
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-21-2021 4:00 PM 

Protein Interaction Sites Prediction using Deep Learning Protein Interaction Sites Prediction using Deep Learning 

Sourajit Basak, The University of Western Ontario 

Supervisor: Ilie, Lucian, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Computer Science 

© Sourajit Basak 2021 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Basak, Sourajit, "Protein Interaction Sites Prediction using Deep Learning" (2021). Electronic Thesis and 
Dissertation Repository. 7716. 
https://ir.lib.uwo.ca/etd/7716 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7716&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fetd%2F7716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7716?utm_source=ir.lib.uwo.ca%2Fetd%2F7716&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract
The accurate prediction of protein-protein interaction (PPI) binding sites is a fundamental

problem in bioinformatics, since most of the time proteins perform their functions by interact-
ing with some other proteins. Experimental methods are slow, expensive and not very accurate,
hence the need for efficient computational methods.

In this thesis, we perform a study aiming to improve the performance of the currently
best program for binding site prediction, DELPHI. We have employed some of the currently
best techniques from machine learning, including attention and various embedding techniques,
such as BERT and ELMo. This is the first time such tools are being tested for this problem.
We have tested many architectures on a large dataset and analyzed our findings. While we
succeeded to improve the performance, it is interesting to notice that some of the best machine
learning techniques failed to provide the expected improvement, a fact that will require further
investigation.

Keywords: Protein-Protein Interaction, Deep Learning
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Lay Summary

Proteins are an essential component to any organism which takes part in every process
within living cells. The cell functioning often happens due to the interaction of proteins with
other proteins. This mechanism is called protein-protein interaction (PPI) in biology. In this
event, predicting those amino acids which helps in binding, also referred as PPI binding sites
becomes a fundamental problem in computational biology.

We present, a thorough study which aims to improve the performance of DELPHI, the
current best program for predicting binding sites. In order to achieve this, we have implemented
some of the recent best techniques from machine learning. Many architectures on a large
dataset have been tested to analyze our findings. It is very interesting to note that even if we
succeeded to improve the performance, some of the best machine learning techniques failed to
provide expected improvement, which definitely leads us towards further investigation.
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Chapter 1

Introduction

The main focus of bioinformatics is to interpret and analyze biological data using mathemat-
ical, statistical and computational models. In most of the cases these data are represented by
nucleotide sequences also referred as DNA, RNA or protein sequences. In biology proteins are
essential to organisms and participate in every process within cells. They perform their func-
tions by interacting with other proteins which is often termed as Protein-Protein Interaction
(PPI). When two proteins interact with each other the bonding amino acid residues are called
PPI binding sites. Identifying PPI binding sites is a fundamental problem in computational bi-
ology as many applications like understanding cell regulatory mechanism, locating drug targets
or predicting protein functions are dependent on this.

1.1 Motivation
Experimental methods for solving this problem are slow, expensive and not very accurate. To
overcome this, several computational methods have been developed for improvement purpose.
One of such leading method is PIPE-sites [1] which is an algorithm based approach to predict
PPI binding sites, and discussed later. In recent years with the advancement of technology
and computational power, machine learning based models are rapidly increasing to solve this
problem.

Programs like DLPred [39], DeepPPISP [38], SCRIBER [40] and DELPHI [19] which are
using machine learning techniques are performing very well. Since, this is a growing research
area we aim to improve the prediction performance further by using the latest techniques.

1.2 Problem Statement
There are three problems concerning prediction of protein interactions. The first predicts
whether two proteins interact, as a whole. The second, which we study, is whether each indi-
vidual amino acid also called residue of a given protein is a binding site or not, that is, inter-
acting with some other residue in another, or the same protein. The third problem concerns the
interaction between pairs of residues.

In recent years, machine learning has become one of the most important research areas in
computer science. The major contributions of it are in areas like computer vision and natural

1



2 Chapter 1. Introduction

language processing. However, these techniques can also be implemented in computational
biology more specifically in problems like PPI binding site prediction. We present a compre-
hensive study aiming to improve the performance of the currently best program for binding
site prediction, DELPHI. Considering the nature of biological data which comes in a sequence
based format, we focus mainly on those methods involving NLP problems such as attention,
embedding etc. This study attempts to include all the possible ways for improving the predic-
tion performance of the program to the best of our knowledge.

1.3 Objective
The main objective is to try out some of the modern machine learning tools in a binding site
prediction problem for the first time. We chose DELPHI as it is currently the best program
to solve this problem. We mainly focus on ideas like embedding, attention and positional
encoding, as it has been proven by many researchers that, these techniques made a significant
improvement in NLP problems. Our goal is to demonstrate how biological problems can also
be improved by applying these methods in the right way.

1.4 Thesis Contribution
The major contribution of this thesis is that we compared several state-of-the-art machine learn-
ing methods which are very useful in NLP to explain how the performance of a binding site
prediction problem can be improved by placing them into the program, DELPHI.

Many researchers are working on this problem and most of them are using machine learning
as well. Our study will definitely help them to understand the right way for selecting the ap-
propriate methods for their programs in similar problems and also to improve the performance
by a significant amount.

1.5 Thesis Outline
In Chapter 2, we discussed about the background of our thesis, starting with some basics of
biology, then how deep learning has been introduced into bioinformatics in recent years, fol-
lowed by some basic definition and notation.

In Chapter 3, we mainly focused on the methodologies we used. Here, first we described
DELPHI [19] and its working principle then we illustrate all the techniques used for improve-
ment.

In Chapter 4, the experimental results obtained from all the methods we use and compare
the performance of the best model from each approach.

In Chapter 5, we summarize our work and present some possible future directions.



Chapter 2

Background

2.1 DNA
In biology, DNA(Deoxyribonucleic acid) [36] is a molecule which is composed of two polynu-
cleotide chains that loop around each other so that, it can form a double helix structure. DNA
carries genetic instructions for several purpose such as development, functioning, growth and
reproduction of any organisms that we know and many viruses. There are four bases that can
be found in any DNA, they are adenine (A), cytosine (C), guanine (G) and thymine (T). These
bases are coupled with the sugar-phosphate that completes the nucleotide formation. The gen-
eral rule states that adenine pairs with thymine and guanine pairs with cytosine to form A-T
and G-C base pairs as shown in Figure 2.1.

Figure 2.1: The structure of DNA
From geneonline.news

Transcription is the process by which the information contained in a DNA is replicated
in the form of messenger RNA (mRNA). In translation, messenger RNA (mRNA) is decoded
outside the nucleus into ribosome, to produce a specific amino acid chain, or polypeptide. The
polypeptide later folds into an active protein and performs its functions in the cell.

3



4 Chapter 2. Background

2.2 Protein

Proteins [36] are another bio-molecules which consist a larger set of amino acids. It has one
or more long chains of amino acid residues also called a polypeptide. Amino acid sequences
are actually gene sequences which are further encoded into genetic code for easier reference.
There are in total 20 amino acids which can be found in a protein and their genetic codes are
described in Table 2.1

Category Amino Acid Three-letter Code One-letter Code

Charged

Arginine Arg R
Lysine Lys K
Aspartic acid Asp D
Glutamic acid Glu E

Polar

Glutamine Gln Q
Asparagine Asn N
Histidine His H
Serine Ser S
Threonine Thr T
Tyrosine Tyr Y
Cysteine Cys C

Amphipathic
Tryptophan Trp W
Tyrosine Tyr Y
Methionine Met M

Hydrophobic

Alanine Ala A
Isoleucine Ile I
Leucine Leu L
Methionine Met M
Phenylalanine Phe F
Valine Val V
Proline Pro P
Glycine Gly G

Table 2.1: The 20 Amino Acids and Their Role in Protein Structures

Proteins usually fold into a unique 3D structure in most cases. There are mainly four
types of protein structures. The primary structure refers to the sequence of amino acids that
forms a polypeptide chain. The secondary structure is formed when the chain is locally folded
into sheets or helices. The tertiary structure is the three-dimensional folding of the helices or
sheets due to side chain interaction. Sometimes, proteins may consist of multiple amino acid
chains and these are more complex structure formations, also called as the quaternary structure.
Figure 2.2 shows different protein structures in detail.



2.3. A FASTA file 5

Figure 2.2: Types of Protein Structure
The primary, secondary, tertiary, and quaternary structure of proteins From microbenotes.com

2.3 A FASTA file
In bioinformtics, a neucleotide sequence or amino acid (protein) sequences can be represented
in a text based format called the FASTA format [36]. Here, nucleotides or amino acids are
represented using single-letter codes. It is a very simple format so that it can be easily parsed or
manipulated using any text processing tools or scripting languages. The first line in a FASTA
file starts with a ”>” (greater-than) symbol, used for a unique description of the sequence.
Following the initial line is the actual sequence itself in standard one-letter character string.
This two line pattern is repeated as necessary.

Figure 2.3: An example of a multiple sequence FASTA file

2.4 Deep Learning in Bioinformatics
Deep Learning [17] is a branch of Machine Learning, it is powerful learning algorithms in-
spired by how the brain works. Traditional computational programs follows handcrafted math-
ematical computations whereas machine learning algorithms actually learn them. This is more



6 Chapter 2. Background

like a transition from algorithm centric approach to data centric approach. The machine learns
these mathematical functions from known samples which can be either labeled(supervised
learning) or unlabeled(unsupervised learning). This learning mechanism is very helpful in
order to solve any prediction problem like classification or regression. Classification is the pro-
cess of identifying a model which helps in separating the data into multiple categorical classes
i.e. discrete values. In regression we try to find a model for measuring the data into continuous
real values instead of using classes or discrete values.

