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Abstract 

Typical engineering materials may experience high corrosion rates when exposed to aggressive 

service conditions. Such conditions include high concentrations of aggressive anions and 

oxidants, high solution acidity, and/or high temperatures. Alloys with high corrosion resistance 

may be selected to avoid material failure caused by corrosion, for example, Ni-Cr-Mo alloys. 

These alloys exhibit excellent corrosion resistance due to the formation of a passive oxide film, 

primarily containing Cr and Mo. However, film breakdown can result in localized corrosion, 

e.g., crevice corrosion. Localized corrosion processes can penetrate deep into the bulk alloy, 

threatening its integrity. While the oxide film and localized corrosion processes have been 

extensively studied, many mechanistic features remain unresolved.  

Here, the corrosion behaviour of commercially available Ni-Cr-Mo alloys has been studied 

using electrochemical, spectroscopic, and microscopy techniques. Electrochemical 

measurements (Chapter 3) showed that increases in Cr content improve passive film properties, 

while increases in Mo content improve film stability in acidic solutions. Atomic emission 

spectroelectrochemistry (AESEC) measurements (Chapters 4 and 5) revealed a dynamic role 

for Mo deposition during film breakdown. Transpassive dissolution occurring in neutral 

solutions led to the deposition of Mo-rich species, while repassivation resulted in their release 

to solution. Surface activation followed by repassivation in acidic solution was found to cause 

a similar process. The mechanism of crevice corrosion (Chapter 6) was investigated using a 

galvanostatic technique combined with weight loss measurements. Internal cathodic reactions 

were found to be an important feature, intensifying damage by as much as 76 %, depending on 

the Mo content of the alloy. The effect of fluoride (Chapter 7) on the corrosion behaviour of 

Ni- and Fe-based alloys was investigated. Film stability was found to decrease in the presence 

of trace quantities, especially as the applied potential was increased.  

The findings reported throughout this thesis suggest a delicate balance between Cr and Mo is 

required for optimal corrosion performance, however, an optimal alloy composition has yet to 

be determined. The results presented in this thesis provide new mechanistic information 

necessary for understanding the corrosion of these industrially important alloys. 
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Summary for Lay Audience 

Both scientists and engineers continue to investigate the effect of alloy composition on 

corrosion performance. Knowledge of this relationship is essential for the accurate selection 

of materials used in the nuclear, aerospace, petrochemical, chemical processing, and other 

industries. While stainless steels are among the most commonly used alloys, during exposure 

to aggressive conditions they can fail due to elevated corrosion rates and localized corrosion 

processes. Such conditions include strong acids, strong oxidants, aggressive anions, and/or 

high temperatures. Under these conditions, highly corrosion resistant materials should be 

employed, for example, Ni-based alloys containing additions of Cr and Mo, sometimes referred 

to as Superalloys. The corrosion resistance exhibited by these alloys is the result of a protective 

oxide layer formed at the outermost surface of the alloy, which acts as a barrier to continued 

corrosion. Since countless variations of Ni-Cr-Mo alloys exist commercially, accurate material 

selection necessitates a thorough understanding of the relationship between composition and 

corrosion behaviour. The results presented in this thesis provide new mechanistic details 

necessary to understand and predict the corrosion of these industrially important alloys. 

 



 

v 

 

Co-Authorship Statement 

This thesis includes both published, Chapters 3-6, and submitted data, Chapter 7. For all 

chapters, I (Jeffrey D. Henderson) have acted as the primary investigator and author, with the 

following contributions from co-authors: 

Chapter 3: This manuscript was co-authored by Ms. Baian Almusned, Dr. Mojtaba Momeni, 

Ms. Samantha Anderson, Dr. Vahid Dehnavi, Dr. Dmitrij Zagidulin, Dr. David Shoesmith, and 

Dr. James Noël (J. Electrochem. Soc. 2020, 167 (13), 131512). B.A. and S.A. assisted with 

electrochemical measurements. M.M., V.D., D.S., and J.N. assisted in the interpretation of 

data. D.Z. designed the software used to quantify breakdown behavior. J.D.H. prepared the 

first draft of the manuscript. All co-authors assisted in editing the original manuscript. 

Chapter 4: This manuscript was co-authored by Dr. Xuejie Li, Dr. David Shoesmith, Dr. 

James Noël, and Dr. Kevin Ogle (Corros. Sci. 2019, 147, 32-40). J.D.H. and X.L. conducted 

all experimental work. X.L., D.S., J.N., and K.O. assisted in the interpretation of data. J.D.H. 

prepared the first draft of the manuscript. All co-authors assisted in editing the original 

manuscript. 

Chapter 5: This manuscript was co-authored by Dr. Xuejie Li, Dr. Fraser Filice, Dr. Dmitrij 

Zagidulin, Dr. Mark Biesinger, Mr. Brad Kobe, Dr. David Shoesmith, Dr. Kevin Ogle, and Dr. 

James Noël (J. Electrochem. Soc. Accepted, DOI: 10.1149/1945-7111/abe47a). J.D.H. and 

X.L. conducted all experimental work. F.F. and D.Z. assisted with glove box apparatus. M.B. 

and B.K. assisted with XPS data. X.L., D.W., K.O., and J.N. assisted in the interpretation of 

data. J.D.H. prepared the first draft of the manuscript. All co-authors assisted in editing the 

original manuscript. 

Chapter 6: This manuscript was co-authored by Dr. Nafiseh Ebrahimi, Dr. Vahid Dehnavi, 

Dr. Mengnan Guo, Dr. David Shoesmith, and Dr. James Noël (Electrochim. Acta. 2018, 283, 

1600-1608). J.D.H. conducted all experimental work with N.E. and M.G. providing minor 

assistance. N.E., V.D., D.S., and J.N assisted in the interpretation of data. J.D.H. prepared the 

first draft of the manuscript. All co-authors assisted in editing the original manuscript. 



 

vi 

 

Chapter 7: This manuscript was co-authored by Dr. Sridhar Ramamurthy, Dr. Fraser Filice, 

Dr. Mark Biesinger, Dr. David Shoesmith, Dr. G. Bryce McGarvey, and Dr. James Noël (2021, 

Submitted). J.D.H. conducted all experimental work with F.F. providing minor assistance. S.R., 

D.S., G.B.M. and J.N. assisted in the interpretation of data. J.D.H. prepared the first draft of 

the manuscript. All co-authors assisted in editing the original manuscript. 



 

vii 

 

Acknowledgments 

First, I would like to thank my supervisors, Dr. Dave Shoesmith and Dr. Jamie Noël, for 

providing the resources and guidance necessary to complete my Ph.D. studies. While at times 

I am sure I drove you both crazy, you pushed me to learn, motivated me when I felt 

discouraged, and gave me the freedom to explore my project. Most importantly, you did so 

with patience, a sense of humor, and a smile. I couldn’t have asked for a better team. 

I would also like to thank the entire Shoesmith/Noël research groups. While there are too many 

to name individually, I want to thank a few individuals for their specific role during my 

graduate studies: Dr. Dmitrij Zagidulin, thank you for giving me a hard time when needed (and 

not needed). You kept my research moving forward and pushed me to learn. Dr. Vahid 

Dehnavi, Dr. Jian Chen, and Dr. Mojtaba Momeni, thank you for the many conversations we 

shared, for your research advice, and for (gently) pointing out my mistakes. Lastly, I want to 

acknowledge the undergraduate research students whom I had the pleasure of supervising: 

Alyssa Coelho, Samantha Anderson, Baian Almusned, and Adam Morgan. 

I would also like to thank the people outside of our research groups whom I was fortunate to 

work alongside. Again, there are too many to name, but I want to single out a few individuals: 

Dr. Mark Biesinger, Mr. Brad Kobe, and Dr. Sridhar Ramamurthy at Surface Science Western, 

for always having an open door, a willingness to go through data, and for their guidance and 

encouragement during my time at Surface Science Western. Dr. Bryce McGarvey for his help 

and guidance in carrying out the fluoride-based experiments. Mr. Ivan Barker for his help and 

guidance in conducting analyses at the Zircon and Accessory Phase Laboratory. Mr. Brian 

Dalrymple and Mr. Frank Van Sas from the Physics and Astronomy Machine Shop and Mr. 

Clayton Cook and Mr. Dan Sweiger from University Machine Services for their help in 

bringing our research ideas to life. 

I also want to acknowledge everyone I met and worked with during my time at the École 

Nationale Supérieure de Chimie de Paris (Chimie ParisTech). Much of my success in Paris, I 

owe to my supervisors, Dr. Kevin Ogle and Dr. Philippe Marcus. Through these collaborations, 

I was fortunate to work alongside members of their research teams, all of whom made me feel 

welcome, were patient with my poor French, and were great mentors. While there are too many 



 

viii 

 

people to name individually, I would like to acknowledge Mr. Xuejie (Jackie) Li for his support 

during my time in Paris. 

Lastly, I would like to acknowledge the support of my family. To parents, Mary-Ellen and Dan 

Henderson, I couldn’t have done this without your unconditional love and support. While the 

research topics were foreign to you, you always showed interest and supported my progress 

and accomplishments. Last, but not least, I want to thank my girlfriend, Courtney Fast, for 

putting up with me at my best and my worst. I couldn’t have done this without your endless 

encouragement, love, support, and humour. I should apologize though, for all the weekends 

worked in my first three years, anyone else would have thought I was crazy…  



 

ix 

 

 

 

 

 

 

 

 

This thesis is dedicated to my parents, 

Mary-Ellen and Dan Henderson 

 



 

x 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Summary for Lay Audience ............................................................................................... iv 

Co-Authorship Statement.................................................................................................... v 

Acknowledgments............................................................................................................. vii 

Table of Contents ................................................................................................................ x 

List of Tables ................................................................................................................... xvi 

List of Figures ................................................................................................................ xviii 

List of Appendices ........................................................................................................ xxvii 

List of Symbols and Acronyms.................................................................................... xxviii 

Chapter 1 ........................................................................................................................... 1 

1 Introduction .................................................................................................................... 1 

1.1 Project motivation ................................................................................................... 1 

1.2 Ni-Cr-Mo alloys ...................................................................................................... 2 

1.2.1 Nickel .......................................................................................................... 2 

1.2.2 Chromium ................................................................................................... 3 

1.2.3 Molybdenum ............................................................................................... 4 

1.2.4 Other alloying elements .............................................................................. 4 

1.3 Introduction to aqueous corrosion .......................................................................... 4 

1.3.1 Thermodynamics of aqueous corrosion ...................................................... 4 

1.3.2 Kinetics of aqueous corrosion ..................................................................... 9 

1.4 Passivity ................................................................................................................ 13 

1.4.1 Models and theories for passive film growth ............................................ 15 

1.4.2 Passive films formed on Ni-Cr-Mo alloys ................................................ 18 

1.5 Passive film breakdown ........................................................................................ 23 



 

xi 

 

1.5.1 Crevice corrosion ...................................................................................... 23 

1.5.2 Transpassive dissolution ........................................................................... 28 

1.5.3 The role of aggressive anions ................................................................... 29 

1.5.4 Measuring susceptibility ........................................................................... 30 

1.5.5 The role of alloying elements during breakdown ..................................... 33 

1.6 References ............................................................................................................. 36 

Chapter 2 ......................................................................................................................... 46 

2 Experimental ................................................................................................................ 46 

2.1 Experimental sample ............................................................................................. 46 

2.1.1 Materials ................................................................................................... 46 

2.1.2 Sample preparation ................................................................................... 46 

2.2 Electrochemical experiments ................................................................................ 46 

2.2.1 Electrochemical cells ................................................................................ 46 

2.2.2 Electrochemical techniques ...................................................................... 49 

2.3 Atomic emission spectroelectrochemistry (AESEC) ............................................ 57 

2.3.1 Principles................................................................................................... 58 

2.3.2 Instrumentation ......................................................................................... 59 

2.3.3 Data treatment ........................................................................................... 61 

2.4 Crevice corrosion experiments ............................................................................. 63 

2.4.1 Crevice assembly ...................................................................................... 63 

2.4.2 Electrochemical cell .................................................................................. 64 

2.4.3 Galvanostatic polarization ........................................................................ 66 

2.5 Surface analytical techniques ................................................................................ 66 

2.5.1 Electron imaging and spectroscopy .......................................................... 66 

2.5.2 X-ray photoelectron spectroscopy ............................................................ 70 

2.6 References ............................................................................................................. 72 



 

xii 

 

Chapter 3 ......................................................................................................................... 75 

3 Investigating the influence of Cr and Mo additions to commercial Ni-based alloys 

exposed to neutral and acidic chloride solutions.......................................................... 75 

3.1 Introduction ........................................................................................................... 75 

3.2 Experimental ......................................................................................................... 77 

3.2.1 Sample preparation ................................................................................... 77 

3.2.2 Electrochemical methods .......................................................................... 78 

3.3 Results ................................................................................................................... 79 

3.3.1 Corrosion potential (ECORR) and polarization (Rp) measurements ............ 79 

3.3.2 Electrochemical impedance ...................................................................... 83 

3.3.3 Dynamic and static polarization................................................................ 90 

3.4 Discussion ............................................................................................................. 96 

3.4.1 Passive films formed under neutral conditions ......................................... 96 

3.4.2 Passive films formed under acidic conditions .......................................... 97 

3.4.3 The role of the oxygen reduction reaction ................................................ 99 

3.5 Conclusion ............................................................................................................ 99 

3.6 References ........................................................................................................... 101 

Chapter 4 ....................................................................................................................... 106 

4 Molybdenum surface enrichment and release during transpassive dissolution of Ni-

based alloys ................................................................................................................ 106 

4.1 Introduction ......................................................................................................... 106 

4.2 Experimental ....................................................................................................... 108 

4.2.1 Materials ................................................................................................. 108 

4.2.2 Electrochemical measurements ............................................................... 109 

4.2.3 AESEC measurements and data treatment ............................................. 110 

4.3 Results ................................................................................................................. 112 

4.3.1 Cyclic polarization .................................................................................. 112 



 

xiii 

 

4.3.2 Potentiostatic polarization ....................................................................... 116 

4.3.3 Mo enrichment ........................................................................................ 120 

4.4 Discussion ........................................................................................................... 123 

4.5 Conclusions ......................................................................................................... 126 

4.6 References ........................................................................................................... 127 

Chapter 5 ....................................................................................................................... 131 

5 Investigating the role of Mo and Cr during the activation and passivation of Ni-based 

alloys in acidic chloride solution................................................................................ 131 

5.1 Introduction ......................................................................................................... 132 

5.2 Experimental ....................................................................................................... 133 

5.2.1 Materials ................................................................................................. 133 

5.2.2 Electrochemical methods ........................................................................ 134 

5.2.3 AESEC measurements and data treatment ............................................. 135 

5.2.4 XPS measurements ................................................................................. 138 

5.3 Results and discussion ........................................................................................ 140 

5.3.1 Potentiodynamic polarization behaviour ................................................ 140 

5.3.2 Potentiostatic polarization behaviour ...................................................... 144 

5.3.3 Surface analysis ...................................................................................... 155 

5.4 Conclusions ......................................................................................................... 160 

5.5 References ........................................................................................................... 161 

Chapter 6 ....................................................................................................................... 166 

6 The role of internal cathodic support during the crevice corrosion of Ni-Cr-Mo alloys

 .................................................................................................................................... 166 

6.1 Introduction ......................................................................................................... 166 

6.2 Experimental ....................................................................................................... 169 

6.2.1 Material preparation ................................................................................ 169 

6.2.2 Electrochemical setup ............................................................................. 170 



 

xiv 

 

6.2.3 Surface analysis ...................................................................................... 171 

6.3 Results and discussion ........................................................................................ 172 

6.3.1 Galvanostatic crevice corrosion .............................................................. 172 

6.3.2 Potential behaviour of C-22 .................................................................... 173 

6.3.3 Potential behaviour of different alloys .................................................... 175 

6.3.4 Internal cathodic support......................................................................... 177 

6.3.5 Damage progression................................................................................ 182 

6.4 Conclusions ......................................................................................................... 186 

6.5 References ........................................................................................................... 187 

Chapter 7 ....................................................................................................................... 191 

7 Investigating the corrosion behaviour of corrosion resistant alloys in solutions 

containing dilute fluoride ions ................................................................................... 191 

7.1 Introduction ......................................................................................................... 191 

7.2 Experimental ....................................................................................................... 193 

7.2.1 Material preparation ................................................................................ 193 

7.2.2 Electrochemical measurements ............................................................... 195 

7.2.3 Surface analysis ...................................................................................... 197 

7.2.4 Solution analysis ..................................................................................... 197 

7.3 Results and discussion ........................................................................................ 197 

7.3.1 Behaviour at the corrosion potential ....................................................... 197 

7.3.2 Potentiodynamic polarization behaviour ................................................ 200 

7.3.3 Potentiostatic polarization behaviour ...................................................... 206 

7.4 Conclusions ......................................................................................................... 217 

7.5 References ........................................................................................................... 218 

Chapter 8 ....................................................................................................................... 222 

8 Conclusions and future work ..................................................................................... 222 



 

xv 

 

8.1 Conclusions ......................................................................................................... 222 

8.2 Future work ......................................................................................................... 225 

Appendices ...................................................................................................................... 228 

Curriculum vitae ............................................................................................................. 231 



 

xvi 

 

List of Tables 

Table 2.1 - Transfer functions for common circuit elements [1,7]. ........................................ 55 

Table 3.1 - Nominal compositions of the examined alloys (wt.%) as reported by Haynes 

International. Maximum allowable concentrations are indicated by ‘M’. The balance of the 

composition is nickel in each of these alloys. ......................................................................... 77 

Table 3.2 - Actual compositions of the examined alloys (wt.%) as determined by ICP-AES. 

Chemical analysis was performed in accordance with ASTM E1019-18, E1097-12, and E1479-

16............................................................................................................................................. 78 

Table 4.1 - Nominal compositions (wt.%) as reported by Haynes International. M indicates the 

maximum concentration of an individual alloying element, while, Bal. indicates the alloying 

element making up the balance due to fluctuations in composition. .................................... 108 

Table 4.2 - Alloy composition (wt.%) as obtained by GD-OES compositional analysis. .... 109 

Table 4.3 - Experimental emission lines and limits of detection. ......................................... 111 

Table 4.4 - Approximate potential of zero current on the forward scan, Ei=0, and passive current 

density, ipass, estimated at 0.200 V vs Ag/AgCl. Values are averaged over repeat experiments.

............................................................................................................................................... 114 

Table 4.5 - Reweighted alloy compositions, considering Ni, Cr, Mo, and Fe, and faradaic yields 

determined for potentiostatic experiments shown in Figure 4.3 and Figure 4.4................... 119 

Table 5.1 - As reported by Haynes International, the nominal composition of Hastelloy samples 

are summarized. Values are given in wt.% where M indicates the maximum concentration of 

an individual alloying element, while, Bal. indicates the alloying element making up the 

balance due to fluctuations in composition. .......................................................................... 133 

Table 5.2 - Summary of the empirically determined compositions for alloy BC-1, C-22, and 

G-35. Values are given in wt.%. Analysis carried out by Cambridge Materials Testing Limited 

according to ASTM E1019-18, ASTM E1097-12, and ASTM E1479-16. .......................... 134 



 

xvii 

 

Table 5.3 - Experimental emission lines and limits of detection. ......................................... 136 

Table 5.4 - Surface composition (at.%) of G-35, C-22, and BC-1 after surface activation 

(including spontaneous passivation) and electrochemically-assisted passivation processes, 

considering the Ni 2p3/2, Cr 2p, and Mo 3d signals. ............................................................. 156 

Table 6.1 - Nominal compositions in weight (wt.) % of studied alloys as reported by Haynes 

International. ‘Bal.’ indicates alloying element which constitutes the balance. ‘M’ indicates an 

alloying or impurity element’s maximum weight percentage. ............................................. 169 

Table 7.1 - Nominal compositions (wt.%) of studied alloys. M indicates an alloying element’s 

maximum concentration, while, Bal. indicates the element making up the balance due to 

fluctuations in composition. * indicates that concentration also contains tantalum. ............ 194 

Table 7.2 - Normalized surface compositions (at.%), determined by XPS, of alloys after 

exposure to 0.1 M Na2SO4 or 0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− (pH 7). ....... 200 

Table 7.3 - Surface composition (at.%), determined by XPS, of C2000 coupons immersed in a 

solution containing 0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− (pH 5 and 80°C) and 

polarized at the indicated potential for 8 h. The contribution of the C 1s signal has been factored 

out of the reported data. ........................................................................................................ 214 

Table 7.4 - Surface composition (at.%), determined by XPS, of SS2205 coupons immersed in 

a solution containing 0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− (pH 5 and 80°C) and 

polarized at the indicated potential for 8 h. The contribution of the C 1s signal has been factored 

out of the reported data. ........................................................................................................ 215 

 

file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023821
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023821
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023821


 

xviii 

 

List of Figures 

Figure 1.1 - Concentration (wt.%) of major alloying elements in Hastelloy BC-1, C-22, G-35, 

and G-30, according to the nominal compositions reported by Haynes International.............. 3 

Figure 1.2 - Simplified Pourbaix (or E-pH) diagrams for the (A) H2O, (B) Ni, (C) Cr, (D) Mo, 

(E) W, and (F) Fe, at 25°C. The concentration of dissolved metal cations used for calculations 

was 1 x 10–6 M. Regions of immunity, corrosion, and passivation are indicated based on the 

stability of metallic, soluble, and insoluble species, respectively. The original equilibrium data 

may be found in the ‘Atlas of electrochemical equilibria in aqueous solution’ [2]. ................ 6 

Figure 1.3 - Current-Potential (or Butler-Volmer) relationship for the non-specific reaction 

given in Equation 1.15. The contributions of the anodic and cathodic reactions are shown as 

blue and red dotted lines, respectively. The sum, or measured current, is represented as a solid 

black line. ................................................................................................................................ 10 

Figure 1.4 - Current-Potential relationship of two half reactions coupled in a corrosion process. 

The resulting relationship, shown in black, describes the corrosion process. ........................ 11 

Figure 1.5 - Evans diagram (log(i)-E) for two half reactions coupled in a corrosion process. 

For simplicity, the nonlinear portion of each half reaction, i.e., near the respective equilibrium 

potentials, is omitted. .............................................................................................................. 13 

Figure 1.6 - Graphical representation of the polarization behaviour of an alloy exhibiting 

active-passive behaviour. ........................................................................................................ 14 

Figure 1.7 - Relative potential for (A) a bare metal and (B) a passive metal exposed in an 

electrolyte. The relative potential drop at the metal/electrolyte, metal/film, and film/electrolyte 

are shown in red. ..................................................................................................................... 16 

Figure 1.8 - Simplified schematic of the processes considered by the Point Defect Model. The 

injection of M into the oxide occurs by either (1) the annihilation of a cation vacancy (VM
x–) 

or (2) the creation of anion vacancy (VO
2+). At the oxide/electrolyte interface, M is released 

into solution by either (3) the creation of VM
x– or by the  (4) chemical/electrochemical 

file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023898
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023898
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023899
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023899
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023899
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023899
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023899
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023900
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023900
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023900
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023900
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023901
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023901
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023902
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023902
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023902
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023903
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023903
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023904
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023904
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023904
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023905
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023905
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023905
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023905


 

xix 

 

dissolution of the oxide. Incorporation of O into the lattice occurs due to (5) the reaction of 

adsorbed H2O/O2 with VO
2+. ................................................................................................... 17 

Figure 1.9 - Schematic representation showing the processes during the propagation of crevice 

corrosion, as described by critical crevice solution theory. .................................................... 24 

Figure 1.10 - Schematic representation of the IR drop theory. The high solution resistance 

within the occluded geometry causes the potential within the crevice to decrease relative to 

that in bulk solution. For an alloy exhibiting active-passive polarization behaviour, at a critical 

depth into the crevice, indicated by dashed lines, the resistance is sufficient to decrease the 

local potential into the active region. ...................................................................................... 27 

Figure 1.11 - Comparison of Critical Crevice Temperature with PREN values.  PREN values 

were calculated according to Equation 1.24. Values reported as a range are indicated with 

dashed lines. Values reported as less than or greater than are indicated by arrows. .............. 31 

Figure 1.12 - Graphical representation of a cyclic polarization curve for an alloy which rapidly 

forms a passive film. At high applied potentials film breakdown leading to pitting or crevice 

corrosion is indicated by the red line and breakdown leading to transpassive dissolution by the 

blue line, with the values of EB, ER, and ET indicated. ........................................................... 32 

Figure 1.13 - (a) Graphical representation and (b) qualitative distribution of metal elements 

within a corroded crevice coupon. Originally published by Shan and Payer [88]. ................ 34 

Figure 1.14 - Graphical representation (left) showing the (1) initiation, (2) propagation, and (3) 

stifling of active areas during crevice corrosion of alloy BC-1 exposed to 5 M NaCl solution 

at 120°C. The corresponding current and potential measurements are shown (right). Originally 

published by Ebrahimi et al. [55]. .......................................................................................... 36 

Figure 2.1 - Schematic of the three-compartment glass cell used to conduct electrochemical 

measurements. Components referenced in-text are also indicated. ........................................ 47 

Figure 2.2 - Schematic of the (A) fully assembled PTFE electrochemical cell placed within the 

heating reservoir. Insets show the cross section of the electrochemical cell in the  (B) three 

electrode and (C) eight electrode configuration. ..................................................................... 48 

file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023905
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023905
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023906
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023906
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023907
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023907
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023907
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023907
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023907
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023908
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023908
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023908
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023909
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023909
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023909
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023909
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023910
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023910
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023911
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023911
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023911
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023911
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023912
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023912
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023913
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023913
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023913


 

xx 

 

Figure 2.3 - Graphical representation of the generalized i-E relationship for a reaction described 

by W-T (B-V) kinetics. Indicated in the red inset is the linear region considered in linear 

polarization resistance measurements. .................................................................................... 50 

Figure 2.4 - Schematic showing the sinusoidal input potential (EINPUT) and the corresponding 

output current (IOUTPUT) signal in electrochemical impedance spectroscopy. While the 

frequency remains unchanged both the amplitude and phase of IOUTPUT can differ from those 

of EINPUT. ................................................................................................................................. 52 

Figure 2.5 - An impedance vector with the real (Z’) and imaginary components (Z’’) shown. 

The magnitude of the impedance (|Z|) and the relationship to the phase shift (θ) are indicated.

................................................................................................................................................. 54 

Figure 2.6 - Simulated impedance response of an equivalent circuit consisting of three circuit 

elements, shown as inset in panel (A). Values used for the circuit elements are as follows: RS 

= 100 Ω cm2, RCT = 1000 Ω cm2, and CDL = 1 x 10–5 F cm2. The response is represented in 

both (A) Nyquist and (B) Bode formats. ................................................................................ 54 

Figure 2.7 - Schematic of the AESEC setup, including the electrochemical flow cell (left) and 

the inductively coupled plasma atomic emission spectrometer (right). .................................. 60 

Figure 2.8 - Schematic of the V-shaped crevice electrode. .................................................... 63 

Figure 2.9 - Schematic of the Hastelloy pressure vessel outfitted as a three- electrode 

electrochemical cell. ............................................................................................................... 65 

Figure 2.10 - A representation of the interaction volume produced from penetration of the 

primary electron beam into the sample. The signals produced by these interactions and their 

relative depths are shown. ....................................................................................................... 67 

Figure 2.11 - Schematic showing the production of Kikuchi bands due to the diffraction of a 

primary electron beam. ........................................................................................................... 69 

Figure 2.12 - Production of a photoelectron via the interaction of an incident X-ray with an 

originally atomically bound core shell electron. The K.E. of the ejected photoelectron is 

measured by the spectrometer. ................................................................................................ 70 

file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023914
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023914
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023914
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023915
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023915
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023915
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023915
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023916
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023916
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023916
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023917
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023917
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023917
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023917
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023918
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023918
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023919
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023920
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023920
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023921
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023921
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023921
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023922
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023922
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023923
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023923
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023923


 

xxi 

 

Figure 3.1 - Corrosion potential (ECORR) and polarization resistance (RP) measurements on 

alloys BC-1, C-22, G-35, and G-30 exposed to (A) aerated 3 M NaCl, (B) aerated 1 M HCl + 

2 M NaCl, and (C) deaerated 1 M HCl + 2 M NaCl (75°C). .................................................. 80 

Figure 3.2 - EIS recorded on alloys BC-1, C-22, G-35, and G-30 after 6-h exposure to aerated 

3 M NaCl (75°C). Points indicate experimental data while solid curves represent the result of 

equivalent circuit fitting. ......................................................................................................... 84 

Figure 3.3 - Dependence of (A) film resistance (Rf), film capacitance (Cf), and (B) interfacial 

resistance (Rint) on alloy Cr content after 6-h exposure to 3 M NaCl solution (75°C). Values of 

capacitance were obtained from CPEf according to the procedure proposed by Brug et al. [38]. 

The error bars indicate the goodness of fit obtained from linear least squares fitting. ........... 85 

Figure 3.4 - EIS recorded on alloys BC-1, C-22, G-35, and G-30 after 6-h exposure to aerated 

1 M HCl + 2 M NaCl (75°C). Points indicate experimental data while solid curves represent 

the result of equivalent circuit fitting. ..................................................................................... 87 

Figure 3.5 - EIS recorded on alloys BC-1, C-22, G-35, and G-30 after 6-h exposure to deaerated 

1 M HCl + 2 M NaCl (75°C). Points indicate experimental data while solid curves represent 

the result of equivalent circuit fitting. ..................................................................................... 88 

Figure 3.6 - Relationship between Mo content and the total resistance (ΣR) calculated from 

equivalent circuit fitting of impedance spectra obtained in aerated and deaerated 1 M HCl + 2 

M NaCl solution (75°C). The error bars indicate the goodness of fit obtained from linear least 

squares fitting. ......................................................................................................................... 90 

Figure 3.7 - Polarization behaviour of alloys BC-1, C-22, G-35, and G-30 in (A) aerated 3 M 

NaCl, (B) aerated 1 M HCl + 2 M NaCl (B), and (C) deaerated 1 M HCl + 2 M NaCl (75°C).

................................................................................................................................................. 91 

Figure 3.8 - Cathodic current densities related to O2 reduction throughout the region of film 

formation in 1 M HCl + 2 M NaCl (75°C). Values obtained from the difference in current 

densities measured in naturally aerated and deaerated solutions; iaerated – ideaerated = (ianodic + 

icathodic) - ianodic. Dashed lines indicate the offset locations of i = 0. ........................................ 93 

file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023924
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023924
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023924
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023925
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023925
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023925
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023926
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023926
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023926
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023926
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023927
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023927
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023927
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023928
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023928
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023928
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023929
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023929
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023929
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023929
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023930
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023930
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023930
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023931
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023931
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023931
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023931


 

xxii 

 

Figure 3.9 - Current-time response of potentiostatic experiments at 0 V (vs. SCE) on alloys 

BC-1, C-22, G-35, and G-30 in deaerated 1 M HCl + 2 M NaCl (75°C). Data collected over an 

8-h period are shown in (A), while (B) shows a magnified region for better comparison of 

current transients. Quantification of the average event frequency and maximum amplitude is 

given in (C) and (D), respectively........................................................................................... 95 

Figure 4.1 - (A) Cyclic polarization behaviour of alloy (A) BC-1, C-22, G-35, and (B) G-30 in 

1 M NaCl at 75 °C. ................................................................................................................ 113 

Figure 4.2 - Normalized dissolution rates of alloys BC-1, C-22, G-35, and G-30, during cyclic 

polarization experiments in 1 M NaCl at 75 °C. All dissolution rates are normalized against the 

bulk material, Ni, Equation 4.3. ............................................................................................ 115 

Figure 4.3 - Normalized dissolution rates of alloys BC-1, C-22, G-35, and G-30, during 

potentiostatic polarization experiments in 1 M NaCl at 75 °C. All dissolution rates are 

normalized against the bulk material, Ni, Equation 4.3. ....................................................... 117 

Figure 4.4 - Instantaneous elemental, iM, sum, iΣ, and convoluted electrochemical current, ie*, 

for potentiostatic polarization experiments in 1 M NaCl at 75 °C. ....................................... 118 

Figure 4.5 - Normalized dissolution rates of alloy G-30 in 1 M NaCl at 75 °C with varied times 

polarized in the transpassive region, identified as step 2. All dissolution rates are normalized 

against the bulk material, Ni, Equation 4.3. .......................................................................... 121 

Figure 4.6 - Comparison of the enrichment and dissolution of Mo species during transpassive 

dissolution and repassivation of alloy G-30, respectively. (A) graphical depiction of areas 

considered as enrichment / dissolution of molybdenum species. (B) Comparison of enrichment 

and dissolution as a function of time polarized in the transpassive region. .......................... 122 

Figure 4.7 - Solubility of Mo(VI), MoO4
2−, as a function of pH. Calculation done for a 

[MoO4
2−] of 1 mol L−1, however, the dotted line indicates how solubility is anticipated to 

change as concentration increases. Data reproduced from Hydra-Medusa software. .......... 124 

file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023932
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023932
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023932
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023932
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023932
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023933
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023933
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023934
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023934
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023934
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023935
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023935
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023935
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023936
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023936
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023937
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023937
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023937
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023938
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023938
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023938
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023938
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023939
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023939
file:///C:/Users/jhende64/My%20Cloud/University%20Files/Graduate%20Studies/Written/Thesis/Henderson_Thesis_Formatted_compress_revisions2.docx%23_Toc64023939


 

xxiii 

 

Figure 4.8 - Graphical representation of the surface enrichment during the onset of transpassive 

dissolution and subsequent release of Mo species during the repassivation of Ni-based alloys.

............................................................................................................................................... 125 

Figure 5.1 - Polarization behaviour of alloys BC-1, C-22, and G-35 in 1 M HCl at 75°C. For 

alloy G-35, the region of net cathodic current at applied potentials positive of the active-to-

passive transition (–0.125 V to –0.113 V) is indicated (*). Alloy compositions (wt.%) shown 

here were taken from Table 5.2. ........................................................................................... 139 

Figure 5.2 - Comparison of the convoluted electrochemical current density (ie
*) with the 

instantaneous elemental (iM) and sum current densities (iΣ) for dynamic polarization 

experiments conducted in naturally aerated 1 M HCl at 75°C.  Both the untreated (ie) and the 

convoluted (ie
*) electrochemical current densities are included for reference. The locations of 

i = 0 for iΣ (and ie
*), iNi, iCr, and iMo are indicated by the dashed lines. Values of iM were treated 

with a moving boxcar average (n=5) in order to reduce noise resulting from relatively low 

dissolution rates. Alloy compositions (wt.%) shown here were taken from Table 5.2. ....... 141 

Figure 5.3 - Trends in Cr and Mo accumulation and excess dissolution during dynamic 

polarization experiments, Figure 5.1. Values of νNi were normalized against the element M, 

either Cr or Mo. For each alloy, values of congruent dissolution (y = 0) are indicated by the 

dotted line. Alloy compositions (wt.%) shown here were taken from Table 5.2. ................ 143 
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Chapter 1  

1 Introduction 

1.1 Project motivation 

As reported by the National Association of Corrosion Engineers, the cost of corrosion 

accounts for approximately 3.4% of the global GDP (US$2.55 trillion) [1]. Concerns 

associated with corrosion processes, including the cost, but also public and environmental 

health, are often mitigated by employing corrosion-resistant materials in place of 

conventional steels when service conditions are aggressive. Nickel (Ni) alloys, containing 

various amounts of chromium (Cr) and molybdenum (Mo), represent a collection of 

materials commonly used in place of conventional steels, due to their excellent resistance 

to highly corrosive environments. The ability of these alloys to resist corrosion is attributed 

to the formation of a passive oxide layer, primarily containing Cr and Mo. Despite the 

layer’s ability to maintain low corrosion rates, breaches may result in localized corrosion, 

either as pits (on the exposed surface) or crevices (within occluded regions). These 

processes threaten material integrity, since they can penetrate deep into the bulk alloy, are 

often undetected during routine inspections, and can lead to material failure. Depending on 

the application, failure by such processes can have health, safety, and economic 

implications. Despite efforts to understand the corrosion behaviour of Ni-Cr-Mo alloys, 

many features remain unresolved, serving as the motivation for the work presented here.  

Optimizing the composition of these alloy necessitates a thorough mechanistic 

understanding of the individual alloying elements. While intact, the passive film enforces 

low uniform corrosion rates, allowing for accurate lifetime predictions. However, 

breakdown processes can lead to high rates of dissolution and volatile corrosion rates. The 

work presented herein investigates the corrosion behaviour of commercially available Ni-

Cr-Mo alloys. 

To elucidate the effect of composition on corrosion performance, four commercially 

available alloys were selected based on their varying Cr and Mo contents. The 

concentration of the major alloying elements, i.e., Ni, Cr, Mo, W, and Fe, present in these 
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alloys is shown in Figure 1.1. A combination of electrochemical, spectroelectrochemical, 

and surface measurements have been used to investigate their behaviour under active, 

passive, and transpassive conditions. While electrochemical methods are sensitive and 

provide an overall measure of the electrochemical/corrosion behaviour, 

spectroelectrochemical techniques provide in situ analytical capabilities, allowing us to 

determine the fate of individual alloying elements. Additional investigations explore the 

mechanism of localized corrosion, specifically the role of cathodic reactions during crevice 

corrosion. Lastly, the effect of fluoride and chloride is discussed in the context of natural 

and accelerated corrosion conditions. 

Data presented throughout this thesis, provide insight into the behaviour of various 

commercial alloys, as well as information regarding the action of individual alloying 

elements. As a result, scientists and engineers may continue to work toward optimizing 

material compositions and improving material selection criteria. 

1.2 Ni-Cr-Mo alloys 

The use of Ni-based alloys in most applications is prohibited by their high cost. Generally, 

they are employed only when the corrosion resistance of conventional materials  

(e.g., stainless steels) is unsatisfactory or when safety is of paramount importance. The 

nuclear, aerospace, agricultural, pulp and paper, pharmaceutical, petrochemical, and 

chemical processing industries represent areas where Ni-based alloys are employed. To 

optimize the performance of these alloys, the composition and manufacturing processes 

are tailored toward the intended service environment. As a result, many Ni-based alloys 

exist commercially, with those containing Cr and Mo common due to their excellent 

corrosion resistance in aggressive environments. 

1.2.1 Nickel 

By itself, Ni is considered corrosion-resistant in both alkaline and non-oxidizing acidic 

solutions [2]. The mechanical properties of Ni, e.g., ductility and toughness, make 

fabrication by conventional methods possible [3, 4]. When used as an alloy matrix, Ni has 

a high solubility for alloying elements. Cr and Mo can be added up to approximately 35 

and 20 wt.%, respectively, while maintaining a single-phase structure [4], and in the  
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as-received condition, corrosion resistant Ni-based alloys consist of a face-centred cubic 

(FCC) structure. 

1.2.2 Chromium 

For both Ni- and Fe-based alloys, additions of Cr are known to improve corrosion 

resistance in oxidizing environments [3]. This is attributed to the formation of a Cr-rich 

surface oxide which acts as a barrier between the metallic substrate and the oxidizing 

environment. As described by Marcus [5] and Taylor (et al.) [6], the low Cr-Cr bond 

strength and favourable O adsorption energy promote the formation of this protective 

oxide. Critical Cr contents to achieve a protective surface oxide have been reported to be 

in the range of 11-14 wt.% [7, 8]. 

Figure 1.1 - Concentration (wt.%) of major alloying elements in Hastelloy 

BC-1, C-22, G-35, and G-30, according to the nominal compositions 

reported by Haynes International. 
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1.2.3 Molybdenum 

The addition of Mo is known to improve corrosion resistance in non-oxidizing and acidic 

environments [3, 4]. When added to Cr-containing alloys, the stability of the Cr-rich 

surface oxide is improved, especially in acidic chloride solutions. In particular, the ability 

of Mo additions to suppress metal dissolution is essential for the minimization of localized 

film damage. 

1.2.4 Other alloying elements 

While Cr and Mo are generally added in relatively large quantities, commercial Ni-Cr-Mo 

alloys commonly include other alloying elements in smaller quantities. A comprehensive 

summary of all alloying elements found in Ni-based alloys, along with their benefits to 

both corrosion and mechanical properties can be found elsewhere [3, 4]. As indicated in 

Figure 1.1, both W and Fe are found in the examined alloys and are discussed throughout 

this thesis. Additions of W benefit corrosion performance similar to additions of Mo. 

However, the large atomic mass of W necessitates twice as much, by weight, to achieve 

the same benefit as alloyed Mo. In addition to increases in weight, the high cost of W 

compared to Mo makes Mo additions the preferred option. On the other hand, the addition 

of Fe to Ni-based alloys is not to improve corrosion performance, but to reduce the costs 

of production. 

1.3 Introduction to aqueous corrosion 

Thermodynamic calculations predict the spontaneity of a given reaction based on the 

relative energies of the products and reactants. The pathway along which a spontaneous 

reaction proceeds, however, is not determined by thermodynamics but is governed by 

kinetics. 

1.3.1 Thermodynamics of aqueous corrosion 

In general, a redox process involves the coupling of two half-reactions, one an oxidation 

and the other a reduction reaction. In an aqueous corrosion system, the oxidation reaction, 

Reaction 1.1, representing a material degradation process, is coupled to a reduction 

reaction, Reaction 1.2. The two reactions must couple together to maintain charge balance. 
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Assuming the number of electrons transferred is equal for Reactions 1.1 and 1.2, the 

combined corrosion reaction can be expressed as shown in Reaction 1.3. 

 M → Mn+ + n e− (1.1) 

 Ox + n e−  → Red (1.2) 

 M + Ox → Mn+  + Red (1.3) 

For the combined reaction to proceed spontaneously, the potential difference (ΔE) between 

the reduction half-reaction and the oxidation half-reaction must be positive. As stated in 

Equation 1.4, where both (Ee°)Ox/Red and (Ee°)M/Mn+ are expressed as standard reduction 

potentials, if ΔE is positive (i.e., (Ee°)Ox/Red > (Ee°)M/Mn+) then the reaction will proceed 

spontaneously as written in Reaction 1.3. Standard values (°) are those measured under 

standard conditions, i.e., standard temperature (298 K) and concentrations for all 

participating ions (1 M) and gases (1 atm). The potential of a reaction can be related to the 

change in Gibbs’ Free Energy, Equation 1.5, where F is the Faraday constant (96,485 C 

mol–1), and n is the number of electrons transferred. Thermodynamics states that a given 

reaction will proceed only if the change in Gibbs free energy (ΔG) is less than zero. 

