardiovascular diseases that can 

be detrimental to the individuals’ health and quality of life. The vast majority of health-

related mortalities can be attributed or linked to cardiovascular diseases, which is a burden 

not only to the patients but also to the economy 1, 2. While cardiovascular disease mainly 

occurs in the elderly population, younger generation cases have been rising due to poor 

dietary and lifestyle choices3. Cardiovascular diseases include atherosclerosis, thrombosis 

and embolism, peripheral artery disease, stenosis, coronary artery disease, aneurysms, etc. 

However, the most common is coronary artery disease triggered by atherosclerosis which 

is the narrowing of arteries due to accumulation of plaque (usually due to fatty streaks) in 

the lumen 4. This leads to reduced blood supply to the heart muscles and eventually heart 

failure.  

At early stages of coronary artery disease patients are prescribed medicine, such as lipid 

regulators like statins, to slow down the progression of the disease. In more advanced stages 

where a plaque occludes the flow of blood to the heart, surgical intervention might be 

necessary. Angioplasty and stenting is a common procedure both to reopen and to prevent 
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the artery from collapsing 5. However, if there are multiple occlusions, then a coronary 

artery bypass graft (CABG) surgery is needed5. This procedure entails using a graft, usually 

autologous saphenous vein, or the mammary artery, to flank the blockages establish 

circulation. While autografts are the safest choices, they are not always available. Allografts 

and xenografts are other options, but usually, they are avoided due to reasons such as 

disease transmission and immune rejection.  

Research in the field of vascular tissue engineering has been ongoing to provide a reliable 

source of grafts that can replace the diseased native tissues. However, despite many 

promising studies, engineered vascular tissues are still not sufficiently developed to be used 

as graft replacement. One of the main challenges is elastin production and crosslinking 

which is a process still scarcely understood. Furthermore, the hierarchical organization of 

cells and their arrangement in the tissue is still hard to control due to poorly understood cell 

processes and signaling pathways. For these reasons, a recent trend in tissue engineering 

has been to use engineered tissues to understand cellular processes in a more relevant three-

dimensional (3D) environment. While much of our knowledge stems from two-

dimensional (2D) cell studies, these studies suffer from many limitations. One obvious 

limitation is that cells do not exist as a monolayer on a plastic surface but in a complex 3D 

milieu that involve interactions with multiple extracellular matrix proteins, different cell 

types, and exposure to dynamic forces that dictate much of the cellular physiological 

processes. As an example, and in the framework of vascular engineering, the vascular 

system is the only system that is continuously exposed to cyclic and variable hemodynamic 

forces. These forces are essential for the proper development and homeostatic maintenance 

of this unique system 6. Indeed, studies have shown that cells in a 3D environment will 
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behave differently when compared to the same cells seeded on a 2D surface7, 8, and that 

forces play an important role in tissue development (reviewed in ref 9). 

While the main objective of engineered vascular tissues is to be used as grafts, they have 

also been used as powerful tools to understand a variety of vascular diseases such as 

atherosclerosis10 and calcification 11. Even though animal and cell models have been 

extensively used to understand vascular pathology, they each have their shortcomings. in 

2D cell culture, the extracellular matrix and other spatial cues are missing. Animal studies 

are complicated by the interference of other organ systems and are usually costly and time-

consuming due to the maintenance of the animals. Furthermore, ethical approvals have to 

be obtained for such studies. This makes utilizing engineered tissues as tools to study 

vascular pathology an appealing idea because they can overcome those limitations. That is 

not to say that animal models will be replaced by engineered tissues. After all, when the 

systematic effect of a disease is to be studied, engineered vascular tissues will not be 

sufficient. However, engineered tissue disease models act as a viable complement which 

narrows down the target of the study and reduces animal studies to focus on a specific 

objective. 

1.2 Thesis outline 

The main objective of this research is to showcase the use of engineered vascular tissues as 

platforms to study cell signaling and calcification. This thesis is composed of 6 chapters as 

follows: An overview of this work is given in this chapter designated as Chapter 1. A 

synopsis of the literature that is relevant to this work is presented in Chapter 2. A study of 

the Notch signaling in engineered tissues follows in Chapter 312. Chapter 4 presented the 
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use of engineered vascular tissues as a model to study calcification13. In Chapter 5, an 

exploratory study of the role of vimentin in regulating the Notch signaling and 

neovascularization is presented. And finally, Chapter 6 summarizes the significance and 

limitations of this research and suggests recommendations. 
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Chapter 2 

Literature review 

Overview. This chapter provides background information on the vascular system, vascular 

tissue engineering, and the current status of the field. Furthermore, cell signaling is 

discussed with emphasis on the Notch signaling pathway and its relevance to vascular 

tissue formation and development.  At the end of the chapter, an outline of the scope of this 

work and the objectives is provided.     

2.1 The vascular system 

In order to discuss vascular tissue engineering, knowledge about the structure and function 

of the vascular system is essential. Here the important elements of the anatomy, physiology 

and pathology of the different components of the mammalian vascular tissues is 

summarized. 

2.1.1 The anatomy of the vascular system 

The human vascular system is an integral part of the circulatory system which includes the 

heart, the vascular system, and the lymphatic system. These vessels are the arteries, 

arterioles, capillaries, venioles, and veins. With some exceptions (e.g., pulmonary artery), 

arteries transport oxygenated blood, while the veins transport oxygen-poor blood. While 

there are differences between these blood vessels, such as their size difference and the 

presence or absence of valves between veins and arteries, respectively, blood vessels share 

common anatomical elements. Starting from the lumen and moving outward, blood vessels 

are composed of the intima, media, and adventitia1 (Fig 2.1). The intima is composed of a 

single uninterrupted monolayer of squamous endothelial cells. Under physiological 
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conditions, these cells are oriented parallel to the flow of blood. The medial layer is a 

muscular layer that is composed of smooth muscle cells (SMCs) and an extracellular matrix 

(ECM) mainly of elastin and collagen types I and III, but also small amounts of other 

proteins and proteoglycans1. The SMCs and elastic fibers are normally aligned 

concentrically with respect to the central axis of the artery, while the collagen fibers run 

parallel and circumferential to it. In the adventitia, fibroblasts are the abundant type of cells, 

and collagen is the abundant ECM protein. There is no particular alignment of the cells or 

collagen fibers in the adventitia (Fig. 2.1). 

 It is important to note that while these layers are common between arteries and veins there 

are also variations along with the branching of arteries and veins. For example, there are 

notable differences between the thickness and composition of the media of arteries 

depending on the anatomical location. On that basis, arteries are further divided into elastic 

and muscular arteries. Whereas elastic arteries comprise a large amount of ECM and SMCs, 

muscular arteries contain much less ECM and are typically smaller than elastic arteries. 

These differences hint at their functionality which will be discussed in the following 

section.  
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Figure 2.1. Schematic representation of blood vessel cross-section and its different layers. 

 

2.1.2 Physiology of the blood vessels 

The heart is the blood pumping station for the body, which makes the blood vessels the 

pipes. While this might seem a simple task for an organ system, it is a complicated process 

given the nature of blood as the only fluid tissue and the fact that the body is not always at 

steady-state and is affected by many external and internal factors such as physical activity, 
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stress, disease and others. Hence, the anatomy of the vasculature is explained in part by the 

task to be performed. Starting with the endothelium, it provides a smooth surface layer so 

the blood can pass through with minimal friction. The blood is a non-Newtonian fluid 

which is affected by the level of shear stress it is exposed to, and thus it is critical that blood 

flow is laminar since the turbulent flow has been shown to cause complications, which lead 

to cardiovascular diseases. It also provides a non-thrombogenic surface to keep in mind for 

vascular tissue engineering. This was a common cause of failure of the earlier engineered 

vascular tissues (EVTs). Furthermore, the endothelium acts as a barrier which controls the 

passage of certain molecules to and from the blood stream (blood brain barrier for 

example)1, 2. The endothelial cells also signal SMCs to contract or relax to control blood 

flow using soluble factors such as endothelin and nitric oxide. The media which contains 

the SMCs and ECM proteins has two main functions. The first is to absorb the energy from 

systolic blood and resisting the burst pressure and then returns the energy to the blood to 

keep it moving during the diastolic cycle to keep the blood moving even when the heart is 

resting2. This task is collectively performed by the ECM proteins where collagen mainly 

takes the support function, preventing bursting of the vessel, and elastin is the protein that 

provides elasticity and recoil. The second function of the media is to control the blood flow. 

This is done by the SMCs that are sensitive to vasoconstrictors and vasodilators2. At certain 

locations, the media also contains nerve endings, further regulating SMCs by the 

sympathetic and parasympathetic nervous systems via neurotransmitters1. Arteries usually 

have thicker media than veins because they are exposed to higher pressures. The further 

division of arteries into elastic and muscular is due to their proximity from the heart. Elastic 

arteries are usually closer to the heart, where the pressure is highest, and the muscular 
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arteries are found closer to organs where they regulate the flow of blood. Finally, the 

adventitia plays mostly a structural support function and attaches the blood vessels to the 

surrounding tissues. In larger vessels the adventitia contains blood vessels, called the vasa 

vasorum, and nerve endings.  

2.1.3 Pathology 

The vascular system is subjected to multiple levels of regulations that keep it in check; 

however, under certain conditions, the vascular system may deviate from physiological 

function, which may lead to cardiovascular diseases (CVD). Statistics show that CVDs are 

the primary cause of death worldwide, claiming nearly 18 million people each year3. 

Diseases affecting the vascular system are among the top causes of death in Canada and 

other developed nations. In the United States, almost half the population will be expected 

to suffer from a form of CVD by the year 20354. CVDs primarily target adults and the 

elderly; however, in recent years, more cases of CVDs are occurring in younger adults due 

to the increased prevalence of obesity and poor dietary choices5-7, and reduced physical 

activities6, 8. Furthermore, it can also affect the pediatric population in the form of 

congenital defects.  

Diseases affecting the vascular system are usually caused when one or more of the functions 

of the three layers mentioned earlier are affected. Coronary heart disease (CHD), which is 

the most prevalent form of cardiovascular diseases, is triggered by a plaque that builds up 

in the coronary arteries causing a blockage of the blood flow followed by failure of the 

heart muscles. Plaque buildup in the coronary artery is caused by many reasons, including, 

but not limited to, lipid deposition, a defect in the endothelium or calcification of the intima 
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or the media. In the early stages of a coronary artery blockage, angioplasty is performed, 

and a permanent stent is often placed 'to keep the artery from collapsing. However, in 

advanced stages, where a large section of the artery is blocked or multiple blockages, a 

coronary artery bypass graft (CABG) is required. These strategies have greatly helped in 

reducing the burden of CHD on the lives of many patients, although they are far from the 

ideal treatment. Stenting often causes chronic inflammatory response, which has the 

potential to cause restenosis, eventually requiring a follow-up surgical intervention. 

Moreover, one of the most common shortcomings of CABG is the sourcing of the graft. 

There are three general categories for graft sources: xenografts, allografts, and autografts. 

Xenografts are usually used as a last resort since their use will require administrating life-

long immunosuppressants', and there is a chance of disease transmission that is amplified 

by the immunosuppressants.  

The gold standards for autografts are the saphenous vein and the mammary artery having a 

similar diameter to the coronary artery, and they are accessible with minimal surgical 

intervention. One of the problems with using those grafts is compliance mismatch, which 

is a well-known cause of graft failure9, 10. Due to the difference in mechanical properties 

and because of the inherent pressure differences that these blood vessels are exposed to in 

their native settings, compliance mismatch is usually an issue that leads to turbulent flow 

at the anastomoses site and causes thrombosis, hyperplasia and low patency11. The age of 

patients and/or their overall health status are also constraints that might hinder the use of 

autografts. Neointimal hyperplasia is a problem in both angioplasty and CABG, which is 

caused by the damage these procedures inflict on the endothelial cell (EC) lining of the 

vasculature. In angioplasty, the catheter inserted into the artery and inflating the balloon 
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will lead to sloughing off the ECs. This is an issue since the regulation of smooth muscle 

cells (SMCs) proliferation by ECs has been well documented in the literature12-15. There is 

increasing evidence that the Notch signaling pathway plays an important role in that 

process. The Mequanint Lab and others have documented the importance of ECs interaction 

with SMCs via the Notch pathway and the effect it has on regulating SMC gene 

production13, 14, 16, and consequently inhibiting smooth muscle cell phenotypic switching to 

a proliferative state. Therefore, there is a need to find an alternative to these treatment 

modalities that would overcome the shortcomings of current grafts. The work in this thesis 

proposes that targeting the Notch signaling pathway is a pivotal step not only to help control 

the phenotypic switching of SMC, but also to fabricate fibrin-based vascular constructs that 

closely resemble small diameter arteries for applications like preclinical test models or as 

graft replacements. Furthermore, this might enable the development of strategies to 

overcome the shortcomings of angioplasty for example, by modifying stent surfaces. 

Vascular calcification is another common disease that not only affects the coronary artery, 

but also in other parts of the vascular system and is especially prevalent in patients with 

renal dysfunction. Calcification in the vascular tissues is caused by multiple factors such as 

cell apoptosis/necrosis, calcium/phosphate ions imbalance (renal dysfunction), bone  
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degeneration, degradation of the ECM proteins, and inflammation. Calcification will be 

discussed further in later sections. In summary, whether the problem is finding replacement 

vascular grafts, studying disease or understanding signaling pathways, vascular tissue 

engineering is a viable solution to produce tailor-made tissue constructs to meet the 

requirements. 

 

 

 

2.2 Vascular tissue engineering 

Tissue engineering has emerged as a subdivision of a broader field of regenerative 

medicine. It is a multidisciplinary field of research that includes material science and 

engineering, biology and biochemistry for the purpose of generating bioartificial tissues. 

Figure 2.2. Graphical abstract of section 2.2. Schematic representation of the basics of 

vascular tissue engineering and their use as disease models 
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Research in tissue engineering was initiated as a viable solution to the shortage of organ 

donations. There are many promising studies that have demonstrated the feasibility of 

fabricating tissues such as bone17-19, skin20, 21, blood vessels22-24, and others25, 26 to produce 

functional tissues that will treat or replace diseased or injured organs. Vascular tissue 

engineering is an active field of research producing a vast number of studies at a fast pace. 

Therefore, it is important to mention some distinct milestone studies that have shaped this 

field into its current state.  

2.2.1 Important milestones in vascular tissue engineering  

Vascular tissue engineering started in 1986 when Weinberg and Bell made a small diameter 

vascular tissue-equivalent out of collagen and bovine cells27. While this was a promising 

attempt at engineering a vascular graft, the Dacron sleeve was needed to support it, and this 

limited its success due to its inert vasoactivity. Thus, there were attempts to strengthen 

collagen, as a natural polymer, to withstand hemodynamic pressures. In a different study, 

Wilson et al. developed a protocol to decellularized arteries using detergents and enzymes, 

creating a cell-free matrix that preserved the structural integrity of those arteries while 

allowing the host cells to infiltrate and populate the scaffold28. A different approach to 

engineer vascular tissue was employed by L'Heureux et al. using confluent cells to produce 

their own ECM forming tissue sheets and then rolling them on a mandrel to make a tubular 

tissue resembling a blood vessel29. While these tissues had promising mechanical 

properties, the culture period to obtain such tissue sheets was considerably long. Niklason 

et al. made vascular tissues using polyglycolic acid as a scaffolding material and were 

transplanted into a bovine animal model where they stayed patent for 24 days30. This study 
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highlighted the importance of the use of synthetic materials; however, it also brought into 

light a critical disadvantage represented by harmful degradation byproducts. While research 

groups used in vitro culture systems to mature their EVTs, an interesting idea that suggested 

an in vivo culture system was introduced31. The presented idea was to insert the bare 

scaffold into an animal model, and the animal itself provides the resident cells, the right 

environment, and growth factors. On the materials front, the main natural polymer used in 

vascular tissue engineering was collagen. This is because collagen is one of the main 

components of vascular tissues. However, several studies reported the use of fibrin as 

another viable scaffold for EVTs, because it is easily available from a patient's blood32. 

These studies laid the foundation of vascular tissue engineering and are the basis for our 

current understanding. 

The focus of this thesis work is the arteries, and in particular the small diameter coronary 

and peripheral arteries. Previously the relationship between the anatomy and the physiology 

of blood vessels it was mentioned.  To match the functional and biological roles of the 

native artery, the engineered counterparts must exhibit similar features. In small diameter 

arteries such as the coronary artery, the two functional layers are the intima and the media. 

The average wall thickness is around 1.1 mm, a luminal diameter of about 2.2 mm and an 

external diameter of 4.5 mm33.  

The intima is a single layer of endothelial cells which can be achieved by seeding the lumen 

of the engineered vessel with a high-density endothelial cell suspension. On the other hand, 

the media comprises multiple layers of smooth muscle cells and ECM proteins and has an 

average thickness of 200 µm34.  Different research groups have devised various techniques 
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and materials and have used cells from different sources to fabricate engineered vascular 

tissues with a varying degree of success 23, 30, 35-37. The two main components of EVTs are 

the material to be used as a scaffold to hold the cells and the cells themselves. There have 

been different materials used as scaffolds for vascular tissues, which are divided into two 

main categories: synthetic or natural polymers. Moreover, there are many cell types that 

can be potentially used in vascular tissue engineering, and they are also divided into two 

general categories: differentiated (non-stem) cells, namely endothelial cells and smooth 

muscle cells, and stem cells, which can be differentiated via soluble factors, mechanical 

stimulations, etc. into the desired type of cells. These will be discussed in more detail in 

the following sections. 

2.2.2 Cell types and sources used for vascular tissue engineering 

In the context of vascular tissue engineering, cells are responsible for the major 

functionality of the tissues. After all, endothelial cells constitute the anti-thrombogenic 

surface, and SMCs produce the ECM and regulate the diameter of blood vessels, among 

other functions. Thus, the sources of cells to be used to engineer the vascular tissue must 

be chosen with intent, and for that reason, the cell sources for vascular tissue engineering 

have been a cause of extensive debate38, 39.  

The first logical cell source is native primary endothelial and SMCs as they are the 

functional cells of the vasculature and are available from a biopsy. However, the use of 

primary cells has proven to be challenging because of their limited proliferation rate, which 

depends on multiple factors, the most important of which is the donor age and health 

status40, 41. Thus, stem cells have been suggested as an alternative due to their proliferative 
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potential. Sources of stem cells include adult stem cells (e.g. mesenchymal stem cells and 

adipose tissue-derived stem cells), embryonic stem cells, and induced pluripotent stem 

cells. Using stem cells has shown potential in vascular tissue engineering not only due to 

their high proliferation capabilities but also the capacity to be differentiated into both ECs42-

44 and SMCs44, 45. Stem cells have been extensively studied due to their multipotency; 

however, this property of stem cells seems to be a doubled-edged sword. The fact that these 

cells can be differentiated into many lineages makes it difficult to control the desired cell 

lineage for a specific tissue, often leading to a mixed population with other undesired 

types46. The fact remains that there are many variables that have to be controlled in order 

to successfully differentiated stem cells to functional SMCs and/or ECs. Furthermore, stem 

cells in adult individuals are scarce in comparison to differentiated primary cells, and the 

procedure of getting certain stem cells, such as bone marrow stem cells, is invasive and 

painful. Indeed, more research is needed to understand the differentiation pathways that 

will lead to the specific cell lineage and therefore produce functional engineered vascular 

tissues. 

2.2.3 Vascular tissue engineering strategies 

Many strategies have been implemented in vascular tissue engineering to ensure structural 

and cellular organization and mechanical integrity that resemble those of native human 

blood vessels. As mentioned in previous sections, blood vessels possess important 

structural and cellular organizations (such as the concentric organization of the layers of 

SMCs, the longitudinal assembly of collagen fibers, the centripetal formation of elastic 

fibers, etc.) that impart crucial physiological functions such as the antithrombotic lumen 
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and the vasoactivity of the medial layer. These purposeful and organized structural 

elements have been among the most challenging aspects of tissue engineering in general 

but especially in vascular tissue engineering. This is due to the sensitive function of each 

of those cellular and structural components because of the exposure of these constructs to 

a continual dynamic environment carried out by the systolic and diastolic cycles of the 

circulatory system. Therefore, there has been a great effort to develop various strategies 

and methods to give engineered tissues the structural and functional properties of their 

native counterparts. 

2.2.3.1 Cell sheet- based EVTs 

This is one of the earliest methods used in the fabrication of engineered vascular tissues. It 

was developed by L'Heureux et al. in 199829 where vascular tissues are formed by growing 

high-density monolayers of smooth muscle cells that are coaxed to produce extracellular 

matrix proteins by treatment with ascorbic acid. After a period of time in culture, the cells 

form a cohesive sheet that can be removed and rolled into a cylindrical mandrel to form the 

signature tubular structure of vascular tissues. Even though the EVTs formed using this 

method usually exhibit favorable mechanical properties and have even been grafted in a 

canine model, their production time is exceedingly long, topping three months of culturing 

and maturation periods. These prolonged periods of culturing and maturing will inherently 

increase risks of contamination and will also prevent the use of these tissues as ready-made 

off-the-shelf constructs. The main reasons for this prolonged period to fabricate such tissues 

is due to the slow production of the ECM by SMCs and their slow proliferation rate. 

