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Abstract 

Network traffic is growing at an outpaced speed globally. According to the 2020 Cisco Annual 

Report, nearly two-thirds of the global population will have internet connectivity by the year 

2023. The number of devices connected to IP networks will also triple the total world 

population's size by the same year. The vastness of forecasted network infrastructure opens 

opportunities for new technologies and businesses to take shape, but it also increases the 

surface of security vulnerabilities. The number of cyberattacks are growing worldwide and are 

becoming more diverse and sophisticated. Classic network intrusion detection architectures 

monitor a system to detect malicious activities and policy violations in its information stream 

using various signature libraries. Still, due to a heavy inflow of network traffic in modern 

network infrastructures, it becomes easier for cybercriminals to infiltrate systems undetected 

to steal or destroy information assets successfully. Classic network intrusion detection 

architectures' speed and efficiency also fail to meet expectations in a real-time processing 

scenario. Considering the above limitations, this thesis aims to present novel methodologies to 

design and architect network intrusion detection systems using applied deep learning 

techniques. Neural networks can derive patterns and signatures from a raw dataset and use the 

learned signatures to predict the nature and classify the forthcoming data at an outpaced speed. 

The robustness of neural network architecture can be augmented to build a real-time and 

efficient network security framework. In this paper, we will study various machine learning 

and deep learning concepts as well as techniques. Combining the strengths of the presented 

models for their latent feature extraction, memory retention, and classification abilities, we will 

develop a hybrid network intrusion detection system using the CNN-LSTM architecture. 

Further, we will compare our results with the recent research in this field of study. 

 

Keywords 

Network Intrusion Detection System, Artificial Neural Network, Convolutional Neural 

Network, Long Short-Term Memory, Transfer Learning. 
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Summary for Lay Audience 

With the rise in network connectivity worldwide, we use network systems in all spheres of our 

society. The confidential data libraries of many businesses and government organizations are 

now stored on the network systems. Such data is prone to be stolen or destroyed by 

cybercriminals. The cyberattack activity has witnessed a rise with the mass adoption of 

communication networks globally. In such scenarios, the classic intrusion detection systems 

are not practical due to increased data traffic and speed as intrusion attempts may bypass the 

systems undetected. The fields of neural networks and deep learning have matured rapidly over 

the past decade. Neural networks are very efficient in recognizing and extracting patterns from 

a large dataset. Once we train a model to decipher various patterns and features, they become 

nominally fast in identifying and classifying the new data they encounter. Such recognition 

systems' efficiency and speed can also be increased using various novel methods and 

techniques during the developmental phase.  

This thesis uses machine learning and deep learning techniques to build a novel and efficient 

network intrusion detection system, which can classify a malicious network activity from 

regular network activity. The proposed approach is much accurate and faster and can easily be 

integrated into modern network infrastructures to classify cyberattacks in real-time compared 

to classic intrusion detection systems. 
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Chapter 1  

 Introduction 

Technology is becoming increasingly omnipresent, interconnected, and deeply integrated 

into our everyday life. As our world becomes more and more network-dependent, a whole 

range of critical infrastructure sectors such as health care, finance, transportation, and 

government rely on cyberspace to provide essential services and perform its many days to 

day functions. According to Cisco Annual Internet Report, nearly two-thirds of the world 

population will have internet access by 2023 [1]. The number of devices connected to an 

IP network will also proliferate to become three times the global population resulting in an 

expansion of 29.4 billion networked devices [1]. The network connections' speed is also 

accelerating as 5G wireless networks are making it possible to support extremely low 

latency and response times. It is projected that 5G technology will lead to a 1,000-fold gain 

in terms of capacity and connection for at least 100 billion devices and will make it possible 

for the network infrastructure to provide a 10 Gb/s user experience while its deployment 

continues to make progress worldwide between years 2020 and 2030 [2].  

