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Abstract 
 
Objective  
To investigate the histopathological correlates of quantitative relaxometry and DTI and 
determine their efficacy in epileptogenic lesion detection for pre-operative evaluation of focal 
epilepsy.  
Methods 
We correlated quantitative relaxometry and DTI with histological features of neuronal density 
and morphology in 55 regions of the temporal lobe neocortex, selected from 13 patients who 
underwent epilepsy surgery. We made use of a validated non-rigid image registration protocol to 
obtain accurate correspondences between in-vivo MRI and histology images.  
Results 
We found T1 to be a predictor of neuronal density in the neocortical GM using linear mixed 
effects models with random effects for subjects. FA was a predictor of neuronal density of large-
caliber neurons only (pyramidal cells, layers 3/5). Comparing multivariate to univariate mixed 
effects models with nested univariate demonstrated that employing T1 and FA together provided 
a significantly better fit than T1 or FA alone in predicting density of large-caliber neurons. 
Correlations with clinical variables revealed significant positive correlations between neuronal 
density with age (rs = 0.726, pfwe = 0.021). This study is the first to relate in-vivo T1 and FA 
values to the proportion of neurons in GM. 
Interpretation 
Our results suggest that quantitative T1 mapping and DTI may have a role in pre-operative 
evaluation of focal epilepsy and can be extended to identify gray matter pathology in a variety of  
neurological disorders.  
 
Key words 
Temporal lobe epilepsy, MRI, histology, correlation, relaxometry, neuronal density  
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Introduction 1	

Approximately 30% of epileptic patients do not achieve remission with drugs 1. Temporal lobe 2	

epilepsy (TLE) is the most common form of intractable focal epilepsy 2 and for many of these 3	

patients the standard of care is surgical treatment. A randomized controlled trial has shown this 4	

to be an effective treatment 3. However, seizure outcomes following surgical resection remain 5	

suboptimal, with a recent long-term study demonstrating that only half of such patients are 6	

seizure-free after 10 years 4. It is believed that early seizure recurrence is due to inadequate 7	

identification or removal of the epileptic lesion(s) or network 5, which may suggest the presence 8	

of dual pathology (histological abnormalities in the neocortex of patients with hippocampal 9	

sclerosis) or error in localising subtle neocortical lesions. However, whether these residual 10	

abnormalities are epileptogenic, or instead are the result of   recurrent seizures, is still unclear. 11	

 12	

In addition to electroencephalography, MRI can identify lesions related to seizure onset, 13	

and surgical outcomes are more favorable if an underlying lesion can be detected 6, 7. However, 14	

clinical protocols for pre-operative assessment of focal epilepsy lack sensitivity, with more than 15	

30% of patients diagnosed as MRI negative 8, 9, and the histological evaluation often reveals 16	

reactive changes or malformations of cortical development (MCD) 10,11. Quantitative MRI 17	

sequences and image processing techniques such as T2 relaxometry mapping, diffusion tensor 18	

imaging (DTI), voxel-based morphometry and cortical thickness can  reveal subtle pathologies 19	

undetected on routine MRI 12, 13, 14.   20	

 21	

Imaging-histopathological correlations studies from neocortical specimens in TLE have 22	

been used to better understand the relationships between the two. Garbelli et al. (2012) 15 23	
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demonstrated that blurred cortical boundaries in the temporal pole is correlated to degeneration 24	

of fibre bundles. With visually-matched ROIs, Eriksson et al. (2007) 16 found a negative 25	

correlation between GM fast FLAIR T2 (FFT2) and neuronal nuclear antigen (NeuN). A follow-26	

up study 17 investigating GM probability maps with NeuN and glial fibrillary acidic protein 27	

(GFAP) did not find any correlations. Similarly, another study 18 also incorporating FLAIR and 28	

DTI still failed to find any correlations. Such data suggest that the pathological basis of abnormal 29	

MRI signals is poorly understood in focal epilepsy. The study and identification of quantitative 30	

imaging correlates relating to neocortical abnormalities can potentially reveal the association 31	

between these specific MRI parameters and seizure outcomes in MRI-negative patients. It would 32	

allow, as well the investigation of their effects on long-term surgical outcomes of patients with 33	

hippocampal sclerosis.   34	

 35	

To this end, the objective of this work is to investigate the histopathological correlates of 36	

quantitative relaxometry and DTI from neocortical specimens of intractable TLE patients. We 37	

make use of a validated non-rigid image registration protocol to obtain accurate correspondences 38	

between quantitative in-vivo MRI and histology images. We first sample quantitative histology 39	

parameters from the gray and white matter in each NeuN (representing neuron integrity) and 40	

GFAP (representing gliosis) slide, and then use image registration to obtain the corresponding 41	

MRI parameters from high-resolution quantitative T1 and T2 maps along with DTI.  42	