Therefore, an attempt was made to reduce that time by utilizing skin or saphenous vein 
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fibroblasts47. Fibroblasts are known for their fast production of ECM. After the fibroblast 

cell sheets were produced, the sheets were decellularized, and SMCs were seeded on the 

sheets and wrapped around a mandrel in a similar fashion as that employed by L'Heureux 

and co-workers. These EVTs were comparable to the ones produced by SMCs; however, 

their production time was still relatively long even though they were able to improve the 

maturation period by two weeks47. 

2.2.3.2 Decellularized scaffold-based EVTs 

Production of an organized and well-structured ECM by cultured cells has proven to be a 

long and complicated process that scientists are yet to understand completely. In the context 

of vascular tissues, the ECM plays a critical role in the physiology of the tissues. Therefore, 

it is essential to replicate the fibrillar organization and content of the different layers of the 

blood vessels to produce a functional tissue. The ECM of a typical artery is composed 

mainly of collagen and elastin with other less abundant proteins and glycosaminoglycans. 

Collagen is relatively easily produced by SMCs and fibroblasts by treatment with ascorbic 

acid. Elastin fiber production, on the other hand, has been elusive and has proven to be a 

challenging task in vascular tissue engineering that might require not only soluble factors 

but also mechanical stimulation of the tissues48. While the production of these ECM 

proteins is essential, the organization of their fibers is equally important. It is not enough 

to have random fiber arrangement in vascular tissues; they have to be aligned properly for 

the EVTs to have meaningful structural integrity. Hence, researchers have resorted to 

taking advantage of already existing blood vessels to circumvent this particular problem. 

This method involves obtaining a blood vessel either from the same individual that requires 
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the graft (autologous graft), from a different individual (allogenic graft) or a different 

species (xenogeneic graft) and decellularizing the blood vessel.  After decellularization, the 

scaffold could be utilized as is and allow the host cells to infiltrate it, or cells will be seeded 

onto the preserved ECM scaffold and matured in culture or bioreactor before using it as a 

graft. Both autologous and allogenic grafts exhibit minimal immunogenicity; however, 

xenogeneic grafts might still show a degree of immune reaction by the host.  

The role the extracellular matrix plays in cellular motility49, differentiation50, 51, and 

proliferation52 is well documented in the literature. The advantage of this strategy is that it 

preserves the ECM structure, topology, and even certain growth factors embedded in the 

ECM, all of which have been shown to affect cell function one way or another. 

Traditionally, vascular tissues from a host were used to make decellularized scaffolds; 

however, some groups have used decellularized scaffolds from engineered tissues47, 53. 

Decellularization of tissues is accomplished through different approaches, including 

chemical, biochemical, and physical. Of course, the effectiveness of the approach will 

depend on factors such as tissue composition, dimensions, and cellular density, among 

others. Chemical agents include, but are not limited to, acids/basis54, hypertonic solutions55, 

detergents (ionic and non-ionic)55, 56, some alcohols54, 56, etc. Biochemical reagents are 

enzymes such as nucleases, trypsin or dispase54, 57, and physical decellularization includes 

temperature change51, shear force/pressure 58, and electroporation 59. Each of these agents 

will affect the ECM in one way or another, and thus, oftentimes, a combination of those 

strategies is employed to achieve optimal decellularization while preserving the ECM as 

much as possible 54. 
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Decellularized tissues have shown promising results; however, they still suffer from 

limitations such as thrombosis, infection, inflammation, aneurysm, and poor patency. A 

clinical trial that compared a decellularized bovine ureter against polytetrafluoroethylene 

in arteriovenous vascular access grafts for dialysis patients showed no advantage of the 

decellularized tissue over the synthetic graft 60. Therefore, while the idea of using 

decellularized conduits for vascular tissue engineering is promising, more research is 

required to address the previously mentioned shortcomings. 

2.2.3.3 Scaffold-based EVTs 

Scaffold-based engineered vascular tissues are arguably the most widely used strategy to 

fabricate vascular prostheses. This strategy entails forming a scaffold onto which the 

desired cells will be seeded. The scaffold provides structural support and a suitable 3D 

environment for the cells to deposit their ECM. Ideally, the synthetic scaffold should be 

remodeled and replaced by the resident cells. However, certain materials have been used 

that are not biodegradable and the current state of tissue engineering is focusing more on 

biodegradable materials. As a general guideline, a scaffold should have the following 

properties: a) acceptable surface properties to allow cell adhesion and viability, b) 

sufficient porosity, interconnectivity, and proper pore size permitting cell infiltration as 

well as nutrient and oxygen exchange, c) a degradation rate that matches ECM formation 

by cells, and d) be mechanically competent to withstand the hemodynamic forces. 

Materials including synthetic and natural polymers, which are also subdivided into 

biodegradable and non-biodegradable polymers, have all been used in vascular tissue 

engineering.  
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Synthetic materials 

Both biodegradable and non-biodegradable synthetic materials have been explored in 

vascular tissue engineering. However, non-biodegradable materials are being phased out 

due to reasons such as low-grade chronic inflammation, compliance mismatch, and the fact 

that they are permanently present in the patient's body. Although synthetic materials, such 

as polyurethane, Dacron, and Teflon have been successfully used as prosthetics to replace 

blood vessels that are greater than 6mm in diameter61, their use to replace blood vessels 

with diameters of less than 6mm has been met with limited success due to thrombus 

formation62. The advantage of biodegradable materials is that they act as a temporary 

scaffold. The degradation rate can usually be tuned, and thus the cells can degrade the 

material while producing their own ECM until the whole scaffold is replaced by ECM 

produced by the engineered tissues and recipient's body. Biodegradable synthetic polymers 

are sometimes prepared from lactic acid, glycolic acid, caprolactone, or a copolymer made 

of different ratios of these monomers 35, 63-65. Synthetic materials exhibit many advantages 

for their use in vascular tissue engineering, such as: (i) minimal batch-to-batch variations 

which is important for upscaling, (ii) relative ease of functionalization with biomolecules, 

allowing them to have better interaction with cells and host body, and (iii) tailorable 

mechanical properties to withstand hemodynamic forces66. On the other hand, synthetic 

biomaterials usually suffer from poor cell infiltration, the restricted capacity of remodeling 

by cells, foreign degradation byproducts, and limited bioactivity, especially in the absence 

of functionalization.  
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Natural materials 

These materials are usually protein-based polymers such as collagen67, 68, elastin69, 70, 

fibrinogen24, 32, 36 or a combination71-73. However, other natural polymers in the form of 

polysaccharides which do not normally biodegrade in humans have also been used, such as 

cellulose74. One of the advantages of using these polymers is that they are native body 

components and are usually found in the cell physiological niche. Thus, cells possess the 

enzymes and surface receptors that will interact with these polymers making remodeling a 

continuous process. Another advantage is the ability to embed cells while crosslinking these 

polymers which is not feasible with synthetic polymers due to the harsh conditions need to 

crosslink them (solvents, UV, etc.).  Furthermore, protein-based polymers contain domains 

that enable cell interaction and impart important physiological responses that guide the 

healing process. On the other hand, while these materials are advantageous on the 

biological side, they usually lack mechanical strength to withstand hemodynamic forces. 

Nevertheless, these polymers have shown promising results as graft substitutes 24, 75. 

Methods of scaffold fabrication 

Ever since the foundation of tissue engineering, there have been a myriad of methods 

developed to fabricate scaffolds which is one of the main building blocks of engineered 

tissues. Methods such as freeze-drying, gas foaming, phase separation, electrospinning, and 

solvent casting-particulate leaching (SC-PL) have all been used, and each has its pros and 

cons. In this section, a brief description is provided on the most commonly used scaffold 

fabrication methods in vascular tissue engineering.  
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Electrospinning: this is a common technique used for the production of nano- and 

microfibers. In this method, a polymer is dissolved in a solvent at an optimized ratio and 

loaded into a syringe placed in a syringe pump. During electrospinning, a high voltage is 

applied to the tip of the syringe while the syringe pump, at a very slow rate, ejects the 

polymer solution forming a droplet at the tip of the syringe due to surface tension. The high 

voltage then counteracts the surface tension of the droplet, causing an eruption of 

electrically charged get of a polymer solution. As the polymer jet shoots towards the 

collector, the solvent evaporates, forming fibers. The structural properties of those fibers 

can be modified by adjusting parameters such as voltage, solvent used and ratio of polymer 

to solvent, the molecular weight of the polymers, syringe pump flow rate, etc. The 

advantage of electrospinning is that it produces fibers similar to those found in the ECM of 

tissues. On the other hand, scaffolds produced by electrospinning are usually difficult to 

penetrate by cells due to low pore interconnectedness.  

Solvent casting-Particulate leaching: SC-PL is a widely used method due to its 

simplicity. This method involves a mold that determines the bulk shape of the scaffold, 

which in vascular tissue engineering is usually an outer cylindrical tube and an inner 

cylindrical mandrel creating an annular space between the two. To fabricate the scaffold, a 

porogen (usually a salt) is packed into mold, followed by the dissolved polymer. Once the 

polymer is cross-linked the mold is disassembled, and the scaffold is placed in a solvent 

that dissolves the porogen resulting in a porous scaffold. The pore-size and shape, which 

are inversely related to the structural strength of the scaffold, can be controlled by varying 

the size and shape of the porogen which helps the interconnectivity of the pores and 

improves surface area leading to better cell growth, infiltration and nutrient/gas exchange. 
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While SC-PL is a simple and relatively fast method, the scaffolds produced by this method 

do not resemble the extracellular matrix environment of vascular tissue. Furthermore, the 

solvents used in this method are toxic to cells, which requires many washing steps to get 

rid of any residual solvent. 

3-Dimensional (3D) printing: with the rapid advancement in computers and 3D printers, 

making scaffolds using computer-designed/3D printed scaffolds has become an 

increasingly appealing application for tissue engineers. This method starts with a 3D design 

using computer software. Then the digital blueprint is sent to a 3D printer that prints the 

scaffold using thermoplastics, for example. This method is solvent-free, which is beneficial 

for cell seeding in downstream applications. A more recent development in 3D printer 

technology has brought about the use of bioprinting. This method utilizes what is known 

as bioinks, which are composed of cells encapsulated in hydrogels. The advantage of this 

method is that it can replicate fine topographical details of native tissues that and 

circumvent issues such as cell infiltration since the cells are part of the printed materials. 

Furthermore, this method has the potential of scaling up for mass production. On the other 

hand, the limitations of this method include cost and resolution of the printed materials.  

2.3 Cell signaling 

It was traditionally believed that cells communicated solely via soluble factors or cell-cell 

interactions; however, emerging evidence has shown that cells can respond to many other 

forms of signals such as magnetic forces, electromagnetic fields, sonic vibrations and 

interactions with surrounding cells and matrix proteins. We have reviewed these atypical 

cell stimulations in the context of stem cell differentiation76; however, other cell types also 
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do respond to unconventional signaling.  In the vascular system, resident cells like the ECs 

and SMCs have been shown to respond to hemodynamic forces such as shear stress77 and 

pulsatile strain78 in addition to the traditional signaling. While there are many signaling 

pathways that are considered essential and are involved in the developing and maintenance 

of blood vessels, Notch signaling is one of the major pathways and is indeed relevant in the 

context of cellular organization and regulation in engineered vascular tissues.  

2.3.1 Notch signaling pathway 

There is a myriad of stimuli that dictate the development of the anatomy and physiology of 

the vasculature. These include chemical, biochemical, and mechanical stimuli that work 

individually or in tandem to guide the development and organization of the cell layers in a 

blood vessel. While the general trend in vascular tissue engineering is to treat tissues with 

bioactive molecules or mechanical stimuli and expect to produce functional tissues, taking 

advantage of cell signaling to instruct cells to produce vascular tissues with desirable 

features is proposed. One of the central signaling pathways that govern the development, 

physiology and pathology of the vasculature is the Notch pathway79. There are four Notch 

receptor variants in mammals, Notch 1 to 4, all of which are type I transmembrane receptors 

and range from ~120 to 280 kDa in molecular weight. All the Notch receptors share similar 

structures and domains. They are single-pass membrane proteins with an extracellular 

domain (N-terminus), a membrane-spanning domain, and an intracellular domain (C-

terminus). Notch receptors interact with five ligands: Delta-like ligand (Dll) 1, 3, 4 and 

Jagged (Jag) 1 and 2. These ligands are transmembrane proteins with structural and domain 

similarities. Canonical Notch signaling occurs when the ligand of the signal sending cell 
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(SSC) interacts with the receptor from the signal receiving cell (SRC) (Fig 2.3 step 1). This 

triggers an enzymatic cleavage of the receptor ectodomain by the enzyme ADAM (A 

Disintegrin And Metalloprotease) (step 2), leading to endocytosis of the ligand and the 

Notch Extracellular domain (NECD) (step 3).  

 

Figure 2.3. Schematic representation of the canonical Notch signal transduction. 

 

This is followed by another enzymatic cleavage by γ-secretase (step 4), which releases the 

Notch intracellular domain (NICD) into the cytoplasm (step 5). Once in the cytoplasm, the 

NICD translocates to the nucleus, where it forms a transcriptional complex with RBP-Jκ 

transcription factor leading to transcription of target genes including Hes, Hey and smooth 

muscle alpha-actin (Acta2) (step 6). On the other hand, non-canonical Notch signaling has 

been reported and involves cross-talk between the Notch receptors with members of other 

signaling pathways like Wnt, MAPK and TGFβ80-82. Furthermore, Notch signaling has also 
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been shown to occur at a distance via cell protrusions83 and filopodia84 which can explain 

the signaling between ECs and SMCs across the internal elastic lamina. In the adult 

vasculature, endothelial cells predominantly express the Notch1 and 4 receptors, while 

SMCs mainly express Notch3 and, to a lesser extent, Notch1 and 285, 86. On the other hand, 

Dll1, Dll4 and Jag1 and 2 are the main ligands expressed on ECs, whereas SMCs express 

Dll1, Jag1, and Jag285, 87. The expression of these ligands and receptors on the surface of 

these cells tend to change with development and disease and even in the different branches 

of the vasculature88. There does not seem to be a particular affinity of one of the receptors 

to any of the ligands, meaning that any receptor is equally capable of interacting with any 

of the ligands. However, not all receptor-ligand contacts produce a signal89. This might 

indicate that these interactions play a role in signal regulation.  

Notch signaling has long been known to be a major regulator and an essential element in 

the homeostasis of the cardiovascular system 88. Animal studies demonstrated that 

dysregulation of the Notch receptors or their ligands has detrimental effects. For example, 

the Dll4 ligand was determined to be essential for the normal development of the 

vasculature since haploinsufficiency in the gene will lead to embryonic lethality resulting 

from defects in the development of arteries90. Conversely, expression of a constitutively 

active form of Notch4 in the endothelium of embryonic mice also shows abnormalities in 

the development of the vasculature and is also embryonic lethal91. Notch3 knock-out in 

adult mice exhibit structural immaturity and are not responsive to vasoconstrictors such as 

angiotensin II or phenylephrine92. In humans, Notch3 mutations cause Cerebral Autosomal 

Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) 

due to increased multimerization of the receptor at the surface of the cell and its subsequent 
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degradation93, 94. These studies point to the importance of the Notch signaling and its 

regulation, warranting the significance of this receptor in the development of the 

vasculature system.  

The expression of the Notch receptors and their ligands vary between the endothelial cells 

and SMCs and even between the same cell type in different branches of the vasculature. 

However, the Notch3 receptor and the Jag1 ligand is more relevant for this thesis since they 

are the major proteins expressed by the SMCs and ECs, respectively85-87. The activation of 

the Notch signaling pathway within the vascular context has been implicated in the 

development and regulation of the SMC phenotype by modulating the expression of certain 

SMC genes14, 16, 95 which is the reason it is the focus of this study. 

2.3.2 Notch regulation 

At first glance, the canonical Notch signaling pathway seems to be a simple, 

straightforward signaling mechanism between the SSC and SRC. Compared to other 

signaling pathways, Notch signaling has no secondary messengers involved and no signal 

amplification. How can a seemingly simple pathway be conserved among many species 

and regulate such vital processes in developing animals from development to adult life? 

The short answer is that it is not a simple pathway. Even though it has been over a century 

since the discovery of Notch, it is still not a well-understood pathway. It is regulated by 

various mechanisms from the moment the receptors and ligands are translated in the 

endoplasmic reticulum to the moment they are degraded/recycled. After Notch is 

synthesized, it is modified by the addition of O-glycans (O-fucose,-glucose,-GlcNAc and -

xylose), which appears to play a role in ligand sensing96. After the interaction with the 
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ligand and the intracellular domain of Notch is cleaved, the NICD translates to the nucleus. 

The NICD itself has been shown to be affected by various post-translational modifications 

to further regulate this pathway. Observations have shown that the NICD can be 

methylated97, acetylated98 and ubiquitinated99. These modifications will modulate the 

extent of activation or inhibition of downstream targets of the notch pathway. While the 

NICD is thought to directly translocate to the nucleus, evidence has shown that Rab5 

regulates an alternate route of NICD transport via endosomes100. This route then forks into 

two different paths, either to the nucleus and signaling activation or to the lysosome and 

signal attenuation. Not surprisingly, these routes are also regulated. PIM (Proto-oncogene 

serine/threonine) kinase has been shown to phosphorylate a sequence of the Notch nuclear 

localization domains enhancing the signal101, while ESCRT proteins control its 

translocation to lysosomes leading to signal attenuation102.  

A defining feature of the Notch signaling is that both the receptor and the ligand are cell-

surface proteins. While the mentioned regulating steps occur at the receptor end of the 

signaling, the ligands are also subjected to complex cellular regulations. For example, 

ligand recycling to the surface of the SSC which ensures continual signaling, is regulated 

by E3 ubiquitin ligases103, 104. Furthermore, the number of ligands on both SSC and SRC 

will dictate whether the signal will be activated or repressed via a mechanism known as 

cis-inhibition105. Studies have shown that whether the cell will behave as an SSC or SRC 

is contingent upon the relative numbers of the receptors and ligands on that cell. If a 

particular cell expresses more ligands than receptors on its surface, it will be an SSC; 

however, if it expresses more receptors than ligands, it is an SRC. Alternatively, if the ratio 

of receptor to ligand approaches 1, then the cell will be neither SSC or SRC and thus will 
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be cis-inhibited105, 106. However, a recent publication has shown that this is not always the 

case as  the interaction of the receptor with the ligand on the same cell might activate the 

signaling transduction via cis-activation 107. This level of regulation at multiple steps of the 

seemingly simple pathway shows the complexity that allows this pathway to regulate many 

vital cellular and developmental processes. Furthermore, the fact that there are many 

conflicting functions of this pathway hints at its dependence on the context in which the 

signaling is occurring. 

2.4 Engineered tissues as disease models 

The advent of tissue engineering has been aimed to fabricate functional tissue substitutes 

to repair or replace damaged tissues or organs. There has been promising progress as 

evidenced by different clinical studies that use various types of engineered tissues65, 108-111. 

However, even with the substantial progression of cell and molecular biology (especially 

cell isolation, differentiation, stemness restoration, etc.); and biomaterial science and 

engineering enabling the preparation of tailor-made scaffolds with tuned molecular and 

chemical properties, only a few engineered tissues that are comparable to the native 

counterparts on structural and functional levels have emerged. If anything, this fact 

emphasizes the challenges to develop functional tissues. The major challenges are the lack 

of knowledge in culture parameters and conditions (especially cell differentiation), delivery 

of biochemical and mechanical stimulations, structural organization of the tissues and 

direction of cellular orientation. Nevertheless, the purpose of engineered tissues has 

expanded to include an equally significant application as in vitro model platforms to study 

diseases and for the development of treatment strategies. Even though preclinical platforms 
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such as cell culture and animal models have contributed significantly to the current 

understanding of pathology and physiology, they have their shortcomings. On the one hand, 

the 2D culture systems exclude the vital biochemical and biomechanical cues of the 

extracellular matrix (ECM), which is known to affect molecular and cellular processes and 

thus might lead to results that may not be relevant physiologically. On the other hand, 

animal models do not reflect genetic, physiological, or anatomical elements of the human 

species and, again, lead to irrelevant results. Not to mention the high cost of maintenance 

and the ethical concerns that accompany animal studies. Conversely, engineered tissues can 

be fabricated using relevant human-derived cells and include or intrinsically produce their 

own ECM components, thereby overcoming the shortcomings of current preclinical 

models. Another important advantage of engineered tissues is the ability to control the 

manufacturing procedure and, consequently, highly reproducible results. Additionally, 

engineered tissues have the advantage of being an isolated system that can be used to 

systematically study disease without the effect of other organs. On the other hand, if the 

impact of one organ/tissue on another has to be established (such as the effect of bone 

resorption on the calcification of vascular tissues), different engineered tissues can still be 

coculture to study that correlation. Of course, this does not totally exclude the use of animal 

studies since there is a certain level of systemic complexity that the engineered tissues lack 

and is important and required before the transition to human trials. 