As we continue to move towards this high density, high-velocity data trend, we also require 

the evolution of the existing network security architectures to safeguard our personal and 

professional data. Cybersecurity breach incidences are on the rise and have started to gain 

traction over the last few years. Security in the age of hyper internet connectivity is not just 

another technology issue. It has become a business, and a societal safety imperative since 

disruption of critical services can cause economic harm and negatively impact a large 

section of the population's well-being. According to the 2019 survey by Canadian Internet 

Registration Authority, over 71 percent of government and business organizations reported 

at least one cyberattack in 2018 [3]. World Economic Forum identifies cyberattacks as one 

of the top 10 global risks of the highest concert for the next decade in its Global Risks 

Report 2019. As per their forecast, this risk's disruptive potential may cost up to $90 trillion 

in the net economic impact by 2030 if cybersecurity efforts do not keep pace with the 

growing interconnectedness [4].  
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 Motivation and Objective 

In the 21st century, a major driving force behind economic growth worldwide is 

technological advancement. Many fields such as cloud computing, big data, social media, 

IoT, and artificial intelligence play a vital role in the digital transformation of leading world 

economies. Nonetheless, as previously conferred, the mass adoption of technology and 

heavy reliance on computer networks also leads to security vulnerabilities and intrusion 

attempts made by several bad actors who could gain access to critical infrastructures and 

institutions to either steal, destroy, or tamper the crucial data. Using the developments in 

technology and software design, the cyberattacks themselves are also becoming much 

sophisticated. In such settings, we need to create a cybersecurity culture in our existing 

networking systems to safeguard our data and privacy. Given the persistence of security 

threats, an efficient cybersecurity architecture demands a modern Network Intrusion 

Detection System (NIDS) to monitor the stream of data traversing through the network and 

recognize the intrusion attempts and malicious activity to block them and their data source 

before it can reach and debilitate the core network infrastructures. Classic network 

intrusion detection systems worked proficiently in an ecosystem where data has certain 

traffic thresholds. With the current explosion of data traffic, such systems also require 

development progress and incorporation with the current technological trends to continue 

being effective in securing and safeguarding modern networks.  

This thesis's main objective is to present a novel methodology to architect an efficient, real-

time network intrusion detection system that can recognize and detect malicious activity in 

a normal stream of network traffic flow using state-of-the-art deep learning algorithms.  
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Chapter 2  

 Background 

This chapter will present a brief review of background topics that are relevant to this thesis. 

We will cover four main sections in this chapter. Section 2.1 will review the field of early 

intrusion detection systems and present the taxonomy of various intrusion detection 

methods. Section 2.2 will present the brief on cyberattack activity and their various types, 

which the IDS aims to counter. Section 2.3 will review the field of machine learning and 

its key concepts. Section 2.4 will cover the concept of deep learning, and vital architectures 

used to develop the novel network-based intrusion detection system deliberated in this 

thesis. 

 Intrusion Detection System 

An Intrusion Detection System is a software system built to monitor and analyze a 

computer network system to detect intrusions and malicious activity before it can seriously 

damage the network system and corrupt the data assets. An effective security framework 

has an IDS as its core element because recognizing and detecting attacks before they can 

execute will save the system from substantial downtime and service loss. 

2.1.1 Development of Intrusion Detection System 

Intrusion detection research and development date back to 1980, starting with Anderson’s 

paper [5] which introduced the principal concepts of computer threats monitoring and 

surveillance. The earliest sketch of a real-time intrusion detection system was proposed by 

Dorothy E. Denning in 1986 [6]. The system aimed to detect a wide range of security 

violations ranging from outside the system breaking-in attempts and inside the system 

abhorrent patterns and data abuse incidence. The system used a rule-based pattern matching 

scheme where normal behavior records were kept in a safe library, which was further 

compared with audited usage patterns to flag any abnormal behaviors. The standard 

operations monitored on the target system were logins, executed commands, file and device 

accesses, etc. The IDS could detect a wide range of intrusions, for instance, masquerading 

attempts, trojan horses, viruses, leakage, and other types of misuse by legitimate users. 
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This research further augmented into IDES, abbreviated for Intrusion Detection Expert 

