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Abstract 

Hepatitis C virus (HCV) infection is one of the leading causes of chronic liver diseases. 

Despite advancements in the development of antivirals and efforts to combat HCV infections, 

there is currently no vaccine for HCV. Adopting traditional approaches to HCV vaccine 

development has been impractical due to the lack of reproducible cell culture systems that can 

support HCV replication. In this study, the New Jersey serotype of recombinant vesicular 

stomatitis virus (rVSVNJ) was used as the vector to express non-structural proteins NS3/4A of 

genotype 1a HCV for potential vaccine purposes. The rVSVNJ-GMM vector was genetically 

modified by changing glycine to glutamic acid at position 22 and methionine to arginine at 

positions 48 and 51 of the matrix protein to reduce inhibition of host gene expression and 

cytopathic effects. This study examined replication efficiency, attenuation, and capacity of 

rVSVNJ-GMM vector to express high protein levels. It was hypothesized that the genetically 

modified rVSVNJ-GMM vector with the HCV NS3/4A insert would demonstrate reduced 

cytopathogenesis without compromising viral replication and efficiently express functional 

NS3/4A proteins. The rVSVNJ-GMM-NS3/4A was recovered by reverse genetics and amplified 

to construct viral growth kinetics that generated a high viral titre. The degree of cytopathogenesis 

of rVSVNJ-GMM without insert and rVSVNJ-GMM-NS3/4A was compared and results showed 

that rVSVNJ-GMM-NS3/4A achieved fewer structural changes in the infected cells compared to 

rVSVNJ-GMM without insert. In addition, the proper expression and processing of HCV NS3/4A 

proteins were confirmed, and the function of NS3/4A protein complex as a serine protease was 

confirmed by its ability to cleave at the NS5A/NS5B polyprotein junction. Electron microscopic 

visualization showed normal morphology of rhabdovirus particles and clear projection of 

glycoproteins. The replication efficiency, safety, and capacity to achieve high expression level of 



functional NS3/4A proteins indicate that the rVSVNJ-GMM vector can be used for recombinant 

HCV vaccine development. 

 

Key words: vesicular stomatitis virus/hepatitis c virus/HCV NS3/HCV NS4A/recombinant 

vector vaccine 

 

Introduction 

Hepatitis C virus (HCV) infection poses significant public health burden with over 150 

million people affected worldwide (Mohd Hanafiah, Groeger, Flaxman, & Wiersma, 2013). The 

virus can cause both acute and chronic hepatitis infections. Majority of individuals acutely 

infected with HCV develop chronic hepatitis which potentially can lead to liver cirrhosis, end-

stage liver disease, and liver cancer (Jacobson, Davis, El-Serag, Negro, & Trépo, 2010). Despite 

the recent advances in antiviral treatment of HCV infection, hepatitis C remains a major problem 

in public health. Current therapy has shown to be effective in some patients, but is still daunting 

for millions of people due to the high cost, complex regimen, and side effects (Liang, 2013). 

Although several vaccine candidates are in preclinical and clinical trials, no effective vaccine is 

currently available. Therefore, the development of a safe, affordable, and efficacious vaccine is 

urgently needed.  

Hepatitis C virus is a single-stranded positive-sense RNA virus of the family Flaviviridae 

(Blondel, Harmison, & Schubert, 1990). It encodes a polyprotein that is cleaved by cellular and 

viral proteases into structural proteins (Core, E1, and E2), a small membrane polypeptide (p7), 

and non-structural proteins (NS2/NS3/NS4A/NS4B/NS5A/NS5B). The progress of HCV vaccine 

development has been circumscribed by the genetic heterogeneity of the virus and its ability to 



evade host immune responses. HCV is extremely variable due to its high mutational rate caused 

by the lack of proofreading capacity of the viral polymerase (Simmonds et al., 2005). It exists in 

several major genotypes (1-7) and in quasispecies variants which are groups of related, but 

distinct viral populations that differ in sequences within the hypervariable regions of the viral 

genome (Farci et al., 2000). HCV persists in majority of infected individuals by inhibiting 

interferon induction and evading neutralizing antibodies by circulating complexed with host 

lipoproteins (Horner & Gale, 2013; Timpe et al., 2008). Previous studies have used the non-

structural gene product NS3 in vaccine designs since it is a highly conserved region and a major 

target of T cell-mediated immunity (Ahlén, Holmström, Gibbs, Alheim, & Frelin, 2014; 

