
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

1-29-2021 11:00 AM 

Experimental Study of Tornado-Induced Pressures Experimental Study of Tornado-Induced Pressures 

Aya Kassab, The University of Western Ontario 

Supervisor: Hangan, Horia M., The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Civil and Environmental Engineering 

© Aya Kassab 2021 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Civil Engineering Commons, Environmental Engineering Commons, and the Other Civil and 

Environmental Engineering Commons 

Recommended Citation Recommended Citation 
Kassab, Aya, "Experimental Study of Tornado-Induced Pressures" (2021). Electronic Thesis and 
Dissertation Repository. 7634. 
https://ir.lib.uwo.ca/etd/7634 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7634&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=ir.lib.uwo.ca%2Fetd%2F7634&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=ir.lib.uwo.ca%2Fetd%2F7634&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/257?utm_source=ir.lib.uwo.ca%2Fetd%2F7634&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/257?utm_source=ir.lib.uwo.ca%2Fetd%2F7634&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7634?utm_source=ir.lib.uwo.ca%2Fetd%2F7634&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 

 

Abstract 

The increased devastation associated with tornadic flow-fields in terms of human lives or 

destruction of properties and their subsequent economic losses highlights the significance of 

understanding the tornado vortex structure, particularly near the ground where the majority of 

this destruction happens. While the body of research in this area is increasing there is a lack of 

resolution associated with physical near-surface measurements in tornado-like vortices (TLVs) 

and the effects of translation, surface roughness, and surface vortex dynamics are not yet well 

understood.  

In order to address these gaps, high spatial and temporal surface pressure measurements were 

carried out at WindEEE Dome to explore the characteristics of stationary and translating 

tornado-like vortices (TLV) for a wide range of swirl ratios (𝑆=0.21 to 1.03). The translational 

speed of the TLV and the surface roughness were varied to examine their effects on tornado 

ground pressures, wandering, and vortex structure. It was found that wandering is more 

pronounced at low swirl ratios and has a substantial effect on the peak pressure magnitude for 

stationary TLV (error percentage ≤ 35%). A new method for removing wandering was 

proposed which is applicable for a wide range of swirl ratios. For translating TLV, the near-

surface part lagged behind the top of the vortex, resulting in a tilt of the tornado vertical axis 

at higher translating speeds. Also, a veering motion of the tornado base towards the left was 

observed. Wandering was less pronounced for higher translation speeds. Increasing the surface 

roughness caused an analogous effect as lowering the swirl ratio.  

While surface pressure exploration of tornado-like vortices paved the way for understanding 

their complex structure near the ground, applying the acquired knowledge on buildings is 

intended to serve for the interpretation of tornado-induced pressures on buildings as a 

superposition of pressure deficit and aerodynamic effects. Thus, induced internal and external 

pressures on two generic low-rise buildings were quantified to assess the impacts of TLVs on 

low-rise buildings. The internal pressures were examined under different opening 

configurations, building orientations, building sizes, and offsets. It was found that a dominant 

opening on the roof induced the highest negative peak internal pressure. Increasing the building 

offset beyond the tornado core region caused a drastic reduction of the peak internal pressures 
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by two-thirds. The peak internal pressures were higher for the smaller of the two buildings 

investigated herein. On the other hand, external pressure measurements showed that the 

building’s roof, leeward wall, and left side wall experienced the maximum uplift at the core 

radius location. The comparison with the recently modified ASCE 7-16 code showed that roof 

corner pressures are safely predicted for all the cases while the mid-roof zone and the middle 

of the walls experienced higher suctions exceeding the recommended wind loads in ASCE 7-

16. 

Keywords 

Tornado-like vortices, Surface pressure, WindEEE Dome, Swirl ratio, Roughness, 

Translation speed, Wandering, Tilting, Internal pressure, Opening, External pressure. 
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Summary for Lay Audience 

Tornadoes can cause enormous destruction to life and properties. The aftermath of these fierce 

storms has a great impact on the economy. Thus, it is crucial to understand their structure and 

their associated damage near the ground where most of the structures lie. 

In this study, high-resolution pressure measurements on the ground were carried out to better 

characterize the tornado vortex effect on the ground surface.  Multiple translational speeds of 

tornadoes and surface ground roughness were examined in a large-scale tornado simulator.  

While understanding the near-surface tornado vortex structure is essential, the study of their 

effect on buildings will provide a full insight into their probable damage. Hence, internal and 

external pressure measurements were performed on two low-rise building structures under 

translating tornado flow-field.  The internal pressures associated with the natural leak in the 

buildings or due to sudden breakage of windows or doors play a significant role by either 

mitigating or intensifying the overall tornado wind loading on structures. Herein, the internal 

pressures were examined under different opening configurations, building orientations, 

building sizes, and offsets. Also, the study of the induced external pressures due to tornadic 

flow revealed that the building code needs more improvements regarding their recommended 

wind loadings on buildings.  
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Chapter 1  

1 Introduction and background 

1.1 General Introduction 

For many decades, extreme wind events both synoptic and non-synoptic have been an 

urging subject for many researchers due to their hazardous and devastating outcomes. 

However, tornadoes are considered one of the most powerful storms of nature. Tornadoes 

are fiercely spinning columns of rising air that extend from the base of thunderstorm clouds 

to the ground causing a low-pressure area close to the surface layer. More than 1,000 

tornadoes are reported in the United States per annum resulting in over one billion dollars 

of damage (NOAA, 2012). Generally, tornadoes, on average, are 150 m wide and can travel 

on the ground for 8.0 km (Lyons, 1997) with a translational speed of 9 m/s to 18 m/s (Ying 

and Chang, 1990).  

In 1971, Tetsuya Fujita, a University of Chicago meteorologist, introduced the “Fujita scale 

(F-scale)”. The Fujita scale (F-Scale) is a scale that is used to rate tornado intensity by 

investigating the tornado-affected areas and measuring the extent of the destruction. 

Although the F-scale was considered a tremendous shift in classifying tornadoes, it has 

some limitations. Some of the main limitations are the absence of incontrovertibly defined 

Damage Indicators (DI) and the lack of a direct correlation between the resulted damage 

of tornado and the wind speed. For more information about the Damage Indicators (DI) 

and the Degree of Damage (DOD) associated with the EF-scale, (See Appendix A). These 

limitations resulted in an overestimation of the wind speeds associated with each F-

category and inconsistency of tornado rating. Thus, a new scale, the Enhanced Fujita scale 

(EF-scale), was proposed by McDonald and Mehta in 2006 (McDonald and Mehta 2006). 

The EF-scale was used in the United States in 2007 while Environment Canada started 

using it in 2013. Table (1.1) shows a comparison between F-scale and EF-scale in terms of 

velocity range (FEMA 2011). 
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Table 1.1 The Fujita scale categories (FEMA 2011) 

 

1.2 Motivation and objectives 

Tornadoes are considered one of the most devastating and destructive storms ever known 

to date. They produce the highest wind speeds that can reach up to 1000 km/hr (Solari et 

al. 2015). 2011 had witnessed the highest death toll in the current century with 553 

fatalities, where about 30% of this percentage (161 deaths) was reported after the EF-5 

rated tornado hit Joplin, Missouri, United States on May 22, 2011, that marked this year as 

the deadliest year of tornadoes since 1936 (Kuligowski et al. 2014). This tragic loss of life 

and properties led to increased attention and detailed post-damage surveys about these 

fierce storms and their associated damage. A worldwide call for a change in the design of 

the buildings to withstand such storms had risen. The reason behind the destruction of the 

structures is due to exceeding the allowable design wind loads stated in the building codes, 

e.g., ASCE 7-16 (ASCE/SEI, 2016) or NBCC 2015 (NRCC, 2015) that only depend on 

Atmospheric Boundary Layer flows (ABL) in deducing the pressure coefficients. Thus, a 

need for a better characterization of the tornado surface loading, where most of the 

buildings lie, as well as the tornado-structure interaction in terms of internal and external 

pressure loading is pivotal. This will eventually help in re-evaluating the recommended 

wind loads in the building codes that will lead to tornado-resilient communities.   

Tornado flow-field studies had started as early as the late nineteenth century.  Since then, 

numerical, experimental, and full-scale studies have been emerging sequentially as the 

need to understand the tornadic flow and their associated damage necessitate such research. 

https://www.google.com/search?safe=active&rlz=1C1CHBF_enCA870CA870&sxsrf=ALeKk01Aks5MKtmSJUXYPNpZNRBusZNA1w:1607856569990&q=Joplin,+Missouri&stick=H4sIAAAAAAAAAOPgE-LSz9U3SC8pSc-rUuIEsQ2NMwyTtYSzk630U8tS80qKrXLykxNLMvPzFrEKeOUX5GTm6Sj4ZhYX55cWZe5gZQQA4O3dDEQAAAA&sa=X&ved=2ahUKEwiYtdC95MrtAhWvQxUIHUK3DqsQmxMoATAaegQIHBAD
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Field tornado measurements started in the mid-fifties when barometers and weather 

stations were used as a first attempt to record tornadoes by realizing the change in 

temperature, pressure, and relative humidity (Tepper and Eggert 1956). More 

advancements took place in full-scale measurement instrumentations where the Doppler 

radars and Doppler on wheels (DOW) were exploited to better characterize tornadoes (e.g. 

Wurman et al. 1996; Wurman et al. 1997; Bluestein et al. 2004; Lee and Wurman 2005; 

Wakimoto et al. 2012). While the majority of field measurements were focused on wind 

velocity, very few studies employed ground pressure instrumentations where mobile 

mesonets and Hardened In-Situ Tornado Pressure Recorder (HITPR) probes were utilized 

to record velocity and pressure data (Lee and Samaras 2004; Wurman and Samaras 2004; 

Karstens et al. 2010). Although field measurements are reliable, they have limitations in 

lower heights as the radar is placed away from obstacles in the low ground levels. These 

limitations as well as the complex preparations and the unpredictable tornado trajectories 

made the field measurements challenging. 

On a parallel path, Numerical simulations were considered a reasonable method in 

understanding tornadic flow-field if validated with available full-scale or experimental 

results (e.g. Lewellen et al. 1997; Nolan 2005; Natarajan and Hangan 2012; Liu and 

Ishihara 2015; Nasir and Bitsuamlak 2018;  Nolan et al. 2017; Gairola and Bitsuamlak 

2019). The effect of translation and roughness were studied where the translation was 

found to develop some secondary vortices (Diamond and Wilkins 1984) while roughness 

resulted in decreasing the tornado vortex diameter in some studies (Diamond and Wilkins 

1984; Zhang and Sarkar 2008) or increasing the vortex diameter (Dessens 1972; and 

Natarajan and Hangan 2012). These opposing results highlight the role of validation with 

field measurements or experimental results. 

Ward (1972) started a new era of tornadic flow by introducing the famous Ward-type 

Tornado Vortex Chamber (TVC) at the National Severe Storm Laboratory in Oklahoma. 

Ward (1972) examined the structure of tornado-like vortices and compared his results with 

full-scale measurements where he observed the sensitivity of the tornado vortex to the 

tornado simulator’s boundaries. Thereafter, multifold tornado vortex chambers (TVC’s) 

were built to aid in understanding the tornado flow-field structure and interaction with 
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buildings (Church et al. 1979; Mishra et al. 2005; Haan et al. 2008; Hangan 2014). Albeit 

the pioneering efforts exerted in understanding the tornado vortex structure inside 

laboratories, they have some limitations. Most of the simulators do not have the capability 

to produce translating tornado vortex (Ward 1972; Church et al. 1979; Mishra et al. 2005; 

Hashemi Tari et al., 2010). In addition, the available space resolution is not sufficient in 

some TVCs to provide acceptable tornado loading on structures (Ward, 1972; Church et 

al., 1979; Snow, 1982). 

Near-surface examination of tornado-like vortices had been reported in the literature (Tari 

et al. 2010; Zhang and Sarkar 2012; Refan et al. 2014; Tang et al 2018; Refan and Hangan 

2018). Despite all the efforts in characterizing the tornadic flow field in these studies, all 

the studies were confined to stationary tornadoes without accounting for the translation 

motion of tornadoes that resemble the real tornadoes.  

Wandering behavior of the tornado vortex is observed inside tornado simulators (e.g. Baker 

1981; Zhang and Sarkar 2012; Ashton et al 2019; Refan and Hangan 2018; Karami et al. 

2019). Ashton et al. (2019) studied the effect of tornado wandering on the TLV structure 

utilizing the data obtained from the Model WindEEE Dome (MWD). An error percentage 

reaching 17% was quantified in the velocity flow-field. They proposed two methods to 

eliminate the wandering effect from the resulted velocity flow-field where the first 

technique relied on re-centering the vortex based on minimum pressure, while the other 

method utilized a deconvolution approach.  

Tornado-structure interaction was investigated experimentally in the literature ranging 

between external pressure loadings (e.g. Ho et al. 2005; Mishra et al. 2008b; Sengupta et 

al. 2008; Haan et al. 2010; Hu et al. 2011; Razavi and Sarkar 2018)  and internal pressure 

studies (e.g. Sarkar and Kikitsu 2009; Letchford et al. 2015; Wang et al. 2018; Roueche et 

al. 2020). Sarkar et al. (2006) investigated the tornadic loading on a high-rise building and 

deduced that tornado intensity of F2 or higher would surpass the permissible design loads 

stated in ASCE 7-02 by a factor of 1.8. Haan et al. (2010) utilized a low-rise gable-roofed 

building in their study where he found that the peak uplift forces exceeded the building 

code ASCE 7-05 by factors of (1.8-3.2). These studies concentrated on evaluating the 
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maximum uplift forces without delving into the various building zones that are the base in 

the components and claddings design as stated in ASCE 7-16 (ASCE/SEI 7-16, 2017). On 

the other hand, very few internal pressure studies exist in the literature, unlike external 

pressure loadings. Sarkar and Kikitsu (2009) started one of the first attempts to quantify 

the internal pressures in tornado flow-field in the ISU tornado simulator at Iowa State 

University utilizing a dominant opening. They deduced that the internal pressure is a 

function of porosity and opening configuration. Letchford et al. (2015) studied the effect 

of porosity and dominant openings on the induced internal pressure loadings for a low-rise 

building model utilizing a stationary tornado simulator, the VorTECH simulator at Texas 

Tech University. Their study revealed that a dominant opening in the windward wall 

produced the largest peak internal pressures irrespective of the porosity. Most recently, 

Roueche et al. (2020) proposed a numerical model that predicts the internal pressure based 

on external pressures. Comparing stationary tornado and ABL induced loads they found 

that building corners experience 13% higher wind loads than ABL flow.  

After reviewing the previous studies regarding the tornado-like vortices characteristics and 

their impact on low-rise buildings, some gaps in the literature initiated the present study. 

Some uncertainties in the parametric scaling of most of the simulators may lead to some 

questionable wind loads (Baker and Sterling, 2019). In addition, most near-surface studies 

adopted stationary tornado concepts, due to limited capabilities of the utilized tornado 

simulators, without giving attention to translating tornadoes that are more representable of 

field tornadoes. Very few studies examined the surface roughness effect on tornadic flow 

field due to the inexistence of a standardized representation of roughness in tornadic flows. 

The limited size of most of the tornado simulators does not provide the appropriate spatial 

resolution for the aerodynamic loading. Very few tornadic wind loading studies adopted 

translating TLV (Sarkar and Kikitsu 2009; Rajasekharan et al. 2019) where the translation 

speed was in the lower range (<= 0.61 m/s). Also, most of the studies that implemented 

comparisons with the standard building codes did not delve into the associated peak wind 

loads for each building zone which is a key point in the design of components and claddings 

as outlined in the ASCE 7-16 (ASCE/SEI 7-16, 2017) building code. 

The main objectives of the thesis are: 
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1. Characterizing the tornado-like vortices, stationary and translating, structure 

utilizing high-resolution ground pressure measurements. 

2. Addressing wandering, tilting, and veering motions in simulated tornado-like 

vortices (TLVs) for a wide range of swirl ratios and two surface roughness. 

3. Investigating the induced internal and external pressures in generic low-rise 

buildings under translating tornado-like vortices (TLVs). 

4. Comparison with ASCE 7-16 code to assess its applicability for tornadic flow. 

 

1.3 Scope of the Thesis 

The present thesis is written in the "integrated-article” format as per Western University’s 

thesis regulations. The thesis has five chapters out of which three are journal articles.  

Chapter 1 outlines a general introduction and background about tornado flow-field and 

the motivation behind the current study. Chapter 2 provides a comprehensive study about 

stationary and translating tornado-like vortices (TLV) based on ground pressures. 

Tornado vortex wandering, tilting, and veering motions are analyzed. Chapter 3 focuses 

on the induced internal pressures under translating tornado-like vortices (TLV) on two 

low-rise building models. This study expands the knowledge about internal pressures, 

their variability with different opening configurations, and their impact on the properties. 