System developed by Teresa F. Lunt at SRI International in 1988 [7], which focused on 

safeguarding the system from the outside intrusion attempts by using thorough statistical 

anomaly detection. IDES's premise was to build historical profiles of various subjects such 

as users, remote hosts, and target system and use the profile data to detect unusual activity 

that deviates from them. The profiles were also updated daily, making IDES evolve to learn 

the subject’s behavior pattern adaptively. IDES also integrated a second component, which 

used a rule-based system to encode the known intrusions scenarios and various system 

vulnerabilities to build a knowledge base that further strengthens its detection capabilities. 

Lunt proposed a neural network as its third component to further supplement the IDES, 

which was not fully implemented in this system's follow-up derivations. 

2.1.2 Taxonomy of Intrusion Detection System 

IDS can be evaluated and distinguished into several classes based on their nature and 

functionality. In general, we divide the IDS into two main categories, host-based IDS and 

network-based IDS, according to their data source. Based on the IDS detection method, we 

classify them between Signature-based IDS and Anomaly-based IDS as presented in Figure 

2.1. 

2.1.3 Host-Based Intrusion Detection System 

Host-based Intrusion Detection Systems (HIDS) are used to detect anomalies and misuse 

in the internals of a particular host they are installed on. HIDS was the original intrusion 

detection system which was designed to operate on the mainframe computers where 

Figure 2.1: IDS Taxonomy Chart. 
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external communication was rare and occasional. The input data which is used to derive 

the deviation patterns are collected by the operating system mechanism called audit trails. 

HIDS also uses other sources such as log files, filesystem data, and other process data 

generated by the single host. Because of many vendors and OS types, HIDS is required to 

be tailored to the design of the machine and OS it is integrated with, which limits its general 

efficacy due to lack of cross-platform support. This also increases the cost of developing 

the security infrastructure as with each iteration in manufacturer design. The HIDS also 

requires to be updated, making it economically unfeasible. HIDS are not designed to work 

with network traffic. They are limited in the scope of protecting the system which is 

connected to an external network interface.  

2.1.4 Network-Based Intrusion Detection System 

Network-based Intrusion Detection Systems (NIDS) monitor the network activity and 

analyzes it to detect malicious activities in the data traffic. The primary source of the 

examination for NIDS is the content and header information of incoming network packets. 

NIDS is situated strategically on the critical points in a network infrastructure that are 

Figure 2.2: IDS Architectures. 
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receiving a large amount of external traffic. NIDS is effective to monitor a vast sized 

network, and because of the standardization of TCP/IP and UDP/IP network protocols 

worldwide, they are highly portable. They can be developed independently without 

constraining to any particular manufacturer and network device type.  

As deliberated previously, with the vast adoption of the internet, each device today is in 

one form or another is connected to an external network to deliver services. Many software 

present on the single host itself shares data with several external APIs for processing data. 

With the rise of cloud computing and serverless architectures, traditional hardware-based 

computing is becoming obsolete. It is gradually being taken over by external hardware 

provisioners that connect with the edge devices to enable access to computing services. As 

depicted in Figure 2.2, among both types of IDS architecture, this thesis will mainly focus 

on NIDS because it is imperative to protect the network system to circumvent any 

disruptions propagating itself into the local host system. 

2.1.5 Detection Methods Used by IDS 

There are two broad types of detection methodologies used by an IDS, namely, Signature 

detection and Anomaly detection, as shown in Figure 2.3.  