2.4.1 Engineered vascular tissue disease models and test platforms 

Vascular tissue engineering is a relatively new field of research. The focus of published 

studies revolved around exploring different cell types24, 38, 112, bioreactor parameters and 
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culture settings113, 114, and different materials30, 115 to find the right combination of 

parameters that produce an engineered tissue that best resembles the native vascular tissues 

in both structure and function. That being said, a few numbers of studies have started 

emerging that use engineered vascular tissues as disease models or as platforms to test 

medical devices or treatments. 

Atherosclerosis is a prevalent cardiovascular disease and is one of the major causes of 

morbidity around the world. As such, many of the studies that emerged to model and 

understand cardiovascular disease are aimed at different aspects of the pathophysiology of 

atherosclerosis. For example, one study used an engineered  vascular tissue as an in vitro 

model to study monocyte attachment and insudation as well as LDL insudation into the 

media of the fabricated tissues116. Another similar study but with fibrin gels explored the 

insudation of lipoproteins and monocytes at hypo-, normo- and hyper-cholesterolemia117. 

A follow-up study by the same group utilized the same fibrin gel system to study neutrophil 

granulocyte penetration and production of matrix metalloproteinases of a neointimal 

model118.  

A more recent study modeled a less common disease, the Hutchinson-Gilford Progeria 

Syndrome (HGPS), which is characterized by accelerated aging and loss of functionality in 

the SMC of vascular tissues.  Engineered vascular tissue was made from type-I collagen 

and iPSC-derived SMCs obtained from patients with HGPS119. These tissue models showed 

a lower response to vasoconstrictors and lower expression of SMC contractile proteins 

compared to tissues where the cells were sourced from healthy individuals. Furthermore, 

this study explored a treatment for the HGPS using a rapamycin analog compound and 
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showed that some functionality of the diseased engineered constructs was restored within 

one week of treatment119. 

Vascular calcification is yet another disease that has lately been modeled in vascular tissue 

engineering. In this first of its kind research study, acellular engineered vascular tissues 

were used to study the physical characteristics of vascular calcification and the effect of 

high calcium and phosphate ions in the culture media has on the histochemical, structural, 

thermal and mechanical properties of these models120. However, a major weakness of this 

study was that it did not explore the cellular response to calcification which are active 

contributors to the calcification of vascular tissues. Coincidently, the Mequanint lab was 

working on that specific topic around the same time,  aimed specifically at the role 

progenitor and differentiated cells play during the calcification of engineered vascular 

arteries121 which is discussed in more detail in chapter 4. 

The potential of EVTs extends even beyond modeling diseases and has also encompassed 

developing new medical devices as well as studying the effect of medical devices on 

tissues. Stents are commonly involved in the treatment of coronary artery occlusion due to 

atherosclerosis, and thus, they are a relevant device to test in engineered tissues. A protein-

loaded stent was used to evaluate the behavior of SMCs in the medial layer of engineered 

vascular tissues122. In a different study, a group of researchers employed EVTs to study the 

effect of stent deployment on the endothelial cells in a bioreactor under physiologically 

relevant conditions123.  

These studies emphasize the potential and feasibility of engineered vascular tissues to study 

different aspects of the same phenomenon by systemically introducing different variables 
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at a time. This allows an understanding of the separate elements involved in a process and 

then putting all the elements together to look at the bigger picture. Furthermore, these 

studies show the feasibility of using EVTs as drug and medical device test platforms. 

2.5 Motivation and significance of this work 

This work was inspired after identifying a novel use of engineered vascular tissue as 

templates to study cell signaling and disease modeling. Herein, the focus is on the notch 

signaling pathway which is an essential pathway in vascular development. Furthermore, 

this research presents novel studies that were amongst the first that used engineered 

vascular tissues as a disease model for vascular calcification producing only the second 

study ever to be published on this subject121. 

2.6 Research scope and objectives 

The scope of this research is to showcase the use of engineered vascular tissues as platforms 

to study cell signaling and disease models. As a pivotal signaling pathway that is implicated 

in the development and disease of the vascular system, the Notch signaling pathway was 

chosen for this research. Furthermore, calcification of the vascular tissue has never been 

studied in an engineered tissue model, and thus EVTs were chosen as tools to study the 

development of medial calcification and explore a potential adjuvant treatment for it using 

vitamin K. To lay the grounds for this research scope, the following objectives were 

identified: 

1- Comparison of the response of differentiated vs. progenitor cells in Notch signaling 

activation via a 3D coculture system with endothelial cells (Chapter 3). 
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2- Study the role of progenitor and differentiated cells in engineered vascular tissue 

calcification and the role of vitamin K as a calcification inhibitor (Chapter 4).  

3- Explore the role of vimentin, as a mechanosensory fiber, in the activation of the 

Notch signaling and neovascularization (Chapter 5). 
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Chapter 3 

Comparative studies of fibrin-based engineered vascular 

tissues and Notch signaling from progenitor cells* 

Overview: The purpose of the study herein is to evaluate the potential of engineered 

vascular tissues as a platform to study the Notch signaling pathway in a 3D co-culture 

system. Smooth muscle cell lines from rats (A-10) and a multipotent cell line from mice 

(10T1/2) were used to compare their interaction with the human coronary artery 

endothelial cells (HCAEC) in a Notch signaling context. Notch activation was 

characterized by both gene and protein expression of known Notch downstream targets 

using qPCR and immunofluorescence microscopy. Physical characterization of the fibrin 

gel was also reported. 

3.1 Summary 

The main impetus of vascular tissue engineering is clinical translation; but an equally 

appealing and impactful use of engineered vascular tissues is as preclinical testing 

platforms for studying vascular disease and developing therapeutic drugs and 

understanding of physiologically relevant vascular biology. Developing model engineered 

tissues will aid in narrowing the significant knowledge gaps in functional tissue formation, 

which is regulated by intricate cell signaling in a three-dimensional space. In this study, 

tubular engineered vascular tissues were fabricated using crosslinked fibrinogen as a 

scaffold and non-differentiated embryonic rat vascular smooth muscle cell line (A10 cells) 

and mouse embryonic multipotent mesenchymal progenitor cell line (10T1/2 cells) as cells 
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embedded in the gel were unable to significantly contract the tissue compared to fibrin-

only gels due to their undifferentiated state. In contrast, 10T1/2 cells differentiated with 

TGFβ1 to a vascular lineage were able to contract the tubular gel significantly owing to the 

contractile cytoskeletal stress fibers. Owing to its vital role in vascular morphogenesis, 

tissue specification and maturation, Notch signaling studies in engineered vascular tissues 

from A10 cells demonstrated cis-inhibition while 10T1/2 cells activated Notch and its 

downstream targets Hes-1 and the smooth muscle α-actin genes.  Taken together, this study 

showed that: (i) contrary to the previously accepted notion, cell-type is important to gel 

contractions, (ii) In engineered vascular tissues, Notch signaling is highly context-

dependent where cis-inhibition muted signal activation in A10 vascular cells while Notch 

was fully activated in 10T1/2 cells. These findings may provide insights to fabricate 

functional vascular tissues.   

3.2 Introduction  

In vascular tissue engineering strategies, scaffolds and cells are the two critical 

components. An ideal vascular tissue engineering scaffold is expected to provide both the 

mechanical support and the microenvironment that is conducive for seeded cells1. The 

mechanical support, which is a temporary one until cells produce their own structural 

matrix, is readily provided by choosing a scaffold material of synthetic origin (e.g. 

biodegradable polyesters2, poly(ester) amides3 and polyurethanes4). The benefit in 

selecting synthetic scaffolds is to maximize flexibility on the material selection with 

acceptable initial mechanical properties. The scaffold microenvironment, on the other 

hand, provides appropriate cues for cells to differentiate and maintain a differentiated 
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phenotype of vascular smooth muscle cell (SMC) which are often regulated by several 

signaling processes3, 5. Protein-based scaffolds (e.g., decellularized tissues, collagen, fibrin, 

and elastin) are best suited for providing a better microenvironment than synthetic materials 

since they provide potential binding sites for receptors. By selecting different synthetic and 

protein-based biomaterials, several investigators have reported top-down design of 

engineered vascular tissues (recently reviewed in6). Although mechanical properties and 

matrix deposition in engineered vascular tissues have been studied7-9, the role of scaffolds 

and the source of cells to activate important signaling processes are notably lacking.  

Fibrin gel is an important naturally occurring vascular tissue engineering scaffold that has 

been studied with respect to entrapped smooth muscle cells migration and proliferation and 

to a lesser extent extracellular matrix deposition (abundant collagen and detectable elastin). 

Unlike many vascular scaffold materials, fibrin is highly stretchable, exhibits non-linear 

mechanics, and displays unusual effect since there is a dramatic decrease in volume upon 

stretching thus displaying negative compressibility10. Highly compacted fibrin matrix has 

also acceptable mechanical properties11.  These features of fibrin are beneficial for vascular 

tissue engineering scaffolds that are routinely subjected to circumferential stretching forces 

during the maturation process. Similarly, unlike synthetic hydrogels, fibrin provides 

binding sites for many growth factors such as fibronectin, hyaluronic acid, and von 

Willebrand factor12. Furthermore, fibrin has an advantage since it is biocompatible, 

biodegradable, and the fact that the precursor fibrinogen can easily be obtained from 

autologous blood. Previous studies have utilized fibrin gel to fabricate vascular tissues with 

some success in animal models11, 13, 14.  
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In light of the many benefits (both mechanically and biologically) of fibrin, it will be 

beneficial to evaluate fibrin scaffold with regards to maintaining a differentiated vascular 

SMC phenotype and Notch signaling.  The vascular SMC is the main cellular component 

to fabricate an engineered vascular tissue. The limited proliferative capacity of human adult 

vascular cells and their slow rate of extracellular matrix (ECM) proteins production are 

challenges to fabricate a biologically functional engineered tissue.  However, other sources 

(embryonic stem cells, induced pluripotent stem cells, or adult stem cells) can be 

differentiated into vascular SMC15. Regardless of the source, phenotype modulation of 

SMC is an important design goal since these cells switch between the contractile phenotype 

characterized by well-organized cytoskeletal and contractile marker proteins and the 

synthetic phenotype characterized by increased proliferation rate and matrix production16, 

17. The transition between the two states is not well-defined but is a continuum and several 

signaling processes may be in involved. Notch signaling is a dominant process in vascular 

specification and cell-fate determination. The expression pattern of the Notch receptors and 

their ligands differ with the type of tissue. In the context of vascular tissue, Notch3 is the 

major receptor found on arterial SMCs, and Jag1 is the major ligand expressed by 

endothelial cells (EC) 18, 19; however the expression of these proteins can differ throughout 

development and disease. Notch is recognized as an important regulator of vascular SMC 

phenotype. Our lab and others have previously shown that Notch signaling leads to 

expression of contractile vascular SMC markers20-23. On the other hand, other studies have 

shown that this pathway inhibits SMC differentiation to a contractile phenotype via 

upregulating the expression of Hairy-related transcription factors (HERT) (reviewed in 

ref24) which is a downstream target of notch signaling. These studies certainly indicated 
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that the outcome of the Notch pathway activation is heavily dependent on cellular and 

molecular contexts. Identifying these contexts will advance our understanding of this 

pathway and how it regulates vascular SMC phenotype and will improve our chances in 

producing better engineered vascular tissues. In view of all the above, the aim of the current 

study was to compare two different cell types (non-differentiated embryonic vascular 

smooth muscle cell line (A10 cells) and embryonic multipotent mesenchymal progenitor 

cell line (10T1/2 cells) in fibrin-based vascular tissue for their gel contraction and their 

Notch signaling behaviors. 

3.3 Materials and Methods 

3.3.1 Cell culture and tissue fabrication.  

Non-differentiated embryonic vascular smooth muscle cell line (A10 cells) and embryonic 

multipotent mesenchymal progenitor cell line (10T1/2 cells) were purchased from ATCC 

and maintained in Dulbeco’s Modified Eagle’s media (DMEM) (Thermofisher) containing 

5% Fetal Calf Serum (FCS) (Thermofisher) and 1% penicillin/streptomycin by volume. 

Human coronary artery endothelial cells (HCAEC) were obtained from Lonza and 

maintained in EGMTM-2 Endothelial Cell Growth Medium-2 BulletKitTM. Cells were 

passaged when they reached 80% confluency and media changes were regularly performed 

according to supplier’s recommendations. To fabricate the fibrin-based tissues, cells were 

trypsinized with trypsin-EDTA 0.05% (Thermofisher) for 2 min and then suspended in 

DMEM. The cells were counted, and the appropriate volume was taken from the cell 

suspension to give a final cell content that varied between 0.5 to 1 million cells/mL of 

construct. The cells were then centrifuged at 1200 rpm for 5 min, the supernatant aspirated 
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and cells resuspended in 450 µL of media. To that, 10 µL of 2 M CaCl2, 40 µL of 50 mg/mL 

ε-aminocaproic acid (ε-ACA) (Sigma-Aldrich), and 2 µL of 1U/µL Thrombin (MP 

biomedicals) were added. This cell suspension was kept on ice until it was mixed with ice-

cold 500 µL solutions of 4, 6 or 8 mg/mL bovine fibrinogen (MP Biomedicals). Right after 

mixing the two solutions, the mixture was transferred into a clean glass mold that had been 

disinfected with 70% EtOH, dried and then incubated in a 5% solution of Pluronic F-127 

(Sigma-Aldrich) for an hour at room temperature. The mold is composed of a glass shell 

with an inner diameter of 1cm, and a glass mandrel with an outer diameter of 4mm. Two 

Teflon plugs were used to seal the ends of the glass shell and position the mandrel in the 

center. The mold was then transferred to an incubator at 37 ºC for 1.5 h for crosslinking.  

Initial dimensions of the constructs reflected the dimensions of the mold; however, they 

changed as the constructs shrunk in culture. Tissue disks to measure water mass loss were 

made the same way as mentioned previously; however, a cylindrical tube was used instead 

of the mold. 

For co-culture experiments with ECs, A-10 or 10T1/2 cells were seeded in 6 mm plates 

(Corning) at a density of 0.3×106 or 0.5×106 cells/plate, respectively, and left overnight in 

the incubator to attach. The following day ECs were seeded on top of the A-10 and 10T1/2 

cells at a density of 0.5×106 cells/plate. The co-cultured plates were maintained in a mixture 

of DMEM and EGM2 at a ratio of 1:1. For Notch signaling studies, the Notch inhibitor 

DAPT was used at a concentration of 15 µM for 3 days cultures.  For seeding ECs in the 

lumen of tissues, small pieces of sterile gauze were incorporated into the fabrication of the 

tissues on either end to facilitate tying the ends of the tubes closed with sterile dental floss 
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without breaking. Prior to seeding ECs in the lumen, one end of the tissue was tied with a 

sterile dental floss, then 0.5 mL of media containing 1×106 cells/mL was pipetted into the 

lumen and the other end of the tissue was tied with another piece of sterile dental floss. The 

tissue was given 4 hours in the incubator and then turned 180º to allow the cells to attach 

all around the lumen. Then the tissue was left overnight in the incubator after which the 

ties were cut to allow the culture media into the lumen. 

3.3.2 Tissue water loss and vitality assays.  

Tissue disks were cultured in media for a period of 12 days. During the culture period, the 

tissues were taken out of culture, blotted on a sterile paper towel, placed in a sterile tube 

and weighed every 3 days. To assess the vitality of the tissues, tissue disks were cultured 

in 12 well plates for a period of 12 days and their viability was measured every 3 days 

using resazurin blue (Sigma-Aldrich) assay. Culture medium was aspirated and replaced 

with 1 mL of sterile PBS containing 1.75 µg/mL resazurin blue and incubated at 37 ºC for 

5 h. After that, 100 µL from each well was taken and placed in a 96 well plate and the 

absorbance was measured at 570 and 600 nm against a blank. 

3.3.3 Scanning electron microscopy (SEM) imaging of fibrin gels.  

Fibrin gels were prepared by mixing 50 µL of ice-cold fibrinogen solution (2mg/mL) with 

50 µL of ice-cold DMEM containing 1 U thrombin. The 100 µL mixtures were quickly 

pipetted onto aluminum foils in a 24-well plate culture wells and then transferred to a 37°C 

incubator to cross-link for 1.5 h. After incubation, 0.5 mL of PBS was added to each well 

to prevent the gels from drying. The gels were incubated at 37 °C for 3 days after which 

they were fixed with 4% paraformaldehyde for 30 min. Following fixation, the gels were 
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washed 3 times with distilled water, and serially dehydrated with EtOH in water (50%, 

75%, 95% and 100%) for 15 min each. After dehydration with EtOH, the gels were serially 

dehydrated with hexamethyldisialazane (HDMS) (Sigma) in EtOH (50%, 75%, and 100% 

twice) for 15 min each. After removing the HDMS, the gels were allowed to dry overnight 

at room temperature, sputtered with gold/palladium, and then imaged with an SEM (LEO 

1530; Zeiss, Oberkochen, Germany). 

3.3.4 Western blotting.  

A-10 cells treated with 2 ng/mL TGF-β1 for 3 days were washed 3 × with ice-cold 

phosphate-buffered saline (PBS) then harvested in ice-cold RIPA buffer (50 mM Tris-Cl 

pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% (v/v) Triton X-100, 0.25% (w/v) sodium 

deoxycholate and 0.1% (w/v) SDS pH: 7.5) containing protease inhibitor cocktail (Roche) 

and 1 µM Phenylmethanesulfonyl fluoride (PMSF). The cells were kept on ice for 15 min 

to allow for lysis to complete. Lysates were centrifuged at 12000 rpm for 15 min. The 

pellets were discarded, and the supernatants’ protein contents were quantified using the 

Pierce BCA protein assay protocol (Pierce). Protein samples were resolved by SDS-PAGE 

and transferred onto a nitrocellulose membrane (Pall life sciences). Blocking the membrane 

was performed with 5% BSA (Sigma-Aldrich) in PBS with 0.1% Tween-20 (PBS-T) and 

Western blotted with the Acta2 primary antibody (1:1000) (Santa Cruz Biotech) diluted in 

5% BSA in PBS-T overnight at 4º C. The blots were then washed 2 × with PBS-T for 5 

min each, and 1 × with PBS for 5 min, followed by incubation with goat anti-mouse 

secondary antibody (1:5000) diluted in 5% BSA in PBS-T for 1 h at room temperature. 
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Finally, the blots were washed as before and incubated with Supersignal west pico 

chemiluminescence substrate (Pierce) and developed using ChemiDoc XRS+ (BioRad). 

3.3.5 Immunofluorescence microscopy and histology.  

For 2D studies, cells were seeded in 6-well plates containing a coverslip at a density of 2.5 

× 105 cells per well in complete media. The next day, the cells were treated with 2 ng/mL 

TGF-β1 for a period of 3 days. After that, the cells were washed with 37ºC PBS and fixed 

with 4% paraformaldehyde in PBS for 15 min at room temperature. The paraformaldehyde 

solution was aspirated, and the cells washed 3 × with PBS at room temperature. For tissue 

studies, the tissues where washed with 37º C PBS and then fixed with 4% 

Paraformaldehyde at RT for 1 h. The tissues were then washed with PBS 3 times and 

incubated at RT in a 15% and then in a 30% solution of sucrose for 30 mins each, washed 

with PBS and then dabbed on a tissue to remove excess liquids. After that, the tissues were 

immersed with OCT compound (Fisher) and transferred into -80º C isopropanol. Tissue 

sections were obtained by using a Leica cryostat (Leica) and then were washed with PBS 

3 times for 5 mins each to remove OCT compound. Cells/tissue were permeabilized with 

a 0.2% (v/v) Triton x-100 in PBS for 15 min at room temperature and then blocked with 

5% BSA in PBS-T for 1 h. The blocking solution was then aspirated, and 100 µL of primary 

antibodies of Hes1, Acta2, Smtn, Notch3, Myh11, ColI, ColIII, Cnn1, or Jag1 (Santa Cruz 

Biotech) (1:100) in 5% BSA PBS-T were placed on the coverslip and covered with a piece 

of parafilm and placed in a humid environment at 4º C overnight. In order to rule out a 

nonspecific signal, IgG antibodies against rabbit and mouse species have been used as 

controls at the same dilution ratio. The next day the cells/tissues were washed 2 × with 
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PBS-T and once with PBS for 5 min each, then incubated with the corresponding secondary 

antibody (1:250) for 1 h at RT. The coverslips were then washed 2 × with PBS-T and once 

with PBS and incubated with 2 µg/mL DAPI for 5 min, washed with PBS 3 times and 

mounted with mounting media. The images were taken by a compound fluorescent ZeissZ1 

microscope (Zeiss).  

Histological microscopy was performed by taking tissue sections and staining them with 

hematoxylin for 3 min, and then incubating with tap water for 5 min, followed by washing 

with acid ethanol (0.3% HCl in 70% EtOH). Excess fluids were removed by blotting the 

slides with a paper towel before staining with eosin. The tissues were incubated in Eosin 

for 1 min, and then 3 times in 95% ethanol for 5 min followed by 3 times in 100% ethanol 

for 5 min each. Slides were allowed to dry and then visualized using a Nikon Eclipse TS100 

microscope (Nikon). 