Arribillaga et al., 2002; Ratnoglik et al., 2014; Zhu et al., 2015). NS3 is a multifunctional protein 

that has serine protease, nucleoside triphosphatase (NTPase), and helicase activities which are 

involved in proteolytic processing of the polyprotein, deregulation of normal cellular functions, 

and viral RNA replication respectively (Shiryaev et al., 2012). The NS4A protein acts as a 

cofactor essential for the full function of NS3. The NS3/4A protein complex cleaves downstream 

junctions including NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B. It has been shown that T-cell 

immunity mediates HCV viral control in natural infections (Ratnoglik et al., 2014).  Since NS3 

carries numerous T cell epitopes and induces strong HCV-specific T cell responses associated 

with viral clearance and resolution of acute HCV infection, the NS3 and NS4A proteins have 

been identified as ideal antigens for a novel vaccine and are therefore the proteins of interest in 

this study. 

The traditional approaches of vaccine development such as using live attenuated virus are 

impractical due to the lack of a reproducible cell culture system supporting HCV replication. 

Instead, the recombinant viral-vector based vaccine approach has been used to express foreign 



genes and elicit host immune responses (Cobleigh, Wei, & Robek, 2013; Pietschmann et al., 

2002). Among other gene expression vectors, the vesicular stomatitis virus (VSV) has shown to 

be a promising candidate for recombinant vaccine development due to its genetic malleability, 

rapid replication, high expression level of foreign gene inserts, wide host range, and mild 

pathogenicity in humans (An, Kim, Wu, & Kang, 2013; Ezelle, Markovic, & Barber, 2002). 

VSV is a non-segmented, negative-sense RNA virus of the Rhabdoviridae family. The viral 

genome encodes five viral proteins: nucleoprotein (N), phosphoprotein (P), matrix protein (M), 

glycoprotein (G), and large polymerase protein (L). The M protein has been shown to be critical 

in the cytopathogenesis of VSV and inhibition of host gene expression in addition to its 

regulatory and structural roles (Black & Lyles, 1992; Blondel et al., 1990). Furthermore, VSV is 

comprised of two major serotypes, Indiana (VSVInd) and New Jersey (VSVNJ) (Gould et al., 

1998). The New Jersey serotype has been less frequently used and studied as a gene expression 

vector. 

In this study, the New Jersey serotype of vesicular stomatitis virus was engineered to 

express NS3/4A of genotype 1a HCV. The M protein of the rVSVNJ-GMM vector was modified 

by changing glycine to glutamic acid at position 22, and methionine to arginine at positions 48 

and 51 (Kim and Kang 2007). Manipulation of the M protein has been shown to reduce 

inhibition of host gene expression and cytopathic effects (Kim & Kang, 2007). The NS3/4A 

genes were inserted into the G and L gene junction of rVSVNJ-GMM. This study generated high 

viral titres while achieving reduced cytopathogenesis using rVSVNJ-GMM-NS3/4A, examined 

the capacity to achieve high levels of NS3/4A protein expression using the recombinant VSVNJ-

GMM vector, and confirmed the proper NS3 function as a protease.  

 



Hypothesis 

It was hypothesized that the genetically modified rVSVNJ-GMM vector would efficiently 

express NS3/4A genes based on the property of VSV to accommodate large foreign gene inserts 

and demonstrate reduced cytopathogenesis without compromising viral replication (An et al., 

2013; Kim, Wu, Hong, Awamleh, & Kang, 2015). Generation of high viral titre of rVSVNJ-

GMM-NS3/4A while achieving reduced cell death, detection of high NS3/4A protein expression 

level using the rVSVNJ-GMM vector system, and confirmation of the proper function of NS3/4A 

as a serine protease would indicate that rVSVNJ-GMM vector can be used for recombinant HCV 

vaccine development. 