Figure 2.3: Detection Methods used by IDS. 
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A. Signature Based IDS: This type of IDS emphasizes the signature and patterns in the 

stream of data to detect intrusions. In computer security terminology, a signature is 

a pattern or footprint associated with computer network activity. Each type of 

hacking activity leaves a footprint behind, such as the nature of data packets, a hash 

of harmful files, or a code pattern. Using unique identifiers for known attacks and 

malicious activities, a database of such signatures is compiled, which is then used 

to find them in normal host or network activities. Signature-based IDS is essentially 

a knowledge system as it requires a knowledge base to draw inferences and match 

the activities [8]. The signature database must be updated regularly as if the 

signatures are not up-to-date, the system may fail to detect new types of intrusion 

attempts. Because of the specificity of the attacks the IDS is looking for, signature-

based IDS has reasonably low false positive rates and false alarming incidences. 

B. Anomaly Based IDS: This type of IDS focuses on deviations in the host system's 

normal behaviors or network traffic stream. Anomaly-based IDS essentially 

protects the system from unknown attacks that the system might not have 

encountered before. The IDS first establishes a baseline profile which is derived 

from the normal functioning of the information system by studying its traffic over 

a period of time. If the system behaves in a manner that deviates from the 

conventional baseline, the IDS raises the alarm. Anomaly-based IDS safeguard the 

system from two major types of anomalies. 

1) Protocol Anomaly: This kind of anomaly refers to any deviated pattern in 

the internet protocol and standards. During the baseline establishment, the 

IDS learns normal patterns in the various aspects of the connection such as 

TCP segmentation, IP header flags, source and target ports being widely 

used, the presence of shellcodes in application protocol fields, checksum, 

IP fragmentation, and reassembly, etc. Using the plethora of these features 

recognized as normal, IDS guards against any deviations it may come across 

in these network protocols.  
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2) Traffic Anomaly: The flow of network traffic itself is a key signifier of the 

anomalies in an information system's operations. A stable network 

functions between the lower and upper bounds of traffic. When these 

thresholds are crossed, IDS will recognize that the system is at risk and does 

not function in the optimal baseline profile. Attacks such as Denial of 

Service (DoS) and Distributed Denial of Service (DDoS) are aimed to flood 

the network with fake traffic to overwhelm the infrastructure providing 

certain services, leading to legitimate users being unable to access those 

services. The IDS can swiftly recognize such rapid disruption of the 

information flow as abnormal behavior, and measures can be put in place to 

block the source of such traffic. 

Anomaly Based IDS are more versatile to detect intrusions and malicious anomalies that 

the system has not encountered before. Still, it may also occasionally deem normal traffic 

with features unknown to the baseline as intrusions. This might lead to unnecessary false 

positives and alarms, leading to obstruction of genuine sources.  

The central area of concern regarding the design of an IDS is its shortfall of generating 

many false-positive incidences, which leads to unnecessary interruptions. But suppose the 

IDS is designed unconventionally to remedy the high false positives incidence. In that case, 

it may let the actual intrusions pass over, which will become a real disruption to the whole 

system.  

With the utility of Signature-based IDS, we can keep the false-positive results in a lower 

constraint. Still, the system needs to be manually updated for new signatures to be 

functional, or it might miss them out entirely. In this thesis, being mindful of the discussed 

strengths and limitation of both detection techniques, we are building a novel network-

based IDS architecture which will use a hybrid model of detecting anomalies in the modern 

network traffic to minimize the false positive incidence as well as cover a large surface of 

diverse network attack types.  
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 Cyber Attacks  

In computer security terminology, a cyber-attack attempts to gain unauthorized access to 

an information asset with the intent to destroy, steal or alter the data asset. Using computer 

networks, the intent of such malicious activities can either be part of cyberwarfare or wide-

ranging forms of cyberterrorism. As discussed in prior sections, the incidence of 

cyberattacks is on the rise, with cyber warfare becoming a new device for hostile global 

powers to commit to foreign government espionage and reconnaissance. According to the 

2017 Word Threat Assessment report by US DNI, many countries view cyber capabilities 

as a way to project their global influence and are continuing to develop and fund their cyber 

arsenal [9].  