3.3.6 RNA isolation and qPCR.  

For the engineered tissues, approximately 50 mg of tissue was placed in each Eppendorf 

tubes and frozen at -80 ºC for at least an hour, crushed by a pestle, and 750 µL of Trizol 

were added and then homogenized with a tissue homogenizer (BioBasic). The seeded 

endothelial cells (where applicable) in the engineered tissues were removed using a surgical 

scalpel, which is a well-established procedure. For 2D cultures, spent media was first 

aspirated and 500 µL of Trizol (Life Technologies) were pipetted for each 6 cm culture 

plate. The cells were then scraped and transferred to Eppendorf tubes. To separate 

endothelial cells from cocultures, cells were trypsinized using 1 mL of trypsin-EDTA 

0.05%, and then collected in a conical tube and centrifuged at 1200 rpm for 5 min. The cell 
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pellet was collected and resuspended in 1 mL of PBS containing 0.5% BSA and 1 × 107 

PCAM magnetic beads for 30 min on a tumbler at 4 ºC to separate the HCAECs from the 

10T1/2 cells. The magnetic beads were pulled down with a magnet and the 10T1/2 cells 

were transferred into a separate tube and centrifuged at 1200 rpm for 5 min. The 

supernatant was aspirated, and the cells were resuspended in 500 µL of Trizol to extract 

RNA. Lysates were left to incubate at room temperature for about 5 min. After that, 

chloroform was added at a ratio of 1:5 (chloroform:Trizol) and the samples were vortexed 

for 15 seconds then incubated at room temperature for 15 min. Samples were then 

centrifuged at 12000 g for 15 min at 4 ºC. The aqueous phase was transferred into another 

Eppendorf tube and Isopropanol was added at a ratio of 1:2 (isopropanol:Trizol) and 

incubated at RT for 10 min followed by centrifugation at 12000 g for another 10 min at 4 

ºC. The isopropanol was then aspirated, and the pellet was resuspended in 75% EtOH at a 

ratio of 1:2 (EtOH:Trizol) and centrifuged at 7500 g for 5 min at 4 ºC. This last step was 

done twice to wash excess salts. The pellet was then air-dried after the EtOh was removed 

and the pellet was dissolved in 25 µL of DEPC water and quantified with nanodrop 

(Thermo scientific). 1 ug of total RNA was used to synthesize cDNA using M-MLV 

reverse transcriptase kit (Promega) using the supplier’s protocol. For qPCR reactions, 1 µL 

of the formed cDNA was used in 10 µL reactions using the SsoAdvanced universal SYBR 

green supermix (Biorad) according to the manufacturer’s protocol. The qPCR reactions 

were carried out in a CFX96 Real-Time thermal cycler (BioRad) and GAPDH was used as 

a reference gene. 
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3.3.7 Gel swelling, water contact angle, and rheological properties.   

For fibrin gel swelling ratio determination, acellular fibrin discs were prepared from 3 

mg/mL fibrinogen as previously mentioned in the “Cell culture and tissue fabrication” 

section. The discs were then dabbed with a paper towel to remove excess water and then 

placed in a vacuum desiccator 16h to dry the gels. The specimens were weighed to obtain 

the initial mass (mi) for each gel and were placed in 1mL PBS and placed in an incubator 

at 37º C for 2 h. After that, the gels were removed from the PBS and dabbed on a paper 

towel and weighed to measure the final mass (mt). The % swelling  ratio was calculated 

using the following formula: 

-
100t i

i

m m
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Water contact angles were measured by a Kruss DSA100 Drop Shape Analyzer. A fibrin 

gel was prepared using 3 mg/mL fibrinogen in ice-cold PBS and 2 mM CaCl2. To that, 2 

µL of 1U/mL Thrombin was added and the solution was quickly transferred onto a 

microscope slide and spread on its surface before gelling. The slide was incubated at 37 ºC 

to accelerate crosslinking. After 1 h, the glass slide was dabbed on a paper towel and placed 

in a desiccator overnight to dehydrate the gel. The contact angles were measured in 

triplicate after allowing the water droplet to equilibrate on the gel for 15 sec. For 

rheological testing, a parallel plate rheometer operating at 37 ºC was used. The plates (25 

mm diameter) were set up at a 1mm distance and 500 µL ice-cold solution of 3 mg/mL 

fibrinogen in PBS, 2 mM CaCl2, and 2 U Thrombin was injected between the plates. After 

the sample gelled for 30 min, amplitude sweep tests were performed. 
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3.3.8 Statistical analysis.  

Where applicable, data are presented as the means of at least three independent experiments 

and the error bars are the standard deviation from the means. Statistical significance was 

calculated either using t-tests or ANOVA depending on experimental design. Tukey’s 

multiple comparison tests were used for post-hoc statistical analysis. Differences were 

considered significant if p < 0.05.  

3.4 Results and Discussion 

3.4.1 Fibrin gel swelling ratio, water contact angle, and rheological properties.  

Since fibrin gel is used as bioadhesive in surgeries for hemostasis, wound closure, sealant, 

and scaffold for tissue engineering, its characterization as a biomaterial is well-reported 

(reviewed in Ref 25). However, property variability may still exist depending on the 

sources, the fibrinogen concentration used to prepare the gel, and the presence of 

crosslinking agents other than thrombin 26, 27. Therefore, the swelling ratio, wettability, and 

rheological properties were determined for fibrin gels prepared from 3mg/mL solution. 

While direct comparison with literature was not straightforward due to variations in 

fibrinogen concentration, additional crosslinking agent, crosslinking time etc, data 

collectively presented in Tables 3.1 and 3.2 and Figure 3.1 indicated that the properties of 

the fibrin gels were, in general, consistent with reported values in the literature27-29. For 

instance, the percent swelling ratio of fibrin gel is reported to be between 100% to 250% 

depending on the method of preparation 30, 31, which is in the same range as Table 3.1. 
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Table 3.1. Swelling ratio of five fibrin gel disks prepared from 3 mg/mL fibrinogen. 

 

Fibrin is more hydrophobic than its precursor fibrinogen and its water contact angle is 

reported to be between 63º and 74º when measured on a dry film28. Contact angle is 

between 44º and 48º likely contributed to by the 15 sec that the water droplet remained on 

the fibrin film before taking the contact angle reading as suggested by the operating manual 

(pre-wetting step). On a hydrophilic polymer, such a delay seemingly minor could make a 

significant difference (Table 3.2). 

Table 3.2. Fibrin water contact angle. 

 Contact angle (º) 

Test #1 43.6 

Test #2 47.5 

Test #3 47.6 

Mean 46.3 ± 2.3 

 

The storage modulus (G’) vs. strain amplitude data obtained from rheological measurements 

of a fibrin gel prepared from 3mg/mL fibrinogen concentration indicated that the storage 

 Gel 1 Gel 2 Gel 3 Gel 4 Gel 5 

Initial fibrin gel weight (mg) 14.4 14.2 13.9 10.6 10 

Final swollen fibrin gel weight 

(mg) 
31.9 32 35 22.5 23.2 

Swell ratio (%) 121.5 125.4 151.8 112.3 132.0 

Mean swelling ratio (%) 128.6±14.8 
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modulus ranged from 85Pa to 110Pa without significant strain hardening effect (Figure 3.1). 

This was similar to reported values for pristine fibrin gels 27. 

 

Figure 3.1. Storage modulus vs. amplitude sweep results for a fibrin gel prepared from 3 

mg/mL fibrinogen concentration (measurements were taken at 37 ºC) 

 

3.4.2 Smooth muscle marker expression, tissue viability and collagenous matrix 

synthesis.  

In this study, non-differentiated embryonic rat vascular smooth muscle cell line (A10 cells) 

and mouse embryonic multipotent mesenchymal progenitor cell line (10T1/2 cells) were 

compared as model vascular cells. Since A10 cells are neointimal stem-derived smooth 

muscle cells (SMC), SM-α actin expression with and without the presence of TGF-β1 − a 
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growth factor that differentiates vascular SMC into a contractile phenotype32  − was tested. 

Protein analysis for SM-α actin (Acta2) using Western blot showed that treating A10 cells 

with 2 ng/mL TGF-β1 for 3 days did not affect the expression level of Acta2 (Figure 3.2A). 

However, immunofluorescence microscopy showed increased fiber redistribution, 

alignment, and reorganization of Acta2 and smoothelin (Smtn) filaments suggesting a more 

mature contractile phenotype in response to TGF-β1 (Figure 3.2B). However, the role of 

TGF-β1 in A10 cells appeared to be post-translational since the expression at the protein 

level of Acta2 did not change. To assess the viability of A-10 cells in the engineered tissues, 

the absorbance of reduced resazurin for tissue cultures up to 12 days was measured (Figure 

3.2C, D). Figure 3.2C compares the differences in absorbance of cell-embedded fibrin gels 

prepared from 2, 3 and 4 mg/mL FBG and 0.5×106 cells, while Figure 3.2D compares 

fibrin constructs with the same FBG concentrations but with 106 cells. While tissue 

constructs containing 0.5×106 cells showed little differences in absorbance, those with 106 

cells showed an increased absorbance at day 3 and then a reduction in the absorbance for 

the rest of the duration. Overall, the metabolic activity of these tissues was stable over time. 

Resazurin is a widely used viability assay; however, its use in tissue viability assays is not 

very common as the diffusion of the dye into and out of the tissue is limited and therefore, 

the absorbance is mostly influenced by the cells on the surface of the tissues rather than 

those embedded in them. Despite this, the benefit of Resazurin is that due to its 

cytocompatibility, the tissue can be treated multiples times; thus, the metabolic activity of 

the same tissue can be studied over an extended culture period.   
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Figure 3.2. SMC marker and matrix protein expression, and tissue vitality and cell 

distribution. (A) Western blot analysis showing the level of expression of smooth muscle 
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alpha-actin (Acta2) with or without 2 ng/mL TGF-β1 for 3 days. (B) Immunofluorescence 

comparing control A-10 cultures and TGF-β1 treated A-10 cultures of cytoskeletal proteins 

Acta2 and Smtn. The bar diagrams on the right are the corresponding quantification of the 

images. Scale bar = 20 µm. (C) Resazurin cell viability assay of fibrin constructs with 

variable concentrations (2, 3, and 4 mg/mL) containing 0.5 million cells/m. (D) Resazurin 

cell viability assay of fibrin constructs with variable concentrations (2, 3, and 4 mg/mL) 

containing 1.0 million cells/mL. These tissues were cultured for 12 days. (E) Fluorescence 

staining of A10- and 10T1/2- containing tissues cultured for 1, 2 or 3 weeks. Nuclei were 

stained with DAPI and f-actin with Alexa-488 conjugated phalloidin in green. Sale bar = 

50 um. (F) Histochemical staining of fibrin-based tissue containing 10T1/2 cells cultured 

for one week in 3 or 4 mg/mL displayed at two different magnifications 4 and 10 ×. (G) 

10T1/2 in 3 mg/mL fibrin constructs treated with 50 µg/mL ascorbic acid and probed for 

collagen I and collagen III. Scale bar = 50 um. 

A cell viability test via absorbance measurement provides a global context for the activity 

of cells within the gels but is not instructive in terms of cell distribution which is important 

for remodeling and matrix deposition. Fluorescence microscopy images of tissue constructs 

containing A-10 cells and 10T1/2 cells taken at 1, 2, and 3 weeks during the maturation 

process are presented in Figure 3.2 E. Both cell types were uniformly distributed 

throughout the cross-section; however, the density of 10T1/2 cells within the construct 

remained to be higher than A-10 cells. Furthermore, it appeared that cells were forming 

bundles at the lumen and ablumen of the tubular construct, as evidenced by the intense 

staining in those regions. H&E staining of tissues containing 10T1/2 cells and matured for 

1 week agreed with the fluorescence microscopy images showing the distribution of cells 

throughout the cross-section (Figure 3.2 F). 10T1/2 cells have been studied 3 as SMC 

progenitor cells and are believed to be a good model to study SMC phenotypic switching. 

Engineered tissues started to produce collagenous matrix proteins (Collagens I and III) 

which was further enhanced with 50 µg/mL ascorbic acid treatment (Figure 3.2 G). While 

collagen I is the main type of collagen in the vasculature, collagen III is also important as 
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its absence or imbalance has been shown to be linked to Vascular Ehlers-Danlos syndrome 

of arteries 33, 34. 

3.4.3 Gel contraction kinetics and fibrous gel stability.  

When fibrin and collagen gels are used as a scaffold for tissue engineering, dimensional 

contraction is often observed in the presence of fully differentiated primary cells35-38. 

However, it is unknown if non-differentiated embryonic and mesenchymal progenitor cells 

can exert sufficient contraction forces on the gels to bring macroscopic dimensional 

changes. When non-differentiated embryonic vascular smooth muscle cells were 

embedded into the gels prepared at different concentrations, a reduction was observed in 

the volume of the fibrin constructs with 2mg/mL concentration which was more noticable 

in comparison to the other concentrations after 7 days in culture (Figure 3.3A). The effect 

of fibrinogen concentration with embedded A-10 cells on compaction kinetics was studied 

at 500, 000 cells/mL and 106 cells/mL (Figures 3.3B, C).  For both cell densities and at all 

fibrinogen concentrations, the cylindrical disk gels contracted drastically, and the fractional 

mass of the gels decreased significantly during the first 3 days of culture (p<0.05). From 

day 3 to 12, all tested fibrinogen concentrations with 500, 000 cells/mL showed significant 

differences amongst them at each time point (p <0.05). However, when each concentration 

was compared at different time points from day 3 to 12, there was no statistical significance 

on gel contraction kinetics (p>0.05).  When the cell concentration in the gel was increased 

to 106 cells/mL (Figure 3.3C), a similar behavior was observed except that significance 

only existed between 4mg/mL and 2 mg/mL fibrinogen concentration at each time point 

between 3 days and 12 days (p<0.05). The role of cell numbers at a fixed fibrinogen 
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concentration was also studied (Figures 3.3D, E). The dimensional contraction was 

significant until day 3 and remained unchanged for the subsequent 9 days (p<0.05). It is 

worth mentioning that the presence of cells did not change the dimensional contractions of 

the fibrin gels compared to the fibrin-only gels. While cell-induced contractions of fibrin 

gels were expected due to the anticipated force exerted by cells, the fact that these gels 

contract to the same level even without cells implies that other factors are in play. The gels 

have a large amount of water and were assumed to be incompressible; thus, the observed 

contraction is primarily caused by water expulsion (syneresis) from the gel rather than 

fibrin degradation since a plasmin inhibitor (ε-aminocaproic acid) was present in the media 

throughout these experiments. As additional evidence, fibrin gels were cultured for 3 days 

and SEM images were taken to visualize fiber morphology (Figures 3.3F, G). Clearly, the 

fibers were morphologically intact, suggesting the absence of degradation notwithstanding 

the volume change. Although one previous research suggested the absence of compaction 

in a cell-free fibrin gel39, this data suggests the contrary. It is likely that crosslinking of 

fibrinogen into fibrin causes internal stress leading to the unfolding of α helices into β 

sheets, thus compacting the network 40-42. Although fibrin gel compaction at a fixed time 

is previously studied35, gel compaction kinetics is rarely investigated 43. In fact, most 

studies investigated gel compaction after weeks of culturing in the presence of fully 

differentiated cells; however, the time required to reach constant compaction has not been 

studied. Data in this study suggested that for all the fibrinogen concentrations and the cell 

numbers embedded in the gels, the gels reached a steady-state mass after 3 days of culture.  

Given the current understanding that fibrin gels have accelerated compaction in the 

presence of cells, significant differences on both the compaction kinetics and in response 
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to cell number variations was expected. Since the gels without cells compacted similar to 

the gels with cells, this was attributed to the nature of the undifferentiated A-10 cells. 

Compared to fully differentiated cells used in previous studies35-38, A10 cells are immature 

cells that may not have sufficiently organized cytoskeletal protein fibers to bring significant 

changes to local and global reorganization and realignment of the gel microstructure.  
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Figure 3.3. Tissue contraction, mass loss and SEM analysis of fibrin fibers. (A) 

macroscopic comparison of compacted fibrin gels of different concentrations (2, 3, and 4 
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mg/mL) at day 0 and after 7 days in culture. (B) mass loss in constructs containing 0.5 

million cells in different concentration of fibrinogen (2, 3, and 4 mg/mL) and (C) mass loss 

of constructs containing 1 million cells in different concentrations of fibrinogen (2, 3, and 

4 mg/mL) as a function of time. (D) mass loss of 3mg/mL FBG and (E) 4mg/mL FBG 

containing 0.5 million and 1 million cells compared to constructs without cells as a function 

of time. (F) and (G) show the fibrous structure of 1 mg/mL fibrinogen after 3 days in culture 

at 15,000 and 35,000 magnifications, respectively. Scale bar in (F) = 1 µm. Scale bar in 

(G) = 0.2 µm. 

 

3.4.4 SMC differentiation of embryonic multipotent mesenchymal progenitor cells 

and gel contraction.  

The preceding gel contraction kinetics was conducted using A-10 cells. The A10 cells 

derived from the thoracic aorta of embryonic rat are non-differentiated, neonatal and 

neointimal vascular smooth muscle cells while 10T1/2 cells are mouse embryonic 

multipotent mesenchymal progenitor cells. 10T1/2 cells share similar differentiation 

characteristics with mesenchymal stem cells and have been shown to differentiate into 

mature vascular smooth muscle cell lineage under appropriate conditions44, 45. For this 

purpose, 10T1/2 cells were embedded into tubular fibrin gels with and without 2ng/mL 

TGF-β1, matured them for one week and monitored tissue contraction and differentiation 

into a mature vascular SMC. The rationale for choosing 10T1/2 cells instead of A10 cells 

is based on the previous findings that TGF-β1 upregulated SMC contractile protein in these 

cells3, 45, though the induction of these markers in fibrin gel has not been demonstrated 

before. As presented in Figures 3.4A, B TGF-β1 induced significant contraction of the gels 

(p<0.001) where both the inner and outer diameters were reduced by 33%. As both gels 

were prepared from the same fibrinogen concentration and had the same cell numbers, 

contraction is attributed to cytoskeletal traction forces on the fibrin fibers caused by the 
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differentiation of the 10T1/2 cells towards a mature SMC. To ascertain differentiation, 

immunofluorescence microscopy images of smooth muscle α-actin (Acta2) and smoothelin 

(Smtn) were taken (Figure 3.4C). Although the expression of smooth muscle α-actin in 

the differentiated cells was similar to the human coronary artery smooth muscle cells, this 

marker is not specific to SMC as it is also expressed in other cells (e.g. myofibroblasts)46. 

The only marker unique to vascular SMC that is absent in myofibroblasts is smoothelin47, 

48, and hence this marker was selected in this study. As can be seen, these tissues expressed 

Acta2 and Smtn, suggesting a SMC lineage commitment in response to TGF-β1 treatment. 

On the other hand, SM-myosin heavy chain (Myh11) was undetectable (data not shown) 

and this was not surprising since it is a late-stage SMC differentiation marker and the 

culture time was only one week. This observation is also consistent with previous findings 

that longer-term cultures and biomechanical forces were required for Myh11 expression of 

10T1/2 cells45.  
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Figure 3.4. Tissue contraction of fibrin-based 10T1/2 constructs treated with TGF-β1 and 

protein markers expression. (A) Macroscopic and microscopic images comparing control 

tissue with that treated with TGF-β1 showing the contraction of the tissue in response to 

TGF-β1. Contrast microscopy scale bar = 1 mm. (B) inner and outer diameter 

measurements of control vs TGF-β1 treated tissues. (C) Immunofluorescence staining of 

Acta2, Cnn1, Smtn, and ColIII in 10T1/2 tissue treated with 2 ng/mL TGF-β1 for 1 week. 

Scale bar = 50 um.  
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3.4.5 Activation of Notch signaling in engineered vascular tissues.  

Although TGF-β1 signaling pathway plays an important role in the SMC differentiation 

and maturation, the Notch signaling is one pathway that plays an important role in the 

differentiation, maturation, and function of vascular SMC20. The Notch family of receptors, 

Notch1 to Notch4, are single-pass transmembrane proteins consisting of both an 

extracellular domain (ECD) and an intracellular domain (ICD)49. Upon interaction with the 

Delta, Serrate/Jagged, Lag-2 (DSL) family of single-pass transmembrane ligands (Jagged1, 

-2 and Delta1, -3, and -4) expressed on neighboring cells, Notch undergoes proteolytic 

cleavage, which frees the ICD from the plasma membrane. This results in translocation of 

the ICD into the nucleus, where it forms a complex with the DSL family of transcriptional 

repressors (CBF1/RBP-Jk), removing the repression and allowing transcription of 

downstream target genes (Hes/Hey)50. Since the distribution of the Notch receptors and 

their ligands vary considerably in different tissues, it plays diverse roles in cardiovascular 

and cerebrovascular development and physiology24. The Notch pathway components 

relevant to vascular tissue engineering of arteries are Notch3 receptor and the ligand Jag1 

highly expressed in arterial SMC and EC, respectively 19.  In the present study, the effect 

of TGF-β1 and Jag1 on the activation of the Notch pathway in A-10 cells was studied via 

the transcription factor Hes-1, the downstream SMC-specific Myh11, and the matrix 

protein elastin gene expressions. In addition to a possible signal convergence between 

TGF-β1 and Notch signaling pathways51, the addition of TGF-β1 was to evaluate if these 

cells are able to produce an essential vascular ECM elastin based on previous finding that 

this growth factor was able to enhance elastin synthesis of human coronary artery smooth 
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muscle cells52. Figure 3.5A showed that treatment of A-10 cells by culturing them on either 

surface adsorbed Jag1 or by adding soluble TGF-β1 to the culture did not impact 

expressions of the tested genes in comparison to untreated control cultures (p>0.05). To 

investigate the role of the microenvironments (2D vs. 3D), A-10 cells and Jag1 were 

entrapped into the fibrin gel. Expression of the Notch ligand Jag1, the Notch signaling 

downstream transcription factor Hes-1 and SMC-specific marker Myh11 were either 

down-regulated or remained unchanged (Figure 3.5B), suggesting that Jag1 entrapment 

did not activate Notch in A10 cells. Studies have shown that Notch ligands are 

ubiquitinated by multiple ubiquitin ligases in order to properly activate the Notch receptor 

53 suggesting the importance of ubiquitination in the activation of the Notch signaling. 