 

Materials and Methods 

Cells. BHK21 (baby hamster kidney, ATCC) cell line was cultured in Dulbecco’s 

modified Eagle’s medium (DMEM, Invitrogen) containing 5% fetal bovine serum (FBS, Gibco 

BRL), 100 µg/ml of penicillin (Gibco BRL), 100 µg/ml of streptomycin and kanamycin (Gibco 

BRL), and 2 mM L-Glutamine (5% FBS c-DMEM). The BHK cells constitutively expressing 

bacteriophage T7 RNA polymerase (BHK-T7, Buchholz, Finke, & Conzelmann, 1999) were 

maintained in 5% FBS c-DMEM containing 500 µg/ml G418 (Invitrogen) for transfection. 

Approximately 20 hours before transfection, BHK-T7 cells were cultured in 5% FBS DMEM 

containing 2 mM of L-Glutamine without antibiotics. The Vero E6 (green monkey kidney) cells 

(ATCC) were used for plaque assay to purify the virus and were cultured in Minimum Essential 

Medium Eagle (MEM, Invitrogen) supplemented with 10% FBS, 100 U/ml of penicillin, 100 

µg/ml of streptomycin and kanamycin, 2 mM of L-glutamine, and 5 ml of sodium pyruvate (10% 

FBS c-MEM). The cells were incubated at 37°C and 5% CO2. 



Cloning of HCV NS3/4A gene into prVSVNJ-GMM (G22E+M48R+M51R). The 

recombinant prVSVNJ-GMM vector and KS-NS3/4A plasmid were provided for this study by the 

Kang laboratory. The plasmid rVSVNJ-GMM-NS3/4A was constructed by treating prVSVNJ-

GMM vector and KS-NS3/4A plasmid with the restriction enzymes Pme I (BioLabs) and Mlu I 

(BioLabs). The NS3/4A and prVSVNJ-GMM DNA fragments were ligated by ligase (BioLabs), 

and XL-10 gold cells (Agilent Technologies) were transformed using the ligated sample. The 

prVSVNJ-GMM-NS3/4A isolated from the transformants were digested by restriction enzyme 

Nco I (BioLabs) and the digested DNA fragments were confirmed using 1.0% agarose gel 

electrophoresis. 

Transfection. Recombinant VSVNJ-GMM-NS3/4A was recovered by reverse genetics. 

Using Lipofectamine 2000 (Invitrogen), BHK-T7 cells were transfected with 15 μg cDNA 

clones of prVSVNJ-GMM-NS3/4A and three plasmids expressing pBKS-IRES/NNJ (nucleocapsid 

protein), pBKS-IRES/PNJ (phosphoprotein), and pBKS-IRES/LNJ (large polymerase protein) in 

concentrations of 10 μg, 10 μg, and 5 μg respectively. The control group was cultured containing 

Lipofectamine 2000 without any plasmids. The culture medium was harvested when 80% of 

cells showed cytopathic effects (CPE) after 6-8 days of incubation at 37°C after transfection.  

Purification, amplification, and determination of viral titre. The recovered virus was 

purified three times by plaque picking using a monolayer culture of Vero E6 cells incubated at 

37°C and the virus was then amplified from one plaque using BHK21 cells at 37°C and harvested 

18 hours postinfection. The viral titre of rVSVNJ-GMM-NS3/4A was determined by plaque assay 

using Vero E6 cells. Using the viral titre, BHK21 cells were infected at multiplicity of infection 

(MOI) of 0.1 to propagate the recovered virus and attain a viral stock. 



Growth kinetics of rVSVNJ-GMM-NS3/4A. The growth kinetics of rVSVNJ-GMM-

NS3/4A was determined by infecting BHK21 cells with rVSVNJ-GMM-NS3/4A at MOI of 0.1. 

The culture medium was harvested every 2 hours from 18 hours postinfection. The viral titres of 

samples were determined by plaque assay in Vero E6 cells. 