Therefore, the Gibbs free energy difference is negative only when ΔE is positive. 

 ∆E° = (Ee°)Ox/Red − (Ee°)M/Mn+ (1.4) 

 ∆G° = −nF∆E° (1.5) 

Under non-standard conditions, the change in Gibbs free energy can be obtained using 

Equation 1.6, where R is the universal gas constant (8.314 J mol–1 K–1), T is the absolute 

temperature (K), and Keq is the equilibrium constant for the reaction. 

 ∆G =  ∆G° + RT ln(Keq) (1.6) 
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Substituting Equation 1.5 into Equation 1.6 yields a means of determining non-standard 

equilibrium potentials (Ee). The resulting expression, known as the Nernst equation, is 

given in Equation 1.7. 

 ∆Ee =  ∆Ee° −
RT

nF
ln(Keq) (1.7) 

For a given system, by calculating Nernst equations for all possible half-reactions, in 

addition to considering solubility equilibria, an E-pH (Pourbaix) diagram can be 

constructed [2, 9]. These diagrams identify the most stable state under a given condition, 

which is then used to say whether a material will be immune (i.e., stable in a metallic state), 

passive (i.e., forms a solid corrosion product), or active (i.e., forms a soluble corrosion 

Figure 1.2 - Simplified Pourbaix (or E-pH) diagrams for the (A) H2O, (B) Ni, (C) Cr, (D) 

Mo, (E) W, and (F) Fe, at 25°C. The concentration of dissolved metal cations used for 

calculations was 1 x 10–6 M. Regions of immunity, corrosion, and passivation are indicated 

based on the stability of metallic, soluble, and insoluble species, respectively. The original 

equilibrium data may be found in the ‘Atlas of electrochemical equilibria in aqueous 

solution’ [2]. 
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product). Simplified E-pH diagrams for H2O and Ni, Cr, Mo, W, and Fe in H2O are shown 

in Figure 1.2 (adapted from the ‘Atlas of Electrochemical Equilibria in Aqueous Solution’ 

[2]). 

The simplest E-pH diagram is that for H2O. Shown in Figure 1.2(A), the diagram consists 

of two boundaries that are dependent on both E and pH. The lower and upper lines represent 

the Ee for the hydrogen evolution (HER) and oxygen reduction (ORR) reactions, 

respectively. 

 2 H2O + 2 e− ⇌ H2 + 2 OH− (1.8) 

For the HER, Reaction 1.8, assuming a partial pressure of H2 of unity and a temperature of 

298 K, the Nernst equation can be written according to Equation 1.9 and simplified to 

Equation 1.10. 

 (Ee)H+/H2
=  0 −

0.059

2
log (

1

(𝑎H+)2
) (1.9) 

 (Ee)H+/H2
=  −0.059(pH) (1.10) 

A similar procedure yields the Nernst equation for the ORR. The region between the two 

lines, Figure 1.2(A), indicates the water stability region which is particularly important in 

corrosion science due to the importance of the ORR and the HER as cathodic reactions. 

For this reason, the water stability region is overlaid on all E-pH diagrams,  

Figure 1.2(B-F). 

Simplified E-pH diagrams defining regions of corrosion, immunity, and passivation for Ni, 

Cr, Mo, W, and Fe are shown in Figure 1.2(B-F). While boundaries for electrochemical 

reactions involving both E and pH are diagonal, some boundaries are either vertical 

(potential-independent acid-base reactions) or horizontal (pH-independent redox 

reactions). For example, the horizontal boundary indicated as (a) in Figure 1.2(C) 

corresponds to the Ee of Reaction 1.11. As described by the corresponding Nernst equation, 
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Equation 1.12, (Ee)Cr2+/Cr depends only on the concentration of Cr2+ in solution and for a 

fixed concentration of Cr2+ yields a horizontal boundary. 

 Cr2+ + 2 e− ⇌ Cr (1.11) 

 (Ee)Cr2+/Cr =  −0.913 −
0.059

2
log (

1

𝑎Cr2+
) (1.12) 

A vertical boundary, (b) in Figure 1.2(C), corresponds to the acid-base solubility 

equilibrium for Reaction 1.13, which does not involve electron transfer and, as a result, is 

independent of potential. The reaction is described by the solubility product (Ksp), Equation 

1.14. 

 2 Cr3+ + 3 H2O ⇌ Cr2O3 + 6 H+ (1.13) 

 Ksp =
(𝑎H+)6

(𝑎Cr3+)2
 (1.14) 

While E-pH diagrams summarize the thermodynamically stable species at equilibrium, 

they yield no kinetic information, leading to several limitations. Firstly, the 

thermodynamically stable species predicted by E-pH diagrams may not be observed 

experimentally, due to kinetic considerations. Moreover, regions of passivation are 

generally assumed for conditions where solid corrosion products are predicted. However, 

whether these solids cause passivation will be governed by the physical properties of the 

solid on the surface (e.g., porosity, adhesion, etc.). To fully understand the corrosion 

process, thermodynamic information must be coupled with kinetic information. Secondly, 

the validity of E-pH diagrams is limited to the equilibrium reactions considered in their 

construction. In the case where solution chemistry is complex and not completely 

understood, the omission of important reactions will result in an inaccurate diagram. This 

is a particularly important limitation for the discussion of alloys, since E-pH diagrams 

typically consider only one metallic system. As a result, the complex chemistry of mixed 

oxides is not captured by traditional E-pH diagrams. However, it is worth mentioning that 
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some researchers have successfully considered mixed metal oxides for compositionally 

complex alloys [6, 10]. 

1.3.2 Kinetics of aqueous corrosion 

While thermodynamic calculations help predict which reactions may occur, the extent and 

rate of corrosion is determined by the reaction kinetics. For corrosion processes, the rate 

can be obtained from mass loss measurements, analyzing solution composition, monitoring 

the production of gases, or by electrochemical measurements. While all these methods 

provide kinetic information, electrochemical measurements benefit from high sensitivity 

and generate mechanistic information. Here, a brief discussion of electrochemical kinetics 

is given in the context of corrosion [9, 11, 12]. 

Kinetic information is obtained electrochemically by measuring the flow of electrons, i.e., 

the current (I). Since measured current increases with surface area, values are typically 

surface area normalized, i.e., current densities (i). Consider the non-specific reversible 

redox reaction given in Reaction 1.15. At Ee, no net reaction occurs, however, the forward 

(anodic, iA) and reverse (cathodic, iC) reactions occur at equal rates, resulting in a net 

current of zero. The magnitude of this reversible process is known as the exchange current 

density (io) and is effectively an electrochemical rate constant for the dynamic equilibrium, 

Equation 1.16. 

 Red ⇌  Ox + n e− (1.15) 

 io = iA = |iC| (1.16) 

When the reaction is polarized away from Ee by an applied potential (EAPP), i.e., an 

overpotential (η = EAPP − Ee) is applied, the relationship between i and η is exponential 

and described by the Butler-Volmer (B-V) equation, Equation 1.17, 

 inet = iA + iC = io [exp [
αA n F

R T
η] − exp [−

αC n F

R T
η]] (1.17) 
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where α is a transfer coefficient (αA + αC = 1) [11, 13]. For Reaction 1.15, a graphical 

representation of Equation 1.17 is shown in Figure 1.3. The partial current contributions of 

the anodic and cathodic reactions are indicated as dashed lines, while the sum current (or 

net current) is indicated as a solid line. If a positive η is applied, the anodic and cathodic 

reactions are accelerated and decelerated, respectively. When the η is sufficiently high, as 

is the case for ηA in Figure 1.3, the cathodic reaction current will approach zero, with the 

net current becoming equal to that for the anodic reaction. In this case, Equation 1.17 can 

be simplified to Equation 1.18. A similar simplification can be adopted for a sufficiently 

negative ηC. 

Figure 1.3 - Current-Potential (or Butler-Volmer) relationship for the non-specific 

reaction given in Equation 1.15. The contributions of the anodic and cathodic reactions 

are shown as blue and red dotted lines, respectively. The sum, or measured current, is 

represented as a solid black line. 
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 inet = iA = io [exp [
α n F

R T
η]] (1.18) 

In a corrosion system, the anodic and cathodic reactions of at least two half-reactions must 

be coupled. For Reactions 1.19 and 1.20, the B-V relationships are represented by the blue 

and red lines in Figure 1.4. When coupled, the two half-reactions are polarized away from 

their equilibrium potentials, resulting in an irreversible system. In the absence of an applied 

potential, the potential will sit at a unique value at which the anodic and cathodic currents 

densities are equal, i.e., iA = |iC|, referred to as the corrosion potential (ECORR). The rate of 

the corrosion reaction at ECORR is described by the corrosion current density (iCORR), 

Equation 1.21. ECORR has no thermodynamic significance, its value is determined by the 

intersection of the anodic and cathodic half-reaction currents; i.e., it is determined by the 

kinetics of the two half-reactions. 

Figure 1.4 - Current-Potential relationship of two half reactions coupled in a corrosion 

process. The resulting relationship, shown in black, describes the corrosion process. 
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 M ⇌  Mn+ + n e− (1.19) 

 Ox + n e−  ⇌  Red (1.20) 

 iCORR = iA = |iC| (1.21) 

The i-E relationship of the coupled half-reactions shares similarities with the B-V equation 

and is described by the Wagner-Traud (W-T) equation, Equation 1.22, 

 inet = iCORR [exp [
αA n F

R T
η] − exp [−

αC n F

R T
η]] (1.22) 

where α are the transfer coefficients of the anodic and cathodic half-reactions, n is the 

number of electrons involved in the balanced corrosion reaction, and η is the overpotential 

relative to ECORR (i.e., η = EAPP − ECORR) [11, 13]. The i-E relationship given by the  

W-T equation is shown by the black curve in Figure 1.4. 

Providing the ECORR is sufficiently distance from both Ee, both reactions can be considered 

to be in their Tafel regions and the i-E relationship can be described by a semi-log plot, 

i.e., log(i)-E, referred to as an Evans diagram, Figure 1.5. Here, the sign of the cathodic 

reaction is neglected, allowing the two half-reactions to be plotted in the same quadrant. 

However, the measured current is still the sum of the cathodic (–) and anodic (+) reactions, 

and the value of ECORR depends on the intersection of the two reactions. While iCORR cannot 

be experimentally measured using an ammeter, measurements of ECORR are easily made 

against a known reference electrode. Using the Evans diagram, changes in ECORR are 

rationalized according to changes in the kinetics of either half-reaction. For instance, a 

decrease in ECORR may be explained by either the acceleration of the anodic reaction (i.e., 

an increase in the slope) or a deceleration of the cathodic reaction. 
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In practice, deviations from the i-E relationship described by the B-V (and W-T) equation 

are commonly observed. The B-V relationship is only valid when the rate of the 

electrochemical reaction is controlled by the charge transfer process. If the reaction 

becomes controlled by the transport of species to, or from the surface, the reaction becomes 

transport limited. This results in the establishment of a limiting current related to the rate 

of mass transport [12]. Similarly, reaction kinetics will be influenced by the formation of 

corrosion products or oxide films formed on the electrode surface. For example, a passive 

film, i.e., an oxide film formed on the electrode surface, can act as a barrier for the 

interaction of the underlying metal with solution. When present, a passive film results in a 

deviation from B-V type kinetics, with the current becoming independent of the EAPP. 

1.4 Passivity 

Formation of a thin surface oxide, commonly referred to as a passive film, is critical in 

maintaining low corrosion rates for many metals and alloys. The passive film forms due to 

the interaction of the bare metallic substrate with an oxidizing environment and is 

characterized by a compact, and chemically inert oxide. Once formed, the film acts as a 

barrier between the reactive metal and the oxidizing environment, therefore limiting the 

continued oxidation process [14, 15]. The electrochemical behaviour of a passive system 

Figure 1.5 - Evans diagram (log(i)-E) for two half reactions coupled in a corrosion 

process. For simplicity, the nonlinear portion of each half reaction, i.e., near the 

respective equilibrium potentials, is omitted. 
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is commonly studied using polarization techniques. As described by Wagner [16], “a metal 

may be called passive when the amount of metal consumed […] is significantly less under 

conditions corresponding to a higher affinity of the reaction”. In other words, increases in 

over-potential, i.e., an increased affinity for oxidation, are expected to increase the anodic 

current (i.e., reaction rate) based on the W-T equation, Equation 1.22, but for a passive 

system, the i-E relationship deviates from that described the W-T equation, with the current 

becoming independent of the applied potential.  

Consider the generalized polarization curve presented in Figure 1.6. As the applied 

potential is increased above the ECORR, the value of log(i) increases almost linearly, as 

described by the W-T equation. For a system capable of passivation, this region is referred 

to as the ‘active’ region. At some critical current density, iCRIT, the reaction rate becomes 

independent of the applied potential and can no longer be described by the W-T equation. 

The potential at which this transition occurs is referred to as the passivation potential 

Figure 1.6 - Graphical representation of the polarization behaviour of an 

alloy exhibiting active-passive behaviour. 
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(EPASS). Once formed, the passive film provides protection, limiting the rate of reaction 

(iPASS) despite continued increases in applied potential. The range of potential in which the 

passive film is stable is referred to as the ‘passive region’. When the applied potential 

exceeds a potential ET, the reaction rate begins to increase in the transpassive region. This 

increase in current is commonly attributed to one, or both, of two processes: transpassive 

dissolution and O2 evolution [13, 14, 17]. For Cr-containing alloys, the transpassive 

dissolution reaction involves the electrochemical conversion of the protective Cr(III) oxide 

into soluble Cr(VI) species [14]. This process is discussed in more detail in the section on 

passive film breakdown. 

In the generalized polarization behaviour described above, three distinct regions are 

identified: the active, passive, and transpassive regions. In some cases, for example during 

the polarization of corrosion-resistant alloys exposed to non-aggressive environments, the 

active region may not be observed. Instead, as the applied potential is increased, values of 

log(i) approach the plateau, described by iPASS. On a thermodynamic basis, this behaviour 

can be explained when the system transitions from a region of immunity directly into a 

region of passivity, however, this may also occur due to the presence of an oxide film 

formed before the polarization measurement. 

1.4.1 Models and theories for passive film growth 

Passive film formation occurs as a result of the potential difference between the metal and 

the oxidizing electrolyte (or atmosphere). For a bare metal, the potential drop occurs at the 

metal/electrolyte interface as shown in Figure 1.7(A). When a passive film is formed, a 

portion of the potential drop becomes distributed across the growing film, as shown in 

Figure 1.7(B). This results in the establishment of an electric field (i.e., charge separation) 

which promotes the migration of charged species across the oxide. As a result of an 

interfacial potential drop and the development of an electric field, passive film growth 

occurs via complex processes involving both interfacial reactions and transport processes 

within the growing oxide. Several models have been proposed to explain the mechanism 

of oxide growth. While a summary of key models is provided here, a critical review of the 

different models can be found in the work of Seyeux et al. [18]]. 
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Introduced by Cabrera and Mott [19], the High-Field Model (HFM) proposes that film 

growth is related to an electric field established across the thin oxide film. The electric field 

serves as a driving force for ionic migration of cations through the film where they can 

react with adsorbed oxygen atoms at the oxide/electrolyte interface. The thickening of the 

oxide causes a decrease in the electric field and eventually, steady-state thickness is 

obtained due to the inability of metal cations to move through the film. In its original form, 

the HFM considered metal cations as the only mobile ions in the film leading to a reaction 

at the oxide/air interface. Several years later, the HFM was expanded to consider the 

movement of anions across the film [20]. However, the HFM neglects any interfacial 

potential drop. 

Introduced by MacDonald et al. [21, 22], the Point Defect Model (PDM) extends the HFM 

by including processes of oxide film dissolution reactions and the mobility of both cations 

and anions through the oxide. A simplified schematic of the reactions considered in the 

PDM is shown in Figure 1.8. At the metal/oxide interface, metal cations are injected into 

the oxide either by the annihilation of an existing cation vacancy (VM
x–), Reaction 1 in 

Figure 1.8, or by the formation of an anion vacancy (VO
2+), Reaction 2 in Figure 1.8. At 

Figure 1.7 - Relative potential for (A) a bare metal and (B) a passive metal exposed in 

an electrolyte. The relative potential drop at the metal/electrolyte, metal/film, and 

film/electrolyte are shown in red. 
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the oxide/electrolyte interface, metal cations are ejected from the oxide either by the 

creation of a cation vacancy, Reaction 3 in Figure 1.8, or by the chemical or 

electrochemical dissolution of the film, Reaction 4 in Figure 1.8. Lastly, oxygen atoms can 

be incorporated into the film by the reaction of adsorbed H2O or O2 with anion vacancies 

(VO
2+), Reaction 5 in Figure 1.8. A key feature of the PDM is that the barrier layer oxide 

behaves like a defective semiconductor, containing both cation and anion vacancies which 

act as electronic dopants. These vacancies are mobile through the oxide allowing for their 

creation and annihilation at opposite interfaces. For example, cation vacancies are formed 

at the oxide/electrolyte and migrate to the metal/oxide interface where they can be 

annihilated. The same is true for anion vacancies which are formed at the metal/oxide 

interface and annihilated at the oxide/electrolyte interface. Reactions 1, 3, and 5, are 

considered conservative as they do not result in a change in film thickness, while reactions 

Figure 1.8 - Simplified schematic of the processes considered by the Point Defect 

Model. The injection of M into the oxide occurs by either (1) the annihilation of a cation 

vacancy (VM
x–) or (2) the creation of anion vacancy (VO

2+). At the oxide/electrolyte 

interface, M is released into solution by either (3) the creation of VM
x– or by the  

(4) chemical/electrochemical dissolution of the oxide. Incorporation of O into the lattice 

occurs due to (5) the reaction of adsorbed H2O/O2 with VO
2+. 
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2 and 4 are considered nonconservative since they cause changes in film thickness. As the 

film growth occurs, the electric field of the oxide is assumed to remain constant, maintained 

by a decreased potential drop at the metal/oxide interface. The system achieves a steady-

state film thickness when 𝜑𝑀/𝑂 =  𝜑𝑂/𝐹, i.e., the rate of film growth equals the rate of 

destruction, Figure 1.7(B). 

Recently, Momeni and Wren [23] proposed a Mass-Charge Balance Model (MCBM) 

which considers the mass and charge balance of three reactions: metal oxidation, oxide 

growth, and oxide dissolution. At all times, the rate of metal oxidation must be equal to the 

sum of the oxide growth and dissolution processes. Using classical rate equations, the 

MCBM predicts oxide growth and dissolution rates as a function of important parameters 

such as temperature, pH, and applied potential. While the MCBM does not discuss the 

mechanism of oxide growth, it has been successfully used to predict the time-dependent 

potentiostatic oxide growth and dissolution of pure Fe, Co-Cr, and Fe-Ni-Cr alloys. 

While these models are used to predict the kinetics of oxide growth, they cannot explain 

many of the complex structural features observed in passive oxide films. For example, how 

dopants arrive in the oxide and how they affect behaviour. Recent observations suggest 

non-equilibrium solute capture occurs during early-stage oxidation of Ni-Cr-Mo alloys  

[24, 25], implying that approximations made for ideal, thermodynamically stable oxides 

(e.g., Cr2O3, NiO, etc.), may not be valid. Here, when oxide formation occurs faster than 

the thermodynamic phases can reach equilibrium, solute atoms become trapped in the oxide 

above solubility limits. In the context of solute capture, the PDM was extended to a solute-

vacancy interaction model (SVIM) which explained how minor alloying elements impact 

film breakdown [26]. 

1.4.2 Passive films formed on Ni-Cr-Mo alloys 

1.4.2.1 Effect of alloying elements 

Passive films formed on Ni-based alloys are known to offer excellent corrosion resistance 

under conditions involving high temperature, acidity, and oxidizing species. The properties 

of the passive film are largely influenced by the alloy composition. As a result, extensive 
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efforts have been and continue to be invested in understanding the relationship between 

alloy composition, passive film properties, and corrosion performance. 

Early work by Bouyssoux et al. examined the structure of the oxide film present on 

electrochemically passivated Cr electrodes using X-ray photoelectron spectroscopy (XPS) 

and Auger electron spectroscopy [27]. Their findings showed that the oxide was comprised 

of an inner Cr2O3 layer and an outer Cr(OH)3 layer. While this study focused on pure Cr, 

their findings have translated directly to observations made on many Cr-containing alloys, 

where the inner and outer portions of the passive film are enriched in Cr oxide and 

hydroxide, respectively [28, 29]. The crystallographic structure of passive films formed on 

Cr and Cr-containing alloys has been described as disordered [30, 31], however, 

crystallization has been shown to occur with increasing time, temperature, and applied 

potential [17, 30, 32-34].  

Based on polarization experiments, additions of Cr to Ni have been shown to suppress 

active dissolution and to decrease passive current densities [35, 36].  Lloyd et al. 

highlighted several benefits of increased Cr-content in commercial alloys, including open-

circuit ennoblement, increased oxide thickness, and the suppression of defects in the oxide 

[37]. To achieve the maximum benefit cost-effectively, attempts have been made to 

identify the critical concentration of alloyed Cr required to establish passivity [7, 8, 15, 

38]. Whitman and Chappell studied a series of Fe-Cr alloys exposed in a humidity chamber 

and found that a drastic decrease in corrosion rate occurred when the Cr content was equal 

to (or exceeded) 13 wt.% [39]. For Ni-Cr alloys, Hodge and Wilde found that more than 

10 wt.% Cr was required to develop passivity in acidic solution [40]. Hayes et al. observed 

that increases beyond 11 wt.% Cr resulted in only minor improvements to the corrosion 

behaviour of Ni-Cr-Mo alloys in NaCl solutions in a range of pH between 3 and 11 [7]. 

Generally, critical Cr concentrations have been reported to be greater than 10-13 wt.%, 

with the differences accredited to the various experimental conditions employed. The basis 

for a critical concentration was suggested by Sieradzki and Newman, who claimed the 

formation of a three-dimensional Cr2O3 lattice across an alloy surface becomes possible 

only at a critical concentration [41]. This concept was revisited by McCafferty, who 

proposed that the formation of a continuous –OII–CrIII–OII– network required a Cr cation 
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fraction of approximately 0.34 or greater in the oxide film [42-44]. Achieving this oxide 

composition has been shown to require ~12-14 and ~8-10 wt.% Cr in the Fe-Cr and Ni-Cr 

systems, respectively [42, 45, 46]. 

For Cr-containing alloys, the addition of Mo promotes the accumulation of oxidized Mo 

species in the outer portion of the Cr-rich passive film. For Fe-based alloys containing both 

Cr and Mo, Clayton and Lu [47] observed the enrichment of high valence Mo species at 

the film/electrolyte interface and proposed a bilayer model to describe the passive film with 

the inner and outer portions Cr- and Mo-rich, respectively. Using time-of-flight secondary 

ion mass spectrometry (ToF-SIMS) and XPS, Lloyd et al. found similar enrichment 

behaviour for a series of Ni-based alloys containing Cr and Mo [48]. In general, Mo-oxides 

enriched in the passive film have been described as a complex mixture of Mo(IV), Mo(V), 

and Mo(VI) species [48, 49]. Concerning corrosion, Mo-enrichment has been shown to 

result in the suppression of active dissolution [50-53], a reduction in passive current density 

[50, 54], and an increase in the resistance to localized corrosion [7, 47, 55]. While the 

benefits of Mo are known empirically, research continues to investigate the mechanism(s) 

by which corrosion resistance is improved. In general, observations can be separated into 

two categories: those that improve passive film stability, and those that benefit the repair 

of film damage. 

Observations related to film stability often use the bilayer description proposed by Clayton 

and Lu, which suggests that the enrichment of high valence Mo species, e.g., MoO4
2–, 

provides cation-selective properties in the outer portion of the passive film [47].  This offers 

an explanation for why Mo additions cause increased passive film stability in Cl– 

containing solutions. Additionally, Mo oxides are more stable than their related chloride 

complexes, making them an effective barrier in Cl–-containing solutions [6]. This bilayer 

model has been used to explain empirical observations under a range of experimental 

conditions [56, 57].  However, recent research has offered more detail on how 

Mo-enrichment increases film stability. Using in situ transmission electron microscopy 

(TEM), Yu et al. showed that the addition of Mo to Ni-Cr alloys decreased the probability 

of Kirkendall void formation at the oxide/metal interface [24], which is related to the 

process of film breakdown. Using density functional theory (DFT) calculations, the authors 
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reasoned that high valence Mo species stabilized cation vacancies and decreased their 

mobility and, hence, ability to form voids [24, 58]. It has also been suggested that Mo 

additions stabilize the adsorption of oxygen on the alloy surface. In first principles model 

calculations by Samin and Taylor, small amounts of alloyed Mo were found to help 

stabilize the adsorption of oxygen, an important precursor to oxide formation [59]. 

The second category of observations is related to an improved ability to repair film damage, 

i.e., stimulate repassivation. Since this is directly related to film breakdown processes, only 

a brief discussion is given here, with more mechanistic information provided with the 

discussion of passive film breakdown, Section 1.5. Researchers have attributed an 

improved repassivation behaviour to the deposition of Mo-rich corrosion products on 

damaged surface sites. In a study by Hashimoto et al., hexavalent Mo species were found 

to enrich at the surface of Fe-Cr-Mo alloys following conditions of active dissolution. This 

deposition caused a decrease in current density relative to samples without Mo additions, 

suggesting the formation of a partially protective surface film [50]. In studies by Newman 

et al., scratch and artificial pit methodologies were used to promote active dissolution. 

Their results demonstrated an improved repassivation behaviour for alloys containing Mo; 

however, they did not analyze the composition of the resulting films [60-62]. In addition 

to the suppression of active dissolution, the ability of Mo to control damage to the passive 

film has also been demonstrated for transpassive conditions. Using XPS and ToF-SIMS, 

Lloyd et al. studied the composition of the passive film on a number of Ni-based alloys 

following growth at constant applied potentials in 1 M NaCl + 0.1 M H2SO4 (85°C) [48]. 

When applied potentials were ≥ 500 mV (vs Ag/AgCl), where the Cr2O3 barrier layer is 

compromised by oxidative dissolution, Mo-enrichment was observed. Overall, 

observations have found that, when the Cr-rich barrier layer is compromised, either during 

active or transpassive dissolution, Mo-rich corrosion products become enriched on the 

surface to provide partial protection. 

Additions of W exert an influence on passive film properties similar to that observed for 

Mo additions [48, 63]. In acidic chloride solutions, the addition of W was found to improve 

the stability of the film on alloy C-22 (13 wt.% Mo + 3 wt.% W) compared to the film on 

alloy C-2000 (16 wt.% Mo) [48]. In a separate study on alloy C-22, high valence W (and 
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Mo) species were found to concentrate in the outer regions of the passive film following 

transpassive dissolution [49]. 

Passive films formed on Ni-based alloys have also been shown to contain oxidized Ni 

species [37, 64, 65], with the relative amount depending on exposure conditions. The 

amount of oxidized Ni in the passive film increases as the solution pH is increased, as 

expected due to the increased stability of NiO and Ni(OH)2 in alkaline solutions [2]. Ni 

oxides are generally found within the inner Cr-rich region [48, 66], leading some 

researchers to suggest the existence of a mixed oxide (e.g., NiCr2O4, etc.) [24, 67-69]. 

Recently, Yu et al. have demonstrated the presence of metastable non-stoichiometric 

oxides (i.e., Ni1–xCrxO and Ni2–xCrxO) during the early-stage of gas-phase oxidation of 

Ni-22Cr and Ni-22Cr-6Mo alloys [24]. 

1.4.2.2 Effect of solution pH 

Solution pH is an important environmental factor influencing the behaviour of passive 

oxides, since solubilities are a function of pH [2, 70]. In acidic solution, the solubilities of 

Ni, Cr, and Fe, are generally enhanced. Gray and Orme reported that in hydrochloric acid, 

passive film breakdown can occur at a critical solution pH of ~0.5 (90°C) for alloy C-22 

[71]. Using a combination of electrochemical impedance spectroscopy (EIS) and 

ellipsometry, the passive film was found to thin as the pH decreased [71-73] and was 

completely removed in a solution of 3 M HCl [72]. In the work of Zhang et al., increasing 

the solution acidity, from pH 7 to 1, resulted in a similar thinning of the passive oxide 

formed on alloy C-2000 [74]. Considering the ratio of Cr2O3
–/MoO3

– in ToF-SIMS depth 

profiles, the authors proposed a decrease in Cr oxide and enrichment of Mo oxide contents 

as solution acidity increased.  

Mishra et al. studied the passive film properties of several commercial Ni-based alloys in 

chloride-containing solutions buffered by bicarbonate (pH 8.3) [65, 75]. Using a 

combination of XPS and Auger electron spectroscopy, they found that the thickness of 

passive films formed during polarization in the transpassive domain doubled when 

compared to films formed in the passive domain. This was attributed to the enrichment of 
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Ni(OH)2 in the film, which is insoluble at pH 8.3. In polarization studies, this enrichment 

resulted in a partially protective secondary passive region. 

1.4.2.3 Effect of temperature 

Temperature is another important environmental factor influencing the passive oxide. For 

a series of commercial Ni-based alloys exposed to acidic (pH 1) chloride solution, Lloyd 

et al. showed that increases in temperature caused increases in current density, and in some 

cases film breakdown, during potentiostatic polarization experiments [48, 76]. Gray et al. 

found that, with increasing temperature, the critical solution pH required for film 

breakdown increased, e.g., pH 0.5 (60°C) and pH 0.75 (90°C) [73]. Using a combination 

of angle-resolved XPS and ToF-SIMS, Zhang et al. showed the enhancement of  

film-growth at elevated temperatures (90°C) [77]. Increases in temperature, from 25 to 

90°C, resulted in an increased passive film thickness. As the temperature was increased to 

90°C, the concentration of oxidized Ni species in the passive film increased at the expense 

of Cr and Mo oxides. 

1.5 Passive film breakdown 

In the passive state, Ni-based alloys exhibit low corrosion rates, typically ≤ 1 µm per year 

[78]. Any damage incurred by the passive film can cause corrosion rates to intensify. If the 

passive film is completely removed, while corrosion rates will be high, they will be 

approximately uniform across the surface. If passive film breakdown occurs locally, either 

as a pit (on the exposed surface) or a crevice (within an occluded region), high corrosion 

rates will occur at discrete sites. This represents a challenge for lifetime assessments since 

the high rates of localized corrosion are difficult to predict. The resulting damage can 

penetrate deep into a material and is difficult to detect visually. Ni-based alloys are 

generally considered immune to localized corrosion in the form of pitting [6, 48, 79]; 

however, crevice corrosion has been identified as a potential risk for these alloys [80]. 

1.5.1 Crevice corrosion 

While crevice corrosion shares several mechanistic features with pitting corrosion [80], it 

is a distinct process that relies on the presence of a restrictive geometry [3]. In service, 
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crevice geometries can form under gaskets, joints, washers, rivets, bolts, flanges, or even 

some surface deposits, and as a result, are virtually unavoidable during the design process. 

Several theories have been proposed to help explain the mechanism of crevice corrosion, 

including the critical crevice solution (CCS) [81, 82], IR drop [83, 84], and metastable 

pitting theories [85]. 

1.5.1.1 Critical crevice solution (CCS) theory 

In a series of publications, Oldfield and Sutton developed a mathematical model, the 

critical crevice solution (CCS) theory, to predict the change in crevice chemistry [81, 82]. 

They proposed that crevice corrosion in aerated chloride solution occurred in four main 

stages: (i) oxygen depletion within the crevice, (ii) an increase in acidity and chloride 

content, (iii) passive film breakdown, and finally (iv) the propagation of damage. Initially, 

the depletion of oxygen led to the generation of a concentration cell, with the separated 

anodic and cathodic reactions inside and outside the crevice, respectively. In the crevice, 

protons are produced by metal cation hydrolysis, resulting in a decrease in solution pH due 

to the restricted mass transport, Figure 1.9.  With an increasing concentration of cations 

(H+, Mn+, M(OH)n–1+, etc.) within the crevice, anions (Cl–) are forced to migrate into the 

Figure 1.9 - Schematic representation showing the processes during the propagation of 

crevice corrosion, as described by critical crevice solution theory. 
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crevice to maintain charge neutrality. Together, the decreasing pH and increasing Cl– 

concentration eventually establish a CCS, sufficiently aggressive to induce the breakdown 

of the passive oxide film. The final stage of this process is the propagation of crevice 

damage due to anodic metal dissolution concentrated within the crevice, supported mainly 

by O2 reduction on the external surface. According to the CCS theory, the initial decrease 

in O2 concentration and subsequent increase in H+ and Cl– concentrations causes both the 

initiation and propagation of crevice damage. In general, during the crevice corrosion of 

corrosion-resistant materials, critical crevice solutions have pH < 0 [86-89]. 

Nash and Kelly [90], analyzed solutions within a crevice during both the incubation and 

propagation stages for stainless steel using an ex-situ chromatographic analysis technique. 

Based on the concentration of dissolved metal cations and the related hydrolysis reactions, 

the solution pH was only considered low enough to disrupt the passive film during stable 

propagation. In a study by Sridhar and Dunn, the mechanism of crevice corrosion was 

studied using microelectrodes positioned directly in a crevice [91]. Their findings suggest 

that decreases in pH and increases in Cl– concentration occur only after crevice corrosion 

initiates, implying that the critical crevice chemistry is a feature, but not necessarily the 

cause, of crevice corrosion. More recently, using fluorescent indicators sensitive to changes 

in both H+ and Cl– concentrations, Nishimoto et al. demonstrated that a gradual 

development of critical chemistry occurs during incubation, followed by an abrupt change 

in concentrations at the onset of activation [87]. These findings suggest that while solution 

chemistry is a feature of crevice corrosion, additional mechanistic features should be 

considered. 

While restricted mass transport is a key feature in CCS theory, it does not address the 

existence of concentration gradients within the occluded region. For instance, since mass 

transport becomes increasingly restricted as a function of depth into a crevice, one would 

expect the most aggressive conditions to develop at the maximum depth into the crevice. 

In the work of Miller et al., crevice damage was found to initiate in the deepest parts of the 

crevice and progress toward the mouth of the crevice [92]. Conversely Ebrahimi et al. 

showed that crevice damage occured at some critical depth near the opening (or mouth) of 

the crevice rather than at the deepest location [55]. Differences in propagation behaviour 
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may be the result of different experimental methodologies. While Ebrahimi et al. used 

small applied currents (≤ 80 μA), Miller et al. used a constant applied potential which 

resulted in higher currents (mA). Additionally, CCS theory does not consider the effect of 

increased electrolyte resistance caused by the occluded geometry of a crevice. 

1.5.1.2 IR drop theory 

Pickering and Frankenthal proposed an IR drop theory in which crevice corrosion was 

explained by an ohmic potential drop (IR) within the occluded geometry of a crevice (or 

pit) [83, 84]. An IR drop between the outside and inside of the crevice occurs due to the 

combination of current (I) from metal dissolution and high electrolyte resistance (R) caused 

by the crevice geometry. As shown in Figure 1.10, at a critical depth inside the crevice, the 

IR drop becomes enough to disrupt the maintenance of the passive film and place the local 

potential in the active region of the polarization curve. This causes the initiation and 

accumulation of crevice damage. Changes to the magnitude of the IR drop may result, due 

to variations in crevice geometry caused by, for example, the introduction of solid 

corrosion products or gas bubbles. In some cases, the IR drop theory has been used to 

explain the commonly observed crevice damage morphology, which initiates at a critical 

depth into the crevice [86, 88, 93]. Data obtained for potentiostatically driven crevices 

suggests that the evolution of damage cannot be explained using only polarization data and 

involves the movement of a corrosion front within the crevice [92, 94]. Additionally, the 

IR drop theory does not account for the observed changes in solution chemistry. Without 

the development of aggressive crevice chemistry, the active to passive transition inherent 

in the IR drop theory is often absent from the polarization behaviour of corrosion-resistant 

materials. Lillard et al. suggested that the IR drop theory alone cannot explain the crevice 

corrosion process [89], and that the developing crevice chemistry must also be considered 

as it increases current densities and allows the critical IR drop to be achieved. 
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1.5.1.3 Metastable pitting theory 

Initially presented by Stockert and Boehni [85], the occluded geometry of a crevice was 

proposed to stabilize metastable pitting behaviour, eventually leading to the initiation and 

Figure 1.10 - Schematic representation of the IR drop theory. The 

high solution resistance within the occluded geometry causes the 

potential within the crevice to decrease relative to that in bulk 

solution. For an alloy exhibiting active-passive polarization 

behaviour, at a critical depth into the crevice, indicated by dashed 

lines, the resistance is sufficient to decrease the local potential into 

the active region. 
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propagation of crevice corrosion. When pit initiation occurs on a surface exposed to bulk 

solution, propagation only occurs if the pit geometry can maintain an IR drop and/or critical 

chemistry. If the pit is metastable and the pit site returns to a passive state, the Cl–, H+, and 

Mn+ ions generated within the pit will dissipate into the bulk solution. However, when pit 

initiation occurs at a high enough frequency and density within a crevice, the restrictive 

geometry can stabilize active behaviour, leading to the propagation of crevice corrosion. 

In other words, each metastable event contributes cumulatively to the chemistry required 

to initiate crevice corrosion. According to Laycock, et al. crevice corrosion occurs only 

after a critical amount of damage has occurred within a crevice [95]. Kehler and Scully 

demonstrated that during the crevice corrosion of Ni-based alloys C-22 and 625, the 

coalescence of metastable pits was an important feature of early-stage crevice corrosion 

[96]. Similar behaviour has been identified during the crevice corrosion of Ti alloys [97, 

98]. 

1.5.2 Transpassive dissolution 

In highly oxidizing environments passive film breakdown may also occur by the 

electrochemical conversion of the Cr(III)-rich oxide into more soluble Cr(VI) species, 

referred to as transpassive dissolution [11, 99]. The potential of a corroding system, i.e., 

ECORR, increases in the presence of strong oxidants, and if high enough, transpassive 

dissolution will occur. In polarization experiments, transpassive dissolution is observed as 

an exponential increase in measured current, as indicated in Figure 1.6. Transpassive 

dissolution is distinguished from other breakdown processes by the dependence of current 

on the applied potential. This concept will be discussed in more detail during the discussion 

of breakdown susceptibility. 

 Cr2O3 +  5 H2O ⇌ 2 CrO4
2− + 6 e− + 10 H+ (1.23) 

The electrochemical reaction describing the transpassive dissolution of Cr2O3 is given in 

Reaction 1.23. Since the Cr-rich oxide is considered responsible for the barrier layer 

properties of the passive film [51, 100], its destruction exposes the underlying metal to 

solution. In the case of Ni-Cr-Mo alloys, during transpassive dissolution neither Ni nor Mo 

are expected to form protective oxides, according to thermodynamic calculations [2], 
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especially at lower pH values. As a result, anodic polarization becomes a driving force for 

anodic dissolution, resulting in high rates of corrosion. The mechanism of transpassive 

dissolution is complex, with several claims involving the presence of intermediate Cr(IV) 

species [101] and the incorporation of Cr(VI) into the oxide before its dissolution [99]. 

1.5.3 The role of aggressive anions 

Halide ions (e.g., F–, Cl–, Br–, I–) are known to be particularly aggressive in destabilizing 

passive oxide films, with Cl– being the most studied halide ion. While consensus exists on 

their aggressive nature, the action of individual anions is an area of considerable debate. 

While a complete discussion is beyond the scope of this thesis, a summary is provided, and 

a more thorough discussion can be found elsewhere [102]. During the passive film 

breakdown, aggressive anions are described by whether their action takes place at the 

metal/oxide or oxide/solution interface. These are referred to as penetration and adsorption 

mechanisms, respectively.  

In penetration mechanisms, anions are transported through the passive oxide to the 

metal/oxide interface. Commonly, the high electric field and defect structure within the 

oxide is thought to facilitate this transport process. According to the PDM, the 

incorporation of halide ions into oxygen vacancies enhances the diffusion rate of cation 

vacancies [22, 103]. If these cation vacancies accumulate at the metal/oxide interface, voids 

can form within the oxide film, leading to breakdown. In this concept, localized breakdown 

is rationalized by heterogeneous features in the film containing high concentrations of 

defects [103]. In adsorption mechanisms, anions are adsorbed onto the oxide film, with 

Hoar and Jacob proposing that oxide breakdown occurs via complexation reactions which 

facilitate the transfer of cations into solution [104]. If the formation and transfer of metal-

chloride complexes into solution exceeds the rate of film growth, the oxide film will begin 

to thin. As the passive film thins, the film resistance decreases, causing the interfacial 

potential drop to increase. As a result, thinning of the oxide is an autocatalytic step towards 

metal dissolution. Marcus et al. [34] proposed that these processes are influenced by the 

nanostructure of the oxide film. At defect sites, e.g., oxide grain boundaries, the resistance 

of the oxide is less than at homogenous oxide film locations, making grain boundaries 

preferred sites for thinning and vacancy transport. 
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1.5.4 Measuring susceptibility 

1.5.4.1 Pitting resistance equivalent number (PREN) 

Understanding the susceptibility of an alloy to film breakdown processes is essential to 

guide material selection. The Pitting Resistance Equivalent Number (PREN), derived from 

empirical observations, is a method of qualitatively ranking the pitting resistance of alloys 

based on their composition. The higher the PREN value, the higher the resistance to film 

breakdown in the form of pitting or crevice corrosion [63, 80, 86, 105]. Initially developed 

for stainless steel [106], PREN calculations have been adapted for use with Ni-based alloys 

[63]. The equation used to calculate the PREN for Ni-based alloys is given in equation 

1.24, where alloying element concentrations are in weight percent (wt.%). 

 PREN = [Cr] + 3.3 [[Mo] + 0.5 [W]] (1.24) 

While PREN values are useful in ranking the susceptibility of alloys, they do not provide 

any mechanistic information. As a result, information regarding how an alloying element 

operates during film formation, breakdown, or repassivation, is unelucidated. It is also 

important to consider that since the equation used to determine PREN is based on empirical 

observations, PREN rankings can only be considered valid for the studied environment 

(e.g., solution composition, pH, temperature, etc.). Additionally, the PREN calculation 

considers only Cr, Mo, and W; however, it has been shown that other alloying elements 

influence resistance to film breakdown. As an example, Mishra et al. demonstrated that 

small amounts of alloyed Cu, ~1.6 wt.%, inhibit the initiation of crevice corrosion [107]. 

Similarly, alloying additions of Nb have been shown to benefit pitting resistance [108]. 

However, neither Cu nor Nb are commonly considered in PREN value calculations. 