Figure 2.4: An example of Classification vs Regression
From mc.ai

Many bioinformatics problems have been transformed into well defined classification or re-
gression problems. Several biologically relevant prediction tasks have been well defined([29])
to serve as benchmarks in terms of understanding the need of machine learning in bioinformat-
ics as well as the advancement in computational biology. They are as follows:

Secondary Structure Prediction

Secondary structure prediction is a sequence-to-sequence task, where for a given protein se-
quence each input amino acid xi is mapped to a label yi ∈ {Helix, Strand, Other}

The most important feature of secondary structure is it is used for understanding the func-
tion of a protein. It is very helpful for proteins with unknown structure. These prediction tools
are very commonly used to create high quality input features for higher-level models.

Secondary structure prediction tests the degree to which models learn local structure.

Contact Prediction

Contact prediction is a pairwise amino acid task, where for a given sequence x each pair of
input amino acids (xi, x j) is mapped to a label yi j ∈ {0,1} and the label represents whether the
amino acids are in contact or not.
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The major advantage of contact prediction is that contact maps provide powerful global
information i.e. they are very useful in cases like modeling of full 3D protein structure. In
practice, medium or long-range contact maps are most useful but they are not very often found,
may be as few as twelve sequence positions apart, or as many as hundreds apart.

A model can be well interpreted in context of global protein, where medium and long-range
contacts are in higher quantity. This makes contact prediction an ideal task.

Remote Homology Detection

Remote Homology Detection is a sequence classification task where each input protein x is
mapped to a label y ∈ {1,....,1195}. Here, each class represents different possible protein folds.

Detection of remote homologs is of great interest in microbiology and medicine; e.g., for
detection of emerging antibiotic resistant genes and discovery of new CAS enzymes.

In microbiology and medicine, detection of remote homologs is a very important task.
There are several applications such as detection of emerging antibiotic resistant genes, discov-
ery of new CAS enzymes, etc.

Remote homology detection measures a model’s ability to detect structural similarity across
distantly related inputs.

Figure 2.5: Protein Structure and Annotation Tasks.
From [29]

Fluorescence Landscape Prediction

Fluorescence Landscape Prediction is a regression task where each input protein x is mapped
to a label y ∈ R, that corresponds to the fluorescence intensity of the input protein.

For a given protein, the number of possible sequences is O(Lm), where L is the length of
the protein and m is mutations. This is not recommended as it takes large space for exhaustive
search via experiment, even if m is modest. However, this greedy optimization approach is
unlikely to succeed due to second and higher-order interactions between mutations at different
positions. In recent years machine learning methods have already succeeded in protein engi-
neering tasks with more accurate predictions and more efficient exploration of the landscape.

This task is very useful to test how a model can distinguish between very similar inputs,
also the way it generalizes unseen combinations of mutations.

Stability Landscape Prediction

Stability Landscape Prediction is a regression task where each input protein x is mapped to a
label y ∈ R denoting a threshold for measuring the most extreme circumstances in which the
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protein will maintains its fold.
It is very important to ensure stable protein designs, for example, while delivering any

drugs we must know at what temperature it must be preserved. During expensive protein
engineering experiments it is useful to maximize the yield of top candidates by refining the
protein measurements in a large sample set.

This helps to understand a model’s ability to generalize relevant sequences from a broad
sample of proteins and to localize this information in a neighborhood of a few sequences.

Figure 2.6: Protein Engineering Tasks.
From [29]

In conventional machine learning, model performance often depends upon the data repre-
sentations or input features. These features are designed and developed by experts in related
fields depending upon their relevance on a certain task. In recent years deep learning has
emerged due to its parallel computing power and sophisticated algorithms. It has overcome
previous limitations, and academic interest has increased rapidly since the early 2000s [23]

Figure 2.7: Approximate number of published deep learning articles by year
The number of articles is based on the search results on http://www.scopus.com with the two

queries: ‘Deep learning,’ ‘Deep learning’ AND ‘bio*’. [23]
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2.4.1 Basic Notions and Definitions

Deep Neural Networks

A neural network learns complex mathematical functions [17] using its layered architecture.
These functions are often highly non linear due to the network structure. A standard deep
neural network has at least three layers which are: input, output and hidden. The number of
the hidden layers defines the depth of the network and often used to obtain better performance.
The term “deep learning” means many hidden layers.

Figure 2.8: An example of Deep Neural Network
From electronicdesign.com

Activation Functions

The input layer takes the raw data (x(i), y(i)), where x(i) is the feature vector of the ith training
sample and y(i) is the corresponding label. In bioinformatics, embedding, one-hot encoding,
PSSM are most widely used featurization techniques. In NLP, one-hot encoding is a 1 × N
matrix consisting of 0’s in all cells except a single 1 in a cell used to uniquely identify the
word. Each neuron applies a mathematical function hθ, also called hypothesis to obtain some
output. A weight value θ is multiplied with every input before applying the hypothesis function,
with the intuition of weighing it’s importance. These outputs are further passed into non-linear
functions also termed as “activation functions”. The idea here is, if an output surpasses a
certain threshold value then only that neuron will be activated and it will pass the information
to the next neuron. Table 2.2 shows a list of popular activation functions which are used often.

Training and Testing

At the input layer of a deep neural network we assign some weight to each input sample which
refers to its importance, these weights are also applied to each hidden units within the network
using the same principle. In order to achieve a better prediction performance we need to adjust
these weights several times till we find the optimal one. This entire process is called training
in machine learning terminology.
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Function Plot Equation

Sigmoid σ(x) = 1
1+e−x

tanh tanh(x)

ReLU max(0, x)

Leaky ReLU max(0.1x, x)

Table 2.2: A list of activation functions
From towardsdatascience.com

First, we initialize our network with some random weights and measure its performance.
The difference between the predicted value and actual value is called loss. To make our model
perform better we need to minimize this loss function and update the weights in every unit
within the network. We will repeat this process until we find the optimal point. Two of the
most commonly used loss functions are: the mean squared error, shown in the Equation 2.1,
where J(θ) is the cost function, hθ(x(i)) is the hypothesis function, y(i) is the ground truth labels
and n is the number of training samples, and the cross-entropy error; see Equation 2.2

J(θ) =
1
n

n∑
i=1

(hθ(x(i)) − y(i))2 (2.1)

J(θ) =

n∑
i=1

y(i)log(hθ(x(i))) + (1 − y(i))log(1 − hθ(x(i))) (2.2)

Gradient descent is the most commonly used algorithm for loss optimization, where we
update the current weight θi by subtracting from it the gradient of the cost function times the
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learning rate α in each step, as shown in Equation 2.3

θi = θi − α
δ

δθi
J(θ) (2.3)

Figure 2.9 shows how gradient descent works in a 2 dimensional space. Here, we start with
some θ0, θ1 and keep changing it using the above mentioned formula to reduce J(θ0, θ1) until
we hopefully end up at a minimum.

Figure 2.9: Gradient Descent in 2D space
From towardsdatascience.com

Once we optimized the loss function and set the weights in our network, the model is ready
to perform prediction tasks. In prediction, we test some new data samples which our model has
not seen before to know how well our model is performing. It is often observed that the testing
loss is higher than the training loss for some obvious reason, i.e. the test samples are new and
the model weights are not adjusted based on that. In the end the lower the test loss better the
model performance.

In machine learning there are ways to understand how well our model fits the data, the two
main parameters are called bias and variance which is useful for this purpose. In overfitting
the training loss is much lower than the test loss and this happens due to high variance, on the
other hand in underfitting the model does not perform during training itself which also results
a bad testing performance because of high bias. A good fit is observed only when both the bias
and variance are moderate. See Figure 2.10 for illustration.

Figure 2.10: Bias Variance tradeoff

From towardsdatascience.com



12 Chapter 2. Background

2.4.2 Convolutional Neural Network
In deep learning convolutional neural network (CNN) is one of the most widely neural network
architectures in recent decades. The network employs a mathematical operation called convo-
lution which is a specialized kind of linear operation. In computer vision most of the recent
advancements are based on this principle. The first CNN was built in 1998 called LeNet [18]
for handwritten digit classification. Now, with the progress of time there are several other
major CNN architectures like VGG-16 [31] GooLeNet [32] ResNet [12] and AlexNet [16]
considered as the state-of-the-art. The main components of a CNN are convolutional layer,
pooling layer and fully connected layer as shown in Figure 2.11; their details are discussed in
the later section.

Figure 2.11: The main components of a Convolutional Neural Network
From researchgate.net

Convolution Layer

This is the most important layer in a CNN model which performs a linear mathematical opera-
tion. In this process a kernel or filter of fixed size is being traversed over an input image like a
sliding window, doing an element-wise multiplication with the input image in each stride and
resulting an output image as shown in Figure 2.12. The main purpose of this is to extract use-
ful features from the input image. The pixels on the edges are used less than the pixels in the
middle of the image results shrinking output, which can be avoided using boundary padding.

