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Role of Dimensionality in Predicting the Spontaneous
Behavior of the Brain Using the Classical Ising Model

and the Ising Model Implemented
on a Structural Connectome

Pubuditha M. Abeyasinghe,1,2 Demetrius Ribeiro de Paula,1,2 Sina Khajehabdollahi,1,2

Sree Ram Valluri,1 Adrian M. Owen,2,3 and Andrea Soddu1,2

Abstract

There is accumulating evidence that spontaneous fluctuations of the brain are sustained by a structural architec-
ture of axonal fiber bundles. Various models have been used to investigate this structure–function relationship. In
this work, we implemented the Ising model using the number of fibers between each pair of brain regions as
input. The output of the Ising model simulations on a structural connectome was then compared with empirical
functional connectivity data. A simpler two-dimensional classical Ising model was used as the baseline model for
comparison purpose. Thermodynamic properties, such as the magnetic susceptibility and the specific heat, illus-
trated a phase transition from an ordered phase to a disordered phase at the critical temperature. Despite the dif-
ferences between the two models, the lattice Ising model and the Ising model implemented on a structural
connectome (the generalized Ising model) exhibited similar patterns of global properties. To study the behavior
of the generalized Ising model around criticality, calculation of the dimensionality and critical exponents was
performed for the first time, by introducing a new concept of distance based on structural connectivity. Same
value inside the fitting error was found for the dimensionality in both models suggesting similar behavior of
the models around criticality.

Keywords: criticality; dimensionality; generalized Ising model; graph theory; structure–function relationship

Introduction

The relationship between the spontaneous activity of
the brain and its structural fiber distribution is a critical

topic in neuroscience. This relationship will allow us to bet-
ter understand the emergence of complex but flexible dy-
namics (brain functions) in the brain from its underlying
structural network. The structure–function relationship is
commonly investigated using two main approaches. First,
statistical methods directly compare resting-state functional
connectivity patterns with the structure. Statistical compari-
sons lead to important results indicating the presence of a
significant correlation between anatomical fiber distribution
and functional connectivity patterns (Barttfeld et al., 2015;

Liégeois et al., 2015; Van Den et al., 2010). The other com-
mon approach to understand the structure–function relation-
ship of the brain is by using simple mathematical models that
could capture the complex dynamics of the brain.

There are several models that have been used to discuss the
spontaneous behavior of the brain, including the Neural mass
model, the Kuramoto model, and the well-known two-
dimensional (2D) classical Ising model. The Neural mass
model and the Kuramoto model have been successful in pro-
viding evidence for the existence of a connection between
the anatomical structure and the spontaneous fluctuations of
the brain as captured by functional Magnetic Resonance Imag-
ing (fMRI) (Acebrón et al., 2005; Breakspear et al., 2010;
David et al., 2004; Deco et al., 2009; Honey et al., 2009).
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The classical Ising model was developed by Ernest Ising
(Brush, 1967) to explain the phase transition to ferromag-
netic behavior at a critical temperature. It has been used to
investigate brain dynamics by Fraiman et al. (2009). The
classical Ising model is a relatively simple model with only
one fitting parameter, the temperature of the thermal bath,
in which a lattice simulating the regions of a ferromagnet
is immersed. Yet, by virtue of its simplicity it has been
able to capture the integration and segregation behavior of
spontaneous brain function (Fraiman et al., 2009) (for more
details of the 2D classical Ising model, see Supplementary
Appendix A; Supplementary Data are available online at
www.liebertpub.com/brain). Blood oxygen-level-dependent
(BOLD) signal is the signal that fMRI methods are sensitive
to and a convolved property of neuronal fluctuations in the
brain. It is modeled with the Ising model using binary spin
states. BOLD signals greater than a threshold will be repre-
sented by up spins and less than the threshold will be rep-
resented by down spins with the lattice sites counting the
number of brain regions. With this analogy, the 2D classical
Ising model was first used by Fraiman to predict the distri-
bution of functional correlations in the brain. They found that
the best prediction of the distribution of correlations was
obtained from the model at the critical temperature while
important deviations were observed for even small changes
in temperature from criticality. Successful results of these
comparisons have led to further investigations of the model
to explain the structure–function relationship of the brain.