 43	

Materials and methods 44	

Patients and Samples 45	

2.1 
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Our study cohort included 13 TLE (5 males, 8 females, age: 34±15 (range: 18-56)) who 46	

underwent anterior temporal lobectomy (ATL) surgery. This project, part of an ongoing research 47	

study at the Robarts Research Institute, was approved by the office of research and ethics of 48	

Western University, and informed consent was obtained from all patients prior to their 49	

recruitment in the study. Patients had preoperative investigations including neuropsychological 50	

testing and 1.5T clinical MRI scans, which included T1-weighted, T2-weighted, FLAIR, and 51	

diffusion-weighted sequences. Patients were monitored with video-scalp EEG telemetry for 52	

seizure characterization, with three patients requiring subdural electrodes placement. In addition 53	

to the 1.5T clinical MRI scans performed as part of their clinical diagnosis, patients underwent a 54	

series of scans on a 3T MRI research scanner as described in the in-vivo MRI imaging 55	

subsection. Table 1 summarizes the age at the time of the last consultation prior to surgery, 56	

gender, age at seizure onset, electrographic seizure origin as well as clinical MRI and pathology 57	

findings for our patient cohort.  58	

 59	

In-vivo Magnetic Resonance Imaging 60	

All patients underwent pre-operative imaging, comprising relaxation mapping and DTI, on a 3 61	

Tesla Discovery MR750 scanner (General Electric, Milwaukee, WI, U.S.A.) with a 32 channel 62	

head coil. For T1 mapping we employed the DESPOT1-HIFI approach 19 which  involves the 63	

acquisition of two 3D SPGR sagittal T1-weighted image volumes (TR=8.36ms, TE=3.71ms, flip 64	

angles =4° & 18°, matrix=220x220, slice thickness=1mm, FOV=220 mm), as well as an 65	

additional inversion-prepared SPGR for B1 mapping (TR=6.4ms, TE=3.1ms, flip angle=5°, 66	

matrix=220x128, slice thickness=1mm, FOV=220 mm). For T2 mapping the DESPOT2-FM 67	

approach 20 was used, whereby five balanced steady-state free precession (bSSFP) images were 68	
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acquired with flip angles 5°, 35° and 68° with phase cycling patterns θRF = 0° and 180° 69	

(TR=4.6ms, TE=2.3ms, matrix=220x220, slice thickness=1, FOV=220 mm). DTI was performed 70	

using an axial spin-echo echo-planar imaging (EPI) sequence with 41 diffusion directions and a 71	

b-value of 1000 (TR=1100ms, TE=63.2ms, flip angle=90°, matrix=96x96, slice thickness=2.5, 72	

FOV=240 mm). To compute T1 and T2 quantitative maps, all the weighted images were 73	

registered to the first scan of the session using the FLIRT tool of the FSL image analysis suite 74	

(FSL, http://fsl.fmrib.ox.ac.uk) with an affine transformation to correct for motion between 75	

scans. T1 and T2 quantitative maps were subsequently reconstructed from their respective 76	

weighted images using their signal equations as described in (Deoni et al., 2007, 2009) 19, 20. 77	

Eddy-current correction and diffusion tensor estimation were performed using FMRIB’s 78	

Diffusion Toolbox (FDT) and maps of fractional anisotropy (FA), mean diffusivity (MD), radial 79	

diffusivity (RD) and axial diffusivity (AD) were transformed and resampled to the coordinate 80	

system defined by the 1mm isotropic T1 map.  81	

 82	

Histological processing and quantitative histology 83	

The specimens underwent accessioning and gross examination at the Department of Pathology at 84	

the University Hospital of London Health Sciences Centre, and were then bissected in the 85	

coronal plane. Each half of the specimen was  embedded in agar for support and stabilization 86	

during slicing. The half-specimens were then sectioned, parallel to the initial cut, into 4.4 mm 87	

thick coronal slices using a commercial deli slicer. Each block was embedded in paraffin and 88	

sectioned at a thickness of 8 µm. Slides from each block were stained with hematoxylin and 89	

eosin (H&E) and processed for immunohistochemistry (IHC) to examine for NeuN (monoclonal 90	

antibody) and GFAP (polyclonal antibody) expression. Batch IHC processing was performed on 91	
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a Dako Autostainer Link 48 (Dako Corporation, Glostrup, Denmark) to minimize variability 92	

between slides. The resulting slides were digitized on a ScanScope GL (Aperio Technologies, 93	

Vista, CA, USA) bright field slide scanning system at a maximum of 20x optical zoom, and 94	

stitched to form full-frame multi-resolution images stored in BigTIFF file format (maximum 95	

pixel resolution 0.5 µm).  96	

 97	

Field fraction estimates (proportion of all pixels in the field that were positively-stained) 98	

were used to quantify the NeuN and GFAP IHC. These estimates have been used in previous 99	

studies to represent neuronal integrity and gliosis 16, 17, 18 and are  sensitive to the packing density 100	

and cell-size of neuronal cell bodies and processes (NeuN) or astrocytes (GFAP). The positive 101	

pixel count algorithm (Aperio Technologies, Vista, CA, USA) was employed for this purpose 102	

and employs color-based thresholding for hue, saturation, and intensity to determine whether or 103	

not a pixel is immuno-positive. Slides were batch processed using scripts written in MATLAB 104	