Chapter 4 investigates the external pressure loadings on two low-rise building models as 

well as a comparison between the peak pressures and the latest ASCE code. Chapter 5 

portrays the conclusions derived from the present study and recommendations for future 

work. 
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Chapter 2  

2 Surface Pressure Measurements in Translating 
Tornado-Like Vortices 

2.1 Introduction and background 

Tornadoes are considered one of the most violent and destructive storms. Nearly over 1,000 

tornadoes are reported annually in the United States and their damages can exceed over 

one billion dollars (NOAA, 2012). One of the deadliest tornadoes on record was the Joplin 

tornado on May 22, 2011, an EF–5 rated tornado that caused 158 fatalities, more than 1,000 

injuries, and left nearly 7,500 residential structures partially or totally collapsed (NWS, 

2011). This demonstrates the severity of tornadoes and the vulnerability of buildings under 

these fierce storms. The destruction of structures due to tornadic hits is associated with 

exceeding the permissible design wind loads in building codes, e.g., ASCE 7-16 

(ASCE/SEI, 2016) or NBCC 2015 (NRCC, 2015) which rely solely on the atmospheric 

boundary layer (ABL) flow-fields in calculating pressure coefficients. This destruction can 

be minimized substantially by designing the buildings to withstand tornadoes up to EF-2 

rated tornadoes which occupy 95% of tornado hits in the United States according to NOAA. 

In order to achieve this, a rigorous analysis of the induced pressures and the resulting 

loading on structures is needed. A key component in this analysis is the characterization of 

tornadic ground pressures for various tornado intensities, translational speeds, and surface 

roughness. While full scale, numerical and experimental studies of tornado induced 

pressures have been performed (e.g  Lee and Wurman 2005; Natarajan and Hangan 2012; 

Mishra et al. 2005), there are gaps in understanding the effects of translation and roughness 

of TLV as well as their relation to tornado surface trajectories and wandering.  

Owing to the difficulty to predict tornado onset, their probable trajectory, and the adversity 

of implementing measuring instruments of tornado flow-field near the ground, very few 

field tornado measurements have been reported in the literature. Field tornado 

measurements have seen developments since their earliest attempts utilizing weather 

stations and barometers (Tepper and Eggert 1956; Fujita 1958). Doppler radars were later 

employed to explore tornado characteristics (Wurman et al. 1996; Wurman and Gill 2000; 
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Wurman 2002; Bluestein et al. 2004; Lee and Wurman 2005; Alexander and Wurman 

2005a, 2005b; Wakimoto et al. 2011; Wakimoto et al. 2012). By 1995, the Doppler On 

Wheels (DOW) was introduced which permitted a safer environment for scientists to 

record data (Wurman et al. 1997). Moreover, very few studies about ground pressure 

measurements were accomplished due to the difficulty and challenges in setting up the 

instruments in the unpredictable path of the tornado (Lee and Samaras 2004; Wurman and 

Samaras 2004; Karstens et al. 2010). Hardened In-Situ Tornado Pressure Recorder 

(HITPR) probes and mobile mesonet were utilized in those studies to obtain pressure and 

velocity measurements. Furthermore, the signature of the tornado on the ground was 

reported in most of the field studies utilizing satellite images and tornado damage on the 

ground, where the tornado path in most of the cases veers in a curved path rather than a 

straight-line path (Wakimoto et al. 2003; Lemon and Umscheid 2008; Karstens et al. 2010; 

Wurman and Gill 2010). Lee et al. (2004) deployed three conical-shaped HITPR probes in 

the path of an F-4 tornado in Manchester, SD to measure the tornado loading on the ground, 

temperature, wind speed, and humidity. They deduced that the tornado path is curved rather 

than a straight line and that the pressure deficit is not perfectly symmetrical. Moreover, 

they compared the pressure deficit profile with two analytical models, Rankine and 

Burgers-Rott models, where the latter proved to provide better agreement. Karstens et al. 

(2010) utilized HITPR, mobile mesonets, and video probes in nine tornado events since 

2002 to reveal the near-ground characteristics of tornadoes in terms of pressure deficits, 

and in some cases velocity profiles as well. They revealed the structure of the nine tornado 

volumes and found that they are ranging between single-celled, double-celled, and 

multiple-celled tornadoes. They also calculated the translation speed of all nine events and 

analyzed the tornado path using visualization, video probes, and radar images. Albeit the 

reliability and robustness of field tornado measurements in characterizing tornado flow-

field, the measurements are confined to higher heights above most of the vital structures, 

particularly low-rise buildings. This is because the radar should be positioned distantly 

above all the obstacles to provide reliable data. These challenges associated with the field 

measurements lead to the rising of experimental work using tornado vortex chambers and 

numerical simulations in parallel with the hard-to-accomplish field studies. 
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Numerical simulations have been broadly used by many researchers due to their 

adjustability and lower cost compared to experimental and field studies and have been 

improved through the years (e.g. Lewellen et al. 1997; Nolan and Farrell 1999; Nolan 2005; 

Ishihara et al. 2011; Natarajan and Hangan 2012; Liu and Ishihara 2015, 2016; Nasir and 

Bitsuamlak 2018;  Nolan et al. 2017; Gairola and Bitsuamlak 2019). Numerical studies 

covered different topics exploring the stationary and translating tornadic flow field, 

examining tornado-structure interaction, and tornadic post-damage studies. Tornado 

translation was found to create secondary vortices (e.g. Diamond and Wilkins 1984). Also, 

the effect of roughness was investigated in some studies that provided contradicting results 

regarding the vortex diameter either decreasing with increasing roughness (Diamond and 

Wilkins 1984; Zhang and Sarkar 2008) or increasing with increasing roughness (Dessens 

1972; Leslie 1977; and Natarajan and Hangan 2012). These contradicting results are 

indicative of the need to validate numerical simulations against laboratory or where 

possible field measurements.  

Laboratory simulations of tornado-like vortices have been started since the early seventies 

when Ward (1972) built the first tornado simulator. Ward (1972) explored tornado features 

by comparing laboratory results with field tornadoes and found that the radial momentum 

flux is a vital factor in producing tornadoes and that the vortex is very sensitive to the 

geometrical parameters of the simulator. The simulator’s main drawbacks were its limited 

access to the vortex chamber due to its small size which did not allow adding appropriate-

sized building models for studying tornado-structure interaction and that it did not support 

tornado translation. Subsequently, several Tornado Vortex Chambers (TVC’s) have been 

constructed to identify and examine the aerodynamic behavior of tornado-like flows 

(Church et al. 1979; Mishra et al. 2005; Haan et al. 2008; Hangan 2014). Although 

laboratory simulation was adopted by many researchers who performed vast advancements 

for better characterization of tornado flow-field, it has some restrains. Most of the tornado 

simulators lack the ability to create the translational motion of simulated tornadoes (Ward 

1972; Church et al. 1979; Mishra et al. 2005; Tari et al., 2010). Moreover, the limited size 

of most of the tornado simulators confines the ongoing research as it does not provide an 

adequate resolution for measuring the tornadic loads on buildings (Ward, 1972; Church et 

al., 1979; Snow, 1982). Posterior efforts were exerted to investigate the pressure loadings 
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on different structures (e.g. Mishra et al. 2008b; Haan et al. 2010; Kikitsu and Sarkar 2011; 

Hu et al. 2011; Thampi et al. 2011; Rajasekharan et al. 2013; Case et al. 2014). However, 

there are some uncertainties about the geometric and the velocity scaling of most simulators 

which have a direct effect on the aerodynamic loading (Baker and Sterling, 2019). 

Tari et al. (2010) conducted experiments in a small tornado vortex simulator (TVS) at 

Western University, Canada to investigate the swirl ratio effects on tornadic flow 

characteristics. They concluded that the core radius, the tangential, and radial velocities 

rise with increasing swirl ratio. In addition, the vortex touchdown stage recorded the 

highest turbulent kinetic energy. Zhang and Sarkar (2012) investigated the near-ground 

flow-field of stationary tornado-like vortices using PIV system. They found that wandering 

affected the results, particularly for lower swirl ratios and that the intensified mean flow in 

collaboration with high turbulence near the ground and large pressure deficit would have a 

prominent role in buildings’ destruction. Nevertheless, this investigation was 

circumscribed to lower swirl ratios (𝑆 < 0.3), and the radial Reynolds number range was 

debatable. Refan et al. (2014) utilized Particle Image Velocimetry (PIV) in the Model 

WindEEE Dome (MWD) to investigate the TLV structure and compared the results with 

full-scale data utilizing the Ground-Based Velocity Track Display (GBVTD) method. They 

deduced the geometric scale and the equivalent swirl ratio of tornadoes in MWD and found 

that the MWD is capable of reproducing tornadoes equivalent to EF0 to EF3 tornadoes in 

field tornadoes. Tang et al. (2018) carried out experiments in the VorTECH tornado 

simulator at Texas Tech University. They studied the mean and turbulent characteristics of 

stationary tornado-like vortices using cobra probes and omniprobes for velocity 

measurements and static pressure taps on the ground for surface loading calculations. It 

was revealed that the fluctuating pressure widely contributes to the tornado loading and 

that the pressure deficit has a good agreement with field tornadoes. Refan and Hangan 

(2018) explored the characteristics of stationary tornado-like vortices close to the ground 

over a broad range of swirl ratios using Particle Image Velocimetry (PIV) and surface 

pressure measurements. They deduced that wandering behavior is more pronounced at low 

swirl ratios and that the tornadic near-surface pressures become independent of the radial 

Reynolds number for Re > 4.5 x 104.  
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All the efforts in examining the near-surface of tornado-like vortices have been 

concentrated on stationary tornadoes (Tari et al. 2010; Zhang and Sarkar 2012; Refan et al. 

2014; Tang et al 2018; Refan and Hangan 2018). Hence, studying the structure of 

translating tornado-like vortices close to the ground, where the majority of structures lie, 

is crucial as this represents the actual behavior of real tornadoes.   

In real tornadoes, the ratio between the translation velocity and the maximum tangential 

velocity varies in the range of 0.03 to 5 (Lombardo et al. 2015; Refan et al. 2017; Rhee and 

Lombardo 2018). The lack of the ability to produce a translation in most of the tornado 

simulators resulted in few experimental studies about translating tornadoes at relatively 

reduced translational speeds (e.g., Haan et al. 2010; Sengupta et al. 2006, 2008; Wang et 

al. 2016). Haan et al. (2010) studied experimentally the effect of translating tornadic flow 

(𝑣𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑛𝑔≤ 0.61) on a one-story, gable-roofed building and compared it with ABL flow. 

They reported that translation resulted in an inclination of the vortex axis towards 

translation direction. However, they did not explain this phenomenon in detail. Sengupta 

et al. (2008) explored the difference between simulating stationary and translating tornado-

like-vortices utilizing LES on a cubic building and compared it to experimental results.  

They deduced that tornadic loading of F2 intensity or higher exceeded the ASCE 7-05. 

Most of the translating tornado studies were focused on the loading on the buildings 

without delving into the characteristics of the translating tornado structure near the ground. 

Hence, more detailed research needs to be performed to understand the characteristics of 

the translating tornadoes near the surface. This will provide a better understanding of the 

tornadic hit’s outcomes in this critical region where most of the structures exist and will 

lead to building more tornado-resilient communities. 

Although reproducing tornadoes in tornado simulators proved to be a robust method, the 

resulting tornadic swirl is affected by the wandering behavior of the vortex (Baker 1981; 

Snow and Lund 1997; Zhang and Sarkar 2012; Ashton et al 2019; Refan and Hangan 2018; 

Karami et al. 2019). Ashton et al. (2019) explored the wandering behavior of tornado-like 

vortices in tornado simulators using the data obtained from the Model WindEEE Dome 

(MWD). It was concluded that the extent of wandering could produce an error as high as 

17%. The necessity of removing the wandering effect from the time-averaged velocity field 
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was emphasized and two techniques were proposed to remove the wandering effect; one, 

re-centering the vortex by detecting the vortex center, and two, using the deconvolution 

method. The first method was reported to provide more rigorous results. 

Most of the previous experimental studies were performed over smooth ground. Few 

studies adopted rough surfaces that may represent different exposures (e.g. Dessens 1972; 

Zhang and Sarkar 2008; Matsui and Tamura 2009; Fleming et al. 2013; Wang et al. 2017). 

Moreover, numerical simulations of the effect of ground roughness on tornado structure 

were performed (Natarajan and Hangan 2012; Liu and Ishihara 2016). Wang et al. (2017) 

found that the radial and vertical velocity fluctuations in tornadic flow are influenced by 

surface roughness and that introducing roughness resulted in transitioning to a lower swirl 

ratio. Generally, previous studies revealed that increasing roughness has a similar effect to 

decreasing the swirl ratio on the mean flow-field, unlike few studies that showed the 

reverse effect (e.g. Fleming et al. 2013). Despite all the efforts in the literature, a lack of a 

rigorous standardization of roughness in tornadic flow and pressure deficit dominated TLV 

flows led to high uncertainty in the results. More research needs to be accomplished for 

better characterization of surface roughness in tornado simulators. 

The state-of-the-art tornado simulator, the WindEEE dome, is capable of producing a wide 

range of swirl ratios of tornado-like vortices utilizing their 4.5 m updraft diameter and 

around 4 m height (Hangan 2014; Hangan et al. 2017a, 2017b). This large-scale simulator 

can provide high spatial resolution for near-ground measurements. It is considered one of 

the best performing simulators as it accounts for geometric similarity based on multiple 

length scales as well as dynamic similarity represented by the high Reynolds number 

(Baker and Sterling, 2019). Therefore, ground surface and structural loadings can be 

explored adequately.  

In this study, ground pressures analysis for stationary as well as translating tornado-like 

vortices was carried out over a wide range of swirl ratios (𝑆=0.21 to 𝑆=1.03). The effect of 

variation of tornado translational speed reaching up to 1.5 m/s, (or 𝑣𝑇/𝑣𝑡𝑎𝑛𝑔,𝑚𝑎𝑥 ≤ 0.2) for 

the first time in tornado simulators, was investigated in terms of ground pressure 

distributions, and TLV trajectories. Moreover, a preliminary study of surface roughness 
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sequel on translating tornado-like vortices structure was performed. Finally, the effects of 

both translation speed and roughness on tornado tilting, veering, and wandering have been 

examined for the first time. 

 

2.2 Experimental setup 

2.2.1 Tornado simulator description 

The WindEEE dome is a novel three-dimensional wind testing chamber that can simulate 

a wide variety of atmospheric flows such as atmospheric boundary layer  (ABL), gust 

fronts, separated flows, thunderstorm downbursts, and tornadoes in a large-scale (4.5 m 

max. updraft diameter and 4 m height) and high Reynolds numbers (up to 2 × 106) (Hangan 

2014; Hangan et al. 2017a; 2017b). The test chamber has a hexagonal footprint with a 

diameter of 25 m. It is composed of 106 fans in total, 100 fans distributed along the 

circumference of the testing chamber, and the rest of the fans are positioned in the upper 

plenum above the test chamber (Fig. 2.1). The integration between the upper fans and the 

periphery fans doubled by an advanced control system sets the basis to produce a variety 

of flow-fields. Active control of the floor allows 1600 floor roughness elements to vary 

their heights between 0 and 30 cm to mimic different terrain exposures. Tornadoes can be 

simulated at WindEEE dome for a broad range of intensities out of which swirl ratios  

𝑆=0.21 to 1.03 have been already explored. For the present experiments, mode A tornado 

was employed in which 6 fans in the upper plenum can produce the desired updraft in 

conjunction with a set of vanes situated at the base of the peripheral walls which when set 

at different angles can create the desired tornado swirl (see Fig. 2.1). The upper plenum is 

connected to the test chamber by a bell-mouth with mechanical louvers.  

An important feature of the simulator is its capability to generate translating tornadoes by 

utilizing a guillotine system that translates the bell-mouth for up to 1.5 m/s over a 5 m 

distance. This is, to the authors knowledge, the largest achievable translating speed in 

tornado simulators which can closely mimic the significant aerodynamic properties of 

tornadic flows (Baker and Sterling 2019). Moreover, the simulator’s large size assures 

measurement resolution both in plane and in height which is very important for the 
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characterization of tornado near-surface layer where most of the buildings and structures 

lie. 

 

2.2.2 Experimental setup and data processing 

Tests were conducted at the WindEEE Dome. Detailed surface pressure measurements 

were carried out over a large area of the chamber floor (460 cm × 240 cm) to give a 

thorough insight into the tornado vortex dynamics near the ground where velocity 

measurements are difficult. Tornado-like vortices were tested for swirl ratios between 

(𝑆=0.21 to 1.03) and (𝑆=0.48 and 𝑆=0.76) for stationary and translating TLV respectively. 

Surface roughness was added utilizing the active control roughness blocks on the floor of 

a 3 cm mean height to examine the tornado flow-field characteristics. 

Vortex flow-field: 

 

 

 

Figure 2.1 Schematic of tornado creation at WindEEE Dome 



21 

 

The main parameters that control the tornado flow are: the geometric aspect ratio “𝑎”, the 

kinematic swirl ratio “𝑆”, and the dynamic radial Reynolds number “𝑅𝑒𝑟”. The aspect ratio 

(𝑎 = ℎ/𝑟𝑜 ) is defined as the ratio between the inflow depth (ℎ) and the updraft radius (𝑟𝑜). 

The swirl ratio is defined as the ratio between the angular momentum and the radial 

momentum which can be calculated using this expression: 𝑆 = 𝑟𝑜Γ𝑚𝑎𝑥/2𝑄ℎ, where Γ𝑚𝑎𝑥 

is the maximum flow circulation and (𝑄) is the volumetric flow rate per unit axial length. 

The radial Reynolds number is expressed as: 𝑅𝑒𝑟 = 𝑄/2𝜋𝜈, where 𝜈 is the kinematic 

viscosity of the fluid.  