In a subsequent work, the 2D classical Ising model was
generalized by Marinazzo et al. (2013) by implementing
the model on the structural connectome, to match each re-
gion of the brain with a corresponding lattice site. Criticality
was confirmed for the generalized model and an information
transfer was found to be maximum at the critical temperature
as well. The generalized Ising model was further studied by
Stramaglia et al. (2017) by comparing correlation values and
transfer entropy between simulated and functional empirical
data. Furthermore, Deco et al. (2012) studied an Ising model
implemented on the structural connectome and compared
with the implementations of the model on artificially created
connectomes with different coupling strengths. They investi-
gated the entropy of the systems as a function of the coupling
strength to conclude that the simulated system exhibits rich
dynamics similar to the empirical functional connectivity
when the structure is integrated as a scale-free network.

In this article we compared the classical Ising model and the
Ising model implemented on the structural connectome with
respect to the empirical data demonstrating that both models
exhibit similar functional patterns and global properties de-
spite the intrinsic differences. If both models are in the same
universality class (same critical exponents), then their similar-
ity would not be surprising. To investigate the cause of their
similarities, the critical exponents (explained below and in
Supplementary Appendix B) of both models were calculated
and compared (Landau and Kurt Binder, 2014). If we know
the critical exponents of one system in a particular universality
class, we can explain any other system in the same universality
class, whose microscopic causes could be totally different
from the known system. The critical exponents are said to ex-
plain the behavior of the system around the critical tempera-
ture. Greek letters, b, c, a, g, and m, are used to represent the
critical exponents of magnetizations, susceptibility, specific

heat, correlation function (Expert et al., 2011), and correlation
length (Fraiman et al., 2012), respectively. These critical expo-
nents together with the dimensionality d follow the scaling re-
lationships explained in Supplementary Appendix B.

Dimensionality, together with the other critical exponents,
is fundamental to understand the behavior of the system
around criticality. Physiological changes of the brain, as,
for example, induced by sleep, could be in fact explained
by the model deviating from criticality. Dimensionality of
a system has been found to be highly relevant for the system
perfomance also in neural networks (Severino et al., 2016).
In their article, they have concluded that different dynamics
can be observed in neural networks with different connectiv-
ity patterns coming from different dimensionalities.

For the classical Ising model, the dimensionality of the
system is given by the number of dimensions of the lattice
(d = 2 for a square lattice) and there is a well-defined relation-
ship between the number of nearest neighbors in the lattice
and the dimensionality (number of nearest neighbors = 2 ·
dimensionality). However, for the generalized Ising model,
the dimensionality of the system is not evident as for the clas-
sical case and to be extracted a new concept of distance
needed to be introduced.

The key components of the steps carried out are summa-
rized in Figure 1. The organization of the article is as follows.
In the next section, we introduce the methodology of calcu-
lating and comparing properties of the empirical functional
connectivity with the ones generated from the numerical
simulations of the classical Ising model and the generalized
Ising model. Then, we explain the procedure followed to cal-
culate the critical exponents and the dimensionality of the
models. Next, we explain the main findings of the work
that was carried out, followed by discussion and conclusions.

Materials and Methods

Acquisition and preprocessing of data

Subjects. A set of 66 healthy subjects, between 22 and
35 years, was studied during wakefulness. Informed consent
to participate in the study was obtained from every subject.

Ethics statement. The Ethics Committee of the Wash-
ington University and the University of Minnesota approved
the study.

Acquisition and preprocessing of data. Structural and
functional data were acquired at the Washington University
and the University of Minnesota Consortium of the Human
Connectome Project (WU-Minn HCP). Details about data ac-
quisition and preprocessing can be found here (Andersson
et al., 2003; Andersson and Sotiropoulos, 2015a, 2015b; Fischl,
2012; Glasser and Van Essen, 2011; Glasser et al., 2013; Jen-
kinson et al., 2002, 2012; Van Essen et al., 2012). Parcellation
of the data was performed, using FSL, Freesurfer, and MRTrix
software with 84 individually labeled regions (a list of the labels
is presented in Supplementary Appendix C). Extraction of the
structural connectivity matrix (Jij) was performed using the
MRTrix softtware (Daducci et al., 2012).