Along with ligand ubiquitination, a mechanical pull force plays a critical role in ligand 

endocytosis and Notch signal activation. During endocytosis of the ligand by the signal 

sending cell, a pull force is generated by the ligand on the receptor of the signal receiving 

cell causing a conformational change. This then allows for the enzymatic cleavage of the 

Notch extracellular domain, and consequently to the propagation of the signal 54. Since the 

entrapped recombinant Jag1 ligand was not ubiquitinated, and there were no pulling forces 

subjected on the fibrin gel, the entrapped Jag1 ligand on its own is insufficient to activate 

the Notch signaling in this system. Moreover, the downregulation of Jag1 and Myh11 in 

the Jag1 treated group is occurring independently of the Notch signaling since Hes-1 that 

is a direct target of the Notch pathway was not activated. In Notch signaling, the ECD of 

the ligand expressed by signal-sending cell binds to the ECD of the Notch receptor 

expressed on the surface of adjacent vascular SMC (signal-receiving cell), leading to signal 

activation and subsequent expression of SMC contractile genes in a heterotypic cell-cell 
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contact manner 21-23. Since endothelial cells are the Notch signal sending cell in the 

vasculature, the effect of A10 cells and ECs coculture on the Notch pathway and contractile 

marker expression was also investigated. Gene expression data for Hes-1, Jag1, and Myh11 

for A-10, and EC in coculture shown in Figure 3.5C demonstrated that the expression of 

Hes-1 and Jag1 was reduced by half in the cocultured A10 cells compared to those cultured 

without EC. However, the expression of Myh11 did not change. In addition to qPCR, 

immunofluorescence microscopy results also showed that co-culturing A10 cells with EC 

did not affect the expression of Acta2, or Myh11 proteins (Figure 3.5D).  
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Figure 3.5. Effect of TGF-β1  in 2D, Notch in 2D and 3D, and co-culture on gene and 

protein expression in A-10 cells. (A) Treatment of A-10 cells with Jag1 that is adsorbed to 
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the culture-ware (Ad) or treated with TGF-β1. (B) qRT-PCR of fibrin-based tissue 

containing A-10 cells with or without entrapped Jag1. (C) coculture of A-10 cells with 

Human coronary artery endothelial cells (EC). (D) Immunofluorescence of monoculture of 

A-10 cells or coculture of A-10 and HCAEC in fibrin-based tissue showing expression of 

Acta2 and Myh11 after 1 week. Scale bar = 50 µm. 

 

Data collectively presented in Figure 3.5 showed that (i) adsorbed and entrapped Jag1 did 

not activate Notch signaling in A10 cells, (ii) co-culturing A10 cells with coronary artery 

Jag1-expressing ECs also did not active Notch signaling in A10 cells, and (iii) extending 

the earlier observation in Figure 3.2A, neither TGF-β1 nor co-culturing with EC could up-

regulate smooth muscle differentiation markers. The first two findings, seemingly 

counterintuitive point to an important yet less known feature of Notch signaling, namely 

cis-inhibition55-57. In the Notch signaling context, a cell can be either a signal sending 

(ligand presenting) or signal-receiving cell depending on the relative abundance of receptor 

to its ligand on the same cell surface. However, when the Notch receptor binds to a ligand 

present on the same cell, signaling is inhibited. This phenomenon of cis-inhibition is an 

emerging hallmark of Notch signaling and relies on the relative abundance of the ligand 

and receptor. To ascertain if the ligand and receptor expression on the cell surface is of 

equal abundance causing signal inhibition, immunostaining of Notch3 and Jag1 was carried 

out. Figure 3.6A showed similar levels of expression of these proteins with and without 

TGF-β1 treatment. The rationale for TGF-β1 treatment is to evaluate the potential crosstalk 

that may exist between Notch and TGF-β through their downstream effectors CBF1 and 

SMAD2/351. Further quantification of the mRNA showed the levels of gene expression of 

these two markers are essentially the same (Figure 3.6B). Taken together, these are strong 
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evidence that Notch signaling is cis-inhibited in A10 cells and that these smooth muscle 

cells are not a suitable model to study Notch-induced differentiation and tissue maturation.  

 

Figure 3.6. Notch3 and Jag1 expression levels in A-10 cells. (A) Immunofluorescence 

microscopy images showing the levels of expression of the Notch3 receptor and its ligand 
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Jag1 in control cells versus TGF-β1 treated cells. Scale bar = 20 µm. Bar diagrams show 

the quantification of the red or green channel (AU = Arbitrary Units). (B) PCR results 

showing the gene expression levels of Notch3 and Jag1 in A-10 cells. 

 

Because of the cis-inhibition in non-differentiated embryonic rat vascular smooth muscle 

cell (A10 cells), the mouse embryonic multipotent mesenchymal progenitor cell (10T1/2 

cells) was chosen as an alternative model vascular cells for trans-activating Notch 

signaling. First, a co-culture system of 10T1/2 cells with human coronary artery EC was 

established in 2D using a 1:1 ratio of the respective cells growth medium.  After EC 

separation using PECAM-incubated magnetic beads, the differentiated 10T1/2 cells were 

probed for Notch signaling components and its downstream SMC target genes. Data 

collectively presented in Figure 3.7A demonstrated that Notch3 expression was 

significantly upregulated in the co-culture system with an accompanying Acta2 (p<0.05) 

while calponin remained unchanged (p>0.05). It is worth noting that Acta2 is a direct target 

of Notch3 signaling 24, 58 while calponin did not demonstrate that Notch3 was activated in 

differentiated 10T1/2 cells. In addition to the mono-culture controls, 10T1/2 cells were 

cultured in 1:1 ratio of DMEM:EC media to rule out the effect of EC media on Notch 

signaling (Data not shown). To establish a cause and effect relationship that links the 

activation of the Notch pathway in the 10T1/2 cells and the cocultured HCAECs, DAPT, 

which is a γ-secretase inhibitor of Notch signaling, was used (Figure 3.7B). The data shows 

that inhibition of the Notch signaling pathway prevented the upregulation of Hes1, Notch3 

and Acta2. These results confirm that HCAEC activated the Notch signaling in 10T1/2 

cells since in the absence of the inhibitor, the direct target of Notch activation Hes1 was 

upregulated and was, in turn, downregulated when the cells were treated with DAPT 
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(Figure 3.7B). Furthermore, the qPCR results were paired with immunofluorescence 

staining to see if the gene upregulation is reflected on protein levels. Probing for Hes1, 

Notch3, Acta2 and Smtn proteins showed increased expression of these proteins in the 

coculture, and downregulation is the presence of DAPT which is consistent with the PCR 

results (Figure 3.8, 3.9 & 3.10).  Extending the 2D culture findings, a fibrin-based tubular 

engineered vascular tissue was fabricated and ECs were seeded in the lumen (Figure 3.11). 

After one week in coculture, the ECs were scraped from the lumen using a scalpel and 

10T1/2 RNA was extracted from the tissue for qPCR (Figure 3.7C). Consistent with the 

2D qPCR data, the levels of Notch3 and its downstream target Acta2 gene expressions 

increased significantly (p<0.05); however, in contrast to the 2D results, calponin gene 

expression decreased. A fully differentiated and mature vascular SMC is characterized by 

expressions of the contractile marker proteins smooth muscle α-actin (Acta2), calponin 

(Cnn1), smooth muscle myosin heavy chain (Myh11) and smoothelin (Smtn).  Most of 

these contractile proteins are myocardin-induced expressions but Notch signaling has also 

been reported in response to contact-induced signaling with endothelial cells24. This study 

demonstrated that Notch3 signaling was activated when 10T1/2 cells are co-cultured with 

endothelial cells; however, due to cis-inhibition in A10 cells, Notch signaling was not 

activated.      
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Figure 3.7. Notch activation and inhibition in coculture of HCAEC and 10T1/2 in 2D and 

3D environments. (A) 2D qPCR of cocultured 10T1/2 and HCAEC after separation of the 

two cell types using magnetic beads coated with PCAM antibody. (B) qPCR of cocultured 

10T1/2 and HCAEC treated with 15 µM DAPT followed by separation of the two cell types 

using magnetic beads. (C) qPCR of cocultured 10T1/2 and HCAEC after mechanically 

removing the ECs by gently scrubbing the lumen with a scalpel. Groups with the different 

symbols denote statistical significance (p<0.05) while those with the same symbol have no 

significant difference. 
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Figure 3.8. Coculture of 10T1/2 cells with endothelial cells upregulated Notch3 and its 

downstream transcription factor Hes1. (A) Immunofluorescence staining showing the 

expression level of Notch3 in cocultured cells and in cocultured cells treated with 15 μM 

of the Notch inhibitor DAPT for 3 days. (B) expression level of Hes1 in cocultured cells 

and in cocultured cells treated with 15 μM of the Notch inhibitor DAPT for 3 days. A 

monoculture of 10T1/2 cells was used as a control to assess the level of the target proteins 

in the absence of HCECs. Scale bar = 50 μm. 
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Figure 3.9. Coculture of 10T1/2 cells with endothelial cells upregulated the smooth muscle 

cytoskeletal proteins Acta2 and Smtn. (A) Immunofluorescence staining showing the 

expression level of Acta2 in cocultured cells and in cocultured cells treated with 15 μM of 

the Notch inhibitor DAPT for 3 days. (B) expression level of Smtn in cocultured cells and 

in cocultured cells treated with 15 μM of the Notch inhibitor DAPT for 3 days. A 

monoculture of 10T1/2 cells was used as a control to assess the level of the target proteins 

in the absence of HCECs. Scale bar = 50 μm. 
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Figure 3.10. Quantification of the fluorescence intensity from green channels of the 

immunostaining which correspond to the level of expression of the proteins from Figures 

3.8 and 3.9 using ImageJ software. 
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Figure 3.11. Endothelial cell seeding on the luminal side of engineered fibrin-based tissues. 

The figure shows the absence of endothelial cells at the lumen (left image) compared to the 

presence of these cells stained with Cell Tracker Green and Cell Tracker Red (middle and 

right images). Scale bar = 50 µm. 

 

3.5 Conclusion.  

In this study, the use of fibrin-based vascular tissues to study cell behavior and signaling 

in two different cell lines, A10 and 10T1/2 cells was evaluated. Fibrin gel experiments 

showed that mass loss occurred in the first 3 days after tissue fabrication regardless of 

fibrinogen concentration or cell number, but the mass remained stable after 3 days. 

Comparing the two cell lines, 10T1/2 cells tend to persist longer in the wall of the 

engineered tissues; however, both cell lines showed better growth on the albumen and the 

lumen. Furthermore, the results show that A10 cells were irresponsive to the presence of 

the Jag1 ligand or to endothelial cells in the environment likely due to cis-inhibition of the 

Notch signaling. On the other hand, 10T1/2 cells responded to endothelial cell co-cultures 

by upregulating the Notch3 and Acta2 gene expression. In conclusion, fibrin-based tissues 
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are a good platform to study cell signaling in a physiologically relevant 3D environment; 

however, 10T1/2 cells appear to be better suited for evaluating the role of Notch signaling.  
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Chapter 4 

The effects of progenitor and differentiated cells on ectopic 

calcification of engineered vascular tissues* 

 

Overview this study describes the use of engineered vascular tissues as a model to study 

vascular calcification in an in vitro 3D environment. A multipotent mouse cell line (10T1/2) 

was used in its naïve and differentiated states to shed some light on the mode of 

calcification between the two phenotypes. Calcification was induced using an inorganic 

phosphate salt and was evaluated by using histology, qPCR, and immunofluorescence of 

calcification markers. Furthermore, the effect of Vitamin K and simulated elastin 

degradation on the engineered tissues was shown. 

4.1 Summary 

Ectopic vascular calcification associated with aging, diabetes mellitus, atherosclerosis, and 

chronic kidney disease is a considerable risk factor for cardiovascular events and death.  

Although vascular smooth muscle cells are primarily implicated in calcification, the role 

of progenitor cells is less known. In this study, engineered tubular vascular tissues from 

embryonic multipotent mesenchymal progenitor cells either without differentiating or after 

differentiating them into smooth muscle cells were fabricated and ectopic calcification 

through targeted gene analysis were studied.  Tissues derived from both differentiated and 

undifferentiated cells calcified in response to hyperphosphatemic inorganic phosphate (Pi) 

treatment suggesting that a single cell-type (progenitor cells and differentiated cells) may 
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not be the sole cause of the process.  Furthermore, Vitamin K, which is the matrix gla 

protein activator, was shown to have a protective role against calcification in engineered 

vascular tissues. The addition of partially-soluble elastin upregulated osteogenic marker 

genes suggesting a calcification process. Furthermore, partially-soluble elastin 

downregulated smooth muscle myosin heavy chain (Myh11) gene which is a late-stage 

differentiation marker. This latter point, in turn, suggests that SMC may be switching into 

a synthetic phenotype which is one feature of vascular calcification. Taken together, this 

approach presents a valuable tool to study ectopic calcification and associated gene 

expressions relevant to clinical therapeutic targets.   

4.2 Introduction 

Ectopic vascular calcification is a considerable problem in the elderly population, patients 

with type 2 diabetes, and chronic kidney disease1, and is linked to the risk of cardiovascular 

disease and mortality2-4. Calcification causes the hardening of blood vessels due to the 

accumulation of calcium-containing deposits in the lumen (intimal calcification) or the wall 

of the blood vessel (medial calcification). When calcification occurs in the wall of the 

vessel, especially in arteries, it causes the blood vessel to lose its recoil (loss of Windkessel 

effect) and leads to dysfunctional vascular tone, compliance mismatch, and increased blood 

pressure2, 5 whereas intimal calcification leads to narrowing of the blood vessel. Factors 

such as the absence of calcification inhibitors, apoptosis, bone demineralization, renal 

dysfunction, etc. that lead to an increase in the concentration of calcium ion (Ca2+) in the 

cytoplasm of vascular smooth muscle cells (SMC). Vascular calcification is a complex 

process that has been thought to occur passively with age as unregulated mineral 
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precipitation; however, it is now known to be a regulated process6-9. This process involves 

osteogenic gene marker expression and downregulation of contractile proteins by SMC and 

secretion of calcium-containing deposits onto the extracellular matrix.  

Prior studies10-13 have investigated the cell types within the vasculature that influence 

calcification. Some evidence pointed to resident progenitor mesenchymal cells that 

differentiated into osteogenic lineage 14-16 while others suggested de-differentiation and/or 

transdifferentiation of SMC into an osteogenic lineage17. In response to increased inorganic 

phosphate (Pi) concentration, SMC calcification proceeds by sodium-dependent phosphate 

transporter channel (PiT-1) and is accompanied by downregulation of SMC- and 

upregulation of osteogenic-gene markers 18. Clearly, the roles of differentiated and 

progenitor cells in vascular calcification is not well-understood. To date, vascular 

calcification studies have been predominantly conducted on cell culture and animal models 

and have been fundamental for the current understanding. However, conventional two-

dimensional cell cultures do not accurately replicate the intricate microenvironment of 

three-dimensional (3D) tissues, since tissue-specific extracellular architecture, mechanical 

and biochemical cues, and cell-cell communication are disrupted.  An alternative approach 

is the use of engineered vascular tissues that capture both the 3D organization and multi-

cellular complexity of the native system to fill a critical gap in the preclinical model tool 

chest between traditional cell culture and whole animal experiments and has the potential 

to accelerate the pace of basic biomedical research19. A number of important physiological 

characteristics of native tissues are preserved in an engineered vascular tissue; thus, 

providing models for specific disease conditions such as vascular calcification. While there 
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are reported studies to model atherosclerosis using engineered vascular tissues19, 20, studies on 

the calcification of the engineered tissue model are very limited21.  Therefore, the aim of 

the present work was to investigate the role of progenitor and differentiated cells in vascular 

calcification using an engineered tissue model.  

4.3 Materials and Methods 

4.3.1 Cell culture and model tissue fabrication. 

Embryonic multipotent mesenchymal progenitor cells (10T1/2 cells) (ATCC) were 

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) (Thermofisher) containing 

5% v/v Fetal Calf Serum (Thermofisher) and 1% v/v penicillin/streptomycin 

(Thermofisher). Media was changed every three days and cells were passaged when 

confluency reached 80%.  To fabricate engineered vascular tissues, two cell types were 

used: (i) undifferentiated progenitor 10T1/2 cells and (ii) 10T1/2 cells treated with 2ng/mL 

TGF-β1 for three days to differentiate them to a vascular lineage prior to tissue fabrication. 

Cultured cells were trypsinized with trypsin-EDTA 0.05% (Thermofisher) for 2 min and 

then suspended in DMEM. The cells were counted, and the appropriate volume was taken 

from the cell suspension to give a final cell count of 2 million cells/mL of tissue construct. 

The cells were then centrifuged at 1200 rpm for 5 min, the supernatant aspirated and cells 

resuspended in 450 µL of media. To that, 10 µL of 2 M CaCl2 and 40 µL of 50 mg/mL ε-

aminocaproic acid (ε-ACA) (Sigma-Aldrich), and 2 µL of 1U/µL Thrombin (MP 

Biomedicals) were added. This cell suspension was kept on ice until it was mixed with ice-

cold 500 µL solutions of 20 mg/mL bovine fibrinogen (MP Biomedicals) to give a final 

concentration of 10 mg/mL fibrinogen per construct. To study the effect of elastin on 
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calcification, 200 µg/mL partially-soluble bovine elastin (MP Biomedicals) was added to 

the cell suspension before mixing with fibrinogen solution. Right after mixing the two 

solutions, the mixture was transferred into a clean glass annulus that had been disinfected 

with 70% EtOH, dried and then incubated in a 5% solution of Pluronic F-127 (Sigma-

Aldrich) for 1 h at room temperature. The annulus was formed from 6 cm long glass shell 

with 6 mm outer diameter and a mandrel with 4 mm diameter. Two Teflon plugs were used 

to seal the ends of the glass shell and position the mandrel in the center. The assembly was 

then transferred to an incubator at 37 ºC for 1.5 h for crosslinking, taken out of the mold 

and cultured in DMEM for different tissue maturation times of 7 days to 14 days as per a 

previous study22. For calcification, the tissues were treated with 2.5 mM of inorganic 

phosphate in the form of sodium phosphate monobasic (NaH2PO4) after tissue maturation 

and continued for another week. Some tissues were further treated with 20 µg/mL vitamin 

K.  

4.3.2 Histology and Immunofluorescence microscopy. 

For 2D studies, cells were seeded in 6-well plates containing a coverslip at a density of 2.5 

× 105 cells per well. After 24 h, cells were either left untreated or were treated with 2 ng/mL 

TGF-β1 for 3 days before washing them with PBS and fixing them with 4% 

paraformaldehyde for 15 min at room temperature (RT). Engineered tissues were fixed for 

1 h, washed with PBS 3 times, and incubated first in a 15% and then in a 30% solution of 

sucrose for 30 min each at RT. The fixed tissues were then washed with PBS and dabbed 

using a paper towel to remove the excess liquid. After that, the tissues were immersed with 

OCT compound (Fisher) and transferred into -80 ºC isopropanol. Tissue sections (10 µm 
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thickness) were obtained by using a Leica cryostat (Leica) and placed on microscope slides. 

The slides were washed with PBS 3 times for 5 min each to remove the OCT compound. 

Cells/tissue were permeabilized with a 0.2% (v/v) Triton x-100 in PBS for 15 min at room 

temperature and then blocked with 5% BSA in PBS-T for 1 h at RT. The blocking solution 

was then aspirated, and 100 µL of the appropriate primary antibodies (anti-ACTA2, -

CNN1, -MYH11, -COLI, -ELN, -OPN antibodies from mouse, and anti-SMTN antibody 

from rabbit (Santa Cruz Biotech)) (1:100) in 5% BSA PBS-T were placed on the coverslip 

and covered with a piece of parafilm and placed in a humid environment at 4º C overnight. 

The cells/tissues were washed 2 × with PBS-T and once with PBS for 5 min each, then 

incubated with the corresponding secondary antibody (Alexa-488 conjugated goat anti-

mouse and Alexa-594 conjugated goat anti-rabbit (ThermoFisher)) (1:150)  in 5% BSA 

PBS-T for 1 h at RT. The coverslips were then washed 2 × with PBS-T and once with PBS 

and incubated with 2 µg/mL DAPI for 5 min, washed with PBS 3 times and mounted with 

anti-fade mounting media. The images were taken by Zeiss Z1 fluorescent microscope. 