The swirl ratio at the test chamber can be controlled by means of altering the vanes’ angles 

on the periphery walls and the flowrate is adjusted by regulating the top fans’ rpm. For this 

set of experiments, the inflow depth was set at 0.8 m, the updraft radius was 2.25 m which 

resulted in an aspect ratio of 0.35 and the swirl ratios were 0.21, 0.48, 0.59, 0.76, 1.03. For 

more details on the flowrate measurement and swirl ratio calculations, see Refan and 

Hangan (2018). 

Static pressure instrumentation: 

A large rectangular base plate (460 mm × 240 mm) instrumented with 489 pressure taps 

were employed in the present study, (see Fig. 2.2). The tap layout of the pressure plate was 

designed to ensure the full coverage of the whole travel distance of the translating tornado, 

with an adequate spatial resolution, particularly around the center of the tornado simulator, 

and to enclose larger width to account for translating tornado veering motion which was 

observed from flow visualization as discussed later in the results section. This tap layout 

was determined to guarantee the accuracy of detecting the tornado trajectory path, 

specifically near the plate center, which is the region of interest, for future investigations 

of tornado loading on buildings. The pressure system consists of sixteen electronically 

scanned pressure (ESP) scanners (pressure range ±1 kPa) and two digital temperature 

compensation (DTC) Initiums (Pressure Systems, Inc.), which were employed to 

accommodate the large number of pressure taps. The ESP scanners are minute electronic 

differential pressure units that incorporate a band of silicon piezoresistive pressure sensors, 

one for each pressure slot. Each ESP scanner can encompass up to 32 pressure ports and 

each port can accommodate PVC tubing with an outer diameter of 1 mm. The accuracy of 
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the pressure scanners is ±0.03%. The DTC initium system delivers a vigorous data 

acquisition system for the ESP scanners. Each Ethernet-based DTC initium can be hooked 

up to up-to 8 pressure scanners. The initiums’ uncertainty is ±0.05% over the whole 0 - 70 

C temperature range. For more information about the pressure system, see Refan and 

Hangan (2018). 

To measure the pressure differential (∆𝑃 = 𝑝𝑖 − 𝑝𝑜), where 𝑃𝑖  is the ith tap static pressure, 

sensed by each pressure tap, the testing chamber’ static pressure (𝑝𝑜) was measured, 

outside the test chamber. Pressure measurements were acquired for five swirl ratios for 

stationary TLV, 𝑆 =0.21, 𝑆 =0.48, 𝑆 =0.59, 𝑆 =0.76, and 𝑆 =1.03, and for 𝑆 =0.48 and 

𝑆 =0.76 for translating TLV at 𝑅𝑒𝑟 =106. The selection of these two swirl ratios for 

translating TLV was attributed to simulating two important stages of TLV, the before and 

after touchdown of the tornado vortex (Refan and Hangan 2018). The sampling frequency 

and sampling time for the pressure measurements were 500 Hz and 40 s, respectively for 

translating tornado and 500 Hz and 16 s for stationary tornado. This high frequency was 

chosen to keep a good temporal resolution and the sampling time was long enough to cover 

the whole translating tornado movement. 

  

Figure 2.2 Baseplate tap distribution 
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Ground roughness: 

Active control of 1600 roughness elements is one of the main features of WindEEE dome. 

The automated roughness blocks are made from metal and are designed to accommodate a 

variety of exposure conditions for atmospheric boundary layer flows (ABL) and tornadic 

flow (Fig. 2.3). In this study, the employed roughness blocks have a mean height of 3 cm. 

This is used to perform a preliminary investigation of the roughness effect on translating 

tornado-like vortices structure. 

 

 

 

 

2.3 Results and discussion 

In this section, the tornado vortex structure near the ground is analyzed utilizing surface 

pressure measurements for a wide range of swirl ratios (𝑆= 0.21, 0.48, 0.59, 0.76, and 1.03) 

for stationary tornado and two swirl ratios (𝑆= 0.48 and 0.76) for translating tornado at two 

translation speeds (0.11 m/s and 1.5 m/s) and for two surface roughnesses of 0 cm (smooth) 

and 3 cm (rough), respectively.   

Figure 2.3 Ground floor with added 

roughness elements at WindEEE dome 
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2.3.1 Stationary tornado 

Fig. 2.4 shows the radial profiles of the normalized mean ground pressure deficits (∆𝑃∗) 

for several swirl ratios of stationary (non-translating) TLVs, where ∆𝑃∗=∆𝑃/0.5 𝜌 𝑣𝑎𝑥
2 . 

The pressure was normalized employing the mean axial velocity “𝑣𝑎𝑥” measured at the 

bell-mouth location (Refan and Hangan, 2018). The mean axial velocity was chosen for 

normalization as it is uniform irrespective of the swirl ratio rather than the maximum 

tangential velocity which changes with swirl ratio. Using the maximum tangential velocity 

can be misleading as the effect of the increase in the tangential velocity with swirl will 

dominate the increase in the pressure deficit with increasing the swirl ratio (Refan and 

Hangan 2018). For the current study, the pressure data for each tap was averaged only over 

the whole sampling time of 16 s (8000 samples) without considering azimuthal averaging. 

This is because azimuthal averaging will provide misleading results as it causes smoothing 

up of the pressure deficit profile into only a one-vortex structure regardless of the real 

vortex structure, one, two, or three-vortex. 

 

 

2.3.1.1 Wandering effects: 

The pressure data shown in Fig. 2.4 represents the data after removing the effects of 

wandering. Wandering is a random oscillation of the vortex core departed from its real 

Figure 2.4 mean surface pressure deficits for all swirl 

ratios. The pressure deficits are normalized based on 

(𝟎. 𝟓𝝆𝒗𝒂𝒙
𝟐 ) 
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spatial position that would affect the resultant time-averaged data. The wandering behavior 

of tornado-like vortices influences the ground pressure profiles, particularly for low swirl 

ratios (e.g. Ashton et al. 2019; Refan and Hangan 2018). 

In order to understand the extent of the tornado wandering behavior, the root mean square 

“rms” of the distance between the tornado instantaneous vortex center and the overall 

vortex center (i.e. the average vortex center over the whole sampling time) is quantified. 

Herein, the vortex center is determined by the detection of the minimum pressure at each 

instance. For the lowest swirl ratio, 𝑆=0.21, the high value of the rms 0.21 reflects the 

instability of the vortex at this supercritical stage before the touchdown of the vortex. 

Increasing the swirl ratio to 𝑆=0.48 resulted in a slight decrease of the rms value to 0.2 

which was expected as increasing the swirl ratio should reduce the extent of vortex 

instability. Further increasing the swirl ratio resulted in a counterintuitive gradual increase 

(0.2- 0.3) in the rms value. This is attributed to the multiple sub-vortices intermittently 

present with increasing swirl ratio that makes detecting the vortex center challenging and 

adds error in the rms value. As a result, there is a need for a new method that can detect the 

vortex center rather than the minimum pressure which can be applicable for higher swirl 

ratios. 

 In order to obtain more precise results, the data should be corrected by removing 

wandering. Different approaches for eliminating wandering were implemented in previous 

studies: one approach is based on re-centering the vortex while another method uses a 

deconvolution procedure, but the foremost showed more accurate results as the second 

method resulted in an overestimation of the maximum tangential velocity in some cases 

(Ashton et al. 2019). Therefore, in this study, the first method of re-centering the vortex at 

each instance was initially adopted. Albeit the simplicity and efficiency of this approach in 

removing wandering for low swirl ratios, it did not provide meaningful results for high 

swirls. This happened because the algorithm depends on determining the center of the 

tornado vortex based on the global minimum pressure recorded by the pressure taps. This 

approach works for only a one-vortex structure while it fails for two or three-vortex 

structures that appear mostly at higher swirl ratios (𝑆 > 0.21). Hence, a new approach is 

proposed which proved to be more robust for this wide range of swirl ratios, particularly 
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higher swirls. The adopted strategy was based on a moving average approach with proper 

window size. The pressure deficit profile was re-aligned at each instant utilizing the 

minimum of the moving average pressure deficit. This method maintained the real shape 

of the pressure deficit, particularly for high swirl ratios, by accounting not only for the 

global minimum but also for the local minimums of the surface pressure profile which 

preserved the real shape of the vortex, either one-vortex or two-vortex. Wandering 

elimination resulted in a substantial difference in the minimum mean surface pressure 

magnitude, particularly for low swirl ratios as summarized in Table (2.1). The results in 

Table (2.1) clearly show that not accounting for wandering will lead to a drastic 

underestimation of the pressure deficit.  

Table 2.1 Effect of removing wandering on minimum mean surface pressure values of 

stationary tornado 

Swirl Ratio 

(𝑺) 

∆𝑷𝒎𝒊𝒏
∗  (Original 

data) 

∆𝑷𝒎𝒊𝒏
∗  (removed 

wandering) 

Error (%) 

0.21 -10.51 -16.11 -34.74 

0.48 -13.06 -14.84 -11.95 

0.59 -13.40 -15.19 -11.8 

0.76 -13.64 -16.56 -17.62 

1.03 -15.56 -19.85 -21.60 

Fig. 2.5 shows the contour plot of the mean ground pressure for 𝑆=0.21 and 𝑆=1.03 before 

and after removing wandering.  Table (2.1) and Figure 2.5 show that wandering affects 

both the minimum pressure deficit value as well as its position. Note that the wandering 

effects are most important for low swirl where vortex instabilities are strong and at higher 

swirl where two and three sub-vortices are observed.  
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(a) (b) 

  

(c) (d) 

Figure 2.5 Non-dimensional mean pressure deficit contour plot for 𝑺=0.21 and 𝑺=1.03  (a) 

with wandering(𝑺=0.21), (b) after removing wandering (𝑺=0.21), (c) with 

wandering(𝑺=1.03), and (d) after removing wandering (𝑺=1.03). 
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2.3.1.2 Swirl ratio effects: 

Fig. 2.4 shows that for the lowest swirl ratio, 𝑆=0.21, the pressure deficit has a narrow 

profile, which indicates a small core radius, with a single minimum value characteristic for 

single-vortex TLV structure. Further increasing the swirl ratio, 𝑆=0.48, results in a decrease 

in the minimum pressure magnitude and a larger core radius which led to a wider profile 

of the pressure deficit with a more flattened profile possibly corresponding to a dual sub-

vortex structure. The intermittent switch from one to two vortex structure is associated with 

the vortex break down (VBD) and specifically to the touch-down stage for swirl ratios here 

between 𝑆=0.48 and 𝑆=0.59 (Refan and Hangan 2018). Similar behavior was observed in 

previous studies (Snow et al. 1980; Refan and Hangan 2016; Tang et al. 2017). As swirl 

ratio increases, the magnitude of the minimum pressure also increases (S=0.76) and a more 

pronounced two-vortex profile is observed. Moreover, the core radius keeps growing with 

increasing swirl. The pressure deficit was assumed to be symmetric and Fig. 2.4 was plotted 

using half of the data.  A comparison between the stationary and translating TLV is 

provided in the next section. 

In order to better understand the tornado vortex dynamics near the ground, the vortex 

structure of the TLV was analyzed for two swirl ratios, 𝑆=0.76 and 𝑆=1.03 for a smooth 

surface and for 𝑆=0.76 for a rough surface. Those two swirl ratios were chosen as they 

represent higher swirl ratios where the tornado vortex structure is more complex and tends 

to deviate from the classical single structure of the lower swirl ratio profiles. The detection 

of the vortices was based on the ground pressure contour plots utilizing image processing 

toolbox through MATLAB R2019b. Fig. 2.6 shows that the one-vortex structure is 

dominant with two-thirds of the probability of occurrence for 𝑆=0.76. The two-vortex 

follows with one third and the three-vortex which is less common with as low as 10% 

probability.  Increasing the swirl ratio to 1.03 resulted in an increase in the two-vortex 

structure percentage to reach the same level as the one-vortex structure by almost 37%. 

Also, the three-vortex structure increases by 15% compared to 𝑆=0.76. This combination 

between two and three vortex structure is a mark for high swirl ratios (Refan and Hangan 

2018). On the other hand, adding roughness for 𝑆=0.76 resulted in an increase in the two 
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and three vortex structure which may relate to the destabilizing of the main vortex by 

increased wall turbulence. 

 

Figure 2.6 Stationary TLV vortex structure 

2.3.2 Translating tornado 

In this section, pressure measurements on the ground are analyzed for translating tornado-

like vortices to examine the effects of swirl ratio, translation speed, tilting, veering, and 

roughness. Comparison between stationary and translating tornado-like vortices is carried 

out to explore the important aspects that distinguish between the two cases. 

2.3.2.1 Swirl ratio effects: 

Fig. 2.7 shows the pressure deficit for simulated translating tornadoes in the WindEEE 

dome for two swirl ratios, 𝑆=0.48 and 𝑆=0.76. Those two swirl ratios are representative of 

EF-1 and EF-2 tornadoes (Refan and Hangan 2017), which are more frequent than the 

higher-rated tornadoes according to NOAA. They are also representative of before touch-

down and after vortex touch down patterns in TLVs.  A translating speed of 1.5 m/s was 

used for this analysis. Each pressure deficit profile represents the time series of the 

minimum pressure tap along the centerline of the tornado simulator. Ensemble averaging 
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of five runs was performed. Fig. 2.7 shows that the pressure deficit for both swirl ratios is 

distinctly asymmetric between the leading and the rear sides of the tornado vortex, unlike 

the stationary tornado which has a symmetric pressure profile. This observation is similar 

to field tornado observations (Lee and Samaras, 2004). Also, a wider profile of the pressure 

deficit due to the larger core radius is observed when the swirl ratio increases from 0.48 to 

0.76. The pressure distribution for 𝑆=0.76 seems to present one minimum or at least one 

main minimum and a distorted one. This is different from stationary tornado studies (e.g. 

Tang et al., 2017) and can be attributed to the higher translation speed in WindEEE 

(𝑉𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑛𝑔=1.5 m/s) that would result in an inclined tornado vortex central axis. 

 

Figure 2.7 Effect of increasing swirl ratio on the surface pressure deficit for 

translating tornado-like vortices. 

Fig. 2.8 represents the five runs for the two swirl ratios and the ensemble-averaged profile 

of the pressure deficit.  It is clearly seen that ensemble averaging resulted in smoothing up 

the pressure deficit profiles and therefore making the two-vortex type profile (two minima) 

less pronounced for the two swirl ratios. This could be attributed to multiple factors. First, 

the veering motion of the tornado, described in detail later in the text, may explain the 

variability in individual profiles for the five runs considered. Second, the surface friction 

increases with increasing swirl and produces a more pronounced asymmetry in the profiles 

for S=0.76 compared to S=0.48. This results in a forward inclination of the tornado central 

axis by less than 20 which was qualitatively observed in some full-scale data (Wurman 

and Gill 2000) as well as numerical simulations (e.g. Natarajan and Hangan 2012 and Liu 
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and Ishihara 2016) and WindEEE flow visualizations. Lastly, the ensemble averaging 

process of the five runs was based on aligning the peak pressures which considers only the 

higher peak of the high swirl ratio cases. 

  

(a) (b) 

Figure 2.8 Effect of multiple runs on pressure deficit profile for (a) 𝑺=0.48 and (b) 

𝑺=0.76 

2.3.2.2 Translating vs. stationary tornado: 

For 𝑆=0.48 and 𝑆=0.76 (see Fig. 2.9), the translation resulted in a wider pressure deficit 

shape and a slight decrease in the magnitude of the minimum pressure deficit compared to 

stationary ones. Both these effects are attributed to increased surface shear due to 

translation. The widening of the pressure deficit profile is more pronounced for 𝑆=0.76 as 

the resultant velocity and therefore shear is larger for this case. 
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(a) (b) 

 

Figure 2.9 Surface pressure deficit for Stationary (𝑻𝒐) and Translating (𝑻𝟏.𝟓) 

tornado-like vortices for (a) 𝑺=0.48, and (b) 𝑺=0.76 

Fig. 2.10 compares the minimum pressure values for stationary and translating tornado-

like vortices (𝑣𝑇 =1.5 m/s). For stationary tornado, the maximum pressure deficit increases 

before vortex touch down (𝑆 <0.48) and decreases after. This trend is comparable to 

previous studies for stationary tornadoes (Natarajan and Hangan 2012; Tang et al. 2018). 

The trend seems to be the same for the translating cases (𝑇1.5) with a slight decrease in the 

negative peak magnitude due to additional surface shear.  Note that the magnitude of the 

minimum pressure is dependent on the translation speed (i.e. the lower the translation 

speed, the lower the pressure loads) (Haan et al. 2011). This emphasizes the importance of 

proper representation of tornado translation speed and scaling to match field tornadoes. 
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Figure 2.10 Maximum central pressure deficit vs swirl ratio for stationary (𝑻𝒐) 

and translating tornado (𝑻𝟏.𝟓) 

 

2.3.2.3 Effect of translation speed: 

The variation of tornado translating speed has a substantial effect on tornado loading 

patterns (e.g., Haan et al 2010). In this study, three different translating speeds, 𝑉𝑇 =1.5 

m/s “Speed (1)”, 1 m/s  “Speed (2)”, and 0.11 “Speed (3)” were tested to analyze their 

effect on the tornado pressures on the ground surface. The higher speeds are closer to the 

lower end of field tornadoes which will allow attaining more realistic results without 

overestimation of the loads.  