(The MathWorks Inc., Natick, MA, USA), processing the full resolution images in blocks of 105	

100um x 100um. Hue and saturation thresholds were fixed (Hue value = 0.1, Hue width = 0.2 106	

and saturation = 4x10-2) and the intensity threshold was chosen for each case to visualize the 107	

immuno-positive pixels and account for staining variability between slides.  108	

 109	

Field fraction measurements involving dysplastic cortex could be less sensitive when 110	

reductions in packing density are accompanied by cyto-morphological size changes, since each 111	

would affect the field fraction in opposing directions. To better decouple these factors, we 112	

developed a method for segmenting the neuronal cell bodies to provide local estimates of neuron 113	

density and size. This procedure first employs colour deconvolution 21 to extract the colour 114	
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component related to immuno-positive staining, then performs a watershed-based segmentation 115	

procedure 22 for splitting joined or connected neurons, removes objects smaller than a predefined 116	

area defined as noise (less than 14 µm2). This provides a segmentation of each individual neuron 117	

cell body that can be used to determine the neuron density in this field (# of neurons/field) and 118	

the mean size of neuron cell bodies in the field. To further discriminate between neurons, we also 119	

categorized them as either small-calibre (granular cells) or large-calibre (pyramidal cells) using 120	

an area threshold of 125 µm2 and reported the density of each of these in the field. This 121	

procedure inherently allows analysis for laminar specificity since larger neurons are typically 122	

found in layers 3 and 5, and smaller neurons in layer 2 and 4. NeuN slides were batch-processed 123	

with scripts written in MATLAB, to extract the neuron-specific quantitative features in each 124	

100µm x 100µm field. Figure 1 illustrates this procedure and demonstrates the six different 125	

quantitative histological features: NeuN field fraction, neuron density, mean neuron size, small 126	

neuron density, large neuron density, and GFAP field fraction. 127	

 128	

ROI Placement and Image Registration 129	

To quantitatively correlate in-vivo MRI parameters and corresponding histological features, we 130	

relied on region of interest (ROI) analysis as a means of extracting the desired parameters and 131	

features from homologous regions. Histology ROIs were delineated on 100 µm downsampled 132	

H&E histology slices using ITKsnap 23. Since the middle temporal gyrus was present in all 133	

available resections, ROIs were defined on the histology slides at the crown of the gyrus 134	

comprising gray matter (GM) and white matter (WM) sub-regions (Figure 2), as was also done 135	

by Eriksson et al. (2007) 16. The edges of the WM ROIs were constrained to be 2 mm from the 136	

gray/white boundary and were not delineated inside the high curvature regions of the gyrus. The 137	
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boundaries of the GM ROI were limited to a distance of 1mm from the pia to avoid partial 138	

volume effects on the in-vivo MRI images.  A total of 55 ROIs: 29 GM and 26 WM (one patient 139	

had no WM ROIs as the resection did not include sufficient tissue), were segmented on histology 140	

slices. 141	

 142	

To ensure that equivalent ROIs were analyzed in each modality, we employed non-rigid 143	

image registration to map the H&E defined histology ROIs to the IHC slides and the in-vivo 144	

MRI. Non-rigid image registration was performed between the in-vivo MRI and histology 145	

images, using an ex-vivo MRI scan of the specimen as an intermediate reference image to 146	

effectively split the registration in two steps. After surgical resection, each specimen was 147	

oriented by the operating neurosurgeon, photographed and transported on ice to the imaging lab 148	

for ex-vivo scanning, which was performed after overnight fixation in 10% formalin. Each 149	

specimen was wrapped in gauze for stabilization, transferred to suitably-sized containers for 150	

imaging, and immersed in a fluorine-based fluid ‘Christo-lube MCG 1046’ (Lubrication 151	

Technology, Inc) prior to imaging to avoid susceptibility artifacts at the tissue boundaries. The 152	

specimen scanning was performed on the same 3 T MR scanner employed for patient imaging, 153	

using a 6 channel coil designed to image the carotid artery. The sequences used for images that 154	

are part of the registration pipeline are described in detail below. The T2-weighted images were 155	

acquired with the fast imaging employing steady state acquisition (FIESTA) sequence (TR = 156	

8.17ms, TE = 4.08ms, flip angle = 40◦, N = 2, matrix = 200×200, slice thickness = 0.4, FOV = 157	

70mm) with a resolution of 0.35 × 0.35 × 0.4mm. For cases where overnight imaging was 158	

feasible and not disruptive to the clinical workflow (N=4), scanning was performed on a 9.4T 159	

small bore Agilant MR magnet (Agilant, Santa Clara, CA, U.S.A) for improved image resolution 160	