2D Ising model and the generalized Ising model

Computer simulations. An instance of the 2D Ising
model is built starting with a random spin configuration on
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a square lattice of size L · L ( = 9 · 9), which is in contact with
a thermal bath of temperature T. For comparison purposes, a
square lattice Ising model with a 9 · 9 lattice size was chosen,
as it gives 81 spin sites (that is the closest number of sites to 84
we can acquire using a square lattice). For the generalized
Ising model, a 1 · 84 array of random spins was used. Each
spin can be in only one of two spin states (either up [+1] or
down [�1]). The energy of this spin configuration, in the ab-
sence of an external magnetic field, is given as follows:

E =� +
N

i, j = 1

Jij Si Sj, (1)

where Jij is the coupling between ith and jth region, si and sj

represent the spins of the ith and jth region, respectively, and
N = L · L. A matrix representing the coupling Jij for the 2D
Ising model has been created to encode nearest neighbor cou-
pling with a coupling strength of one (Fraiman et al., 2009).
In contrast, another matrix representation of coupling Jij for
the generalized Ising model has been created using the connec-
tivity matrix built from the diffusion tensor image (DTI)
acquisition (Cammoun et al., 2012). This matrix contains the
number of fiber tracts between each pair of region in the con-
nectome used to define the coupling strength. For the simula-
tions of the model, we normalized the average structural
connectivity matrix (average over 66 subjects) such that the
matrix elements will be between 0 and 1.

A Metropolis Monte Carlo algorithm (Gould et al., 1988;
Metropolis et al., 1953) was used to simulate the system at

each temperature. The Metropolis Monte Carlo algorithm al-
lows to generate an equilibrium spin configuration starting
from a random spin configuration for each temperature
(more details can be found in Supplementary Appendix A).
From the final output of the simulations, the correlation be-
tween the time evolutions of spins for each temperature
was calculated using Equation (2) as follows:

corrij =
ÆSi tð Þ · Sj tð Þæ� ÆSi tð ÞæÆSj tð Þæ

rSi tð Þ · rSj tð Þ
, (2)

where si and sj stand for the spins of ith and j th regions,
r2

SiðtÞ = < s2
i tð Þ> � <si ið Þ> 2 and <. > is for the average

over time.
Using this procedure, the correlations were generated by

each model as a function of temperature. Afterward, this pro-
cedure was repeated for both models to generate 10 sets of
data for each, always starting with a random spin configura-
tion. Generating 10 independent simulations further ensures
that the Metropolis algorithm explores a variety of initial
conditions and therefore increases the (statistical) accuracy
of the results. MATLAB was used for computer simulations
and analysis, whereas RStudio was used to generate graphs.

Analysis

Preliminary analysis. Analysis was performed over an
average of 10 data sets for both models. The thermodynamic
properties were plotted as functions of temperature for the
two models to obtain critical temperature (Fig. 2).

FIG. 1. Summarized repre-
sentation of the analysis
carried out. We obtained the
structural and functional data
separately from brain imag-
ing techniques. Then, the
structural connectivity was
used as the input of the gen-
eralized Ising model. Using
this input, the generalized
Ising model was simulated
for different temperatures and
each time the output was
compared with the empirical
functional data obtained from
fMRI. fMRI, functional
Magnetic Resonance Imag-
ing. Color images available
online at www.liebertpub
.com/brain
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The critical temperature can be obtained by locating the
temperature that maximizes the magnetic susceptibility of
the system (Equation (3), where v is the magnetic suscepti-
bility, T is the temperature, and M is the magnetization)
(Landau and Kurt Binder, 2014).

v =
1

T

h
<M2 >�<M> 2

i
: (3)

The empirical functional correlation matrix built by aver-
aging the correlation matrices across the 66 healthy subjects
was compared with the simulated correlation matrices
(Fig. 3) for further analysis. In addition, the distribution of
the correlation for the simulated data as well as for the em-
pirical data is plotted in Figure 4.

Next, the distance between the simulated correlation dis-
tributions and the empirical correlation distribution was cal-
culated as a function of temperature and presented in
Supplementry Appendix D (I). The distance between the em-
pirical and simulated correlation distributions is quantified
using the Kolmogrove–Smirnov (KS) test statistic (Massey
and Frank, 1951). To calculate the KS test statistic, empirical

and the simulated correlations were plotted as cumulative
plots in the same graph. Next, the maximum distance be-
tween these two plots was calculated. Temperatures that
minimize this maximum distance (Tmin) were obtained for
individual simulations. Distribution of Tmin and Tc for the
generalized Ising model is presented in Figure 5.

To calculate the global degree as a function of threshold,
correlations were separated into positive and negative corre-
lations. Then, the global degree was calculated for the nega-
tive and positive thresholds separately for the 2D classical
Ising model and the generalized Ising model and plotted in
Figure 6 together with the global degree of the empirical
data (Rubinov and Sporns, 2010). Taking the individual
node degree into consideration, connectivity graphs are plot-
ted for the generalized Ising model at four different temper-
atures and compared with the graph of the empirical data
(Fig. 7).