Quantification of the fluorescence intensity was performed using the ImageJ software. The 

green channel (target protein) and blue (DNA) channels were quantified separately, and 

then the relative quantification was obtained by dividing the intensity of the green channel 

by that of the blue channel. The treatments were done in triplicates, and an average of 3 

representative images was taken for quantification of figure 1A. Histological staining was 

performed by staining with Alizarin red S (40mM, pH 4.1) for 30 min. Tissue sections were 

then washed with diH2O 5 times to remove the excess and unprecipitated dye. The excess 

liquid was removed by blotting the slides with a paper towel, allowed to dry, and then 

visualized using a Nikon Eclipse TS100 microscope. 
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4.3.3 RNA isolation and qPCR.  

For 2D cultures, spent media was aspirated and 500 µL of Trizol (Life Technologies) and 

cells were scraped and transferred to Eppendorf tubes. For engineered tissues, 

approximately 50 mg of tissue was placed in each Eppendorf tubes and frozen at –80 °C 

for at least an hour before crushing using a pestle and addition of 750 µL Trizol. The tissues 

were then homogenized with a tissue homogenizer (Bio Basic). Cells from 2D cultures and 

engineered tissues were lysed for 10 min, and chloroform was added at a ratio of 1:5 

(chloroform:Trizol) and the samples were vortexed for 15 sec then incubated at RT for 15 

min. Samples were then centrifuged at 4 ºC and 12000×g for 15 min. The organic phase 

was discarded, and the aqueous phase was transferred into another Eppendorf tube. 

Isopropanol was added at a ratio of 1:2 (isopropanol:Trizol) and incubated at RT for 10 

min followed by centrifugation at 12000×g for another 10 min at 4 ºC. The isopropanol 

was then aspirated, and the pellet was resuspended in 75% EtOH at a ratio of 1:2 

(EtOH:Trizol) and centrifuged at 7500×g for 5 min at 4º C. This last step was repeated 

twice to wash excess salts. The pellet was air-dried after the EtOH was removed, dissolved 

in 25 µL of DEPC water and quantified with nanodrop (Thermo Scientific). 1 µg of total 

RNA was used to synthesize cDNA using M-MLV reverse transcriptase kit (Promega) 

using the supplier’s protocol. For qPCR reactions, 1 µL of the formed cDNA was used in 

10 µL reactions using the SsoAdvanced universal SYBR green supermix (Bio-rad) 

according to the manufacturer’s protocol. The qPCR reactions were carried out in a CFX96 

Real-Time thermal cycler (BioRad) and Gapdh was used as a reference gene (Table 4.1).   
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Table 4. 1. Primers for mouse-specific mRNA amplification 

Gene Forward primer (5’→3’) Reverse primer (5’→3’) 

Spp1 ATCTCACCATTCGGATGAGTCT TGTAGGGACGATTGGAGTGAAA 

Alp1 CCAACTCTTTTGTGCCAGAGA GGCTACATTGGTGTTGAGCTTTT 

Runx2 CCAACCGAGTCATTTAAGGCT GCTCACGTCGCTCATCTTG 

Acta2 GGGCTATATAACCCTTCAGCG GCTGTCTTCCTCTTCACACAT 

Myh11 CTGGTTACATTGTAGGTGCCA GCGAGCAGGTAGTAGAAGATG 

Gapdh AAGGGCTCATGACCACAGTC GTGAGCTTCCCGTTCAGCTC 

 

Spp1- Osteopontin; Alp1- Alkaline phosphatase; Runx2 - Runt-related transcription factor 

2; Acta2- Smooth muscle-α-actin; Myh11- Smooth muscle myosin heavy chain 11. 

 

4.3.4 Statistical analysis. 

Data are presented as the means of at least three independent experiments, and the error 

bars are the standard deviation from the means. Statistical significance was calculated 

either using Student's t-test or one-way ANOVA depending on experimental design. 

Tukey’s multiple comparison tests were used for post-hoc statistical analysis for statistical 

significance, p-value of <0.05 was used. 

4.4 Results  

4.4.1 Cell and tissue differentiation. 

In this study, the potential of these cells to differentiate and express smooth muscle cell 

markers and associated extracellular matrix molecules in response to TGF-β1 treatment 

was tested. Figure 4.1A,B showed that during the 3-day treatment in culture plates, the 

cells differentiated as shown by the expression of ACTA2 and CNN1, but there was no 
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difference in the expression of MYH11, collagen type I (COLI), and elastin (ELN) likely 

due to the short treatment time.  

 

Figure 4.1. Differentiation of embryonic multipotent mesenchymal progenitor cell (10T1/2 

cells) into a smooth muscle cell lineage. (A) 10T1/2 cells in 2D culture plates were treated 

with 2ng/mL TGF-β1 for 3 days then stained with antibodies against ACTA2, CNN1, 

MYH11, COLI and ELN. The figure shows an increase in the expression of ACTA2 and 
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CNN1 but not MYH11, COLI or ELN. Scale bar = 50µm. (B) Quantification of the green 

channel relative to the blue channel of the immunostaining shown in Fig (A) above. (C) 

Comparison in gene expression of undifferentiated tissues, in situ TGF-β1-treated tissues, 

and tissues fabricated from differentiated cells after tissue maturation. The levels of 

expression of Acta2, Myh11 and Eln are shown. (D) Immunofluorescent staining of 

ACTA2, SMTN, MYH11 and ELN in differentiated and undifferentiated tissues. ACTA2 

staining shows that cell morphology changed to spindle-like structures in differentiated 

tissues, and expression of SMTN and MYH11 increased in the differentiated tissues. The 

expression of ELN does not appear to change. A = albumen; L = Lumen of the tubular 

tissues. Scale bar = 50 µm. For Figs. (B) and (C), data are means ± SD (n=3) and one-way 

ANOVA and Tukey’s multiple comparison tests were used for statistical analysis. * 

indicate statistical significance at p<0.05. 

 

Furthermore, differentiated cells exhibited a spindle-like morphology which is evident in 

the ACTA2 and CNN1 stained cells. This is a further indication that multipotent progenitor 

cells have differentiated into an SMC-like phenotype. For the fabrication of engineered 

vascular tissues, progenitor cells were either pre-differentiated and incorporated into the 

fibrinogen and matured to form the tissue or cells were mixed with fibrinogen and expected 

to differentiate in situ to SMC in the gel. Therefore, three different types of tissues were 

fabricated: (i) tissues containing undifferentiated progenitor cells which served as control, 

(ii) tissues that contained undifferentiated cells that were then treated with TGF-β1 in situ, 

and (iii) tissues with cells that were pre-differentiated prior to fabricating the tissues. 

Figure 4.1C shows the gene expression results of Acta2, Myh11, and Eln from these 

tissues. While pre-differentiating progenitor cells had the highest level of gene expression 

in the tissue, an attempt to differentiate progenitor cells in the tubular gel in situ by TGF-

β1 treatment did not lead to a significant increase in the expression of these genes. Even 

though multipotent progenitor 10T1/2 cells have been shown to differentiate into SMC in 

the presence of TGF-β122-25, the entrapment of these cells in the fibrin gel seems to prevent 

them from interacting with the ligand likely due to poor diffusion of the ligand into the 
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tubular tissue cross-section. On the other hand, differentiating the cells before entrapping 

them into the tissues ensures maximum interaction of the cells with the ligand, thereby 

producing vascular tissues with differentiated cells. Furthermore, immunofluorescence 

staining of tissue sections showed that the differentiated tissues had elevated levels of 

ACTA2, SMTN, and MYH11 but not ELN (Figure 4.1D). However, the significantly 

higher Eln gene expression in the differentiated tissues does not seem to translate to the 

protein level. Although this appears to be contrary to two-dimensional cell culture 

observations, it is not surprising in three-dimensional cell cultures where a similar behavior 

has been shown before 26 and mechanical stimulation via a bioreactor was needed for 

elastin protein synthesis 27. Consistent with Figure 4.1A, the cells in the fibrin gel exhibited 

elongated spindle-like morphology in the ACTA2 and SMTN stained cross-sections 

(Figure 4.1D), indicating a differentiated state of the tissues.  Since in situ differentiation 

attempts of the cells in the engineered tissues were not effective, it was not further 

investigated. In this study, qPCR data was complemented with immunofluorescence 

staining instead of Western blots. The reason is that the target protein extracts from cells 

in the fibrin gels were masked by RIPA buffer induced fibrin degradation during protein 

extraction. RIPA buffer contains sodium dodecyl sulfate which has long been known to be 

a potent anionic fibrinolytic detergent 28. Increasing the total protein loading from 50 µg to 

200 µg for Western blots did not make any difference and protein bands were still not 

detected (data not shown).    
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4.4.2 Calcification in engineered vascular tissues. 

It is well-known that high concentrations of inorganic phosphates (Pi) lead to calcification 

in vivo and in vitro 18, 29. Thus, engineered tissues were treated with hyperphosphatemic 

concentrations (2.5 mM) of inorganic phosphates for one week to evaluate if the engineered 

tissues can serve as a model for vascular calcification. As shown in Figure 4.2A, Pi-treated 

tissues were stained with Alizarin Red S which precipitates in the presence of calcium. The 

choice of Alizarin Red S staining over von Kossa staining is due to the specificity of the 

former to calcium cations to form a chelate while the latter is non-specific and binds anions 

(phosphates, sulfates, or carbonates)30.  It is evident that the Pi-treated engineered tissues 

contain calcium deposits regardless of whether the cells in the tissues were differentiated 

or not. Further evaluation of the tissues by immunostaining for the osteogenic marker 

osteopontin (OPN) confirmed that these tissues calcified in response to hyperphosphatemic 

conditions (Figure 4.2A).  
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Figure 4.2. Histological staining, gene, and protein expression of calcified engineered 

tissues. (A) Alizarin Red S staining (Scale bar = 0.1 mm) and osteopontin (OPN) 
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immunofluorescence (Scale bar = 50 µm) in both differentiated and undifferentiated tissues 

treated with hyperphosphatemic concentrations (2.5 mM Pi) for 7 days. Higher Alizarin 

Red S staining and Opn expression were observed in the presence of 2.5 mM Pi. The top 

and bottom panels are different areas of the tissues from repeated 

experiments. (B) Osteogenic- (Alpl, Spp1 and Runx2) gene expression of undifferentiated 

and differentiated tissues treated with 2.5 mM Pi for 2 weeks. (C) Osteogenic gene 

expression comparison of undifferentiated vs. differentiated tissues. (D)  vascular smooth 

muscle cell-markers (Acta2, Myh11) and elastin (Eln) genes expression in undifferentiated 

and differentiated tissues that have been treated with 2.5 mM Pi for 2 weeks. (E) Protein 

expression of SMC markers in undifferentiated and differentiated tissues treated with 2.5 

mM Pi for a period of 2 weeks. Protein levels remain unchanged in the undifferentiated 

tissues; however, elevated levels of staining were observed in the differentiated tissues that 

were relatively reduced in the presence of Pi. A = ablumen; L = Lumen. Scale bar = 50 µm. 

For Figs. B, C and D, data are means ± SD (n=3) and t-tests were used for statistical 

analysis. * indicates the significance at p<0.05. 
 

These results showed that both differentiated and non-differentiated engineered tissues are 

capable of calcifying, suggesting that a single cell-type (undifferentiated progenitor cells 

or differentiated cells) may not be the sole cause of the process. Given the Alizarin Red 

positive staining, the gene expression levels of osteogenic (Alp1, Spp1, Runx2), SMC 

(Acta2 and Myh11) markers, and SMC-derived matrix protein Eln in calcified engineered 

tissue models were explored (Figure 4.2B). In the undifferentiated tissues, Spp1 and Runx2 

genes were upregulated in response to Pi treatment (p<0.05) while Alpl was not responsive, 

suggesting a possible temporal effect. In the differentiated tissues, both Alpl and Runx2 

were significantly downregulated in response to Pi treatment (p<0.05) whereas Spp1 

remained unaffected. A comparison between undifferentiated tissues with differentiated 

tissues indicated that all the tested osteogenic genes were upregulated in the differentiated 

tissues (Fig 4.2C; p<0.05).  Since TGF-β1 was used to differentiate the progenitor cells 

into the vascular lineage, it suggests that these cells were able to express osteogenic genes 

as TGF-β1 is reported to recruit mesenchymal stem cells to a vascular injury site where 

these cells upregulate some of the osteogenic lineage genes15. However, the observed 
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osteogenic gene expression was not accompanied by a corresponding calcification since 

only tissues treated with Pi calcified regardless of the differentiation state (Figure 4.2A,C) 

suggesting that bone-related gene expression by progenitor cells may be a necessary but 

not a sufficient condition for tissue calcification.  Regarding the SMC markers Acta2 and 

Myh11, Pi treatment had no effect on their expression level in the undifferentiated tissue 

(p>0.05). However, both Acta2 and Myh11 were significantly downregulated in response 

to hyperphosphatemic Pi treatment (p<0.05; Fig 4.2D). The elastin gene expression was 

downregulated by Pi treatment in both differentiated and undifferentiated tissues. The 

downregulation of SMC marker genes was consistent with previous observations that a 

calcified vascular tissue is accompanied by SMC de-differentiation (phenotype switching 

to a less contractile state). The switch to a de-differentiated phenotype is known to lead to 

the loss of contractile SMCs and dysregulation of vascular tone31. The immunostaining 

data presented in Fig 4.2E were consistent with the gene expression trend suggesting 

protein translation. These data collectively demonstrated the benefit of using progenitor (or 

stem) cells to study calcification in an engineered tissue model. On the one hand, 

undifferentiated progenitor cells in the presence of hyperphosphatemic Pi calcified by 

upregulating osteogenic markers; and on the other hand, differentiated SMC cells 

decreased the expression of SMC markers and elastin in the presence of 

hyperphosphatemic Pi and calcified. Gaining such information is one of the advantages of 

using engineered vascular tissues as isolated systems to systematically evaluate 

physiological processes that might not be feasible to do in vivo.  The results of Figure 

4.2A, while demonstrating that hyperphosphatemic Pi induces calcification, it does not 

prove whether this is due to passive precipitation in the tissue space or a cell-mediated 
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process. Thus, acellular scaffolds (cell-free fibrin gel tubes) were tested for potential 

calcification. As presented in Figure 4.3A, the cell-free tubes did not calcify, whereas the 

corresponding engineered vascular tissues were calcified, demonstrating that the process 

is mediated by cells (Figure 4.3A bottom images and Figure 4.3B top images). 

4.4.3 Protective role of vitamin K for calcified engineered tissues. 

Recent evidence suggests a protective role of vitamin K against calcification by exhibiting 

anti-inflammatory effects and by activating matrix Gla protein (MGP) which is considered 

a potent calcification inhibitor32. Based on this information, the potential protective effect 

of vitamin K treatment in both undifferentiated and differentiated tissues exposed to 

hyperphosphatemic Pi was investigated. Both undifferentiated and differentiated tissues 

were treated with 2.5 mM Pi for one week followed by another week with a combination 

of 2.5 mM Pi and 20 µg/mL vitamin K. Untreated tissues, 2.5 mM Pi treated tissues, and 

tissues treated with 20 µg/mL vitamin K served as controls. The tissues were then cryo-

sectioned and stained with Alizarin Red S. The results showed that while Pi-treated tissues 

(both differentiated and undifferentiated) had marked calcium deposition, the level of 

staining was reduced after vitamin K treatment (Figure 4.3B). 
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Figure 4.3. Cell-mediated calcification in differentiated and undifferentiated engineered 

vascular tissues and the protective role of vitamin K. (A) cell-free (acellular) fibrin gels 

were incubated with or without 2.5 mM of inorganic phosphate (Pi) for 7 days and stained 

using Alizarin Red S to rule out passive precipitation. In contrast, cell-based engineered 

tissues from undifferentiated and differentiated cells actively calcified over two weeks, as 

shown by the intense Alizarin Red S staining. (B)  Alizarin Red S for calcium deposits and 

immunofluorescence staining for osteogenic marker osteopontin (OPN) in differentiated 

and undifferentiated tissues are shown for the one-week calcification period.  Positive 

Alizarin Red S staining was accompanied by the expression of OPN (top four images). 

Following another week in the presence of 2.5mM Pi and 20 µg/mL vitamin K, Alizarin 

Red S staining intensity was diminished along with OPN due to the protective role of 

vitamin K (bottom four images). Scale bar = 50 µm. 
 

Furthermore, OPN immunofluorescence staining showed a similar trend (Figure 4.3B), 

corroborating the Alizarin Red S staining data. Comparing the one week with two weeks 
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of Pi-treatment histological images (Figure 4.3B top images vs. Figure 4.3A bottom 

images), it is clear that calcification increased, as shown by the intense staining at two 

weeks. Remarkably, the presence of vitamin K not only protected the tissue against further 

calcification but also considerably abrogated it. The effect of vitamin K treatment on gene 

and protein expression in these tissues was also examined. Figure 4.4A shows the level of 

osteogenic and SMC contractile marker expressions from the undifferentiated tissues 

treated with vitamin K and Pi. While Spp1 was downregulated in response to vitamin K 

treatment following calcification, none of the other osteogenic and SMC contractile genes 

were affected. 
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Figure 4. 4. The effect of vitamin K on undifferentiated and differentiated tissues gene and 

protein expression. (A) Osteogenic and contractile markers gene expression in 
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undifferentiated tissues treated with Pi, Vitamin K, or a combination. (B)  Osteogenic and 

contractile markers gene expression in differentiated tissues treated with Pi, Vitamin K or 

a combination.(C)  Immunofluorescence microscopy of contractile markers in 

undifferentiated and differentiated tissues treated with 2.5 mM Pi and in the presence of 

vitamin K. Scale bare = 50 µm. For Figs. A and B, data are means ± SD (n=3) and one-

way ANOVA and Tukey’s multiple comparison tests were used for statistical analysis. 

Different letters indicate the significance at p<0.05, while similar letters indicate no 

significance (p>0.05). 
 

Gene expression of differentiated tissues treated with vitamin K and Pi is shown in Figure 

4.4B. Osteogenic markers did not change after treating the calcified tissues with Vitamin 

K (Figure 4B1-B3); however, Vitamin K treatment was able to rescue the gene expression 

of contractile markers Acta2 and Myh11 (Figure 4B4 and B5). Similar results were 

observed from immunostaining (Figure 4.4C).   

4.4.4 The effect of exogenous partially-soluble elastin on the calcification of 

engineered vascular tissues. 

The extracellular matrix (ECM) is an integral component of tissues that not only acts as a 

structural support of its cellular components but also affects cellular processes such as 

proliferation, differentiation, survival, and apoptosis. Elastin is a major protein that is found 

in the ECM of arteries and studies have implicated elastin degradation in causing vascular 

calcification33. Thus, the effect of elastin and inorganic phosphate on the expression of 

osteogenic and SMC markers in these engineered vascular tissues was investigated. To that 

end, partially-soluble elastin was used as a surrogate to degraded elastin and its effect on 

calcification in both undifferentiated and differentiated engineered tissues was tested. 

Figure 4.5 showed the gene expression levels of Alpl, Spp1, Runx2, Acta2, and Myh11.  
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Figure 4.5. The effect of partially-soluble elastin (simulating degraded elastin) on 

calcification and de-differentiation gene expression in engineered vascular tissues. (A) 
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Contractile and osteogenic gene expression in elastin-containing non-differentiated tissues 

with or without 2.5 mM inorganic phosphate treatment. Undifferentiated tissues that do not 

contain elastin were used as controls. (B)  Contractile and osteogenic gene expression in 

elastin-containing differentiated tissues with or without 2.5 mM inorganic phosphate 

treatment. Differentiated tissues that do not contain elastin were used as controls. Data are 

means ± SD (n=3) and one-way ANOVA and Tukey’s multiple comparison tests were used 

for statistical analysis. Different letters indicate the significance at p<0.05, while similar 

letters indicate no significance (p>0.05). 
 

In the undifferentiated tissues, the presence of elastin alone did not affect the expression of 

any of the tested genes with the exception of Myh11 which was significantly downregulated 

(Figure 4.5A; p<0.05).  The addition of Pi with or without elastin did not change the 

expression of Spp1 or Runx2; however, Alp1 and Acta2 expression increased in the 

elastin+Pi group. Conversely, the expression of Myh11 was downregulated in the 

elastin+Pi group (Figure 4.5A). While Alp1 and Myh11 behavior was consistent with a 

calcifying tissue, the overexpression of Acta2 was not expected as SMC contractile markers 

were predicted to be downregulated (which is the case with Myh11).  

Differentiated tissues exhibited a different gene expression profile than undifferentiated 

tissues (Figure 4.5B). Unlike the undifferentiated tissues, partially-soluble elastin led to an 

increase in the expression of Alp1, Spp1, Runx2, and Acta2; however, Myh11 expression 

decreased. On the other hand, Pi treatment of tissues did not change the levels of Alpl or 

Spp1 with respect to the control; but, the expression levels of Runx2, Acta2 and Myh11 

decreased. Interestingly, the effect of combined elastin + Pi treatment on the differentiated 

tissues followed a similar trend as the undifferentiated tissues. The data seems to suggest 

that while elastin on its own might not affect progenitor cells, it had an effect on the 

differentiated cells by inducing them to express higher levels of osteogenic markers while 

downregulating the late SMC differentiation marker (Myh11) which indicates SMC de-
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differentiation. In addition to partially-soluble elastin, similar experiments using 

tropoelastin were conducted, and the same trend was observed for both differentiated and 

undifferentiated engineered tissues (data not shown).  