2.1 
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and signal-to-noise ratio (SNR), as an alternative to the 3T scan. The specimens were scanned 161	

with an in-house developed coil for a total time of sixteen hours. For this protocol, images were 162	

acquired with the TrueFisp sequence (TR = 7.6 ms, TE = 3.8 ms, flip angle = 30◦) with an 163	

isotropic resolution of 0.2 mm and a FOV of (50×26×44) voxels. 164	

 165	

First, we aligned the histology images from each specimen to the corresponding slice 166	

within the 3D ex-vivo MRI volume 25, 25. Next, the in-vivo and ex-vivo MR images were aligned 167	

using a combination of image-based and landmark-based 3D deformable registration. The image-168	

based registration made use of a B-spline deformation field and a normalized mutual information 169	

(NMI) cost-function 26, while the landmark registration relied on Gaussian radial basis functions 170	

27. Validation of our registration protocol was achieved by computing target registration error 171	

(TRE) based on manually-identified corresponding intrinsic anatomical landmarks, 172	

demonstrating  registration errors of 0.98 ± 0.60 mm and 1.35 ± 0.11 mm for histology to ex-173	

vivo and ex-vivo to in-vivo registrations respectively 24. The IHC slides (NeuN and GFAP) were 174	

linearly co-registered to the H&E slides using downsampled grayscale images of each slide, with 175	

registration accuracy better than 0.5mm 25. To avoid oblique resampling of the anisotropic 176	

histology images, for the purposes of visualization and analysis, the in-vivo and ex-vivo images 177	

were ultimately transformed to the space of the 3D reconstructed histology, Hist3D, where the 178	

reconstructed coronal histology slides are stacked parallel to the anterior-posterior axis. Figure 3 179	

illustrates the four different spaces of MRI and histology, and registration results to bring both 180	

modalities in alignment. All in-vivo quantitative maps (T1, T2, FA, MD, AD and RD) were 181	

warped to the Hist3D space using the resultant deformation fields. Similarly, the histology ROIs 182	

were mapped to the IHC slides and the intermediate space, and underwent a final step of manual 183	
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correction, if needed, to account for potential registration errors and to circumvent partial volume 184	

effects. ROIs transformed to in-vivo MRI space were used to obtain estimates of the mean MRI 185	

parameter {T1, T2, FA, MD, AD, and RD} at each location in the plane corresponding to the 186	

histology slides. 187	

 188	

Statistical analysis  189	

To assess the Gaussianity of the distribution of MRI samples, we employed the D’agostino & 190	

Pearson omnibus normality test. Linear mixed effects with random effects were employed to test 191	

for relationships between MRI parameters and histological features. For these analyses the 192	

histological features (stain field fraction, neuron size and neuron counts) were entered as 193	

dependant variables and MRI parameters (T1, T2, FA, MD) from patients and slices as the 194	

independent variables, whereas variables for both patient and slice were entered as repeated 195	

measures.  In addition, a random effect for subject was included to account for lower variance of 196	

MRI parameters within a single (across slices) subject as compared to between subjects. For 197	

fixed effects, we first fitted a model that included all MRI parameters as explanatory variables. 198	

We then used a backward elimination procedure to retain significant variables only. We 199	

employed Wald statistics for covariance structure selection. In addition, we assessed the 200	

correlations between each of the above variables as well as seizure frequency, age at the time of 201	

the last consultation prior to surgery, age of seizure onset, duration of epilepsy, and side of 202	

onset/resection. We also looked at correlations between each MRI parameter and every other 203	

MRI parameter, as well as those between histological features. We corrected for multiple 204	

comparisons in our correlation analysis with family-wise error rate (FWER) control using 205	

permutation tests 28, and the presented p-values are adjusted for family-wise error.  206	

1.2 
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 207	

To investigate whether white matter MRI abnormalities are related to adjacent cortical 208	

histology, we also employed linear mixed models between MRI parameters from each WM ROI 209	

with histology features from its neighbouring GM ROI. Statistical analyses were performed in 210	

IBM SPSS statistics 20 (IBM, Armonk, NY). To test whether combining multiple MRI 211	

parameters leads to better prediction of histological features, multi-parametric models were 212	

compared against simpler univariate models using likelihood ratio tests.    213	

 214	

Results  215	

MRI parameters-Histology features correlation  216	

The registration protocol enabled us to determine precise correspondences between MR and 217	

histology slices, and hence parameters from each slice were not averaged per patient and were 218	

instead employed as unique data points in the analysis. P-values from the linear mixed effects 219	

model analysis for the following histological features: neuron density, density (big neurons), 220	

density (small neurons), NeuN field fraction, are summarized in Table 2. T1 was found to be a 221	

significant predictor of total neuronal density in GM (Figure 4), as well as NeuN field fraction in 222	

the GM. Moreover, when assessing different sub-types of neurons, T1 and FA were both found 223	

to be predictors of neuronal density of large-caliber neurons (pyramidal cells) in the GM. 224	