Expression of NS3/4A protein in rVSVNJ-GMM-NS3/4A. BHK21 cells were infected 

with rVSVNJ-GMM without insert and rVSVNJ-GMM-NS34/A at MOI of 6, incubated at 37°C, 

harvested at 6 hours postinfection, and treated with Lysis Buffer prepared from 10 mM Tris-Cl 

adjusted to pH of 7.4, 1% Nonidet P40, 0.4% sodium deoxycholate, and 10 mM EDTA. The cell 

lysates were electrophoresed by 10% SDS-PAGE and the expression of NS3/4A proteins were 

analyzed by Western blot using rabbit monospecific polyclonal antibody against NS3, provided 

by the Kang laboratory, diluted to 1:3000, and polyclonal antibody against VSVNJ (Choi, 1997) 

diluted to 1:5000. The samples were subsequently treated with goat anti-rabbit IgG secondary 

antibody (Sigma-Aldrich) diluted to 1:5000. The VSV and NS3/4A proteins were detected using 

ECL prime chemiluminescence Western blotting detection reagents (GE Life Sciences). 

Comparison of cytopathogenesis. BHK21 cells were infected with rVSVNJ-GMM and 

rVSVNJ-GMM-NS3/4A at MOI of 0.1 each. The control group was incubated in culture medium. 

Images were taken at 16 hours postinfection at 10X magnification. Standard deviation was used 

for the results to be expressed as mean ± SD. 

Cleavage of HCV NS polyprotein junctions by NS3 protease with NS4A protein. 

BHK21 cells were individually infected with rVSVNJ-GMM without insert, rVSVNJ-GMM-

NS3/4A, rVSVNJ-GMM-NS5A/5B, and co-infected with rVSVNJ-GMM-NS3/4A and rVSVNJ-

GMM-NS5A/5B at MOI of 6 each. The infected cells were incubated at 37°C, harvested, and 

lysed at 6 hours postinfection. The cell lysates from the infected cells were analyzed by 10% 



SDS-PAGE followed by Western blot.  The VSV and HCV proteins were detected by using 

rabbit monospecific polyclonal antibody against NS3 diluted to 1:3000, monoclonal antibody 

against NS5A (Abcam) diluted to 1:5000, and polyclonal antibody against VSVNJ diluted to 

1:5000. Following treatment with goat anti-rabbit IgG secondary antibody diluted to 1:5000, the 

protein bands were detected using ECL prime chemiluminescence Western blotting detection 

reagents.  

Electron microscopy of rVSVNJ-GMM-NS3/4A. BHK21 cells were infected with 

rVSVNJ-GMM-NS3/4A using MOI of 1 and incubated at 37°C. The supernatant of the infected 

BHK21 cells was harvested at 6 hours postinfection. The virus was concentrated by ultra-

centrifugation, purified by 20% sucrose cushion in TNE, and negatively stained with 2% PTA 

adjusted to pH 6.8. The samples were viewed on Phillips CM10 transmission electron 

microscope (TEM) at 92000X magnification. 

 

Results 

Confirmation of DNA fragment using restriction enzyme Nco I. The plasmid rVSVNJ-

GMM-NS3/4A was constructed by using the restriction enzyme Pme I and Mlu I to clone 

NS3/4A genes into the G and L gene junction of the rVSVNJ-GMM vector (Fig. 1). The plasmid 

was detected at a size greater than 10 kb (Fig. 2, lane 1). Following treatment with Nco I and 

separation by gel electrophoresis, the DNA fragments were detected at proper sizes (Fig. 2, lane 

2). 

Determination of viral titre. The rVSVNJ-GMM-NS3/4A virus was recovered using 

reverse genetics, purified by three consecutive plaque assays, and amplified in BHK21 cells. The 



viral titre was determined to be 2.75×108 plaque forming units (PFU)/ml after infecting BHK21 

cells using MOI of 0.1 and harvesting the stock virus at 18 hours postinfection.  

Growth kinetics of rVSVNJ-GMM-NS3/4A. In order to assess viral replication of 

rVSVNJ-GMM-NS3/4A, the kinetics of infectious virus particle production were examined. 

BHK21 cells were infected with rVSVNJ-GMM-NS3/4A at MOI of 0.1 and incubated at 37°C. 

The culture medium was harvested every 2 hours from 18 hours to 26 hours postinfection. The 

viral titre was determined by plaque assay using Vero E6 cells. The viral titres of rVSVNJ-GMM-

NS3/4A at 18, 20, 22, 24, and 26 hours postinfection were 1.2×108 PFU/ml, 2.1×108 PFU/ml, 

2.1×108 PFU/ml, 2.5×108 PFU/ml, and 3.2×108 PFU/ml respectively (Fig. 3).   