Despite the obvious limitations, PREN has proven useful as a rapid and qualitative 

approach to ranking commercial alloys. 

1.5.4.2 Critical temperatures 

The relative susceptibility to film breakdown processes may also be compared using 

critical temperatures. These temperatures are defined as the minimum temperature for 

which film breakdown can occur and are reported for both pitting and crevice corrosion, 
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and referred to as the Critical Pitting Temperature (CPT) or Critical Crevice Temperature 

(CCT), respectively. In general, an alloy is considered more resistant to film breakdown 

processes the higher the critical temperature. Values of CPT and CCT demonstrate similar 

trends; however, values of CCT are generally lower than the corresponding values of CPT 

[80, 109]. Using values of CCT or CPT to rank the susceptibility of alloys to film 

breakdown yields similar information to PREN values, but has the advantage of providing 

quantitative information. A comparison of CCT and PREN values is illustrated in Figure 

1.11 for a collection of values reported in the literature [80, 105, 109]. 

While critical temperature values have the advantage of quantifying a temperature 

threshold, like PREN, they yield no mechanistic information. The threshold information 

provided by CCT (and CPT) measurements is also specific to the conditions used during 

Figure 1.11 - Comparison of Critical Crevice Temperature with PREN values.  

PREN values were calculated according to Equation 1.24. Values reported as 

a range are indicated with dashed lines. Values reported as less than or greater 

than are indicated by arrows. 
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measurements. For example, the ASTM standard for the determination of CCT 

recommends the use of acidified ferric chloride (FeCl3) solution [110], which will not 

necessarily represent service conditions. 

1.5.4.3 Breakdown/repassivation potentials 

Other parameters used to determine alloy susceptibility to film breakdown are critical 

potentials, referred to as breakdown (EB) and repassivation (ER) potentials. Breakdown of 

the passive film can occur at potentials ≥ EB, while metastable pitting and propagation can 

continue only if the potential is ≥ ER, which is lower than EB [102]. A graphical 

representation of EB and ER in the context of a cyclic polarization measurement is presented 

in Figure 1.12. As the applied potential is scanned linearly in the positive direction, an 

abrupt increase in current is observed at EB. This process may be distinguished from the 

Figure 1.12 - Graphical representation of a cyclic polarization curve for an 

alloy which rapidly forms a passive film. At high applied potentials film 

breakdown leading to pitting or crevice corrosion is indicated by the red 

line and breakdown leading to transpassive dissolution by the blue line, 

with the values of EB, ER, and ET indicated. 
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transpassive dissolution process, discussed above, by the behaviour on a reverse scan, as 

shown by the dashed lines in Figure 1.12. In the case of film breakdown resulting in either 

pitting or crevice corrosion, the reverse scan is independent of the applied potential and 

demonstrates hysteresis, indicated by the red dashed line in Figure 1.12. This is the result 

of the self-sustaining nature of localized corrosion, which causes the current to persist 

during the reverse scan. Repassivation is said to occur once the current on the reverse scan 

decreases to the passive current density on the forward scan. The potential at which this 

occurs is termed ER. On the other hand, during transpassive dissolution, the reverse scan 

closely traces the i-E behaviour on the forward scan, indicated by the blue dashed line in 

Figure 1.12. In general, an alloy is considered more resistant to film breakdown processes 

the higher the values of EB and ER. Values of EB and ER are reported as pitting or crevice 

breakdown potentials, EPIT and ECREV respectively, depending on the experimental setup. 

In particular, ER has been described as an effective and conservative parameter to predict 

susceptibility to localized corrosion [93, 111-113]. Dunn et al. investigated the relationship 

between EB, ER, and ECORR, for stainless steel 316L and alloy 825 using both artificial pit 

and crevice assemblies [111]. No evidence of localized corrosion was observed when 

ECORR remained below ER. Kehler et al. demonstrated a decrease of ER,CREVICE values with 

increasing temperature, and Cl– concentration for both alloys 625 and C-22 [93], consistent 

with the findings of several other studies [112, 114]. Using a series of Ni-Cr-Mo alloys 

with increasing Mo-content, Hayes et al. demonstrated that ER increased with increasing 

Mo content [7]. Given a dependence on Mo-content, it comes as no surprise that values of 

ER correlate with calculated PREN values [86, 105]. While critical potentials provide a 

quantifiable threshold for different service conditions, they are unable to provide any 

mechanistic information. Additionally, experimental parameters such as scan rate and 

applied charge have been shown to affect measurements [111, 113]. 

1.5.5 The role of alloying elements during breakdown 

While the methods described above are useful for ranking relative corrosion resistance as 

well as defining service thresholds, they do not provide any mechanistic information. 

Additions of Mo have been identified to have a critical role in resisting localized damage. 

While Cr is necessary for an alloy to form a protective passive film, in the event the passive 
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film is compromised, alloyed Mo is beneficial in controlling the dissolution rate and 

promoting repassivation. Based on measurements of EB and ER for a series of commercial 

alloys, the effects of Cr, Mo, and W, on crevice corrosion were studied by Mishra and 

Shoesmith [63]. While increases in Cr content were found to improve passivity, alloying 

additions of Mo were identified as a key component in resisting initiation as well as 

promoting repassivation of crevice corrosion. With increased Mo-content, values of critical 

temperature and potential were found to increase. 

The transport and distribution of alloying elements following the crevice corrosion of alloy 

C-22 were studied post mortem by Shan and Payer [88]. Compiling information obtained 

using XPS, Auger electron spectroscopy, and energy-dispersive X-ray spectroscopy 

(EDS), the distribution of elements within a corroded area was reconstructed, Figure 1.13. 

While dissolution was thought to occur in a congruent manner, the transport of individual 

alloying elements was different. These differences were attributed mainly to the pH 

gradient which developed. Cations or chloride complexes of Ni, Cr, Fe, and Co have a high 

solubility in the CCS and freely transport out of the occluded region, where they then 

encounter increased pH and precipitate. Mo (and W) were found to precipitate directly 

within the crevice due to their relatively low solubility and stability at low pH. 

Figure 1.13 - (a) Graphical representation and (b) qualitative distribution of metal elements 

within a corroded crevice coupon. Originally published by Shan and Payer [88]. 
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While the nature of these corrosion products has been discussed, the exact mechanism 

leading to their distribution remains to be determined. Lillard et al. proposed that during 

the initial stages of crevice corrosion, before the pH inside the crevice decreases, Mo 

oxidation leads to the production of MoO4
2– [89], Reaction 1.25. However, as damage 

propagates and the pH decreases within the crevice, MoO4
2– becomes unstable and is 

reduced to MoO2, and eventually Mo3+. In particular, it was proposed that MoO4
2– inhibits 

dissolution through a competitive adsorption process with Cl–. While competitive 

adsorption explains the benefit of alloyed-Mo in resisting the initiation of localized 

corrosion, it does not explain the observation of Mo-rich corrosion products in damage 

sites. The formation of polymeric molybdates has been suggested, according to reaction 

1.26 [115]. Jakupi et al. found evidence of these polymeric species while studying the 

Mo(W)-rich corrosion products deposited within a corroded crevice region using Raman 

spectroscopy [116]. It has been proposed that the process of polymerization inhibits 

corrosion by consuming protons (H+) within the occluded geometry [89, 91, 115]. 

However, the production of each MoO4
2– species produces 8 H+, equation 1.25, meaning 

that H+ consumption during polymerization is insignificant. 

 Mo + 4 H2O → MoO4
2− + 8 H+ (1.25) 

 8 MoO4
2− + 12 H+ ⇌ Mo8O26

4− + 6 H2O (1.26) 

The formation of Mo(W)-rich corrosion products within an active crevice has been shown 

to have a role in stifling active dissolution [55, 117, 118]. Using electron backscatter 

diffraction (EBSD), Jakupi et al. showed that during the early stages of corrosion on alloy 

C-22, damage was located at microstructural features such as triple points, along with 

accumulation of corrosion product [118]. In a separate study, Jakupi et al. used confocal 

laser scanning microscopy to investigate the morphology of crevice damage on alloy C-22 

[117]. It was found that at low applied currents damage penetrated into the alloy, while at 

high applied currents damage was forced to spread laterally across the crevice region due 

to the accumulation of molybdate species at rapidly corroding sites. 
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In the study by Ebrahimi et al., active crevice propagation was found to be self-sustaining 

[55]. Shown in Figure 1.14, the current transients and corresponding potential behaviour 

suggest that damage was driven by O2 reduction external to the crevice, while damage 

could be sustained by H+ reduction inside the crevice. Unfortunately, they were unable to 

quantify the role of H+ reduction, but demonstrated that the deposition of polymeric 

molybdates within the crevice stifled propagation at localized breakdown sites. 
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Chapter 2  

2 Experimental 

This chapter summarizes the general details and the principles of the experimental 

techniques employed in this thesis. Specific details on experimental parameters and 

procedures are included with each data chapter.  

2.1 Experimental sample 

2.1.1 Materials 

Hastelloy materials were provided by Haynes International (Kokomo, IN, USA). Stainless-

steel alloys were purchased from McMaster-Carr (Elmhurst, IL, USA). All materials were 

received as mill-annealed sheets of varying thickness. The composition of each alloy is 

provided in the experimental sections of the data chapters. Experimental samples were cut 

and machined to the desired dimensions. 

2.1.2 Sample preparation 

All samples were ground with wet SiC paper to remove surface damage caused by the 

machining process. Depending on the experiment, the extent of surface preparation varied. 

For electrochemical measurements, P1200 SiC paper was used as a final grinding step. 

Samples subjected to surface analysis were finally prepared using a 1 µm diamond 

suspension. Following all surface preparations, samples were sonicated in a 1:1 mixture of 

EtOH and deionized (DI) water (18.2 MΩ cm) and dried in a stream of Ar-gas. 

2.2 Electrochemical experiments 

2.2.1 Electrochemical cells 

Depending on the intended test conditions, one of four electrochemical cells was employed. 

Two of the four cells, the glass and the polytetrafluoroethylene (PTFE) cell, are shown in 

detail below. The third cell was designed specifically for coupling electrochemical and 

spectroscopic measurements and is discussed in Section 2.3. The fourth cell, used for 

crevice corrosion experiments performed at high temperatures, is discussed in Section 2.4. 
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2.2.1.1 Three-compartment glass cell 

A schematic of the three-compartment glass cell used to conduct electrochemical 

measurements is shown in Figure 2.1. A water jacket, which encased the main 

compartment, was connected to an isothermal water circulator to control solution 

temperature. The working electrode (WE) was situated in a central compartment, with a 

platinum counter electrode (CE) and a saturated calomel reference electrode (RE) housed 

in separate compartments. The three compartments were separated by porous glass frits to 

minimize solution transfer. A Luggin capillary was used to connect the RE compartment 

to the main cell body to minimize the ohmic potential drop (IR) through solution. External 

electrical interference was minimized by placing the entire electrochemical cell in a 

grounded Faraday cage. 

Figure 2.1 - Schematic of the three-compartment glass 

cell used to conduct electrochemical measurements. 

Components referenced in-text are also indicated. 
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When stated, the concentration of dissolved O2 was removed by purging the electrolyte 

and pressurizing the cell with Ar-gas. The Ar-gas was introduced to the cell using a glass 

tube terminating in a porous glass plug. Positive pressure was maintained in the cell by the 

fitted ground glass joints and a water-filled bubbler. Parafilm wax was used to seal any 

additional joints. Before the start of deaerated experiments, the cell was purged by a high 

flow of Ar-gas for approximately 1 hour. When the experiment was to begin, the flow rate 

was reduced. 

2.2.1.2 PTFE cell 

Experiments involving fluoride (F–) were conducted in a custom-built PTFE cell to avoid 

the reaction between F– and glass (SiO2). A schematic of the PTFE cell, positioned within 

a custom heating reservoir, is shown in Figure 2.2(A). Two lids were constructed for use 

with the cell, depending on experimental needs. The first lid was designed with three inlets 

for electrode connections, depicted in Figure 2.2(B). A second lid was designed with eight 

inlets for electrode connections, allowing the use of up to six WEs, depicted in Figure 

2.2(C). In all cases, a saturated Ag/AgCl electrode and a platinum coil were employed as 

the RE and CE, respectively. Both lids contain a gas inlet and outlet for solution sparging. 

Figure 2.2 - Schematic of the (A) fully assembled PTFE electrochemical cell placed within 

the heating reservoir. Insets show the cross section of the electrochemical cell in the  

(B) three electrode and (C) eight electrode configuration. 
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All connections were secured using PTFE tape to prevent unwanted leaks. The assembled 

cell was secured with a clamp to prevent any movement of the lid or fittings during 

experimentation. 

The temperature of the PTFE cell was regulated using a custom-built isothermal heating 

reservoir filled with water, shown in Figure 2.2(A). Reservoir temperatures were 

maintained using an isothermal water circulator, similar to the glass cell setup, but with the 

heated water circulated through a long copper coil. To maintain the water level within the 

heating reservoir, a float mechanism was installed to replenish any water lost due to 

evaporation. The large volume of water within the heating reservoir minimized any change 

in temperature caused by this replenishment process. 

2.2.2 Electrochemical techniques 

A variety of electrochemical techniques were used in this thesis and their basic principles 

are described below. All measurement described in this thesis were found to be 

reproducible as demonstrated by repeated experiments. 

2.2.2.1 Corrosion potential (ECORR) measurements 

One of the simplest electrochemical parameters to measure is the potential of a freely 

corroding sample with respect to a RE, known as the corrosion potential (ECORR). As 

discussed in Chapter 1, ECORR is the unique potential at which the anodic and cathodic 

reaction rates are equal in terms of electron count. Consequently, the value of ECORR is 

dictated by the kinetics of the two half-reactions and must not be confused with an 

equilibrium potential [1, 2]. While dictated by kinetics, ECORR does not provide quantifiable 

kinetic information. Instead, ECORR indicates the relative activity and stability of the 

corroding sample. Mechanistic information is obtained by rationalizing increases or 

decreases in ECORR as due to changes in the kinetics of the anodic/cathodic reactions. For 

example, during exposure to non-aggressive environments, Ni-Cr-Mo alloys typically 

exhibit increases in ECORR with time. This is attributed to passive film growth and a 

decreased rate of metal dissolution. 
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2.2.2.2 Linear polarization resistance (LPR) measurements 

Linear polarization resistance (LPR) measurements, often coupled to ECORR measurements, 

provide in situ rate information on the corroding system [1]. The sum of the two 

exponential I-E relationships described by the Wagner-Traud (W-T) equation (Equation 

1.22) can be linearized within a small potential perturbation, typically ± 10 mV vs ECORR, 

Figure 2.3 [3, 4]. The slope of this linear region yields a resistance value, Equation 2.1, 

referred to as a polarization resistance (RP). 

 RP = (
ΔE

Δi
)

η→0
 (2.1) 

Stern and Geary [3] introduced a method of using Tafel slopes (β) to convert values of RP 

to values of iCORR. The authors derived a relationship between RP, iCORR, and the Tafel 

slopes (β) of the anodic and cathodic reactions, Equation 2.2. 

Figure 2.3 - Graphical representation of the generalized i-E relationship for a 

reaction described by W-T (B-V) kinetics. Indicated in the red inset is the linear 

region considered in linear polarization resistance measurements. 
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 RP =
βAβC

2.3(βA + βC)
(

1

iCORR
) (2.2) 

 RP ∝ iCORR
−1 (2.3) 

However, this calculation can be used only if βA and βC are known. In the case of passive 

alloys, values of βA cannot be experimentally obtained. Instead, the proportionality 

between RP and iCORR, Equation 2.3, can be used to quantify changes in the corrosion rate 

over time. Since only small overpotentials are used, RP measurements are considered non-

destructive, allowing measurements to be made as a function of time [1]. To avoid 

deviations from linear behaviour, scan rates are generally maintained at approximately  

10 mV min–1, as described in ASTM G59 and G61 [5, 6]. 

2.2.2.3 Potentiodynamic polarization measurements 

In potentiodynamic polarization (PDP) measurements, an applied potential is scanned 

linearly while the current response is recorded. As opposed to LPR measurements, PDP 

measurements investigate a large range of applied potential, commonly extending beyond 

1 V. As a result, these tests are considered destructive. The data are plotted as log(i) vs E 

and referred to as a polarization curve. Polarization curves provide information on the 

behaviour of a given system as a function of potential and can identify regions of active, 

passive, and transpassive behaviour. Additional information regarding film breakdown 

behaviour can be obtained using cyclic measurements. This is especially useful for 

studying features of localized corrosion. 

2.2.2.4 Potentiostatic polarization measurements 

In potentiostatic polarization (PSP) measurements, a constant applied potential is 

maintained while the current response is recorded as a function of time. Selecting an 

applied potential greater or less than ECORR allows the anodic or cathodic reactions to be 

investigated, respectively. For a passive system, selecting an applied potential within the 

passive region allows the study of the film growth process. Generally, when an active-

passive material is held at a potential within the passive region, current densities decrease 
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as a function time due to the growth of, and elimination of defects in, the surface oxide. 

Moreover, the stability of the protective film is analyzed by considering any momentary 

increase in current density. 

A similar measurement, referred to as galvanostatic polarization, uses a constant applied 

current while recording the potential response as a function of time, as further discussed in 

Section 2.4. 

2.2.2.5 Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is a technique used to determine interfacial 

and material parameters (e.g., capacitance, resistance, charge mobility, film thickness, etc.) 

[1, 7]. Like other spectroscopies, a method of excitation is applied to the system under 

study, and the response caused by this excitation is measured as a function of frequency. 

In EIS, the excitation source is a small-amplitude potential perturbation in the form of a 

sine wave. The response of the system is the current which is also in the form of a sine 

wave, but with a different amplitude and possibility a phase shift (θ) compared to the input 

signal. A schematic of the excitation (input) and response (output) is shown in Figure 2.4. 

The input potential is expressed as a function of time, Equation 2.4, where ω is the angular 

frequency of the sine wave and |ΔE| is the amplitude of the potential [1, 7]. 

Figure 2.4 - Schematic showing the sinusoidal input potential (EINPUT) and the 

corresponding output current (IOUTPUT) signal in electrochemical impedance spectroscopy. 

While the frequency remains unchanged both the amplitude and phase of IOUTPUT can differ 

from those of EINPUT. 
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 E(𝑡) = |ΔE| sin(ωt) (2.4) 

The output current can also be expressed as a function of time, Equation 2.5, where |ΔI| is 

the amplitude of the current response, and θ is the phase shift with reference to the input 

signal [1, 7]. 

 I(𝑡) = |ΔI| sin(ωt + θ) (2.5) 

The impedance (Z) is the transfer function which relates the input potential to the current 

response. The Z, i.e., the restriction of current flow under conditions of changing (AC) 

potential, is analogous to Ohm’s law, which describes the restriction of current for a 

constant (DC) potential. The value of Z(ω) can be expressed according to Equation 2.6: 

 Z(ω) =
E(t)

I(t)
=

|ΔE| sin(ωt)

|ΔI| sin(ωt + θ)
 (2.6) 

Values of Z(ω) can also be expressed as a complex-valued vector comprised of both  

in-phase (Z′) and out-of-phase (Z′′) components, Equation 2.7. An example of an 

impedance vector plotted on the Cartesian coordinate system is shown in Figure 2.5 [1]. 

 Z(ω) = Z′(ω) +  j Z′′(ω) (2.7) 

The magnitude of the impedance (|Z|) is given by: 

 |𝑍| = √(𝑍′)2 +  (𝑍′′)2 (2.8) 

And the phase angle (θ) by: 

 θ = tan−1 (
Z′′

Z′
) (2.9) 
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Figure 2.5 - An impedance vector with the real (Z’) and 

imaginary components (Z’’) shown. The magnitude of the 

impedance (|Z|) and the relationship to the phase shift (θ) are 

indicated. 

Figure 2.6 - Simulated impedance response of an equivalent circuit consisting of three 

circuit elements, shown as inset in panel (A). Values used for the circuit elements are as 

follows: RS = 100 Ω cm2, RCT = 1000 Ω cm2, and CDL = 1 x 10–5 F cm2. The response is 

represented in both (A) Nyquist and (B) Bode formats. 
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Spectra are collected by investigating the response of a system at discrete input frequencies, 

typically between 10–3 and 105 s–1. The resulting data are commonly represented in either 

a Nyquist (Z′ vs Z′′) or a Bode (log|Z| and θ vs log(frequency)) format. For a simulated 

impedance response, discussed in more detail below, the Nyquist and Bode plots are shown 

in Figure 2.6(A) and (B), respectively. 

Equivalent electrical circuits are used to extract quantitative information from the 

frequency-dependent impedance response of a system [1, 7]. This is done by constructing 

an equivalent circuit with frequency-dependent impedance behaviour similar to that 

recorded as the experimental data. For a simple electrode interface, three circuit elements 

are required: (1) two resistors, one for solution resistance (RS) and the other for charge 

transfer resistance (RCT) at the interface, and (2) a capacitor for the double layer capacitance 

(CDL) at the interface. The elements are arranged such that the parallel interfacial processes 

(RCT and CDL) are in series with the RS. This circuit is shown in the inset of Figure 2.6(A). 

The transfer functions (Z(ω)) for a resistor, capacitor, constant phase element, and 

inductor, are shown in Table 2.1, where R is a resistance, C is a capacitance, Yo is the 

constant and p is the exponent for the constant phase element (CPE), and L is an 

inductance. 

Table 2.1 - Transfer functions for common circuit 

elements [1,7]. 

Circuit Element Impedance 

Resistor (R) Z(ω) = R 

Capacitor (C) Z(ω) =
1

(j ω C)
 

Constant Phase  

Element (CPE) 
Z(ω) =

1

Yo (j ω)p
 

Inductor (L) Z(ω) = j ω L 

 

The Z(ω) of an equivalent circuit can be described by the sum of the individual transfer 

functions, with elements in series adding (Ztotal = Z1 + Z2), and elements in parallel 

adding as reciprocals (1 Ztotal⁄ = 1 Z1⁄ + 1 Z2⁄ ) [1]. For the equivalent circuit representing 
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a simple electrode interface, Figure 2.6(A) (inset), the Z(ω) is given in Equation 2.10. As 

the ω approaches infinity, the resistance tends to RS, and, as the ω approaches zero, Z(ω) 

tends to the sum of RS and RCT. This allows the RCT and RS to be separated [1]. 

 Z(ω) = (Rs +
RCT

1 + ω2 CDL
2  RCT

2 ) − j (
ω CDL

2  RCT
2

1 + ω2 CDL
2  RCT

2 ) (2.10) 

In practice, replicating the frequency-dependent impedance response of a system can 

require the use of additional circuit elements in more complex electrical equivalent circuits 

than the simple electrode interface described above. While including additional circuit 

elements, i.e., additional variables, can be expected to improve the quality of a fit, 

discretion should be used to consider only elements that match experimental observations 

and describe real physical processes. Some examples of behaviour which may impact the 

equivalent circuit include the presence of a passive film, the diffusion of species, or 

electrochemical reactions involving adsorbed intermediates. 

For a passive film, an additional resistor and capacitor (parallel) are needed, in series with 

the solution and interfacial processes. These additional elements describe the resistance 

and capacitance of the oxide film. However, the response of experimental interfaces may 

not be properly described using only resistors and capacitors, and instead require the use 

of other circuit elements. In particular, the use of ideal capacitors cannot represent the local 

variations in properties across an electrode surface which results in a lateral distribution of 

time-constants. In an equivalent circuit, non-ideal capacitance is accounted for using a 

constant phase element (CPE) in place of an ideal capacitor [1, 7]. The Z(ω) of a CPE is 

given in Table 2.1, where the exponent p varies between 0 and 1. When exponent p = 1, 

the CPE behaves like an ideal capacitor: however, when p = 0, the CPE behaves like an 

ideal resistor. Methods have been proposed to convert values of Yo into a capacitance [8] 

and are generally considered appropriate to use when p > 0.85. In the situation where the 

electrochemical current is partially controlled by diffusion processes, a Warburg circuit 

element may be used. This is a special case of the CPE in which p = 0.5. Experimentally, 

this results in a low-frequency phenomenon in which a 45° phase angle is observed in the 

Nyquist plot. 
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An additional circuit element, the inductor (L), is often required in situations where 

dissolution proceeds via an adsorbed intermediate. Inductive behaviour represents the 

special case where the rate of formation and consumption of the adsorbed intermediate are 

dependent on one another [9, 10]. In other words, the overall rates of 

formation/consumption reactions are dependent on the concentration of the adsorbate (or 

surface coverage), in addition to the rate constant being dependent on the applied potential. 

As a result, the relaxation of an adsorbed intermediate causes the measured current to lead 

the applied potential perturbation. This behaviour causes positive values of Z’’ and θ in the 

Nyquist and Bode plots, respectively. Unfortunately, the concept of a true electrical 

inductor, which implies the storage of energy in the form of a magnetic field, cannot be 

related to a physical process in an electrochemical system. As a result, the significance of 

the inductor circuit element remains an area of ongoing discussion [9, 11]. 

2.3 Atomic emission spectroelectrochemistry (AESEC) 

Electrochemical measurements are sensitive and unparalleled in their ability to measure 

reaction kinetics. However, when used alone they are limited in their ability to elucidate 

the chemical details of complex redox processes. The combined dissolution and oxide film 

formation processes occurring on compositionally complex alloys represent one such 

situation, where several redox reactions occur at the same time. Furthermore, the 

dissolution processes are often accompanied by selective dissolution and surface 

enrichment processes, which together govern dealloying and film formation. To elucidate 

such mechanisms, ex situ surface analyses have been employed to identify changes at the 

alloy surface which can then be related to the electrochemical measurements. While such 

experiments have led to significant scientific contributions, they cannot measure changes 

accurately as a function of time and in some cases, suffer from the possibility of 

modifications resulting from exposure to air after the experiment.  

Coupling electrochemical techniques with spectroscopic methods, referred to as 

spectroelectrochemistry, allows complex redox chemistry to be investigated in situ (or 

operando). While many spectroelectrochemistry techniques exist, the use of an 

electrochemical flow cell coupled to inductively coupled plasma atomic emission 
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spectroscopy (ICP-AES) is a particularly attractive technique in corrosion research. The 

technique, referred to as ‘atomic emission spectroelectrochemistry’ (AESEC), was initially 

employed for the study of 304 stainless steel [12]. Since its introduction, AESEC has been 

successfully employed in several studies [13-15]. A variation of the AESEC technique has 

also been used in which an inductively coupled plasma mass spectrometer (ICP-MS) is 

used in place of the ICP-AES instrument [16]. While the use of a mass spectrometery has 

benefits over ICP-AES, i.e., cost of operation, isotopic information, multi-element analysis 

(etc.), difficulties can arise in concentrated saline solutions [17]. 

2.3.1 Principles 

Information related to electrochemical measurements has been omitted from this section, 

since it has been discussed above. Instead, a brief introduction to the ICP-AES technique 

is given. The principle of atomic emission spectroscopy, sometimes referred to as optical 

emission spectroscopy, involves the detection of narrow bands of light, ~0.001 nm, emitted 

during the relaxation of excited atoms [18]. When exposed to a source of energy, in this 

case high temperature, collisions result in excitation or ionization of individual atoms. 

These excited atoms quickly return to their more stable ground states by releasing photons. 

Since elements contain a unique set of discrete energy levels, elements can be easily 

identified based on their emission spectrum. Quantification can be achieved by comparing 

the emission intensity measured for the analyte to the emission intensities measured for a 

series of calibration standards. Limits of detection are typically on the order of ppb (µg L–

1) for most modern spectrometers [19, 20]. 

Detection limits benefit from the use of an ICP torch, the current industry standard for 

emission spectroscopy. Both the high temperatures and the stability afforded by the ICP 

lead to several advantages over other excitation methods, e.g., flame or furnaces. Briefly, 

the plasma provides enough energy to atomize, excite, and even ionize refractory 

complexes (e.g., carbides and oxides), leading to increased sensitivity. This is directly 

related to the Boltzmann distribution, Equation 2.11, where N∗/N0 is the relative population 

of the different states, g∗ and g0 is the degeneracy of excited and ground states, k is the 

Boltzmann constant (1.381 x 10–23 J K–1), ∆E is the energy separation of the two states, and 

T is temperature (K) [18]. As temperature increases, the proportion of atoms in the excited 



59 

 

state also increases, and therefore the subsequent photo-relaxation process is more intense. 

While there are many advantages to the use of an ICP torch, the extremely high flow rates 

of Ar-gas (5-20 L min–1) make their operation relatively expensive. 

 
N∗

N0
=

g∗

g0
e−∆E/kT (2.11) 

2.3.2 Instrumentation 

The AESEC setup may be separated into three components; the electrochemical flow cell, 

the ICP-AES instrument, and the data acquisition interface. A schematic of the first two 

components is shown in Figure 2.7. In addition to the summary included here, a detailed 

discussion of the AESEC setup can be found in previous publications [12, 21]. The first 

component of the AESEC instrument is the custom-built electrochemical flow cell, shown 

on the left side of Figure 2.7. This cell consists of two compartments, separated by an 

ionically conductive membrane. In the first compartment, the WE is installed by the 

application of pressure against an O-ring. The electrolyte is then introduced through the 

bottom of the flow cell, passing the surface of the WE, and exiting through the top of the 

cell toward the ICP-AES, the second component of the instrument. The flow of electrolyte 

is maintained using calibrated peristaltic pumps. The temperature is controlled by heating 

both the electrolyte and the WE directly. Incoming electrolyte is drawn directly from a 

reservoir housed within an isothermal bath. Additionally, a hollowed brass disk, connected 

to an isothermal water circulator, is held in contact behind the WE. The second 

compartment of the electrochemical cell houses the RE and CE, a saturated Ag/AgCl  

(0.197 V vs SHE) and a Pt electrode, respectively. 

Downstream of the electrochemical flow cell is the ICP-AES, the second component of the 

AESEC instrument, shown on the right side of Figure 2.7. Electrolyte exiting the flow cell 

is introduced into the ICP using a nebulizer. The high temperatures afforded by the Ar-

plasma, typically 6,000-10,000 K, result in a high efficiency for atomization and ionization 

of all species exiting the flow cell. The ICP-AES instrument, an Ultima 2C spectrometer 

(Horiba Jobin-Yvon), is used for the detection of species released from the WE in 
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real-time. Together, independent mono- and polychromators are used to measure multiple 

emission lines simultaneously. While the monochromator offers higher spectral resolution, 

the polychromator provides the ability to monitor multiple lines simultaneously. 

The third and final component of the AESEC instrument is the data collection system and 

user interface, not shown. The software, Quantum™ (Horiba Jobin-Yvon), allows for 

simultaneous recording of up to 12 photomultiplier tubes. Integrated over one second, 

signals are sent directly to the software to be logged. In addition to the output signals from 

the spectrometer, the potentiostat, a Gamry Reference 600, is interfaced with the data 

collection software. The ability to record both spectroscopic information as well as the 

electrochemical potential/current data on the same time scale allows true simultaneous 

measurements. 

2.3.3 Data treatment 

Procedures used during the treatment of AESEC data have been reported previously [12, 

21]. Following each experiment, detection limits (C3σ) were calculated for each emission 

line according to Equation 2.12, where σB is the standard deviation of the background 

signal and κ is the sensitivity factor determined from standard calibration procedure. 

 C3σ = 3
σB

κ
 (2.12) 

Instantaneous emission intensities for each line were converted into instantaneous 

concentrations (CM) using a standard calibration procedure. Values of CM were then 

converted into instantaneous dissolution rates (νM) according to Equation 2.13, where f is 

the flow rate of electrolyte and A is the exposed surface area of the WE: 

 νM = f
CM

A
 (2.13) 

Features of congruent/incongruent dissolution were distinguished by comparing the 

concentration of metal ion in the electrolyte to the composition of the bulk material, i.e., 
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using normalized dissolution rates (vM
′ ). Values of vM

′  were calculated against the bulk 

alloying element, Ni, according to Equation 2.14, 

 vM
′ = (

XNi
XM

⁄ ) vM (2.14) 

where XNi and XM represent the mass fractions of Ni and metal M, respectively. Congruent 

dissolution occurs when vM
′  = νNi, i.e., the two constituents dissolve at rates relative to their 

bulk composition. When vM
′  > νNi, a selective dissolution process occurs, in which metal 

M dissolves at a rate faster than expected from its bulk composition. In contrast, when  

vM
′  < νNi, metal M is accumulating on the surface. Selective dissolution and/or 

accumulation of metal M can be quantified by mass balance, ΘM, as shown in  

Equation 2.15: 

 ΘM = ∫ ((
XM

XNi
⁄ ) vNi − vM) dt

t

0

 (2.15) 

Instantaneous dissolution rates (νM) were also converted to corresponding elemental 

currents (iM) according to Faraday’s law, Equation 2.16: 

 iM =
υM F n

m
 (2.16) 

where F is Faraday’s constant, m is the molar mass of metal M, and n is the number of 

electrons transferred in the oxidation reaction of metal M.  The summation of all elemental 

currents (iΣ) may then be compared to currents (ie) recorded by the potentiostat during 

electrochemical measurements. Before the comparison of iΣ and ie can be made, a 

convolution process must be used to treat the electrical current. This procedure, detailed in 

previous publications [12], corrects for the residence time and diffusion processes in the 

AESEC setup. 
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2.4 Crevice corrosion experiments 

2.4.1 Crevice assembly 

The WE assembly used in crevice corrosion experiments is shown in Figure 2.8. From 3.18 

mm (1/8”) thick plate stock, 15 mm wide strips were cut and formed into V-shaped WEs. 

A single crevice was formed between the flat portion of the V-shaped WE and the PTFE 

crevice former. The creviced region was tightened using threaded hardware machined from 

the same material as the WE. Udel® bushings were used to avoid unwanted electrical 

contact between the hardware and the WE. A Udel® block was used to provide a rigid 

structure on which pressure was applied to the crevice region. Crevice thickness was kept 

consistent between repeat experiments by using a PTFE spacer of the same thickness as 

the crevice former. Similar electrode assemblies have been used in previous experiments 

[22-27]. 

Before each experiment, the flat surface of the WE was ground using wet SiC papers, 

sonicated in a mixture of equal parts EtOH and DI water, rinsed with DI water, and dried 

under a stream of Ar-gas. Since mass loss calculations were important to crevice 

experiments, detailed below, the prepared WEs were stored in a vacuum desiccator for  

24 h before each experiment, allowing for accurate initial weight measurements. 

Figure 2.8 - Schematic of the V-shaped crevice electrode. 
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Immediately before the experimental setup, all miscellaneous pieces of the crevice 

assembly, including the Udel® bushings and block, the PTFE crevice former, and the 

hardware, were sonicated, rinsed, and dried using Ar-gas. Both the PTFE crevice former 

and the flat surface of the WE were immersed in the experimental solution before 

assembling the crevice electrode, ensuring the presence of electrolyte within the crevice. 

2.4.2 Electrochemical cell 

Crevice experiments were carried out in a Hastelloy pressure vessel (Parr Instrument Co., 

Model 4621) outfitted as an electrochemical cell, Figure 2.9. Electrical connections were 

made through four pressure-tight electrode inlets. All connections, as well as the vessel 

interior, were lined with PTFE to avoid unwanted electrical contacts. A three-electrode 

configuration was used in which the single crevice assembly, detailed above, served as the 

WE. The RE was a homemade Ag/AgCl (0.197 V vs SHE) electrode. The CE was 

constructed of the same material as the WE. During placement of the WE in the cell, 

solution levels were maintained only slightly above the creviced region, ensuring a single 

crevice and minimizing exposure of the WE external to the crevice. Once assembled, the 

vessel was pressurized (414 kPa) with ultra-high purity N2-gas. The vessel was then placed 

within a heating mantle (Parr Instrument Co., Model 4913) and the temperature elevated 

to and maintained at 120 ± 2 °C. Once the temperature stabilized, the desired experiment 

was carried out. 

After each experiment, the vessel was removed from the heating mantle and allowed to 

cool before being disassembled. Unless otherwise stated, corrosion products formed on the 

WE were removed. This was done through manual swabbing and sonication in a (1:1) 

mixture of EtOH and DI water. Once cleaned, the sample was then rinsed with DI water, 

dried in Ar-gas, and stored in a vacuum desiccator. After a minimum of 24 h, the corroded 

electrode was weighed to obtain an accurate weight loss. 
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Figure 2.9 - Schematic of the Hastelloy pressure vessel outfitted 

as a three- electrode electrochemical cell. 
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2.4.3 Galvanostatic polarization 

In galvanostatic polarization measurements, a constant current is applied between the WE 

and CE, while the change in potential between the WE and RE is monitored as a function 

of time. The galvanostatic approach provides control over both the corrosion rate and total 

applied charge (QA), with QA being a direct measurement of the extent of damage. For 

crevice corrosion experiments, galvanostatic polarization measurements were used to 

guarantee initiation while avoiding the application of constant, high applied potentials. 

Additionally, galvanostatic polarization measurements provided control over QA, which 

can then be compared to values of QW, the equivalent charge determined from weight loss 

measurements. Values of QW were obtained by applying Faraday’s law, Equation 2.17, 

where W is the weight loss, F is Faraday’s constant, navg is the weighted average oxidation 

number of metal cations, and mavg is the weighted average molar mass, calculated based 

on the alloy composition. 

 QW = W F (
navg

mavg
) (2.17) 

2.5 Surface analytical techniques 

2.5.1 Electron imaging and spectroscopy 

The scanning electron microscope (SEM) uses a high energy electron beam, typically 

accelerated at voltages ≤ 30 keV, to ‘illuminate’ a sample surface. The electron beam is 

collimated and positioned using a series of complex electromagnetic lenses.  

Two-dimensional images are obtained by scanning the electron beam across the surface 

while monitoring the various signals produced through the interaction of incident (or 

primary) electrons with a sample. The interaction between primary electrons and a sample 

results in the emission of different signals, including backscattered electrons (BSE), 

secondary electrons (SE), Auger electrons, and characteristic X-rays [28, 29]. An 

illustration of the interaction volume of the primary electron beam, as well as the 

approximate depths of the measured signals within a sample surface, is shown in  
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Figure 2.10. While approximate dimensions are provided in Figure 2.10, the interaction 

volume varies widely with the acceleration voltage of the primary electron beam as well as 

with the sample itself [28]. The signals produced by the interaction of the primary electron 

beam with the sample, yield different yet complementary information. 

2.5.1.1 Backscattered electrons (BSE) 

Produced by the elastic scattering of primary electrons from within the sample, BSEs exit 

the sample with only slightly less kinetic energy than the incident primary beam. As a result 

of their relatively high kinetic energy, BSEs escape from deep within the interaction 

volume [30]. For this reason, the spatial resolution of the BSE signal is lower than other 

signals which are emitted from closer to the surface, e.g., secondary electrons. While 

Figure 2.10 - A representation of the interaction volume produced from penetration of the 

primary electron beam into the sample. The signals produced by these interactions and 

their relative depths are shown. 
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spatial resolution is not ideal, BSEs have the benefit of showing differences in elemental 

composition. Since the probability of a high-angle elastic scattering event increases with 

increasing atomic number, compositional information is obtained in the form of image 

contrast [30]. Increased counts (or bright pixels) are observed in areas rich in heavy 

elements compared to areas composed of lighter elements. Crystallographic information 

may also be obtained from BSE, as discussed below. 

2.5.1.2 Secondary electrons (SE) 

Atomically bound electrons from within the sample may be ejected in the event of an 

inelastic collision with the incoming primary electrons. An inelastic collision results in the 

transfer of energy to the bound electron, followed by its ejection as a SE. Typically, SEs 

are low in energy (≤ 50 eV) and can only escape from the outer portion of the interaction 

volume, shown in Figure 2.10. As a result, SEs are commonly used to image since they 

provide high spatial resolution as well as topographic information [29]. 

2.5.1.3 Energy-dispersive X-ray spectroscopy (EDS) and Auger 
electron spectroscopy 

In the event a core-shell vacancy is created by the ejection of a SE, an outer shell electron 

will fall into the core vacancy to minimize energy. During this relaxation process, the 

difference in energy between electron shells is released as an X-ray photon. The relaxation 

process may also occur by the ejection of an outer shell electron, known as an Auger 

electron [29, 30]. Since the energy of the ejected photon or electron involves discrete 

energy levels, they can be used to determine the atom of origin, with the intensities giving 

concentration information. Since X-rays penetrate further than electrons [31], 

characteristics X-rays are detected from great depths in the interaction volume  

(Figure 2.10). 
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2.5.1.4 Electron backscatter diffraction (EBSD) 

Electron backscatter diffraction (EBSD) is used to obtain crystallographic information on 

polycrystalline materials [32]. This includes information related to grain orientation, grain 

boundary properties, surface strain, and phase identification. Since the EBSD technique 

utilizes an electron microscope, outfitted with a specialized detector, the high spatial 

resolution afforded by the collimated primary electron beam is translated to EBSD data. A 

schematic showing the general experimental setup is shown in Figure 2.11. Interaction of 

primary electrons with atomic crystallographic planes causes the diffraction of the 

electrons. Enhanced electron intensity is observed for diffracted electrons which satisfy 

Bragg’s law, Equation 2.18, where nB is an integer, θB is the angle of incidence of the 

electron on the diffracting plane, and d is the spacing of the diffracting plane. The resulting 

band of enhanced electron intensity, known as a Kikuchi band, is captured by a phosphor 

screen detector. Patterns collected by the phosphor screen are generally composed of many 

Kikuchi bands, each corresponding to the diffraction of different crystallographic planes. 

Complex indexing software is then used to determine the orientation of the diffracting 

crystal. 

 nBλ = 2d sin θB (2.18) 

Figure 2.11 - Schematic showing the production of Kikuchi bands 

due to the diffraction of a primary electron beam. 
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2.5.2 X-ray photoelectron spectroscopy 

X-ray photoelectron spectroscopy (XPS) is commonly used to study the surface 

composition and electronic configuration of a sample [33, 34]. Compared to other surface 

sensitive techniques, XPS has the advantage of providing both the elemental composition 

as well as oxidation state information. The principle of XPS is based on the analysis of 

photoelectrons produced from a sample exposed to a monochromatic X-ray source, 

typically the Al Kα (1486.8 eV). This process, known as the photoelectric effect, is shown 

in Figure 2.12. The high surface sensitivity of XPS is a consequence of the relatively low 

kinetic energy (K.E.) of escaping photoelectrons, which permits their escape from only 

shallow depths, typically 5-10 nm below the surface [34]. 