4.5 Discussion  

In this study (schematically summarized in Figure 4.6), embryonic multipotent 

mesenchymal progenitor cells (10T1/2 cells) were used to engineer vascular tissue models 

and the role of their differentiation state on calcification and associated gene and protein 

expression was studied. 

 

Figure 4.6. Schematic representation of the calcification process in differentiated and 

undifferentiated engineered vascular tissues. Progenitor cells can either be used to fabricate 

undifferentiated tissues that calcified in the presence of Pi. Alternatively, they can be 

differentiated to SMC to fabricate tissues that can calcify in the presence of Pi.  Treating 

differentiated tissues with hyperphosphatemic Pi concentration leads to the de-

differentiation of SMC by downregulating SMC-markers. The addition of vitamin K 

restores SMC-marker expression signifying a protective and rescuing role. On the other 

hand, the presence of partially-soluble elastin in the differentiated tissues led to the 

downregulation of late SMC-markers and upregulation of osteogenic markers. 
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Additionally, the treatment of undifferentiated tissues with a high concentration of Pi 

directly leads to overexpression of osteogenic markers without affecting SMC genes.  
 

Furthermore, the role of vitamin K as a protective agent of calcification was shown. Finally, 

the addition of partially-soluble elastin could lead to the de-differentiation of SMC and 

upregulation of osteogenic markers.  10T1/2 cells have emerged as a model cell in vascular 

tissue engineering and could be differentiated to SMC by expressing smooth muscle α-

actin (ACTA2), smooth muscle myosin heavy chain (MYH11) and smoothelin (SMTN) 

prior to their incorporation to the fibrin gel.  While both smooth muscle α-actin and smooth 

muscle myosin heavy chain are also expressed in myofibroblasts derived from progenitor 

cells, including 10T1/2 34, 35, smoothelin is the only definitive marker for a smooth muscle 

cell differentiation36, 37 (Figure 4.1D and Figure 4.2E). Both 2D (pre-differentiation) and 

3D (in situ) differentiation strategies have been evaluated but pre-differentiation was found 

to be more effective (Figure 4.1C). The lack of in situ differentiation was attributed to 

diffusion, where the compacted gel provided the barrier for TGFβ1 transport to induce its 

action on 10T1/2 cells. Diffusion gradients of signaling factors having typical diffusion 

coefficients in the order of 10-8 to 10-11 m2/s are known to slow stem cell differentiation in 

3D 38, 39.  

In this study, 2.5mM Pi was specified as hyperphosphatemic concentration compared to 

1.4mM which is considered as physiologic40. In response to hyperphosphatemic 

concentration, tissues engineered from undifferentiated and differentiated cells calcified, 

and such a comparative study is the first to be reported, supporting the emerging theory 

that progenitor cells to be involved in vascular calcification41. Although both aortic organ 

culture40 and engineered tissues21 have been reported, neither investigated the role of 
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progenitor cells. Both Alpl and Runx2 were significantly downregulated in response to 7 

days hyperphosphatemic treatment and indicated that degradation of mRNA or protein 

occurred as the vascular calcification developed40.  One of the findings of the current study 

is the protective action of Vitamin K against calcification in engineered vascular tissues. 

In vivo, Vitamin K activates matrix gla protein (MGP) that is a potent binder of 

hydroxyapatite and has been shown to inhibit vascular calcification by scavenging 

hydroxyapatite and calcium oxalate monohydrate crystals42, 43. In clinical observations, 

patients prescribed with the anticoagulant drug warfarin for the prevention and treatment 

of thrombotic and thromboembolic diseases had increased risk of vascular calcification 

since MGP synthesis and activity are blocked by warfarin44. Because Warfarin is a common 

therapy for dialysis patients, vascular calcification is accelerated in chronic kidney disease 

(CKD)45, 46 due to vitamin K antagonism, among other factors. In view of these prior 

studies, the engineered vascular tissues were subjected to vitamin K treatment following 

7-days of calcification to scavenge the deposited calcium phosphate deposits. To this end, 

data in (Figure 4.3) showed that vitamin K blunted further calcification and scavenged the 

deposits likely by activating matrix gla protein, thus demonstrating the ability of 

engineered vascular tissue to recapitulate in vivo studies.     

The engineered tissues did not produce detectable elastin for the studied culture time. 

However, degradation of the extracellular matrix elastin is implicated in vascular 

calcification.  An in vitro study using rat aortic SMCs showed that elastin-derived peptides 

induced osteogenic transformation of cells, and this effect was exacerbated by TGF-β147. 

In an abdominal aorta injury rat model, it is reported that calcification was the result of 
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elastin degradation induced by matrix metalloproteinases48. Furthermore, a recent study 

showed that degradation of elastin using cathepsins resulted in an 8-fold increase in 

elemental phosphate and calcium, and that elastin peptides generated by cathepsin 

degradation led to increased calcification in MOVAS-1 cells and ex vivo mouse aorta 49. In 

view of the above, partially-soluble elastin as a surrogate for degraded elastin was added 

to investigate its role in calcification-related and SMC-related gene expression in both 

undifferentiated and differentiated tissues. While partially-soluble elastin had no clear 

effect on the undifferentiated tissues, the data collectively presented in Figure 4.5B 

demonstrated that differentiated tissues upregulated osteogenic marker genes suggesting a 

calcification process. Furthermore, partially-soluble elastin downregulated smooth muscle 

myosin heavy chain (Myh11) which is a late-stage differentiation marker. This latter point, 

in turn, suggests that SMC may be switching into a synthetic phenotype which is one 

feature of vascular calcification50, 51. Engineered vascular tissues have potential 

applications to model vascular disease and to develop therapeutic targets. While there are 

several reported engineered tissue models to study disease and develop therapeutic 

agents52, engineered vascular tissues for modeling disease are notably absent except for 

two prior studies20, 21.  In the first of these two studies, engineered vascular tissues were 

investigated for lipoprotein infiltration, endothelial layer activation, and monocyte 

adhesion to model atherosclerosis20. In the most recent report21 which is related to this 

study, engineered and decellularized grafts were investigated for mineral aggregates and 

thermal and mechanical properties. Cell-containing engineered vascular tissues were 

excluded from this cited study21 to avoid secretion of mineralization inhibitors. Using 

targeted gene analysis, the present study focused on the role of progenitor and differentiated 
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cells on calcification, the effect of vitamin K to protect and rescue calcified tissues, and the 

role of partially-soluble elastin on calcification – all of which are implicated in clinical 

ectopic calcification studies.   

4.6 Conclusion 

In this study, the potential of engineered vascular tissue models to study calcification was 

reported. While tissues fabricated both from differentiated and progenitor cells can calcify, 

they do so via different gene expression profiles. Undifferentiated tissues upregulated 

osteogenic markers while differentiated tissues downregulated contractile markers under 

hyperphosphatemic conditions. Furthermore, the role of vitamin K in reducing the burden 

of hyperphosphatemic conditions on the engineered tissues was demonstrated suggesting 

a potential adjuvant therapy for patients with vascular calcification. Finally, matrix 

degradation was simulated by using partially-soluble elastin and showed that while elastin 

on its own does not affect osteogenic markers in undifferentiated tissues, it leads to SMC 

de-differentiation and switching to an osteogenic marker expressing tissue. Collectively, 

this study demonstrated these tissue models are promising platforms to study disease and 

potential therapies.  
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Chapter 5 

Vimentin involvement in Notch signaling and 

neovascularization: an exploratory study 

Overview: Notch is a tightly regulated pathway central to the development and pathology 

of vascular tissues. Recent studies suggested that the intermediate filament vimentin may 

be needed for efficient Notch signaling to occur. In this chapter, the role of vimentin in the 

regulation of the Notch pathway, and the formation of micro-vessels is explored. The data 

reported are exploratory studies. 

5.1 Summary 

The Notch signaling pathway is a conserved pathway that is central in vascular tissue 

development and pathology. Because this pathway controls such important events, it is 

regulated at multiple steps of its cascade, such as post-translational modification of its 

ligand and receptor. Recent studies have suggested regulation of the Notch signaling by a 

pulling force required for the activation of the Notch signaling to take place. In this 

exploratory study, 3D fibrin gels were used as a coculture system of endothelial cells and 

10T1/2 cells to assess whether vimentin is implicated in the regulation of Notch signaling 

and neovascularization. The results show that 10T1/2 cells increase the expression of Hes-

1, Hes-5 and Acta2 during coculture with human coronary artery endothelial cells 

(HCAECs) and that vimentin knock-down using siRNA partially reduced the expression 

under static conditions. On the other hand, while the same trend was observed for Hes-5 

under dynamic conditions, Acta2 was overexpressed, and vimentin knock-down did not 

affect its expression levels. Moreover, the development of newly formed micro-vessels is 
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observed in 3D fibrin gels in the presence of VEGF but could not be formed when vimentin 

expression was knocked down. These results suggest that vimentin plays a secondary role 

in Notch signaling; however, it is essential for neovascularization. 

5.2 Introduction 

Vimentin is a type of intermediate filament protein and is a major component of the 

cytoskeleton. It is widely expressed in many tissues, including the brain, lung, liver, 

gastrointestinal tract, kidneys etc. The vimentin monomer is a 466 amino acid protein and 

has a molecular weight of about 53 kDa (NCBI Reference Sequence: NP_003371.2). 

During assembly, two vimentin polypeptides align and bind, forming a dimer. This step is 

followed by the lateral binding of two dimers to form a tetramer, then eight tetramers bind 

side-by-side, forming the unit length fiber (ULF). The ULFs are the basic building blocks 

of the vimentin intermediate fibers that join end to end1 (Figure 5.1). The assembly of 

vimentin fibers is regulated by phosphorylation of serine residues, which has been shown 

to disassemble the fibrillar structure of vimentin2. Vimentin mainly functions as a structural 

support protein, and earlier studies in vimentin knock-out mice showed that its absence has 

no effect on the survival of mice which showed no obvious abnormalities3. On the other 

hand, more recent studies have shown that it is involved in important cellular processes. 
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Figure 5. 1. Schematic representation of the assembly of vimentin intermediate fibers. 

 

As an example, vimentin plays a role in cell adhesion due to its ability to interact with 

integrin at focal adhesion sites4. Furthermore, vimentin knock-down in alveolar epithelial 

cells using shRNA has been shown to reduce their mobility and consequently affect wound-

closure rates in an in vitro model of lung injury, and ectopic expression of vimentin 

reversed those effects5. Vimentin has also been implicated in other important processes 

such as proliferation6 and differentiation7.  

Interestingly, vimentin has been shown to play a role in regulating signaling pathways, for 

example, by transporting kinases from one part of a cell to another8, or localizing receptors 

to the cell surface9. Of importance to this research, new evidence suggests that the Notch 

signaling pathway requires a force pulling on the ligand-bound receptor to activate the 

signal10, 11. Naturally, the pulling force has to be exerted by the cytoskeleton component, 

and while some studies suggest that the actin fibers are involved11, other studies have 



127 

 

pointed to vimentin12, 13. Although the Notch signaling pathway is known to be a prominent 

regulator of vascular development and homeostasis14-16, it is still not a well-understood 

pathway due to its complex regulation and context-dependence. In this exploratory study, 

the role of vimentin in regulating the Notch pathway signaling and its role in 

neovascularization is inspected.  

5.3 Materials and Methods 

5.3.1 Cell culture and tissue fabrication. 

Embryonic multipotent mesenchymal progenitor cells (10T1/2 cells) (ATCC) were 

maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco) supplemented with 

5% v/v Fetal Calf Serum (Gibco) and 1% v/v penicillin/streptomycin (Life Technologies). 

Human coronary artery endothelial cells (HCAEC) (Lonza) were maintained in EGMTM-2 

Endothelial Cell Growth Medium-2 BulletKitTM (Lonza). Spent media was exchanged with 

fresh media every three days for 10T1/2 cells and two days for HCAECs. Cells were 

passaged when confluency reached around 80%. For certain experiments, HCAECs were 

treated with 3 ng/mL VEGF, EGF, or bFGF or transfected with vimentin siRNA for 3 days 

prior to coculture with 10T1/2 cells. Some experiments were performed under dynamic 

conditions indicating that the culture plates were incubated on an orbital shaker for 30 

minutes at a speed of 120 rpm for a period of 3 days. 

To fabricate engineered vascular tissues, cultured cells were trypsinized with trypsin-

EDTA 0.05% (Thermofisher) for 2 min and then suspended in DMEM. The cells were 

counted, and the appropriate volume was taken from the cell suspension to give a final cell 

count of 10 million cells/mL of tissue construct. The cells were then centrifuged at 1200 
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rpm for 5 min, the supernatant aspirated and cells resuspended in 150 µL of media. To that, 

3 µL of 2 M CaCl2 and 5 µL of 10 mg/mL ε-aminocaproic acid (ε-ACA) (Sigma-Aldrich), 

and 1 µL of 1U/µL Thrombin (MP Biomedicals) were added. The cell suspension was kept 

on ice until it was mixed with ice-cold 150 µL solutions of 6 mg/mL bovine fibrinogen 

(MP Biomedicals) to give a final concentration of 3 mg/mL fibrinogen per construct. Right 

after mixing the two solutions, the mixture was transferred into a 5 mL round-bottom tube. 

The tubes were then transferred to an incubator at 37 ºC for 1.5 h for crosslinking. A 3 mL 

volume of prewarmed DMEM was then added to the tube. The next day, HCAECs were 

trypsinized using the same procedure, and 1.0 × 104 cells were added to the cultured tissues 

to form an endothelial cell layer, followed by overnight incubation of the tissues to allow 

the endothelial cells to adhere. After that, the tissues were taken out of the tubes and 

cultured in a 50:50 mixture of DMEM: EGM in a culture plate. 

5.3.2 Capillary formation assay in fibrin gel. 

Tissue plugs made of 3 mg/mL fibrinogen and containing a mixture of 10T1/2 (10 million 

cells/mL) and HCAECs or siRNA transfected HCAECs (3 million cells/mL) were made in 

a similar fashion to the tissue preparation protocol above. These plugs were then embedded 

in 1 mg/mL fibrinogen gels containing 3 ng/mL VEGF or a mixture of 3 ng/mL EGF and 

bFGF and incubated for a period of 10 days in the presence or absence of 10 µM FOXC2-

inhibiting Vimentin effector 1 (FiVe1). The HCAECs cells were stained with cell tracker 

red (Life Technologies). 
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5.3.3 Vimentin knock-down with siRNA. 

To knock down the expression of vimentin in HCAECs, siRNA reverse transfection 

protocol was used as described by the manufacturer (Life Technologies) in 24 well plates. 

The following protocol is based on 1 well of a 24 well plate. In brief, the siRNA-

lipofectamine complex was prepared by diluting 6 pmol siRNA in 100 µL of serum and 

antibiotic-free DMEM. To that, 2 µL lipofectamine RNAiMAX (Life Technologies) was 

added and mixed gently and then transferred to a plate well. The mixture was incubated at 

room temperature for 30 minutes. A cell suspension containing 5 × 104 cells /mL was 

prepared, and 0.5 mL of this suspension was added to each well containing the siRNA-

Lipofectamine complex. The plate was incubated for 3 days at 37°C in a CO2 incubator 

before using the cells to allow sufficient time for knock-down. Scrambled siRNA and non-

transfected cells were used as control. 

5.3.4 Immunofluorescence microscopy. 

For 2D studies, cells were seeded in 6-well plates containing a coverslip at a density of 2.5 

× 105 cells per well. After 24 h, cells were either left untreated or were treated with control, 

3 ng/mL bFGF, EGF, VEGF, or treated with 5 µM of FiVe1 for 3 days. After the culture 

period, cells were washed with PBS and fixed with 4% paraformaldehyde for 15 min at 

room temperature (RT).  

Engineered tissues were fixed overnight in 5 mL tubes, washed with PBS 3 times, and 

incubated first in a 15% and then in a 30% solution of sucrose at RT until the tissues sunk 

to the bottom of the tube. The fixed tissues were dabbed using a paper towel to remove the 

excess liquid. After that, the tissues were immersed with OCT compound (Fisher) and 
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transferred into -80 ºC isopropanol. Tissue sections (30 µm thickness) were obtained by 

using a Leica cryostat (Leica) and placed on microscope slides. The slides were washed 

with PBS 3 times for 5 min each to remove the OCT compound. Cells/tissue sections were 

permeabilized with a 0.2% (v/v) Triton x-100 in PBS for 15 min at room temperature and 

then blocked with 5% BSA in PBS-T for 1 h at RT. The blocking solution was aspirated, 

and 100 µL of the appropriate primary antibodies anti-Acta2 and Hes-5 antibodies from 

mouse (Santa Cruz Biotech)) (1:100) in 5% BSA PBS-T were placed on the coverslip and 

covered with a piece of parafilm, and placed in a humid environment at 4º C overnight. 

The cells/tissues were washed 2 × with PBS-T and once with PBS for 5 min each, then 

incubated with the corresponding secondary antibody (Alexa-488 conjugated goat anti-

mouse and Alexa-594 conjugated goat anti-rabbit (Life Technologies)) (1:150)  in 5% BSA 

PBS-T for 1 h at RT in the dark. The coverslips were then washed 2 × with PBS-T and 

once with PBS and incubated with 2 µg/mL DAPI for 5 min, washed with PBS 3 times and 

mounted with anti-fade mounting media. The images were taken by Zeiss Z1 fluorescent 

microscope.  

5.3.5 Endothelial cell separation with PECAM beads. 

For experiments where HCAECs were cocultured with 10T1/2 cells, the two cell types 

were separated using PCAM-conjugated magnetic beads17, 18. Briefly, the cocultured cells 

were washed with HBSS and trypsinized as above. After trypsinization, the cells were 

suspended in DMEM containing 5% FBS then centrifuged at 1200 rpm at room 

temperature for 5 minutes. The supernatant was discarded, and the pellet was resuspended 

in PBS containing 0.1% BSA. PECAM conjugated magnetic beads were used to separate 

the two cell types by using 100:1 bead to HCAECs ratio. After adding the beads to the cell 
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suspension, the tubes were tumbled end-over-end for 30 minutes at 4 ºC. The beads-bound 

cells were then captured using a magnetic rack and the rest of the suspension containing 

the 10T1/2 cells were collected and centrifuged at 1200 rpm at 4 ºC for 5 minutes. The 

10T1/2 cells pellet was collected and washed with ice-cold phosphate-buffered saline 

(PBS) until further use. 

5.3.6 RNA isolation and qPCR.  

Pelleted 10T1/2 cells that were separated from HCAECs were collected by centrifugation 

and 500 µL of Trizol (Life Technologies), and cells were lysed by repeated pipetting. Cells 

were lysed for 10 min at RT, and chloroform was added at a ratio of 1:5 

(chloroform:Trizol), and the samples were vortexed for 15 sec then incubated at RT for 15 

min. Samples were then centrifuged at 4 ºC and 12000×g for 15 min. The organic phase 

was discarded, and the aqueous phase was transferred to another Eppendorf tube. 

Isopropanol was added at a ratio of 1:2 (isopropanol:Trizol) and incubated at RT for 10 

min followed by centrifugation at 12000×g for another 10 min at 4 ºC. The isopropanol 

was then aspirated, and the pellet was resuspended in 75% EtOH at a ratio of 1:2 

(EtOH:Trizol) and centrifuged at 7500×g for 5 min at 4º C. This last step was repeated 

twice to wash excess salts. The pellet was air-dried after the EtOH was removed, dissolved 

in 25 µL of DEPC water, and quantified with nanodrop (Thermo Scientific). 1 µg of total 

RNA was used to synthesize cDNA using M-MLV reverse transcriptase kit (Promega) 

using the supplier’s protocol. For qPCR reactions, 1 µL of the formed cDNA was used in 

10 µL reactions using the SsoAdvanced universal SYBR green supermix (Bio-rad) 

according to the manufacturer’s protocol. The qPCR reactions were carried out in a CFX96 

Real-Time thermal cycler (BioRad), and GAPDH was used as a reference gene. 
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5.3.6 Western blotting. 

The PECAM separated 10T1/2 cells were harvested using centrifugation and lysed in ice-

cold RIPA buffer (50 mM Tris-Cl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% (v/v) Triton 

X-100, 0.25% (w/v) sodium deoxycholate and 0.1% (w/v) SDS pH: 7.5) containing 

protease inhibitor cocktail (Roche) and 1 µM Phenylmethanesulfonyl fluoride (PMSF). 

The cells were kept on ice for 15 min to allow for lysis to complete. Lysates were 

centrifuged at 12000 rpm for 15 min. The pellets were discarded, and the supernatants’ 

protein contents were quantified using the Pierce BCA protein assay protocol (Pierce). 