Analyzing behavior at criticality using critical expo-
nents. The critical exponents and the dimensionality were
calculated for the two models by following the procedure

FIG. 3. Correlation at four different temperatures for the classical Ising model and the generalized Ising model with the
correlation of the empirical data. Color images available online at www.liebertpub.com/brain
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below. First, the critical exponents related to magnetization,
susceptibility, and specific heat were calculated by fitting
Equations (1)–(5) (Supplementary Appendix B) to the re-
spective plots in Figure 2. To find g and m, the following pro-
cedure was used:

Correlation function. First, a set of distances for both
models was defined using the respective connectivity matri-
ces. For the classical Ising model, the distances were the in-
tegers from 1 to 8, since the initial configuration was a 9 · 9
2D lattice. However, for the generalized Ising model, the

FIG. 4. Distribution of the correlation at four different temperatures for the classical Ising model and the generalized Ising
model with the distribution of correlation of the empirical data. Color images available online at www.liebertpub.com/brain

FIG. 5. Histogram of Tc and Tmin

together with the fitted distributions
for the generalized Ising model in
10 independent simulations. Color
images available online at www
.liebertpub.com/brain
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distance between two regions is defined as the reciprocal of
the normalized number of fibers between the two regions
(dij = 1/Jij). We binned the continuous distances to create a
set of discrete groups. Then the correlation values between
pairs at the same distance were averaged to get the average
correlation as a function of distance. This calculation was
performed for each temperature (Fig. 8). By fitting Equation
(8) (Supplementary Appendix B) to the plot of correlation
function versus distance at the critical temperature, g was
calculated. By subsequently using Equation (7) to fit the cor-
relation function at the critical temperature, a numerical
value for the power of the denominator ( = d � 2 + g) was
then obtained. Using this fitted value and the calculated g
at Tc, the dimensionality of the classical Ising model as
well as the generalized Ising model was finally extracted.

Correlation length. Correlation length was calculated by
fitting Equation (6) (Supplementary Appendix B) to the cor-
relation function versus the distance plot at each temperature.

The correlation length was plotted as a function of tempera-
ture and fitted with Equations (9) and (10) (Supplementary
Appendix B) to find m (Fig. 8).

Results

Preliminary analysis

The mean values of critical, subcritical, and supercritical
temperatures over the 10 independent trials were obtained
using the susceptibility plots in Figure 2 and are reported
in Table 1 together with their standard deviations. The crit-
ical temperature value of the 2D Ising model agrees with
the theoritical critical temperature described in Landau and
Binder (2014) for the lattice size L = 9. In the generalized
Ising model, the phase transition occurs at a lower tempera-
ture than that of the classical Ising model.

Correlations for four different temperatures are presented
in Figure 3. At Tc, the spatial pattern of the correlations in the
generalized Ising model holds a similar spatial pattern to that

FIG. 6. Average degree as a function of positive and negative thresholds for the classical Ising model and the generalized
Ising model together with the average degree of the empirical correlation network. Color images available online at
www.liebertpub.com/brain
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of the empirical data. Distributions of the correlations for the
selected four temperatures are plotted in Figure 4 along with
the empirical data. For the classical Ising model, correlation
distributions showed the difference between empirical distri-
bution and the simulated one at criticality, even if the critical
temperature Tc or the slightly different value Tmin gave a much
better prediction with respect to sub- or supercritical behavior.
For the generalized Ising model, the distribution of correla-
tions at Tc and Tmin and the distribution of correlations for
the empirical data were not signifantly different ( p = 0.98),
while the distributions at sub- and supercritical temperatures
were quite distant from the empirical distribution.

According to Figure 5, the variation of Tc (and Tmin) is
resulted due to the randomness of the initial spin configura-
tion in the simulations. To illustrate the intersubject variance
of Tc (and Tmin), distributions of Tc (and Tmin) are presented
in Supplementary Appendix D (II). A two-sample t-test was
performed to compare the Tmin values with the Tc values in
individual simulations. Results of the t-test together with
Figure 5 concluded that Tmin and Tc are significantly different
for the generalized Ising model ( p < 0.001) but not signifi-
cantly different for the 2D Ising model (with p = 0.4).

Graph theoretical analysis

In Figure 6, the global degree of the graphs was plotted as a
function of negative and positive thresholds for both models.