Figure 2.12: The computation mechanism of a convolution operation
From medium.com
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Pooling Layer

The next important layer in a CNN model is pooling layer which is often lead by a convo-
lutional layer. This is responsible for reducing the extracted features from the previous layer
keeping the dominant features that are required to represent the original image. Pooling oper-
ation is mainly of two types, in max pooling the maximum value is pooled from the portion of
the image and in average pooling the average value is captured from the portion. Figure 2.13
shows how the pooling operation works.

Figure 2.13: A detailed mechanism of pooling layer
From researchgate.net

Fully Connected Layer

This is usually the last layer of a convolutional neural network which transforms the result
obtained from the previous layers into fewer values. The term “fully connected” means each
node of this layer is connected to all the nodes of its previous layer by doing a weighted sum
of all the input. Each node computes a mathematical function shown in Equation 2.4 where
hθ(x) is the hypothesis on the given input x, θT and b are the weight and bias term. Figure 2.14
shows a network design with many fully connected layers.

hθ(x) = θT x + b (2.4)

Figure 2.14: An illustration of the fully connected layer
From javatpoint.com
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2.4.3 Recurrent Neural Network

Another invention in deep learning is recurrent neural network(RNN), mainly used for mod-
elling sequential data. In recent years most of the natural language processing(NLP) applica-
tions use this architecture. A standard RNN is designed as a sequence of blocks also called
“timestamps”, where each block takes a certain chunk from an input sequence. Several featur-
ization techniques like one hot encoding, embeddings are used to vectorize the input of a RNN.
In this network architecture the hidden states are stacked on top of each other and combining
it all together forms the complete network. Figure 2.15 shows the detailed design of a RNN.

Figure 2.15: The basics of recurrent neural network
From datascience-enthusiast.com

Each RNN cell takes the input x<t> for it’s tth position and the output a<t−1> from its previous
cell. Both the input parameters are multiplied with some weight which is learned during the
training process. The output a<t> and ŷ<t> are produced by Equation 2.5 and Equation 2.6. The
softmax function takes a vector of n real numbers as input, and normalizes it into a probability
distribution consisting of n probabilities, proportional to the exponentials of the input numbers.

a<t> = tanh(Waxx<t> + Waaa<t−1> + ba) (2.5)

ŷ<t> = so f tmax(Wyaa<t> + by) (2.6)

LSTM and GRU

The main challenge with a recurrent neural network is vanishing gradient. During back propa-
gation, each node in a certain layer computes their gradient with respect to the previous layer
and as a result it becomes much smaller such that it is treated as vanished. To overcome this
problem long short term memory(LSTM) [14] and gated recurrent unit(GRU) [6] have been
introduced by replacing a standard RNN cell. The main components of LSTM are input gate,
output gate, forget gate and a cell state whereas in GRU update gate and reset gate serves the
purpose of memorization. These gates also include activation functions which decide whether
to remember a certain input or not. For illustration of LSTM and GRU please see Figure 2.16
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Figure 2.16: A single LSTM and GRU unit
From towardsdatascience.com

2.4.4 Tensorflow and Keras
TensorFlow [33] is an end-to-end open source platform for machine learning. It has a com-
prehensive, flexible ecosystem of tools, libraries and community resources that lets researchers
push the state-of-the-art in ML and developers easily build and deploy ML powered applica-
tions.

Keras [36] is an open-source library that provides a Python interface for artificial neural
networks. Keras acts as an interface for the TensorFlow library. Keras contains numerous
implementations of commonly used neural-network building blocks such as layers, objectives,
activation functions, optimizers, and a host of tools to make working with image and text data
easier to simplify the coding necessary for writing deep neural network code. A list of popular
keras function is shown in Table 2.3

Operation Syntax for implementation
Training model.fit(x = input data, y = labels, epochs = 10, ...)
Prediction model.predict(x = input data, ...)
Convolution keras.layers.Conv2D(filters, kernel size, ...)
Max Pooling keras.layers.MaxPooling2D(pool size = (2, 2), ...)
Average Pooling keras.layers.AveragePooling2D(pool size = (2, 2), ...)
Fully Connected Layer keras.layers.Dense(units = 1, activation = ‘sigmoid’, ...)
LSTM keras.layers.LSTM(units = 32, activation = ‘tanh’, ...)
GRU keras.layers.GRU(units = 32, activation = ‘tanh’, ...)

Table 2.3: A list of Keras functions
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2.5 Protein Binding Site Prediction
Proteins often perform their functions by interacting with other proteins. During this process
they bind with each other and those bonding amino acid residues are protein-protein interaction
binding sites. Many biological problems such as understanding cell regulatory mechanisms,
locating drug targets, predicting protein functions are dependent on the accurate detection of
PPI binding sites. There are many industries working on this area of research to accelerate
their drug design process. The protein data bank (PDB) stores information of protein binding
sites derived from several 3D protein structures but they are limited. Over the past decades
many researchers have attempted to solve this prediction problem but the performance is still
far from satisfactory.

In our work we focus on sequence based method, where the program is trained with pri-
mary sequences stored in FASTA format as shown in Figure 2.17(left) along with its binding
site information (0,1) where 1 indicates binding sites and 0 means non-binding sites for the
corresponding location. These binding sites are same as the red circles marked on the right,
assuming that the protein interacts with another protein. Our program will predict the binding
sites for any new protein sequence.

Figure 2.17: Illustration of the input and output in the protein-protein interaction binding sites
prediction task. From customequinenutrition.com

In recent years machine learning made major contributions in PPI binding site prediction,
and in other bioinformatics problems. Before these computational methods were developed
experimental methods were used which was time consuming and expensive. In this section
we will first talk about one algorithmic based program and then will come into recent ma-
chine learning solutions for predicting binding sites. It has been observed that at many of the
research uses position-specific scoring matrix (PSSM), evolutionary conservation (ECO), pu-
tative relative solvent accessibility (RSA) [41], high-scoring segment pair (HSP) [20], one-hot
encoding [38] or embedding [2] as feature group to represent a protein sequence. There are
several learning structures like random forest, support vector machine [35], logistic regres-
sion [40] or neural network [38] that have been used to solve PPI binding sites classification
problem.
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2.5.1 PIPE-sites

PIPE-sites [1] is a tool for paired residue prediction, where it predicts the binding sites of
a protein with another given protein. This program is based on the PPI prediction program
PIPE [27] and also called a partner-specific sites predictor. The input to this program is the
protein sequence and it’s known interactions. The program follows a walk algorithm which is
shown in Figure 2.18. First it generates a scoring matrix for each protein pair using the PIPE
algorithm, and finds the peak location within that matrix. Next it extends from the peak towards
all four directions until the value drops below a predefined threshold, also called percent peak.
Finally, all the residues within the window are considered as binding sites. For multiple peaks
the program will generate a ranked list of potential binding sites.

Figure 2.18: The walk algorithm of PIPE-Sites
From [1]

2.5.2 DLPred

One of the major machine learning based protein binding site prediction programs in recent
years is DLPred [39]. The main architecture includes LSTM which are simplified by the au-
thors for better time complexity and fully connected layers. In this program PSSM, physical
properties, hydropathy index, physio-chemical characteristics, conservation scores and one-hot
encoding is used as the input feature group. During training process it also uses a filter which
picks up the sequences with high binding residue percentage helping the program to perform
better with imbalanced datasets. The architecture of this program is shown in Figure 2.19
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Figure 2.19: The architecture of DLPred
From [39]

2.5.3 SCRIBER

SCRIBER [40] is another top program which uses putative relative solvent accessibility (RSA),
evolutionary conservation (ECO), relative amino acid propensity (RAAP), selected relevant
physiochemical properties, putative secondary structure (SS) as the feature group. The main
layer of this model uses a simple logistic regression which is trained on five different tasks
they are: DNA-binding, RNA-binding, ligand-binding, other-binding and protein-binding. In
the next layer the output of these five are combined together to make the final prediction of
protein-protein binding sites. The complete architecture is provided in Figure 2.20

Figure 2.20: The architecture of SCRIBER
From [40]
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2.5.4 DeepPPISP
Another famous ML based approach to predict PPI binding sites in recent years is DeepP-
PISP [38]. This also uses secondary structure information. The architecture shown in Fig-
ure 2.21 includes a Text CNN, a variation of convolution layer used for feature extraction and
fully connected layer for predicting binding residues.

The interesting fact about this program is it uses both local and global information. For each
amino acid in the protein sequence, local information is the neighbouring 7 amino acids and
global information consist of 500 neighbouring residues, which has been chosen empirically
and shown that it helps the prediction largely.

In this program one hot encoding, PSSM and secondary structure information are combined
together as input feature. The local features simply consist of the input features and in global
features the input vectors are further passed to a Text-CNN layer to extract information and
finally both local and global information are combined together to make the final prediction.

Figure 2.21: The architecture of DeepPPISP
From [38]
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Methodology

In this chapter we present our techniques for improving the prediction of binding sites of a pro-
tein sequence. Our main work focuses on several techniques we applied on top of the currently
best program DELPHI [19] aiming for improvement. So, first we will describe DELPHI in
detail and then move on to our improvements.