Furthermore, only T1 was to be a predictor of small-caliber neurons (granular cells) in the GM. 225	

There were no significant associations between the GFAP field fraction and any MRI parameter 226	

in either GM or WM. Similarly, no significant associations were seen between histology and 227	

MRI parameters in the white matter.  228	

 229	

1.2 
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Multivariate vs. univariate MRI  230	

To test whether combining multiple MRI parameters leads to better prediction of histological 231	

features, multi-parametric mixed effects models were compared against nested univariate models 232	

using likelihood ratio tests and the chi-squared distribution. Multiple linear regression analysis 233	

demonstrated that combining T1 and FA values predicted GM neuronal density of large-caliber 234	

neurons with a better fit than T1 or FA on their own ( -2 log likelihood difference: 12.06, p 235	

<0.001). Other multi-parametric combinations however failed to demonstrate similar predictive 236	

improvements. Figure 5 plots the samples in the space spanned by T1 and FA, revealing that 237	

combining both parameters provides better discrimination of density of large neurons in 238	

neocortical GM. Each dot in this plot refers to a gray matter ROI on a histology slide, with 239	

representative dots being labeled with patient IDs from Table 1. It is clear from the figure that 240	

low and high neuron densities are not well separated when using T1 or FA (see projections on 241	

horizontal and vertical axes), but in the two-dimensional space the data are more clearly 242	

separable (demonstrated by the dashed line), suggesting that multivariate or multi-parametric 243	

analysis would be more beneficial in predicting or classifying pathology in-vivo. Since the 244	

presented ROIs are extracted from sparsely sectioned histology slices (4 mm apart), this figure 245	

highlights the potential of imaging parameters in detecting local pathology within the neocortex. 246	

 247	

Correlation with clinical variables 248	

Correlations with clinical variables revealed significant positive correlations between neuronal 249	

density and age (rs = 0.726, pfwe = 0.021). Finally there were significant correlations with side of 250	

seizure onset, with left TLE patients exhibiting increased GM T1 (rs = 0.671, pfwe = 0.042).  251	

2.1 
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There were no correlations between clinical variables with MRI parameters and histological 252	

features in the white matter.  253	

 254	

MRI-MRI parameters correlation 255	

Table 3 summarizes the correlations between all MRI parameters within both tissue types (GM 256	

and WM). When assessing the relationships between diffusion and relaxometry parameters, there 257	

was a negative correlation between T1 and FA in WM, as well as a positive correlation between 258	

T1 values and MD in WM. When assessing the relationships between diffusion parameters (FA 259	

vs. MD) and  relaxation parameters (T1 vs. T2) no significant correlations were found after 260	

multiple comparison correction. Figure 6 demonstrates the significant relationships between 261	

diffusion and relaxometry MRI parameters. 262	

 263	

Histology-Histology features correlation 264	

We found a positive correlation between neuronal density and NeuN field fraction in GM (rs = 265	

0.929, p = 4.0x10-09), as shown in Figure 6. Similarly, neuronal density was positively correlated 266	

with densities of both large and small neurons in GM when analyzed separately (rs = 0.93, p = 267	

1.4x10-09 and rs = 0.95, p = 1.4x10-10). In addition, a slightly higher correlation was detected 268	

between NeuN field fraction and density of larger neurons in GM (rs = 0.96, p = 1.5x10-11), than 269	

with density of smaller neurons in GM (rs = 0.83, p = 1.8x10-05). Finally, the association between 270	

both measurements of densities proved positively correlated as well in GM (rs = 0.80, p = 271	

1.1x10-04). 272	

 273	

Discussion 274	

2.1 
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Neurobiological interpretations and considerations 275	

A significant finding of this work was the negative association between T1 values and neuronal 276	

integrity measures (NeuN field fraction, neuronal density) in the gray matter. T1 relaxation is 277	

related to many factors in the tissue, including macromolecular integrity and the relationship 278	

between free and bound water. Neuronal loss will likely result in an overall loss of 279	

macromolecules and an increase in the extra-cellular space (thus increased amount of extra-280	

cellular water and decreased amount of intra-cellular water), all of which would act to increase 281	

T1 29. A similar relationship between ex-vivo GM T1 values and neuronal density has been 282	

described in patients with multiple sclerosis 30. Our study is the first to observe this relationship 283	

with in-vivo quantitative T1 mapping and in temporal lobe resections. Eriksson et al. (2007) 16 284	

found correlations between T2 and gray matter NeuN field fraction, employing a dual-echo fast 285	