2.2.1 Forms of Cyber Threats 

1) DoS: A denial-of-service (DoS) is a common form of cyber threat that refers to the 

situation where the attackers aim to overflood the traffic on a host or network 

infrastructure to make the resources and services inaccessible for genuine users. 

The attack itself doesn’t lead to the theft of data assets but costs the target victim 

organization time and money resources. The subsequent crashing and debilitating 

Figure 2.4: DDoS Attack 

 

Figure 2.4: DDoS Attack. 
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of services can also cause physical harm to systems if they are handling control 

networks and other critical infrastructures [10]. Distributed-denial-of-service 

(DDoS) attack is a variety of DoS attack which uses a distributed system called a 

botnet for orchestrating the cyber-attack as shown in Figure 2.4, increasing its 

overall severity and potential. 

2) R2L: A remote-to-user is a cyber-attack where the attackers gain access as a local 

user to infiltrate the organization from a remote machine. The attackers send 

malicious packets to the local user’s target host to find any vulnerabilities that can 

enable the attacker to exploit the local user’s existing privileges [10]. This 

vulnerability is a prelude to more disruptive User-to-Root (U2R) attacks. 

3) U2R: In a User-to-Root attack, the attacker first gains the foothold in the host 

machine as a local user with limited privileges and then proceeds to escalate the 

privileges using various methods to become the root user [10]. This enables the 

attacker to make more superuser accounts further and generate backdoors to re-

enter the organization’s network easily and undetected. The root privileges 

essentially give the attacker access to every list of commands in the system and 

enable them to manage the data assets present in the filesystem according to their 

directives.  

4) Port Scanning: This cyber threat is a type of reconnaissance method used by 

attackers to thoroughly scan all the target host's open ports [11]. All the transmitted 

information the host is receiving and sending is using various ports dedicated to 

specific services. Using port-scanning, the attackers gain the ability to retrieve all 

the information for analysis and redirection to further entrap the targeted user in 

other forms of cyber-attacks. Mapping the ports, the attackers can also detect other 

vulnerabilities to exploit and further gain remote access. 

5) Backdoor Attacks: These are a type of malware attacks aimed at giving attackers 

unrestricted access to the server and database of the compromised systems. Unlike 

other forms of access, backdoors remain discreet, and attackers utilize them to steal 

a large quantity of financial and competitive data while remaining undetected. 
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According to the State of Malware Report 2019, backdoors continue to be a critical 

threat vector in cybercrime across all the government and business entities, with a 

staggering 173% rise in their detection rate in business organizations [12].  

6) Fuzzers: As the name suggests, this attack type aims to fuzz or error out the 

normally operating host server by sending it various types of faulty commands in 

brute force mode, which will result in the systems to throw various error codes [13]. 

The aim is not to fail the system but to generate the error logs that can further be 

analyzed by the attackers to find the resources and locations that can be used for 

proceeding malicious activity to find vulnerabilities. Traditional fuzzer techniques 

are now being re-invented using machine learning algorithms to generate a wide 

range of test cases and seed files and cover a large surface of code to find additional 

vulnerabilities effectively. 

7) Computer Worm: These are a type of malicious software that self-replicates 

themselves for propagating to other networks and systems in their vicinity. A 

computer work relies on systems existing vulnerabilities and backdoor exploits to 

stay hidden while continuing on their onslaught of the entire network. The core 

directive of this cyber threat is to gradually drain the resources of a system and 

congest the network infrastructure. Many types of worms also have payloads aimed 

at stealing sensitive data. Commonly worms are used first to gain access to the 

system and then escalate the privileges to proceed with other cyber-attacks. 

In this thesis, including the discussed cyber threats, we aim to cover a large threat vector 

using extensive cybersecurity databases UNSW-15 to train and test our novel IDS 

architecture model. 