As observed in Figure 4, there are no negative correlations
at Tc or at Tmin for the classical Ising model. Therefore, in Fig-
ure 6, the degree cannot be plotted for the negative thresholds
at Tc and at Tmin for the classical Ising model. Figure 7 repre-
sents the functional connectivity graphs for the data obtained
from the generalized Ising model simulations at subcritical,
critical, and supercritical temperatures and Tmin along with
the connectivity graph of the empirical data. In these graphs,
each point represents a brain region. It is evident that the con-
nectivity in the network grows as the temperature goes from
T < Tc to Tc and again reduced from Tc to T > Tc, and shows
similar patterns for Tc and Tmin.

Analyzing behavior at criticality using critical exponents

Figure 8 represents the correlation function and the corre-
lation length plotted for the two models. These two plots
were used to find the critical exponent g and the dimension-
ality ‘‘d’’ of the models. The calculation of dimensionality
for the classical Ising model confirmed the expected value
of 2 (since we chose the square lattice Ising model in two di-
mensions) giving the value of 1.93 – 0.59. The dimensional-
ity of the generalized Ising model was calculated for the first
time giving a value of 1.92 – 0.12 and proven equal to the
classical Ising model value inside the fitting error. All the
other critical exponents are reported in Table 2 together
with the dimensionality for both models.

Discussion

The square lattice Ising model has been used in neurosci-
ence to study brain functionality. Fraiman et al. showed that
the distribution of correlations at Tc in the 2D classical Ising
model has noticeable similarities to the distribution of corre-
lations of the empirical data, even in the absence of informa-
tion from the structural architecture of the brain (Fraiman
et al., 2009). Their conclusion together with several other
studies supported the assumption of the presence of critical
behavior in the brain network (Deco et al., 2012; Marinazzo
et al., 2013; Stramaglia et al., 2017).

In this article, as the first step we compared simulations of
a 2D Ising model with those of the generalized Ising model
by looking at the distibutions of correlation values. The
fact that for both models the mean of correlation distribution
values at the critical temperature is larger than the mean of
the correlation distribution at subcritical or supercritical tem-
peratures is a well-known prediction of the Ising model in the
classical version and was confirmed by our results for the
generalized model. Correlation between the ith and jth regions
can be calculated using Equation (4) (where rij is the distance
between region i and j, n is the correlation length, d is the di-
mensionality, and g is the critical exponent of the correlation
function), and is clearly shown in Figure 8.

corrij =
exp � rij

n

� �

rd� 2þ g
: (4)

At the critical temperature, because the correlation length
(n) goes to infinity (in the infinite lattice size limit), the cor-
relation will have a power low decay with the distance. On
the contrary, at any other temperature, n will be finite and
the correlation will have a combined exponential and power
low decay. Therefore, outside of criticality, correlation will

FIG. 7. Connectivity graphs for the generalized Ising
model for four temperatures, and the connectivity graph of
the empirical network. The size of the nodes represents the
degree such that larger the size, higher the degree.
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drop faster with distance resulting in a lower average correla-
tion value. For finite lattice size, the difference between the
mean of the distribution at criticality and outside criticality
will be reduced with respect to the infinite lattice size limit.

In the generalized Ising model, the introduction of the cou-
pling from the structural connectivity of the brain provided a
one to one relationship between the brain regions and the lat-
tice sites. Each lattice site was connected with every other
site with a given weight obtained from DTI as opposed to
the 2D classical Ising model. One objective was to investi-
gate behavior at the critical temperature with respect to
these changes in the model. When the structure is introduced,
we observed a shift in the critical temperature from 2.5 to
1.4. An illustration of this change as a function of sparsity
of the structural connectivity matrix is presented in Supple-
mentary Appendix D (III). We can conclude that the critical
temperature depends not only on the size of the matrix but
also on the sparsity of the connectivity matrix.