When an X-ray photon penetrates the surface of a sample, it can interact with an atomically 

bound electron in the sample. If the photon energy (hv) is high enough to overcome the 

forces holding the electron to the nucleus, known as the binding energy (B.E.), the electron 

will be ejected from the atom. This ejected electron exits with a kinetic energy (K.E.) 

characteristic of the atom from which it came as well as the oxidation state of the atom. 

Since the energy of the incident X-ray is known (hν) and the K.E. of the escaping 

Figure 2.12 - Production of a photoelectron via the interaction of an 

incident X-ray with an originally atomically bound core shell electron. 

The K.E. of the ejected photoelectron is measured by the spectrometer.  
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photoelectron is measured by the spectrometer, the B.E. can be determined using the 

relationship 

 B. E. = hv − K. E. −φspec (2.19) 

where φspec is the work function of the spectrometer, which describes the energy lost by 

the photoelectron as it is detected by the spectrometer, typically on the order of a few eV 

[33]. 

A typical XPS spectrum is represented as the photoelectron intensity (or count) plotted as 

a function of the photoelectron B.E. (or K.E.). While the photoelectron B.E. provides 

information on the atom of origin, signal intensities are related to the atomic concentrations 

within the area analyzed. Two types of spectra are commonly obtained; survey and high-

resolution spectra. In survey spectra, a large energy window is scanned, allowing the 

identification and quantification of elements present in the surface layer. While survey 

spectra generally require only a few minutes of acquisition time, they do not provide the 

energy resolution to resolve chemical state information. By utilizing a decreased pass 

energy, high-resolution spectra provide the energy resolution required to separate chemical 

state information. High-resolution spectra have the disadvantage of drastically increased 

acquisition times. As a result, these spectra are collected only for narrow energy windows 

that encompass the photoelectron signal of interest (e.g., the energy range corresponding 

to photoelectrons emitted from certain atomic orbitals: C 1s, O 1s, Ni 2p, Cr 2p, Mo 3d, 

etc.). 

Quantification and deconvolution of experimental spectra was done using CasaXPS 

software (v.2.3.19). All spectra were charge-corrected according to the aliphatic (C-C) 

signal observed in the high-resolution C 1s spectrum (284.8 eV). During all quantifications, 

a Shirley background subtraction was used. Aware of the growing issue of incorrectly 

interpreted XPS data in the literature [35], only fitting parameters obtained for high-quality 

standard samples were considered in the deconvolution of high-resolution spectra. An 

approach was adopted in which the spectral envelopes produced by high-quality standard 

spectra were replicated using a series of constrained peak shapes. 



72 

 

 

2.6 References 

[1]  R.G. Kelly, J.R. Scully, D. Shoesmith, R.G. Buchheit, Electrochemical techniques in 

corrosion science and engineering, CRC Press, 2002. 

[2]  A. Groysman, Corrosion for everybody, Springer Science & Business Media, 2009. 

[3]  M. Stern, A.L. Geary, Electrochemical polarization I. A theoretical analysis of the 

shape of polarization curves, Journal of The Electrochemical Society, 104 (1957) 56-

63. 

[4]  M. Stern, R.M. Roth, Anodic behavior of iron in acid solutions, Journal of The 

Electrochemical Society, 104 (1957) 390. 

[5]  ASTM(G59-97), Standard test method for conducting potentiodynamic polarization 

resistance measurements, in: American Society for Testing and Materials, 2014. 

[6]  ASTM(G61-68), Standard test method for conducting cyclic potentiodynamic 

polarization measurements for localized corrosion susceptibility of iron-, nickel-, or 

cobalt-based alloys, in: American Society for Testing and Materials, 2018. 

[7]  M.E. Orazem, B. Tribollet, Electrochemical impedance spectroscopy, 2nd ed., 

Wiley, 2017. 

[8]  G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, The analysis 

of electrode impedances complicated by the presence of a constant phase element, 

Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 176 (1984) 

275-295. 

[9]  D.A. Harrington, P. van den Driessche, Mechanism and equivalent circuits in 

electrochemical impedance spectroscopy, Electrochimica Acta, 56 (2011) 8005-

8013. 

[10]  P. Córdoba-Torres, M. Keddam, R.P. Nogueira, On the intrinsic electrochemical 

nature of the inductance in EIS, Electrochimica Acta, 54 (2008) 518-523. 

[11]  D. Klotz, Negative capacitance or inductive loop? – A general assessment of a 

common low frequency impedance feature, Electrochemistry Communications, 98 

(2019) 58-62. 



73 

 

[12]  K. Ogle, S. Weber, Anodic dissolution of 304 stainless steel using atomic emission 

spectroelectrochemistry, Journal of The Electrochemical Society, 147 (2000) 1770. 

[13]  J. Han, K. Ogle, Dealloying of MgZn2 intermetallic in slightly alkaline chloride 

electrolyte and its significance in corrosion resistance, Journal of The 

Electrochemical Society, 164 (2017) C952-C961. 

[14]  X. Li, K. Ogle, The passivation of Ni-Cr-Mo alloys: time resolved enrichment and 

dissolution of Cr and Mo during passive-active cycles, Journal of The 

Electrochemical Society, 166 (2019) C3179-C3185. 

[15]  X. Li, P. Zhou, K. Ogle, S. Proch, M. Paliwal, A. Jansson, J. Westlinder, Transient 

stainless-steel dissolution and its consequences on ex situ bipolar plate testing 

procedures, International Journal of Hydrogen Energy, 45 (2020) 984-995. 

[16]  K. Lutton, K. Gusieva, N. Ott, N. Birbilis, J.R. Scully, Understanding multi-element 

alloy passivation in acidic solutions using operando methods, Electrochemistry 

Communications, 80 (2017) 44-47. 

[17]  A.A. Ammann, Inductively coupled plasma mass spectrometry (ICP MS): a versatile 

tool, Journal of Mass Spectrometry, 42 (2007) 419-427. 

[18]  D.C. Harris, Quantitative chemical analysis, 8th ed., W. H. Freeman and Company, 

New York, 2010. 

[19]  D.A. Skoog, F.J. Holler, S.R. Crouch, Principles of instrumental analysis, 6th ed. ed., 

Thomson Brooks/Cole, 2007. 

[20]  C.B. Boss, K.J. Fredeen, Concepts, Instrumentation and techniques in inductively 

coupled plasma optical emission spectrometry, 3rd ed., PerkinElmer, 2004. 

[21]  K. Ogle, Atomic Emission Spectroelectrochemistry: Real-time rate measurements of 

dissolution, corrosion, and passivation, Corrosion, 75 (2019) 1398-1419. 

[22]  N. Ebrahimi, P. Jakupi, J.J. Noël, D.W. Shoesmith, The role of alloying elements on 

the crevice corrosion behavior of Ni-Cr-Mo alloys, Corrosion, 71 (2015) 1441-1451. 

[23]  P. Jakupi, J.J. Noël, D.W. Shoesmith, Crevice corrosion initiation and propagation 

on alloy-22 under galvanically-coupled and galvanostatic conditions, Corrosion 

Science, 53 (2011) 3122-3130. 



74 

 

[24]  P. Jakupi, J.J. Noël, D.W. Shoesmith, The evolution of crevice corrosion damage on 

the Ni–Cr–Mo–W alloy-22 determined by confocal laser scanning microscopy, 

Corrosion Science, 54 (2012) 260-269. 

[25]  P. Jakupi, D. Zagidulin, J.J. Noël, D.W. Shoesmith, Crevice corrosion of Ni-Cr-Mo 

alloys, ECS Transactions, 3 (2007) 259-271. 

[26]  N. Ebrahimi, J.J. Noël, M.A. Rodriguez, D.W. Shoesmith, The self-sustaining 

propagation of crevice corrosion on the hybrid BC1 Ni–Cr–Mo alloy in hot saline 

solutions, Corrosion Science, 105 (2016) 58-67. 

[27]  A.K. Mishra, D.W. Shoesmith, Effect of alloying elements on crevice corrosion 

inhibition of nickel-chromium-molybdenum-tungsten alloys under aggressive 

conditions: an electrochemical study, Corrosion Science, 70 (2014) 721-730. 

[28]  W. Zhou, Z.L. Wang, Scanning microscopy for nanotechnology: techniques and 

applications, Springer science & business media, 2007. 

[29]  K.D. Vernon-Parry, Scanning electron microscopy: an introduction, III-Vs Review, 

13 (2000) 40-44. 

[30]  R.F. Egerton, Physical principles of electron microscopy, Springer, 2005. 

[31]  D.P. Woodruff, Modern techniques of surface science, Cambridge university press, 

2016. 

[32]  A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron backscatter diffraction 

in materials science, Springer, 2009. 

[33]  J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray 

photoelectron spectroscopy, Perkin-Elmer Corporation, Eden Prairie, Minnesota, 

United States of America, 1992. 

[34]  P. Van der Heide, X-ray photoelectron spectroscopy: an introduction to principles 

and practices, John Wiley & Sons, 2011. 

[35]  M.R. Linford, V.S. Smentkowski, J.T. Grant, C.R. Brundle, P.M.A. Sherwood, M.C. 

Biesinger, J. Terry, K. Artyushkova, A. Herrera-Gomez, S. Tougaard, W. Skinner, 

J.J. Pireaux, C.F. McConville, C.D. Easton, T.R. Gengenbach, G.H. Major, P. 

Dietrich, A. Thissen, M. Engelhard, C.J. Powell, K.J. Gaskell, D.R. Baer, 

Proliferation of faulty materials data analysis in the literature, Microscopy and 

Microanalysis, 26 (2020) 1-2. 



75 

 

Chapter 3  

3 Investigating the influence of Cr and Mo additions to 
commercial Ni-based alloys exposed to neutral and 
acidic chloride solutions 

(Henderson (et al.), J. Electrochem. Soc., 2020, 167 (13), 131512.) 

 

Abstract:  

The corrosion behaviour of four commercially available Ni-based alloys is presented for 

both natural and potential-controlled corrosion in chloride solutions. Electrochemical 

evidence suggests a balance of Cr and Mo is essential to maintaining passive film stability 

in chloride solutions, especially those in which acidic conditions may develop. In near-

neutral solutions, increased Cr content results in lower corrosion rates and improved 

passive properties; however, an increase in Cr content above 15 wt.% provided only minor 

additional benefits. In acidic solutions, Mo content is essential to corrosion resistance and 

imparts two major benefits: increased film stability and rapid repassivation of breakdown 

events. Since localized corrosion and the critical chemistry which accompanies these 

processes are of concern in many chloride-containing applications, a delicate balance of Cr 

and Mo must be considered; although optimal concentrations have yet to be determined. 

 

3.1 Introduction 

Corrosion-resistant alloys, such as those based on a Ni-matrix, rely on additions of Cr and 

Mo, among other alloying elements (e.g., W, Cu, etc.), to promote the formation of an 

oxide film. Serving as a physical barrier, the oxide functions by slowing the dissolution of 

the underlying reactive substrate [1]. With applications of these alloys in the nuclear, 

aerospace, chemical, and petrochemical processing industries, a thorough understanding of 

the passive film, in relation to alloy composition, is essential for both proper material 

selection and accurate lifetime assessments. In neutral solutions (pH ~7), oxides formed on 
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Cr-containing alloys have been shown to be dominated by a Cr(III)-rich barrier layer and 

as a result, exhibit excellent corrosion resistance [2, 3]. However, in acidic environments, 

the increased solubility of Cr(III) species can lead to the destruction of this passive layer 

[4, 5]. Additions of Mo have been shown to increase the resistance to corrosion in acidic 

solutions. Empirical relationships such as the pitting resistance equivalent number (PREN) 

[6] and the atomic percent factor (APF) [7, 8] have been successfully used to describe the 

benefits Cr and Mo; but are limited in the mechanistic information they provide. While the 

relationship between alloyed Cr and Mo has been extensively studied [9-11], ongoing 

research [3, 12-16] continues to provide new information. 

High chloride solutions are of principal interest, due to their industrial relevance and their 

importance in the mechanism of crevice corrosion [17]. Crevice corrosion has been 

regarded as a potentially dangerous process for Ni-Cr-Mo alloys, due to its difficult 

detection, unpredictability, and self-sustaining nature. While Ni-Cr-Mo alloys are 

considered immune to pitting in near-neutral chloride environments, the presence of an 

occluded geometry can lead to local acidification which may eventually challenge the 

integrity of the passive film. According to some studies, the pH inside an active crevice on 

Ni-Cr-Mo alloys can be as low as zero [10, 18]. Once activated, metal dissolution inside 

the crevice couples to O2 reduction on surfaces outside the crevice, and with H+ reduction 

inside the crevice [19]. Previously [20], we have shown that the contribution of H+ 

reduction can almost double the extent of corrosion damage, but decreases as the Mo 

content of the alloy increases. Due to the potential severity of crevice corrosion, it is 

essential to understand the relationship between alloyed Cr and Mo and the corrosion 

reaction in conditions anticipated both inside and outside a crevice; i.e., in acidic and near-

neutral chloride solutions, respectively. Through an improved understanding, alloy 

compositions, as well as lifetime assessments, may be optimized. 

The corrosion behaviour of four commercially available Ni-based alloys, Hastelloy BC-1, 

C-22, G-35, and G-30, has been investigated in 3 M NaCl and 1 M HCl + 2 M NaCl 

solutions at 75 °C. While acidity is of primary interest, the importance of cathodic reactions 

(O2 and H+ reduction) was also investigated by changing the O2 concentration. 

Furthermore, both the open-circuit and polarization behaviours were investigated. Here, 
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discussion is limited to electrochemical studies, including corrosion potential (ECORR) 

monitoring, linear polarization resistance (LPR), electrochemical impedance spectroscopy 

(EIS), and both dynamic and static polarization measurements. A complementary study of 

film composition is underway. 

3.2 Experimental 

3.2.1 Sample preparation 

Materials were provided by Haynes International (Kokomo, IN, USA) in the mill-annealed 

sheet form. Nominal compositions, as reported by the manufacturer, are summarized in 

Table 3.1, while the measured compositions, determined by inductively coupled plasma 

atomic emission spectroscopy (ICP-AES) (Cambridge Materials Testing Limited, 

Cambridge, ON), are summarized in Table 3.2. Unless otherwise stated, discussions will 

refer to the nominal composition provided by the manufacturer.  

Table 3.1 - Nominal compositions of the examined alloys (wt.%) as reported by Haynes 

International. Maximum allowable concentrations are indicated by ‘M’. The balance of the 

composition is nickel in each of these alloys. 

Alloy Ni Cr Mo Fe W Cu Nb Co Mn V Al Si C 

G-35 Bal. 33.2 8.1 2M 0.6 0.3M -- 1M 0.5M -- 0.4M 0.6M 0.05M 

G-30 Bal. 30 5.5 15 2.5 2 0.8 5 1.5 -- -- 0.8M 0.03M 

C-22 Bal. 22 13 3 3 0.5M -- 2.5M 0.5M 0.35M -- 0.08M 0.01M 

BC-1 Bal. 15 22 2M -- -- -- -- 0.25 -- 0.5M 0.08M 0.01M 

 

Experimental coupons were fabricated with the dimensions 0.6 x 0.6 x 6 cm3. Avoiding 

the use of epoxy and the subsequent opportunity for crevice corrosion to occur, these ‘stick’ 

electrodes were partially submerged directly in the experimental solutions. Observations 

of minimal waterline corrosion were made only in naturally aerated acidic solutions and 

were considered insignificant compared to corrosion damage present elsewhere on the 

coupon. Prior to all measurements, coupons were ground to a final surface preparation of 

P1200 using wet SiC paper with water as lubricant. Coupons were then sonicated in EtOH 

(95%), rinsed in deionized (DI) water (18.2 MΩ cm), and dried in a stream of ultra-high 
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purity Ar gas (Praxair, Mississauga, ON). Applying this procedure ensured that the surfaces 

demonstrated reproducible electrochemical behaviour. 

Table 3.2 - Actual compositions of the examined alloys (wt.%) as determined by 

ICP-AES. Chemical analysis was performed in accordance with ASTM E1019-18, 

E1097-12, and E1479-16. 

Alloy Ni Cr Mo Fe W Cu Mn Al Si C 

G-35 56.3 33.4 7.98 0.54 0.07 0.02 0.45 0.24 < 0.01 < 0.010 

G-30 42.1 29.0 4.97 14.75 2.77 1.70 1.13 0.15 0.24 0.016 

C-22 57.6 20.7 12.97 3.74 2.80 0.06 0.27 0.28 < 0.01 0.012 

BC-1 60.9 14.4 22.1 0.85 0.01 0.03 0.25 0.18 < 0.01 0.011 

 

Solutions were prepared using reagent grade NaCl and concentrated HCl (Caledon 

Laboratory Chemicals, Georgetown, ON). The chloride concentration in all solutions was 

kept constant by substituting NaCl for HCl in equimolar quantities, with the studied 

concentrations being 3 M NaCl and 1 M HCl + 2 M NaCl. Where indicated, dissolved O2 

was removed by an initial high rate of sparging with ultra-high purity Ar followed by 

continuous sparging for the duration of the experiment. 

3.2.2 Electrochemical methods 

Experiments were conducted in a three-compartment glass electrochemical cell. A water 

jacket, which encased the main compartment, was connected to an isothermal water 

circulator. The circulator was used to maintain a solution temperature of 75 ± 1 °C. The 

counter electrode (CE), a platinum flag, and the reference electrode (RE), a saturated 

calomel electrode (SCE), were housed in their own compartments, isolated from the main 

compartment by porous glass frits. Prior to each experiment, the RE was calibrated against 

a ‘master’ electrode, used only for calibration purposes. Following each experiment, the 

surface area of the ‘stick’ working electrode (WE) was measured to allow for the 

conversion of the measured current into current density. 

Electrochemical measurements were made using either a Model 1287 potentiostat or 2100 

Analytical Modulab (Solartron Analytical, Hampshire, UK). Corrosion behaviour was 

studied by monitoring the corrosion potential (ECORR) for a period of 6 h, with linear 
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polarization resistance (LPR) measurements made every 30 min. LPR measurements 

involved polarizing the WE ± 10 mV (vs. ECORR) at a scan rate of 10 mV min−1. Polarization 

resistance (RP) values were then calculated from the slopes of the linear current density (i) 

vs potential (E) plots (i.e., RP = ΔE/Δi). In separate experiments, electrochemical 

impedance spectroscopy (EIS) measurements were performed at the end of a 6 h ECORR 

measurement. Spectra were acquired at ECORR by the application of a sinusoidal 

perturbation (± 10 mV) at 11 points per decade in the frequency range from 105 to 10−3 Hz. 

A second spectrum was recorded using a frequency scan in the reverse direction to ensure 

that the system under investigation was stable during the EIS measurement. 

In the study of polarization behaviour, both dynamic- and static-polarization techniques 

were used. Dynamic experiments were initiated at −0.050 V (vs. ECORR) and scanned in the 

positive direction at 10 mV min−1 until either the potential reached 1.1 V (vs. SCE) or the 

absolute current reached 10 mA. In static experiments, a fixed potential of 0 V (vs. SCE), 

was applied and the resulting current response monitored as a function of time. 

3.3 Results 

3.3.1 Corrosion potential (ECORR) and polarization (Rp) 

measurements 

During immersion in near-neutral chloride solution, all alloys exhibited behaviour 

consistent with the formation of a passive film. A summary of ECORR and RP measurements 

made in aerated 3 M NaCl is given in Figure 3.1(A). Overall, both ECORR and RP were 

found to increase toward steady-state values. For all alloys, RP values were found to be on 

the order of 106 Ω cm2, consistent with the passive behaviour expected for these alloys in 

nonaggressive solutions [2, 21], and with the rapid formation of a Cr-rich oxide barrier 

layer [22, 23]. Values of RP increased only slightly with the Cr content of the alloy: BC-1 

(15 wt.% Cr) < C-22 (22 wt.% Cr) < G-30 (30 wt.% Cr) < G-35 (33.2 wt.% Cr). The benefit 

of increasing the Cr content > 15 wt.% was minor.  
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Figure 3.1 - Corrosion potential (ECORR) and polarization resistance 

(RP) measurements on alloys BC-1, C-22, G-35, and G-30 exposed to 

(A) aerated 3 M NaCl, (B) aerated 1 M HCl + 2 M NaCl, and (C) 

deaerated 1 M HCl + 2 M NaCl (75°C). 
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Unlike RP values, ECORR exhibited no clear dependence on the Cr content of individual 

alloys. Previously, Lloyd et al. showed that an increased Cr content led to open-circuit 

ennoblement [22]. In the present work, this was found to be true only for BC-1, C-22 and 

G-30, whose ECORR increased with Cr content: BC-1 (15 wt.% Cr) < C-22 (22 wt.% Cr)  

< G-30 (30 wt.% Cr). However, the highest-Cr-containing alloy, G-35 (33.2 wt.%), had the 

lowest ECORR at the end of the 6-h immersion period. Based on the empirically determined 

alloy compositions, Table 3.2, the ECORR increased with Fe content in the order G-35  

(0.54 wt.% Fe) ≈ BC-1 (0.85 wt.% Fe) < C-22 (3.74 wt.% Fe) < G-30 (14.75 wt.% Fe). 

This could be due to the presence of Fe2O3 or a Fe-containing spinel [5, 24]. Since ECORR 

is dependent on the kinetics of the anodic and cathodic half-reactions, this trend could 

indicate either increased anodic or decreased cathodic reaction kinetics.  

A decrease in solution pH resulted in large changes to both ECORR and RP, compared to the 

values measured in near-neutral solution. The ECORR and RP values recorded in aerated  

1 M HCl + 2 M NaCl solution are shown in Figure 3.1(B). Alloys C-22, G-30, and G-35, 

displayed comparable behaviour. Rather than increasing toward a steady-state, ECORR 

rapidly stabilized and remained constant for the remainder of the experiment. It is worth 

mentioning that ECORR values stabilized significantly faster in acidic solution than in the 

near-neutral chloride solution. This suggests that the rate of reaction in acidic solution is 

faster than that in near-neutral solution. Similarly, RP quickly stabilized at low values, on 

the order of 10 Ω cm2. In this solution, RP values were approximately five orders of 

magnitude lower than those measured in the near-neutral solution, indicating the 

establishment of active conditions. In acidic solution, the high solubility of Cr(III) would 

be expected to challenge the Cr(III) barrier layer [25]. Evidence for active conditions is 

presented below in the discussion of the dynamic polarization measurements. 

Measurements on alloy BC-1 suggested the surface remained partially protected in acidic 

solution, Figure 3.1(B). Values of ECORR rapidly increased to a maximum, which then 

decreased slightly with time. The maximum value was ~0.2 V higher than that measured 

in near-neutral solution. The negative-going transients observed in ECORR suggest localized 
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events occurring on the surface. Each potential transient indicates a momentary 

acceleration of the anodic reaction, consistent with metastable pitting behaviour through a 

protective layer [19, 20]. Unfortunately, the temporary influence of metastable events 

could not be captured by periodic RP measurements. Values of RP were on the order of  

103 Ω cm2. While lower than those measured in near-neutral solution, they were 

approximately three orders of magnitude greater than values measured on alloys C-22, G-

30, and G-35, exposed to the same solution. Together, these potential transients and the RP 

values suggest that BC-1 maintains, at least to some extent, a partially protective passive 

film in an aerated 1 M HCl + 2 M NaCl solution. This combination of an increase in ECORR 

and higher RP values for BC-1 than on C-22, G-30, and G-35 alloys, suggests the anodic 

reaction is suppressed by the presence of a surface film. Given the high Mo content of BC-

1, it is likely that this film is Mo-rich. It has been suggested that alloying with Mo stabilizes 

the Cr-rich oxide film in acidic solutions [9, 26-28]. For Cr/Mo containing alloys, this is 

often attributed to the formation of a Mo-rich oxide layer over an inner Cr-rich barrier layer 

[3, 29-33]. These results confirm a role for Mo in protecting an alloy from degenerating to 

active corrosion, providing the Mo content is > 13 wt.%. For Mo < 13 wt.%, any Cr(III) 

barrier layer is dissolved and active corrosion can be achieved. 

In addition to changes in behaviour caused by decreases in pH, changes caused by the 

removal of dissolved O2 were also studied. The ECORR and RP values recorded in  

Ar-sparged 1 M HCl + 2 M NaCl are shown in Figure 3.1(C). For C-22, G-35, and G-30, 

the removal of O2 produced ECORR and RP values comparable to those recorded in the 

naturally aerated acidic solution. This suggests that O2 plays a minor role as the oxidant in 

comparison to H+ at ECORR when the alloy is active. In both aerated and deaerated solutions, 

ECORR values for these alloys were near or below the equilibrium potential for H+ reduction, 

−0.244 V (vs. SCE) at pH 0 and 75°C. In addition, the formation of bubbles was observed 

for alloys C-22 and G-35 and most copiously for alloy G-30. 

By contrast, the removal of dissolved O2 caused noticeable changes in the behaviour of 

BC-1. The general trends in ECORR were similar for both the aerated and the Ar-sparged 

solution conditions, i.e., a rapid increase followed by a gradual decline over the 6-h period. 

However, values measured in the Ar-sparged solution were found to be ~0.1 V lower than 
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those measured in naturally aerated solution. Additionally, the negative-going potential 

transients observed in the naturally aerated solution were absent in the Ar-sparged solution, 

confirming the role of O2 in their generation. Previously, Ebrahimi et al. demonstrated that, 

while H+ reduction was enough to maintain localized events on alloy BC-1, O2 was an 

important oxidant during their initiation [19]. RP values measured in Ar-sparged solution 

were only slightly higher than those measured in aerated solution.  

3.3.2 Electrochemical impedance 

Representative impedance spectra collected in aerated 3 M NaCl solution are shown in 

Figure 3.2. In Nyquist plots, not shown, depressed semi-circles with diameters on the order 

of 106 Ω cm2 were found for all alloys. This is consistent with the RP values discussed 

above. The corresponding Bode plots are shown in Figure 3.2(A) and (B). The low 

frequency impedance modulus, |Z|, suggests that an increase in Cr-content provides only a 

minor benefit for Cr concentrations > 15 wt.%. The phase angle plot shows two time-

constants for all four alloys, one at high (~103 Hz) and the other at low (~10−1 Hz) 

frequency. The electrical equivalent circuit used to fit the spectra is shown in the inset of 

Figure 3.2(B). The impedance response of similar systems has been investigated and 

appropriate equivalent circuits discussed [2, 34-37]. Ebrahimi et al. attributed the high and 

low frequency time-constants to interfacial charge transfer and film processes, respectively 

[35]. More specifically, the high and low frequency time-constants were said to involve the 

charge transfer process at the film/solution interface and the dielectric processes occurring 

within a thin defective film, respectively. More complex circuits involving additional time-

constants [2] have been proposed, including the need for diffusional (Warburg) elements 

to improve the fit of the equivalent circuit [34, 38]. However, the inclusion of a Warburg 

element was not found to significantly improve the fit to the spectra in Figure 3.2 and was 

therefore avoided. 

In all cases, a constant phase element (CPE) was used in place of a capacitor to account for 

the non-ideal capacitive response of the surface [39, 40]. For the low frequency time-

constant, attributed to the response of the film, the CPE exponent was > 0.85 for all alloys. 

On the other hand, CPE exponents corresponding to the interfacial process (~103 Hz) were 
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Figure 3.2 - EIS recorded on alloys BC-1, C-22, G-35, and G-30 after 6-

h exposure to aerated 3 M NaCl (75°C). Points indicate experimental 

data while solid curves represent the result of equivalent circuit fitting. 
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Figure 3.3 - Dependence of (A) film resistance (Rf), film capacitance (Cf), and 

(B) interfacial resistance (Rint) on alloy Cr content after 6-h exposure to 3 M 

NaCl solution (75°C). Values of capacitance were obtained from CPEf 

according to the procedure proposed by Brug et al. [38]. The error bars indicate 

the goodness of fit obtained from linear least squares fitting. 
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lower, suggesting the contribution of a diffusive impedance. Using the method developed 

by Brug et al. [41], the CPEf values were converted into equivalent capacitances (Cf) and 

plotted together with the resistance values (Rf). The results are plotted as a function of Cr 

content in Figure 3.3(A). In general, values of Rf increased with increasing Cr-content, 

except on G-30, for which Rf was lower than expected. This probably indicates an effect 

of the higher Fe content in G-30 on the passive film. Opposite to the trend in Rf, values of 

Cf were found to decrease with increasing Cr-content. The low values of Cf are in the range 

expected for a thin passive oxide. The increase in Rf, accompanied by a decrease in Cf, is 

consistent with an improvement in passive film properties due to its thickening and/or the 

elimination of point defects, with the latter reflected in a decrease in the dielectric constant 

of the film [34, 38]. Overall, the impedance data presented here suggest that increasing Cr 

content to > 15 wt.% results in only minor improvements in passivity. However, as is clear 

by inspection of Figure 3.2(A) and (B), significant differences in the alloy/oxide interfacial 

properties are observed. The resistance to charge transfer at the metal/oxide interface (Rint) 

for the two high Mo(W)/low Cr alloys, BC-1 and C-22, are considerably lower (by more 

than a factor of 10) than those for the high Cr/low Mo(W) alloys, Figure 3.3(B), with the 

low CPE exponents suggesting either a possible diffusive contribution or local film 

inhomogeneities. These results indicate a degradation of the inner barrier layer as the 

Mo(W)/Cr ratio is increased. 

Representative impedance spectra collected in aerated 1 M HCl + 2 M NaCl are shown in 

Figure 3.4. For alloy BC-1, two time-constants were observed, similar to the spectrum 

recorded in near-neutral 3 M NaCl, however, the absolute impedance was over two orders 

of magnitude lower. For the other alloys, the low frequency value of |Z| decreased to very 

low values, Figure 3.4(B). In addition, a low frequency inductive response, reflected in the 

temporary positive value of the phase angle, Figure 3.4(A), is observed. Such an inductive 

response may occur at sufficiently low frequencies for the BC-1 alloy but could not be 

detected in our experiments, since valid impedance data could only be recorded for 

frequencies ≥ 10−2 Hz. At lower frequencies, the film breakdown events observed in ECORR 

measurements, Figure 3.1(B), led to erratic data. As a result, the impedance spectra violated 

the stability criterion required for valid data. Consequently, the circuit containing two RC 
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Figure 3.4 - EIS recorded on alloys BC-1, C-22, G-35, and G-30 after 6-h 

exposure to aerated 1 M HCl + 2 M NaCl (75°C). Points indicate 

experimental data while solid curves represent the result of equivalent circuit 

fitting. 
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Figure 3.5 - EIS recorded on alloys BC-1, C-22, G-35, and G-30 after 6-h 

exposure to deaerated 1 M HCl + 2 M NaCl (75°C). Points indicate 

experimental data while solid curves represent the result of equivalent circuit 

fitting. 
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time-constants, Figure 3.4(B) (inset), was used to fit the spectra for BC-1, while the three 

time-constant circuit incorporating the inductor (L) and resistor (RL), was used to fit the 

spectra recorded for the other three alloys. Low frequency inductive effects are commonly 

attributed to the influence of surface adsorbed cation states, discussed in more detail below.  

Representative impedance spectra collected in deaerated 1 M HCl + 2 M NaCl are shown 

in Figure 3.5. Values of |Z| were comparable with those observed in the aerated case and 

exhibited a similar overall increase as the Mo(W) content increased. As observed for 

aerated conditions, the spectrum obtained for BC-1 was fitted using the two time-constant 

circuit (inset to Figure 3.5(B)). For the alloys undergoing active corrosion, the three  

time-constant circuit including L and RL was required. Small changes in Rf, Rint and RL 

were observed with no clear dependence on the Mo(W) content. 

The overall influence of Mo and aeration on the resistive properties of the surface films is 

shown in Figure 3.6, which plots the total interfacial resistance (∑R = Rf + Rint + RL) as a 

function of Mo content for both aerated and deaerated conditions, with the influence of 

aeration detectable only at the highest Mo content. Values of ∑R shown in Figure 3.6 are 

comparable to RP values discussed with Figure 3.1(B) and (C). Since the CPE exponents 

were in many cases < 0.8, the conversion of the respective CPE parameters to capacitances 

was dubious. Of particular interest is the value for BC-1, since the impedance spectra show 

the presence of a substantial film while exposed to acidic solutions. Since the CPE 

exponent was > 0.8 for aerated conditions the CPE was converted to an equivalent 

capacitance, yielding a value of 120 μF cm2, which is considerably higher than observed 

for neutral conditions, 11 μF cm2. Coupled with the relatively high value of Rf, this 

indicates the presence of a highly defective surface film. Similarly, high values of 

capacitance are observed under transpassive conditions [34] when the destruction of the 

Cr(III) barrier layer at high potentials leads to the formation of a partially protective  

Mo-dominated layer. 
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3.3.3 Dynamic and static polarization 

Figure 3.7(A) shows linear polarization curves recorded in a neutral 3 M NaCl solution. 

For potentials positive of ECORR, all the alloys exhibited a passive region, extending up to 

~0.2 V (vs SCE). For the three high-Cr alloys, the current densities in the passive region 

were effectively the same, while that for alloy BC-1 was noticeably higher, as expected, 

given its lower Cr content. For higher potentials, the film thickness has been shown to 

increase [32], however, the onset of Cr(III) oxidation to Cr(VI) results in damage to the 

barrier layer [34, 42]. Online measurements have shown that the transpassive dissolution 

of Ni-based alloys proceeds with elevated dissolution rates of Ni and Cr with the surface 

 

Figure 3.6 - Relationship between Mo content and the total resistance (ΣR) 

calculated from equivalent circuit fitting of impedance spectra obtained in 

aerated and deaerated 1 M HCl + 2 M NaCl solution (75°C). The error bars 

indicate the goodness of fit obtained from linear least squares fitting. 
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Figure 3.7 - Polarization behaviour of alloys BC-1, C-22, G-35, and G-

30 in (A) aerated 3 M NaCl, (B) aerated 1 M HCl + 2 M NaCl (B), and 

(C) deaerated 1 M HCl + 2 M NaCl (75°C). 
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enrichment of Mo [13]. This process leads to increased currents which are slightly higher 

for the alloys with lower Cr contents. For all alloys, a secondary passive region was 

observed between ~0.4 V and 0.6 V. This was consistent with previous observations and 

attributed to surface enrichment with Ni(OH)2 [43, 44]. For alloy G-30, this secondary 

passive region was extended to ~0.7 V (vs SCE), a feature attributed to the formation of 

insoluble Fe(III) oxide. 

In aerated 1 M HCl + 2 M NaCl solution, Figure 3.7(B), an active-to-passive transition was 

observed for all alloys except BC-1. The peak currents related to active dissolution were 

found to decrease with increasing Mo content as expected from published literature [26, 

45]. The observation of active behaviour for all alloys, except BC-1, was consistent with 

the ECORR/RP and EIS measurements, which indicated active behaviour for G-35, G-30 and 

C-22. For potentials more positive than the active-to-passive transition, where film 

formation occurred, the behaviour was complicated by a switch from anodic to cathodic 

current for alloys G-30 and G-35. For both alloys, the measured current eventually returned 

to anodic values as the applied potential was increased. Additionally, all alloys exhibited 

current transients, again with the exception of BC-1. 

Polarization curves conducted in deaerated 1 M HCl + 2 M NaCl solutions, Figure 3.7(C), 

generally displayed higher currents through the passive region and yielded only anodic 

current values (~−0.1 V to 0.8 V (vs SCE)), indicating that the net currents (inet) in this 

potential region under aerated conditions were the sum of an anodic passive current (ianodic) 

and a cathodic current (icathodic) for O2 reduction. Consequently, the polarization curves 

acquired in deaerated solution allowed for ianodic to be easily compared between alloys. For 

potentials immediately positive of the active-to-passive transition (i.e., up to ~0.1 V (vs 

SCE)), the current was independent of potential for the three high Cr alloys and decreased 

as the Mo(W) content increased. At potentials ≥ 0.1 V (vs SCE) the currents for the three 

alloys showed no consistent trend with composition, remained independent of potential for 

C-22 and G-30, and decreased with potential for G-35. The passive current for G-30, the 

high Fe containing alloy, was considerably higher than that of the other two alloys, 

indicating that the advantage of Fe in suppressing the current at high potentials in neutral 

solution was lost in acidic solutions, in which Fe3+ is much more soluble [25]. For alloy 
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BC-1, the current behaviour in this potential region (−0.1 V to 0.8 V) was significantly 

different to that of the other three alloys. While one to two orders of magnitude lower at 

the low end of this potential range, it increased steadily with potential to values 

approaching, and in the case of G-35 exceeding, the currents observed on alloys with lower 

Mo(W) contents. 

The contributions from the cathodic current in the passive region were determined by 

subtracting the currents recorded in deaerated solution (ianodic) from those measured in 

aerated solution (inet = ianodic + icathodic). The results are plotted against the applied potential 

for all four alloys in Figure 3.8. Overall, no clear dependence of the current on the 

Mo(W)/Cr ratio was observed. For the alloy BC-1, with the highest Mo(W)/Cr ratio, the 

Figure 3.8 - Cathodic current densities related to O2 reduction throughout the region 

of film formation in 1 M HCl + 2 M NaCl (75°C). Values obtained from the difference 

in current densities measured in naturally aerated and deaerated solutions; iaerated – 

ideaerated = (ianodic + icathodic) - ianodic. Dashed lines indicate the offset locations of i = 0. 
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O2 reduction current was effectively zero over the full potential range. For C-22 and G-35 

relatively small values of icathodic were observed, with the value for G-35 decreasing with 

increased potential while that for C-22 remained potential-independent. By far the largest 

cathodic current was observed for G-30, which differs in composition from G-35 only in 

the Fe content. While transport processes were anticipated to limit the rate of O2 reduction, 

especially at potentials far below the equilibrium potential, the large differences in cathodic 

currents for the alloys suggested presently unresolved chemical factors must also be 

involved. 

In both aerated and deaerated acidic solutions, films formed at higher potentials were found 

to be susceptible to localized breakdown events. These instabilities were investigated in 

more detail under potentiostatic conditions. Figure 3.9(A) shows the currents recorded at 

an applied potential of 0 V (vs SCE) in deaerated 1 M HCl + 2 M NaCl. This potential was 

well above the active regions for those alloys which exhibited active behaviour but below 

potentials at which more unpredictable behaviour was observed, Figure 3.7(C). Figure 

3.9(B) shows magnifications of individual transients for each alloy, which all exhibited the 

standard shape involving a rapid initiation followed by an exponential recovery. It is clear 

that the severity of breakdown and the time for recovery varies with the Mo(W) content of 

the alloy. However, the charge associated with individual transients was difficult to 

measure due to the long current tails for individual transients, in particular those recorded 

for the low Mo alloys, for which decay to the background passive current density was slow 

and incomplete. 

The differences between the different alloys were characterized by determining the 

frequency of breakdown events and the maximum amplitude of individual events, Figure 

3.9(C) and (D), respectively. The plotted values are based on 3-4 repeated experiments. 

This means the large error bars reflect an inability to totally capture the distributions of 

stochastic events. The frequency of breakdown events decreased markedly with increased 

alloy Mo(W) content, while the maximum current amplitude was low for all alloys except 

the high-Fe G-30 alloy. Interestingly, for this last alloy, the high frequency of high 

amplitude events led to a slow, but continuous, increase in the background passive current, 

indicating an inability of G-30 to completely repassivate. 
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Figure 3.9 - Current-time response of potentiostatic experiments at 0 V (vs. SCE) on alloys 

BC-1, C-22, G-35, and G-30 in deaerated 1 M HCl + 2 M NaCl (75°C). Data collected 

over an 8-h period are shown in (A), while (B) shows a magnified region for better 

comparison of current transients. Quantification of the average event frequency and 

maximum amplitude is given in (C) and (D), respectively. 
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3.4 Discussion 

3.4.1 Passive films formed under neutral conditions 

In many studies, passive films grown at ECORR have been characterized during or after 

exposure to acidic solution, where the release of the alloy matrix element, in this case Ni2+, 

accelerates the enrichment of Cr and Mo within the oxide [22, 46]. These films are 

commonly characterized by the enrichment of Cr at the alloy/oxide interface, while Mo 

segregates to the oxide/solution interface. However, a similar segregation process has also 

been demonstrated in air-formed oxide films [33], indicating that it is a universal feature, 

irrespective of the oxidizing exposure environment. Consequently, such a process would 

be expected in our experiments in neutral solution. 

The results in Figure 3.3(A) indicate that the film resistance, Rf, while slightly lower for 

the Fe-containing G-30, is only marginally influenced by changes in Cr content ≥ 22 wt.%. 

A lower Rf was observed for alloy BC-1, containing the lowest Cr-content. At only  

~15 wt.%, the Cr content may be close to the minimum required to form the  

–CrIII–OII–CrIII– network necessary to establish a coherent Cr2O3 barrier layer. According 

to percolation theory, a critical cation fraction is required in the oxide to achieve a passive 

state in Fe- and Ni-based alloys containing Cr [47, 48]. 

Interestingly, a lower interfacial resistance, Rint, Figure 3.3(B), was observed for both BC-

1 and C-22. As indicated in Figure 3.3(A), this was accompanied by a higher film 

capacitance, Cf, relative to the values measured for the two high-Cr alloys, G-30 and G-35. 

This combination of effects suggests that the inner layers present on BC-1 and C-22 are 

more defective than those on the other two alloys. Given the high Cr content of alloy C-

22, it seems unlikely that the slightly inferior properties are attributable to a compositional 

inability to form a coherent –CrIII–OII–CrIII– network. A possibility is that the inner oxide 

found on BC-1 and C-22 has a higher Mo(W) content than that of the two high Cr alloys, 

caused by a more restricted segregation process in neutral solution where Ni2+ dissolution 

is limited. This would be consistent with recent studies that were interpreted based on the 

solute vacancy interaction model [49] and recent experiments indicating the likelihood that 
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Mo is present in the form of individual cations, due to non-equilibrium solute capture in 

rapidly grown Ni(II)/Cr(III) oxides [16]. 

It is possible that these lower values of Rint reflect a slower approach to a final steady-state 

passive film structure for these alloys. That this may be the case is suggested by the 

difference in relative values of RP between the four alloys which are less divergent after 6 

h of exposure than after shorter exposure times. For all four alloys, RP values increase 

slightly over the full exposure period, suggesting a slow improvement in film properties, 

either due to thickening or to the elimination of point defects. 

3.4.2 Passive films formed under acidic conditions 

The behaviour observed at ECORR (Figure 3.1) and under applied potential polarization 

(Figure 3.7) confirms that, under acidic conditions, alloys G-35, G-30, and C-22 are active, 

while BC-1 maintains a weakly passive film, exhibiting passive current densities  

> 10−5 A cm−2. In EIS experiments, the inductive response observed at low frequency, 

Figure 3.4, is similar to behaviour commonly found on active metal surfaces, generally 

attributed to coupled electrochemical reactions involving adsorbed intermediates [1, 39]. 