Protein samples were resolved by SDS-PAGE and transferred onto a nitrocellulose 

membrane (Pall life sciences). Blocking the membrane was performed with 5% BSA 

(Sigma-Aldrich) in PBS with 0.1% Tween-20 (PBS-T) and Western blotted with the Acta2 

(1:1000), Hes5 (1:500), and GAPDH (1:1000) primary antibodies (Santa Cruz Biotech) 

diluted in 5% BSA in PBS-T overnight at 4º C. The blots were then washed 2 × with PBS-

T for 5 min each, and 1 × with PBS for 5 min, followed by incubation with goat anti-mouse 

secondary antibody (1:5000) diluted in 5% BSA in PBS-T for 1 h at room temperature. 

Finally, the blots were washed as before and incubated with Supersignal west pico 

chemiluminescence substrate (Pierce) and developed using ChemiDoc XRS+ (BioRad). 

5.3.7 Statistical analysis. 

Data are presented as the means of at least three independent experiments, and the error 

bars represent the standard deviation from the means. Statistical significance was 

calculated using one-way ANOVA. Tukey’s multiple comparison tests were used for post-

hoc statistical analysis. For statistical significance, p-value of <0.05 was used. 
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5.4 Results and Discussion 

5.4.1 Endothelial cell vimentin expression and knock-down. 

The expression of vimentin in endothelial cells is shown in Figure 5.2. Endothelial cells 

were treated with different growth factors bFGF, EGF and VEGF at a 3 ng/mL 

concentration. Inhibition of vimentin filament formation is accomplished by adding 5 µM 

FiVe1 or transfecting endothelial cells with vimentin siRNA. The data showed that the ECs 

cultured in the presence of bFGF grow in close contact with each other similar to the 

control. On the other hand, cells treated with EGF or VEGF were separated, which may 

indicate endothelial-to-mesenchymal (EndMT) transition due to loss of cell-cell contact19. 

This transition is important for the formation of new microvasculature20. Furthermore, ECs 

treated with VEGF and EGF exhibit an elongated shape of the vimentin filament network 

which might also be an indication of the EndMT transition19. The addition of Five1 into 

the culture or transfection of ECs with vimentin siRNA disrupts the vimentin fibers 

assembly. As expected, the level of expression of vimentin is also reduced in the transfected 

ECs. 
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Figure 5.2. Fluorescence microscopy of expression of vimentin in HCAEC. HCAEC were 

treated with 3 ng/mL of each bFGF, EGF, and VEGF. Vimentin filament disruption is 

shown by the addition of 5 µM FiVe1 or vimentin knock-down using vimentin siRNA. 

Scale bar = 50 µm. 

 

5.4.2 Role of vimentin in Notch signaling in static and dynamic cultures. 

To assess the role of vimentin in the regulation of the Notch signaling pathway, 10T1/2 

cells were cocultured with endothelial cells (EC), or ECs treated with VEGF, or ECs 

transfected with the vimentin siRNA. Figure 5.3. A shows the expression of three Notch 

target genes, Hes-1; Hes-5 and Acta2, under static conditions.  
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Hes-1 was upregulated in the presence of ECs regardless of EC treatment conditions. Hes-

5 expression was also upregulated in the presence of ECs; however, its expression was 

reduced slightly when vimentin expression was knocked down with siRNA; however, it 

was still higher than control levels. The expression of Acta2 increased in the presence of 

ECs and EC (siRNA) and it was further increased in the VEGF treated ECs. A similar trend 

is observed for the protein expression of Hes-5 and Acta in figure 5.3.C. These results 

show that in static conditions, only the expression of Hes-5 was affected by the knock-

down of vimentin expression. 
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Figure 5.3. Coculture of 10T1/2 and HCAEC in static and dynamic conditions. (A) Hes-

1, Hes-5 and Acta2 gene expression of 10T1/2 cells cocultured with EC, EC treated with 
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VEGF (EC(VEGF)) or EC transfected with vimentin siRNA (EC (siRNA)) in static culture 

conditions. (B) Hes-1, Hes-5, and Acta2 gene expression of 10T1/2 cells cocultured with 

EC, EC(VEGF), and EC (siRNA) in dynamic culture conditions. Letters on top of the 

columns are used for statistical analysis. Different letters indicate a statistically significant 

difference (p<0.05), whereas the same letters indicate no statistical difference (p>0.05). 

(C) Western blot analysis of Acta2 and Hes5 proteins in 10T1/2 cells cocultured with EC, 

EC(VEGF), or EC (siRNA); GAPDH was used as a loading control. 

 

Due to its tight interaction with integrins, vimentin functions as a mechanosensor of 

external forces from outside the cell and relays them to the nucleus allowing the cells to 

respond to such forces21.  Due to this, the static culture conditions were repeated in dynamic 

conditions to assess whether shear forces might have an effect on the role of vimentin in 

regulating the Notch signaling. Under dynamic conditions, the expression of the Hes-1 

gene increased in the presence of EC and is slightly reduced when vimentin is knock-down 

by siRNA (Figure 5.3.B1). A similar pattern is observed for the Hes-5 gene in Figure 

5.3.B2. On the other hand, the expression of Acta2 is upregulated in the presence of EC 

regardless of EC treatment (Figure 5.3.B3). These patterns are reflected at the protein level 

shown by the Western blot (Figure 5.3.C.). These results show that vimentin might play a 

partial role in the Notch signal regulation because there was a slight decrease in the 

expression of Hes-5 when vimentin was knocked down even though the other genes were 

not downregulated. Interestingly, Figure 5.3.C shows that while the expression of Hes-5 

was generally lower in dynamic conditions, a comparison between the control groups of 

static vs. dynamic cultures shows a slight upregulation of the Hes-5 gene. On the other 

hand, the expression of Acta2 appears to be generally upregulated in dynamic conditions. 

This might suggest that shear force alone plays a role in regulating Notch even though it 

might not be through vimentin. The cytoskeleton is a complex network of interconnected 
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microfilaments, intermediate filaments, and microtubules and therefore, there might be a 

redundancy in the role of the cytoskeleton in regulating the Notch signal. Thus, despite the 

vimentin expression was knocked down, other cytoskeletal components might compensate 

to keep vital signaling pathways operational.  

5.4.3 Vimentin filament disruption partially affects Notch signaling. 

The effect of vimentin filament disruption was tested on the Hes-1, Hes-5 and Acta2 gene 

expression levels in 10T1/2 cells cocultured with HCAECs in 2D cultures. Figure 5.4.A 

shows that disruption of vimentin filament networks did not significantly affect the gene 

expression of Hes-1 or Hes-5 Notch target genes even though there was a downward trend 

in expression of both these genes in the FiVe1 treated group. On the other hand, while 

Five1 treatment reduced the gene expression of the Acta2 gene, its expression was still 

higher than the control.  Conversely, Acta2 protein expression levels remained high in 3D 

coculture even in the presence of FiVe1 treated HCAECs, as shown in Figure 5.4.B. This 

data shows that while vimentin filament disruption slightly decreased the gene expression 

of Notch downstream targets, its effect is minimal and does not have a noticeable effect on 

the protein expression level (Figure 5.4.B). This could be due to the redundant role of 

intermediate filaments such as vimentin, where the disruption of one filament network is 

compensated by other elements in the cytoskeleton. 
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Figure 5.4. Gene and protein expression of 10T1/2 cocultured with HCAEC in 2D and 3D, 

respectively. (A) Hes-1, Hes-5 and Acta2 gene expression in 10T1/2 cells cocultured with 

HCAECs on 2D.  (B) Immunofluorescence microscopy showing expression of Acta2 in 

3D coculture of 10T1/2 and HCAEC in control vs FiVe1 treated tissues. Scale bar = 50 

µm. 

 

5.4.4 Vimentin plays a role in endothelial cell migration and micro-vessel 

formation. 

The ability of endothelial cells to migrate in a 3D environment was tested in response to 

angiogenic growth factors (bFGF + EGF or VEGF). Furthermore, the effect of vimentin 

disruption on this process was tested using a small molecule inhibitor, FiVe1, or gene 

expression knock-down using vimentin siRNA (Figure 5.5).  
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Figure 5.5. Endothelial cell migration and neovascularization in 3D fibrin gel. (A) 

Migration of endothelial cells into low concentration fibrin gel in the presence of bFGF 

and EGF and FiVe1 treated gels. (B) Micro-vessel formation in 3D fibrin gels containing 

VEGF, or HCAECs that were previously transfected with vimentin siRNA. Scale bar = 50 

µm. Dashed white lines indicate tissue outline. The green arrows indicate Acta2 positive 

cells. 

 

The results showed that angiogenic growth factors were able to induce migration of 

endothelial cells out of the 3 mg/mL fibrin gel and into the less concentrated 1 mg/mL 

fibrin gel, which contained the growth factors (Figure 5.5). On the other hand, when 

vimentin filament fiber formation was inhibited, migration was greatly affected. 

Furthermore, while bFGF and EGF combination has been shown to induce growth and 

proliferation in endothelial cells22, VEGF is a notably more potent angiogenic factor since 
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the sprouting micro-vessels are better organized (Figure 5.5.B). Moreover, these micro-

vessels were able to recruit 10T1/2 cells that expressed Acta2 as shown by the green 

staining indicated by the arrows (Figure 5.5.B). Contrarily, siRNA transfected HCAECs 

were not able to migrate out of the 3 mg/mL fibrin; however, they were able to induce 

expression of Acta2 in 10T1/2 cells (Figure 5.5.B), which is in agreement with Figure 

5.4.B. Taken together, these exploratory study results showed that vimentin plays an 

important role in the migration of endothelial cells and recruit 10T1/2 cells to form micro-

vessels.  

5.5 Conclusion 

In this exploratory study, the role of vimentin in the regulation of Notch signaling and 

neovascularization was explored. The results demonstrated that vimentin plays a limited 

role in Notch signaling, as evidenced by a slight reduction of certain Notch signaling targets 

(Hes-5 and Acta2) when vimentin filaments were inhibited. However, vimentin plays a 

much important role in micro-vessel formation, which allows endothelial cells to migrate 

and recruit 10T1/2cells in response to VEGF. While these pilot results shed some light on 

the role of vimentin in the Notch signaling and neovascularization, more research is 

required to fully elucidate the role of this intermediate fiber in the context of vascular 

development. 
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Chapter 6 

General discussion 

Overview: In this chapter, a general summary of the work done during this research project 

is provided, highlighting important findings. Furthermore, some limitations of this work 

are mentioned, and recommendations are suggested.  

6.1 Summary and conclusions 

In this research project, engineered vascular tissues were used to study the Notch signaling 

pathway and vascular calcification in a physiologically relevant 3D culture system. These 

are novel and useful tools to improve the current understanding of the physiology and 

pathology of the vascular system. Fibrin gel-based vascular tissues were prepared with two 

types of cells to study Notch signaling. Fibrin is known for its biocompatible properties, 

which has been shown to support important cellular processes and has been widely used as 

a biomaterial in vascular tissue engineering1, 2. Physical properties of the fibrin gels were 

tested using rheology, water contact angle, and water mass loss studies. Initially, human 

coronary artery SMCs were selected due to their relevance to vascular tissue engineering; 

however, their extremely limited proliferation potential was an obstacle to obtain enough 

cells to fabricate the tissues. The reason behind the slow proliferation rate is that it heavily 

depends on the age and health of the donor. Therefore, A-10 and 10T1/2 cells were chosen 

as alternatives to the human coronary artery SMCs due to their rapid proliferation potential.  

A-10, 10T1/2 and HCAEC have been coculture in these tissues in various combinations 

and the Notch pathway activation was assessed. In the framework of this study, endothelial 
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cells were used as signal sending cells due to their expression of Jag1 ligand. The A-10 

cells and 10T1/2 cells were used as signal-receiving cells. The former of these two cell 

lines is an embryonic smooth muscle cell from a rat and the latter is a mouse progenitor 

cell line. In this study, the activation of the Notch signaling in these two cell lines were 

evaluated by assessing downstream targets of Notch such as Hes1, Acta23.  

Fibrin gels were found to lose around 70 % of their mass during culture conditions over a 

3-day period. This was attributed to water expulsion rather than degradation since the 

plasmin inhibitor ACA was present throughout the culture period. SEM images also 

confirmed that fibrin fibers did not seem to be degraded after 3 days of culture. Moreover, 

it was expected that the presence of cells might affect the contraction of these gels; 

however, the presence of cells up to a concentration of 1 million cells had no effect, and 

the concentration of fibrinogen had a bigger effect on contraction. Additionally, cell studies 

showed that while 10T1/2 cells were shown to be responsive to the activation of the Notch 

signaling by endothelial cells, A-10 cells failed to do so likely due to cis-inhibition. It is 

well established that Notch signaling is extremely context-dependent despite its simple 

transduction mechanism4. Furthermore, Notch is implicated in key processes during 

vascular development since disruption of this pathway has been shown to cause 

underdeveloped vasculature as well as the progression of certain diseases5-8. Since this 

pathway was activated in 10T1/2 cells, which are considered multipotent cells that are not 

terminally differentiated, it can be concluded that the Notch signaling plays an active role 

in cell commitment. On the other hand, because Notch signaling was not activated in A-10 

cells, which are committed but immature SMCs, it might be possible that other signaling 
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pathways that crosstalk with Notch must be regulated to drive differentiation of these 

SMCs into a contractile phenotype. Indeed, other pathways are involved in the 

development and maintenance of the vasculature do cross-talk with the Notch pathway9.  

The results in chapter 3 demonstrate the context-dependence of the Notch signaling 

pathway and introduce fibrin-based tissues as a relevant tool that can be used to further 

understand this important pathway and, consequently, the development of better-

engineered tissues. 

Vascular calcification is a common occurrence in the elderly population and in patients 

suffering from chronic kidney disease. While much of  the current understanding of 

vascular calcification comes from studies in 2D cell culture and animal models, EVTs can 

be a powerful tool in the researchers' repertoire that can accelerate the understanding of 

this disease and aid in devising strategies to reduce its impact on the affected populations. 

In chapter 4, 10T1/2 cells were used in both their undifferentiated and differentiated forms 

to shed light on the progression of calcification in an isolated culture system. There is a 

debate in the literature about the source of cells that contribute to the vascular calcification. 

Some research points towards SMCs10 while others attribute it to circulating stem cells11, 

12. Results in chapter 4 showed that tissues made from both undifferentiated and 

differentiated 10T1/2 cells calcified, albeit via different mechanisms. Undifferentiated 

10T1/2 cells upregulated certain osteogenic markers, while differentiated cells down-

regulated SMCs markers in response to the calcification stimulus. However, both tissues 

expressed osteopontin. This commonality between the two types of tissues might be a 
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coping mechanism of cells to reduce the concentration of cytoplasmic calcium by 

sequestering it using osteopontin and then exporting it outside the cell. 

Furthermore, elastin degradation has been linked to vascular calcification13. In the elderly 

population, elastin degradation is a natural aging process and might contribute to vascular 

calcification. The degradation of elastin was simulated by incorporating a partially soluble 

form of elastin into the tissues. Interestingly, the two tissue types responded differently to 

this stimulus on the genetic level. While undifferentiated tissues were largely unaffected, 

differentiated tissues downregulated late SMC markers and upregulated osteogenic 

markers in the presence of elastin. Moreover, the engineered tissues were used to test the 

effectiveness of vitamin K in reducing the burden of calcification. Vitamin K is a lipid-

soluble molecule that plays a role in coagulation; however, it has also been shown to help 

reduce calcification14. Vitamin K activates the calcium-binding protein matrix gla protein, 

by carboxylation leading to attenuated calcification. Therefore, the calcified engineered 

tissues were used to test the efficacy of vitamin K to diminish the extent of calcification. 

Both types of tissue responded to vitamin K treatment, which reduced the level of 

calcification and downregulated osteopontin protein expression. Data collectively 

presented in Chapter 4 revealed the potential of engineered tissues to study and model 

diseases and test drugs. This strategy can narrow the focus of research work before moving 

into animal models to study the problem on a systemic level. 

Chapter 5 is an extension of chapter 3. Notch signaling has been shown to require a pulling 

force to be activated. While this concept is still debatable, it might also be context 

dependent. Unsurprisingly, the involvement of a mechanical force suggests that the 
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cytoskeletal components are at play. While some studies showed that the actin-myosin 

might be responsible for that force15, other studies suspect vimentin16, 17. The preliminary 

results in chapter 5 showed that while inhibition of vimentin fiber formation may partially 

reduce the strength of the Notch signaling, it does not completely inhibit it. This may 

indicate that the cytoskeleton as a whole, including the microfilament, intermediate 

filaments, and microtubules, contribute to a certain extent in generating that force. 

Moreover, the results show that vimentin plays a key role in forming new vessels since 

knocking its expression down or inhibiting its polymerization will prevent 

neovascularization. However, more research is needed to explore the role of intermediate 

filaments in Notch signal regulation. 

6.2 Contribution to the research field 

In this thesis, engineered vascular tissues fabricated from fibrin hydrogels were used in a 

novel approach to study the Notch pathway. Notch signaling is a central pathway for 

vascular development and homeostasis. While this pathway was discovered over a century 

ago, there is still much to uncover due to its context-dependence. Much of the knowledge 

we have of Notch signaling comes from 2D cell culture and animal models; therefore, 

utilizing fibrin-based tissues sheds a different light on this pathway. One of the first steps 

of this research was to characterize the properties of this cell culture system. While 

previous studies have shown that fibrin gels compact18, kinetic changes in the mass of these 

gels were shown here. Furthermore, these results also show acellular fibrin gel compaction.  

On the signaling front, the two cell lines used in these studies responded oppositely, which 

highlights context-dependence. Differentiated but immature SMCs cell line A-10 failed to 
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activate Notch signaling, while multipotent 10T1/2 cells upregulated Hes- and SMC 

markers in response to coculture with endothelial cells. This upregulation was abolished 

when treated with DAPT, signifying that the upregulation of SMC markers was via the 

Notch pathway. The dichotomy in the response of these two cell lines suggests that Notch 

signaling is not as simple as cell-cell interaction, but other factors affect the activation of 

this pathway. Furthermore, preliminary results on the role of vimentin in Notch signaling 

was also explored. These results indicate that the cytoskeleton is not merely for structural 

support, but different cytoskeletal components might play a complementary part to control 

vital processes such as signaling mechanisms.  

Additionally, the use of engineered vascular tissues to study the effect of calcification on 

progenitor and differentiated cells was the first of its kind. The source of calcifying cells in 

the vasculature has never been studied in engineered tissues. In this work, 10T1/2 were 

used as model cells because it serves the role of both progenitor and differentiated SMCs. 

There is debate as to what are the source of calcifying cells in the literature. Results in this 

work have shown that both progenitor and differentiated cells are capable of calcifying in 

response to high concentrations of inorganic phosphates. However, the two phenotypes 

calcify through different processes, which were ameliorated with the treatment of vitamin 

K. Moreover, elastin degradation was simulated by adding elastin to the engineered tissues 

and also showed different gene expression profiles between the two types of tissues. This 

work underscores the practicality of engineered tissues to study vascular calcification and 

lays the foundation for further studies. 
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6.3 Limitations 

Even though fibrin is a promising hydrogel commonly used in engineered vascular tissues, 

it is not a protein found in the ECM of vascular tissues. Fibrin gel was chosen as a 

biomaterial for its well-established biocompatibility and the ability to incorporate cells in 

the process of fabrication, allowing for high cell density tissues. However, it is only meant 

as a temporary scaffold that would be remodeled and replaced by ECM proteins secreted 

by the resident cells. Collagen and elastin are the main proteins found in the ECM of 

vascular tissues. While elastin is challenging to incorporate into the hydrogel due to low 

solubility, collagen would be a good alternative for fibrin, or maybe a mixture of fibrin and 

collagen could be used for further studies. 

Another limitation of this research is the use of non-human A-10 and 10T1/2 cells which 

are sourced from rats and mice. The use of these cells was due to the slow proliferation rate 

of human smooth muscle cell types, which often depends on the donor's age and health 

status. Nevertheless, the use of A-10 and 10T1/2 cells has provided valuable information 

that can be used to design future studies using human cells. 

Vascular tissues are continuously exposed to pulsatile and shear forces. The work in this 

thesis was done mostly in static conditions, yet another limitation that can be addressed to 

reflect a more realistic environment. 

6.4 Recommendations 

This research project has laid the foundation for the use of engineered vascular tissues to 

study cell signaling and disease. However, it also warrants further research to advance the 

understanding of vascular development and disease which will ultimately lead to a better 
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engineered tissues. For that purpose, the following are some suggestions that can build on 

this work: 

1- Incorporation of relevant ECM proteins: Collagen can be incorporated or produced 

by cells by the addition of ascorbic acid into the media. Collagen is a major component 

of the vasculature and might provide a more relevant microenvironment for cells.  

2- Mechanical stimulation: Pulsatile and shear forces are known to be important for the 

development of tissues and the progression of diseases. Furthermore, these forces might 

play a role in the activation of signaling pathways such as Notch signaling. Therefore, 

it would be beneficial to expose those tissues to dynamic forces and study the effect 

they have on either the signaling or progression of calcification. 

3- Human sourced cells: Ultimately, these studies are geared towards an understanding 

of human physiology and pathology. Therefore, it would be useful to utilize human-

sourced cells that can give more relevant results. Cells like mesenchymal stem cells or 

induce pluripotent stem cells are good candidates due to their relatively high 

proliferation rate prior to differentiation.  
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