Protein expression level of HCV NS3/4A from rVSVNJ-GMM. The expression of NS3 

protein from BHK21 cells infected with rVSVNJ-GMM-NS3/4A was assessed by Western blot 

using antibodies against NS3 (Fig. 4). The expression of rVSVNJ-GMM proteins was confirmed 

by the proper sizes of G protein at 56 kDa, N protein at 46 kDa, and P protein at 30 kDa. The 

data also showed detection of NS3 using antibody against NS3 in the proper size of 69 kDa, but 

only in the cell lysates infected by rVSVNJ-GMM-NS3/4A (Fig. 4, lane 5).  

Comparison of cytopathogenesis. BHK21 cells were infected with rVSVNJ-GMM and 

rVSVNJ-GMM-NS3/4A at MOI of 0.1 each. The structural changes in the infected cells were 

examined at 16 hours postinfection at 10X magnification. BHK21 cells infected with rVSVNJ-

GMM-NS3/4A showed lower level of cytopathic effects compared to those infected with 

rVSVNJ-GMM (Fig. 5). 

The cleavage of HCV polyprotein NS5A/5B by NS3/4A protein. The protease activity 

of the NS3 protein to cleave the junctions of NS5A and NS5B was evaluated by infecting BHK21 

cells with rVSVNJ-GMM without insert, rVSVNJ-GMM-NS3/4A, rVSVNJ-GMM-NS5A/5B, and 



co-infecting BHK21 cells with rVSVNJ-GMM-NS3/4A and rVSVNJ-GMM-NS5A/5B at MOI of 6 

each. The cell lysates were electrophoresed by 10% SDS-PAGE followed by Western blot using 

antibodies against NS3 and NS5A. The polyprotein NS5A/5B was detected at 126 kDa in cell 

lysates infected with rVSVNJ-GMM-NS5A/5B (Fig. 6, lane 6) using an antibody against NS5A. 

The proper size of the NS5A cleaved from the polyprotein NS5A/5B was confirmed to be 58 

kDa, but only when BHK21 cells were co-infected with rVSVNJ-GMM-NS3/4A and rVSVNJ-

GMM-NS5A/5B (Fig. 6, lane 7). Therefore, the function of NS3/4A protein complex as a serine 

protease was confirmed by examining its activity to cleave the NS5A/5B junction.  

Electron microscopy of rVSVNJ-GMM-NS3/4A. The production and morphology of 

virus particles were examined by infecting BHK21 cells with rVSVNJ-GMM-NS3/4A at MOI of 

1, harvesting the culture medium at 16 hours postinfection. The virus particles were 

concentrated, negatively stained, and viewed on Phillips CM10 TEM at 92000X magnification. 

The image showed bullet-shaped virions characteristic of normal rhabdovirus morphology with 

the presence of glycoproteins and electron-dense nucleocapsid bound by an envelope (Fig. 7). 

 

Discussion 

  Despite the advances in the treatment of infectious diseases, there is currently no 

efficacious vaccine against HCV. The development of HCV vaccine using traditional approaches 

has been challenging since HCV does not replicate efficiently in cell cultures (Pietschmann et al., 

2002). The attenuated and replication-competent recombinant VSV is an attractive vaccine 

platform for use in humans due to its immunogenicity, high gene expression, and capacity to 

accommodate large foreign inserts (An et al., 2013; Cobleigh et al., 2013; Ezelle et al., 2002). 

VSV has mild pathogenicity in humans and is safe since it does not integrate its genome into the 



host cell DNA or recombine with the wild-type virus in vivo (Lawson, Stillman, Whitt, & Rose, 

1995). In this study, the M protein of VSV was modified with three mutations 

(G22E+M48R+M51R) to reduce the inhibition of host gene expression and cytopathic effects 

since previous studies have shown that genetic manipulation of VSV can improve its safety and 

immunogenicity while maintaining its efficiency in introducing the insert (Flanagan, Zamparo, 

Ball, Rodriguez, & Wertz, 2001; Kim & Kang, 2007). 