FLAIR T2 (FFT2) mapping at 1.5T with a 5 mm slice thickness.  One possible explanation for 286	

why we did not observe this trend with our T2 maps is differences in the mapping protocols; our 287	

protocol at 3T, had significantly thinner slices, and did not use a fluid-attenuated inversion 288	

recovery (FLAIR) sequence. We plan to compare the relationship between our T1 and T2 maps 289	

and FLAIR sequences in future work to better understand the effectiveness of each technique in 290	

assessing pathology.  291	

 292	

We also found that FA was a predictor of neuronal density of large-calibre (layer 3/5) 293	

neurons in the cortical gray matter. While this seems counterintuitive to our expectations in 294	

white matter, where a decrease in FA is usually associated with pathology, the cyto- and myelo-295	

architecture in the cortex is considerably different from that in the white matter. Moreover, an 296	

increase in anisotropy was previously reported 31 within the dentate gyrus in an animal model of 297	

1.2 
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seizing rats, as compared to naive controls. Diffusion anisotropy is low and not typically 298	

examined in the cortical gray matter, with some exceptions 32. However high-resolution diffusion 299	

studies on post-mortem brains have shown that the fibre configuration can be complex, with both 300	

fibres parallel and perpendicular to the cortical surface observed, along with areas of fibre 301	

crossings 33.  In a region of low anisotropy due to fibre-crossing, such as the cortex, selective loss 302	

of one type of fibres would lead to an increase in anisotropy (i.e. a shift to a simpler fibre 303	

configuration). This phenomenon has been observed previously in a region of white matter fibre-304	

crossing, where Douaud et al. (2011) 34 demonstrated an increase of FA could be explained by a 305	

relative preservation of motor-related projection fibres crossing the association fibres of the 306	

superior longitudinal fasciculus in subjects with mild cognitive impairment. Thus, the increase in 307	

FA we observed, coinciding with a loss of only large-calibre neurons, could be explained by the 308	

selective loss of fibres running either parallel or perpendicular to the cortical surface), as 309	

depicted in the simplified schematic representation in Figure 7. Given the limitations of in-vivo 310	

DTI data we cannot precisely assess the nature of the architectural changes related to FA, 311	

however we hope to explore these issues further using high-resolution ex-vivo DTI of the 312	

resected specimens.  313	

 314	

In the white matter, increases in T1 were positively correlated with MD and negatively 315	

with FA. This agrees with previous studies that have also demonstrated reduced FA and 316	

increased MD in the ipsilateral white matter in TLE 35-39. These changes may be due to 317	

degeneration of axons, reduced packing, or demyelination 40 which may facilitate isotropic 318	

diffusion and accumulation of free water in the extracellular space, which would lengthen T1 as 319	

well.  A similar trend of prolonged T1 times and decreased FA was reported in white matter 320	
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hyperintense regions of Alzheimer’s patients 41, where they showed that increased T1 reflected a 321	

range of pathological findings including axon and myelin loss and microglial activation, whereas 322	

the strongest predictor of decreased FA was axonal loss. In addition to affecting relaxation and 323	

diffusion parameters, reactive gliosis has also been previously associated with neuronal loss 42, 324	

however we did not observe any significant correlations with GFAP IHC in either GM or WM.   325	

 326	

The positive correlation reported between age and neuronal density has been shown 327	

previously in a healthy aging population 43, and was attributed to atrophy (volume loss) without 328	

accompanied neuronal loss. This has potential implications on the detection of neuronal integrity, 329	

since if age-related atrophy (density increases) and neuron loss (density decreases) occur 330	

simultaneously, there may be no net change in density, and thus no change in MRI signal. 331	

Finally, we found significant differences in left-onset TLE patients, which had increased T1 and 332	

decreased FA in the gray matter. Asymmetry has also been found in other recent DTI studies 44, 333	

45 with left-onset patients having more significant and widespread abnormalities and greater 334	

hippocampal atrophy 46, and have been speculated to be due to the greater vulnerability to early 335	

injury and the progressive effect of seizures on the left hemisphere. These asymmetric structural 336	

differences could also be related to the inherent functional lateralization, including language 337	

dominance 47. 338	

 339	

Benefit of registration-based correlation 340	

Many studies correlating MRI and histology have been performed without the use of 341	

computational methods for 3D image registration, relying instead on visual matching of ROIs. 342	

However, this is difficult in cases where the visibility or boundaries of the lesion in MRI and 343	
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histology differ and where no definitive lesion is apparent (as in paradoxical TLE). Another 344	

drawback of visual matching is that it becomes more challenging to find corresponding slices 345	

when there are 3D deformations present, as the anatomy in a histology slice may not be fully 346	

present in a single MRI slice, even if obliquely resampled. If no registration is employed and the 347	

tissue is subjected to non-rigid deformations, the samples from both modalities may represent 348	

different parts of the same anatomical region, which could potentially lead to abnormal sub-349	

regions of one modality being correlated with normal elements of the other. When image 350	

registration is employed, the degree of mismatch between regions of both modalities becomes 351	

dependant on the registration error. For example, an image registration error between in-vivo 352	

MRI and histology of 1 mm would produce an overlap of 70% between two regions of interests 353	

with a volume of 140 mm3 on each modalities, (roughly the size of a very small FCD) 48.  354	