Inductive responses have been reported during the dissolution of Fe-based alloys in acid 

media [11, 50-53] as well as for Ni [54, 55], Cr [56, 57], and Mo [58, 59] systems. Since 

all of these elements are found in the studied alloys, inductive responses are to be expected. 

It is likely that the oxidation of each of these metal cations involves adsorbed states, some 

possibly involving the co-adsorption of anions as well.  

Both Jakupi et al. [60] and Ebrahimi et al. [4] showed that Mo was retained at active sites 

under the active corrosion conditions prevailing inside a propagating crevice, while Ni and 

Cr were not. More recently, Li and Ogle confirmed [46] that similar behaviour, involving 

only the retention of Mo, was observed under active conditions not involving a crevice 

geometry. Jakupi et al. [60] investigated the nature of Mo deposits formed inside an 

actively corroded crevice using Raman spectroscopy. While they found it difficult to be 

specific, due to the complexity of the Mo polymerization process, this study indicated the 

presence of MoO2, Mo4O11 and ill-defined polymeric species such as Mo36O112
8−. When 

W was present, no spectral differences were observed, although W would be expected to 
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exert a similar response to Mo. Bojinov et al. [58] proposed a complex anodic reaction 

sequence for Mo involving multiple adsorbed species with an initial step in which Mo(III) 

was reversibly converted to Mo(IV). 

The change in behaviour from active, involving inductive responses in the EIS, to passive, 

involving a capacitive response, as the Mo(W) content of the alloy increased could then 

possibly be explained by a shift from reversible adsorbed states at low Mo contents to the 

MoO2 and polymeric species at higher contents. The observation of an active-passive 

transition for G-30, G-35 and C-22 confirms the occurrence of active behaviour, with the 

absence of such a transition for BC-1 expected in the presence of a corrosion-resistant Mo 

oxide/molybdate layer. At low potentials in the passive region (as defined by the 

polarization curves in the absence of O2, Figure 3.7(C)) the lower passive current in higher-

Mo(W) alloys demonstrates that the Mo(W) content is crucial in sustaining passivity and 

in suppressing the events which initiate localized film breakdown [14, 20-26, 29, 61-63]. 

The ability of Mo to enhance the passivity of Fe-based alloys has been explained in terms 

of a bipolar model [29] with an outer layer Mo-oxide protecting an inner Cr(III) barrier 

layer. It was proposed that the outer layer contained anionic Mo species (e.g., MoO4
2−), 

giving the oxide/solution interface a certain cation selective nature to repel aggressive 

anions, such as Cl−, which would induce film breakdown. As noted by Lutton Cwalia et al. 

[12] this segregation process facilitates the formation of a continuous Cr2O3 layer and 

suppresses cation vacancy motion. Thus, while this model offers an explanation for a 

decrease in the number of attempted breakdown events as the Mo(W) content increases, it 

does not necessarily explain the suppression of the current amplitude when transients do 

occur. As shown in Figure 3.9, as the Mo(W) content decreases, transients become more 

frequent and severe compared to those on high-Mo alloys. It is well-established that Mo-

rich corrosion products deposit in areas of active corrosion and suppress active behavior 

[4, 10, 19]. Recent studies by Li and Ogle [46] show that when the potential applied to  

C-22 is in an active region (in 2 M H2SO4), Ni, Cr, and Fe are released to solution, but not 

Mo. This indicates that a breakdown event in a passive oxide would retain Mo(W) at the 

breakdown site at a rate dictated by the Mo(W) content of the alloy. This is consistent with 

the observations of Maurice et al. [14] who observed the accumulation of Mo at nanoscale 
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defects in the passive film formed on an Fe-based single crystal containing Cr, Ni, and Mo 

additions. 

3.4.3 The role of the oxygen reduction reaction 

While H+ reduction is the dominant cathodic reaction observed in polarization curves 

recorded in aerated acidic solution, O2 reduction also occurs throughout the passive region, 

Figure 3.8. Previously, Zhang et al. [38] explored the kinetics of the O2 reduction (in 

neutral 5 M NaCl at 70°C) in relation to oxide film properties on alloy C-22. They found 

that higher rates of O2 reduction occurred on films which had been damaged and 

subsequently repaired. They attributed the increased rate to either enriched Mo-species, 

which could catalyze the reaction, or a more defective oxide film structure. It was later 

shown that Mo enrichment during film breakdown is a dynamic process, meaning that Mo-

species quickly accumulate, then are subsequently removed during film repair [13]. As a 

result, the observations made by Zhang et al., as well as those in this study, indicate that it 

is the presence of oxide defects that leads to increased cathodic activity. Since O2 reduction 

currents show little dependence on potential, Figure 3.8, and were proportional to the 

passive current densities (Figure 3.7(C)), it appears that the rate of O2 reduction was 

dependent on the physical properties of the passive film (possibly defect structure and 

composition) with a possible influence of transport for alloy G-30. 

3.5 Conclusion 

The relationship between Cr and Mo alloying additions was investigated during the 

corrosion of commercially available Ni-based alloys in both neutral and acidic chloride 

solutions. In neutral solution, corrosion rates were found to be dependent on the Cr content 

at both ECORR and other applied potentials. All alloys appeared to be immune to localized 

corrosion in neutral chloride solutions in these experiments, likely a result of the 

sufficiently high Mo content (≥ 5.5 wt.% Mo). In contrast to those made in the neutral 

solution, electrochemical measurements made in acidic chloride solution suggest that Mo 

becomes increasingly important to the alloy’s corrosion performance and provides two 

distinct benefits. 
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Firstly, alloyed Mo was found to increase the stability of the passive film during exposure 

to acidic solution. During corrosion at ECORR, the alloy with the highest Mo content, BC-1 

(22 wt.% Mo), was found to retain a partially protective oxide film even in 1 M HCl +  

2 M NaCl solution. This resulted in polarization resistance values that were approximately 

two orders of magnitude higher than those recorded for the alloys with lower Mo contents; 

C-22, G-35, and G-30. Furthermore, the impedance spectra collected on low-Mo alloys 

demonstrated low-frequency inductive features, consistent with a dissolution mechanism 

involving adsorbed intermediates. During potentiodynamic experiments, increased Mo 

content was found to suppress features of active dissolution and, unexpectedly, alloys  

G-35 and G-30 displayed a transition from net anodic to net cathodic current at applied 

potentials higher than the active-passive transition. The removal of O2, the anticipated 

cathodic reagent, allowed us to show that, while Cr appears to dictate the properties of this 

film in aerated solutions, in fact it is Mo that stabilizes the film. Secondly, a higher Mo 

content was found to benefit the repassivation behaviour of alloys exposed to acidic 

chloride solution. Localized events on oxides grown at fixed potentials occur with a higher 

frequency and severity on low-Mo alloys. 

Here, a summary of the relationship between Cr/Mo additions in commercially relevant 

alloys has been given. Findings suggest that a balance should be maintained between 

additions of Cr and Mo, although the optimal composition remains unknown. Indeed, the 

transient and pH-dependent nature of the Mo oxide response to corrosive conditions 

suggest that the optimal Cr/Mo(W) ratio may differ by exposure environment. Since 

localized corrosion is of concern in most applications that expose the alloy to chloride, the 

Mo content should be strongly considered during alloy selection for its ability to both 

stabilize the oxide film and repair localized breakdown sites. 
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Chapter 4  

4 Molybdenum surface enrichment and release during 
transpassive dissolution of Ni-based alloys 

(Henderson (et al.), Corros. Sci., 2019, 147, 32-40.) 

 

Abstract: 

The role of alloyed Mo during transpassive dissolution of four commercially available  

Ni-based alloys in neutral chloride solution was investigated by atomic emission 

spectroelectrochemistry. Time-resolved dissolution rates of Ni, Cr, Mo, and Fe were 

obtained as a function of applied potential. Mo enrichment occurred at the transpassive 

potentials and redissolved when the potential returned to the passive domain. These results 

suggest a mechanism of Mo enrichment and release that could play a significant role in 

repassivation in initially neutral electrolytes such as occurs during crevice corrosion. It is 

proposed that Mo precipitation and redissolution are driven by local pH changes. 

 

4.1 Introduction 

Ni-based alloys are frequently used to replace conventional steels when service conditions 

become aggressive and high corrosion rates ensue. Applications include, but are not limited 

to, the nuclear, petrochemical, and chemical processing industries. These alloys, which 

differ mainly in composition, are continuously being modified to improve corrosion and/or 

mechanical properties [1,2]. However, successfully tailoring composition to a given 

application requires the thorough understanding of how individual alloying elements affect 

behavior. Chromium is, of course, the most significant constituent as concerns corrosion 

resistance, and its role in passivity has been thoroughly documented [3,4]. The significance 

of the other alloying elements, such as Fe and Mo, on corrosion resistance is less well 

understood. These elements may be of critical importance in the transpassive potential 

domain, where the electrochemical conversion of the Cr(III) oxide into soluble Cr(VI) 
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species occurs [3,5,6], making the Cr(III) based passive film less stable. This may be 

problematic for some industrial applications in which the Ni alloy is exposed to electrolytes 

containing large amounts of oxidizing impurities, resulting in high corrosion potentials 

[7,8]. 

Molybdenum, in particular, remains an interesting alloying component, as it is well known 

to enhance corrosion resistance. For example, in the empirically defined PREN (pitting 

resistance equivalent number) for both Ni-based alloys and stainless steels, the %Mo 

counts 3.3x the %Cr [2,6,9]. Nevertheless, the exact mechanisms by which Mo increases 

the corrosion resistance remain elusive. Benefits of Mo addition include the suppression of 

active dissolution and increased resistance to localized corrosion [3,10]. Among the 

proposed mechanisms, two concepts are frequently discussed. First, Mo has been suggested 

to concentrate at defect sites of the oxide film, acting as a reinforcement or filler at defect 

locations in the oxide [11,12]. Second, Mo oxides, found in the outer portion of  

Cr-dominated oxide films, are believed to provide a cation-selective nature to the oxide 

film, preventing the ingress of aggressive Cl− ions [13,14]. 

The mechanism of passivation for Fe-Cr and Ni-Cr alloys involves a selective dissolution 

of Fe and Ni, leaving behind a Cr(III) oxide film [15-17]. For austenitic stainless steel, it 

has been suggested that when the passive film is breached, Mo oxides form a temporary 

protective film which slows down active dissolution sufficiently to allow the Cr(III) 

passive film to reform [18]. This is important in the mechanism of pitting and crevice 

corrosion in that the local electrolyte conditions may not favor the spontaneous formation 

of a Cr(III) oxide film and this temporary protection could be a determining factor in the 

corrosion resistance. 

This temporary protection hypothesis suggests that the release mechanism of Mo could 

therefore play a critical role in the corrosion resistance of Cr-Mo alloys of Ni or Fe. At 

present, studies of the effect of Mo have been limited to conventional electrochemistry and 

ex situ surface analysis. While these studies demonstrated a tendency of Mo to concentrate 

at the oxide/solution interface, no kinetic information concerning its release and its  

build-up on the surface have been presented, to our knowledge [19-21]. 
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In this work, atomic emission spectroelectrochemistry (AESEC) was used to give, for the 

first time, a quantitative observation of Mo retention and release during the transpassive 

dissolution of commercial Ni-Cr-Mo alloys. These findings demonstrate that Mo is 

enriched at the surface during the onset of transpassive dissolution. During repassivation, 

the surface-enriched Mo was selectively removed. Notably, the degree of Mo enrichment 

and subsequent dissolution at the surface were found to increase with increasing Fe content 

of the alloy. This was attributed to the rapid hydrolysis of Fe(III) compared to Ni(II), 

leading to an increased local acidification, which is known to promote the deposition of 

Mo-species. 

4.2 Experimental 

4.2.1 Materials 

Alloys used in this study were provided by Haynes International (Kokomo, IN, USA) in 

the form of mill-annealed sheets. Coupons were cut to dimensions of 25 × 10 mm2 to fit in 

the requirements of the flow cell. Coupon thickness varied between 5 and 10 mm, based 

on the thickness of the original sheet. The nominal composition of each alloy, as reported 

by Haynes International, is provided in Table 4.1. 

Table 4.1 - Nominal compositions (wt.%) as reported by Haynes International. M indicates 

the maximum concentration of an individual alloying element, while, Bal. indicates the 

alloying element making up the balance due to fluctuations in composition. 

Alloy Ni Cr Mo Fe W Cu Nb Co Mn V Al Si C 

BC-1 Bal. 15 22 2M -- -- -- -- 0.25 -- 0.5M 0.08M 0.01M 

C-22 Bal. 22 13 3 3 0.5M -- 2.5M 0.5M 0.35M -- 0.08M 0.01M 

G-35 Bal. 33.2 8.1 2M 0.6 0.3M -- 1M 0.5M -- 0.4M 0.6M 0.05M 

G-30 Bal. 30 5.5 15 2.5 2 0.8 5 1.5 -- -- 0.8M 0.03M 

 

Since the analysis of AESEC data relies heavily on the use of accurate compositions, i.e., 

for normalization purposes, the precise composition of each alloy was determined by glow 

discharge optical emission spectroscopy (GD-OES) and is given in Table 4.2. For 

discussion purposes both compositions (Table 4.1, Table 4.2) are included here. 
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Table 4.2 - Alloy composition (wt.%) as obtained by GD-OES compositional analysis. 

Alloy Ni Cr Mo Fe W Cu Nb Co Mn V Al Si C 

BC-1 59.7 16.5 22.3 0.76 0.01 0.007 0.03 0.17 0.27 0.02 0.19 <0.01 <0.01 

C-22 52.7 25.1 13.8 3.79 3.09 0.04 0.03 0.65 0.25 0.20 0.20 0.02 0.01 

G-35 52.7 36.5 8.5 0.78 0.04 0.01 0.05 0.38 0.45 0.04 0.23 0.22 0.05 

G-30 38.03 31.4 5.5 15.9 2.8 1.8 0.81 2.1 1.21 0.06 0.16 0.24 0.014 

 

Prior to each measurement, coupons were ground using wet SiC paper, with the final 

surface preparation using P1200 grit. Coupons were then rinsed with deionized (DI) water 

(18.2 MΩ cm), followed by EtOH, and dried in a stream of N2 gas. Careful surface 

preparation produced reproducible surface conditions and ensured a proper seal between 

the coupon and flow cell. 

Solutions were prepared using reagent grade NaCl (Carl Roth GmbH) and DI water. 

Standard solutions, used to quantify inductively coupled plasma atomic emission 

spectrometer (ICP-AES) data, were prepared using aliquots of metal standards (SCP 

Science) in the experimental electrolyte (1 M NaCl). Calibration was performed 

immediately following each experiment. 

4.2.2 Electrochemical measurements 

Electrochemical measurements were made using either a Gamry Reference 600 (for 

AESEC) or a Biologic VSP potentiostat (conventional electrochemistry). All 

electrochemical measurements were carried out in a custom-built PTFE flow cell designed 

for use with the AESEC setup. The flow cell, briefly summarized below, has been 

extensively detailed elsewhere [22,23]. The working electrode (WE) was affixed to the 

flow cell with an exposed surface area of 1 cm2 by the application of a fixed pneumatic 

pressure against an O-ring. A second compartment, isolated from the flow cell 

compartment by a porous membrane, housed the reference (RE) and counter electrodes 

(CE). A saturated Ag/AgCl electrode (0.197 V vs SHE) served as the RE against which all 

potentials were measured. A platinum flag was used as the CE. All electrochemical 

experiments described herein were repeated at least twice. 
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The temperature was maintained at approximately 75 °C by placing the experimental 

electrolyte in an isothermal circulating bath. During the experimental procedure, 

electrolyte introduced to the flow cell was drawn directly from the reservoir housed within 

the isothermal bath. Additionally, a hollowed Cu heating disk, connected to the circulating 

component of the isothermal bath, was fixed behind the WE. Together, this maintained the 

temperature of the WE and electrolyte at approximately 75 °C during all measurements. 

The flow rate was controlled using the built-in peristaltic pump of the ICP-AES instrument. 

Prior to each experiment the flow rate was calibrated to be approximately 2.75 mL min−1. 

Cyclic polarization experiments were initiated 0.100 V vs Ag/AgCl below the corrosion 

potential and scanned positively at a scan rate of 0.5 mV s−1, until a potential of 1 V vs 

Ag/AgCl was reached. The scan was then reversed, and the potential scanned negatively 

until it reached the initial Ei=0. Separate potentiostatic experiments were conducted using 

three potential steps. Initially, samples were held in the passive region 0.300 V vs Ag/AgCl 

for 5 min. Subsequently, samples were brought into the transpassive domain 1.00 V vs 

Ag/AgCl for a period of 1, 2, or 4 min, indicated for each experiment. Finally, the return 

to the initial applied potential 0.300 V vs Ag/AgCl caused the sample to repassivate. 

4.2.3 AESEC measurements and data treatment 

Details regarding the data acquisition and treatment have been described by Ogle et al. 

[22]. Briefly, the downstream positioning of the ICP-AES instrument, an Ultima 2C 

spectrometer (Horiba Jobin-Yvon, France), allows for the detection of cations released 

from the WE in real-time. A Burgener PEEK Mira Mist® Nebulizer (Horiba Jobin-Yvon, 

France) was used to introduce electrolyte leaving the flow cell into the ICP. The resultant 

aerosol enters a 40.68 MHz inductively coupled Ar plasma, operating at 1.2 kW. 

Independent monochromator and polychromator optics were used to monitor emission 

lines from the ICP torch. The monochromator was used for a single element with high 

spectral resolution, in this case Mo, while the polychromator was used to simultaneously 

detect other elements of interest. Emission lines used for the elements of interest and their 

respective limits of detection are summarized in Table 4.3. The detection limit (C3σ) was 

calculated according to Equation 4.1, where σB is the standard deviation of the background 

signal and κ the sensitivity factor determined from the calibration standards. 



111 

 

 C3σ = 3
σB

κ
 (4.1) 

Table 4.3 - Experimental emission lines and limits of detection. 

Element 
Wavelength 

/nm 

Detection Limit, C3σ 

/ppb 

Equivalent, iM 

/µA 

Ni 231.60 22.8 1.9 

Cr 267.72 10.0 0.93 

Mo 202.03 4.61 0.23 

Fe 259.94 9.40 0.81 

 

Upon completion of AESEC experiments, instantaneous emission intensities for each 

metal were converted into instantaneous concentrations (CM) by standard calibration. CM 

values were then converted into instantaneous dissolution rates (νM) according to Equation 

4.2, where f is the flow rate and A the surface area: 

 νM = f
CM

A
 (4.2) 

Congruent and incongruent dissolution behaviour were distinguished by comparing the 

composition of the electrolyte to that of the bulk material. This was done by normalizing 

individual dissolution rates against that of the bulk alloying element, Ni, according to 

Equation 4.3. 

 ν′M = (
XNi

XM
⁄ ) νM (4.3) 

where XM is the mass fraction of element M as determined by GD-OES (Table 4.2). Perfect 

congruent dissolution occurs when ν′M = νNi, i.e., the two are dissolving at equal rates 

relative to the bulk composition. If ν′M > νNi, it implies the selective dissolution of 

alloying element M as compared to the bulk alloy composition. In contrast, ν′M < νNi 

implies that excess M is concentrating at the surface. The quantity of excess M, ΘM, at 

time, t, may be determined by mass balance as: 
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 ΘM = ∫ ((
XM

XNi
⁄ ) νNi − νM) dt

t

0

 (4.4) 

The elemental current density or metal M, iM, was determined by conversion of the 

corresponding instantaneous dissolution rate (νM) according to Equation 4.5: 

 iM =
νM F n

m
 (4.5) 

where F is Faraday’s constant, m the molar mass of metal M and n the number of electrons 

transferred in the oxidation reaction of metal M. The later assumes that the oxidation state 

of the dissolved M is known or may be surmised from equilibrium calculations. This is a 

formal definition only, as dissolution may occur via non-faradaic processes such as the 

dissolution of oxide films. 

4.3 Results 

4.3.1 Cyclic polarization 

The polarization behavior of BC-1, C-22, and G-35, is shown in Figure 4.1(A) and that of 

G-30, in Figure 4.1(B). All four alloys exhibited passive behavior, with the alloys of higher 

Cr content having higher potentials of zero current, Ei=0, and lower passive current 

densities, ipass, consistent with previous studies [5]. Table 4.4 summarizes the values of Ei=0 

and ipass for the different alloys. The anodic branch of the polarization curves may be 

divided into three potential domains: (1) a passive domain from Ei=0 to approximately 

0.300 V vs Ag/AgCl, (2) a second passive domain starting near 0.300 V vs Ag/AgCl, 

indicated by an increase in the anodic current followed by a current plateau; and (3) the 

transpassive domain, indicated by a steady increase in the current, beginning at 
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Figure 4.1 - (A) Cyclic polarization behaviour of alloy (A) BC-1, C-22, 

G-35, and (B) G-30 in 1 M NaCl at 75 °C. 
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approximately 0.600 V for alloys BC-1, C -22, and G-35, and at 0.800 V vs Ag/AgCl for 

alloy G-30. The extended passive region of G-30 is believed to be the result of Fe(III) oxide 

stability at high potentials [24]. 

Return scans showed a ready repassivation for alloys BC-1, C-22, and G-35, without 

significant hysteresis. This was indicated by the current density retracing the forward scan 

until ultimately achieving values lower than those recorded during the forward scan. In all 

cases, Ei=0 was shifted positive relative to its value on the forward scan. Interestingly, all 

three alloys exhibited approximately the same Ei=0 values on the reverse scan. The 

decreased current densities observed on the reverse scan have been attributed to the repair 

of the Cr(III) barrier layer [25]. 

Table 4.4 - Approximate potential of zero current 

on the forward scan, Ei=0, and passive current 

density, ipass, estimated at 0.200 V vs Ag/AgCl. 

Values are averaged over repeat experiments. 

Alloy Ei=0 / V ipass / A cm−2 

BC-1 −0.090 3.4 x 10−6 

C-22 0.019 1.9 x 10−6 

G-35 0.066 9.7 x 10−7 

G-30 0.076 8.6 x 10−6 

 

The reverse scan on alloy G-30 (Figure 4.1(B)) showed an interesting irreproducibility: It 

was frequently found to have hysteresis or a complete loss of I-E relationship, as shown by 

the solid and dotted curves, respectively. Both behaviors suggest the onset of localized 

corrosion processes, with one eventually repassivating (solid line) and the other becoming 

self-sustaining (dotted line). The process occurring during the self-sustaining localized 

process was confirmed to be crevice corrosion by optical observations of damage along the 

impression of the O-ring. Since crevice corrosion itself is not the focus of the present work, 

only AESEC data in which active crevice corrosion was not observed are discussed. 

Within the passive region, no metal cations were detected by ICP-AES. This was attributed 

to the low corrosion rates afforded by the Cr-rich oxide film present in this region. Only at 
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transpassive potentials (i.e., the breakdown of the secondary passive region) were cations 

detected, approximately 0.600 V for alloys BC-1, C-22, and G-35, and 0.800 V vs Ag/AgCl 

for alloy G-30. Polarization in the transpassive domain led to an exponential increase in 

dissolution rates as a function of potential. The resultant AESEC data for cyclic 

polarization experiments is shown in Figure 4.2. All alloys demonstrate patterns of 

incongruent dissolution, indicated by ν′M ≠ νNi. Comparison of normalized rates reveals 

the decreased dissolution rate of Cr, Mo, and Fe, relative to Ni, suggesting the enrichment 

of these elements at the electrode surface. In other words, Ni was selectively removed from 

the oxide during transpassive dissolution while other alloying elements were enriched, at 

least to some extent. 

Figure 4.2 - Normalized dissolution rates of alloys BC-1, C-22, G-35, and G-30, during 

cyclic polarization experiments in 1 M NaCl at 75 °C. All dissolution rates are normalized 

against the bulk material, Ni, Equation 4.3. 
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Of particular interest in Figure 4.2, and the focus of this article, is the unusual behavior of 

Mo during the reverse scan. Interestingly, repassivation resulted in ν′Mo becoming larger 

than νNi, suggesting the selective dissolution of Mo. While repassivation resulted in 

receding values of νNi, ν′Cr, and ν′Fe, the elevated rates of Mo dissolution persisted for 

some time following repassivation. While Mo appears to be initially retained at the surface 

during transpassive dissolution, it is subsequently released during repassivation. This 

feature is particularly pronounced for alloy G-30, and a thorough discussion of normalized 

data is conducted below for potentiostatic experiments. 

4.3.2 Potentiostatic polarization 

To better quantify the kinetics and mechanism of Mo retention and dissolution, a four-step 

potentiostatic experiment was performed: (1) the WE was held in the passive region 

(0.300 V vs Ag/AgCl) for 300 s to obtain a steady-state passive film; (2) the potential was 

then stepped to the transpassive domain (1.00 V vs Ag/AgCl) for 120 s; (3) the WE was 

returned to the passive region, and (4) finally released to open-circuit. The resulting data, 

expressed as normalized dissolution rates and elemental currents, are presented in Figure 

4.3, Figure 4.4, respectively. 

In the analysis of the normalized dissolution data, the observations are similar to those 

made during cyclic experiments. Notably, potentiostatic experiments avoided 

complications arising from localized processes apparent in potentiodynamic experiments. 

While samples were held in the passive region, step 1, no metal cations were detected by 

ICP-AES. Following the application of the transpassive potential, step 2, all alloys 

demonstrated a surge of metal dissolution. The relative intensities of the normalized 

dissolution rates were similar to those found during cyclic experiments. In all cases, Ni was 

found to be the dominant cation released from the WE, while Cr, Mo, and Fe were 

apparently retained, to some extent, at the surface. Of the alloying elements monitored, Mo 

showed the greatest tendency for surface enrichment. During repassivation all alloys 

exhibited the selective dissolution of Mo species as shown in Figure 4.3, interpreted as a 

subsequent release of surface enriched Mo. The extent of Mo retention and release was 

greatest for alloy G-30 and quite significant for C-22. Interestingly, this process did not 

correlate directly with the Mo content of the alloy. 
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Additionally, the stoichiometry of dissolution was monitored with ICP-AES during 

potentiostatic experiments. To directly compare the elemental current densities, iM, to the 

electrical current density, ie, a convolution procedure was carried out. Details of this 

convolution have been published previously [22]. Briefly, convolution involves correcting 

the instantaneous electrical current density, ie, for the distribution of residence times in the 

flow cell. In this way, the elemental current densities, iM, may be compared directly with 

the convoluted electrical current density, ie
∗ . As shown in Figure 4.4, significant currents 

were detected only after the application of the transpassive potential. The convoluted 

electrical current density recorded by the potentiostat, ie
∗ , the current contributed by 

individual alloying elements, iM, and the sum current from all elemental currents, iΣ, are 

compared in Figure 4.4. Values of iM were calculated according to the following oxidation 

Figure 4.3 - Normalized dissolution rates of alloys BC-1, C-22, G-35, and G-30, during 

potentiostatic polarization experiments in 1 M NaCl at 75 °C. All dissolution rates are 

normalized against the bulk material, Ni, Equation 4.3. 
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states: Ni(II), Cr(VI), Mo(VI), and Fe(III). Oxidation state information was based on both 

thermodynamics as well as findings in the literature [20,24]. Since dissolution prior to the 

transpassive domain was negligible, oxidation states were selected based on the 

environment for transpassive dissolution. 

Using the dissolution rates and elemental currents obtained during potentiostatic 

experiments, information on alloy composition and faradaic yield was extracted. A 

summary of this information is detailed in Table 4.5. Using elemental dissolution rates, the 

total dissolved metal was used to determine a relative alloy composition for comparison to 

the compositions provided by Haynes International and GD-OES analysis, Table 4.1 and 

4.2 respectively. Since in the ICP-AES data, only Ni, Cr, Mo, and Fe were quantified, the 

Figure 4.4 - Instantaneous elemental, iM, sum, iΣ, and convoluted electrochemical current, 

ie*, for potentiostatic polarization experiments in 1 M NaCl at 75 °C. 
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compositions provided by Haynes International and by GD-OES analysis were reweighted 

for a valid comparison. As shown in Table 4.5, the reweighted compositions are in 

agreement with only minor discrepancies. Since AESEC data shows dissolution occurs 

incongruently, the alloy composition determined by ICP-AES is expected to be affected by 

surface enrichment processes. For example, the surface enrichment of Cr species, 

highlighted in AESEC data above, leads to a consistently lower Cr content in ICP-AES 

analysis. Important for the upcoming discussion section is the low amount of Fe detected 

for alloys BC-1 and G-35 by both GD-OES and ICP-AES. As reported by Haynes, these 

alloys are expected to contain a maximum concentration of 2% Fe, however, based on both 

GD-OES and ICP-AES data presented here, the Fe content is in fact much lower, 

approximately 0.6%. 

Table 4.5 - Reweighted alloy compositions, considering Ni, Cr, Mo, and 

Fe, and faradaic yields determined for potentiostatic experiments shown 

in Figure 4.3 and Figure 4.4. 

Alloy Source Ni /% Cr /% Mo /% Fe /% 
Faradaic Yield 

/% 

BC-1 

Haynes Int. 62.6 15.2 22.2 -- 

92.2 GD-OES 60.1 16.7 22.4 0.7 

ICP-AES 64.6 12.7 22.6 0.5 

C-22 

Haynes Int. 59.6 23.4 13.8 3.2 

98.4 GD-OES 55.2 26.3 14.5 3.9 

ICP-AES 62.7 20.3 13.7 3.3 

G-35 

Haynes Int. 58.4 33.4 8.2 -- 

95.8 GD-OES 53.2 37.1 8.6 0.8 

ICP-AES 59.1 32.5 8.4 0.6 

G-30 

Haynes Int. 46.0 32.1 5.9 16.0 

105.6 GD-OES 41.9 34.6 6.0 17.5 

ICP-AES 49.9 31.2 5.2 13.8 

 

In addition to comparing the re-weighted alloy compositions, faradaic yields were 

determined by the direct comparison of ie
∗  and iΣ from Figure 4.4. The values obtained for 

alloys BC-1, C-22, G-35, and G-30 are shown in Table 4.5. The average faradaic yield, 

98.0%, implies that the metallic dissolution measured by ICP-AES is in good agreement 

with the instantaneous current densities recorded by the potentiostat. However, minor 



120 

 

discrepancies in faradaic yields may be the result of additional anodic processes undetected 

by the ICP-AES, e.g., O2 evolution or oxide formation. 

4.3.3 Mo enrichment 

As detailed in the discussion of Figure 4.3, the high degree of Mo-enrichment observed for 

alloy G-30, made this alloy ideal for the further study of enrichment/dissolution 

phenomenon. Additional experiments were conducted as a function of time spent in the 

transpassive domain, shown in Figure 4.5. Generally, as time spent in the transpassive 

domain increased, so did the signal corresponding to Mo dissolution during repassivation. 

Direct comparison of the enrichment and dissolution of Mo is possible by considering the 

excess Mo, ΘMo, during steps 2 and 3, enrichment and dissolution, respectively. The 

calculation of excess Mo was made according to Equation 4.4. In step 2, the degree of 

enrichment is visualized as the difference between the integrals of Ni and Mo dissolution 

rates. In step 3, the dissolution of surface-enriched Mo is the difference between Mo and 

Ni dissolution rates. For clarity, the regions considered as enrichment and dissolution are 

graphically depicted in Figure 4.6(A). 

Values corresponding to enrichment and dissolution are compared in Figure 4.6(B) as a 

function of time polarized in the transpassive region. The amount of Mo-enrichment was 

found to be proportional to the time spent in the transpassive region. The dissolution 

process followed a similar relationship; however, it was consistently lower than the degree 

of enrichment. Comparison of the two values of ΘMo yields a percent difference of between 

40.2 and 56.8%. Discrepancy between these values suggests that the surface-enriched Mo 

species are not completely removed during repassivation. This implies that previous 

studies, which demonstrated enrichment of Mo in the oxide following transpassive 

polarization, have likely underestimated the extent of Mo-enrichment during transpassive 

dissolution. In such experiments, immediately following the application of a transpassive 

potential, the relaxation of the WE to a passive potential and subsequent repassivation can 

be expected to initiate the release of Mo species. This process is anticipated to occur rapidly 

prior to the removal of the WE from solution. 
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Figure 4.5 - Normalized dissolution rates of alloy G-30 in 1 M NaCl at 75 °C 

with varied times polarized in the transpassive region, identified as step 2. All 

dissolution rates are normalized against the bulk material, Ni, Equation 4.3. 
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Figure 4.6 - Comparison of the enrichment and dissolution of Mo species 

during transpassive dissolution and repassivation of alloy G-30, 

respectively. (A) graphical depiction of areas considered as enrichment / 

dissolution of molybdenum species. (B) Comparison of enrichment and 

dissolution as a function of time polarized in the transpassive region. 
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4.4 Discussion 

These results represent the first real-time quantitative measurement of the Mo enrichment 

during transpassive dissolution and its release during the return to the passive state. 

Obviously, this observation would lend support to the temporary protection hypothesis 

described in the introduction. When an oxide is compromised, either due to transpassive 

dissolution or modification in solution chemistry (i.e., pit or crevice), Mo oxides should 

precipitate on the surface. As the exposed material repassivates, these Mo-rich oxides 

would dissolve. 

It is reasonable to suppose that the enrichment/release mechanism is triggered by changes 

in the local pH. It is well known that Mo oxides precipitate at low pH, as shown in the 

equilibrium calculations of Figure 4.7, and a significant decrease in pH may be associated 

with the high rate of metal dissolution anticipated during transpassive dissolution. 

Highlighted in Figure 4.7 are the experimentally determined pH values for the initial 

solution (∼7.4) and the solution expelled during transpassive dissolution. Since in situ pH 

measurements were not available in the current flow cell design, downstream collection of 

transpassive solution was subject to diffusion processes and therefore, experimentally 

measured values (∼3-4) are expected to over-estimate the true pH at the corroding surface. 

The idea that this process is pH dependent is supported by the fact that the largest Mo 

retention was associated with the alloy with the highest Fe-content. In particular, Fe(III) 

cations are expected to undergo a more extensive hydrolysis as compared to Ni(II) [24,26], 

resulting in a lower pH. The role of Fe content on this behaviour is further supported by 

the fact that C-22, containing 3% Fe, has larger amounts of retained Mo, compared to  

BC-1 and G-35, which contain at most ∼0.6% Fe, based on both GD-OES and ICP-AES 

analysis. Nevertheless, the data presented here are only suggestive as to the role of Fe.  
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In summary of the AESEC results, a graphical illustration of the enrichment/release process 

is presented in Figure 4.8. While the potential is in the passive region, a passive oxide, 

known to be rich in Cr(III) [3], covers the surface and limits the dissolution of the 

underlying substrate. However, as the system is brought into the transpassive domain, the 

electrochemical conversion of Cr(III) to Cr(VI) results in the destruction of this protective 

oxide. As a result, cations begin to be released from the metallic substrate into solution. 

The ensuing hydrolysis reactions lead to a drop in local pH and the deposition of Mo-rich 

corrosion products, which are insoluble under acidic conditions (Figure 4.7). When the 

system is returned to the passive region, the reestablishment of the protective oxide, again, 

limits dissolution and allows the previously developed pH gradient at the surface to 

dissipate. The return to the initial pH (∼7) results in the increased solubility of the Mo-rich 

products and therefore their release from the surface. 

Figure 4.7 - Solubility of Mo(VI), MoO4
2−, as a function of pH. Calculation 

done for a [MoO4
2−] of 1 mol L−1, however, the dotted line indicates how 

solubility is anticipated to change as concentration increases. Data 

reproduced from Hydra-Medusa software. 
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This enrichment may play an important role in the repassivation of the material. While the 

work presented here measures only the degree of enrichment/release and does not attempt 

to assess its effect on passivity, it is the first account of this dynamic process. Other 

investigations have shown that under transpassive conditions Mo concentrates in the outer 

portion of the oxide film [19,20,27]. However, as in the cyclic polarization experiments, 

repassivation resulted in a release of at least a portion of the surface-enriched Mo. The  

ex situ methodology employed in previous investigations has prevented the observation of 

this dynamic process. 

The process of Mo deposition at low pH has been extensively studied in the context of 

crevice corrosion [28-34]. Shan and Payer demonstrated that Mo-rich corrosion products 

deposit as solid species within the acidified crevice, while species of Ni, Cr, and Fe are 

transported outside of the acidified environment before depositing [28]. The Mo-rich 

corrosion products found to deposit within the crevice were later characterized by  

Jakupi et al. by energy dispersive X-ray spectroscopy (EDS) and Raman spectroscopy [31]. 

While thermodynamics would suggest the formation of MoO3, their findings suggest the 

formation of polymeric molybdates, including Mo7O24
6− and Mo8O26

4−, under the acidic 

conditions present during crevice corrosion. 

The occasional observation of crevice corrosion on the G-30 alloy is interesting, and the 

ability to observe this may represent another line of research for the future. Unfortunately, 

Figure 4.8 - Graphical representation of the surface enrichment during the onset of 

transpassive dissolution and subsequent release of Mo species during the repassivation of 

Ni-based alloys. 
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we were not able to identify the reasons why crevice corrosion was observed in some 

circumstances and not in others. Previous work has demonstrated that, compared to C-22 

and BC-1, alloy G-30 is particularly susceptible to crevice corrosion in hot concentrated 

chloride solutions [33]. In general, the initiation of crevice corrosion is random and 

depends on many variables including solution chemistry, crevice geometry, and the 

ensuing damage morphology. An extensive discussion on the factors involved during the 

crevice corrosion of Ni-Cr-Mo alloys can be found in a recent review by Carranza and 

Rodríguez [35]. 

4.5 Conclusions 

For the first time, the dynamic behaviour of Mo during the transpassive dissolution of  

Ni-Cr-Mo alloys has been explored using the operando measurement afforded by AESEC. 

Alloying additions of Cr, Mo, and Fe appear to be retained on the alloy surface, compared 

to Ni, during transpassive dissolution. Immediately following repassivation, the Mo 

species enriched during transpassive dissolution were released from the surface, while the 

enriched Cr and Fe were not. As the time spent in the transpassive region increased, so did 

the enrichment in Mo surface species. 

The dual phenomena of transpassive Mo-enrichment and dissolution were found to be 

particularly pronounced on the high Fe-containing alloy, Hastelloy G-30. This was 

attributed to the increased local acidification due to the release of rapidly hydrolyzed 

Fe(III). Decreased pH has been extensively linked to the deposition of Mo-rich corrosion 

product, especially in the context of crevice corrosion. 
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Chapter 5  

5 Investigating the role of Mo and Cr during the activation 
and passivation of Ni-based alloys in acidic chloride 
solution 

(Henderson (et al.), J. Electrochem. Soc., Accepted, DOI: 10.1149/1945-7111/abe47a) 

 

Abstract: 

The elemental dissolution behaviour of commercially available Ni-based alloys was 

investigated in the context of surface activation, spontaneous passivation, and 

electrochemically-assisted passivation in hydrochloric acid solution using atomic emission 

spectroelectrochemistry (AESEC). Following surface activation, the spontaneous 

passivation of each alloy was found to proceed by the accumulation of mainly Mo-rich, but 

also Cr-rich oxides. An alloy’s ability to recover from surface activation was found to 

improve with increased Mo content. For the alloy with the lowest Mo content considered 

here, approximately 8 wt.% Mo, spontaneous passivation was unsuccessful and active 

dissolution was observed. For alloys with higher Mo contents, greater than 13 wt.% Mo, 

spontaneous passivation occurred quickly, and dissolution rates stabilized at values 

comparable to those found for the native oxide, i.e., before perturbation by an applied 

potential. Mo(IV) oxides were found to be the species accumulating during spontaneous 

passivation using ex situ X-ray photoelectron spectroscopy (XPS). During 

electrochemically-assisted passivation, i.e., applying a potential within the passive region, 

a portion of the previously accumulated Mo was removed while Cr oxides accumulated at 

the surface. However, based on the dissolution rates observed after electrochemically-

assisted passivation, Cr-content did not dictate the barrier layer properties. 
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5.1 Introduction 

Ni-based alloys containing various alloying elements, including both Cr and Mo, have 

become important industrial materials due to their corrosion resistance in aggressive 

environments. Serving as the alloy matrix, Ni can accommodate high concentrations of 

alloying elements while maintaining a single-phase (FCC) structure [1].  Alloying 

additions of Cr promote the formation of a Cr-rich barrier oxide, which is primarily 

responsible for protecting the underlying metallic substrate [2, 3]. Alloying additions of 

Mo into Cr-containing alloys have been shown to result in the accumulation of oxidized 

Mo species on the outside of the Cr-rich oxide [4]. By itself, the Cr-rich oxide provides 

excellent protection in oxidizing environments; however, the presence of Mo species 

becomes increasingly important at low pH and high chloride concentration [5, 6]. These 

conditions are commonly associated with localized corrosion processes, including both 

pitting and crevice corrosion [7-9]. Resistance to localized corrosion is influenced by the 

Mo content, which increases both film stability and repassivation behaviour [4, 5, 10].   

Alloying additions Cr and Mo are recognized to act synergistically in improving corrosion 

resistance, but many mechanistic features remain unclear. The current understanding of 

how Mo additions impact the corrosion behaviour of Cr containing alloys has been 

summarized by Lutton Cwalina et al. [11]. First-principles calculations by Samin et al. 

demonstrated that additions of Mo enhance the adsorption of oxygen on the surface of Ni-

Cr alloys [12]. Using in situ transmission electron microscopy, Yu et al. showed that during 

early-stage gas-phase oxidation, Mo additions decrease the formation of voids in the oxide 

layer formed on Ni-Cr alloys [13]. Using scanning tunneling microscopy, Maurice et al. 

observed nanoscale surface defects in passivated Fe-Cr alloys [14]. When Mo was added 

to the alloy, defects were found to generate a nanostructured ‘plug’, which appeared to act 

as a healing phenomenon for the defects. Based on the observations in these studies, the 

influence of Mo can be generally summarized in terms of two main outcomes: increased 

oxide stability and improved ability to repair oxide film damage.  