3.1 DELPHI

Protein-protein interaction and binding site prediction is one of the key problems in bioinfor-
matics which has been explored by many researchers in the last few years. In machine learning
perspective it can be defined as a classification problem where each amino acid in a protein
sequence comes under two classes i.e binding and non-binding. DELPHI is a neural network
based model which outperforms the state-of-the-art methods for binding sites prediction. The
most interesting fact about the DELPHI architecture is that it uses ensemble learning which is
a combination of multiple classifiers(in this case CNN and RNN) for prediction. In the real
world most of the protein binding datasets are imbalanced as the binding residue percentage
is much lower than non-binding residues so, this can also be called as an imbalanced dataset
problem.

3.1.1 Data Preparation

Datasets are one of the most important parts of any machine learning problem and there are
many efficient ways to prepare this. Data can be found in many formats such as text, images or
other raw formats. In order to feed them into a machine they need to be transformed in certain
manner. It is often very likely that machines will not understand raw formatted data, and one
common technique used for this purpose is featurization.

In this problem we use fasta format data to represent each protein sequence, a discussion
on this specific format has already been done in the previous chapter. DELPHI accepts multi
sequence fasta format for its input, where each proteins has three lines of information, they are:
protein ID, protein sequence and known interactions(1: interacting; 0: non-interacting).

20
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3.1.2 Features
DELPHI uses 12 feature groups to represent each amino acid within a protein sequence, a
list of which is shown in Table 3.1. Features are the most powerful tool in any data mod-
eling problem, a good feature can easily improve the performance of a model. Keeping this
in mind DELPHI introduces three new features high-scoring segment pair (HSP) [20], 3-mer
amino acid embedding(ProtVec1D) [2] and position information which was never used before
in binding site prediction problems. The rest 9 features have already been used by other re-
searchers in similar problems. In DELPHI we compute all 12 features having a total dimension
of size 39 for each amino acid within a protein sequence. So, a protein of length L will have a
L × 39 shape 2D matrix as a input sample. A brief definition of each feature is as follows:

Feature Program Dimension
High-scoring segment pair (HSP) SPRINT and compute 1

3-mer amino acid embedding (ProtVec1D) Load and compute 1
Position information Compute 1

Position-specific scoring matrix (PSSM) Psi-Blast 20
Evolutionary conservation (ECO) Hhblits 1

Putative relative solvent accessibility (RSA) ASAquick 1
Relative amino acid propensity (RAA) Load 1

Putative protein-binding disorder ANCHOR 1
Hydropathy index Load 1

Physicochemical characteristics Load 3
Physical properties Load 7

PKx Load 1

Table 3.1: The feature groups used by DELPHI
From [19]

HSP(High Scoring Pair) is a pair of similar sub-sequences between two proteins. The sim-
ilarities between two sub-sequences of the same length are measured by scoring matrices such
as PAM and BLOSUM. SPRINT [20] is used for computing all HSPs as it detects similarities
fast and accurately among all proteins in training and testing.

ProtVec is a feature developed based on [2]. It uses word2vec [22] to construct a one
hundred dimensional embedding for each amino acid 3-mer; we discuss word embeddings
in the next section. ProtVec can be applied to problems such as protein family classification,
protein visualization, structure prediction, disordered protein identification, and protein-protein
interaction prediction.

Position information is shown to be useful in natural language processing tasks. The posi-
tion information of each amino acid is used as an input feature hoping that it provides certain
global information of a protein. The position of an amino acid in a protein is in the range of 1
to the length of the protein. Then the position is divided by protein’s length so that the value is
between 0 to 1.

PSSM (Position Specific Scoring Matrices) are widely used in protein interaction related
problems. They contain the evolutionary conservation of each amino acid position by aligning
an input sequence with protein databases. Each row of a PSSM represents an amino acid
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symbol and each column represents a position in the sequence. In order to construct a PSSM
first we need to create a Position Frequency Matrix (PFM), counting the occurrences of each
nucleotide at each position. For example, given the following DNA sequences:

GAGGTAAAC

TCCGTAAGT

CAGGTTGGA

ACAGTCAGT

TAGGTCATT

TAGGTACTG

ATGGTAACT

CAGGTATAC

TGTGTGAGT

AAGGTAAGT

The corresponding PFM is:

M =

A
C
G
T


3 6 1 0 0 6 7 2 1
2 2 1 0 0 2 1 1 2
1 1 7 10 0 1 1 5 1
4 1 1 0 10 1 1 2 6


Next, we need to compute a Position Probability Matrix (PPM) by dividing the nucleotide
count at each position of the PFM by the number of sequences. Given a set X of N aligned
sequences of length l, the elements of the PPM are calculated as:

Mk, j =
1
N

N∑
i=1

Xi, j

Where i ∈ (1, ...,N), j ∈ (1, ..., l) and k is the set of amino acids. Therefore, the resulting PPM
is:

M =

A
C
G
T


0.3 0.6 0.1 0.0 0.0 0.6 0.7 0.2 0.1
0.2 0.2 0.1 0.0 0.0 0.2 0.1 0.1 0.2
0.1 0.1 0.7 1.0 0.0 0.1 0.1 0.5 0.1
0.4 0.1 0.1 0.0 1.0 0.1 0.1 0.2 0.6


The elements in PSSMs are calculated as log likelihoods using a background model b, where
bk = 1/|k| i.e. the elements of a PPM are transformed as:

Mk, j = log2(Mk, j/bk)

Applying this transformation to the above PPM produces the PSSM:

M =

A
C
G
T


0.26 1.26 −1.32 −∞ −∞ 1.26 1.49 −0.32 −1.32
−0.32 −0.32 −1.32 −∞ −∞ −0.32 −1.32 −1.32 −0.32
−1.32 −1.32 1.49 2.0 −∞ −1.32 −1.32 1.0 −1.32
0.68 −1.32 −1.32 −∞ 2.0 −1.32 −1.32 −0.32 1.26
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ECO also contains evolutionary conservation, but in a more compact way. To compute
this score, the faster multiple alignment tool HHBlits [30] is run against the non-redundant
Uniprot20 database with default parameters.

Putative relative solvent accessibility(RSA) is predicted using ASAquick [11]. The values
are obtained in the from rasaq.pred file in each output directory.

Relative amino acid propensity(RAA) for binding is quantified as relative difference in
abundance of a given amino acid type between binding residues and the corresponding non-
binding residues located on the protein surface.

The putative protein-binding disorder is computed using the ANCHOR program [10].
Hydrophobicity scales is experimentally determined transfer free energies for each amino

acid. It contains energetic information of protein bi-layer interactions [37].
Physicochemical characteristics includes three features for each protein: the number of

atoms, electrostatic charges and potential hydrogen bonds for each amino acid.
Physical properties are a 7-dimensional property of each amino acid type is used. They

are a steric parameter (graph-shape index), polarizability, volume (normalized van der Waals
volume), hydrophobicity, isoelectric point, helix probability and sheet probability.

PKx is the negative of the logarithm of the dissociation constant for any other group in the
molecule.

3.1.3 Feature Normalization
After computing all the feature vectors, the values in in each row vector are normalized to a
number between 0 to 1 using Equation 3.1 where v is the original feature value, and max and
min are the biggest and smallest value observed in the training dataset, respectively. This is to
ensure each feature group are of the same numeric scale and help the model converge better.

vnorm =
v − min

max − min
(3.1)

3.1.4 Model Architecture
The architecture of DELPHI is inspired by ensemble learning. The intuition behind this is by
training different classifier the model will learn different information and finally combining it
together helps it to perform better. DELPHI uses a CNN based classifier and a RNN based
classifier placed in parallel and their output layer is combined to obtain the final prediction. At
the input layer a sliding window is being used to capture the input window of each amino acid
for a protein sequence. The window will slide until the end of that sequence keeping the centre
element as the pointed amino acid. In DELPHI a window size of 31 is chosen for this purpose
experimentally which results a 31 × 39 size input feature vector for each amino acid. This
mechanism is shown in Figure 3.1. The CNN and the RNN module has several components
and certain training parameters, which is discussed in the next section.
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Figure 3.1: The input mechanism of DELPHI
From [19]

The CNN module

The CNN module of DELPHI is made of 4 consecutive layers. At first, the input matrix is
passed to a convolution layer with a filter of size 5 × 5 having a stride of 1 with valid padding.
Then a max pooling is done on top of that, the output of which is flatten and then passed to a
fully connected layer made of 64 neurons with dropout. This model is trained for 8 epochs on
the entire training data with a batch size of 1024; see Figure 3.2

Figure 3.2: Detailed design of the CNN module
From [19]
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The RNN module

The RNN module of DELPHI is build using three layers. Each input vector is passed to a
bidirectional GRU layer which is made of 32 hidden units in each direction. So, in total the
bidirectional layer has 32×2 = 64 hidden units. The output from that is flatten first then passed
on to a fully connected layer with 64 neurons. This model is trained for 9 epochs with the same
batch size used for CNN module; see Figure 3.3

Figure 3.3: Detailed design of the RNN module
From [19]

The Ensemble network

As discussed earlier the ensemble network used in DELPHI is the combination of both the
CNN and RNN modules. The interesting fact is that the CNN and RNN modules are trained
separately and saved their weight. After the first phase is done we load these weights in the
ensemble network and only train the last fully connected layer which combines both modules.
Experimentally it has been found that this approach performs better than an end-to-end training
of the ensemble model. The fully connected layer is made of 96 neurons in total. During
training we used only 5 epochs to train this model which was decided using early stopping; see
Figure 3.4 for an illustration of the ensemble model.
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Figure 3.4: An illustration of the ensemble network
From [19]

3.1.5 Parameters and Hyper-parameters
The parameters used in DELPHI are already discussed in the last section such as number of
epochs, kernel size, hidden unit size etc. These are chosen in order to maximize the area under
precision-recall curve (AUPRC) of the training data. The total training time for DELPHI is 4-8
hours depending on the machine configuration.