 Machine Learning Concepts  

The first-generation IDS deliberated in previous sections fundamentally used audit trail 

sources and pattern matching methods as their primary mode for intrusion detection. Using 

a formerly compiled signature knowledge base on a host system, the IDS could detect 

policy violation and any deviation from normal baseline usage by comparison. Over time, 
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with the maturation of machine learning and driven by its many practical use cases, the 

researchers working in the field of computer security worked on integrating various 

machine learning and data mining techniques to augment the IDS design and essentially 

change its processing. The second-generation Intrusion Detection Systems principally used 

statistical analysis and data mining techniques to draw its core inferences.  

2.3.1  Fundamentals of Machine Learning 

Machine learning is a field of Artificial Intelligence where we architect computer models 

capable of learning from a given dataset with minimal human intervention. According to 

Murphy [14], machine learning is a set of methods used to automatically detect patterns in 

data and then use the extracted patterns to predict future data or perform other kinds of 

decision-making tasks. A machine learning model can either be predictive if it is making 

forecasts for future conditions or descriptive if its objective is to gain knowledge from the 

given data or be both predictive and descriptive. Using the theory of statistics in building 

the mathematical models, machine learning algorithms' core task is to extrapolate inference 

from a given sample. 

As depicted in Figure 2.5, the fundamental learning process can be divided into two steps, 

a training phase and a testing phase, which require two kinds of separate data sets, 

1. Training dataset: It is a subset of data used during the training phase. This data is 

labeled with pre-defined classes, so the learning algorithm can learn to produce 

associations of the data with the corresponding labeled classes. 

Figure 2.5: Fundamental Learning Process 
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2. Testing dataset: It is a subset of data used during the testing phase. It is used to 

evaluate the classification model generated by the learning algorithm during the 

training phase. This data is required to remain unseen by the algorithm during 

training to maintain the overall machine learning algorithm's veracity.  

Machine learning algorithms are broadly divided into three main categories: supervised 

learning, unsupervised learning, and reinforcement learning. In this section, we will briefly 

overview supervised learning algorithms as they are an integral part of this thesis and 

further study various foundational algorithms that will build up the reader's knowledge 

base to be able to comprehend more complex algorithms in the field of deep learning. 

2.3.2 Supervised Learning Algorithms 

Supervised learning belongs to the category of predictive learning algorithms where we 

predict the label of unknown objects based on the label-based associations inferred by the 

algorithm during its training phase [14].  

In the supervised learning approach, the goal of the algorithm is to learn mappings from 

input x to outputs y, given a labeled set of input-output pairs 𝒟 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁  and produce 

a prediction function. Here 𝒟 is referred to as the training set, and 𝑁 is the number of 

Figure 2.6: Taxonomy of Supervised Learning. 
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training examples. The nature of training input depends on the kind of problem the 

algorithm is solving. The 𝑥𝑖 is the 𝒟-dimensional vector or numbers representing the 

simple features or attributes. However, 𝑥𝑖 can also represent complex structured objects 

such as an image, time-series, e-mail, graphs, etc. [18]. The output 𝑦𝑖 can also be of 

different forms depending on the problem.  

If the value of 𝑦𝑖 is a categorical variable from a finite set, 𝑦𝑖 ∈  { 1, . . . , 𝐶} , such as normal 

or malicious, then the problem is known as classification or pattern recognition. Similarly, 

when 𝑦𝑖 is a real value, the problem is considered as a regression. In simple terms, 

regression involves predicting a real value, leading to a label estimation whereas, 

classification involves identifying class membership of a given sample. The function 

learned during the training phase is also known as a classification model or simply a 

classifier. In Figure 2.6, we depicted supervised learning algorithms' taxonomy based on 

the concepts of regression and classification. In the proceeding sections, we will brief major 

types of regression-based supervised learning relevant to this thesis. 