Fig. 2.11a and Fig. 2.11b presents pressure deficit radial profiles for the two swirl ratios 

considered and for several translational speeds. At lower translational speeds (2 and 3) the 

maximum pressure deficit is larger compared to the highest speed (1). Also, the pressure 

deficit profiles are more asymmetric for the lower speeds compared to the highest speed. 

This asymmetric behavior with multiple local minimums has been further investigated for 

S=0.48 and it was found that wandering is more pronounced when the translation velocity 

is low, particularly for low swirl ratios as this is considered a supercritical stage near the 
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touchdown (Refan and Hangan 2018). Low translation speeds result in a higher drop in the 

pressure deficit which means overestimating the resultant loads. Hence, it is possible that 

using higher translation speeds closer to the scaled translation velocities in real tornadoes 

would produce more realistic and less conservative results. 

Figure 2.11 Effect of tornado translation speed on ground pressure (a) 𝑺=0.76, and 

(b) 𝑺=0.48 

2.3.2.4 Effect of translation on tornado tilting 

A prominent sighting from flow visualization was the vertical tilt of the tornado vortex 

axis, specifically for the highest translating speed. Fig. 2.12 shows a sketch of the tilting 

behavior of the simulated tornado showing the inclination angle (𝜃). This behavior was 

further explored, and the inclination angle was calculated to get a better understanding of 

tornado translation effects. The inclination angle (𝜃) was deduced by employing the 

guillotine velocity, the tornado vortex base velocity, and the total travel distance of the 

tornado ( 5 meters). 

 

  

(a) (b) 

(b)  
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(a) (b) 

Figure 2.12 Tornado axis inclination angle (a) Stationary tornado, (b) Translating 

tornado 

The tornado vortex signature on the floor was traced utilizing the tap that detects the 

instantaneous minimum pressure. In order to calculate the velocity of the tornado vortex 

base, the slope of the time series of the instantaneous minimum pressure tap’s y-coordinate 

was obtained which represents the vortex base velocity. The guillotine velocity was 

precisely calculated by converting the voltage sensed by the guillotine system to velocity 

using the voltage/meter conversion ratio. It was established that the tilt angle was ranging 

between 8 to 18 degrees for the whole range of swirl ratios. This inclination of the tornado 

axis is attributed to higher shear stress with increasing velocity. Similar behavior was 

recorded in previous experimental studies (Haan et al. 2010), however, no further 

investigation was performed. Also, the tilt in the tornado axis was calculated in a field 

study (Wurman and Gill 2000) as 20 and in some field and numerical studies (Brooks 

1951; Brown et al 1978; Alexander and Wurman 2005; Liu and Ishihara 2016; Yuan et al. 

2019). 

On the other hand, the tilting behavior of the TLV was examined for the lowest and highest 

translation speeds to understand its effect on the tornado vortex shape. For S=0.48 and 

S=0.76, the tilting angle for 𝑉𝑇 =0.11 m/s “Speed (3)” was found to be almost zero degrees, 

Translation  

θ 
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unlike the highest speed 𝑉𝑇 =1.5 m/s “Speed (1)” which resulted in a tilting angle in the 

range of 10 to 16. This shows that, as expected, increasing the translation speed will 

result in a lagging behavior between the lower and upper parts of the tornado vortex. 

 

2.3.2.5 Effects of translation speed on veering motion 

Another important observation from the instantaneous contour plots of the translating 

tornado and the flow visualization is the veering motion of the vortex to the left of the 

translation direction. This veering behavior was observed mainly for the higher translation 

speeds for all swirl ratios. The real position of the tornado vortex near the surface was 

evaluated by tracking the minimum pressure tap at each instance (see Fig. 2.13b). It can be 

seen from the trajectories that at lower translating velocity, 𝑉𝑇 =0.11 m/s “Speed (3)”, the 

tornado approximately followed a straight path. Further increasing the translating speed 

resulted in a redirection of the tornado path on a curvature rather than a straight line to the 

left which is more pronounced in the highest translating velocity, 𝑉𝑇 =1.5 m/s “Speed (1)”. 

This effect is due to the asymmetry of the velocity field under translation and consequently 

the pressures between the right and left sides of the vortex. This phenomenon had not been 

reported in the literature before in tornado simulators, which may be related to the relatively 

low translation velocity in other simulators as the maximum achievable translating speed 

is 0.6 m/s (Haan et al. 2008). On the other hand, this deflection of the tornado path has 

been documented in field tornados by drawing the damage tracks of tornadoes (Lemon and 

Umscheid 2008) (see Fig. 2.13a). Wurman and Gill (2000) documented such behavior by 

comparing the tornado vortex signature on the lowest levels and on 1 km height which 

proved to be different as the highest levels showed almost a straight northward direction 

rather than a curved northwest direction of the lower portion of the tornado vortex on the 

ground.   

2.3.2.6 Effect of roughness 

A preliminary investigation of roughness effects on TLVs was carried out by investigating 

the pressure deficit radial profiles for two surface roughness and two swirl ratios, 𝑆=0.48, 
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and 𝑆=0.76. The heights of the 1,600 roughness blocks in the WindEEE Dome were set at 

0 cm (smooth) and 3 cm (rough) average heights.   

Fig. 2.14a compares the pressure deficit radial profiles for the two roughness levels and the 

two swirl ratios. For 𝑆 =0.48, which is the stage just before VBD (Refan and Hangan 2018), 

introducing roughness resulted in a narrower pressure deficit profile, reduction in the core 

radius, and increase in the magnitude of the minimum pressure. This means that for low 

swirl ratios, roughness creates a similar effect as decreasing swirl ratio. This supports the 

previous studies' findings (Natarajan and Hangan 2012; Wang et al., 2017). For 𝑆=0.76 

(Fig. 2.14b), the same behavior was observed,  

 

 

(a) (b) 

Figure 2.13 Tornado paths (a) Damage path of the Greensburg, KS tornado.  

Adapted from “The Greensburg, KS tornadic storm: a storm of extremes.” by L. 

R. Lemon, & M. Umscheid, 2008, 24th Conf. on Severe Local Storms, 2.4. and (b) 

at WindEEE Dome  
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and the roughness causes an analogous effect as the reduction of swirl ratio which is in 

agreement with previous studies’ conclusions (e.g. Natarajan and Hangan, 2012, Razavi et 

al. 2018). More tests need to be performed to cover a wider range of swirl ratios and a 

larger set of roughness levels to obtain a full characterization of the overall effect of 

roughness with swirl ratio. The quantification of the surface layer relation to the roughness 

height through a roughness parameter analogous to the z0 in ABL flows needs further 

consideration. On the other hand, the inclination angle of the tornado vortex axis was 

calculated similarly to the smooth case and it was found that the tilt angle ranges between 

9 to 17 for both swirl ratios compared to 10 to 16 for smooth surface results. No obvious 

trend was noted for the relation between the inclination and the roughness level; however, 

the inclination was larger for the highest translation speed. 

The effect of roughness on the TLV trajectory is captured in Fig. 2.15. There is a slight 

tendency that increased roughness decreases the veering of the TLV to the left for both 

Swirl ratios. This seems to be normal as increasing roughness translates in increased 

surface friction and lower surface translational speeds which overall diminishes the surface 

veering while, as shown above, slightly increases the tilting.  

 

  

(a) (b) 
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Figure 2.14 Effect of adding roughness to the ground on translating tornado 

surface loading (a) 𝑺=0.48, and (b) 𝑺=0.76 

 

 

Figure 2.15 Tornado trajectory for S=0.48 and S=0.76 for smooth and rough 

surfaces 

2.4 Conclusions 

Characteristics of stationary and translating tornado-like vortices are investigated in the 

state-of-the-art tornado simulator, the WindEEE Dome at Western University. High spatial 

and temporal resolution ground pressure measurements are performed to reveal the 

dynamics of stationary and translating TLVs as a function of swirl ratio, translation speeds, 

and roughness. The effects of these parameters on wandering, tilting, and veering of 

tornado vortices are for the first time examined.  

Results indicate that the wandering behavior of the vortex has a substantial impact on 

stationary tornado mean flow-field, particularly for low swirl ratios. Wandering can lead 

to erroneous magnitudes of the minimum pressure deficit as high as 35%. A new method 

to eliminate wandering is proposed by using moving average to detect the center of the 
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tornado deficit profile.  This method proved to be more reliable specifically for higher swirl 

ratios compared to previous methods using re-centering the pressure deficit using the 

global minimum (e.g. Ashton et al. 2019).  

For stationary tornadoes, the swirl ratio causes a reduction in the minimum pressure deficit 

magnitude followed by a subsequent increase. This highlights the different behavior of 

TLVs before and after the touchdown stage and the transition from one-vortex to multi-

vortex structure. 

Translation speed effects on the TLVs are for the first time investigated over a range of 

speeds for 0.1 m/s; 1m/s and 1.5 m/s. It was observed that the maximum pressure deficit 

lowers with increasing translation speed. This implies that using stationary or low-speed 

tornado translation speeds for loading purposes may lead to overestimations.  

One of the significant observations from the present study is the tilting of the translating 

tornado vortex due to increasing surface shear under translation. This tilt is significantly 

more pronounced for the highest translation speeds (i.e. 𝑉𝑇 =1 m/s and 1.5 m/s) compared 

to the lowest speed (i.e. 𝑉𝑇 =0.1 m/s). This tilting behavior has been reported in field 

tornadoes as well.  

Veering motion of the tornado vortex to the left of the translation direction is also observed 

for higher translation speeds. This behavior is attributed to the asymmetry in the velocity 

field resulting from translation and is observed in full-scale tornadoes as well.  

The effect of increased roughness has a similar effect to decreasing swirl ratio for the two 

studied cases (𝑆=0.48 and 𝑆=0.76). Increased roughness also results in an increase in tilting 

and a decrease in veering of the TLV.  

The surface pressure data base created in this study is used to explore wandering, 

translation tilting, veering, and roughness effects in TLVs. The same data can provide a 

basis for interpretation and possible codification of tornado induced pressures and loads on 

buildings as a superposition of pressure deficit and aerodynamic effects. 
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In the future, this study can be extended to a larger range of swirl ratios, and mostly to 

better understand the effects of surface roughness in tornado-like vortex flows.  
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Chapter 3  

3 Tornado-Induced Internal Pressures on Low-Rise 
Buildings with Multiple Openings 

3.1 Introduction and background 

Tornadoes pose a huge threat to life and properties. Every year, tornadoes claim the lives 

of about 60 people in the United States, on average, and leave more than 1000 injured 

according to NOAA (NOAA 2019). Moreover, the damaging behavior of tornadoes to 

properties, either partially or totally, leads to economic losses reaching billions of dollars. 

The destruction of properties is attributed to the net induced wind loads on buildings where 

the effects of atmospheric pressure deficit (APD) due to the high negative pressure in the 

tornado vortex as well as the tornado flow-structure interaction add together to form the 

resultant tornado-induced wind loading. The tornado interaction with the structures is 

divided into two main components, (a) the external pressure loading, and (b) the internal 

pressure where the building is affected by the resultant load. The external pressure loading 

due to tornadic hits had been studied extensively in the literature ranging from experimental 

studies (e.g. Ho et al. 2005; Mishra et al. 2008b; Sengupta et al. 2008; Sarkar and Kikitsu 

2009; Haan et al. 2010; Hu et al. 2011; Thampi et al. 2011; Rajasekharan et al. 2013; Case 

et al. 2014; Razavi and Sarkar 2018) as well as numerical simulations (e.g. Selvam and 

Millett 2003; Nasir 2017). While these studies provided some information, most of them 

have either too small buildings or they cannot satisfy proper parametric scaling against real 

tornadoes (Refan and Hangan 2018, Baker and Sterling 2019). Studies of internal pressures 

inside buildings located in tornadic flow-field have started only recently (e.g. Sarkar and 

Kikitsu 2009), unlike internal pressure studies in Atmospheric Boundary Layer (ABL) 

flows which have been studied extensively since the seventies (e.g. Stathopoulos et al. 

1979; Holmes 1980; Davenport and Surry 1984; Vickery and Karakatsanis 1987; Vickery 

1994; Ginger et al. 1997; Oh et al. 2007; Ginger and Kim 2009; Ginger et al. 2010, Holmes 

and Ginger 2012). One of the main reasons for the lack of internal pressure results in 

physically simulated tornado-like vortices is the size of most of the simulators which do 

not allow a model size that is large enough to be properly instrumented.  
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Wind-induced internal pressure in a building depends on many factors, for instance, 

the external pressure distribution near the openings, the geometry of the opening, and the 

porosity of the building (Holmes, 1980; Vickery, 1986; Womble et al., 1995). The internal 

pressure plays a significant role in determining the overall wind loading on buildings, 

therefore their precise measurement is crucial. Most of the studies on tornadic flow 

concentrated on external pressures and few studies examined the role of internal pressure 

in rising or suppressing the net wind loads in buildings.  

Sarkar and Kikitsu (2009) started one of the earliest investigations of internal 

pressures in tornadic flow and carried out experiments on the tornado induced wind loading 

on a low-rise building with a dominant opening using the tornado simulator at Iowa State 

University (ISU). They found that the internal pressure loading played a prominent role in 

determining the net wind loading and that its value depends on the porosity ratio and the 

dominant opening location in the building. Thampi et al. (2011) implemented a finite 

element method to simulate the stages of failure of the structural components of a partially 

damaged low-rise timber building that was affected by an EF-5 tornado in Parkersburg, 

Iowa, USA on May 25th, 2008. They studied the role of internal pressures inside the 

building in each stage of this failure. They deduced that the building porosity and the 

opening configuration had a major effect on internal pressures which was reflected on the 

net wind loads. They also found that the net winds on the building reduced considerably 

after partial roof and sidewall failures. Rajasekharan et al. (2013) performed experiments 

in the Tokyo Polytechnic University tornado simulator on a building with uniform leakage 

and a dominant wall opening to study the effects of internal pressure on the overall roof 

loading. They revealed that a dominant opening (3.9%) resulted in a higher magnitude of 

the mean internal pressure compared to the uniform leakage case when the tornado vortex 

and the building are concentric, unlike when the building is located beyond the core region 

where this trend was reversed. Letchford et al. (2015) studied the effect of porosity and 

dominant openings on the internal pressure of a low-rise building model under a simulated 

stationary tornado in the VorTECH simulator at Texas Tech University. They also 

proposed a numerical model to estimate the internal pressure using external pressure data. 

They deduced that resonance in the fluctuating internal pressure only occurs in the case of 

a dominant opening with no porosity. They also concluded that the mean roof net wind 
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loading was maximum for the case of a dominant opening irrespective of porosity and that 

their proposed numerical model needs more improvements. Wang et al. (2018) carried out 

experiments using the tornado simulator at Tongji University to examine the external and 

internal pressure loadings on a cubic building with openings under stationary tornado-like 

vortices.  They also compared the tornadic loading with the atmospheric boundary layer 

flows using the ASCE code and the Chinese design code. They found that the maximum 

wind loading occurred when the building model was located in the core region and that the 

internal pressure was affected by the size and location of the dominant opening. Moreover, 

they found that the tornadic wind loading exceeded the two standard building codes by a 

large factor. Rajasekharan et al. (2019) studied the vulnerability of a low-rise building roof 

under tornadic hits. Using a translating simulator at Tokyo Polytechnic University, external 

and internal pressures were examined, and the dominant opening location was changed to 

investigate its effect on internal pressures. They found that the roof is more prone to 

damage than sidewalls. Besides, the windward dominant opening resulted in the highest 

internal pressure magnitude. More recently, Roueche et al. (2020) compared tornado and 

ABL-induced wind loads and developed a numerical model that can predict the evolution 

of the internal pressures based on external pressure distribution. They found that for the 

building corners areas tornadic loadings are about 13% higher, on average, in tornadic 

flows compared to ABL winds. 

Although there are a number of studies in the literature investigating the internal pressures 

under tornado-like vortices, most of the studies have some limitations. All the previous 

studies utilized stationary tornado-like vortices rather than translating ones which resulted 

in an overestimation of the loads except Sarkar and Kikitsu (2009) and Rajasekharan et al. 

(2019) who used translating tornadoes.  Albeit Sarkar and Kikitsu  (2009) used translation 

in their study to examine more realistic scenarios, the translation speed was very low (<= 

0.24 m/s, 𝑣𝑓𝑢𝑙𝑙 𝑠𝑐𝑎𝑙𝑒=1.5 m/s) which is low compared with real tornadoes and may lead to 

overestimated aerodynamic loads (Haan et al. 2010). Although Rajasekharan et al. (2019) 

utilized translation in their experiments, the translation speed was in the lower range 

(𝑣𝑇=0.02 to 0.24 m/s) and the velocity scale of 1:26 was debatable as no clear comparison 

with field tornadoes was performed. Moreover, some studies used very small models (<=5 
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cm in length) that cannot provide an adequate resolution for measuring the internal and 

external loads on buildings particularly near the openings (Rajasekharan et al. 2013; Wang 

et al. 2018; Rajasekharan et al., 2019). Hence, a need for a more comprehensive study 

about internal pressure loadings inside low-rise buildings taking into consideration the 

effect of building size, building offset from tornado translation path, building orientation, 

opening configurations, higher translation speed as well as higher resolution using 

appropriate-sized models is needed for a better understanding of the tornado-structure 

interaction for low-rise buildings. 