Currently, limited information has been published regarding the in situ (or operando) 

dissolution behaviour of Ni-based alloys. This hinders efforts to optimize alloy 

composition, which requires a thorough understanding of how composition affects 
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corrosion performance in a range of exposure conditions. Atomic emission 

spectroelectrochemistry (AESEC), and other similar techniques, have proven valuable in 

studying the in situ dissolution behaviour of corroding systems, including both active and 

passive systems [15-17]. In our previous study, the AESEC technique was used to reveal a 

previously unreported dynamic behaviour of alloyed Mo during the transpassive film 

breakdown on Ni-Cr-Mo alloys in 1 M NaCl [18]. Here, the dissolution behaviour of three 

commercial Ni-based alloys was investigated during surface activation, spontaneous 

passivation, and electrochemically-assisted passivation in 1 M HCl. Results obtained by 

AESEC were then compared to ex situ surface analyses performed by X-ray photoelectron 

spectroscopy (XPS). 

5.2 Experimental 

5.2.1 Materials 

Materials used in this study were provided by Haynes International in the form of mill-

annealed sheets. To conform to the dimensions of the electrochemical flow cell used for 

AESEC measurements, samples were machined to 25 mm x 10 mm. The thickness of 

individual samples varied depending on the thickness of the original as-received sheet. 

Nominal alloy compositions, as reported by Haynes International, have been summarized 

in Table 5.1. Alloy compositions are included in Table 5.2, determined according to ASTM 

E1019-18, ASTM E1097-12, and ASTM E1479-16 procedures. These more accurate 

compositions were used in the quantification of AESEC measurements and will be 

referenced throughout the text. 

Table 5.1 - As reported by Haynes International, the nominal composition of Hastelloy 

samples are summarized. Values are given in wt.% where M indicates the maximum 

concentration of an individual alloying element, while, Bal. indicates the alloying 

element making up the balance due to fluctuations in composition. 

Alloy Ni Cr Mo Fe W Cu Co Mn V Al Si C 

BC-1 Bal. 15 22 2M -- -- -- 0.25 -- 0.5M 0.08M 0.01M 

C-22 Bal. 22 13 3 3 0.5M 2.5M 0.5M 0.35M -- 0.08M 0.01M 

G-35 Bal. 33.2 8.1 2M 0.6 0.3M 1M 0.5M -- 0.4M 0.6M 0.05M 
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Before experiments, sample surfaces were prepared using wet silicon carbide (SiC) paper. 

Samples to be used in electrochemical measurements were ground using P600, P800, 

P1000, and P1200 grit SiC paper. Samples intended for surface analyses were further 

ground using P2500 and P4000 SiC paper, followed by polishing with a 1-µm diamond 

suspension. After surface preparation, samples were rinsed with deionized (DI) water (18.2 

MΩ cm), followed by EtOH, and then dried in a stream of high purity N2 or Ar gas. 

Table 5.2 - Summary of the empirically determined compositions for alloy BC-1, C-

22, and G-35. Values are given in wt.%. Analysis carried out by Cambridge Materials 

Testing Limited according to ASTM E1019-18, ASTM E1097-12, and ASTM E1479-

16. 

Alloy Ni Cr Mo Fe W Cu Co Mn V Al Si C 

BC-1 60.9 14.4 22.10 0.85 0.01 0.03 -- 0.25 -- 0.18 <0.01 0.011 

C-22 57.6 20.7 12.97 3.74 2.80 0.06 -- 0.27 -- 0.28 <0.01 0.012 

G-35 56.3 33.4 7.98 0.54 0.07 0.02 -- 0.45 -- 0.24 <0.01 <0.010 

 

Experimental solutions were prepared with reagent grade HCl and DI water. Quantification 

of inductively coupled plasma atomic emission spectroscopy (ICP-AES) data involved the 

use of standard solutions. These standards were prepared using aliquots of metal standards 

(SCP Science) directly in the experimental electrolyte (1 M HCl). 

5.2.2 Electrochemical methods 

Electrochemical experiments were carried out using either a Reference 600 (Gamry 

Instruments, Warminster, PA, USA) or a Solartron Analytical model 1287 (Solartron 

Analytical, Hampshire, UK) potentiostat. Experiments were conducted in a custom-built 

PTFE flow cell designed for AESEC measurements. A brief description of this flow cell is 

provided below, with an extensive description having been published elsewhere [16, 19, 

20]. The exposed area of the working electrode (WE) was limited to 1 cm2. The flow rate 

in the WE compartment was maintained at ~2.75 mL min–1 using a peristaltic pump. The 

counter (CE) and reference electrodes (RE) were housed in a second compartment, 

separated from the flow cell by an ionically conductive membrane. A saturated Ag/AgCl 
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electrode (0.197 V vs. SHE) and a Pt flag served as the RE and CE, respectively. All 

electrochemical measurements were repeated at least once. 

The temperature during electrochemical measurements was maintained at 75 °C by pre-

heating the electrolyte and directly heating the WE affixed to the flow cell. Electrolyte 

temperatures were maintained by placing the solution reservoir in either an isothermal bath 

or on a hot plate. The WE temperature was maintained by placing a heating element directly 

on the back of the metal sample, in contact with the surface opposite to the flow cell. Here, 

the heating element was either a hollowed Cu heating disk connected to an isothermal bath 

or an electric heating assembly containing thermistors connected to a digital temperature 

controller, allowing for closed-loop temperature regulation. Together, these controls 

maintained experimental temperatures of 75 ± 1 °C during all experiments. All experiments 

were performed in naturally aerated solutions, apart from those conducted within a glove 

box for surface analysis, discussed below. 

Both dynamic- and static-polarization experiments were conducted using the described 

experimental setup. Dynamic polarization experiments were initiated at –0.4 V (vs. 

Ag/AgCl) and scanned positively at a scan rate of 0.5 mV s–1, until a final potential of  

1.0 V (vs. Ag/AgCl). Static polarization experiments involved several potential steps. 

Initially, samples were exposed to the solution at open-circuit as temperatures stabilized, 

then they were subjected to an applied potential of –0.8 V (vs. Ag/AgCl) for 60 s, followed 

by a 300 s period at open circuit to facilitate relaxation. Samples were then subjected to an 

applied potential of 0.6 V (vs. Ag/AgCl) for 60 s before again being released to open circuit 

(300 s) to facilitate relaxation. These two steps, cathodic and anodic polarization followed 

by an open circuit potential (OCP) measurement, were repeated three to four times each. 

Potentials used for cathodic and anodic polarization (–0.8 V and 0.6 V, respectively) were 

selected based on polarization behaviour observed during dynamic measurements, as well 

as procedures used in previous publications [21]. 

5.2.3 AESEC measurements and data treatment 

The AESEC setup has been described in detail previously [16, 20]. Briefly, situated 

downstream of the electrochemical flow cell is an ICP-AES instrument (Ultima 2C 
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spectrometer, Horiba Jobin-Yvon, France). Species released during electrochemical 

experiments were carried from the WE surface by the flow of fresh electrolyte and injected 

into the plasma of the spectrometer. The emission intensity at wavelengths specific to each 

element was measured and used to quantify the instantaneous elemental dissolution rates 

of the alloy components. 

Solution exiting the flow cell was introduced to the ICP using a Burgener PEEK Mira 

Mist® Nebulizer (Horiba Jobin-Yvon, France). Species exposed to the plasma operating at 

1 kW and 40.68 MHz, undergo atomization and excitation, with the subsequent relaxation 

processes generating emission lines characteristic of the atom of origin. Independent mono- 

and polychromator optics allow the simultaneous monitoring of several emission lines. 

Since Mo was the alloying element present in the lowest concentrations, it was detected 

using the monochromator to provide increased spectral resolution. For experiments 

involving low dissolution rates, emission intensities exhibited poor signal-to-noise ratios. 

When necessary, data were treated with a boxcar average (n = 5) as used and discussed 

previously [22]. Unless otherwise stated, data were not subjected to averaging. 

Table 5.3 - Experimental emission lines and limits of 

detection. 

Element 
Wavelength 

/ nm 

Detection Limit, C3σ 

/ ppb (wt.) 

Ni 231.60 10.8 ± 0.3 

Cr 367.72 4.8 ± 0.2 

Mo 202.03 1.4 ± 0.1 

 

For the elements studied, emission lines and their detection limits are summarized in Table 

5.3. Experimental detection limits (C3σ) were calculated using Equation 5.1, where σB is 

the standard deviation of the background signal and κ is the sensitivity factor determined 

from the calibration standards. 

 C3σ = 3
σB

κ
 (5.1)  
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Standard calibration was used to convert time-varying emission line intensities into 

instantaneous concentrations (CM). Values of CM were then converted into instantaneous 

dissolution rates (νM) according to Equation 5.2, where f is the flow rate and A the surface 

area of the WE. 

 νM = f
CM

A
 (5.2)  

Congruent and incongruent dissolution behaviours were distinguished by comparing metal 

ion ratios in the electrolyte to those in the bulk material. This was done by normalizing 

individual dissolution rates against the bulk alloying element, Ni, according to Equation 

5.3, where XM is the mass fraction of alloying element M. Values used for mass fractions 

were determined from the empirical data in Table 5.2 to ensure accuracy. 

 ν′M = (
XNi

XM
⁄ ) νM (5.3)  

Features of increased, decreased, and congruent dissolution were identified relative to the 

bulk composition by considering normalized dissolution rates. For instance, congruent 

dissolution was observed when ν′M was approximately equal to νNi, i.e., alloying element 

M was dissolving at a rate proportional to its bulk alloy composition. When ν′M exceeded 

values of νNi, alloying element M was being selectively removed from the alloy matrix in 

comparison to Ni; i.e., the dissolution rate of M was higher than expected based on its bulk 

alloy composition. On the other hand, when ν′M was less than νNi, alloying element M was 

accumulating on the surface of the alloy; i.e., its dissolution rate was less than expected 

based on its bulk alloy composition. The quantity of excess M, ΘM, at time, t, was 

calculated using Equation 5.4. 

 ΘM = ∫ ((XM XNi⁄ )νNi − νM)dt
t

0

 (5.4)  
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Instantaneous dissolution rates were also converted into elemental current densities (iM), 

that represent the ion fluxes in electrical units, according to Equation 5.5, where F is 

Faraday’s constant, m is the molar mass of metal M and, n is the number of electrons 

transferred in the oxidation reaction of metal M. 

 iM =
νM F n

m
 (5.5)  

To directly compare the elemental current densities, iM, to the electrical current density, ie, 

a convolution procedure was carried out to correct for the residency time in the flow cell 

and through the intermediate capillaries. Details of this convolution have been published 

previously [16].  Comparison of the sum of all elemental currents (iΣ) with the convoluted 

electrochemical current density (ie
∗) provides the opportunity to separate anodic current 

contributions leading to dissolution, oxide growth, gas evolution, etc.. 

5.2.4 XPS measurements 

Samples prepared for surface analysis underwent the identical electrochemical treatment 

used when making ICP-AES measurements but inside a N2-purged glove box with the 

atmospheric O2 content maintained at ~50 ppm to minimize further oxidation following the 

electrochemical experiment. Solutions used for electrochemical treatments within the 

glove box required deaeration to help control the atmospheric O2 concentration. This was 

done by sparging the solution with Ar gas before its introduction to the glove box.  Upon 

the completion of electrochemical treatments, samples were transferred and stored in an 

Ar-purged glove box with an O2 content maintained at < 0.1 ppm to avoid oxidation during 

the period between preparation and XPS analysis. When required, samples were then 

introduced into the XPS instrument using a custom-built Ar-filled glove box connected 

directly to the spectrometer. 

XPS measurements were carried out using a Kratos AXIS Supra spectrometer. All spectra 

were collected using a monochromatic Al Kα X-ray source (photon energy = 1486.6 eV) 

operating at 12 mA and 15 kV (180 W). During analysis, the pressure inside the analysis 

chamber was maintained at ≤ 10–8 Torr. Calibration of the instrument work function was 
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done using the binding energy (B.E.) of a standard metallic Au sample (4f7/2 at 83.95 eV). 

In all spectra, photoelectrons were collected at a take-off angle of 90° from a 700 x 400 

µm area. Survey spectra were recorded in a B.E. window from 0 to 1200 eV using a pass 

energy of 160 eV and a step size of 1 eV. High-resolution spectra of the C 1s, O 1s, Ni 2p, 

Cr 2p, Mo 3d, and S 2p lines were collected using a pass energy of 20 eV and a step size 

of 0.1 eV. All spectra were charge-corrected against the aliphatic (C-C) adventitious carbon 

signal set to 284.8 eV. All signal processing and deconvolution was performed with 

CasaXPS software (ver. 2.3.19) using a Shirley background subtraction. Deconvolution of 

high-resolution spectra was done using previously detailed fitting parameters and 

constraints collected from high-quality standard reference samples (Ni [23, 24], Cr [23, 

25], Mo [26]). 

Figure 5.1 - Polarization behaviour of alloys BC-1, C-22, and G-35 in 1 M 

HCl at 75°C. For alloy G-35, the region of net cathodic current at applied 

potentials positive of the active-to-passive transition (–0.125 V to –0.113 V) 

is indicated (*). Alloy compositions (wt.%) shown here were taken from 

Table 5.2. 
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5.3 Results and discussion 

5.3.1 Potentiodynamic polarization behaviour 

Current densities recorded during potentiodynamic scans on the three alloys in aerated  

1 M HCl (75°C) are presented in Figure 5.1. Current densities associated with active 

dissolution were influenced by changes in Mo content, as shown previously [5, 6], with 

alloy G-35 (7.98 wt.% Mo) displaying the most pronounced active-to-passive transition 

and alloy BC-1 (22.10 wt.% Mo) showing no such transition. The values of zero-current 

potential (Ei=0) were also found to exhibit a positive shift as the Mo content was increased. 

At more positive applied potentials all three alloys exhibited a potential-independent 

current density, indicating passivity until ~0.85 V. At applied potentials ≥ 0.85 V, the 

transpassive conversion of Cr(III) into soluble Cr(VI) species is observed [27-29]. As 

expected, alloys with larger Cr contents exhibited lower passive current densities, Figure 

5.1. At applied potentials positive of the active-to-passive transition for alloy G-35, the 

measured current density switched from net anodic to net cathodic between ~–0.13 and  

–0.11 V, as previously observed for this alloy and shown to be due to the reduction of O2 

dissolved in the solution [30]. 

The electrochemical current densities (ie) shown in Figure 5.1, were compared to the 

elemental current densities obtained from AESEC measurements. The results obtained 

during the polarization of alloys (A) BC-1, (B) C-22, and (C) G-35, are shown in Figure 

5.2. To allow for the direct comparison of je with elemental current densities, iM, where M 

was Ni, Cr, or Mo, a convolution procedure was carried out. This convolution procedure 

corrects ie for the distribution of residence times through the flow cell and is detailed in a 

previous publication [16]. The comparison of the convoluted electrochemical current, ie
∗ , 

with the sum of all elemental current densities, iΣ, provided information on the faradaic 

yield of the anodic reactions. In measurements presented here, species released from the 

alloy and detected by ICP-AES were assumed to have dissolved as Ni(II), Cr(III), and 

Mo(IV). Oxidation states were assigned based on both ex situ surface analyses, presented 

later in this study, and thermodynamic data [31]. For reference, the original (untreated) 
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electrochemical current densities (ie), plotted on log(i)-E axes, have been included at the 

top of Figure 5.2(A-C) while the values of ie
∗ , iΣ, iNi, iCr, and iMo, are shown below, as a 

function of time. 

For alloy BC-1, immediately following the application of –0.4 V (or t = 0), increases in iNi, 

iCr, and iMo were observed which quickly stabilized at low values within the cathodic 

region, Figure 5.2(A). At applied potentials < Ei=0, iΣ stabilized at ~5 µA cm–2. As the 

applied potential was increased to values > Ei=0, iΣ initially remained low, confirming the 

absence of an active region, before increasing to a maximum value of ~10 µA cm–2, which 

then persisted throughout the passive region. Comparing ie
∗  with iΣ confirmed that a portion 

of the current measured by the potentiostat could not be accounted for by dissolution. In 

this case, differences between ie
∗  and iΣ are the result of oxidation reactions unrelated to 

dissolution; i.e., the formation of oxidized surface species not detected by ICP-AES. This 

discrepancy, iΣ < ie
∗ , which persisted through the passive region, can be attributed to film 

growth [32]. The difference between ie
∗  and iΣ increased with increasing applied potential 

throughout the passive region suggesting that film growth was enhanced at higher potential, 

although obviously the effect of applied potential and exposure time cannot be entirely 

separated in potential sweep experiments. 

Comparing the measurements made on alloy BC-1, Figure 5.2(A), to those made on alloys 

C-22 and G-35, Figures 5.2(B) and (C), revealed several similarities. Like on BC-1, the 

application of –0.4 V (t = 0) on alloys C-22 and G-35 resulted in momentary increases in 

iNi, iCr and iMo. Consistent with the role of Mo in suppressing active dissolution, the 

maximum value of iΣ was lower for alloy C-22 (12.97 wt.% Mo) than for alloy G-35 (7.98 

wt.% Mo). For alloy G-35, values of iΣ exceeded values of ie
∗  during active dissolution, 

suggesting that some metal dissolution was coupled directly to cathodic reactions in this 

potential range, and therefore did not generate measurable net electrochemical current. At 

higher applied potentials, where film formation occurred, values of iΣ were smaller than 

values of ie
∗  for both alloys, as also observed for alloy BC-1. This indicated an anodic 

contribution to film growth. Based on the difference between iΣ and ie
∗ , film growth 

appeared highest for BC-1, followed by C-22, and lastly G-35. Nonetheless, the difference 
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between iΣ and ie
∗  increased as the applied potential increased, although not as obviously 

for G-35.  

The identity of the specific elements accumulating on the surface as oxides may be 

obtained by considering normalized dissolution rate information as a function of applied 

potential, Figure 5.3. In this way, the potential regions of increased, decreased, and 

congruent dissolution were identified based on the bulk alloy composition. In the 

representation shown in Figure 5.3, a positive value ((XM XNi⁄ )νNi−νM > 0) indicated that 

the dissolution rate of element M (either Cr or Mo) was less than expected based on its 

bulk composition in the alloy, indicating its accumulation at the surface. On the other hand, 

a negative value ((XM XNi⁄ )νNi−νM < 0) indicated that the dissolution rate of element M 

Figure 5.3 - Trends in Cr and Mo accumulation and excess dissolution during 

dynamic polarization experiments, Figure 5.1. Values of νNi were normalized 

against the element M, either Cr or Mo. For each alloy, values of congruent 

dissolution (y = 0) are indicated by the dotted line. Alloy compositions (wt.%) 

shown here were taken from Table 5.2. 
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exceeded the value expected based on the alloy bulk composition; i.e., M was selectively 

removed from the surface. The separations between depletion (or excess dissolution) and 

accumulation are indicated along the right ordinate-axis, Figure 5.3.  

For all alloys, a transition between two distinct dissolution behaviours was found near the 

Ei=0. Below Ei=0, Cr was found to be the dominant cation released, while Mo species 

accumulated to some extent. However, at applied potentials higher than Ei=0, this trend was 

found to reverse, suggesting that a portion of the metal cations from the previously 

accumulated Mo species became the dominant species released and Cr species accumulated 

at the surface. While the data presented in Figure 5.3 cannot quantify the amount of Mo 

species remaining in the surface film, ex situ surface analyses, discussed below with 

potentiostatic data, found that oxidized Mo species were present in relatively large 

quantities (12-32 at.%) for films formed at high applied potential. This is discussed in 

greater detail below. As the applied potential increased through the region where film 

formation occurred, i.e., at applied potentials higher than Ei=0, this opposing effect between 

accumulation of Cr species and dissolution of Mo species disappeared for BC-1 and C-22, 

indicating the formation of a film with a stable composition. This occurred at a lower 

potential for alloy BC-1 (22.10 wt.% Mo) than for alloy C-22 (12.97 wt.% Mo) - 

approximately 0.4 and 0.65 V, respectively. For the low Mo alloy G-35 (7.98 wt.% Mo), 

the accumulation of Cr species and dissolution of Mo species was maintained over the full 

potential range. 

Although AESEC data collected during potentiodynamic polarization experiments 

highlighted changes in dissolution behaviour as a function of applied potential, the data 

were somewhat difficult to interpret. This was especially true in the context of film 

breakdown and passivation behaviour, where both the applied potential and the time play 

an important role [33]. To further investigate the transition between the active and passive 

states, potentiostatic measurements were employed. 

5.3.2 Potentiostatic polarization behaviour 

A potentiostatic approach was adopted, in which negative and positive applied potentials 

were used to force surface activation and passivation, respectively. Between the applied 
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potentials, relaxation at open circuit was monitored. During both the applied potential and 

open circuit potential measurement period, dissolution behaviour was monitored with the 

premise being that the elemental dissolution rates are inversely proportional to the barrier 

properties of the film. Dissolution behaviour will be discussed in greater detail below. For 

all alloys, the potential measurements made during cyclic activation-passivation 

experiments are presented in Figure 5.4, where cathodic activation and electrochemically-

assisted passivation processes are indicated by the red- and blue-shaded regions, 

respectively. Furthermore, locations during the polarization cycle considered for 

Figure 5.4 - Measured potentials during potentiostatic experiments. Red-

shaded areas indicate the surface activation process involving both cathodic 

activation (60 s at –0.8 V vs Ag/AgCl) and spontaneous passivation (300 s at 

open-circuit). Blue-shaded areas indicate the electrochemically-assisted 

passivation process involving the application of 0.6 V vs. Ag/AgCl for 60 s, 

followed by a 300 s OCP measurement. Surface analysis by XPS was 

conducted at the indicated times (*). 
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subsequent surface analysis are indicated (*) in Figure 5.4 and will be further discussed 

below. 

Cathodic activation was initiated by applying a potential of –0.8 V, a polarization at which 

high cathodic current densities were observed, typically on the order of –10 mA cm–2. 

During this period, H2 evolution occurred at a high rate, experimentally observed as 

bubbles exiting the flow cell. Similar activation procedures have been employed previously 

[21, 29, 34]. The resulting surface activation was confirmed by increases in dissolution rate 

observed using ICP-AES. While the mechanism of this activation is not completely 

understood, it may be explained by either the removal or the degradation of the film by the 

introduction of defect sites in the oxide, by the partial reduction of the Cr(III) film to the 

more soluble Cr(II) species, and/or by the physical removal of oxide scale due to the rapid 

formation of gas bubbles at the surface. Previous studies have shown that applications of 

large negative potentials increase the number of defects in the oxide film [35, 36], 

thermodynamic calculations suggest the reduction of Cr(III) to Cr(II) at the applied 

potential used for cathodic activation [21, 31, 37], and lastly, the possibility of releasing 

oxide scale from the surface cannot be omitted. The results presented here only 

demonstrate partial dissolution of excess Cr and Mo from the film and subsequent 

activation of the surface and do not allow for simple distinction between these mechanisms. 

Following surface activation and a period of open-circuit relaxation, electrochemically-

assisted passivation occurred by the application of 0.6 V; this value was selected from the 

range of potentials where film formation was found to occur (see Figure 5.1). 

Experimentally, cathodic activation and electrochemically-assisted passivation processes 

were cycled to investigate the effect of repeated surface activation. 

5.3.2.1 Surface activation 

Potentials measured during the activation periods are indicated as red-shaded regions in 

Figure 5.4. Before the first cathodic activation, i.e., t < 0 s, OCP values were related to the 

Cr-content of each alloy. Alloy G-35 (33.4 wt.% Cr) had the highest measured OCP, 

followed by C-22 (20.7 wt.% Cr), and lastly BC-1 (14.4 wt.% Cr). This was consistent with 

the influence of Cr-content on oxide films formed in relatively non-aggressive 

environments, in this case, an air formed (or native) oxide [38]. After being activated, i.e., 
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after the polarization at –0.8 V, this trend was found to reverse. Once activated, the alloy’s 

ability to re-establish an oxidized surface condition, as indicated by an increase in the OCP, 

was related to its Mo-content. In our previous work, we demonstrated that Mo-content was 

important to the stability of the oxide film, as well as in stifling active dissolution behaviour 

in acidic solutions [39, 40]. It was shown that Mo accumulated on the surface under 

transpassive conditions was released to solution upon a return to passive conditions [18]. 

Above, we showed a similar accumulation/release mechanism applied for the transition 

from active to passive conditions, Figure 5.3. Other studies have also highlighted the ability 

of alloyed Mo to improve corrosion resistance in acidic solutions [6, 41]. In the data 

presented here, alloys BC-1 (22.10 wt.% Mo) and C-22 (12.97 wt.% Mo) demonstrate 

increases in OCP after being activated, while the OCP of alloy G-35 (7.98 wt.% Mo) 

stabilized at relatively low values. For alloy BC-1, OCP values rapidly increased and 

stabilized at approximately –0.03 V, comparable to values measured before activation, i.e., 

t < 0 s.  For alloy C-22, OCP values increased more slowly and stabilized at –0.05 V after 

the first activation, approximately 0.2 V below the OCP measured at t < 0 s. In the case of 

alloy G-35, OCP values stabilized quickly and did not increase with time. Instead, OCP 

values measured for alloy G-35 stabilized at –0.18 V, approximately 0.5 V below values 

measured at t < 0 s. While the behaviour of OCP remained consistent for repeated 

activation cycles, shown in Figure 5.4, alloys BC-1 and C-22 both demonstrated a 

weakened ability to recover with repeated active-passive cycles. In the case of alloy BC-1, 

achieving a steady-state condition during consecutive activation cycles required increasing 

amounts of time. In the case of alloy C-22, OCP values measured after activation periods 

were found to stabilize at lower values as the number of cycles increased.  

The normalized dissolution rates, ν′M, measured during the first cathodic activation process 

and the subsequent open circuit period are presented in Figure 5.5. Since similar dissolution 

patterns were observed during repeated activation processes, only the first activation period 

will be discussed. However, the dissolution behaviour obtained for the full potentiostatic 

experiment (Figure 5.4) has been included in the supporting information (Appendix A). 

Before the first cathodic activation, i.e., t < 0 s, the dissolved cation concentrations were 

below the limits of detection by ICP-AES, consistent with the presence of a protective 

oxide film. However, during the polarization at –0.8 V, a surge of metal dissolution was 
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observed, confirming activation of the surface. During this activation process, labelled in 

Figure 5.5, the values of both ν′Cr, and ν′Mo were found to be greater than that of νNi, 

suggesting the excess dissolution of Cr and Mo from the electrode surface. For all alloys, 

Cr was found to be the dominant metal cation released from the surface, with smaller 

amounts of Mo also being released. This is consistent with the measured composition of 

oxides formed on Cr/Mo-containing alloys [32, 42, 43] and suggests the surface is activated 

by the partial removal of the oxide film during polarization at –0.8 V. 

Upon release to open-circuit, again labelled in Figure 5.5, alloys showed dissolution 

behaviour consistent with the spontaneous passivation of the surface. Both Cr and Mo 

species were found to accumulate at the surface (i.e., ν′Mo, ν′Cr < νNi): however, the 

accumulation of Mo species dominated this process. This was consistent with observations 

made during dynamic-polarization experiments, where Mo species were found to be the 

dominant species accumulated at potentials below the apparent Ei=0 (see Figure 5.3). 

Unsurprisingly, the ability of the surface to spontaneously passivate could be related to the 

Mo content of the alloy. Shown in Figure 5.5(A), alloy BC-1 (22.10 wt.% Mo) showed an 

immediate accumulation of Mo (and Cr) species, which quickly trended toward congruent 

dissolution (i.e., ν′Mo = ν′Cr = νNi) at a low overall dissolution rate. Comparison of the 

dissolution rates observed for the native oxide (i.e., t < 0 s) with those of the re-established 

passive oxide (i.e., t > 250 s), suggest the excellent ability of this alloy to recover from the 

surface activation process. This was consistent with the discussion of OCP values 

following activation, Figure 5.4, which suggested that alloy BC-1 quickly returned to a 

state similar to that of the native oxide (i.e. t < 0 s). Values of OCP were approximately –

0.02 V, regardless of whether the surface had been activated by cathodic polarization, 

electrochemically passivated (discussed below), or had a native oxide. The ability of alloy 

BC-1 to resist damage to the oxide film has been previously attributed to its high Mo 

content [40, 44]. 

As shown in the discussion of OCP, following the activation of alloy C-22, OCP values 

increased toward a plateau, Figure 5.4, suggesting the re-establishment of an oxide layer. 

This was, however, significantly slower than the behaviour found for alloy BC-1, again 
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Figure 5.5 - Normalized dissolution rates obtained during the first surface 

activation (–0.8 V vs. Ag/AgCl) and subsequent open circuit potential 

measurement for alloy (A) BC-1, (B) C-22, and (C) G-35. All dissolution rates are 

normalized to the Ni-content in the alloy, Equation 5.3. For clarity, dissolution 

transients observed during the spontaneous passivation process are indicated (*). 

The Cr and Mo contents (wt.%) shown here were taken from Table 5.2. 
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suggested by the OCP. The dissolution behaviour shown in Figure 5.5(B), confirmed these 

observations, showing that alloy C-22 required a longer time than alloy BC-1 to 

spontaneously passivate and restore low dissolution rates following surface activation. 

Following the release to open-circuit, accumulation of both Cr and Mo species occurred, 

as observed for alloy BC-1. Elemental dissolution rates trended toward congruent 

behaviour and stabilized at low total dissolution rates, confirming the successful 

passivation of alloy C-22.  

During the spontaneous passivation, momentary increases in elemental dissolution rates 

were occasionally observed for both alloy BC-1 and alloy C-22, indicated by (*) in Figures 

5.5(A) and (B), although they were more frequent and severe for the lower-Mo-containing 

alloy C-22. These dissolution transients are the result of film breakdown events during the 

early stages of passivation. Corresponding features were not observed during OCP 

measurements, when negative-going potential transients would be typical. When 

dissolution rates were converted into values of iM and iΣ, transients were found to 

correspond to current increases of between 9 and 31 µA cm–2. An example of the converted 

currents can be found in the supporting information (Appendix B). According to previously 

reported polarization resistance (RP) values, these current transients are commonly 

accompanied by potential transients ≤ 3 mV [30]. During repeated activation processes, 

momentary increases in dissolution rates were consistently observed during the 

spontaneous passivation of alloy C-22 and, to a lesser extent for alloy BC-1. It is worth 

mentioning that with each dissolution transient, the separation between ν′Mo (and ν′Cr) and 

νNi increased, suggesting an increased accumulation of Mo species following an ‘event’ 

which then slowly approached congruent behaviour. When another event occurred, the 

separation (or accumulation) again increased, before approaching congruent behaviour. 

This behaviour is consistent with the role of alloyed Mo in the repair of localized 

breakdown events, which has been shown to occur by the deposition of Mo-rich species at 

sites of damage [37, 45]. 

As shown in Figure 5.5(C), the dissolution behaviour observed after the surface activation 

of alloy G-35 differed from that of BC-1 and C-22. While initially accumulation of Mo and 
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Figure 5.6 - Quantification of Mo accumulation (ΘMo) during spontaneous 

passivation. (A) Graphical representation of the area considered as 

accumulation of Mo species during the first activation process on alloy C-

22. (B) Values of ΘMo for repeated activation processes for all alloys. Dotted 

lines indicate calculated averages. The Cr and Mo contents (wt.%) shown 

here were taken from Table 5.2. 
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Cr species was observed following the release to open circuit, after approximately 50 s the 

elemental dissolution became congruent and rates increased with time. Together the 

occurrence of congruent dissolution and the continuous increase in dissolution rates, may 

indicate unsuccessful passivation of alloy G-35.  This is consistent with expectations for 

G-series alloys, which are not noted for their corrosion resistance to HCl solution as a result 

of their relatively low Mo contents, typically between 5 and 8 wt.% [46, 47]. While alloy 

G-35 does contain a considerable amount of Mo, 7.98 wt.%, these differences in 

spontaneous passivation behaviour suggest some critical concentration of (or ratio 

between) alloyed Cr and Mo must exist to promote film stability in acidic Cl–-containing 

environments. 

The extent of Mo species accumulation (ΘMo) was quantified during the spontaneous 

passivation processes using Equation 5.4. A graphical representation of the area 

corresponding to accumulation of Mo species for alloy C-22 is highlighted in Figure 5.6(A) 

as an example. The ΘMo values for all alloys obtained over repeated activation processes 

are shown in Figure 5.6(B). Although the accumulation of Mo species would be expected 

to scale with an alloy’s Mo content, the experimentally determined values of ΘMo show 

that accumulation increased according to: G-35 (7.98 wt.% Mo) < BC-1 (22.10 wt.% Mo) 

< C-22 (12.97 wt.% Mo). Furthermore, comparing values obtained over repeated activation 

cycles, alloy C-22 was found to consistently show the highest ΘMo value. 

An explanation for this behaviour is based on the observations of the dissolution transients 

during the spontaneous passivation of alloy C-22 (Figure 5.5(B)). There are two 

mechanisms by which Mo increases corrosion resistance that are largely agreed upon: 

however, their details remain an area of ongoing research [11]. First, Mo content is 

beneficial in establishing a stable oxide film, especially in acidic chloride media [6]. Here, 

during the spontaneous passivation process observed for alloys BC-1 and C-22, 

accumulation of Mo species was found to be dominant, as dissolution rates stabilized at 

low values. Second, Mo content is vital in the repair of localized breakdown events [48]. 

While BC-1 was able to quickly form a stable oxide film, and exhibited only small 

breakdown events, alloy C-22 displayed much larger breakdown events. During these 

events, the increased separation between ν′Mo and νNi indicated increased accumulation of 
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Mo species following each event. Alloyed Mo is well known to promote the deposition of 

polymeric molybdate species at the breakdown site to stifle or block further dissolution 

[37, 45]. If events are both frequent and severe, as for alloy C-22, one would expect the 

accumulation of Mo species at the surface to be greater than that at the surface of an alloy 

like BC-1 that experiences only minor breakdown events and more rapidly establishes a 

stable passivating oxide. 

5.3.2.2 Electrochemically-assisted passivation 

Although the ability of the oxide film present on each alloy to recover from surface 

activation was of primary interest, the electrochemically-assisted passivation processes are 

also worth mentioning. Seen in the blue-shaded regions in Figure 5.4, after the application 

of 0.6 V, OCP values were found to increase relative to the values measured after 

activation. This increase was most significant for alloy C-22, followed by G-35, and lastly 

BC-1. The normalized dissolution behaviour recorded during this process was similar for 

all alloys, Figure 5.7. During the polarization at 0.6 V, all alloys showed the selective 

dissolution of Mo (i.e., ν′Mo > νNi) and the accumulation of Cr species (ν′Cr < νNi). While 

passive oxide films formed on Cr/Mo-containing alloys are known to accumulate both Cr 

and Mo species, the selective removal of Mo species observed here was believed to be the 

consequence of the previous surface activation and spontaneous passivation process. As 

discussed above, during spontaneous passivation all alloys were found to accumulate Mo 

species at their surfaces. Additionally, this was consistent with dynamic experiments 

(Figure 5.3) which highlighted the excess dissolution of Mo and accumulation of Cr species 

at applied potentials higher than the apparent value of Ei=0. Previously, we demonstrated 

the dynamic nature of Mo species, which concentrate at the surface in the event of film 

breakdown and are partially released during the re-formation of Cr oxides [18]. 

While the dissolution behaviour of all alloys suggested the re-formation of a Cr-rich surface 

film, differences in the electrochemically-assisted passivation behaviour were observed. In 

the case of alloys BC-1 and C-22, dissolution rates were found to quickly approach the 

limits of detection once the electrode potential was released to open-circuit. In contrast, 

alloy G-35 showed a significantly slower decrease in dissolution rates than the other alloys, 
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Figure 5.7 - Normalized dissolution rates obtained during the first 

electrochemically-assisted passivation process (0.6 V vs. Ag/AgCl) and 

subsequent open circuit potential measurement for alloy (A) BC-1, (B) 

C-22, and (C) G-35. All dissolution rates are normalized to the Ni-

content in the alloy, Equation 5.3. The Cr and Mo contents (wt.%) shown 

here were taken from Table 5.2. 



155 

 

despite having the highest Cr content (33.4 wt.% Cr), and established a steady-state 

congruent dissolution rate rather than re-establishing passivity. These differences suggest 

that a critical film composition is important in controlling the barrier layer properties in 

HCl solutions. 

5.3.3 Surface analysis 

Surface compositions were determined after both surface activation (including 

spontaneous passivation) and electrochemically-assisted passivation using XPS. The 

experimental locations considered for surface analyses are indicated by (*) in Figure 5.4. 

Since similar dissolution patterns were observed for repeated activation/passivation 

processes, the surface compositions were analyzed only following the first 

activation/passivation processes. Survey spectra obtained for the three alloys in both 

Figure 5.8 - Comparison of survey spectra collected for alloys G-35, C-22, and 

BC-1 following activation and passivation processes. Experimental locations 

used to prepare samples for surface analysis are shown in Figure 5.4. 

Quantification of the Ni 2p3/2, Cr 2p, Mo 3d, and O 1s peaks is given in Table 5.4. 
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conditions are compared in Figure 5.8. Subtle differences in the intensities of the Ni 2p, Cr 

2p, and Mo 3d signals between the activated and passivated surface conditions were found. 

For all alloys, the intensity of the Mo 3d signal was higher following activation than it was 

for the passive surface condition. In contrast, the Cr 2p signal was higher following 

passivation than it was for the active surface condition. These changes, quantified using 

the Ni 2p3/2, Cr 2p, and Mo 3d signals, are summarized in Table 5.4. 

Since the oxidized alloy surface species were of primary interest here, the O 1s signal was 

not considered in the surface compositions listed in Table 5.4. Oxide films formed on 

various Cr-containing alloys during exposure to a variety of conditions are known to be on 

the order of a few nm thick [15, 42, 49, 50]. Since the XPS has an effective analysis depth 

of 5-10 nm [51], which is thicker than the oxide film, the photoelectron signals for Ni, Cr, 

and Mo obtained from survey spectra are expected to originate from both metallic and 

oxidized components. Information on oxide compositions was extracted by deconvolution 

of chemical state information present in high-resolution spectra. 

Table 5.4 - Surface composition (at.%) of G-35, C-22, and 

BC-1 after surface activation (including spontaneous 

passivation) and electrochemically-assisted passivation 

processes, considering the Ni 2p3/2, Cr 2p, and Mo 3d signals. 

Alloy Condition Ni 2p3/2 Cr 2p Mo 3d 

G-35 
Activation 36.8 46.3 16.9 

Passivation 33.8 56.2 10.0 

C-22 
Activation 45.7 24.2 30.1 

Passivation 38.1 46.1 15.8 

BC-1 
Activation 52.5 14.8 32.7 

Passivation 42.4 32.3 25.3 

 

High-resolution spectra obtained for the Ni 2p3/2, Cr 2p3/2, and Mo 3d photoelectron peaks, 

as well as the deconvoluted chemical states, for specimens analyzed after both activation 

and passivation are presented in Figure 5.9. In all cases, the Ni 2p3/2 signal was dominated 

by metallic Ni (86.4 to 100 at.%), as shown in Figures 5.9(A), (D), and (G). The 

contributions from NiO and Ni(OH)2 were found not to exceed a total of 13.6 at.%.  
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The high-resolution Cr 2p3/2 spectra recorded on alloys BC-1 (Figure 5.9(B)), C-22 (Figure 

5.9(E)), and G-35 (Figure 5.9(H)), indicate mixtures of Cr2O3, Cr(OH)3, and metallic Cr. 

This was true for both the activated and passivated surfaces. Following surface activation 

(and spontaneous passivation), the contribution from oxidized Cr species was relatively 

low compared to that of the metallic species, especially for the low-Cr alloy BC-1. The 

concentration of oxidized Cr species after activation was found to increase with increasing 

Cr content of the alloy, with BC-1 (14.4 wt.% Cr) < C-22 (20.7 wt.% Cr) < G-35 (33.4 

wt.% Cr). The contributions from oxidized Cr species were higher following the 

electrochemically-assisted passivation process than those measured on alloys after surface 

activation (and spontaneous passivation). 

Deconvolution of high-resolution Mo 3d spectra collected on the three alloys, Figure 

5.9(C) BC-1, (F) C-22, and (I) G-35, after both activation and electrochemically-assisted 

passivation processes, revealed a complex mixture of metallic and oxidized Mo species 

(Mo(IV), Mo(V), and Mo(VI)). In some analyses, a small amount of S contamination was 

also observed. The S 2s signal, which overlapped with the Mo 3d signal, was subtracted 

using the chemical state information provided by analysis of the S 2p peak.  The relative 

amount of oxidized Mo species was found to decrease on the electrochemically passivated 

surfaces compared to those which had been activated (and spontaneously passivated). This 

was consistent with AESEC results which demonstrated the tendency of Mo species to 

accumulate during spontaneous passivation and be removed during the electrochemically-

assisted passivation process. The spectra in Figure 5.9 indicate a clear preference for 

Mo(IV) surface species after spontaneous passivation, while Mo(VI) species dominated 

after electrochemically-assisted passivation. Thermodynamics supports the formation of 

higher valence state Mo species such as MoO3 or MoO4
2– [31], with the latter being known 

to undergo complex polymerization reactions at low pH [37, 45, 52]. 

While deconvoluted high-resolution spectra provide information on the ratios of oxides to 

metal as well as the distribution of various oxidized species, they do not provide a true 

representation of what is on the surface. A more representative analysis of surface 

composition can be obtained by coupling the information provided by the survey spectra 
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Figure 5.9 - High resolution Ni 2p3/2, Cr 2p3/2, and Mo 3d spectra collected on alloys 

(A-C) BC-1, (D-F) C-22, and (G-I) G-35. Surface analysis was conducted after 

activation (bottom) and passivation (top) steps, as discussed for potentiostatic 

polarization data. Experimental data (solid black) are presented along with the resultant 

fits (dotted black curves) and individual components considered in the deconvolution 

(solid curves in various colours). 
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Figure 5.10 - Surface compositions of BC-1, C-22, and G-35 after (A) 

surface activation and (B) electrochemically-assisted passivation 

processes. Experimental locations used to prepare samples for surface 

analysis are shown in Figure 5.4. For the oxidized components, the 

relative oxide composition is also indicated in parentheses. 
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(i.e., the average surface composition) and the deconvoluted high-resolution spectra (i.e., 

the relative speciation concentrations). Shown in Figure 5.10, are the relative surface 

compositions expressed in terms of the metallic (Ni, Cr, and Mo) and oxidized 

contributions (Ni(OH)2, NiO, Cr2O3, Cr(OH)3, Mo(IV), Mo(V), and Mo(VI)). 