2.3.3 Linear Regression 

Linear Regression is a supervised machine learning algorithm where predicted values are 

within a continuous range and have a constant slope . In linear regression, each observation 

consists of two values. One value is for the dependent variable, and one value is for the 

independent variable. Further, we chart a straight line to approximate the relationship 

between the dependent and independent variables. Let y𝑖 be the predicted value of the 

dependent variable for a given value of the independent variable 𝑥𝑖. 

y𝑖 =  𝛽0  +  𝛽1𝑥𝑖  +  𝜀  

Here, 𝛽0 represents the y-intercept of the regression line and 𝛽1 represents the regression 

coefficient. The variable 𝜀 is the error of the estimate. In essence, linear regression tries to 

find the best line which we can fit through the data by searching for the regression 

coefficient 𝛽1 which minimizes the overall error 𝜀 of the model.  

A regression line can show three types of relationships between the 𝑥 and 𝑦 variables.  
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a. No relationship: When the graphed line is flat, not slopped, then we deduce that 

there is no relationship between the two variables. 

b. Positive relationship: When the regression line slopes upward, we infer that there 

is a positive relationship between the two variables where the lower end of the line 

at the y-intercept and the upper end of the line extends upward into the graph field. 

This basically means that when the value of one variable increases, another 

variable's value also increases in synchrony.  

c. Negative relationship: When the regression line slopes downwards, we infer in this 

case that there is a negative relationship between the two variables where the upper 

end of the line at the y-intercept and the lower end of the line extend downwards 

into the graph field., which means that as the value of one variable increases, the 

value of other variable decreases. 

As mentioned, we regulate the overall error of the algorithm to reach the best predictions. 

To do so, we use a loss function that determines the error or loss between the outcome of 

the learning algorithm and its expected outcome. In this example, let’s examine Mean 

Squared Error (MSE), which is a sum of squared distances between our target variable and 

predicted values. 

MSE =
1

𝑛
 ∑(y𝑖 − ŷ𝑖)

2

𝑛

𝑖=1

 

The variable  ŷ𝑖 is the predicted value and variable y𝑖 is the targeted value.  

2.3.4 Logistic Regression 

Logistic regression is a linear classification type supervised learning algorithm, where we 

aim to predict the class or category of the given sample based on its features. The nature of 

dependent variables is different when compared to regression problems as they are discreet 

with a finite set of outputs. Unlike linear regression, where the output is a continuous 

number of values, logistic regression transforms its output using a logistic sigmoid function 

to return a probability value, which can then be mapped to two or more discreet classes. 
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Logistic regression can be used for binary classifications, where there can only be two 

outputs i.e. 1 for malicious network packet or 0 for normal network packet, in case of an 

intrusion detection system. It can also be used for multi-class and ordinal classification 

problems.  Consider a single input sample 𝑥, which is represented by a vector of features 

[𝑥1, 𝑥2, . . . . , 𝑥𝑛]. Essentially, we want to compute the probability 𝑃(𝑦 = 1| 𝑥), which infers 

that the observed sample is a member of the given class, whereas probability 𝑃(𝑦 = 0| 𝑥) 

means the sample does not belong to the given class. In logistic regression, we first learn 

the weights and a bias term from a training dataset. The weight 𝑤𝑖 is a real number 

associated with a feature 𝑥𝑖, which represents how important that particular feature is to a 

classification decision. It can be either positive or negative depending on the assertion. The 

bias term or the intercept is another real value added to the weighted inputs. To decide on 

the observed sample, the algorithm after learning the weights from the training, we multiply 

each 𝑥𝑖 by its weight 𝑤𝑖. Then we further sum up weighted features and add the bias term 

to the result. The resulting output 𝑧 then can be given by the equation, 

𝑧 = (∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) + 𝑏 

To now create the probability value from the output, we would need to pass the 𝑧 from a 

sigmoid function 𝜎(𝑧). The equation of the sigmoid function is, 

𝜎(𝑧) =
1

1 +  𝑒  ̶ 𝑧 
 

This can further be graphed as shown in Figure 2.7 as follows, 

The sigmoid function takes real numbers and maps them in a range of [0,1]. Further, to 

make it into a probability, we use two cases, 𝑃(𝑦 = 1) and 𝑃(𝑦 = 0) as follows:  