In this study, a detailed internal pressure measurement was carried out in the large-scale 

tornado simulator, the WindEEE dome, to investigate the internal pressure inside two 

generic low-rise buildings under several realistic scenarios by utilizing the simulator’s high 

spatial resolution which is essential for properly explore tornadic loading on buildings. The 

effect of internal pressures was examined including several parameters such as the effect 

building offset (+RMW, +2RMW, and >+2RMW; where RMW is the Radius of Maximum 

Wind), building orientation (0° and 45°), building size (small and large building models), 

tornado intensity (𝑆=0.48 and 𝑆=0.76), and opening configuration (uniform leakage, 

windward dominant opening, and roof opening). 

3.2 Tornado simulator description 

The state-of-the-art tornado simulator, the WindEEE dome, is a hexagonal test chamber of 

a 25 m diameter confined with a larger 40 m diameter circle “return circuit”. The test 

chamber is comprised of 106 fans (Fig. 3.1) which are divided into two groups, 100 fans 

located along the perimeter of the test chamber and 6 fans in a plenum above the test 

chamber. The upper plenum is connected to the test chamber by a bell-mouth with 

mechanical louvers. The height of the chamber is 3.8 m. The WindEEE dome has the 

capability of producing both synoptic and non-synoptic winds (e.g. Atmospheric boundary 

layer flows (ABL), downbursts, and tornadoes) which can be reproduced at high Reynolds 

numbers (up to 2 × 106) and Large scales (4 m height and 4.5 m max. updraft diameter)  

(Hangan 2014; Hangan et al. 2017a, 2017b).  
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The simulation of tornadoes at the WindEEE dome can be achieved in two Modes. In Mode 

A (employed herein), tornado-like vortices (TLVs) ( Refan and Hangan 2018) are 

simulated using the six fans in the upper plenum to create the required updraft in 

conjunction with the vanes on the bottom of the periphery walls that can be controlled in 

different angles to produce various tornado intensities (Fig. 3.1). More recently (Ashrafi et 

al. 2020), Mode B larger tornadoes have been simulated by also using the periphery fans 

in addition to the top fans. One of the unique characteristics of the WindEEE Dome is that 

it supports tornado translation for up to 1.5 m/s over a 5 m distance by using a sophisticated 

control system, the guillotine system, and the bell-mouth. This is, to the authors knowledge, 

the highest achievable translational speed in all tornado simulators. In addition, the large 

size of the tornado simulator provides the required resolution to study loading on buildings 

adequately. 

 

Figure 3.1 Schematic sketch of tornado at WindEEE dome 
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3.3 Experimental setup  

Laboratory experiments were carried out at WindEEE Dome, Western University. A 

comprehensive study on the internal pressures in tornadic flow-field was conducted on two 

generic low-rise buildings. The present study was dedicated to translating tornado-like 

vortices as they are a more realistic representation of the field tornadoes' behavior.  

The two low-rise buildings (Fig. 3.2) utilized in this study were similar to two buildings 

from the NIST aerodynamic database representing a large building (Fig. 3.2a) and a smaller 

building (Fig. 3.2b) to emphasize the effect of building size on the internal tornadic loading. 

This study was limited to two swirl ratios, S=0.48 and S=0.76, which represent simulated 

EF-1 and EF-2 tornadoes at WindEEE Dome respectively (Refan and Hangan 2018). The 

selection of EF-1 and EF-2 representative TLVs was based on their higher probability of 

occurrence unlike higher intensity tornadoes according to NOAA (NOAA n.d.). 

Building models and Pressure system: 

Two generic low-rise building models with a geometric scale of 1:100 and a gable roof 

slope of 1:12 (4.76°) were employed in this study. The two-building models, which will be 

referred to as large building and small building models according to their plan dimensions, 

have dimensions of (572 mm × 365.8 mm) and (191 mm × 122 mm), respectively. The 

eave height of both buildings is 73.2 mm. The models were located along the path of 

translating tornadoes equivalent to EF-1 and EF-2 tornadoes (Fig. 3.2) with a translating 

  

(a) (b) 

Figure 3.2 Building models (a) Large building, and (b) Small building 
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speed of ( 1.5 m/s), which is the highest translating velocity achieved in tornado 

simulators.   

Fig. 3.3 shows exploded views of the large (Fig. 3.3a) and small building model (Fig. 3.3b) 

with internal and external pressure taps. The number of pressure taps instrumented in the 

large and small models is 446 and 344 external taps and 17 and 12 internal taps, 

respectively. In this study, we only present the internal pressure results while a parallel 

study analyses the external pressures and the comparison between tornadic and ABL 

loading on various building zones. The high density of internal pressure taps, unlike most 

of the previous studies (e.g. Thampi et al. 2011, Letchford et al. 2015), as well as external 

pressure taps is used to assess the variability of the internal pressure inside the building 

model as well as the relation between internal and external pressures near the openings. 

This will provide a full insight into the differences between internal pressure in 

Atmospheric Boundary Layer (ABL) flows and tornadic flow-field. The internal pressure 

taps are distributed evenly through the mid-height of the building walls except for the roof 

(Fig. 3.3).  

Pressure measurements were performed utilizing sixteen electronically scanned pressure 

(ESP) scanners (pressure range ±1 kPa) for the larger building model and twelve scanners 

for the smaller building. ESP scanners were connected to two digital temperature 

compensation (DTC) Initiums (Pressure Systems, Inc.). Each scanner can be connected to 

up to 32 pressure ports. Each pressure tap was linked to a pressure scanner port using PVC 

tubing. The accuracy of the pressure scanners is ±0.03%, while the uncertainty of the 

initiums is ±0.05% over the 0 - 70 C temperature range. For further details about the 

pressure system, see Refan and Hangan (2018). 

Pressure measurements were performed for two swirl ratios, 𝑆=0.48 and  𝑆=0.76,  at 

𝑅𝑒𝑟=106 using a sampling frequency of 500 Hz and a sampling time of 15 s. 
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Reference velocity measurements: 

The internal pressure inside the building is usually expressed in a non-dimensional form as 

an internal pressure coefficient (𝐶𝑝𝑖
 ), which is defined as: 

 

𝐶𝑝𝑖
=

𝑃𝑖 − 𝑃𝑟𝑒𝑓

1
2 𝜌𝑉𝑟𝑒𝑓

2
 (1) 

 

where 𝑃𝑖  is the pressure recorded by the internal pressure tap, 𝑃𝑟𝑒𝑓 is the ambient pressure 

outside the test chamber, and 𝑉𝑟𝑒𝑓 is the reference velocity. 
 

The reference velocity (𝑉𝑟𝑒𝑓) for this study was taken as the overall maximum mean 

tangential velocity without the presence of the building. These reference velocities for 

𝑆=0.48 and  𝑆=0.76 were 11.55 m/s and 13.76 respectively based on previous Particle 

Image Velocimetry (PIV) measurements (Refan and Hangan 2018). These PIV 

   Internal tap 

+ External tap 

+ External tap 

 

 

(a) (b) 

Figure 3.3  an exploded view of the internal and external pressure taps layout and 

dominant openings for (a) the large building model, (b) the small building model. 
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measurements used six cameras to capture a large enough field of views (FOV) and 

covered the two swirl ratios at various heights (𝑍= 6.4, 20.3, 33, 44, 55, 66, 77, 150 cm). 

For more details about the PIV setup, refer to Refan and Hangan (2018). 

Opening arrangements: 

Multiple opening arrangements (uniform leakage, windward wall opening, roof opening) 

were tested (Fig. 3.4).  In this study, for the first time, a roof opening was added which  

  

(a) (b) 

 

 

(c) (d) 

Figure 3.4  Large building model with openings: (a) uniform leakage, uniform 

leakage  with dominant opening on (b) the large wall,  (c) the roof  and (d) both 

the wall and roof 
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represents a probable scenario of damage to the building when a roof panel fails during a 

tornado event. The uniform leakage in the current study is modeled by distributing circular 

holes throughout the whole building model surface with a total of 176 circular holes (𝑑=1.6 

mm) for the large building and 36 holes for the small building model, respectively. This 

distributed leakage is organized in a way that ensures a total leakage area of 0.1% of the 

total wall areas as well as the same percentage if referred to a single wall or the roof. The 

porosity ratio was chosen to be in the same range as the typical leakage found in nominally 

sealed engineered buildings, 10-4 to 10-3 (Ginger et al. 1997). 

Table (3.1) presents the dimensions of the openings and the associated porosities for the 

two models. In the present study, the porosity ratio is defined as the ratio between the 

dominant opening area and its corresponding wall area. The porosity ratio is commonly 

used in the literature to describe the extent of the openings. 

 

Table 3.1 Geometry and porosity ratios of leakage and dominant openings 

 Large building model Small building model 

Opening 

description 

Opening 

Dimensions (mm) 

Porosity 

ratio 

Opening Dimensions 

(mm) 

Porosity 

ratio 

Uniform Leakage (∅1.6) (176 holes) 0.1 % (∅1.6) (36 holes) 0.1 % 

Dominant Opening 

(Front Wall) 
(60 × 30)(𝐿 × 𝑊) 4.3 % (36 × 30)(𝐿 × 𝑊) 7.72 % 

Dominant Opening 

(Roof) 
(73 × 18)(𝐿 × 𝑊) 0.63 % (36 × 12)(𝐿 × 𝑊) 1.85 % 

 

Internal volume scaling: 

In order to maintain the similarity of the dynamic response between building model scale 

and full scale, a sealed volume chamber was added underneath the turntable (Fig. 3.5). This 
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added volume accommodates the distortion of the internal volume due to the presence of a 

dominant opening by considering the air volume’s dynamic response as a Helmholtz 

resonator (Holmes 1980). The internal volume of the building model can be calculated 

using the following expression (Holmes 1980): 

𝑉𝑜,𝑚 = 𝑉𝑜,𝑓

(𝐿𝑚/𝐿𝑓 )
3

(𝑈𝐻,𝑚/𝑈𝐻,𝑓 )
2 (2) 

 

 

where the subscripts 𝑚 and 𝑓 stand for the model and the full scale respectively, 𝐿 is a 

characteristic length, 𝑈𝐻 is the mean wind speed at roof height and 𝑉𝑜 is the internal 

volume. This expression can be re-written as 

 

 

Figure 3.5 Internal volume attached to the building model underneath the 

turntable 
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𝜆𝑉 =
𝜆𝐿

3

𝜆𝑈
2 (3) 

where 𝜆𝑉 is the volumetric scale, 𝜆𝐿 is the length scale and 𝜆𝑈 is the velocity scale. The 

values of these parameters for both buildings are summarized in Table (3.2). The velocity 

scale was obtained by comparing the overall maximum tangential velocities of the full-

scale data with laboratory simulations of tornado-like vortex at WindEEE dome (Refan 

and Hangan 2018). 

Table 3.2 Internal volume scaling parameters 

 

 

 

 

Test cases: 

Twenty-three test cases were carried out to study the tornado-structure interaction in terms 

of internal pressures to better understand how these pressures behave in such severe storms. 

The experiments covered multifold scenarios that are expected to produce different internal 

loadings on the building. The test cases are categorized, Table (3.3),  into four groups to 

study the effect of multiple variables: (a) building offset, (b) building size, (c) opening size 

and position, and (d) building orientation. For each case, five repeats were performed. All 

test cases included the uniform leakage to mimic the real porosity of the buildings. 

Table 3.3 Test cases 

Case # Building S Opening Orientation Offset Roughness 

1 Sa 0.76 uniform  0° +RMW b - 

2 S 0.76 uniform  0° +2RMW - 

3 S 0.76 uniform  0° >+2RMW - 

 Large Building Small Building 

𝜆𝐿 0.01 0.01 

𝜆𝑈 0.42 0.42 

𝑉𝑜,𝑚 (𝑚3) 0.097 0.01 



62 

 

4 S 0.48 uniform  0° +RMW - 

5 S 0.48 uniform 0° +2RMW - 

6 S 0.48 uniform 0° >+2RMW - 

7 Lc 0.76 uniform 0° +RMW - 

8 L 0.76 uniform 0° +2RMW - 

9 L 0.76 uniform 45° +2RMW - 

10 L 0.76 uniform+roof 45° +2RMW - 

11 L 0.76 uniform+wall 45° +2RMW - 

12 L 0.48 uniform 45° +2RMW - 

13 L 0.48 uniform+roof 45° +2RMW - 

14 L 0.48 uniform+wall 45° +2RMW - 

15 L 0.76 uniform 0° +RMW 3 cm 

16 L 0.76 uniform+roof 0° +RMW 3 cm 

17 L 0.76 uniform+roof+wall 0° +RMW 3 cm 

18 S 0.76 uniform 0° +RMW 3 cm 

19 S 0.76 uniform+wall 0° +RMW 3 cm 

20 S 0.76 uniform+roof+wall 0° +RMW 3 cm 

21 S 0.48 uniform 45° +RMW - 

22 L 0.48 uniform 0° +RMW - 

23 L 0.48 uniform 45° +RMW - 
a S refers to small building model 

b +RMW is the radius of the maximum wind 

c L refers to large building model 

3.4 Results and discussion 

Internal pressure characteristics were examined under a translating tornadic flow-field at 

the WindEEE Dome. Fig. 3.6 shows a schematic drawing of the tornado translation inside 
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WindEEE. The results are categorized into multiple sections; Firstly the uniformity of the 

internal pressure inside the building model as well as the correlation between internal and 

external pressure near dominant openings are investigated; Secondly, the variation of the 

internal pressures with respect to the following four variables: offset, building size, 

orientation, opening size, and position are determined. The investigation, therefore, covers 

the variation of internal pressures for various vulnerable scenarios.  

 

Figure 3.6 Schematic of the tornado translation in the WindEEE Dome 

Internal pressure correlation 

One of the important features of internal pressures in ABL flows is that they are uniform 

throughout the interior of the building (Stathopoulos et al. 1979). Tornadoes have more 

complex flow-field characteristics than ABL straight-flows accompanied by a radial 

variation of atmospheric pressure deficit (APD) which may have an effect on the internal 

pressure distribution inside buildings.  

In order to investigate the behavior of the internal pressure inside the building model, the 

correlations between the internal pressures at various taps positions were examined. These 

+ve -ve 
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correlations were based on the cross-correlation coefficient “𝑅𝑥𝑦”: 𝑅𝑥𝑦(𝑡) = ∫ 𝑥(𝜏 −
∞

−∞

𝑡)𝑦(𝜏)𝑑𝜏, where x and y are the two signals (i.e. 𝐶𝑝𝑖,𝑡𝑎𝑝 𝑛 and  𝐶𝑝𝑖,𝑡𝑎𝑝 𝑚) and 𝜏 is the lag. 

It is found that for all the cases of the current study, the internal pressure taps’ 

measurements are highly correlated with correlation coefficients 𝑅𝑥𝑦 > 0.9. Table (3.4) 

summarizes the minimum internal pressure correlation coefficient for all the cases 

categorized based on the four effects under investigation. This shows that the induced 

internal pressure field due to tornadic flow is uniform inside the building exhibiting similar 

behavior to the internal pressures in ABL flows. This conclusion is important as it shows 

that,  irrespective of the building size, building orientation, tornado intensity, opening size 

and position of the building, the internal pressure field is uniform. This conclusion expands 

previous findings found in the literature (e.g. Nasir 2017; Wang et al. 2018), where Nasir 

(2017) used a computational model in his study and Wang et al. (2018) utilized a stationary 

tornado simulator at Tongji University. 

On the other hand, the correlation between internal and external pressures near the 

dominant openings (i.e. windward and roof openings) was examined to understand the 

extent of resemblance between tornadic flow-field and ABL flow. In ABL flow, the 

internal and external pressures near the dominant opening are highly correlated 

(Stathopoulos et al., 1979). Utilizing seven external pressure taps surrounding the roof 

opening, it was found that, for the dominant opening in the roof, the external pressures near 

the opening are highly correlated with the internal pressure except for the roughness cases. 

This behavior is in agreement with previous studies' findings (Rajasekharan et al. 2013; 

Letchford et al. 2015). It should be noted that the effect of roughness is peripheral to the 

scope of this study and needs further investigation.   

Furthermore, the correlation between internal and external pressure near the dominant 

opening was studied for the case of a dominant windward wall. For case 19 where the 

building is positioned at +RMW, the internal and external pressures are highly correlated, 

while for case 11 and 14 (at +2RMW) they are not highly correlated (𝑅𝑥𝑦< 0.9). This is 

attributed to the fact that the external pressure taps on the windward wall are not adjacent 

to the opening like the ones near the roof opening. This affected the correlation specifically 

when the tornado vortex is beyond the core region. A first estimation of the internal 
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pressure coefficient 𝐶𝑝𝑖
 under uniform leakage is the expected value of 𝐶𝑝𝑒

 or in other 

words, the spatial average of external pressure: (𝐶𝑝𝑖
≈ ∫ 𝐶𝑝𝑓𝐶𝑝

(𝐶𝑝)𝑑 𝐶𝑝  ≈
∞

−∞

𝐸(𝐶𝑝) ) (Davenport 2007). The applicability of this internal pressure approximation for 

tornadic flow-field may provide an initial estimation of internal pressure in tornadoes. 