There are several hyper-parameters like batch size, learning rate, etc. used in DELPHI,
which are described in Table 3.2

Hyper-parameter Value
Batch Size 1024

Dropout Rate 0.3
Optimizer Adam (β1 = 0.9, β2 = 0.999)

Patience in early stop 4
Loss Function Binary Cross-entropy
Learning Rate 0.002

Table 3.2: The hyper-parameters used in DELPHI
From [19]
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3.2 Methods for Improvement
In this section we will talk about the methods we use to improve the prediction performance of
DELPHI. The primary target was to replace the existing protein embedding ProtVec with some
pre-trained contextual embedding in order to get more accurate predictions. Embeddings are
one of the most powerful techniques used in NLP, it vectorizes a word into a feature space. In
ProtVec they uses word2vec [22] which is context independent, whereas in our new approach
we introduced several ideas of contextual embeddings [26] [8] [21]. Later, we also tried some
latest NLP techniques such as self-attention and positional encoding [34]. A detailed discussion
on all these methods are presented next.

3.2.1 Word2Vec
Since words are interpreted as indices in a vocabulary, many existing NLP systems and tech-
niques regard them as atomic units. Simple models that are trained on a large amount of data
outperform complex systems that are trained on a smaller amount of data, such as the N-gram
model. Many functions, such as automatic speech recognition (which is controlled by the
size of high-quality transcribed speech data), and machine translation (the existing corpora for
many languages contain only a few billions of words or less), are beyond the capabilities of
simple techniques. With the development of machine learning techniques in recent years, neu-
ral network-based language models have made it possible to train more complex models on
much larger data sets.

Word2Vec [22] describes strategies for extracting high-quality word vectors from large data
sets. Not only would identical terms appear to be close to each other in vector representations,
but they will also have several degrees of similarity. Word representations are similar in more
ways than just syntactic regularities. e.g. vector(“King”) - vector(“Man”) + vector(“Woman”)
results closest to vector(“Queen”).

Model Architecture

Most NLP researchers uses Latent Semantic Analysis (LSA) [7] and Latent Dirichlet Allo-
cation (LDA) [5] for estimating continuous representations of words. Because of its recent
advancement, the main focus of word2vec was on distributed representations of words learned
by neural networks. Equation 3.2 defines the training complexity of this technique, where E
denotes the number of training epochs, T denotes the number of words in the training set, and
Q is defined further for each model architecture. Back-propagation and stochastic gradient
descent are used to train all models.

O = E × T × Q (3.2)

Feedforward Neural Net Language Model (NNLM)

The first probabilistic feed-forward neural network language model, consisting of an input
layer, a projection layer, a hidden layer, and output layers, was demonstrated in [4]. N previous
words are encoded using one-hot encoding at the input layer, then projected using a shared
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projection matrix to a projection layer P with dimensionality N × D. Since the values in the
projection layer are dense, this method is a little more difficult to compute. Equation 3.3 shows
the computational complexity for each training example where H and V are the hidden layer
and vocabulary size. The number of output units that must be evaluated can be reduced to
about log2(V) with binary tree representations of the vocabulary.

Q = N × D + N × D × H + H × V (3.3)

The detailed architecture of this probabilistic language model is shown in Figure 3.5

Figure 3.5: The architecture of neural probabilistic language model
From [4]

New Log-linear Models

Two new log-linear model ideas were presented in [22]. They are the continuous bag-of-words
(CBOW) and skipgram models, respectively. The CBOW model is similar to the feed-forward
NNLM in that the non-linear hidden layer is removed and the projection layer for all words is
shared, resulting in all words being projected into the same location. Since the order of words
in the background has no impact on the projection, this architecture is known as the continuous
bag-of-words model. Equation 3.4 shows the training complexity for this.

Q = N × D + D × log2(V) (3.4)
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Instead of predicting the current word based on context, the Continuous Skipgram Model
seeks to optimise classification of a word based on another word in the same sentence. It
predicts words within a certain range before and after the current word, using each current
word as an input to a log-linear classifier with continuous projection layer. Equation 3.5 shows
the training complexity of this architecture, where C is the maximum word distance.

Q = C × (D + D × log2(V)) (3.5)

An illustration of CBOW and skip-gram is shown in Figure 3.6

Figure 3.6: The architecture of CBOW and skip-gram model
The CBOW architecture predicts the current word based on the context, and the Skip-gram

predicts surrounding words given the current word. From [22]

3.2.2 ProtVec

In this section we will discuss in detail about ProtVec [2] one of the most important features
used in DELPHI for the first time in any protein binding site prediction problem according to
the best of our knowledge. This is a new approach for representing biological sequences in
bioinformatics applications such as family classification, protein visualisation, structure pre-
diction, etc.

ProtVec uses word2vec, which was, at the time, state-of-the-art for training word vector
representations. To train the embedding vectors it considers a vector of size 100 and a context
of size 25. The training data is prepared from Swiss-Prot which is a rich protein database,
using the simplest and most common technique involving fixed length overlapping n-grams.
This generates 3 lists of shifted non-overlapping words, as shown in Figure 3.7, each 3-gram
(a “biological” word) is presented as a vector of size 100.
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Figure 3.7: Training data for ProtVec
From [2]

3.2.3 ELMo

ELMo [26] is a contextualized word embedding that depends on the entire input sentence,
unlike word2vec which is context independent. The model architecture consists of two-layer
bidirectional language models (biLMs) with character convolutions. It allows to perform semi-
supervised learning where, the biLM is pre-trained on a large dataset first, and then fine-tuned
on variety of NLP tasks.

For a sequence of N tokens, (t1, t2, ..., tN) a forward language model computes the probabil-
ity of the sequence by modelling the probability of token tk given the history (t1, ..., tk−1) as in
Equation 3.6

p(t1, t2, ..., tN) =

N∏
k=1

p(tk|t1, t2, ..., tk−1) (3.6)

Before ELMo, most of the recent language models compute a fixed context-independent
token representation xLM

k and projects it to a L layer forward LSTM. Each LSTM layer gener-

ates a context-dependent representation
−→
h LM

k, j where j = 1, ..., L for every position k. The next
token tk+1 is predicted based on the final layer LSTM output, passed through a softmax layer.
Similarly, for a backward language model the sequence is processed in reverse. This predicts
the previous token given the future context; see Equation 3.7

p(t1, t2, ..., tN) =

N∏
k=1

p(tk|tk+1, tk+2, ..., tN) (3.7)

A backward LSTM can be implemented with a layer j in a L layer deep model producing
representations

←−
h LM

k, j of tk given (tk+1, ..., tN). A bidirectional language model combines both a
forward and backward LM. This formula jointly maximizes the loglikelihood of the forward
and backward directions with parameters for both the token representation and softmax layer.
It also uses separate parameters for the LSTMs in each direction; see Equation 3.8
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n∑
k=1

(log p(tk|t1, ...tk−1; θx,
−→
θ LS T M, θs) + log p(tk|tk+1, ...tN; θx,

←−
θ LS T M, θs)) (3.8)

ELMo is a task specific combination of the intermediate layer representations in the biLM.
A L-layer biLM computes a set of 2L + 1 representations for each token tk, shown in Equa-
tion 3.9

Rk = {xLM
k ,
−→
h LM

k, j ,
←−
h LM

k, j | j = 1, ..., L} = {hLM
k, j | j = 0, ..., L} (3.9)

Where the token layer is hLM
k,0 and each biLSTM layer is defined as hLM

k, j = [
−→
h LM

k, j ;
←−
h LM

k, j ]. ELMo
combines all layers in R into a single vector, to include it into downstream model, where
ELMok = E(Rk; θe). In the simplest case, ELMo just selects the top layer, E(Rk) = hLM

k,L . More
generally, it computes a task specific weighting of all biLM layers: ELMotask

k = E(Rk; θtask) =

γtask∑L
j=0 stask

j hLM
k, j , here stask are softmax-normalized weights, γtask is a scalar parameter that

allows the task model to scale the entire ELMo vector, γ helps in the optimization process.
Since the activation of each biLM layer have a different distribution, in some cases it also
useful to apply normalization to each biLM layer before weighting.

3.2.4 SeqVec

SeqVec [13] is a novel embedding of protein sequences derived from large, unlabeled sequence
data with bi-directional language model ELMo. The hidden states of the forward and backward
pass of each LSTM-layer are concatenated to a 1024-dimensional embedding vector summa-
rizing information from the left and the right context. This has the advantage that two identical
words can have different embeddings, depending on the words surrounding them.

The architecture of SeqVec is shown in Figure 3.8 and it says that, an input sequence is
padded with special tokens first, then character convolutions map each word onto a fixed-
length latent space. The bidirectional Long Short Term Memory introduces context-specific
information by processing the sentence sequentially. The second LSTM-layer tries to predict
the next word given all previous words in a sentence.