The temperature that minimizes the distance between the
distributions of correlation (Tmin) was significantly different
from Tc for the generalized Ising model but not for the 2D
classical Ising model. Global degree plotted as a function
of the temperature (Supplementary Appendix D (IV)) was
maximized at a temperature not different from Tmin. This
fact suggests the usage of graph properties to extract Tmin

of the Ising model, either in the classical or generalized ver-
sion as done by looking for the maximum susceptibility. Fig-
ure 9 represents the possibility of finding a relationship
between the graph properties and the thermodynamic proper-
ties of the Ising model. As the theory implies, the specific
heat and the susceptibility measure the variation of energy
and magnetization with temperature, respectively. This was
captured by calculating the cumulative integral of the spe-
cific heat and susceptibility of the generalized Ising model.
Following the same procedure, the cumulative integral of
the global degree was calculated, which resulted in the plot

FIG. 8. Correlation func-
tion versus distance and
correlation length versus
temperature for the 2D
classical Ising model and the
generalized Ising model. Red
solid line represents plots
after fitting the given
equations (Supplementary
Appendix B). In the top
panel, the dashed line repre-
sents the correlation function
at the critical temperature.
Color images available
online at www.liebertpub
.com/brain

Table 1. Subcritical, Critical, Supercritical Temperatures and T
min

of the Generalized Ising

Model and the Two-Dimensional Classical Ising Model

Model T < Tc T = Tmin T = Tc T > Tc

Generalized Ising model 0.78 – 0.02 1.21 – 0.04 1.39 – 0.02 1.98 – 0.02
Classical Ising model 1.55 – 0.10 2.53 – 0.20 2.55 – 0.10 3.55 – 0.10
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on the right-hand corner in the top panel of Figure 9. The new
plotted quantity follows a similar behavior as the energy with
temperature and could be linked to a fundamental property of
graph theory.

Similar properties around criticality for both models justi-
fied the use of the same fitting functions, even if we needed to
introduce a concept of distance for the generalized version to
extract the correlation length. In fact, as shown in Figure 8,
the behavior of the correlation versus distance for the gener-
alized Ising model is well fitted by the same function as the
classical model.

Having the same dimensionality can explain the observed
similarities in global behavior of the two Ising models
around the critical temperature such as the correlation values
and global degree. Studying the behavior around criticality
for complex systems such as the Ising model, which shows
a phase transition, could be extremely important and per-
formed with a similar strategy as the one followed in this ar-
ticle by introducing an artificial concept of distance.

As the critical exponents (in Table 2) are different for the two
models, it cannot be concluded that these models belong to the
same universality class. The fact that the global properties of
the models still followed a similar pattern is due to the fact

Table 2. Critical Exponents and the Dimensionality

of the Two-Dimensional Classical Ising Model

and the Generalized Ising Model

Critical exponent
2D classical
Ising model

Generalized
Ising model

a (Specific heat) 1.49 – 0.02 0.81 – 0.01
b (Magnetization) 0.14 – 0.01 0.21 – 0.01
c (Susceptibility) 0.61 – 0.01 0.53 – 0.01
g (Correlation function) 0.34 – 0.01 0.46 – 0.01
m (Correlation length) 0.30 – 0.01 0.63 – 0.02
d (Dimensionality) 1.93 – 0.59 1.92 – 0.12

2D, two dimensional.

FIG. 9. Energy, specific heat, magnetiza-
tion, susceptibility, degree, and the cumula-
tive degree of (a) the generalized Ising model
and (b) the 2D classical Ising model as a
function of temperature.
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that our calculated properties all depend on the correlation val-
ues controlled by the dimensionality d (equal in the two mod-
els) and the critical exponent g (0.34 for classical and 0.46 for
generalized) (Supplementary Appendix B; Equation (6)).

Our findings for the generalized Ising model could be of rel-
evance to study, for example, the brain function of patients
who suffer severe brain injury with disorders of consciousness
in which usually both structural and functional connectivity
are highly affected (Demertzi et al., 2014). Furthermore, for
future studies, it will be highly relevant to see how the proper-
ties of the generalized Ising model change with respect to the
size of the lattice. This would mean using different parcella-
tion schemes, different size of the system, contrary to the clas-
sical Ising model, will also result in the change of the structural
connectivity matrix (Jij) that will depend on the parcellation
scheme used.

Conclusion

Extending the 2D classical Ising model toward the gener-
alized Ising model further permits to fit the empirical func-
tional connectivity patterns. The introduction of structural
data from the brain as an input into the Ising model gives
the best fit to functional data at Tmin, which is significantly
different from Tc in the direction of the subcritical region
but not far from criticality. Since the critical exponents of
the models are different, it cannot be concluded that these
two models belong to the same universality class. However,
similarities observed in the global properties between the two
models can be explained by the fact that they have the same
dimensionality. Studying the behavior of the system around
criticality could be used to better understand changes in
spontaneous brain activity from the awake condition as ob-
served in physiological states such as sleep or as in pharma-
cologically induced conditions such as under anesthetics.
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