Hence, a comparison between the internal pressure deficit and the spatial average of 

external pressures was performed (Fig. 3.7). It can be seen from Fig. 3.7a,b,c that overall 

the internal pressure follows closely the same trend as the expected value of the external 

pressure (i.e. the spatial average of external pressure) with some difference in their 

magnitudes which decreases with increasing building offset. This slight difference could 

be attributed to the translation, particularly high translation speed ≅1.5 m/s, of the tornado 

flow-field in the present study.  

   

(a) (b) (c) 

Figure 3.7 Comparison between internal pressure and the spatial average of 

external pressure for uniform leakage (Small building) at (a) +RMW (as per case 4), 

(b) +2RMW (as per case 5), and (c) >+2RMW (as per case 6), 

Table 3.4 Internal pressure correlation 

 𝑹𝒙𝒚𝐦𝐢𝐧  
 

Effect of offset 0.996 

Effect of building size 0.999 
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Effect of openings 0.924 

Effect of orientation 0.999 

 

The effect of offset 

Three building offsets, offset 1 (+RMW), offset 2 (+2RMW), and offset 3 (>+2RMW), 

were examined to investigate the internal pressure as a function of building location either 

inside or outside the core region (case 1 to case 6) of the TLV as summarized in Table 

(3.1). Fig. (3.8 a,b) shows that the internal pressure is negative (suction) for all the cases. 

The variation of internal pressures with offset is attributed to the combined effects of the 

atmospheric pressure deficit (APD) producing an overall suction as well as the tornado-

aerodynamic effects. Comparing the first three cases of EF-2 rated tornado (𝑆=0.76), the 

largest peak internal pressure coefficient is for the case of offset 1 (+RMW) which is 

consistent with previous studies (e.g. Wang et al. 2018). This is logical as shifting the 

building model further outside the core region will decrease the APD pressure 

  

(a) (b) 

Figure 3.8 Effect of offset on internal pressure (Small building) for (a) S=0.76 (EF-

2) (as per cases 1,2, and 3), (b)  S=0.48 (EF-1) (as per cases 4,5, and 6). 
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substantially. Moving the building from (+RMW)  to  (+2RMW) caused a reduction of 

two-thirds of the peak internal pressure.  

This shows the drastic effect that the building location can have on the internal pressures 

in tornadic flows. Further increasing the offset (>+2RMW), the magnitude of the peak 

internal pressure is decreased only by 15%. This shows that going beyond the core region, 

the internal pressure loading will be less impacted by the tornadic hit as the effect of 

tornadic suction diminishes gradually, approaching the behavior of straight-flow wind. 

Moreover, the examination of the second scenario, cases (4,5, and 6), of simulated EF-1 

tornado (𝑆=0.48) shows the same trend as the first three cases but with a slightly higher 

magnitude of the minimum 𝐶𝑝𝑖
  of  -1.47. This is coherent as lower intensity tornadoes 

(one-celled) should produce higher Cp negative peaks (Haan et al. 2010). The negative 

peak pressures are decreasing with increasing the offset which was observed in Nasir 

(2017) and Wang et al. (2018) and that this relation is not linear. 

The effect of building size 

Another important parameter is the ratio between the tornado core diameter and the 

maximum plan dimension of the building. This ratio correlates to the balance between 

aerodynamic and APD effects in tornado-structure interactions. This aspect was explored 

by Case et al. (2014) but their study was confined to external pressures only. Cases 1, 2, 7, 

and 8 of our study represent different scenarios to tackle the buildings’ plan dimension 

effect. 
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(a) (b) 

Figure 3.9 Effect of building size on internal pressure (uniform leakage) for (a) 

S=0.76 (EF-2) at +RMW (as per cases 1 and 7), (b) S=0.76 (EF-2) at +2RMW (as 

per cases 2 and 8). 

Fig. (3.9a) illustrates that the small building experienced a higher internal pressure peak 

compared to the large building by 25% at +RMW. This is attributed to the dominant APD 

effect when the building is engulfed in the tornado core due to its smaller length, 191 mm, 

compared to the large building that has three times the length of the small building. By 

increasing the offset distance to +2RMW (Fig. 3.9b), the difference in internal pressure 

between the two buildings becomes negligible as the effect of the APD diminishes.  

The effect of orientation 

Four cases were examined to study the effect of building orientation (cases 4, 21, 22, and 

23). The test cases include both large and small buildings to explore the difference of their 

interaction with the simulated tornadoes. Fig. 3.10 illustrates that changing the building 

orientation from 0  ° to 45° led to a time lag in the occurrence of the minimum pressure. 

This may be associated with additional tilting of the tornado vortex due to the longer time 

(distance) that it interacts with the building at 45° orientation. This observation is not 

similar to ABL flow in which changing the orientation from 0° to 45° does not affect the 
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peak internal pressures (Tecle et al. 2015). Moreover, not just the shift of the whole signal 

was observed but also the difference in magnitude of the peak pressures. Fig. 3.10 a,b 

shows that there is a slight difference in the peak pressure magnitudes between the two 

orientations for the two studied cases, whether large or small building.  

  

(a) (b) 

Figure 3.10 Effect of building orientation on internal pressure for (a) S=0.48 (EF-

1) for the small building (as per cases 4 and 21), (b) S=0.48 (EF-1) for the large 

building (as per cases 22 and 23). 

The effect of openings 

In ABL flow, a dominant opening in the windward wall causes the peak internal pressure 

(Stathopoulos et al. 1979), while in tornadic flow-field, the nature of the rotating flow-field 

may cause differences in the peak pressure occurrence. Cases (9-20) were examined to 

investigate the effect of the opening configuration in altering the internal pressure pattern. 

First, cases 9,10, and 11 were used to compare the uniform leakage, roof, and wall opening 

configurations for 𝑆=0.76 for the large building model at +2RMW (Fig. 3.11a). It is well 

observed from Fig. 3.11a that the internal pressure is negative for all the cases because of 

the dominant APD effects. For the first three cases (9,10, and 11) (𝑆=0.76, large building 

at +2RMW), the roof opening produced a higher suction compared to uniform leakage and  
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(a) (b) 

  

(c) (d) 

Figure 3.11 Effect of opening configuration on internal pressure for (a) S=0.76 

(EF-2) for the large building (as per  cases 9, 10 and 11), (b) S=0.48 (EF-1) for the 

large building (as per cases 12, 13 and 14), (c) S=0.76 (EF-2) for the large building 

(as per  cases 15, 16 and 17), (d)  S=0.76 (EF-2) for the small building (as per cases 

18, 19 and 20). 
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the wall opening (Fig. 3.11a). Similar observations apply for the second three cases (12,13, 

and 14) for 𝑆=0.48 for the large building at +2RMW, where the only difference was the 

tornado strength (EF-1 rated tornado) (Fig. 3.11b).  

This behavior could be due to the dominant effect of the APD over the roof area. The fact 

that the negative internal pressures are minimized by a wall opening highlights the fact that 

opening windows or doors during a tornadic event can in reality increase the differential 

pressure over the building increasing its vulnerability. At the same time, the increase in the 

magnitude of negative internal pressures under roof opening can provide future solutions 

for reducing building vulnerability. The overall behavior of the internal pressure with the 

opening configuration can be further explored by investigating the induced internal 

pressures at the radius of the maximum wind location (+RMW). Hence, another 6 cases 

(15- 20) were explored to study the effect of combining the wall and roof openings, Figs 

3.11c and 11d. 

It can be seen from Fig. 3.11d that the combination of wall and roof openings resulted in a 

similar behavior to the case of the wall opening solely. This could be due to the early 

admittance of the tornado flow-field through the large windward wall opening prior to the 

roof opening. Another important observation is that the wall opening resulted in an earlier 

peak of the pressure deficit because of the building located at the core radius which caused 

early access of the tornadic flow into the interior of the building (Fig. 3.11d). The same 

scenario applied for the combined roof and wall opening as the presence of the windward 

dominant opening overweighted the tornadic suction through the roof (Fig. 3.11c and 11d). 

Also, a dominant opening in the windward wall produced a slightly lower peak pressure 

magnitude than the uniform leakage case. This finding contradicts findings in previous 

studies (Kikitsu and Sarkar 2011, Wang et al. 2018). Both these studied exhibited a similar 

porosity ratio as the present study for the large building model case. The differences may 

be attributed to the ratio between the TLV core diameter and the building dimension which 

is 2 for the large building model in this study and > 7 in Kikitsu and Sarkar (2011) and 4.4 

for Wang et al. (2018). Also, both studies were confined to the tornado translating directly 

over the building (i.e. building offset=0).  
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(a) (b) 

Figure 3.12 Comparison between internal pressure coefficients and APD for (a) ) 

S=0.76 (EF-2) for the large building at +2RMW (as per  cases 9, 10 and 11),and (b) 

S=0.76 (EF-2) for the large building at +RMW (as per  cases 15, 16 and 17). 

It is shown from Fig. 3.11a,b,c that an opening in the roof may cause the peak negative 

pressure. This behavior can be favorable if compared with the APD. Hence, a need for 

further exploring the relation between the internal pressure and the APD is crucial. 

The APD of the tornado flow-field without the presence of the building was plotted and 

compared with the internal pressure coefficients in Fig. 3.11a and 11c (Fig. 3.12). It should 

be noted that the internal pressure measurements and the APD measurements were not 

synchronized. Therefore, the APD profile was compared with the internal pressure profiles 

by aligning the peaks of the pressure deficits. It is shown from Fig. 3.12a, for cases 9,10 

and 11 (i.e. uniform, uniform+roof, and uniform +wall) for S=0.76 at +2RMW, that the 

APD has higher peak pressure compared to the internal pressure coefficients for all the 

cases, however, the roof opening would produce the lowest differential pressure compared 

to a dominant windward opening and uniform leakage. The difference in peak pressures 

between the APD and the internal pressure is attributed to the building being positioned 

beyond the core region where the APD effects are minimized. In order to understand the 
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building position effect on this comparison, the APD and internal pressures were compared 

for +RMW (cases 15, 16, and 17) for S=0.76 (Fig. 3.12b). It can be seen that the APD 

profile is close to the (uniform+roof) case. This shows that a building positioned at +RMW 

would experience an equalized differential pressure, to some extent, in the presence of an 

opening in the roof, however, a windward opening (i.e. open door or broken window) or a 

uniform leakage would result in an unfavorable differential pressure. This reflects the 

importance of induced internal pressures inside buildings and the possible effects of 

different opening configurations on building vulnerability. 

Conclusions 

The internal pressures for two generic low-rise buildings under translating tornado-like 

vortices (TLVs) were examined experimentally for volume size, resolution, and translation 

velocity never achieved before. The effects of building offset with respect to the tornado 

path, building size, building orientation, and openings on the internal pressure loadings 

were investigated. The main findings from the study are summarized as follows: 

• The internal pressure is uniform inside the building model irrespective of the 

opening configuration, building size, building offset, or orientation. This shows the 

similarity between ABL flows and tornadoes in terms of internal pressure 

distribution.  

• The external pressure adjacent to the dominant opening correlates well with the 

internal pressure inside the building. This shows the resemblance between the 

behavior of the internal pressure for straight-line winds and tornadic flow-field. 

• Building offsets were found to have an important effect on the peak internal 

pressure. Peak internal pressure was shown to decrease by 2/3 in the outer core 

compared to the core region of the translating TLVs. In addition, the relation 

between the offset distance and the peak internal pressure is not linear. 

• In terms of the size of the building, it has been shown that the smaller the building 

size compared to the tornado vortex core, the higher the peak internal pressure the 

building experiences. This highlights the severe damage a small building may 

experience during tornadic hits. 
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• Changing the orientation angle of the building model from 0° to 45° slightly affects 

the internal pressure peak magnitude and causes a lag of the whole pressure deficit 

due to the longer interaction between the tornado and the building in the 45° case. 

• It was found that the negative pressure flow-field in tornadic flow dominates the 

internal pressure behavior irrespective of the type of opening. Moreover, a roof 

opening will produce the highest peak of the internal pressure compared to a 

windward dominant opening or uniform leakage.  

• A roof opening would equalize the APD when the building is at +RMW, which in 

turn would mitigate the differential pressure and the building's vulnerability. 

At last, it was found that the induced internal pressure due to tornadic flow-field is a 

complex problem that plays a vital role in determining the overall wind load on 

buildings which cannot be neglected or underestimated in calculating the net loading 

on buildings. Further research should be done to understand the effect of roughness on 

internal pressures in tornadic flow-field and to develop models that can predict the 

internal pressure behavior utilizing the broad and easy-to-access datasets of pressure 

loading in ABL flow-field. 
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Chapter 4  

4 Estimation of tornadic wind loads on building 
components and cladding as outlined in ASCE7 for 
straight line winds 

 

4.1 Introduction 

Extensive research has been performed to understand the responses of civil engineering 

structures in straight-line wind or the atmospheric boundary layer (ABL) wind. Building 

codes, such as ASCE 7-16 (ASCE/SEI 7-16, 2017), provide specific guidelines to calculate 

minimum design loads (e.g., flood, rain, wind, snow, ice) for buildings and other structures. 

Wind load provision in ASCE 7-16 has design criteria for structures for the main wind 

force resisting system and components and claddings. Types of structures include but are 

not limited to low to mid-rise buildings (4.6 to 48.8 m tall), freestanding walls, free roofs, 

circular bins, silos, tanks, and solar panels. Wind tunnel procedure for determining wind 

pressures on the buildings and other structures is also outlined in the code, and wind tunnel 

tests are permitted in lieu of the design criteria presented in the code for different structures.  

Although hurricane winds dictate the design wind speed in the coastal areas, local wind 

systems such as tornadoes and thunderstorm downbursts, can be more detrimental inland 

(Solari et al., 2015). These localized wind systems have very different flow characteristics 

than hurricane winds causing structures to behave differently (Sarkar et al., 2006; Sengupta 

et al., 2008; Elawady et al., 2017; Jubayer et al., 2019). The research with regards to 

understanding the flow characteristics of tornadoes and thunderstorm downburst and their 

effects on structures is still in the early stage (Lombardo et al., 2014; Solari et al., 2015; 

Romanic et al., 2016; Refan and Hangan, 2018; Razavi and Sarkar, 2018; Bezabeh et al., 

2018; Junayed et al., 2019; Jubayer and Wu, 2020). Researchers all around the world have 

been conducting studies on understanding tornadoes, more now than ever, to provide 

design guidelines for building tornado resistant structures, especially for weaker, more 

frequent tornadoes. 
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In 1971, Theodore Fujita came up with a scale for estimating tornado intensity and their 

impacts (Fujita, 1971). The scale ranged from F0-F5 and is based on the severity of 

damages produced by the tornado. There is a range of wind speeds associated with the 

scale, not from direct measurements in tornadoes, rather from what wind speed could have 

caused the particular damage. Later in early 2000, meteorologists and engineers revised 

the Fujita scale to better associate the damage with wind speeds. The revised scale, known 

as Enhanced Fujita (EF) scale, has been in use around the world since 2007 (McDonald et 

al., 2006). During 1991-2010, 97% of the tornadoes were rated EF2 or weaker in the USA 

(National Oceanic and Atmospheric Administration, NOAA). This means designing 

buildings to withstand up-to EF2 strength tornadoes could significantly reduce the 

probability of damages and inflicted losses. However, since the EF rating is solely based 

on the damage, an EF5 equivalent tornado going over a barren land would be rated as EF0. 

Thus, some of the tornadoes could have been rated lower than their actual strength.  

Investigation of wind loads on building due to tornadic flows has been reported in 

published literature. Several buildings with different sizes and shapes have been tested in 

the tornado simulator at the Iowa State University. Sarkar et al. (2006) evaluated tornadic 

wind loads on a 1:500 geometrically scaled tall building and found that tornadoes with 

strength F2 or higher would exceed the minimum design load set by ASCE 7-02 by a factor 

of 1.8 or higher. A 1:100 scaled gable roof building with a roof slope of 35˚ was tested by 

Haan et al. (2010) and it was found that the peak external uplift force coefficients exceed 

the minimum design wind loads in ASCE 7-05 by factors between 1.8 and 3.2. Roueche et 

al. (2015) utilized the pressure data from Haan et al. (2010) and observed that for roof-to-

wall connections, peak shear forces were 1.8 times stronger in tornadoes compared to 

ASCE 7-10 building standard. These studies have two main drawbacks: (i) they used 

empirical ways of scaling tornado-like vortices (TLVs) with no proper scaling 

demonstrated between real and simulated tornadoes. (ii) they investigated the peak wind 

loads on the building as a whole and due to size and spatial resolution problems lack of 

information regarding wind loads on different zones on the building surfaces, which is of 

importance for designing components and claddings as outlined in the ASCE 7-16 

(ASCE/SEI 7-16, 2017) building code. 
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In the present study, we address these two previous limitations: (i) the TLV simulations 

are performed in the Wind Engineering, Energy and Environment (WindEEE) Dome, 

(Hangan, 2014) which has demonstrated proper geometric scaling against real tornadoes 

(Refan et al. 2014) and best possible general scaling (Baker and Sterling 2019) and (ii) as 

having enough spatial resolution capability to perform in detail analysis for building zones 

loading. Wind loads on two gable-roofed (slope 1:12) low-rise (eave height 7.32 m full 

scale) building models with different plan dimensions are determined.  The two buildings 

are referred to as large (plan dimension: 57.2 m by 36.58 m) and small (plan dimension: 

19.1 m by 12.2 m) buildings. External pressure coefficients are measured on the buildings 

for two different translating tornado strengths (EF1 and EF2 rated tornadoes), two building 

orientations (0˚ and 45˚), and multiple tornado translation paths. External pressure 

coefficients are calculated for different zones on the building surfaces as identified in the 

ASCE 7-16 provision and compared with the recommended design values for straight-line 

ABL winds.  