Figure 3.8: The model architecture of SeqVec
From [13]
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3.2.5 BERT

Bidirectional Encoder Representations from Transformers (BERT) [8] is a new language rep-
resentation model. Before BERT, there were two existing strategies for applying pre-trained
language representations to downstream tasks they are, feature-based(ELMo) [26] which uses
task-specific architectures and fine-tuning(GPT) [28] introduces minimal task-specific param-
eters. The major limitation is that standard language models are unidirectional, and this limits
the choice of architectures that can be used during pre-training. BERT alleviates the pre-
viously mentioned unidirectionality constraint by using a “masked language model” (MLM)
pre-training objective, which enables the representation to fuse the left and the right context.
During pre-training, the model is trained on unlabelled data over different pre-training tasks.
For fine-tuning, the BERT model is first initialized with the pre-trained parameters, and all
of the parameters are fine-tuned using labelled data from the downstream tasks. The overall
pre-training and fine-tuning procedure of BERT is shown in Figure 3.9

Figure 3.9: The overall pre-training and fine-tuning procedure of BERT
From [8]

Model Architecture

The model architecture of BERT is a multi-layer bidirectional Transformer encoder, which
is based on the original implementation described in [34] and released in the tensor2tensor
library. The number of layers (i.e., Transformer blocks) is denoted by L, the hidden size as H,
and the number of self-attention heads as A. See Equation 3.10 and Equation 3.11

BERTBAS E(L = 12,H = 768, A = 12,TotalParameters = 110M) (3.10)

BERTLARGE(L = 24,H = 1024, A = 16,TotalParameters = 340M) (3.11)

In the literature the bidirectional Transformer is often referred to as a “Transformer en-
coder” while the left-context-only version is referred to as a “Transformer decoder” since it
can be used for text generation.
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Input-Output Representations

BERT can handle a variety of down-stream tasks for which the input representation is both
single sentence and a pair of sentences (e.g. Question, Answer) in one token sequence. A
“sentence” can be an arbitrary span of contiguous text whereas a “sequence” may be a single
sentence or two sentences packed together. It uses word-piece embedding [15] with a 30,000
token vocabulary. The first token of every sequence is always a special classification token
([CLS]) used as the aggregate sequence representation for classification tasks. A sentence pair
(A,B) is packed into a single sequence separated with a special token ([SEP]) and a learned
embedding is added to every token indicating whether it belongs to sentence A or sentence B.
The notation for input embedding is E, the final hidden vector of the special [CLS] token is
C ∈ RH and and the final hidden vector for the ith input token is Ti ∈ RH. For the illustration of
input-output representation; see Figure 3.10

Figure 3.10: An illustration for the input-output representation of BERT
From [8]

Pre-training and Fine-tuning

The pre-training of BERT includes two unsupervised tasks they are masked language model
(MLM) and next sentence prediction (NSP). The MLM is a bidirectional conditioning that
allows each word to indirectly “see itself”, and the model could trivially predict the target
word in a multi-layered context. First it masks 15% of all word-piece tokens in each sequence
at random, the final hidden vectors corresponding to the mask tokens are fed into an output
softmax over the vocabulary, as in a standard LM. Next, each token Ti is used to predict the
original token with cross entropy loss. In NSP, to train a model that understands sentence
relationships, a binarized next sentence prediction task is used for pre-training that can be
trivially generated from any monolingual corpus.

In fine-tuning, for each task we simply plug in the task specific inputs and outputs into
BERT and finetune all the parameters end-to-end. At the input, sentence A and sentence B
from pre-training are analogous to sentence pairs in paraphrasing, hypothesis-premise pairs in
entailment or question-passage pairs in question answering. At the output, the token represen-
tations are fed into an output layer for token level tasks. The [CLS] representation is fed into
an output layer for classification.
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3.2.6 Pre-training and Feature Extraction for Proteins

In our method we introduced a new protein embedding which is obtained from a pre-trained
model of BERT. As per the present implementation of DELPHI which uses 1D ProtVec for
each amino acid in a protein sequence, our pre-trained BERT model also learns the embedding
for each 1-mer. The pre-training dataset we used here is an updated version of the Swiss-
Prot database which was used in ProtVec. First, we split each protein sequence into 1-mer
representation by adding a space between each amino acid. This way each protein sequence
is considered as a sentence and each amino acid is considered as a word within that sentence
which further fed into the BERT model. The input representation is shown in Figure 3.11

Figure 3.11: The input representation of BERT for Proteins

The pre-training takes almost 8-10 hours on 5M protein sequences in a GPU machine with
64GB of memory in our SHARCNET cluster. The output result of this is reported in Fig-
ure 3.12

Figure 3.12: The evaluation of pre-training BERT on Swiss-Prot dataset

Feature Extraction

In certain cases, rather than fine-tuning the entire pre-trained model end-to-end, it can be ben-
eficial to obtain pre-trained contextual embeddings, which are fixed contextual representations
of each input token generated from the hidden layers of the pre-trained model. These vectors
can be captured from each hidden layer in the model, in our purposes we only consider the last
layer. Since the embedding dimension is 768 and we will be using only 1D features, we simply
add all of them into 1 dimension. They are further normalized using the same principle used
in DELPHI given in Equation 3.1. The original implementation of BERT produce a javascript
object notation (json) formatted file to store all the embedding vectors. In our case, we had to
process it further in order to compute the embeddings in our desired format.
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Parameters and Hyper-Parameters

The parameters and hyper-parameters used in pre-training is defined inside “bert config.json”
file. A list of these attributes are provided in Table 3.3

Parameter Value
Attention dropout probability 0.1
Hidden activation gelu
Hidden dropout probability 0.1
Hidden size 768
Initializer range 0.02
Intermediate size 3072
Maximum position embedding 2048
Number of attention head 12
Number of hidden layers 4
Type vocab size 2
Vocab size 30

Table 3.3: The parameters and hyper-parameters used in pre-training

The hidden size defines the dimension of the embedding vector that will be produced by
BERT and the maximum position embedding is used to specify the highest length of the se-
quence the model will see during training and inference.

3.2.7 RoBERTa
BERT was found to be substantially under-trained, and a new recipe for training BERT models
named RoBERTa [21], was proposed, which can equal or even outperform all of the post-BERT
methods. The goal was achieved by training the model for longer periods of time with larger
batches of data, eliminating the next sentence prediction target, training on longer sequences,
and dynamically modifying the masking pattern applied to the training data.

BERT works by masking and predicting tokens at random. Masking was done only once
during data pre-processing in the original BERT implementation, resulting in a single static
mask. To avoid using the same mask for each training instance in each epoch, training data
was duplicated 10 times, resulting in each sequence being masked in 10 different ways over
the 40 training epochs.

In the BERT pre-training process, the model is trained to predict if the observed document
segments come from the same or different documents using Next Sentence Prediction (NSP)
loss, in addition to the masked language modelling objective. Whereas, it has been observed
that training without the NSP loss and training with blocks of text from a single document out-
performs the originally published BERTBAS E results and that removing the NSP loss matches
or slightly improves downstream task performance.

Previous work in Neural Machine Translation has shown, when the learning rate is in-
creased appropriately, training with very large mini-batches will boost both optimization speed
and end-task efficiency. This technique improves the accuracy for the masked language mod-
elling objective.
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Byte-Pair Encoding (BPE) is a combination of character and word-level representations
that enables natural language corpora to handle broad vocabularies. BPE uses subword units
instead of complete words, which are derived by statistical analysis of the training corpus.
Instead of the 30K character-level BPE vocabulary used in the original BERT implementation,
a larger byte-level BPE vocabulary with 50K subword units is trained here.

3.2.8 PRoBERTa

A Transformer neural network, which is called Protein RoBERTa (PRoBERTa [25]), to pre-
train task-agnostic vector representations of amino acid sequences. Then fine-tune these rep-
resentations towards two protein prediction tasks: protein family classification and binary PPI
prediction.

The architecture of PRoBERTa is inspired from BERT which consists of an embedding
layer, followed by stacked Transformer encoder layers, and a final layer which constructs a
task-specific output as shown in Figure 3.13. Following the RoBERTa procedure, this model
generates a new masking pattern every time a sequence is fed to the model. The original BERT
procedure also includes a Next Sentence Prediction (NSP) task. However, given that proteins
are not made up of multiple sentences, the NSP task is considered as inappropriate for pre-
training.

Figure 3.13: Pre-Training and Fine-Tuning of PRoBERTa
From [25]

In our approach we generate the similar embeddings obtained from the original RoBERTa
implementation as the source code of PRoBERTa was not available at that time. We took the
same pre-training dataset used in BERT with the default parameters. The pre-training takes
almost 14-15 hours on T4 GPU with 64GB of memory in our SHARCNET cluster.
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3.2.9 Attention
A new approach [3] to compute the weighted average of all LSTM hidden states. This helps
the model to learn from weighted long term dependencies i.e. the global context for the cur-
rent amino acid in a sequence. The attention mechanism for processing sequential data that
considers the context for each timestamp is defined by the following set of equations.

ht,t′ = tanh(xT
t Wt + xT

t′Wx + bt) (3.12)

et,t′ = σ(Waht,t′ + ba) (3.13)

at = so f tmax(et) (3.14)

lt =
∑

t′
at,t′ xt′ (3.15)

Here, ht,t′ is the contribution of all the before and after recurrent units on the current unit, at is
the attention weight and lt is the final encoding for the time t.