After surface activation and spontaneous passivation, Figure 5.10(A), the amount of 

oxidized Mo surface species increased in the order G-35 < BC-1 < C-22, consistent with 

the trends observed by AESEC, as expressed by the values of ΘMo, Figure 5.6(B). Both the 

AESEC and XPS data indicate that alloy C-22 exhibits the largest amount of Mo-rich 

surface species following surface activation and spontaneous passivation. For surfaces 

analyzed after electrochemically-assisted passivation, Figure 5.10(B), all alloys 

demonstrated a decrease in oxidized Mo content and an increase in oxidized Cr content 

relative to their activated counterparts. This change was consistent with observations made 

by AESEC, which showed a tendency of Mo species to accumulate during spontaneous 

passivation (i.e., after activation) and subsequently be released alongside the accumulation 

of Cr-rich surface species during electrochemically-assisted passivation. 

5.4 Conclusions 

Using the operando measurements afforded by atomic emission spectroelectrochemistry 

(AESEC), the dissolution behaviour of Hastelloy BC-1, C-22, and G-35, was studied 

during the surface activation, spontaneous passivation, and electrochemically-assisted 

passivation in 1 M HCl (75°C). Following surface activation, the accumulation of Mo 

species was found to dominate the spontaneous passivation behaviour, however, the 

accumulation of Cr species was also an important factor. After surface activation, high Mo 

content alloys, BC-1 (22.10 wt.% Mo) and C-22 (12.97 wt.% Mo), were found to rapidly 

recover, however, alloy C-22 required a slightly longer time and exhibited transient 

behaviour consistent with film breakdown. After processes of surface activation and 

spontaneous passivation, the accumulation of Mo species was found to be higher for alloy 

C-22 than for alloy BC-1, despite its lower Mo concentration. This was attributed to Mo 

deposition that occurred during the transient breakdown behaviour observed for alloy C-

22 and not alloy BC-1.  In the case of alloy G-35 (7.98 wt.% Mo), while an attempt to 
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spontaneously passivate the activated surface was apparent, elemental dissolution rates 

rapidly increased, with congruent behaviour suggesting active dissolution. During 

electrochemically-assisted passivation processes, previously accumulated Mo species were 

found to be partially removed while accumulation of Cr species dominated the film 

formation process. The concept of Mo species accumulation and subsequent dissolution is 

consistent with previous studies conducted on film breakdown/repair. Data acquired by 

AESEC were also compared to the results of ex situ XPS surface analysis. Both relative 

surface composition and oxidation state information were discussed, with connections 

made to the AESEC data. Most notably, the observation suggesting the large accumulation 

of Mo species on the moderate Mo content alloy (C-22) was consistent between both 

AESEC and XPS measurements. These findings suggest the dual role of alloy Mo in 

stabilizing and repairing the oxide film. 
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Chapter 6  

6 The role of internal cathodic support during the crevice 
corrosion of Ni-Cr-Mo alloys 

(Henderson (et al.), Electrochim. Acta, 2018, 283, 1600-1608.) 

 

Abstract:  

Coupling of metal oxidation in crevice corrosion to both O2 reduction on surfaces external 

to the crevice and H+ reduction occurring within the crevice, was studied using a 

galvanostatic crevice corrosion technique in conjunction with weight loss analyses. Results 

suggest internal H+ reduction is a significant contributor to the crevice corrosion of the 

studied alloys in 5 M NaCl at 120 °C. Repeat experiments suggest damage can be as much 

as doubled by H+ reduction. This process, however, can be minimized by alloying additions 

of Mo, which permit the deposition of Mo-rich corrosion products within an active crevice. 

Due to difficulties experienced during corrosion product removal, the results presented 

herein are anticipated to be underestimates of the actual extent of this process. 

Consequently, damage predictions based on the availability of O2 and other oxidants in the 

service environment may significantly underestimate the actual extent of corrosion on  

Ni-Cr-Mo alloys. 

 

6.1 Introduction 

Ni-based alloys are industrially important due to their robust corrosion resistant properties. 

Typically containing measurable amounts of Cr and Mo, these alloys have found 

applications in a range of industries, including petrochemical, nuclear, and chemical 

processing. Understanding and predicting their corrosion performance, and designing new, 

optimized alloys, requires a fuller understanding of the role of alloying elements and the 

nature of the corrosion processes. 
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Alloying additions of Cr are understood to induce strongly passive behaviour, due to the 

growth of a Cr(III)-rich oxide layer, a feature similar to what is seen in stainless steels [1]. 

However, alloying elements are much more soluble in the face-centred cubic (FCC) crystal 

structure of Ni-alloys than they are in Fe-based alloys, which allows for the 

accommodation of greater amounts of alloying additions in Ni-based alloys, while avoiding 

the formation of possibly deleterious secondary phases. 

Mo is typically added to increase the stability of the oxide film and resistance to localized 

corrosion processes [1, 2]. Mo is also understood to suppress active dissolution under 

conditions where Cr becomes soluble, including acidic and highly oxidizing environments 

[3]. However, the content of alloying elements must be adjusted carefully because they 

affect not only corrosion properties but also materials cost, mechanical performance, 

weldability, etc. Many attempts to suggest an optimal alloy composition have been made; 

however, such a composition has not yet been achieved. 

According to critical crevice solution (CCS) theory, the initiation of active crevice 

corrosion involves the development of a deaerated, acidic solution within the occluded 

geometry [4, 5]. Typically, crevice corrosion on Ni-based alloys is thought to be supported 

by O2 reduction external to the occluded region. However, in the case of Ti-alloys, crevice 

corrosion has been shown to involve the coupling of metal dissolution to both O2 reduction 

on external surfaces and H+ reduction within the acidified crevice, as depicted in Figure 

6.1 [6]. The presence of this coupling has been shown to intensify damage by 400% or 

more on these alloys [6, 7, 8]. 

Recently, electrochemical evidence has suggested that cathodic support for crevice 

corrosion of Ni alloys can also involve both O2 reduction outside the crevice and H+ 

reduction in its interior, resulting in intensified damage on Ni-based alloys [9]. This was 

inferred from observations that more than the expected quantity of damage was incurred 

by coupons that were made to undergo crevice corrosion under the application of constant 

anodic current. Although initially presented as a possibility, this inference was later 

supported by findings that revealed that once initiated, crevice corrosion on Ni-Cr-Mo 

alloys can support itself through an internal cathodic reaction [10]. It is no surprise that this 
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feature has been overlooked in the literature since many studies have focused on techniques 

such as potentiodynamic-galvanostatic-potentiodynamic (PD-GS-PD) tests. Although 

these techniques are effective in ranking the relative corrosion resistance of alloys in terms 

of breakdown/repassivation potentials, they provide no mechanistic information. The work 

presented herein was undertaken to more fully document this previously unexplored 

feature. 

In this paper the presence of the previously overlooked internal cathodic reaction on  

Ni-based alloys is examined using a galvanostatic technique in conjunction with weight 

loss analyses. Repeat experiments suggest that propagation damage can be as much as 

doubled by the internal H+ reduction reaction. Through the analysis of a series of 

commercial alloys with differing amounts of the same alloying elements, we are trying to 

understand how alloy composition affects this process. The Ni-based alloys Hastelloy  

G-30, G-35, C-22, and BC-1, were selected for this study, based mainly on their varying 

Mo-content, since Mo-rich corrosion products have been extensively studied and are 

believed to stifle active corrosion [11, 12]. Herein, we evaluate the prevalence of the H+ 

reduction reaction occurring during the crevice corrosion of Ni-based alloys in relation to 

the resulting damage morphology and the extent and type of corrosion product deposition. 

Figure 6.1 - Schematic representation of the critical crevice chemistry that 

develops within an active crevice [6]. 



169 

 

6.2 Experimental 

6.2.1 Material preparation 

Alloy samples, provided by Haynes International (Kokomo, IN, USA), were received as 

mill-annealed sheets with a thickness of 3.18 mm (1/8”). Crevice coupons were formed 

from 15 mm wide strips cut from the plate stock. The compositions, as reported by Haynes 

International, are listed in Table 6.1. 

Table 6.1 - Nominal compositions in weight (wt.) % of studied alloys as reported by 

Haynes International. ‘Bal.’ indicates alloying element which constitutes the balance. ‘M’ 

indicates an alloying or impurity element’s maximum weight percentage. 

Alloy Ni Cr Mo Fe W Cu Nb Co Mn V Al Si C 

G-35 Bal. 33.2 8.1 2M 0.6 0.3M -- 1M 0.5M -- 0.4M 0.6M 0.05M 

G-30 Bal. 30 5.5 15 2.5 2 0.8 5 1.5 -- -- 0.8M 0.03M 

C-22 Bal. 22 13 3 3 0.5M -- 2.5M 0.5M 0.35M -- 0.08M 0.01M 

BC-1 Bal. 15 22 2M -- -- -- -- 0.25 -- 0.5M 0.08M 0.01M 

 

Prior to electrochemical measurements, all coupons were ground using wet silicon carbide 

(SiC) paper, sequentially from P600 to P1200 grit, carefully sonicated in a 1:1 mixture of 

EtOH and deionized (DI) water (18.2 MΩ cm) for 2 minutes, rinsed with DI water, and 

then dried in a stream of ultra-high purity Ar gas. Polished crevice coupons were then 

stored in a vacuum desiccator for a 24-hour period prior to use, to help assure an accurate 

gravimetric measurement. 

Samples being prepared for electron backscatter diffraction were subjected to further 

polishing (1 μm diamond suspension) and a final etching step to expose grain boundaries. 

Different etching procedures were used for the various alloys due to differences in their 

corrosion resistance. Hastelloy G-30 and G-35 were etched by manual swabbing with a 

mixture (3:2:2) of HCl, CH3COOH, and HNO3. Hastelloy C-22 and BC-1 were 

electrochemically etched in an oxalic acid (C2H2O4) solution (10 wt.%) by the application 

of a 0.2 A cm−2 for 15 s. 
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Solutions of 5 M NaCl were prepared using reagent grade NaCl (Caledon Laboratory 

Chemicals, Georgetown, ON) and DI water. Solutions were saturated with air by vigorous 

physical agitation immediately preceding each experiment.  

6.2.2 Electrochemical setup 

Crevice corrosion experiments were performed in a Hastelloy pressure vessel (Parr 

Instrument Co., Model 4621), outfitted as an electrochemical cell with four pressure-tight 

electrode feedthroughs. A brief description of this setup is given here, while additional 

information can be found in Chapter 2. All potential measurements were made using a 

homemade saturated Ag/AgCl (0.197 V vs SHE) reference electrode (RE). Prior to each 

experiment, the RE potential was measured against a ‘master’ saturated calomel electrode 

used only for the purpose of calibration. The WE was assembled using a single-crevice 

approach which has been extensively detailed elsewhere [13-15]. This design forms a 

single crevice between the V-shaped WE and a PTFE crevice former, which are held 

securely by a Udel® block. Udel® bushings were used to prevent electrical contact between 

the WE and the rods and bolts used to secure the crevice assembly. This arrangement 

ensures the formation of a single electrically connected crevice. 

Once assembled, the vessel was pressurized (~414 kPa) with ultra-high purity nitrogen gas 

(Praxair, Mississauga, ON) and tested for leaks. The vessel was then placed in a heating 

mantle and the temperature was elevated to 120 ± 2 °C and maintained there for the 

duration of the experiment. After the experimental temperature was established, crevice 

corrosion was initiated using galvanostatic polarization. The total applied charge (QA) was 

controlled by applying a constant current through the WE and manipulating the duration 

of an experiment. At applied currents of 100, 75, 50, and 25 µA, the corresponding 

experimental times were 1, 1.33, 2, and 4 x 106 s, respectively, in order to maintain a 

consistent QA of 100 C. Each experiment was monitored by measuring the potential 

response using a Solartron model 1284 potentiostat (Solartron Analytical, Hampshire, 

UK). 
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6.2.3 Surface analysis 

Following electrochemical experiments, routine surface analysis was conducted using 

Hitachi S-4500 field emission and Hitachi SU3500 variable pressure scanning electron 

microscopes (SEM). Unless otherwise stated, corrosion products were removed prior to 

surface analysis, through a cleaning process involving both sonication and manual 

swabbing with cotton-tipped applicator sticks. Energy-dispersive X-ray spectroscopy 

(EDS) was conducted on a Hitachi SU3500 variable pressure SEM in combination with an 

Oxford Aztec X-Max50 X-ray analyzer. Aztec software allowed for both point analyses as 

well as the acquisition of EDS maps. 

Electron backscatter diffraction (EBSD) was conducted on a Hitachi SU6600 field 

emission gun (FEG) SEM. The FEG-SEM was outfitted with an HKL Nordly EBSD 

detector to collect Kikuchi patterns. Data analysis was carried out using the HKL Channel 

5 software suite (Oxford Instruments). All crystal orientation information was indexed 

according to the FCC crystal structure. 

Surface profilometry was conducted on a KLA Tencor P-10 surface profiler (Milpitas, CA, 

USA) and used to determine the maximum depth of penetration and overall damage 

morphology within a corroded crevice. The instrument was outfitted with a stylus 

containing a tungsten point, fixed with a diamond tip (radius ~2 μm). The stylus was 

scanned over the surface at 50 µm s−1. 
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6.3 Results and discussion 

6.3.1 Galvanostatic crevice corrosion 

Detailed in Figure 6.2 is the typical potential response of an artificial crevice while under 

galvanostatic control. Following the application of constant current, the potential increases 

rapidly due to oxide growth. The potential increase eventually reaches an approximately 

steady state in which the rates of film growth and destruction are approximately equal. It 

is in this region where passive oxide film breakdown attempts occur, resulting in negative-

going potential transients. Typically, a large number of these transients are observed as the 

passive film breaks and the potential drops but then readily returns to the steady-state 

potential, i.e., the surface repassivates. However, over time, as the CCS chemistry develops 

as a result of chemical reactions during these metastable events within the occluded region, 

the likelihood that a given breakdown event will successfully initiate crevice corrosion 

increases. The success of any individual breakdown event in initiating crevice corrosion 

Figure 6.2 - Graphical representation of typical potential behaviour for 

a crevice electrode under galvanostatic control. 
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depends on the accumulation of incremental chemical changes resulting from prior 

initiation attempts. The total time required for a successful breakdown event is often 

referred to as the incubation time. Since features such as the incubation time rely heavily 

on the dynamic chemistry evolving within the crevice, only general observations are made. 

The overall behaviour has been discussed in previous publications which have utilized 

galvanostatic polarization to control the crevice corrosion of Ni-Cr-Mo alloys [9, 10, 13]. 

6.3.2 Potential behaviour of C-22 

The typical response of alloy C-22 follows the behaviour described in Figure 6.2, and is 

illustrated in Figure 6.3 at applied currents of 100, 75, 50, and 25 μA. Initially, oxide 

growth occurs at approximately the same rate in each case, and is independent of the 

applied current. The maximum potential reached was however typically found to be higher 

with higher applied currents. A possible explanation for this is related to the nature of the 

Figure 6.3 - Potential-time response of C-22 crevice electrode while under 

galvanostatic control (100, 75, 50, and 25 µA). 
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film formed under varied applied currents. Jakupi et al. demonstrated that oxides grown at 

high applied potentials (>300 mV vs sat'd Ag/AgCl) were typically thick and defect-rich 

[13]. Although not explicitly demonstrated here, it is expected that higher applied currents 

result in similar thick, defect-rich films. The ensuing increase in film resistance forces the 

measured potential to higher values in order to maintain the applied current. Once the 

potential plateau is achieved, negative-going potential transients are observed. No 

connection was made between the frequency and severity of these events and the applied 

current. These events are believed to be random, and the success of any individual event 

relies on the crevice chemistry developed as a consequence of prior events as described 

earlier. What is apparent is that the average time required for a successful breakdown event 

to occur, i.e., the incubation time, increases as the applied current decreases. We believe 

this to be a result of the decreased rate at which the CCS is developed. 

Once crevice corrosion is initiated, the propagation potential appears to be independent of 

the applied current. However, interpretation of crevice behaviour by monitoring changes 

in the propagation potential is complicated by the large ohmic drop within the active 

crevice. Once crevice corrosion is initiated, the high solution resistance within the crevice, 

coupled with the flow of current, results in a potential drop, which means the measured 

Figure 6.4 - Secondary electron micrographs and element distribution maps of crevice site 

following (A) several initiation attempts and (B) successful initiation. Both coupons were 

corroded galvanostatically at 75 µA. 
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potential is valid only outside the crevice mouth, and not in the crevice interior. Therefore, 

we have not attempted to understand the behaviour of the propagation potential. 

In order to relate features of the measured potential to any corresponding physical damage, 

we conducted a study in which we withdrew the applied current following characteristic 

potential behaviour. Of particular interest during this study were the negative-going 

potential transients occurring during the time of the potential plateau. Knowledge of the 

early stages of damage allows for more accurate interpretation of fully corroded coupons, 

which will be discussed later. In total two potential responses were analyzed: that occurring 

immediately following initiation (Figure 6.4(A)), and that observed after a small amount 

of propagation had occurred (Figure 6.4(B)). 

As shown in Figure 6.4(A), immediately following initiation the total amount of damage 

is minimal, with polishing lines remaining clearly visible. Areas of localized attack are 

present and appear primarily along grain boundaries. A thin covering of Mo-, W-, and O-

rich corrosion products was found surrounding areas of damage. A large amount of these 

products was detached during the disassembly of the crevice, and it is generally believed 

that these products deposit to cover areas of damage in acidified crevices [16]. Crevice 

coupons from experiments that were terminated after a short period of propagation had a 

similar damage signature; however, damage was intensified, suggesting a natural 

progression, shown in Figure 6.4(B). The progression appears to involve predominantly 

corrosion along grain boundaries. Furthermore, these coupons were again covered by Mo-

, W-, and O-rich corrosion products. However, the corrosion product deposits were thicker, 

as illustrated by the increased EDX signal intensity relative to the background. The 

deposition of these products has been said to stifle active dissolution, causing active sites 

to relocate within the crevice [14]. From these experiments we concluded that damage 

begins at local sites, predominantly along grain boundaries, and progresses as corrosion 

products begin to deposit. 

6.3.3 Potential behaviour of different alloys 

A direct comparison of the potential response observed for BC-1, C-22, G-35, and G-30, 

under the application of 100 μA is outlined in Figure 6.5. Upon the application of constant 
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current both BC-1 and C-22 exhibit a rapid increase in potential as a result of oxide growth, 

as previously discussed. The rate at which the potential increases is dependent on the Cr 

content of the alloy reflecting the rate of film growth. As a consequence, the potential 

response of C-22 (22 wt.% Cr) increases more rapidly and to a higher final potential than 

for BC-1 (13 wt.% Cr). Furthermore, the frequency and amplitude of breakdown events 

appears to have a dependence on Mo content. In comparison, BC-1 (22 wt.% Mo) displays 

less frequent potential transients with smaller excursions than C-22 (13 wt.% Mo). This is 

the result of the greater ability of BC-1 to repassivate film breakdown events resulting from 

increased Mo content. These observations have similarities to those previously discussed 

in studies employing the galvanostatic crevice corrosion technique on different Ni-Cr-Mo 

alloys [9]. 

The potential behaviour seen for alloy G-35 and G-30 was found to deviate from the 

previously described behaviour. Although an initial increase in potential is observed, it is 

Figure 6.5 - Comparison of the potential-time response of BC-1, C-22, G-35, 

and G-30, while under galvanostatic control of 100 µA. 
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short lived and precedes a period of instability followed by successful breakdown. The 

maximum potential reached is much lower than the threshold potential once thought to be 

a requirement for the initiation of galvanostatically controlled crevice corrosion of Ni-Cr-

Mo alloys [10]. These results, together with a series of additional experiments (e.g., 

Chapters 3 and 5), suggest differences in oxide film stability in solutions anticipated during 

the development of crevice corrosion. This could be a result of Mo content insufficient to 

stabilize the oxide film as acidity develops [2, 3]. The cause of this deviation will be the 

focus of a future publication. Herein, the focus will be on the presence and extent of an 

internal cathodic reaction as well as the effect of composition on these processes. 

In all cases, following a successful initiation event, the propagation potential was found to 

be relatively stable, aside from only minor fluctuations. Such fluctuations suggest localized 

breakdown events within the active crevice. Since the final damage morphology displays 

a single corroded region, it is likely that these potential fluctuations are the result of 

breakdown events along the periphery of the active crevice. Notably, the propagation 

potentials were found to decrease as the Mo content of the alloy decreases. This is 

consistent with previous observations made on different Ni-Cr-Mo alloys [9]. 

In consideration of each of the propagation potentials, H+ reduction within the crevice, 

serving as the additional cathodic reaction, is considered thermodynamically possible. For 

instance, if the pH inside the active crevice is assumed to be 0, the potential for H+ reduction 

at 120 °C is calculated to be 0.035 V (vs sat'd Ag/AgCl) (assuming 1 × 10−6 atm H2). Since 

each of the propagation potentials is consistently less than 0.035 V (vs sat'd Ag/AgCl), the 

H+ reduction reaction can be considered thermodynamically possible within an active 

crevice. In addition, the effects of IR drop at locations deep within the creviced region are 

not accounted for, but would only strengthen the thermodynamic argument. Lastly, the 

crevice pH used to calculate the reduction potential is conservative, given literature reports 

that the pH would be < 0 [12, 16, 17]. 

6.3.4 Internal cathodic support 

Following the completion of each experiment, crevice coupons were thoroughly cleaned 

to remove corrosion products formed in damaged areas. With the purpose of obtaining 
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measurable weight loss, each experiment was conducted until a total applied charge (QA) 

of 100 C was reached. The large weight loss which resulted allowed for the accurate 

calculation of a charge equivalent to the weight loss (QW). This was calculated according 

to Faraday's law, Equation 6.1, where W is the weight loss, F is Faraday's constant, navg is 

the weighted average oxidation number of metal cations created, and mavg is the weighted 

average molar mass, calculated based on the alloy composition. 

 QW = WF (
navg

mavg
) (6.1) 

 (
navg

mavg
) = ∑ (

Xini

mi
)

i=1
 (6.2) 

The calculation used for the effective oxidation number:molar mass ratio is outlined in 

Equation 6.2, were Xi is the mass fraction, ni is the number of electrons transferred during 

oxidation, and mi is the molar mass of the respective alloying element. For simplicity, only 

major alloying elements (Ni, Cr, Mo, W, and Fe) were considered in these calculations and 

congruent metal dissolution was assumed. Values of Xi were calculated from the nominal 

compositions reported by Haynes International (Table 6.1). The values used for ni were 

discerned using thermodynamic values for all elements except Mo and W. Based on 

thermodynamic data, Ni, Cr, and Fe were anticipated to oxidize to form Ni(II), Cr(III), and 

Fe(II) species in the CCS. The same set of E-pH diagrams indicates the oxidation of Mo 

and W to Mo(IV) and W(IV) species [16, 18]; however, literature reports suggest that the 

corrosion products formed within an active crevice environment contain mainly Mo(VI) 

and W(VI) species [13,14]. Furthermore, the calculated effective oxidation number:molar 

mass ratio (n/M) is similar to that of other literature reports [19]. 

In order to determine the extent of internal cathodic support, the total sustained damage 

(QW) was compared to that measured electrochemically (QA). The value of QA accounts 

only for the damage sustained by coupling of corrosion to the external reduction of O2 on 

the counter electrode. In contrast, the value of QW corresponds to the total amount of 

damage resulting from corrosion coupled to all possible cathodic reactions. Therefore, the 
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difference between the two values indicates the amount of damage arising from coupling 

to cathodic reactions occurring within the crevice, i.e., H+ reduction in the crevice interior. 

Since negative-going potential transients, observed during the early stages of polarization 

on all alloys, correspond to localized corrosion events within the crevice, the total QA 

(100 C) was considered rather than only the charge passed after initiation. The extent of 

internal cathodic support for corrosion of alloy C-22 at a series of applied currents, reported 

as a percentage of the total amount of corrosion damage (i.e., (QW − QA) QW⁄ × 100%) is 

illustrated in Figure 6.6. Through this methodology, the presence of an internal cathodic 

support process is apparent. From these results, it is clear that corrosion rate calculations 

that consider O2 as the only oxidant underestimate the extent of corrosion damage. 

At the lowest examined current, 25 μA, the contribution of internal cathodic support was 

significant, but the actual extent of it is irreproducible. The values range, from 22.1 to 

45.8%, likely a result of the evolution of damage morphology occurring within the active 

Figure 6.6 - Internal support (%) as a function of applied current on C-22. 

Indicated along the left axis is the average considering all measurements. 
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crevice. Based on post-corrosion analyses, it is apparent that the tendency under the 

application of small currents is to drive deeper penetration within the crevice. We believe 

that these deep areas have an increased ability to support the development and/or 

maintenance of the CCS. Conversely, at higher applied currents, the tendency of damage 

to spread laterally across an alloy surface is less effective at supporting the developing 

CCS. The propensity of damage to spread laterally at higher applied current has been 

discussed elsewhere [14]. The hypothesis that damage morphology plays a role in 

establishing an internal cathodic reaction will be explored further at the end of this paper. 

With the realization that an internal cathodic reaction is indeed significant during the 

crevice corrosion of C-22 the question remains how the composition of the alloy affects 

this process. The ability of Mo-rich corrosion products to stifle active dissolution has been 

investigated in the context of different forms of localized corrosion. In a study focused on 

artificial pits, Newman showed the tendency of Mo to locate at defect sites, inhibiting 

dissolution at locations which would otherwise corrode [20, 21]. Shan et al. demonstrated 

the tendency of dissolved Mo and W to precipitate within an active crevice, while other 

dissolved alloying elements tend to deposit outside the active region [16]. Jakupi et al. later 

characterized the Mo-rich corrosion products found within an active crevice as polymeric 

Mo(VI) species using Raman spectroscopy [22]. In the present work, we attempt to 

characterize the effect of Mo(VI) deposition on internal cathodic support of crevice 

corrosion by studying the behaviour of Ni alloys G-30, G-35, C-22, and BC-1 polarized 

galvanostatically at a single applied current. 

The degree of internal cathodic support determined from (QW − QA) QW⁄ × 100% analyses 

of BC-1, C-22, G-35, and G-30 crevice coupons corroded at an applied current of 100 μA 

are shown in Figure 6.7. In this representation, the internal cathodic support is compared 

to the Mo + W content of the alloy. The two are considered in sum because W behaves 

much like Mo; i.e., W-rich corrosion products deposit and stifle dissolution [16, 23]. This 

treatment assumes that the magnitude of the effect is the same per unit mass for both Mo 

and W, however some literature reports claim that Mo is twice as effective as W in 

protecting an alloy on a per-weight basis [3, 24, 25]. Whether or not the relative amounts 
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of internal cathodic support in Figure 6.7 are compared to the Mo, Mo + 0.5 W, or Mo + 

W content of each alloy, the conclusions are the same. 

The Mo + W content is inversely proportional to the magnitude of the internal support 

process. As the Mo + W content increases, the extent to which the internal H+ reduction 

reaction is able to intensify damage decreases. For alloy G-30, containing only 5.5 wt.% 

Mo and 2.5 wt.% W, the internal cathodic reaction has been shown to intensify damage as 

much as an additional 76.1%. Likewise, for alloy G-35 (8.1 wt.% Mo and 0.6 wt.% W) the 

internal cathodic reaction was found to intensity damage by as much as an additional 

72.1%. Alloy C-22, which contains 13 wt.% Mo and 3 wt.% W, has an average 23.8% 

increase in the expected damage based on the applied charge, while BC-1 (22 wt.% Mo) 

exhibits a weight loss measurement suggesting negligible internal support (approximately 

zero). 

Figure 6.7 - Internal support (%) as a function of Mo + W content. Coupons 

corroded galvanostatically at 100 μA. 
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It should be explicitly mentioned that the weight loss method used to quantify the internal 

support is a rather crude process that relies on removal of the corrosion product, which is 

difficult, due to the irregular surface morphology and locations of deep penetration. 

Consequently, the weight loss values used to calculate QW represent an underestimate of 

the actual extent of corrosion damage, and therefore so are the levels of internal cathodic 

support determined by comparison of QA and QW. Nonetheless, the data presented highlight 

the importance of considering such a process, and the extent to which alloy composition 

may promote or suppress it. 

To support this analysis, an identical experiment (100 C of charge applied at 100 μA) was 

performed on an alloy G-30 coupon with no crevice. In this case, the potential remained in 

the transpassive range (∼0.82 V (vs sat'd Ag/AgCl)) throughout the entire polarization 

period, and no negative-going transients were observed. The measured weight loss 

corresponded to 65.0 C of charge equivalent (compared with 179.2 C for the electrode with 

the crevice). With no crevice, the weight loss is less than expected, rather than more. The 

“missing” 35 C charge equivalent to weight loss in this experiment likely corresponds to 

the mass of residual oxide that could not be stripped from the metal surface after the 

polarization experiment, consistent with the contention that the QW values represent an 

underestimate of the actual extent of corrosion damage. 

6.3.5 Damage progression 

The removal of corrosion product from coupons initially used to quantify internal cathodic 

support also benefitted post-corrosion analyses by exposing the otherwise hidden 

variations in crevice corrosion damage. Each of the examined alloys illustrates differences 

in damage morphology, while sharing subtle features, such as those discussed during the 

study of initiation (Figure 6.8). The corrosion damage (Figure 6.8(A-D)) achieved 

maximum penetration depth in proximity to the crevice mouth. This is a feature commonly 

observed during the crevice corrosion of Ni-Cr-Mo alloys, and in a practical sense 

represents and arises from the re-tracing of the active-passive polarization curve within the 

crevice as a consequence of the local ohmic drop within the occluded geometry [26, 27]. 
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In general, the maximum depth of penetration was greatest for alloy G-35 and G-30. In 

contrast, alloy BC-1 consistently revealed the lowest maximum depth of penetration. For 

the damage sites represented in Figure 6.8(A-D) the maximum depth of penetration was 

found to be approximately 310, 295, 265, and 76 μm on alloys G-30, G-35, C-22, and BC-

1, respectively. 

Information regarding how damage develops within the active crevice was uncovered by 

comparing the SEM images shown in Figure 6.8(E-H). Alloy BC-1 (Figure 6.8(E)), shows 

features which resemble the damage observed during initiation studies (recall Figure 6.4). 

This implies that for this alloy, following initiation, the readily deposited corrosion 

products impede damage progression and instead force dissolution to relocate along the 

periphery of the damage site. As a result, the damage morphology fails to develop beyond 

the features observed during early propagation. This is consistent with the observation that 

BC-1 typically shows shallow corrosion penetration in comparison to C-22, G-35, and G-

30. Alloy C-22 (Figure 6.8(F)), which is anticipated to deposit corrosion products less 

readily, due to the decreased Mo content, shows similar features along the periphery of the 

crevice, yet has what appears to be a more advanced level of damage in the center of the 

crevice. This suggests that C-22 requires a longer time to deposit corrosion products 

sufficient to force the applied current elsewhere (i.e., to the periphery). Lastly, alloys G-35 

and G-30, Figures 6.8(G) and (H), respectively, which are anticipated to have the poorest 

ability to deposit corrosion products, shows almost no lateral progression of damage. 

Instead the periphery of the damaged region shows some localized attack along grain 

boundaries, and displays features of preferential etching. This suggests a global instability 

of the oxide film exposed to the developing CCS, consistent with observations made during 

the discussion of the potential response for G-35 and G-30 under galvanostatic conditions. 

As one traverses from the periphery toward the area of greatest depth, there is an immediate 

drop off in topography (shown in both Figure 6.8 (C/D) and (G/H)) which suggests the 

failure of Mo-rich products to deposit on the surface. This is consistent with literature 

reports which have shown that an increased rate of molybdate deposition forces damage to 

spread laterally across the surface [14]. The ineffective deposition process occurring on  

G-35 and G-30 allows active metal dissolution to continue relatively uninhibited, and 

therefore damage penetrates deep into the bulk material. 
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Conclusions may be drawn between changes in crevice geometry and the intensity of the 

internal H+ reduction reaction. Greater crevice corrosion penetration depths, whether the 

result of low Mo (and W) content or low applied current (discussed above), coincide with 

a higher degree of internal cathodic support. Based on our observations, internal cathodic 

support of crevice corrosion is less important on alloys containing high amounts of Mo 

(and W). It appears that these alloys develop a crevice geometry that is less suitable for the 

development of the CCS, and that the deposition of Mo- and W-rich corrosion products 

limits the surface area available for the H+ reduction reaction within the crevice. At low 

applied currents, damage is limited to a small area and penetrates deep into the alloy 

surface, and conversely, when high currents are applied, the corrosion reaction and the 

consequent damage are forced to spread laterally across the surface. This suggests that a 

key factor in the crevice corrosion process may be the maintenance of a minimum local 

Figure 6.8 - Three-dimensional reconstruction from surface profilometry (A-D) and 

secondary electron micrographs (E-H) of crevice damage on BC-1, C-22, G-35, and G-30, 

respectively. Approximate location of each micrograph is indicated on their respective 

surface profile. All coupons were corroded galvanostatically at 100 μA for a total applied 

charge of 100 C. 
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current density at active sites. This suggests that under natural (vs galvanostatically-driven) 

corrosion conditions, crevice corrosion damage will tend to penetrate deeply in limited 

areas, rather than spreading laterally across the surface. Therefore, the susceptibility of an 

alloy to enhancement of crevice corrosion by coupling to the internal cathodic reaction 

seems to be determined by the content of Mo + W, which hinder internal H+ reduction by 

blocking the potentially cathodic surface with corrosion products and by limiting the 

establishment of a crevice geometry conducive to development of the CCS. 

The hypothesis of corrosion product deposition governing the damage morphology and 

internal cathodic support is reinforced by the fact that the metallographic features of each 

alloy are similar; hence, there are no obvious microstructural features that could contribute 

to the differences in damage morphology between alloys. Previously published work has 

demonstrated that the corrosion susceptibility of the grain boundaries within a Ni-Cr-Mo 

alloy depends to some degree on their coincidence site lattice (CSL) classification (Σ value) 

[28,29]. Of particular interest are the Σ3 and the Σ(>29) boundaries, the latter being termed 

random boundaries (R). These boundaries are considered low- and high-energy, 

respectively. The random boundaries have been shown to be more susceptible to attack 

than the lower energy boundaries [10,28,30]. 

We used EBSD to quantify the abundance on the three alloys of grain boundaries of each 

CSL Σ value. The results are presented in Figure 6.9. We found no significant difference 

in grain boundary make-up between the alloys; each alloy contains approximately 70% Σ3 

boundaries. This is explained by the face-centred-cubic lattice and the similar heat 

treatment imposed on the alloys during fabrication. Given that each alloy possesses 

approximately the same abundance of random grain boundaries, which are particularly 

susceptible to corrosion, one might expect the damage to follow similar progression for 

each alloy, however, the results shown in Figure 6.8 demonstrate otherwise. Therefore, the 

differences in damage morphology between alloys must be the result of differences in 

composition. Likewise, there is no apparent microstructural feature that would render one 

alloy more or less susceptible to the intergranular attack discussed above. Instead, it is 

likely that changes occurring within the occluded region (i.e., deposition of corrosion 

products) control the evolution of damage morphology. On alloy BC-1, which has the 
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highest Mo + W content, the damage never gets beyond the initial stages and instead is 

forced to spread laterally across the surface. Alloy C-22, which has a moderate Mo + W 

content, has areas surrounding the central damage site which resemble early stages of 

corrosion. However, in the central areas the damage is more developed and crevice 

corrosion begins to attack grain bodies indiscriminately. On alloys G-35 and G-30, which 

have the lowest Mo + W content, crevice corrosion damage penetrates deeply, possibly 

providing a more optimum environment to sustain the internal H+ reduction reaction. 

6.4 Conclusions 

The presence of an internal cathodic support reaction, likely H+ reduction, occurring during 

the crevice corrosion of Ni-based alloys has been implicitly demonstrated. For the 

investigated alloys, this process has been found to have the ability to intensify the 

Figure 6.9 - Frequency of ordered grain boundaries according to coincidence site 

lattice notation for Hastelloy G-30, G-35, C-22, and BC-1. Random grain 

boundaries are defined as Σ(> 29). 
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anticipated crevice damage by as much as ∼79%. The intensity of H+ reduction within the 

crevice is thought to be dependent on the evolving geometry of the host crevice and the 

blocking of cathodic sites by deposition of Mo- and W-rich corrosion products. Crevice 

damage that penetrates deeply supports the development of the CCS, and therefore the 

internal H+ reduction reaction. As a result, low-Mo and W alloys, such as alloys G-35 and 

G-30, are particularly susceptible to this process. Consequently, we conclude that Mo- and 

W-rich corrosion products not only stifle active dissolution, but also limit the ability of H+ 

reduction to intensify damage. 

Furthermore, damage was also found to penetrate more deeply when the alloys were driven 

to corrode by small applied currents than when large currents were applied. This is 

particularly concerning for corrosion under natural conditions, where the applied current is 

zero. 

Finally, our work demonstrates that corrosion damage predictions based solely on the 

availability of O2 and other oxidants in the service environment will significantly 

underestimate the actual extent of corrosion on Ni-based alloys, an important concern that 

has not previously been demonstrated. 
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Chapter 7  

7 Investigating the corrosion behaviour of corrosion 
resistant alloys in solutions containing dilute fluoride 
ions 

 

Abstract:  

The ability of fluoride ions, in trace concentrations, to promote film instability and 

transpassive dissolution was shown for several corrosion resistant alloys. While the 

addition of fluoride ion was found to decrease the transpassive dissolution potential by 

approximately 0.1 V, the decrease was particularly pronounced in mildly acidic media (pH 

5). Results suggest that the decreased potential range of stability for the heavily-relied-

upon Cr(III)-rich oxide film is a concern in the presence of oxidizing impurities which may 

push the corrosion potentials toward the transpassive region. The decreased potential range 

of passive film stability was observed using both dynamic and static polarization 

experiments and supported by solution and surface analyses. 

 

7.1 Introduction 

The role of halide anions, particularly chloride (Cl−), in corrosion processes has been 

extensively discussed in the literature [1-4]. However, information regarding corrosion 

induced by the presence of fluoride ions (F−) is much less abundant, especially for 

corrosion in conditions other than concentrated hydrofluoric acid (HF). Research on 

corrosion resistant alloys exposed to concentrated HF is required by industries such as the 

petrochemical industry, which employs high concentrations of HF in alkylation units. 

These units, which are usually built of carbon steel, operate under extremely acidic 

conditions [5]. Failure of these structures becomes possible when the HF concentration 

drops, or the temperature is increased, resulting in increased corrosion rates [5]. To 

minimize damage, acid concentrations are kept high in HF alkylation units. 
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Recent research has focused on determining optimal Ni-based alloy compositions to 

improve corrosion resistance and mechanical properties in concentrated HF solutions. Li 

et al. demonstrated the importance of the formation of a Mo-rich surface layer on corrosion 

resistance of Ni alloys in 5.2 M HF [6]. Although the ability to form a Mo-rich surface 

layer improved the corrosion resistance, further improvements could be realized with Cu 

additions. With alloying additions of 2 wt.% Cu, the Mo oxide film previously observed 

was replaced by a segregated Cu-rich surface layer [7], yielding an increase in corrosion 

resistance relative to alloys containing no Cu. Among the commercially available Ni-

alloys, Hastelloy C2000 has been of particular interest in this regard, due to its Cu content 

[8]. Unfortunately, the information reported in these studies is not immediately applicable 

to environments containing low F− concentrations and/or pH values near-neutral, e.g., pH 

5 to 9. 

Research involving the corrosion behaviour of corrosion resistant alloys in low or trace 

concentrations of F− is sparse, with the most relevant studies conducted on dental materials 

and materials used in proton exchange membrane fuel cell (PEMFC) applications [9-13]. 

However, the materials used in dental applications are commonly Ti-based, due to their 

biocompatibility; therefore, these studies, although instructive, are not useful for large-

scale material applications where the use of Ti-based alloys is not appropriate. 

Accordingly, the petrochemical industry lacks data regarding the corrosion behaviour of 

corrosion resistant alloys exposed to trace F− environments; however, there are several 

industrial processes which may introduce low or trace concentrations of F− during refinery 

processing. Commonly employed cleaning solvents, acidizing procedures used to increase 

the productivity of reservoirs [14], and the reprocessing of F−-containing refinery streams, 

can act as sources of F− contamination throughout refinery operations. Therefore, 

determining the extent of interaction between F− and the materials found within the refinery 

is essential to ensure safe operation. 

As described, most previous work has focused on concentrated F− environments, and little 

is known on the corrosion of corrosion resistant alloys in dilute F− solutions (concentrations 

up to 5000 ppm) and at increased temperatures (80-120°C) and pH values close to neutral. 
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Thus, the motivation for this project was the development of an understanding of the effects 

of F− on a variety of commercially available alloys that could be appropriate in such an 

environment. In addition, experiments were conducted in the presence of Cl−, a common 

co-contaminant in refinery environments [14]. Electrochemical investigations in the form 

of open-circuit and polarization experiments were conducted in relevant environments. 

Complementary surface and solution analyses were performed following potentiostatic 

polarization experiments to understand changes in film composition and structure as a 

function of the applied potential and the solution environment. 

7.2 Experimental 

7.2.1 Material preparation 

Both Ni- and Fe-based alloys were received as mill-annealed sheets. Ni-alloys were 

provided by Haynes International (Kokomo, IN, USA), while Fe-based alloys were 

purchased from McMaster-Carr (Elmhurst, IL, USA). The nominal compositions, reported 

in Table 7.1, are in accordance with ASTM B462 and A240. 

Coupons were cut and machined to the desired size from the mill-annealed sheets. Prior to 

electrochemical measurements, coupons were ground with a series of wet SiC papers 

(P600-P1200) to remove any damage incurred during the machining process and to create 

a reproducible surface. Coupons intended for subsequent surface analysis were further 

ground until a final step using P4000 SiC paper to minimized surface topography. Prepared 

coupons were then sonicated in a 1:1 mixture of deionized (DI) water (18.2 MΩ cm−2) and 

EtOH for 30 seconds, rinsed in DI water, and then dried in a stream of argon (Ar) gas. In 

all cases, the coupons were prepared immediately before each experiment. 

Solutions were prepared using reagent grade Na2SO4 (Fisher Scientific), KF (VWR 

International), NaCl (Caledon Laboratory Chemicals), and DI water (Thermo Scientific 

Barnstead™ Nanopure™). The pH of each solution was adjusted using solutions of H2SO4 

(Caledon Laboratory Chemicals) and NaOH (Fisher Scientific). To ensure adequate 

solution conductivity during all experiments, a supporting electrolyte (0.1 M Na2SO4) was 

employed, with the specified concentrations of F− and Cl− added to this solution.  
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7.2.2 Electrochemical measurements 

Electrochemical experiments were conducted in a polytetrafluoroethylene (PTFE) 

electrochemical cell, fabricated in-house, as shown in Figure 7.1(A). Two lids were 

constructed for use with the cell, depending on experimental needs. The first lid was 

designed with three inlets for electrode connections, as depicted in Figure 7.1(B). A second 

lid was designed with eight inlets for electrode connections, making the simultaneous 

measurement of up to six working electrodes (WE) possible, as depicted in Figure 7.1(C). 