4.2 Component and cladding (C&C) wind load in 
ASCE 7-16 

Chapter 30 of the ASCE 7-16 provides design wind loads for components and claddings 

for enclosed, partially enclosed, or open buildings in ABL wind. Since the eave height of 

both buildings in the present study is 7.32 m in full scale, the focus will be given to the 

design wind loads for buildings with roof height (h) ≤ 18 m (60 ft). The same definition of 

h in ASCE 7-16, which is the mean roof height for roof slope (θ) > 10° or eave height for 

θ ≤ 10°, is used. As the roof slope of both buildings is 1:12 (4.76° ≤ 10°), in the present 

study h is the eave height, 7.32 m.   

External pressure coefficients (𝐺𝐶𝑃) to calculate design wind pressures for components and 

claddings are provided in the code for different zones on the roof and walls of a low-rise 

building. For enclosed and partially enclosed buildings with h ≤ 18 m (60 ft), the depiction 

of the wall and roof (for gable roofs with θ ≤ 7°) zones is given in Fig. 4.1, where a is the 

smaller of 10% of the least horizontal dimension or 0.4h, but not less than 4% of the least 

horizontal dimension or 0.9 m (3 ft). The plan dimensions of the large and small buildings 

are 57.2 m (length) × 36.6 m (width) and 19.1 m (length) × 12.2 m (width) in full scale, 
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respectively. Therefore, a is 2.93 m and 1.22 m for the large and small buildings in the 

current study, respectively. 

 

 

 

(a) (b) 

Figure 4.1 Different zones as defined by ASCE7-16 on (a) walls and (b) roof 

𝐺𝐶𝑃 values for the zones depicted in Figure 4.1 for ℎ ≤ 18 m (60 ft) are shown in Figure 

4.2. Note that the 𝐺𝐶𝑃 values for the wall zones have been reduced by 10% as outlined in 

the ASCE7-16 provision for 𝜃 ≤ 10°. Both design maximum (positive) and minimum 

(negative) pressure coefficients are shown in Figure 4.2. Effective wind area is the area 

used to determine the 𝐺𝐶𝑃 values. Gust-effect factor (𝐺) from 𝐺𝐶𝑃 should not be separated 

for the values presented in Figure 4.2. The pressure coefficient values from the wind tunnel 

data were based on mean hourly wind speed. The values presented in Figure 4.2 were 

divided by 3-s gust wind pressure at ℎ to adjust the pressure coefficient values associated 

with a 3-s gust wind speed. Envelope approach (rotating the building model for full 360° 

in wind tunnels) was used in determining the coefficients reported in Figure 4.2. 
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(a) (b) 

Figure 4.2 Components and cladding external pressure coefficients for (a) wall 

and (b) roof (ASCE/SEI 7-16, 2017, Figure 30.3-1 and 30.3-2A). 𝑮𝑪𝑷 values for 

walls have been reduced by 10% for 𝜽 ≤ 10° 

4.3 Reference static and dynamic pressures in 
calculating pressure coefficients 

Pressure coefficient (𝐶𝑃), a dimensionless parameter for pressure, is calculated based on 

Equation 1.  

𝑪𝑷 =
𝑷−𝑷𝒓𝒆𝒇

𝒒𝒓𝒆𝒇
=

𝑷−𝑷𝒓𝒆𝒇
𝟏

𝟐
𝝆𝑽𝒓𝒆𝒇

𝟐
                                                                               (1) 

Where, 𝑃 is the surface pressure, 𝑃𝑟𝑒𝑓 is the reference static pressure, 𝑞𝑟𝑒𝑓 is the reference 

dynamic pressure, 𝜌 is the density of air and 𝑉𝑟𝑒𝑓 is the reference dynamic pressure. In 

typical wind tunnel test with ABL flow, especially for low-rise buildings 𝑃𝑟𝑒𝑓 and 𝑞𝑟𝑒𝑓 are 

measured at an upper level, much higher than the building height, where the flow is uniform 

with low level of turbulence. 𝐶𝑃’s are then re-referenced to building height by multiplying 

with a conversion factor corresponding to the ratio of reference height to roof height 
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dynamic pressures. This approach is adopted to reduce the measurement uncertainty due 

to the higher level of turbulence at the building height (Ho et al., 2005).  

For tornadoes, currently, there are no standard guidelines for reference static and dynamic 

pressures to calculate 𝐶𝑃 which would provide a meaningful comparison of 𝐶𝑃’s between 

ABL and tornadic flows. In the study by Haan et al. (2010) maximum mean horizontal 

velocity at the building height was used as 𝑉𝑟𝑒𝑓 whereas 𝑃𝑟𝑒𝑓 was the ambient pressure in 

the laboratory outside the tornado simulator. Both studies by Sarkar et al. (2006) and 

Sengupta et al. (2008) employed force balance to measure aerodynamic forces on a model 

building and used the overall maximum tangential velocity in the tornado to calculate force 

coefficients. 𝑃𝑟𝑒𝑓 was not required for this study as the results were presented in force 

coefficients only. Similar to Sarkar et al. (2006), Hu et al. (2011) also employed overall 

maximum tangential velocity as 𝑉𝑟𝑒𝑓 while they used ambient pressure far away from the 

tornado vortex center as 𝑃𝑟𝑒𝑓. Horizontal velocity at the eaves height of the building 

without the presence of the building was taken as 𝑉𝑟𝑒𝑓 by Mishra et al. (2008) with mean 

static pressure on the ground surface in the vicinity of the pressure taps on the building 

surface as 𝑃𝑟𝑒𝑓 while calculating 𝐶𝑃 at the pressure taps.  

Literature review on the previous studies reveals that when it comes to choosing the 𝑉𝑟𝑒𝑓 

for calculating 𝐶𝑃’s in tornadoes, researchers have employed either horizontal or tangential 

velocity recorded either at the height of the building or at the height of the overall maximum 

velocity. Now as for 𝑃𝑟𝑒𝑓, ambient pressure outside the simulator away from the vortex 

(Haan et al., 2010) and the mean static pressure on the ground surface (Mishra et al. 2008) 

seem to be the two choices reported in the previous studies. In a recent study by Jubayer et 

al. (2019), it was shown that using the same approach for reference pressures between 

synoptic (ABL) and non-synoptic (non-Gaussian impinging jet) flows to calculate 𝐶𝑃’s do 

not provide meaningful comparisons of wind loads. In the present study, ambient pressure 

outside the test chamber isolated from the flow is used as 𝑃𝑟𝑒𝑓 and overall maximum mean 

horizontal velocity without the presence of the building is used as 𝑉𝑟𝑒𝑓.  
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4.4 Methodology 

External and internal pressure measurements were carried out on two low-rise building 

models with different plan dimensions at the state-of-the-art tornado simulator, the 

WindEEE Dome. In the current study, external pressures are studied in detail while internal 

pressures are investigated in a parallel study. In this section, a comprehensive description 

of the experimental setup and the test cases are provided.  

WindEEE Dome, a novel state-of-the-art three-dimensional wind testing chamber, 

(Hangan 2014) and world’s largest tornado simulator, has a hexagonal footprint with 25 m 

diameter and 3.8 m height. WindEEE Dome has a total of 106 fans among which 60 fans 

are attached to one wall, 8 fans each on the other five walls of the test chamber, and 6 fans 

in a plenum above the test chamber ceiling with a 4.5 m diameter circular opening on the 

ceiling for flow exchange between the test chamber and the upper plenum. Using a different 

combination of these fans, WindEEE Dome can operate in three major modes: ABL, 

Tornado, and Downburst. In this study, focus is given to the tornado mode of operation. In 

the tornado mode, suction is created with the six fans pulling the air out of the upper plenum 

and the chamber, inflow is obtained through the 8 fans on each of the six peripheral walls, 

and louvers in front of the peripheral fans provide the necessary swirl. A schematic of the 

tornado mode of operation at the WindEEE Dome is shown in Figure 4.3. In the present 

study, a translating EF-1 and EF-2 rated tornadoes were simulated on the low-rise buildings 

with a translating velocity of 1.5 m/s. The swirl ratios for these tornadoes are 𝑆 =0.48 (EF-

1 rated) and 𝑆=0.76 (EF-2 rated) where the swirl ratio is calculated using the following 

expression: 𝑆 = 𝑟𝑜Γ𝑚𝑎𝑥/2𝑄ℎ, where 𝑟𝑜 is the updraft radius, ℎ is the inflow depth, Γ𝑚𝑎𝑥 is 

the maximum flow circulation and (𝑄) is the volumetric flow rate per unit axial length. 

For the current experiments, the updraft radius is 2.25 m, while the inflow depth is 0.8 m. 
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(a) (b) 

Figure 4.3: Schematic of tornado flow at WindEEE Dome (a) side view and (b) top 

view 

4.4.1 Building Model 

The building models chosen for this study are two gable-roofed buildings with a full-scale 

plan dimension of 57.2 m (L) by 36.6 m (W) (large building) and 19.1 m (L) by 12.2 m 

(W) (small building), eaves height of 7.32 m and roof slope of 1:12. The geometric scale 

of the building models is 1:100. The two buildings were similar to two buildings from the 

National Institute of Standards and Technology (NIST) database (Ho et al., 2005) where 

buildings with different sizes were tested in the ABL wind. The large and small buildings 

are comprised of 446 and 344 external pressure taps, respectively (Fig. 4.4). The pressure 

taps were distributed among the building walls and roof with a denser distribution in the 

most vulnerable areas like roof, roof corners, and wall corners as illustrated in the exploded 

view of the building models (Fig. 4.5).  

 



88 

 

  

(a) (b) 

Figure 4.4 Building models (a) Large building, and (b) small building 

 

 

 

 

  

 

 

 

 

(a) (b) 

Figure 4.5  Exploded views of the external pressure taps layout and for (a) the 

large building model, (b) the small building model. 
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4.4.2 Test Cases 

In this paper, sixteen test cases, as summarized in Table (4.1), are studied to investigate the 

tornado-structure interaction for two different intensity tornadoes, 𝑆=0.48 (EF-1) and 

𝑆=0.76 (EF-2) and two low-rise buildings with different plan dimensions. The cases were 

designed to emphasize the effect of building location and building orientation with respect 

to the tornado path as well as building size on the overall pressure distributions on the 

buildings and comparison with the ASCE loading. Five runs were performed for each case.  

Since the same building models were used to investigate internal pressures as well, the 

models had uniform leakage distributed on all surfaces of the building. For each building, 

the total leakage area is 0.1% of the overall wall area. This ratio is compared to the real 

distributed leakage in nominally sealed buildings which is 10-4 to 10-3 as stated by Ginger 

et al. 1997. 

Table 4.1 Test cases 

Case # Building 𝑺 Orientation Offset (from the 

tornado center) 
1 Sa 0.76 0° +RMW b 

2 S 0.76 0° +2RMW 

3 S 0.76 0° >+2RMW 

4 S 0.48 0° +RMW 

5 S 0.48 0° +2RMW 

6 S 0.48 0° >+2RMW 

7 Lc 0.76 0° +RMW 

8 L 0.76 0° +2RMW 

9 S 0.48 45° +RMW 

10 L 0.48 0° +RMW 

11 L 0.48 45° +RMW 

12 L 0.76 45° +RMW 

13 L 0.76 45° +2RMW 
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14 L 0.48 0° +2RMW 

15 L 0.48 45° +2RMW 

16 S 0.76 45° +2RMW 
a S denotes small building model 
b +RMW denotes the radius of the maximum wind 
c L denotes large building model 

4.4.3 Measurement Details 

External pressures on the building models were measured using ESP (electronically 

scanned pressure) scanners, pressure range ±1 kPa, (Pressure Systems, Inc.) coupled with 

two digital temperature compensation (DTC) initiums. The accuracy of the pressure 

scanners is ±0.03% and the initiums’ uncertainty is ±0.05% over the whole temperature 

range (0 - 70 C). A sampling frequency of 500 Hz and a sampling time of 15 s were 

utilized in the present study at 𝑅𝑒𝑟=106, where 𝑅𝑒𝑟 denotes the radial Reynolds number 

(𝑅𝑒𝑟 = 𝑄/2𝜋𝜈, where 𝑄 is the volumetric flow rate per unit axial length and 𝜈 is the 

kinematic viscosity of the fluid). This sampling time (15 s) along with a translation speed 

of 1.5 m/s ensured that the translating tornado passed the whole building model. 

Reference velocity measurements were performed by means of cobra probes without the 

presence of the buildings. The reason behind that is the existence of the maximum 

horizontal velocities in tornadic flow near the ground where the building affects the peak 

velocity magnitude, unlike ABL flow where the building does not alter the maximum 

velocities that subsist just above the structure. Cobra probe is a multi-hole pressure probe 

that is designed to resolve three components of velocity as well as local static pressure in 

real-time. It is designed to measure flow-fields within a ±45° cone at high frequencies that 

makes it suitable for turbulent flow measurements such as tornadic flow. The translating 

tornado adds complexity to the wind speed measurements due to the swirling motion of the 

vortex. This resulted in expecting the wind from multiple directions for a single 

measurement location. The near region of the tornado translating trajectory is more prone 

to multi-directional winds than beyond the tornado core. Hence, in order to envelope the 

whole 360 with the ±45° measurement range, cobra probes were oriented four times to 

cover the four quadrants. Multiple cobra probes at up to six locations across the centerline 
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of the turntable (𝑋/𝑟𝑜= -0.39, -0.2, 0, 0.2, and 0.51 for 𝑆=0.48 (EF-1) and -0.39, -0.27, 0, 

0.27, 0.33, 0.39, and 0.51 for 𝑆=0.76 (EF-2)) at five different heights (𝐻/𝐻𝑒𝑎𝑣𝑒 =0.14, 

0.48, 0.82, 1.23, and 1.67) were used to measure the wind speed. The cobra probe’s 

sampling frequency was set to 1250 Hz. Fig. 4.6 shows a set of cobra probes used in the 

wind speed measurements. The peak horizontal velocity at the building height was used as 

the reference velocity in the current study (13.21 m/s and 15.55 m/s for EF-1 and EF-2 

rated tornadoes, respectively) while the 3-sec peak horizontal velocity at the building 

height was utilized in the comparison with the ASCE 7-16 code. 

Two swirl ratios (S=0.48 and  S=0.76), two orientations (0 and 45) and three offsets 

(+RMW, +2RMW, >+2RMW) were investigated in the present study to investigate the 

effect of these parameters on the external pressure distribution as well as comparing the 

𝐶𝑝’s with the ASCE loadings. 

 

Figure 4.6 Set of cobra probes to measure reference velocity 

4.5 Results and discussion 

In this section, the distribution of the external pressure coefficients on the surfaces of the 

two low-rise buildings are analyzed for different building offsets, two building orientations, 

and two tornado intensities, S=0.48 and S=0.76. Moreover, external pressure coefficients 

(𝐺𝐶𝑝) from the present study are compared with the ASCE7-16 𝐺𝐶𝑝 for ABL wind. 
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4.5.1 Distribution of external pressure coefficients 

𝐺𝐶𝑝 distributions on the surfaces of the low-rise buildings in tornadic flow are categorized 

according to the studied effects. The measured exterior pressures are presented in the form 

of contour plots. 

4.5.1.1 5.1.1 The effect of offset 

External pressure distribution was investigated under three building locations (i.e. offsets), 

+RMW, +2RMW, and > +2RMW. These offsets were analyzed to understand the 

vulnerability of buildings to higher suctions, particularly at +RMW which is considered a 

highly susceptible region to higher winds while the larger offsets are studied to assess the 

extent of tornado effect. Fig. 4.7 represents contour plots of  𝐺𝐶𝑃′s, where Fig. 4.7a, b, c 

represents 𝑆=0.76 (EF-2 rated) and Fig. 4.7d, e, f depicts 𝑆=0.48 (EF-1 rated) at the three 

offsets. It is clearly observed from Fig. 4.7 that increasing the offset resulted in an overall 

decreased  𝐺𝐶𝑃′s for both EF-1 and EF-2 rated tornadoes, with the same corner of the roof 

showing the maximum suction. This is attributed to the dominance of the Atmospheric 

Pressure Deficit (APD) in tornadic flows that resulted in high suction in the tornado core. 

This can be seen from Fig. 4.8 where the surface pressure deficit of both EF-1 and EF-2 

rated tornadoes are plotted. The pressure deficits are normalized by the peak horizontal 

velocity at the building height for each tornado intensity while the distance is normalized 

by the radius of maximum wind ‘RMW’ (i.e. core radius ‘𝑟𝑐’) for each swirl ratio. Please 

note that the pressure deficits are adapted to the simulator’s center to get a full insight into 

the change of pressure with radius. Fig. 4.8 shows that the tornado flow-field is dominated 

by suction until +2RMW. In addition, it is seen from Fig. 4.7 that beyond the core region, 

the overall pressure distribution did not alter as the effect of the APC started to diminish. 