In our method we used this attention layer implemented in Keras, in place of the existing
Convolution or GRU layer(i.e. we compute the weighted average of the input) and created a
separate branch for that. Then all three branches, CNN, RNN and attention are trained indi-
vidually and their outputs are concatenated and passed through a dense layer to get the final
prediction. We also compared the results obtained, by keeping either convolution or GRU
along with attention branch. This experiment shows that attention works better with RNN than
with CNN.

3.2.10 Positional Encoding
Positional encoding [34] is used to provide the model some information about the relative po-
sition of the words in the sentence. An embeddings is a token representation in d-dimensional
space where tokens with similar meaning will be nearer to each other. However, the embed-
dings do not encode the relative position of words in a sentence. That is why positional encod-
ing vector is added with an embedding vector. So once we add the positional encoding, words
will be closer to each other based on the similarity of their meaning as well as their position
in the sentence. The formula for calculating positional encoding is given in Equation 3.16 and
Equation 3.17.

PE(pos,2i) = sin(pos/100002i/dmodel) (3.16)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (3.17)

In our approach we computed the positional encoding for each amino acid in a protein
sequence and normalized it further. We used a dimension of size 4096 and maximum sequence
length of 2048. This new feature replaces the old position feature used in DELPHI aiming to
improve the model performance.
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3.2.11 HSP Score
The idea presented in this section is different from the above, as we do not introduce a new
machine learning construct. Instead, we discuss using the HSP feature of DELPHI as a separate
score, rather than a feature.

In our initial phase of experiment we used the HSP features as an input to our model. Simi-
lar to DELPHI, we use SPRINT to compute the high scoring pairs (HSP) among all proteins in
training and testing set. After we get the HSPs, the score of the ith residue, P[i] of a test protein
P, denoted by HS Pscore(P[i]) is calculated. Lets say that, for P and a training protein Q we
have an HSP pair (u, v), where the residue P[i] is within u. Similarly let j be the position in Q
that corresponds to i, such that v covers the residue Q[ j]. Now, if Q[ j] is a known interacting
residue, then we add the PAM120 score between P[i] and Q[ j] to the HSP score of P[i]:

HS Pscore(P[i]) =
∑

Qlabel[ j]=1

max(0, PAM120(P[i],Q[ j])) (3.18)

Later, we realize that the model performance improves, if we add the HSP score with the model
prediction probability. In that case, we remove the HSP feature from our model input and
compute the prediction probabilities. Then add the HSP score with corresponding propensity
score of an amino acid in a certain protein sequence. So, our final prediction score for the ith

residue, P[i] will be:

Prediction f inal(P[i]) = PredictionwithoutHS P(P[i]) + HS Pscore(P[i]) (3.19)
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Experimental Results

4.1 Testing Datasets
In order to test our program on common benchmark data, first we prepare the testing data, then
training data is constructed maintaining high dissimilarity between each other.

We already have four benchmark datasets named as: Dset 72, Dset 186, Dset 164 and
Dset 448 which are publicly available from previous studies [24] [9] [40] and used in DELPHI.
All the four datasets have been widely used and explored by several researchers. In our study
we combined all these 4 test datasets into one single test set and compared the prediction
performance obtained from each of these methods. An overview of the training and testing
dataset is described in Table 4.1

Dataset Proteins Residues Binding Non-Binding Binding %
Test 870 2,04,540 29,346 1,75,194 14.34%
Train 9,982 4,254,198 427,687 3,826,511 10.05%

Table 4.1: An overview of the training and testing datasets

4.2 Evaluation Scheme
Similar to DELPHI, we also used the same set of metrics in order to evaluate our program.
They are: sensitivity, specificity, precision, accuracy, F1-measure, Matthews correlation coef-
ficient, area under receiver operating characteristic curve (AUROC) and area under precision
recall curve (AUPRC). We focus more on AUROC and AUPRC because they are threshold
independent and convey an overall performance measurement of a program. The formulas for
calculating the other matrices are given in the below set of equations where where true pos-
itives (TP) and true negatives (TN) are the correctly predicted binding sites and non-binding
sites respectively, and false positives (FP) and false negative (FN) are incorrectly predicted
binding sites and non-binding sites, respectively.

The receiver operating characteristic curve plots TPR (true positive rate) = T P/(T P +

FN) against FPR (false positive rate) = FP/(FP + T N) that are computed by binarizing the

39
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propensities using thresholds equal to all unique values of the propensities. The precision-recall
curve plots precision against TPR. Given the imbalanced nature of our datasets (only about
14% of residues are protein binding), we also quantify the AULC (Area Under the Low false
positive rate ROC Curve) value. AULC is the area under the receiver operating characteristic
where the number of predicted PBRs <= number of native PBRs, i.e. where FPR is relatively
low.

S ensitivity =
T P

T P + FN
(4.1)

S peci f icity =
T N

T N + FP
(4.2)

Precision =
T P

T P + FP
(4.3)

Accuracy =
T P + T N

T P + FN + T N + FP
(4.4)

F1 = 2 ×
S ensitivity × Precision
S ensitivity + Precision

(4.5)

MCC =
T P × T N − FN × FP

√
(T P + FP) × (T P + FN) × (T N + FP) × (T N + FN)

(4.6)

4.3 Performance Comparison
In this section we compare all the methods we applied and discussed in the previous section.
We analysed that the model performance can be improved by modifying the number of HSPs
generated by SPRINT. The main three parameters of SPRINT is ksize, Thit and Tsim which by
default is set to 20, 15 and 35 respectively. We can compute less HSPs by increasing these
parameter values and vice versa; see Table 4.2

Name kSize Thit Tsim Count
HSP-0.3M 20 15 35 3,38,700
HSP-52K 25 20 40 52,545
HSP-32K 26 21 41 35,451
HSP-2M 15 10 30 20,10,581

HSP-2.8M 14 9 29 28,47,052

Table 4.2: An overview of the HSP computation

In Table 4.3 we present the performance of DELPHI on our testing dataset, where the first
line HSP stands for the baseline model performance, i.e. the default DELPHI and others with
a ’+’ sign indicates that HSP is being used as a score and not as an input feature. This shows
that, the model performs better when we reduce the HSP count.
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Pro2Vec Sens. Spec. Prec. Acc. F1 MCC AUROC AUPRC AULC
HSP 0.234 0.872 0.234 0.780 0.234 0.105 0.588 0.203 0.011
HSP-2.8M+ 0.275 0.879 0.275 0.792 0.275 0.154 0.657 0.238 0.013
HSP-2M+ 0.291 0.881 0.291 0.797 0.291 0.173 0.669 0.255 0.015
HSP-0.3M+ 0.330 0.888 0.330 0.808 0.330 0.218 0.702 0.298 0.018
HSP-35K+ 0.332 0.888 0.332 0.808 0.332 0.220 0.707 0.300 0.019
HSP-52K+ 0.332 0.888 0.332 0.808 0.332 0.220 0.707 0.301 0.019

Table 4.3: Performance of DELPHI

Next, we evaluate 5 different models that modify DELPHI to use ELMo, BERT, RoBERTa,
Attention and Positional Encoding. The first three models are a small modification from the
original implementation of DELPHI, where in place of ProtVec we are using different contex-
tual embeddings. In ELMo, we replace the ProtVec feature with SeqVec embedding and keep
the rest of the model architecture and parameters same as DELPHI. The pre-trained model of
SeqVec is used as published by the authors. Similarly, for BERT and RoBERTa we follow the
same procedure but this time the language models are pre-trained on our computer. Later, we
perform the same experiment with the HSP score on these models as well. All these model
performance are reported in Table 4.4, Table 4.5 and Table 4.6 respectively.

ELMo Sens. Spec. Prec. Acc. F1 MCC AUROC AUPRC AULC
HSP 0.233 0.871 0.233 0.780 0.233 0.104 0.577 0.201 0.011
HSP-2.8M+ 0.289 0.881 0.289 0.796 0.289 0.170 0.666 0.248 0.014
HSP-2M+ 0.302 0.883 0.302 0.800 0.302 0.186 0.678 0.264 0.016
HSP-0.3M+ 0.330 0.888 0.330 0.808 0.330 0.218 0.706 0.298 0.018
HSP-35K+ 0.330 0.888 0.330 0.808 0.330 0.218 0.709 0.299 0.018
HSP-52K+ 0.330 0.888 0.330 0.808 0.330 0.218 0.709 0.299 0.018

Table 4.4: ELMo model performance

BERT Sens. Spec. Prec. Acc. F1 MCC AUROC AUPRC AULC
HSP 0.230 0.871 0.230 0.779 0.230 0.101 0.581 0.200 0.011
HSP-2.8M+ 0.275 0.879 0.275 0.792 0.275 0.154 0.660 0.240 0.013
HSP-2M+ 0.292 0.881 0.292 0.797 0.292 0.173 0.672 0.256 0.015
HSP-0.3M+ 0.330 0.888 0.330 0.808 0.330 0.218 0.705 0.297 0.018
HSP-35K+ 0.333 0.888 0.333 0.809 0.333 0.221 0.709 0.299 0.018
HSP-52K+ 0.333 0.888 0.333 0.809 0.333 0.221 0.709 0.300 0.018

Table 4.5: BERT model performance

While the embeddings are used as an input feature to our model, we use the attention
mechanism in a different way. In neural networks attention can be used as a layer similar
to convolution or GRU, keeping this in mind we build a separate module where an attention
layer is used followed by a fully connected layer. This new module is placed in addition to
the existing CNN and RNN module that DELPHI uses. Next, all three modules are trained



42 Chapter 4. Experimental Results

RoBERTa Sens. Spec. Prec. Acc. F1 MCC AUROC AUPRC AULC
HSP 0.238 0.872 0.238 0.781 0.238 0.110 0.585 0.203 0.012
HSP-2.8M+ 0.280 0.879 0.280 0.794 0.280 0.160 0.662 0.242 0.013
HSP-2M+ 0.295 0.882 0.295 0.798 0.295 0.177 0.674 0.258 0.015
HSP-0.3M+ 0.333 0.888 0.333 0.809 0.333 0.221 0.704 0.296 0.018
HSP-35K+ 0.335 0.889 0.335 0.809 0.335 0.223 0.709 0.298 0.018
HSP-52K+ 0.334 0.889 0.334 0.809 0.334 0.223 0.709 0.298 0.018

Table 4.6: RoBERTa model performance

separately, then the ensemble network loads their weights and train the final layer. The model
performance is reported in Table 4.7, where in addition to the baseline model the effect of HSP
scores are also captured.