Previous studies have demonstrated that mutations in VSV vectors could lead to slower 

growth rates and lower peak titers (Cooper et al., 2008; Roberts, Buonocore, Price, Forman, & 

Rose, 1999). The reductions in growth rates and peak infectious particle production can be 

attributed to mutations that directly affect replication efficiency and virion formation. In this 

study, rVSVNJ-GMM-NS3/4A achieved a viral titre of 2.75×108 PFU/ml after infecting BHK21 

cells using MOI of 0.1 and harvesting the stock virus at 18 hours postinfection. The peak titre 

was measured to be 3.2×108 PFU/ml at 26 hours postinfection using MOI of 0.1 in BHK21 cells.  

Similarly using the former vector rVSVNJ-M (M48R+M51R), the viral titre of rVSVNJ-M-

NS3/4A stock virus was shown to be 5.6×108 PFU/ml using MOI of 0.1 in BHK21 cells at 

approximately 16 to 18 hours postinfection (An et al., 2013).  From infecting BHK21 cells at MOI 

of 10, the viral titre of the wild-type VSVNJ was shown to be approximately 109 PFU/ml 8 hours 

postinfection (Kretzschmar, Peluso, Schnell, Whitt, & Rose, 1996). The rVSVNJ-GMM without 

insert previously demonstrated replication efficiency of approximately109 PFU/ml from infecting 

BHK21 cells using MOI of 3, and harvesting the culture medium 8 hours postinfection (Kim et al., 

2015). The altered rVSVNJ-GMM-NS3/4A showed slower growth, but achieved a high viral titre 

despite attenuation by genetic modifications. The attenuation of the altered virus was confirmed 

by examining cytopathogenic effects in BHK21 cells as characterized by the rounding of infected 



cells. Previously, infection of BHK21 cells using wild-type VSVNJ showed extensive cell 

rounding and detachment; however, rVSVNJ-GMM infected cells showed reduced structural 

changes (Kim et al., 2015). The reduction in cytopathogenesis was similarly demonstrated in this 

study with decreased CPE in BHK21 cells infected with either rVSVNJ-GMM without insert or 

rVSVNJ-GMM-NS3/4A. The cells infected with the latter construct showed greater attenuation.  

The genetically modified rVSVNJ-GMM vector encoding NS3/4A was capable of 

expressing functional viral proteins. The high expression level of viral proteins was 

demonstrated by clear Western blot bands and the capacity to express functional protein was 

shown by confirming the serine protease function of the NS3 protein in the NS3/4A complex to 

cleave the NS5A/5B polyprotein junction. Similar results were reported using the rVSVNJ-M 

vector to express NS3/4A proteins and confirm the function of NS3 as a protease (An et al., 

2013). The M gene of VSVNJ was modified by changing methionine to arginine at positions 48 

and 51. Introducing mutations by changing one or two nucleotides in the amino acid codon of the 

rVSVNJ-M vector raised concerns regarding potential reversion of VSV to the wild-type 

phenotype with multiple passages. However, rVSVNJ-GMM used in this study was modified 

from the former vector with additional mutations in the M protein gene with changes in all three 

nucleotides to generate a much more stable vector. A recent study has demonstrated that 

additional nucleotide changes in a codon increased genetic stability of mutations in vitro (Kim et 

al., 2015). Despite multiple consecutive passages, the mutations in the M protein gene of 

rVSVNJ-GMM vector did not convert back to the wild-type amino acid codon. Although both 

rVSVNJ-M and rVSVNJ-GMM vector systems were able to achieve high protein expression 

levels, the rVSVNJ-GMM vector showed greater stability and attenuation with triple mutations, 

mitigating safety concerns associated with using replication-competent vectors. Furthermore, 



VSV allows for potential prime-boost immunization strategies since both serotypes, Indiana and 

New Jersey, have the capacity to stably express the HCV inserts and achieve high protein 

expression levels without exhibiting cross-neutralization (Kim et al., 2015). 

The electron microscopic examination showed bullet-shaped virus particles of rVSVNJ-

GMM-NS3/4A with glycoproteins projecting from viral envelopes. The virion structures were 

consistent with normal rhabbdovirus morphology indicating that insertion of the foreign gene did 

not alter particle formation.  