 355	

Limitations and future work 356	

The current study is limited to the investigation of neuronal integrity and gliosis through field 357	

fractions and measurements of neuronal size and density. Since focal neuronal loss and gliosis 358	

are thought to be related to epileptogenicity, correlation of these measures with MRI is an 359	

important step in validating quantitative imaging techniques. Additional insight might also be 360	

gained through the use of myelin-specific stains (Luxol fast blue, or myelin basic protein), since 361	

their relationship with both T1 49 and T2 30 has been previously demonstrated. Another limitation 362	

of this work is the lack of normative control data for histology. Several post-mortem control 363	

neocortical specimens were acquired for histological analysis; however the staining ability of 364	

NEUN degrades with time after formalin fixation 50. Moreover, it is logistically very difficult to 365	

obtain ethics approval for acquiring and handling fresh (unfixed) brain control specimens. We 366	
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plan to address these issues in future studies. The lack of control non-epileptic specimens makes 367	

it difficult to validate that the observed pathological changes directly relate to seizure generation, 368	

and hence the presented findings should be considered preliminary. 369	

 370	

In addition to histopathology, correlation with electrophysiology obtained with 371	

intracranial EEG (iEEG) could be used to further validate these techniques and better understand 372	

the relationship with epileptogenicity, imaging, and histology. However, there are some issues 373	

with using iEEG as a gold-standard for validating imaging methods, since localization is limited 374	

to placement of the electrodes and abnormal iEEG may not actually have an altered structural 375	

substrate that can be detected.  For these reasons, it may still be more beneficial to investigate the 376	

histopathological correlates instead of iEEG, specifically of cortical dysplasia, which often go 377	

undetected and have a higher risk for seizure recurrence 51. We intend as well to correlate our 378	

imaging findings (specifically abnormalities found on T1 and FA maps) with long-term seizure 379	

outcomes, and investigate whether the absence of such lesions provides more favourable 380	

outcomes for MRI-negative patients, as well as patients undergoing surgery due to hippocampal 381	

sclerosis. Future work should as well investigate whether these neocortical abnormalities are 382	

related to the epileptogenicity in those patients, possibly though correlation of the imaging 383	

abnormalities with depth electrodes recordings on truly MRI-negative patients (those without 384	

any identifiable lesions whether in the hippocampus or neocortex). Better quantification and 385	

characterization of these lesions in histology, based on neuronal- and laminar-centric analysis, 386	

could be used to improve detection and precise delineation with MRI, and could improve 387	

surgical outcomes through more complete resection of the underlying pathology 52. Our future 388	
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work in this direction will build upon histological image processing techniques and ex-vivo MR 389	

microscopy to accurately quantify and characterize these lesions for correlation with MRI.  390	

 391	

Conclusion 392	

In conclusion, we have demonstrated that alterations of in-vivo T1 and FA, in the temporal lobe 393	

cortex and white matter, are predictive of neuronal integrity (density and size) that serve to 394	

delineate an epileptogenic lesion. Our study is the first to quantitatively assess the relationship 395	

between MRI and histopathological features using correspondences based on image registration 396	

in focal epilepsy, and to relate in-vivo T1 and FA values to the proportion of neurons, 397	

specifically large-caliber neurons, in the neocortical gray matter. Our registration and correlation 398	

pipeline allows for a quantitative assessment of the pathological correlates of MRI by bringing 399	

information from both modalities, and the potential prediction of pathology from in-vivo MRI. 400	

This study suggests that quantitative MRI sequences, specifically multi-parameter T1 mapping 401	

and DTI, may have a role in routine clinical practice for pre-operative evaluation of focal 402	

epilepsy and motivates further investigation in this area. These in-vivo quantitative maps can be 403	

extended as well to identify gray matter lesions in multiple sclerosis or be used as a marker for 404	

degeneration in neurodegenerative diseases as Alzheimer’s. 405	

 406	

 407	

 408	

 409	

 410	

 411	
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Table 1. Patient demographics and clinical information including age, gender, onset age, seizure origin as well 
as clinical MRI and pathology findings for our patient cohort. MTS = mesial temporal sclerosis, MAA= minor 

architectural abnormalities, Neo. Path. = Neocortical Pathology, Hp. Path. = Hippocampal Pathology † Previous 
resection of left temporal lobe tumour (DNET), * not enough tissue to make diagnosis of MTS 

	

Patient Gender Age 

Age 

of 

Onset 

Sz 

Origin 

Sz 

Freq. 