Attention Sens. Spec. Prec. Acc. F1 MCC AUROC AUPRC AULC
HSP 0.234 0.872 0.234 0.780 0.234 0.105 0.583 0.202 0.012
HSP-2.8M+ 0.273 0.878 0.273 0.791 0.273 0.152 0.656 0.235 0.013
HSP-2M+ 0.290 0.881 0.290 0.796 0.290 0.171 0.669 0.251 0.014
HSP-0.3M+ 0.330 0.888 0.330 0.808 0.330 0.218 0.701 0.292 0.018
HSP-35K+ 0.330 0.888 0.330 0.808 0.330 0.218 0.706 0.293 0.018
HSP-52K+ 0.330 0.888 0.330 0.808 0.330 0.218 0.706 0.294 0.018

Table 4.7: Attention model performance

The Positional Encoding feature is used by replacing the existing Position information used
by DELPHI. While using this feature we kept the original embedding ProtVec in place to under-
stand the sole effect of this new feature on our model. Table 4.8 reports the model performance
where the experiment with HSP score on this is also included.

Position Sens. Spec. Prec. Acc. F1 MCC AUROC AUPRC AULC
HSP 0.232 0.871 0.232 0.780 0.232 0.103 0.579 0.200 0.011
HSP-2.8M+ 0.282 0.880 0.282 0.794 0.282 0.162 0.663 0.246 0.014
HSP-2M+ 0.297 0.882 0.297 0.798 0.297 0.180 0.674 0.262 0.015
HSP-0.3M+ 0.331 0.888 0.331 0.808 0.331 0.218 0.704 0.296 0.018
HSP-35K+ 0.330 0.888 0.330 0.808 0.330 0.218 0.707 0.297 0.018
HSP-52K+ 0.331 0.888 0.331 0.808 0.331 0.219 0.707 0.298 0.018

Table 4.8: Positional Encoding model performance

Since, it has been observed that for all the models we achieve the best performance by
using HSP as a score and not as a feature, and that can be further improved by reducing the
HSP count, we put all the best results from each of the methods in Table 4.9. This gives us a
clear picture of which method works best.

Here, we also added some new tests. As discussed in the previous chapter, attention can be
used separately or with either of GRU and convolution branch, we added this models as well
in this comparison. First, we took the default feature group that DELPHI uses excluding HSP
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(as we are using it as a score), and test three different models by using only attention module,
attention with RNN and attention with CNN. Next, we also modified the input feature group
by replacing the Position information with the Positional Encoding and Pro2Vec with BERT
embedding, and evaluate another three models.

Best Models Sens. Spec. Prec. Acc. F1 MCC AUROC AUPRC AULC
BERT-POS-Attn 0.260 0.876 0.260 0.788 0.260 0.137 0.617 0.228 0.013
ProVec-Attn 0.268 0.877 0.268 0.790 0.268 0.145 0.623 0.232 0.013
BERT-POS-CNN-Attn 0.302 0.883 0.302 0.800 0.302 0.185 0.669 0.264 0.016
Pro2Vec-CNN-Attn 0.301 0.883 0.301 0.799 0.301 0.184 0.671 0.268 0.016
Attention 0.330 0.888 0.330 0.808 0.330 0.218 0.706 0.294 0.018
BERT-POS-RNN-Attn 0.327 0.887 0.327 0.807 0.327 0.214 0.705 0.295 0.018
Pro2Vec-RNN-Attn 0.330 0.888 0.330 0.808 0.330 0.217 0.704 0.296 0.018
POSITION 0.331 0.888 0.331 0.808 0.331 0.219 0.707 0.298 0.018
RoBERTa 0.334 0.889 0.334 0.809 0.334 0.223 0.709 0.298 0.018
ELMo 0.330 0.888 0.330 0.808 0.330 0.218 0.709 0.299 0.018
BERT 0.333 0.888 0.333 0.809 0.333 0.221 0.709 0.300 0.018
Pro2Vec 0.332 0.888 0.332 0.808 0.332 0.220 0.707 0.301 0.019

Table 4.9: Best model performance comparison

4.4 Discussion
It is interesting to notice that while we succeeded to improve the performance, some of the
best machine learning techniques failed to provide the expected improvement. At first, when
we came up with the idea of applying contextual embedding in place of context independent
Word2Vec we were influenced by their performance in several NLP tasks. Since, both BioIn-
formatics and NLP deals with same type of data i.e. sequence based, we assumed that it might
improve our PPI prediction program. The fact that it does not, make us believe that, in natural
language there are more syntactic and semantic similarities between words, whereas there is no
such thing between amino acid residues in protein sequences, that makes the embedding a less
important feature. Similar things happen with attention and positional encoding. On the other
hand, a significant improvement happens when we use the HSP score in addition to the predic-
tion probability, which gives 48.27% improvement on the PR curve and 20.23% improvement
on the ROC curve for the default model. This proves that there can be non-machine learning
ways to improve a machine learning model.

However, from Table 4.9 firstly we can see that, attention works better with RNN than with
CNN module. Secondly, though the machine learning techniques are not helping our model
very significantly, there is a very slight improvement in some of the metrics when we replace
ProtVec with the RoBERTa or BERT embedding. This definitely leads us towards further
investigation.



Chapter 5

Conclusion and Future Works

In this chapter, we will discuss the summary of our work and possible future works to continue
with further investigation.

5.1 Summary

In this thesis, we have considered the problem of predicting binding sites in protein protein
interaction. We have discussed various PPI binding site prediction techniques including both
computational and machine learning based approaches. Then we discussed the current best
program, DELPHI and its architecture.

We then present our work, where we have employed some of the currently best techniques
from machine learning, including attention and various embedding techniques, such as BERT
and ELMo. This is the first time such tools are being tested for this problem. Finally we have
tested many architecture on a large dataset and analyzed our findings.

5.2 Conclusion

It is very interesting to notice that, some of the best machine learning techniques failed to
provide the expected improvement, while we succeeded to improve the performance using a
non machine learning approach. The current best program, DELPHI uses the HSP score as an
input feature to the model, while we found out that using it in some other way improves the
performance. In that case, we remove the HSP feature from our input, then train the model
an finally add the HSP scores with model’s prediction to obtain the final prediction probability
of the binding sites. Later, we also discovered that the performance can be improved further
by generating less HSPs before computing the HSP scores. It is very surprising that, this way
we managed to achieve 48.27% improvement on the PR curve and 20.23% improvement on
the ROC curve for the default model. Finally, by comparing all the best models we can say
that attention works better with RNN than with CNN and some contextual embedding(BERT,
RoBERTa) are slightly better than ProtVec in some cases.
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5.3 Future Work
There is a plenty of scope for future work. Firstly, it may be possible to make the program
more accurate by tuning its parameters and probably by training it on a larger dataset, though
binding site information is not easier to find.

Secondly, we need to further investigate why the state-of-the art machine learning tech-
niques are not making the expected improvement on our model. Since, these methods have
already made a significant improvement in several NLP tasks we still believe that this can also
improve a bioinformatics problem, but maybe in some other way.
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[10] Zsuzsanna Dosztányi, Bálint Mészáros, and István Simon. Anchor: web server for pre-
dicting protein binding regions in disordered proteins. Bioinformatics, 25(20):2745–
2746, 2009.

46



BIBLIOGRAPHY 47

[11] Eshel Faraggi, Yaoqi Zhou, and Andrzej Kloczkowski. Accurate single-sequence predic-
tion of solvent accessible surface area using local and global features. Proteins: Structure,
Function, and Bioinformatics, 82(11):3170–3176, 2014.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[13] Michael Heinzinger, Ahmed Elnaggar, Yu Wang, Christian Dallago, Dmitrii Nechaev,
Florian Matthes, and Burkhard Rost. Modeling aspects of the language of life through
transfer-learning protein sequences. BMC bioinformatics, 20(1):1–17, 2019.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[15] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen,
Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al. Google’s mul-
tilingual neural machine translation system: Enabling zero-shot translation. Transactions
of the Association for Computational Linguistics, 5:339–351, 2017.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[17] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.
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