For EF-2 rated tornado at the core radius location (i.e. +RMW) (Fig.4.7a), the windward 

wall is dominated by positive pressure. This is due to the direct strike of the tornado with 

its high tangential velocities at this location.  On the other hand, the roof, roof corners, 

leeward wall, and the left side wall experienced the maximum uplift. This complies with 

the counterclockwise rotation of the tornado vortex as well as the separation and 

convergence due to the tornado swirling motion. Also, conical-shaped pressure distribution 

is observed in the southeast corner of the roof for 𝑆=0.48 and 𝑆=0.76 (Fig. 4.7a, d) which 



93 

 

indicates the presence of corner vortices in this roof corner. Similar observations can be 

seen for 𝑆=0.48 (Fig. 4.7d). Overall, the +RMW location is considered the most critical 

position in terms of 𝐺𝐶𝑃′s compared to the studied cases.  

  

(a)  (d)  

  

(b)  (e)   

Translation Translation 

Translation Translation 

rotation rotation 

rotation rotation 
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(c)   (f)   

Figure 4.7 Contour plots of ensemble-averaged peak pressure coefficients (𝑮𝑪𝑷)  for 

the small building for 𝑺=0.76 at (a) +RMW (case 1), (b) +2RMW (case 2),, (c) 

>+2RMW (case 3), and for S=0.48 at (d) +RMW (case 4), (e) +2RMW (case 5), (f) 

>+2RMW (case 6) 

  

(a) (b) 

Figure 4.8 Surface pressure deficit of stationary tornado for (a) 𝑺=0.76(EF-2 rated), 

and (b) 𝑺=0.48 (EF-1 rated) 

Translation Translation 

rotation rotation 
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4.5.1.2 5.1.2 The effect of building size 

Distributions of 𝐺𝐶𝑝 on both small and large buildings at +RMW for 𝑆=0.76 (EF-2) are 

shown in Fig. 4.9a.  As can be seen from Fig. 4.9a, both buildings experienced conical-

shaped pressure distribution in the Southeast corner of the roof with higher suction for the 

small building. This could be attributed to the closeness of the roof corner of the small 

building to the radius of maximum wind due to its smaller length which is one-third of the 

larger building. This has a great implication on understanding the building size effect. The 

main parameter herein is not the building plan dimensions but the ratio between the 

building length to the tornado core diameter (i.e. 𝐿𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔/𝐷𝑐𝑜𝑟𝑒) which is 0.48 and 0.16 

for the large building and small building, respectively for EF-2 rated tornado. This shows 

that the smaller the building length compared to the tornado core diameter, the higher the 

negative pressures the building can experience. Placing the building beyond the core region 

at +2RMW (Fig. 4.9b) did not show a difference in the pressure distribution for both 

buildings. This indicates that beyond +RMW, the pressure distribution is not affected by 

the size of the building.  

4.5.1.3 5.1.3 The effect of orientation 

Fig. 4.9a illustrates that for the small building, the rotation of the building by 45 caused a 

redistribution of the low-pressure areas in the roof corners and leeward wall. Lower 

pressure zones can be observed in the rear wall of the 45 case due to the high extent of 

separation in this zone that resulted from building rotation. Conical pressure distribution 

was more pronounced in the southwest corner of the building that is attributed to the corner 

vortices developed in this corner, unlike a southeasterly conical pressure distribution in the 

0 case. Also, lower pressure in the east corner of the windward wall can be seen for the 

45 case (Fig. 4.10a) due to the tornado flow-field separation. Expanding the results to the 

large building model (Fig. 4.10b) shows the same behavior as the smaller building in Fig. 

4.10a except that the large building experienced larger separation and bigger corner 

vortices on the roof and leeward face.   
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(a)  

 
 

(b)  

Figure 4.9 Effect of building size on 𝑮𝑪𝑷 distribution for 𝑺=0.76 at (a) +RMW (cases 

1 and 7), (b) +2RMW (cases 2 and 8) 
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(a)  

  

(b)  

Figure 4.10 Effect of building orientation on 𝑮𝑪𝑷 distribution at +RMW for (a) 

S=0.48 (cases 4 and 9), small building, (b) 𝑺=0.48, large building (cases 10 and 11) 

4.5.2 Comparison with ASCE 7-16  

The results of the present study (cases 1-16) for the small and large buildings, different 

offsets, the two tornado intensities, and orientations were compared with the components 

and cladding in ASCE7-16 standard provisions to get a thorough insight of the current 

provisions and its applicability for tornado flow-field. The peak values of the ensemble-

averaged 3-sec 𝐶𝑃′𝑠 are used in this comparison. Fig. 4.11 illustrates the zones’ 

configurations according to the ASCE for the two low-rise buildings employed in this 

0 45 

0 45 

Translation Translation 

Translation Translation 

rotation rotation 

rotation rotation 
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study. Fig. 4.12-17 represents the measured external pressure coefficients (𝐺𝐶𝑃) values for 

the six zones and the ASCE 7-16’ values.  The blue lines indicate the maximum negative 

pressures as indicated by the ASCE 7-16 provisions, while the green lines represent the 

maximum negative pressures after multiplying by the tornado factor (TF). The tornado 

factor (TF) is based on tornado design considerations outlined in chapter 26 in the ASCE 

7-16 code. A tornado factor of 1.5 that represents Exposure C terrain condition from Table 

C26.14-4 was used in the current study. 

Starting the analysis with the roof zones, Fig. 4.12 shows that for zone 1’, the measured 

𝐺𝐶𝑃 exceeded the ASCE coefficient values even after applying the tornado factor. This is 

attributed to the great difference between the tornadic flow-field and the ABL flow on 

which the recommended values in the ASCE code are based on. The atmospheric pressure 

deficit (APD) developed in the center of the tornado flow is dominating over the tornado-

structure interaction, particularly near the core region that results in overall suction on the 

mid-roof zone. This has a great implication on the design of low-rise buildings as it shows 

that the middle of the roof is a highly vulnerable area. It should be noted that the small 

building does not have zone 1’ due to its small plan dimensions, so the results in Fig. 4.12 

are confined to the large building. Expanding the results to zone 1 (Fig. 4.13) that considers 

the small and large buildings, the 𝐺𝐶𝑃 values seem to have good agreement with the ASCE. 

This shows that the large building is more prone to high suction in the mid-roof zone than 

the small building which is due to its larger plan dimensions. 

On the contrary to zone 1’, zone 2 (Fig. 4.14) that contains the roof edges, and zone 3 (Fig. 

4.15) which represents the roof corners are considered resilient zones as the peak pressure 

values fall below the recommended values of the ASCE with the TF. This shows the 

similarity between the tornadic flow-field and ABL flow in these zones. The reason behind 

that is that zone 2 is away from the critical areas like the mid-roof zone and roof corners 

so it is not prone to higher suctions. On the other hand, zone 3, which represents the roof 

corners, is considered as a highly prone area of separation in ABL flow. That is why the 

ASCE 7-16 recommendations perform well for this zone. It should be noted that the derived 

conclusions are confined to the studied cases. 
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After delving into the roof zones (zones 1’, 1, 2, and 3) and perceiving the most vulnerable 

areas, further investigation for the wall zones needs to be performed to assess their 

susceptibility to high suctions. Fig. 4.16 and 4.17 depict that peak negative pressures 

exceeded the ASCE values for zones 4 (middle of the walls) and 5 (wall corners) which 

means that the code is underestimating the loads in these areas. This would be attributed to 

the low-pressure areas on the sidewalls, which are a direct result of the separation and re-

attachment of the tornadic flow-field due to the counter clock-wise rotation direction of the 

tornado flow which is not the case for ABL flow where the peak pressures are experienced 

in the corners of the roof facing the wind direction.  

 The comparison with the ASCE 7-16 outlined that the code recommendations 

underestimated the peak pressures for three main zones, middle of the roof (zone 1’), the 

wall and wall corner zones (zone 4 and 5). Moreover, the plan dimensions of the buildings 

affect the vulnerability of the structures as the smaller building didn’t exceed the standard 

peak pressures, unlike the large building.  

 

(a) (b) 

Figure 4.11 Building zones according to ASCE 7-16 for (a) Large building, and (b) 

small building 
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Figure 4.12 Comparison between ASCE-17 and measured external pressure 

coefficient (𝑮𝑪𝑷) for low-rise buildings for zone 1' 

 

 

Figure 4.13 Comparison between ASCE-17 and measured external pressure 

coefficient (𝑮𝑪𝑷) for low-rise buildings for zone 1 
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Figure 4.14 Comparison between ASCE-17 and measured external pressure 

coefficient (𝑮𝑪𝑷) for low-rise buildings for zone 2 

 

 

Figure 4.15 Comparison between ASCE-17 and measured external pressure 

coefficient (𝑮𝑪𝒑) for low-rise buildings for zone 3 
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Figure 4.16 Comparison between ASCE-17 and measured external pressure 

coefficient (𝑮𝑪𝑷) for low-rise buildings for zone 4 

 

 

Figure 4.17 Comparison between ASCE-17 and measured external pressure 

coefficient (𝑮𝑪𝑷) for low-rise buildings for zone 5 
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4.6 Conclusions 

 

External pressure measurements have been performed in the WindEEE Dome at Western 

University for two generic low-rise buildings under translating tornado-like vortices. The 

building size, building offset, and building orientation were altered to study their effects 

on the external pressure distribution. Moreover, a comparison between the peak ensemble-

averaged pressure coefficients and the ASCE 7-16 recommended values have been 

accomplished to assess the building code applicability for the studied cases.  

From the current study, it was concluded that: 

• The roof, leeward wall, and the left side wall experienced the maximum uplift at 

+RMW. Increasing the offset beyond the core radius resulted in a less pronounced 

suction on the roof and a significant drop in the loads. 

• Conical pressure distribution for the case of 0 (windward wall is normal to the 

translation path) was observed for all the cases.  

• The smaller of the two buildings experienced higher negative peak pressures at 

+RMW. This is attributed to the total submergence of the whole small building 

length in the core region, unlike the large building that has a larger plan 

dimension. 

• Changing the building orientation from 0 to 45 caused a redistribution of the 

peak pressures and separation locations. The rear wall experienced lower pressure 

and the conical pressure distribution was shifted to the southwest corner of the 

building that faces the translating tornado. 

• For roof corner zones, ASCE 7-16 wind load provision performed well for all the 

studied cases. 

• The middle of the roof and middle of the wall experienced higher suction in 

tornadoes than the recommended wind loads in ASCE 7-16. 
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Chapter 5  

5 Conclusion 

In the present thesis, near-surface pressure measurements were carried out on the ground 

as well as on two generic low-rise building models in the state-of-the-art tornado simulator, 

the WindEEE Dome. The analysis of the tornado-like vortices ground pressure data was 

utilized to serve in the interpretation of the tornado induced pressures on buildings as a 

superposition of pressure deficit and aerodynamic effects. 

In the beginning, high resolution, in space and time, ground pressure measurements were 

performed to understand the dynamics of stationary and translating TLVs as a function of 

swirl ratio, translation speeds, and roughness. A broad range of swirl ratios was tested 

(𝑆=0.21 to 1.03) representing tornado vortex development from single-celled vortex to 

vortex breakdown to two-celled structure. The effect of multiple swirl ratios (𝑆=0.21 to 

1.03), three translation speeds (𝑉𝑇 =0.1, 1 and 1.5 m/s) and two roughness levels (smooth 

and rough) on wandering, tilting, and veering of tornado vortices were for the first time 

examined. 

A comprehensive study on internal pressures was carried out on two generic low-rise 

buildings under translating tornado-like vortices (TLVs) were examined experimentally 

for volume size, resolution, and translation velocity never achieved before. The effects of 

building offset with respect to the tornado path, building size, building orientation, and 

openings on the internal pressure loadings were investigated. 

Afterward, induced external pressures were quantified for the two generic low-rise 

buildings under translating tornado-like vortices. The effect of the building’s plan 

dimension, building location as well as building orientation on the resulted external 

loading on buildings were explored. In addition, a comparison was provided between the 

induced peak pressures and the recommended value of components and claddings stated 

in the ASCE 7-16 standard building code to assess the building code applicability for the 

studied cases.  
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5.1 Summary of findings 

Results of the ground pressure measurements showed that the increase of swirl ratio for 

stationary tornado-like vortices (TLVs) resulted in a reduction of the peak pressure at first 

which was then followed by a gradual rise. This indicates the different development stages 

of tornado vortex structure where the vortex transitions from a single vortex to a multi-

vortex structure.  

Wandering behavior was found to have a significant outcome, particularly for lower swirls, 

on the mean flow-field of the stationary tornado. The error can exceed 35% for the peak 

pressure magnitudes. In the current study, a new method for removing wandering was 

suggested that was reliable, particularly for higher swirl ratios with more complex vortex 

structure.  

Translating TLVs was found to have some remarking differences compared to stationary 

ones. Three translation speeds were utilized in this study (0.1 m/s; 1m/s and 1.5 m/s) where 

the higher speeds are investigated for the first time in tornado simulators.  The results 

indicate that increasing translation speed led to a lower magnitude of the observed peak 

pressure deficits which assures the importance of studying translating TLVs instead of 

stationary ones where the last could produce overestimated loads. 

An inclination of the translating TLV in the translation direction was observed where the 

base of the vortex postdated the upper part of the vortex attached to the guillotine system. 

This is attributed to the shear that the vortex experience near the ground. This tilting 

behavior was only detected in higher translation speeds (𝑉𝑇 =1 m/s and 1.5 m/s) and was 

increasing with increased translation velocity. In addition, a left curved deviating behavior 

of the tornado vortex signature on the ground was detected for high translations. This is 

apparently a direct result of the imbalance in the velocity field for both sides of the tornado 

vortex which was documented in some field studies. 

Increasing the surface roughness was found to cause a similar effect to decreasing swirl 

ratio for the two studied cases (S=0.48 and S=0.76). An increased inclination of the tornado 

vortex axis and a less veering motion was noticed with increasing the roughness level.  
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After delving into the tornado vortex flow-field structure, the induced internal pressures 

were explored for multifold opening configurations, building offset, building orientation, 

and tornado intensities.  It was deduced that the internal pressures are uniform for all the 

studied cases which shows a resemblance with ABL flow-field studies in the literature. A 

high correlation between internal and external pressures adjacent to the openings, similar 

to ABL flow, was also found. 

Increasing the building size resulted in a lower internal pressure peak. This emphasizes the 

large destruction a small building can experience in tornadic hits. A 45° orientation slightly 

affected the peak internal pressures while it resulted in a lag of the pressure deficit profile 

that is attributed to the longer interaction (i.e. diagonally) between the translating TLV and 

the building. A reduction of the peak internal loads by two-thirds was observed when 

shifting the building beyond the core region.  

Investigating the multifold scenarios of the opening configurations revealed that a roof 

opening will produce the highest peak of the internal pressure compared to a windward 

dominant opening or uniform leakage. Also, a roof opening would equalize the APD when 

the building is at +RMW, which would mitigate the differential pressure and the building 

vulnerability. 

Lastly, external pressure study revealed that the most vulnerable areas to negative peaks 

were the roof, leeward wall, and the left side wall at the core radius (i.e. +RMW). 

Increasing the offset beyond the core radius resulted in a significant drop in the loads. The 

small building experienced higher negative peak pressures at +RMW. This is because the 

small building is totally enveloped inside the core region due to its smaller length, unlike 

the large building which is 3 times larger in length. 

 

The comparison between the peak pressures and the components and claddings in the 

ASCE 7-16 showed that the roof corner zones are not considered a vulnerable area to high 

suctions unlike the middle of the roof and the middle of the wall zones that experienced 

higher suctions than the recommended ASCE 7-16 values. This highlights the need for 
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considering tornadic loadings in evaluating the recommended value of pressure loading in 

the building codes. 

5.2 Recommendations for future work 

The current thesis studied the near-surface structure of tornado-like vortices in terms of 

ground pressure loading, internal and external pressures. The following recommendations 

are suggested for future work: 

• A larger range of swirl ratios can be investigated for translating tornado-like 

vortices (TLV) for a better understanding of surface roughness on TLV structure. 

• Development of an analytical model that takes into account wandering, veering, 

and tilting motions for translating tornado-like vortices. 

• The induced pressure loads, internal and external, on buildings can be extended to 

investigate multiple heights’ effect on the overall loading pattern. 

• Further research should be done to understand the effect of roughness on internal 

pressures in tornadic flow-field and to develop models that can predict the internal 

pressure behavior utilizing the broad and easy-to-access datasets of pressure 

loading in ABL flow-field. 

• More cases need to be enveloped in the comparison between the measured peak 

external pressures and the ASCE 7-16 standard building code. 

• Extending the internal and external pressure to examine the resultant tornado 

loading on buildings. 
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Appendix A: Damage Indicators and Degree of Damage 

The present tables (Table A.1 and A.2) summarize the Damage Indicators (DI) that is 

utilized to estimate the degree of severity of a tornado and the Degree of Damage (DOD) 

for one- and two-family residence. 

Table A.1 EF- scale damage indicators (DI) 
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Table A.2 One- and Two-Family Residences (FR12) (DOD) 

 

EXP refers to expected wind speed (mph) 

LB refers to lower bound wind speed (mph) 

ECP refers to higher bound wind speed (mph) 
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