/month 

MRI Neo. Path. Hp. Path. 
Engel 

outcome 

Yrs 

since 

surgery 

1 F 25 17 L 2 Normal † 

Gliosis, Ki67-

positive cells 

in WM† 

Gliosis 3 2.0 

2 M 20 3 L 16 MTS Gliosis, MAA MTS 2 2.1 

3 M 18 14 R 32 
Possible 

MTS 
Gliosis,  MAA Gliosis* 1 2.1 

4 F 48 36 L 28 MTS Gliosis MTS 1 1.7 

5 F 50 47 L 20 
GM/WM 

blurring 
Gliosis Gliosis* 1 1.6 

6 M 31 28 R 2 Normal 
Mild gliosis,  

MAA 

Negligible 

gliosis 
1 1.3 

7 F 32 19 L 2 MTS Gliosis MTS 1 1.2 

8 F 43 3 R 4 MTS Gliosis MTS 2 1.4 

9 F 26 19 R 12 
Cortical 

tubers 

Dysplastic 

lesion, cortical 

tuber 

Gliosis 2 2.5 

10 M 34 15 L 2 MTS 
Gliosis, focal  

MAA 
MTS 3 1.2 

11 F 40 7 R 20 
MTS,  

Porencephaly 
Gliosis, MAA MTS 2 2.5 

12 F 56 15 R 8 Normal 
Gliosis, 

arteriosclerosis 
Gliosis* 1 1 

13 M 23 18 L 12 Normal 

Gliosis, MAA, 

possible FCD 

type 1a 

Gliosis 1 1 



Table 2. Results of the linear mixed-effects models with random effects for subjects, showing p-
values for variables with significant fixed effects. 

	
Grey  

matter 
Neuron density Neuron density 

(large neurons) 
Neuron density 
(small neurons) 

NEUN field 
fraction 

T1 0.007 0.019 0.004  0.001 
T2     
FA  0.009   
MD     

The minimum adequate model was obtained by backward selection removing the non-
significant fixed effects. 



Table 3. Significance of Spearman Rho correlations between MR parameters. All p-values were 

corrected for family wise error.  

	
Grey matter 

parameters 
T1 T2 FA MD 

T1  
r = 0.323 

P = 0.428 

r = −0.207 

P = 0.515 

r = 0.129 

P = 0.843 

T2 

 

 
r = −0.316 

P = 0.463 

r = −0.036 

P = 0.931 

FA 

 

 
r = −0.188 

P = 0.612 

MD   

White matter 

parameters 
T1 T2 FA MD 

T1  
r = 0.464 

P = 0.144 

r = −0.806 

P = 1.73e-04* 

r = 0.643 

P = 0.032 

T2 

 

 
r = −0.229 

P = 0.639 

r = 0.381 

P = 0.241 

FA 
 

 
r = −0.527 

P = 0.147 

MD   
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Figure legends 

Figure 1. Histological processing and semi-quantitative features extraction, for both NeuN and GFAP IHC 

stains. 

 

Figure 2. ROI placement and MRI parameters extraction. A) Gray matter and white ROI on 100um H&E 

histology slice in histology native space. B) Registered ex-vivo MRI slice corresponding to the histology slice in 

Hist3D space. C) Warped ROIs overlaid on the registered and obliquely resampled T1 map in Hist3D space 

where MRI parameters extraction is performed. The registered histology slice is shown in the top left corner. D) 

Warped ROIs in the native in-vivo MRI space overlaid on three consecutive slices of the T1 map for illustration 

purposes. 

 

Figure 3. Overview of our registration pipeline depicting registration results and the four different spaces of 

MRI and histology including the intermediate Hist 3D space where reconstructed histology slices are stacked 

parallel to the A-P axis. 

 

Figure 4. Relationships between quantitative MRI parameters (T1 and FA) and neuronal density in GM (Top 

left: Total neuronal density, Top right: Neuronal density for small-caliber neurons, Bottom: Neuronal density 

for large-caliber neurons).  

 

Figure 5. Representation of T1-FA multi-parametric space, revealing that combining T1 and FA provides better 

discrimination of normal and abnormal neuron density in neocortical gray matter. Each dot in this plot refers to 

a gray matter ROI on a histology slide, with representative dots being labeled with patient IDs from Table 1. It 

is clear from the figure that low and high neuron densities are not well separated when using T1 or FA (see 

projections on horizontal and vertical axes), but in the two-dimensional space the data demonstrate are more 

clearly separable (demonstrated by the dashed line), suggesting that multivariate or multi-parametric analysis 
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would be more beneficial in predicting or classifying pathology in-vivo. Since the presented ROIs are extracted 

from sparsely sectioned histology slices (4 mm apart), this figure highlights the potential of imaging parameters 

in detecting local pathology within the neocortex. 

 

Figure 6. Significant relationships between diffusion and relaxometry MRI parameters, as well as the 

association between neuronal density and NeuN field fraction. 

 

Figure 7. Summary of MRI parameters and histological features correlations in both tissues of the temporal lobe 

neocortex, along with possible neurobiological explanations for the highlighted relations.  
















	Magnetic resonance imaging and histology correlation in the neocortex in temporal lobe epilepsy.
	Citation of this paper:
	Authors

	Microsoft Word - AoN_Submission_EpiGrp_Rev[1] rh edits.docx