Some of the challenges involved in HCV vaccine development have been associated with 

the tendency of HCV to mutate as it replicates. It has been demonstrated that high genetic 

variation of the virus allows it to elude pre-existing immunity, and infections persist by escaping 

host immune responses (Forns, Bukh, & Purcell, 2002; Martell et al., 1992). The NS3 and NS4A 

proteins have been identified as ideal antigens to address the barriers to HCV vaccine 

development. The NS3 protein is highly conserved among strains which may help protect against 

escape mutants that persist during chronic infections. It also carries multiple CD4+ and CD8+ T 

cell epitopes and is the major target of T cell-mediated immunity which has been shown to 

mediate HCV viral control in natural infection (Ratnoglik et al., 2014). The NS4 protein is a 

required cofactor for the protease function of NS3 and the inclusion of NS4A in NS3-based 

genetic vaccines have shown to enhance the immunogenicity of NS3 (Zhu et al., 2015).   

The stability and high levels of the NS3/4A protein expression indicate the potential use 

of the rVSVNJ-GMM vector for vaccine purposes. The development of a safe, affordable, and 

effective HCV vaccine can replace expensive antiviral therapies that are limited in developing 

countries and potentially reduce the overall disease burden of HCV infections. 
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Appendix 

 

Fig.1. Construction of prVSVNJ-GMM-NS3/4A. The plasmid prVSVNJ-GMM-NS3/4A was 

constructed by using the restriction enzymes Pme I and Mlu I to clone NS3/4A genes into the G 

and L gene junction of the rVSVNJ-GMM vector. 

 

 

Fig. 2. Confirmation of DNA fragment using restriction enzyme Nco I. The plasmid was 

detected (lane 1) and treated with Nco I, to confirm its proper size by gel electrophoresis (lane 2). 

 



 

Fig. 3. Growth kinetics of rVSVNJ-GMM-NS3/4A. In order to assess viral replication of 

rVSVNJ-GMM-NS3/4A, the kinetics of infectious virus particle production were examined. 

BHK21 cells were infected with rVSVNJ-GMM-NS3/4A at MOI of 0.1 and incubated at 37°C. 

The culture medium was harvested every 2 hours from 18 hours to 26 hours postinfection. The 

viral titre was determined by three consecutive plaque assays using Vero E6 cells. Standard 

deviation was used for the results to be expressed as mean ± SD. 

 



 

Fig. 4. Protein expression level of VSVNJ and HCV NS3. BHK21 cells were infected with 

rVSVNJ-GMM and rVSVNJ-GMM-NS3/4A at MOI of 6. Cell lysates were harvested at 6 hours 

post-infection, electrophoresed using 10% SDS-PAGE, and analyzed for VSVNJ proteins in lanes 

1 to 3 or for NS3 proteins in lanes 4 to 6. 

 

 

Fig. 5. Comparison of cytopathic effects. BHK21 cells were infected with rVSVNJ-GMM and 

rVSVNJ-GMM-NS3/4A at MOI of 0.1 each. The structural changes in the infected cells were 

examined at 16 hours postinfection at 10X magnification.  

 



 

Fig. 6. Cleavage of HCV polyprotein NS5A/5B by NS3/4A protein. BHK21 cells were infected 

with rVSVNJ-GMM-NS3/4A or rVSVNJ-GMM-NS5A/5B or co-infected with both using MOI of 

6. The infected cells were harvested at 6 hours post-infection and the cell lysates were separated 

by 10% SDS-PAGE and analyzed by Western blot to detect NS3 in lanes 1 to 3 or NS5A 

proteins in lanes 4 to 7. 

 

 

 

 



 

Fig. 7. Electron microscopic examination of rVSVNJ-GMM-NS3/4A. BHK21 cells were 

infected with rVSVNJ-GMM-NS3/4A at MOI of 1. The culture medium was harvested 16 hours 

postinfection. The sample was purified by 20% sucrose in TNE, resuspended in TNE, and 

negatively stained with 2% phosphotungstic acid. The image was viewed on Phillips CM10 

transmission electron microscope at 92000X magnification. The glycoproteins present on the 

virions are indicated by the white arrows.  
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