A saturated Ag/AgCl electrode (0.197 V vs. SHE) and a platinum coil were employed as 

the reference (RE) and counter electrodes (CE), respectively. Both lids had inlet and outlet 

fittings used for solution sparging. All connections were wrapped in PTFE tape to ensure 

a secure, airtight fit. Once assembled, the cell was secured in a custom-machined clamp to 

ensure no movement of fittings during heating or Ar sparging. Temperature control was 

achieved using a custom-built heating reservoir adapted for use with an external isothermal 

water circulator. The fully assembled electrochemical cell, clamp, and heating reservoir 

are illustrated in Figure 7.1(A). Once assembled, the electrochemical cell was secured in 

the heating reservoir, and an initial 30-min heating/purging period was observed. During 

this time, the temperature of the heating reservoir was increased to the desired set-point 

and the experimental solution was sparged vigorously with Ar gas. After this initial period, 

the rate of Ar-sparging was lowered and the experiment was carried out. 

Corrosion behaviour was studied at both open-circuit (i.e., the corrosion potential (ECORR) 

was monitored as a function of time) and during dynamic and static polarization 

experiments. In studies investigating behaviour at ECORR, the electrochemical cell was 

outfitted with one coupon of each of the six alloys, serving as working electrodes.  

Measurements began 24 h after the cell and electrodes were installed into the heating 

reservoir. Measurements, taken at 24 h intervals, included ECORR and linear polarization 

resistance (LPR) measurements. Behaviour was studied for a total of 360 h (15 days). LPR 

measurements were carried out by polarizing each WE ± 15 mV (vs. ECORR) at a scan 

rate of 10 mV min−1. Polarization resistance (RP) values were then extracted from the slope 
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of the current density response (Δi) to potential changes (ΔE). Between measurements, the 

RE was removed from the cell to avoid long-term drift. 

All dynamic and static polarizations began with a 90-min ECORR measurement followed by 

a 30-min potentiostatic hold (–0.500 V vs Ag/AgCl) as a cathodic pre-treatment to ensure 

a reproducible surface between repeat experiments. Upon completion of the cathodic 

treatment, either a dynamic or a static polarization experiment was carried out. In 

potentiodynamic experiments, the potential was scanned in the positive direction from the 

hold potential at a scan rate of 10 mV min−1 until the resultant current reached the chosen 

anodic limit (10 mA). In potentiostatic experiments, immediately following the potential 

hold, the electrode was polarized to the desired potential in a single step. Following the 

completion of all experiments, the temperature of the electrochemical cell was checked to 

make sure it had remained at the set temperature. Experimental coupons were stored in an 

Innovative Technology PureLab HE Ar-filled glovebox during the period between 

completion of the electrochemical experiment and commencement of the surface analysis. 

All electrochemical measurements were repeated a minimum of two times.  

Figure 7.1 - Schematic illustration of the (A) full assembled PTFE electrochemical cell 

placed within the heating reservoir, with a cut-away showing the placement of cell and 

heat-exchanger coils. Insets show a cross section of the electrochemical cell in the (B) three 

electrode and (C) eight electrode configurations. 
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7.2.3 Surface analysis 

X-ray photoelectron spectroscopy (XPS) analyses were carried out on the Kratos AXIS 

Nova and Kratos AXIS Supra spectrometers located at Surface Science Western (Western 

University). In all spectra, an Al Kα (1486.7 eV) monochromatic X-ray source was used. 

The Au 4f7/2 metallic binding energy (83.95 eV) was used as a reference point for 

calibration of the instrument work function. Both survey and high-resolution spectra were 

collected on all coupons. For Ni-based coupons the Ni 2p, Cr 2p, Mo 3d, Cu 2p, O 1s, S 

2p, and C 1s were collected. For Fe-based coupons, the Fe 2p, Cr 2p, Mo 3d, O 1s, S 2p, 

and C 1s were collected. CasaXPS software (v.2.3.19) was used to process spectra. All 

spectra were charge-corrected by adjusting the C-C binding energy in the high-resolution 

C 1s spectrum (284.8 eV). Fitting parameters used in the deconvolution of high-resolution 

spectra were taken from the work of Biesinger et al. (Ni [15, 16], Cr [16, 17], and Fe [16]) 

and Spevack et al. (Mo [18]).  

7.2.4 Solution analysis 

Solution samples collected at the completion of potentiostatic polarization experiments 

were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) at the 

Biotron Research Facility (Western University). Samples were diluted, filtered (0.45 µm), 

and then analyzed using an Agilent 7700x ICP-MS. The instrument was calibrated using 

aqueous standards in 2% HNO3.  

7.3 Results and discussion 

7.3.1 Behaviour at the corrosion potential 

The behaviour under natural corrosion conditions was studied in the base electrolyte,  

0.1 M Na2SO4, as well as in 0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl−. In both 

solutions, values of ECORR and RP were measured at 1 d intervals for a total of 15 d. 

Considering the behaviour of all six alloys in both solutions, only minor differences were 

found. In both solutions, values of ECORR were found to stabilize within the range of 

approximately −0.2 to −0.32 V and showed only minor fluctuations between 

measurements, Figure 7.2(A). Similarly, values of RP were found to approach an apparent 
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steady-state condition, Figure 7.2(B). All alloys exhibited excellent corrosion performance 

in both solutions, as suggested by the relative stability of ECORR values and measured RP 

values in the range of 106 – 107 Ω cm2. A few general points are, however, worth 

mentioning. 

Comparing the Ni- and Fe-based alloys studied here, the Ni-based alloys experience only 

slightly better corrosion resistance under natural corrosion conditions. As shown in Figure 

7.2(B), this was true for both solutions examined here, i.e., with or without F−/Cl−. Both 

stainless steel alloys, SS316L and SS2205, were found to exhibit RP values lower than 

those measured on Ni-based alloys at the completion of the 15-d period. Amongst Ni-based 

alloys, C2000 was found to have the highest RP values in both solutions. Nonetheless, all 

measurements made under natural corrosion conditions suggest the behaviour of these 

alloys was consistent with strong passivity, regardless of the solution composition [19]. 

While electrochemical studies showed that the alloys behaved comparably in both  

0.1 M Na2SO4 and 0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl−, subtle differences in 

surface composition were identified by XPS. Table 7.2 summarizes the normalized surface 

compositions for coupons following the 15-d exposure experiment. For all alloys, a 

substantial decrease in Cr content was observed following exposure to the F−/Cl− 

containing solution, which was not the case for the same materials after exposure to only 

the 0.1 M Na2SO4 solution. These changes are facilitated by an interaction of Cr with one 

or both of these anions and will be discussed in greater detail below. 

It is worth mentioning that, while SS2205 and SS316L contain alloyed Ni in the amounts 

of 6.5 and 14 wt.%, respectively, the quantification of Ni by XPS was made difficult by a 

series of peak overlaps. More specifically, the series of Auger signals (LMM) produced by 

Fe overwhelmed the relatively weak signal produced by the alloyed Ni (2p). Similarly, 

peak overlaps complicated quantification of Fe in the Ni-based alloys, even though they 

contain alloyed Fe ranging from 3 to 5 wt.%. In this case, the Auger signals (LMM) 

produced by Ni overwhelmed the photoelectron signal produced by alloyed Fe (2p). While 

not considered in the quantification, it is expected that Ni and Fe represent a small portion 
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Figure 7.2 - Comparison of measured (A) ECORR and (B) RP values over a 

15-day period in the absence of F− or Cl− (▫) and with the addition of 5000 

ppm F− and 1000 ppm Cl− (▪). 
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of oxidized surface species on Fe- and Ni-based alloys, respectively [20, 21]. Also, the 

element Nb, despite making up 3.7 wt.% of Alloy 625, was not detected by XPS at the end 

of these exposure tests. 

Table 7.2 - Normalized surface compositions (at.%), determined by XPS, of alloys 

after exposure to 0.1 M Na2SO4 or 0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− 

(pH 7). 

Alloy Solution Ni  Fe  Cr  Mo  Cu  

SS2205 
0.1 M Na2SO4 -- 30.6 64.8 4.6 -- 

0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− -- 54.8 43.1 2.1 -- 

SS316L 
0.1 M Na2SO4 -- 44.9 53.0 2.1 -- 

0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− -- 73.5 25.1 1.3 -- 

C2000 
0.1 M Na2SO4 35.8 -- 50.7 9.0 4.5 

0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− 72.0 -- 22.6 3.2 2.2 

625 
0.1 M Na2SO4 24.3 -- 68.5 7.2 -- 

0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− 71.3 -- 25.5 3.2 -- 

C22 
0.1 M Na2SO4 37.5 -- 55.7 6.8 -- 

0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− 74.4 -- 22.2 3.3 -- 

C276 
0.1 M Na2SO4 26.5 -- 65.1 8.4 -- 

0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− 79.2 -- 17.7 3.1 -- 

 

7.3.2 Potentiodynamic polarization behaviour 

Polarization curves recorded both in the base electrolyte and in solutions containing various 

F− and Cl− concentrations are shown in Figure 7.3(A-D). In all solutions, the current-

potential relationship was consistent with the formation of a protective oxide film, in 

agreement with the observations made at ECORR (discussed above). Current densities 

measured in the passive region were ≤ 10−6 A cm−2, as is typical for Cr-containing alloys 

[21]. Formation of a passive film was observed in all solutions, regardless of the anion 

concentration. Passive films did not appear susceptible to localized breakdown, which 

would be indicated by momentary increases in current density. However, as applied 

potentials were increased, current densities were found to increase, indicating the onset of 

transpassive film breakdown. Here, the electrochemical conversion of Cr(III) into soluble 

Cr(VI) species, Equation 7.1, resulted in damage to the passive film. This process, 
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commonly referred to as transpassive dissolution, has been extensively studied on Ni-,  

Fe-, and Co-based alloys [1, 21-24]. 

 CrO4
2− + 8 H+ + 3 e− ⇌ Cr3+ + 4 H2O (7.1) 

Prior to the onset of transpassive dissolution, all alloys displayed a small feature within the 

passive region. This feature, which occurred at approximately 0.100 V, appeared as a slight 

increase in current density. However, in all cases the current density returned to the original 

passive current density, indicating the re-establishment of passivity. This feature has not 

Figure 7.3 - Potentiodynamic polarization behaviour of alloys in 0.1 M Na2SO4 solution 

(A) in the absence of F− or Cl−, (B) with 1000 ppm Cl−, (C) with 1000 ppm F−, and (D) 

with 5000 ppm F− + 1000 ppm Cl−. 
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been reported in the literature and the cause is currently unknown. Nevertheless, the 

significance of this behaviour, in relation to corrosion, appears to be minor. 

As the applied potential increased beyond the onset of transpassivity, current densities 

rapidly increased on Ni-based alloys, due to continued metal dissolution following film 

breakdown. For Cr-containing alloys, the rates of dissolution following transpassive film 

breakdown have been shown to be increased by increases in Mo-content and suppressed 

by increases in Fe-content [25-27]. This is consistent with data presented here which show 

a higher rate of increase of the current density with potential for alloy C2000 (16 wt.% Mo) 

than for alloy 625 (9 wt.% Mo), Figure 7.3(A-C). This increase has been tentatively 

assigned to an ill-defined catalytic effect of Mo on transpassive dissolution [25-27].  Fe-

based alloys were found to have a secondary passive region at applied potentials higher 

than the onset of electrochemical conversion of Cr(III) to Cr(VI). While current densities 

increased at the onset of the Cr(III) oxidation, a second current plateau was observed for 

the Fe-based alloys. This was the result of corrosion inhibition by Fe(III) oxides formed at 

the surface [19]. Within this secondary passive region, current densities were found to be 

2-3 times higher than those recorded in the primary passive region. The secondary passive 

region was comparable on SS316L and SS2205, and persisted until ~ 0.900 V. 

While comparing Figure 7.3(A) and (B) illustrates that the addition of 1000 ppm Cl− 

resulted in no visible change to the polarization behaviour relative to the base electrolyte, 

the addition of F− ions was found to modify the current-potential response. The current-

potential responses of alloys exposed to 1000 ppm F− and 5000 ppm F− (with 1000 ppm 

Cl−) are displayed in Figure 7.3(C) and (D), respectively. F− ions mainly influenced the 

transpassive behaviour; a direct comparison of the transpassive behaviour recorded in the 

different experimental solutions is given in Figure 7.4 for (A) alloy C22 and (B) SS2205. 

As indicated by the markings along the lower ordinate axis, the introduction of F− ion 

resulted in a decrease in the onset potential of Cr(III) oxidation. In comparison to solutions 

without F−, the breakdown of the passive region was decreased by ~0.100 V in the presence 

of F− ions. 
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Figure 7.4 - Comparison of transpassive regions for (A) alloy C22 and (B) 

SS2205 exposed to the various solutions indicated in the legend. Extracted 

transpassive onset potentials are indicated by the markings along the lower 

ordinate axis. 
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Furthermore, considering the secondary passive region present on SS2205 and SS316L, 

Figure 7.3(C), the introduction of 1000 ppm F− resulted in a loss of stability in the 

secondary passive region and an eventual breakdown at ~0.65 V. In solutions containing 

5000 ppm F− and 1000 ppm Cl−, while the breakdown of the secondary passive layer was 

observed, a subsequent decrease in current density suggested that a film repair/deposition 

process occurred as the potential was increased further, as shown in both Figure 7.3(D) and 

Figure 7.4(B). While an attempt to repassivate the surface is apparent, fluctuations in 

current density observed beyond the breakdown potential (i.e., for potentials > 0.6 V) 

indicates that this “reformed” film is only partially stable and, hence, susceptible to further 

breakdown. In general, the presence of F− has been shown to lead to enhanced reactivity at 

Fe-based alloy surfaces through the formation of soluble Fe-F species [28-31]. 

A series of potentiodynamic experiments were also conducted at pH 5 and 9 for both the 

base electrolyte and the electrolyte containing 0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm 

Cl−. In general, the polarization behaviour, including the primary and secondary passive 

regions, as well as changes in transpassivity, were similar to those found in pH 7 solutions 

(Figure 7.3) and are therefore not shown. In the pH range 5-9, all alloys maintained current 

densities less than 10−6 A cm−2 in the primary passive region, consistent with the presence 

of a Cr(III)-rich oxide layer [19]. Based on the solubility data for Cr species, a decrease in 

pH to values less than ~4 would be required to challenge this passivity [19, 32]. Wang et 

al. studied the behaviour of SS316 in H2SO4 (pH 1) with and without Cl− and F− [2]. Under 

their conditions, active behaviour was observed at low potentials, with an active-to-passive 

transition and, hence, the establishment of passivity occurring only as the potential was 

increased. Currents in the active region were found to be increased by F− but not by Cl−. In 

addition, Wang et al. did not observe a secondary passive region, which is not surprising 

at such low pH, where the solubility of Fe(III) species would be considerably higher than 

in the experiments presented here [32]. 
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Figure 7.5 - Average (n = 2-4) transpassive potentials of alloys in different 

solutions at pH 7 (A), and (B) a comparison of the transpassive potentials of 

alloys in the 0.1 M Na2SO4 and 0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− 

solutions as a function of pH. 



206 

 

Under the examined conditions, the most significant impact of F− ions appears to be an 

early onset of transpassive dissolution. The average (n = 2-4) transpassive potentials found 

in the various solutions at pH 7, and the influence of changes in pH in the range 5-9 are 

depicted in Figure 7.5(A) and (B), respectively. At pH 7, in solutions containing F− ion, 

shown as green and red in Figure 7.5(A), the alloys were found to undergo transpassive 

dissolution at lower applied potentials than in solutions without F− ions. On average, the 

onset of transpassivity was found to decrease by ~0.1 V with the addition of F−, which is 

believed to be the result of an interaction of F− with the Cr(III)-rich film, resulting in the 

formation of CrF3 species [2, 29, 33], Equation 7.2. These interactions have been shown to 

result in the conversion of the insoluble Cr2O3 film into the semi-soluble CrF3 species, 

ultimately leading to the degradation of the protective passive film. Similar behaviour has 

been found on other metals including Fe, Ni, Ti, Al, and Sn [34-38]. 

 Cr2O3 + 6 H+ + 6 F− ⇌ 2 CrF3 + 3 H2O (7.2) 

A comparison of the average transpassive potentials exhibited by alloys immersed in the 

base electrolyte, 0.1 M Na2SO4, and the most ionically concentrated solution,  

0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl−, at the three pH values investigated (5, 7, 

and 9) is shown in Figure 7.5(B). Overall, during immersion in the base electrolyte, alloys 

exhibited decreasing transpassive onset potentials as solutions became more alkaline. This 

was attributed to the pH dependence of the equilibrium potential for the redox conversion 

of Cr(III) to Cr(VI) [19], Equation 7.1. At pH 9, the presence of F− exerted no influence on 

the transpassive potential, but its influence increased markedly as the pH was decreased. 

While the influence of F− ions on the onset of transpassivity was apparent for pH 5 and 7, 

changes were less severe at pH 9. It is likely that the decreasing solubility of Cr(III) species 

across the range of pH values (5, 7, and 9) limits the formation of these Cr-F species [19]. 

7.3.3 Potentiostatic polarization behaviour 

Potentiostatic polarization experiments were conducted on two alloys, SS2205 and C2000. 

These alloys were selected based on their extensive use in the petrochemical industry 

(SS2205) and for literature reports regarding the beneficial effects of Cu addition on the 

corrosion behaviour in F−-containing solutions (C2000). Changes in surface composition 
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and dissolved metal concentrations were monitored at the conclusion of polarization 

measurements by XPS and ICP-MS, respectively. 

Current densities recorded at applied potentials of −0.100, 0, 0.100, 0.200, and 0.300 V, in 

solution containing 5000 ppm F− and 1000 ppm Cl− (pH 5) are shown in Figure 7.6 and 

Figure 7.7 for C2000 and SS2205, respectively. For clarity, data are presented on both 

semi-log (A) and log-log (B) axes. At the lower applied potentials, e.g., −0.100, 0, and 

0.100 V, observations were similar for C2000 and SS2205. Plotting these data on log-log 

axes, Figure 7.6(B) and Figure 7.7(B), demonstrates that the current densities decreased 

with time in an approximately linear fashion for the entire 8-h period. These decreases in 

current density are consistent with the anodic formation of a passive oxide film. Unlike 

SS2205, at an applied potential of 0.100 V, C2000 achieved a steady-state condition for t 

> 2 h, indicating that the film growth process was accompanied by a dissolution process 

(steady-state is achieved once the rates of film growth and film dissolution become equal). 

At higher potentials, e.g., 0.200 and 0.300 V, both C2000 and SS2205 showed current 

densities decreasing with time; however, current densities were higher as the applied 

potential increased. Although current densities initially showed a decreasing trend, sudden 

increases in current densities were observed, indicating breakdown of the passive oxide 

formed at shorter times. Current densities were considerably lower, almost two orders of 

magnitude, on the Fe-based alloy (Figure 7.7) than on the Ni-based alloy (Figure 7.6). 

Considering the dynamic polarization behaviour, Figure 7.3, the protection provided by 

Fe(III) oxides is apparent; lower measured current densities on SS2205 are explained by 

the higher stability of Fe(III) oxide at higher potentials [19]. 

Current transients recorded on C2000 and SS2205 at 0.200 and 0.300 V in the base 

electrolyte solution were compared to those from solution containing F−/Cl− in Figure 7.8 

and Figure 7.9, respectively. First, considering the transients recorded at the lower applied 

potential, 0.200 V, films grew for a minimum of 9000 and 2000 s on C2000 and SS2205, 

respectively. Beyond this period, we observed differences in the corrosion behaviour 

between alloys exposed to solutions containing F−/Cl− and those exposed to the base 
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Figure 7.6 - Current-time response for C2000 electrodes polarized at 

−0.100, 0, 0.100, 0.200, and 0.300 V while immersed in 0.1 M Na2SO4 + 

5000 ppm F− + 1000 ppm Cl− solution. The same data are presented as (A) 

log(i)-time and (B) log(i)-log(t) plots. 
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Figure 7.7 - Current-time response for SS2205 coupons polarized at 

−0.100, 0, 0.100, 0.200, and 0.300 V while immersed in 0.1 M Na2SO4 + 

5000 ppm F− + 1000 ppm Cl− solution. The same data are presented as 

(A) log(i)-time and (B) log(i)-log(t) plots. 
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Figure 7.8 - The effect of F− and Cl− addition to the base electrolyte  

(0.1 M Na2SO4) is compared for applied potentials of 0.200 and 0.300 V 

for alloy C2000. Presented as (A) log(i)-time and (B) log(i)-log(t) plots. 
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Figure 7.9 - The effect of F− and Cl− addition to the base electrolyte  

(0.1 M Na2SO4) is compared for applied potentials of 0.200 and 0.300 V 

for SS2205. Presented as (A) log(i)-time and (B) log(i)-log(t) plots. 
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electrolyte only. In the case of C2000, exposed to the base electrolyte, Figure 7.8, film 

growth continued until a steady-state was eventually attained. In the solution containing 

F−/Cl−, film growth continued until currents began to increase at t > 9000 s, suggesting film 

breakdown. In the case of SS2205, Figure 7.9, following the initial period of film growth, 

minor current transient became apparent in the base electrolyte. All transients returned to 

the background current values, suggesting repassivation. Despite these metastable events, 

film growth continued, as suggested by further decreases in current densities over time. In 

the F−/Cl− containing solution, breakdown behaviour was more frequent than the behaviour 

observed in the base electrolyte. In solutions containing F−/Cl−, an increase in background 

current density occurred at t > 3000 s, suggesting the presence of competing film formation 

and dissolution processes. 

At the highest applied potential, 0.300 V, differences between the current transients 

recorded on materials exposed to the F−/Cl−-containing solutions and those exposed to the 

base electrolyte were again apparent. While an initial film growth process was observed on 

C2000 in both solutions, current densities measured in the F−/Cl−-containing solution were 

approximately one order of magnitude higher than those measured in the base electrolyte, 

Figure 7.8. Furthermore, in both solutions, the presence of current fluctuations suggests the 

general instability of the surface oxide, which is not unexpected, due to the onset of 

transpassive dissolution at higher applied potentials. In the case of SS2205, current 

densities measured during the film growth were similar in both the base electrolyte and in 

the solution containing F−/Cl−, Figure 7.9. At t > 4000 s, passive film breakdown behaviour 

became apparent in both the base electrolyte and the F−/Cl−-containing solution, however, 

the current fluctuations were more pronounced when F− was present. 

Solution analysis, obtained by ICP-MS, confirmed metal ion release at the onset of film 

breakdown at an applied potential of 0.300 V, in solutions containing F−/Cl−. The 

concentrations of dissolved Ni and Fe, the alloy matrix elements for C2000 and SS2205, 

respectively, are shown as function of the applied potential in Figure 7.10. For both C2000 

and SS2205, concentrations of dissolved Ni or Fe, respectively, remained below limits of 

detection (indicated as a dotted line) for applied potentials ≤ 0.200 V. The ability of Ni and 

Fe to remain below detection limits, despite the 8-h polarization, is evidence of the 
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protective nature of the oxide films formed at these potentials. At an applied potential of 

0.300 V, passivity gave way to transpassive behaviour, as confirmed by the sudden increase 

in Ni and Fe concentrations. This is especially true for C2000, where Ni suddenly became 

detectable at levels approximately 12 times the limit of detection, and SS2205, where Fe 

became detectable only at the applied potential of 0.300 V. Comparing the concentrations 

of dissolved metal ions from C2000 and SS2205, one can note that concentrations of 

dissolved Fe from SS2205 were significantly lower than the levels of Ni released from 

C2000. This agreed with the measurement of lower current densities on SS2205 than on 

C2000. 

Figure 7.10 - Concentrations of dissolved alloy matrix elements, determined by 

ICP-MS, as a function of applied potential. Solution samples taken at the 

completion of potentiostatic polarization experiments on SS2205 and C2000 in 

0.1 M Na2SO4 + 5000 ppm F− + 1000 ppm Cl− (pH 5 and 80°C). Values expressed 

in µg L−1 (ppb). 
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Alloy surface compositions following potentiostatic experiments in solutions containing 

5000 ppm F− and 1000 ppm Cl− were investigated by XPS. Surface compositions obtained 

by the quantification of survey spectra are summarized in Table 7.3 and Table 7.4 for 

C2000 and SS2205, respectively. As expected, the surface composition was dominated by 

Cr on C2000 and by both Cr and Fe on S2205 within the passive region. At 0.300 V, i.e., 

with the onset of transpassivity, the apparent concentrations of the individual metals 

decreased. This mainly reflects the thickening of the oxide film, such that XPS analysis, 

which determines a weighted average composition of the outermost several nanometres of 

the surface, detects less of the underlying metal and more oxygen, resulting in what seems 

like dilution of the metal concentration. To a lesser extent, the formation of higher 

oxidation states of Cr, Fe, and Mo at these potentials, and their subsequent hydrolysis, also 

contribute to this dilution effect. 

Table 7.3 - Surface composition (at.%), determined by XPS, of C2000 

coupons immersed in a solution containing 0.1 M Na2SO4 + 5000 ppm F− + 

1000 ppm Cl− (pH 5 and 80°C) and polarized at the indicated potential for 8 

h. The contribution of the C 1s signal has been factored out of the reported 

data. 

 Ni  Cr  Mo  O  F  

−0.100 V 2.9 14.4 3.7 77.9 1.1 

0 V 3.7 15.3 4.3 75.2 1.5 

0.100 V 5.4 15.3 3.9 72.4 3.1 

0.200 V 3.0 15.8 4.1 74.7 2.5 

0.300 V 1.3 11.5 0.3 84.9 2.0 

 

Although both F− and Cl− were present in solution, only F was detected on the surface 

following potentiostatic polarization experiments. This suggests that F− may be 

incorporated into the growing oxide, a feature that would explain the breakdown of the 

oxide at lower potentials when F− is present. The incorporation of F into surface oxides has 

been observed in acidic F−-containing media [39]. Here, the tendency of F to remain in the 

surface appears to increase with increasing potentials. At high potentials, the small 
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decrease in the concentration of F can be attributed to the sharp increase in O content 

achieved in this region. 

Table 7.4 - Surface composition (at.%), determined by XPS, of SS2205 

coupons immersed in a solution containing 0.1 M Na2SO4 + 5000 ppm F− + 

1000 ppm Cl− (pH 5 and 80°C) and polarized at the indicated potential for 8 

h. The contribution of the C 1s signal has been factored out of the reported 

data. 

 Fe  Cr  Mo  O  F  

−0.100 V 23.1 12.4 0.8 62.9 0.8 

0 V 27.7 8.4 0.5 63.0 0.4 

0.100 V 21.0 14.9 0.7 62.4 0.9 

0.200 V 16.0 6.4 0.8 76.2 0.6 

0.300 V 20.8 2.0 0.1 75.7 1.3 

 

Two additional features are worth noting: 

1. The absence of a signal for Cl indicates that it is not incorporated into the oxide, at 

least not in detectable concentrations. This is consistent with the results in Figure 7.2, 

which show that the addition of Cl− to the base electrolyte (at pH 7) had little 

influence on the potentiodynamic polarization curve. 

2. No signal was observed for Cu on alloy C2000, indicating that no segregation of Cu 

to the alloy/solution interface took place during anodic oxidation. Some studies in 

concentrated HF have shown Cu segregation to the interface [7], which could 

indicate that this process does not take place in the pH range 5-9. 

Normalized surface compositions, incorporating chemical state information, are shown in 

Figure 7.11(A) & (B) for C2000 and SS2205, respectively. Here, the normalized surface 

composition obtained from survey spectra was combined with the chemical state 

information provided by deconvoluting high-resolution spectra. In the passive region 

(−0.100 V to 0.200 V), surfaces of both C2000 and SS2205 were dominated by oxidized 

Cr/Fe species, consistent with the presence of the barrier layer associated with 
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Figure 7.11 - Normalized surface composition (at.%), determined by XPS, of (A) 

C2000 and (B) SS2205 showing major alloying elements (Ni or Fe, Cr, Mo) and their 

compounds following potentiostatic polarization. Components contributing ≤ 2 at.% 

are not labelled. 
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passivity [4, 21]. For both alloys, signals representing metallic components demonstrate 

the passive oxide to be relatively thin within the passive region and to thicken once the 

potential was increased into the transpassive region (0.300 V). In a previous study of 

electrochemically grown films on C2000, Zhang et al. demonstrated the tendency for the 

oxide thickness to increase near the onset of transpassive dissolution [21]. Although not 

shown here, the Ni(OH)2 content of the film on C2000, a signature for its tendency to 

dissolve, becomes noticeable for potentials between 0 and 0.100 V [21]. 

Following the polarization experiments, the electrode surfaces were examined by scanning 

electron microscopy to determine changes in surface morphology resulting from 

dissolution during the polarizations.  In all cases, the degree of dissolution attack was too 

small to observe, as evidenced by the retention of grinding lines generated by surface 

preparation procedures. 

 

7.4 Conclusions 

The ability of fluoride ions to decrease the onset potential for transpassive breakdown on 

Cr-containing alloys, and to challenge the secondary passive window of Fe-based alloys, 

has been documented. Dynamic polarization experiments demonstrated that onset 

potentials for the transpassive region were decreased by approximately 0.100 V in the 

presence of fluoride ions. This was particularly apparent in slightly acidic solutions (pH 5) 

and becomes less severe at higher pH. Potentiostatic polarization experiments support 

observations regarding the ability of fluoride ions to promote transpassive dissolution. 

Findings suggest that Fe-based alloys experience lower corrosion rates at the onset of 

transpassive dissolution compared to Ni-based alloys. This was attributed to the 

protectiveness and low solubility of oxidized Fe species within the surface film at potentials 

beyond the electrochemical conversion of Cr(III) to Cr(VI). 

While values of ECORR recorded under the conditions employed here are less than those 

required for transpassive film breakdown, the role of fluoride ions is expected to become 

important in the presence of oxidizing impurities commonly found in industrial processes. 
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Chapter 8  

8 Conclusions and future work 

8.1 Conclusions 

This thesis has investigated various mechanistic features important during the corrosion of 

Ni-based alloys. The data provides new information necessary for an improved 

understanding of the corrosion behaviour and improved material selection criteria. 

For commercially available Ni-based alloys, the influence of Cr and Mo additions was 

investigated during exposure to neutral and acidic chloride solutions at 75 °C. When the 

alloys were exposed to 3 M NaCl, the corrosion behaviour both at ECORR and under an 

applied potential was consistent with passive behaviour. Increases in Cr content resulted in 

lower corrosion rates; however, only minor benefits were observed above 15 wt.% Cr. 

Resistance measurements made using both LPR and EIS techniques yielded values on the 

order of 106 Ω cm2. The corrosion behaviour of alloys exposed to 1 M HCl + 2 M NaCl, at 

both ECORR and during applied potential polarization, improved with increasing Mo 

content. Alloys containing higher Mo content were found to have lower corrosion rates, 

improved film stability, and enhanced repassivation behaviour. During corrosion at ECORR, 

alloy BC-1 (22.1 wt.% Mo) was found to retain a partially protective oxide film, as 

suggested by RP values, which remained approximately two orders of magnitude higher 

than for the low Mo containing alloys; C-22 (12.97 wt.% Mo), G-35 (7.98 wt.% Mo), and 

G-30 (4.97 wt.%). A low-frequency inductive feature in the impedance spectra suggested 

that active dissolution on alloys C-22, G-35, and G-30 involved coupled electrochemical 

reactions, e.g., an adsorbed intermediate. In potentiodynamic experiments, active 

dissolution was found to be suppressed by increases in Mo content, consistent with the 

behaviour at ECORR. Interestingly, alloys G-35 and G-30 displayed a region of net cathodic 

current at applied potentials greater than the active-to-passive transition. The removal of 

O2, the anticipated oxidant, showed that Mo also played a key role in stabilizing the oxide 

film, with passive current densities (at 0 V vs SCE) scaling in the order BC-1 (22.1 wt.% 

Mo) < C-22 (12.97 wt.% Mo) < G-35 (7.98 wt.% Mo) < G-30 (4.97 wt.% Mo). Lastly, 
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potentiostatic experiments indicated that films formed on low-Mo-containing alloys were 

more susceptible to frequent and severe localized breakdown.  

Complementary information related to the fate of individual alloying elements during 

corrosion was obtained using the AESEC technique. When alloys were exposed to 1 M 

NaCl, real-time dissolution rates indicated that, in the presence of a passive film (i.e., at 

applied potentials < 0.6 V vs Ag/AgCl) dissolution rates remained below the limits of 

detection. At more positive applied potentials, dissolution rates increased, due to the 

transpassive dissolution of the passive film. During transpassive dissolution, all alloys were 

found to accumulate Cr and Mo species at the surface, based on the comparison to the bulk 

alloy composition. During repassivation, caused by a decrease in the applied potential, the 

previously accumulated Mo species were released from the surface, suggesting a 

mechanism of only temporary protection during film breakdown. This dynamic behaviour 

of Mo deposition/release was attributed to changes in the local pH caused by the hydrolysis 

of dissolved metal cations. In support of this theory, this dynamic behaviour of Mo species 

was particularly pronounced for the high-Fe-containing alloys G-30 (15.9 wt.% Fe) and C-

22 (3.79 wt.% Fe). Under transpassive conditions, the dissolution and hydrolysis of Fe(III) 

species are expected to lead to a more rapid local acidification compared to dissolution and 

hydrolysis of Ni(II) species. As a result, while Fe is added at the expense of Ni to reduce 

the overall cost of the alloy, it may positively impact corrosion performance under highly 

oxidizing conditions. 

Using the AESEC technique, dissolution behaviour was also studied during surface 

activation, spontaneous repassivation, and electrochemically promoted passivation in 1 M 

HCl at 75°C. Following activation, spontaneous repassivation on open circuit was found 

to involve the accumulation of both Cr and Mo species on the alloy surface, with 

accumulation of the latter species the dominant influence. The ability to recover from 

surface activation improved with increases in the Mo content of the alloy. For high Mo 

containing alloys, BC-1 (22.10 wt.% Mo) and C-22 (12.97 wt.% Mo), repassivation was 

found to be rapid following damage to the oxide. However, alloy C-22 required slightly 

longer times while exhibiting metastable breakdown events. Since both repassivation and 

film breakdown involve the accumulation of Mo species, alloy C-22 was found to 
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accumulate a greater amount of Mo species, despite the alloy’s lower Mo content than alloy 

BC-1. For alloy G-35 (7.98 wt.% Mo), while attempts to repassivate the damaged oxide 

were apparent, increases in dissolution rate and the congruent dissolution ratio suggest the 

onset of active dissolution following surface activation. During electrochemically 

promoted passivation, the previously accumulated Mo species were found to be partially 

released to solution while the accumulation of Cr species dominated the film formation 

process. Results obtained using AESEC were also compared to the results of ex situ XPS 

analyses. Consistent with AESEC data, the accumulation of oxidized Cr species was 

greater for passivated surfaces than for repassivated surfaces, and this effect also increased 

according to the Cr content of the alloy. The accumulated Mo species were found to be 

mainly Mo(IV) and Mo(VI) on surfaces that were spontaneously repassivated and 

electrochemically passivated, respectively. After spontaneous repassivation the largest 

accumulation of Mo species was found for the moderate-Mo-containing alloy (C-22), 

consistent with AESEC data. This is consistent with information provided by AESEC 

measurements and suggests the importance of Mo in both stabilizing the oxide film and 

repairing damage occurring in the film. 

The mechanism of crevice corrosion, specifically the role of internal cathodic reactions, 

was investigated by coupling galvanostatic crevice experiments to weight loss 

measurements. Data suggested an internal cathodic reaction, specifically the reduction of 

H+, supports the crevice corrosion reaction on Ni-based alloys. For the investigated alloys, 

this internal cathodic reaction was shown to intensify the anticipated damage by as much 

as ~80%. The extent of this intensification appeared to be dependent on the evolving 

geometry of the crevice and the blocking of cathodic sites by the deposition of Mo- and 

W-rich corrosion products. The extent of damage penetration into the alloy within the 

crevice was proportional to the extent of H+ production and hence to the extent of the 

internal H+ reduction reaction. As a result, the low-Mo(W) alloys, G-30 and G-35, were 

particularly susceptible to internally supported crevice corrosion since Mo- and W-rich 

corrosion products not only stifle active dissolution but also limit the occurrence of H+ 

reduction. It was also found that damage penetrated more deeply when the alloys were 

driven to corrode by small as opposed to large applied currents. This is particularly 

concerning for corrosion under natural conditions, where the applied current is zero. These 
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findings suggest that an expectation that corrosion damage will be supported solely on the 

availability of O2 and other oxidants outside the crevice would significantly underestimate 

the real extent of corrosion damage on Ni-based alloys. 

The role of F– ions in trace concentrations during the corrosion of both Ni- and Fe-based 

alloys was investigated at pH values 5 to 9 at 80°C. The passive film stability of all 

investigated alloys decreased in the presence of F–, as indicated by the decrease of the onset 

potential for transpassive dissolution of the alloy. For Fe-based alloys, the stability of a 

secondary passive region, due to the formation of Fe oxides at high potentials, was also 

affected by the presence of F– ions. In potentiodynamic experiments, the onset potential 

for transpassive dissolution was reduced by ~100 mV when F– was present. This was 

particularly apparent in slightly acidic solutions (pH 5) and became less severe at higher 

pH. Constant potential experiments confirmed the ability of F– ions to promote transpassive 

dissolution. Fe-based alloys were found to experience lower transpassive dissolution rates 

than Ni-based alloys. This was attributed to the protectiveness and low solubility of Fe(III) 

species formed within the surface film at transpassive potentials when the electrochemical 

conversion of Cr(III) to the more soluble Cr(VI) was possible. 

8.2 Future work 

Throughout this thesis, data have been presented which demonstrate the role of individual 

alloying elements during the corrosion of Ni-based alloys. Consistent in all data, Mo 

species were shown to have an important role in controlling breakdown and repassivation 

behaviour. While data obtained by traditional electrochemical techniques could not offer 

detailed information related to the fate of individual alloying elements, AESEC 

measurements allowed for monitoring of real-time elemental dissolution behaviour. This 

provided several unique observations which advance the current understanding of the role 

of alloying elements, in particular Mo. Under conditions of transpassive dissolution, the 

accumulation of Mo species was found to have a transient role in protecting the 

compromised Cr-rich film. During activation/repassivation of alloys in acidic solution, Mo 

species were found to dominate the reformation process, while Cr species played a less 

extreme role. Unfortunately, through all these investigations no information related to 

oxide film structure was obtained. Future work should employ techniques of high spatial 
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and lateral resolution such as atom probe tomography (APT), transmission electron 

microscopy (TEM), and depth-profiling Auger electron spectroscopy. This will provide 

information regarding the role of alloying elements in relation to film structure and 

corrosion performance. 

In the investigation of polarization behaviour in acidic solution, alloys G-30 and G-35 

demonstrated an unexpected transition from net anodic to cathodic current in a range of 

applied potentials greater than the active-passive transition. While H+ reduction was 

considered the dominant cathodic reaction in acidic solution, O2 reduction was shown to 

occur throughout the passive region. As a result, the transition from net anodic to cathodic 

current at the onset of film formation was attributed to the rapid rate of O2 reduction, which 

occurred at higher rates on the high-Cr, low-Mo alloys, G-30 and G-35. It was speculated 

that this behaviour could be related to the defect structure of the oxide film; however, it 

was not experimentally shown. Future investigations may explore why O2 reduction 

kinetics are faster on high-Cr, low-Mo alloys than low-Cr, high-Mo alloys. While Mott-

Schottky plots, constructed from impedance data, may be used to obtain information on 

the electronic properties of the oxide film, information obtained from potentiostatic 

polarization tests suggest that films formed under these conditions are susceptible to 

breakdown behaviour. As a result, the system cannot be considered stable during the 

relatively long times required to collect EIS spectra, a requirement for valid data. Instead, 

ex situ photoluminescence measurements may be explored to obtain information on the 

electronic properties of the oxide film.  

In the investigation of polarization behaviour in solutions containing F– and Cl– ions, the 

presence of F– ions was found to decrease passive film stability. Both dynamic and static 

polarization data collected in solutions containing 1000 ppm F– exhibited a decreased 

window of potentials for which passive behaviour was observed. In contrast, data collected 

in solutions containing 1000 ppm Cl– showed no such decrease in passive film stability. 

For Fe-based alloys, the upper potential limit of the passive region was generally larger 

than that of Ni-based alloys due to the formation of Fe(III) oxides. However, in the 

presence of 1000 ppm F–, this extended region also exhibited a decreased stability. 

Interestingly, in the most concentrated solution studied, containing 5000 ppm F– + 1000 
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ppm Cl–, an attempt to recover the stability of this extended passive region was observed 

as well as the occurrence of metastable breakdown events. At present, it is unclear whether 

this is due to a synergistic effect of F–/Cl– or due to a change in behaviour as the F– 

concentration increases. Future investigations should expand the range of concentrations 

investigated here, including solutions containing either F– or Cl– as well as combined F–

/Cl– compositions. Additionally, future investigations may extend the range of solution pH 

investigated here while maintaining trace F–/Cl– ion concentrations, since there appears to 

be lack of available information in the literature. 
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Appendices 

Appendix A - Normalized dissolution rates obtained during the repeated activation and 

electrochemically-assisted passivation processes for alloys (A) BC-1, (B) C-22, and (C) 

G-35. All dissolution rates are normalized to the Ni-content in the alloy, Equation 5.3. 
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Appendix B - Instantaneous elemental (iM) and sum current densities (iΣ) for 

potentiostatic polarization experiments on alloys (A) BC-1, (B) C-22, and (C) 

G-35. Currents calculated for Ni(II), Cr(III), and Mo(IV). At maximum 

current increase corresponding to transients (or breakdowns) are indicated.   
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enrichment and release during transpassive dissolution of Ni-based alloys.” NACE - 

Northern Area Eastern Conference, Ottawa, ON, Canada, October 20th - 23rd, 2019. 

8) Henderson, J.D.*; Li, X.; Shoesmith, D.W.; Noël, J.J.; Ogle, K. “Molybdenum surface 
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