𝑃(𝑦 = 1) =  𝜎(𝑤. 𝑥 + 𝑏) =
1

1 +  𝑒  ̶ (𝑤.𝑥+𝑏) 
 ,     
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𝑃(𝑦 = 0) = 1 − 𝜎(𝑤. 𝑥 + 𝑏) =
𝑒  ̶(𝑤.𝑥+𝑏)

1 + 𝑒  ̶(𝑤.𝑥+𝑏) 
 

Where, if 𝑃(𝑦 = 1| 𝑥) is more than 0.5, we infer the class to be 1, which we also call the 

decision boundary or threshold to determine the class membership. To summarize if, 

𝑦̂  =  {
 1  𝑖𝑓 𝑃(𝑦 = 1| 𝑥) >  0.5
 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

 

We use the cross-entropy loss function with logistic regression, which is used to express 

how accurate the classifier’s output results (ŷ = 𝜎(𝑤. 𝑥 + 𝑏)) is for sample observation. 

An MSE loss function is not ideal for logistic regression problems as it assumes that the 

output value will follow a normal distribution, whereas in logistic regression, it follows a 

Bernoulli distribution. Primarily, cross-entropy is a measure to calculate the difference 

between two probability distributions for a given random variable or a set of events. In this 

case, the distributions are the true probability distribution 𝑦 and the predicted probability 

distribution ŷ. The cross-entropy loss function for a binary classification can be expressed 

as, 

ℒ(𝑦̂, 𝑦) =   − log 𝑝(𝑦|𝑥)                                                

                 =   − (𝑦𝑙𝑜𝑔(𝑦̂) + (1 − 𝑦) log(1 − 𝑦̂))            

Using the value of  ŷ =  𝜎(𝑤. 𝑥 + 𝑏) in the equation as follows, 

Figure 2.7: Sigmoid Function. 
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=   − (𝑦𝑙𝑜𝑔(𝜎(𝑤. 𝑥 + 𝑏)) + (1 − 𝑦) log(1 − 𝜎(𝑤. 𝑥 + 𝑏)))           

In tandem, cross-entropy loss function works with negative log-likelihood where when the 

true output 𝑦 is 0, the equation reduces to  − log(1 − 𝑦̂) and when the true output of 𝑦 is 

1, the equation reduces to − 𝑙𝑜𝑔(𝑦̂). This ensures that correct answers are maximized, and 

the probability of incorrect answers is minimized. Further, we average the loss function 

over an entire training set of 𝑛 examples, which is defined by a cost function 

𝐶(𝑤, 𝑏) expressed as,  

   𝐶(𝑤, 𝑏) =   
1

𝑛
∑ ℒ(𝑦̂(𝑖), 𝑦(𝑖))                                        

𝑛

𝑖=1

 

                                      = −
1

𝑛
∑[(𝑦(𝑖)𝑙𝑜𝑔(𝑦̂(𝑖))+ (1 −𝑦(𝑖)) +𝑙𝑜𝑔(1 − 𝑦̂(𝑖))]

𝑛

𝑖=1

 

2.3.5 Gradient Descent 

We use a gradient descent algorithm to minimize the model's cost function, hence 

optimizing the overall prediction results. Gradient descent is an optimization technique 

used in machine learning and deep learning algorithms to create confident and accurate 

prediction models. Minimizing cost function is a convex optimization problem, and 

iterative algorithms such as gradient descent are used to find optimal weights [15]. The loss 

function ℒ is parametrized by the weight parameters and bias in the case of our previous 

example of the logistic regression algorithm. Hence, we can refer to it as 𝜃, where 𝜃 =

𝑤, 𝑏. Gradient descent aims to find the minimum of 𝜃, which can be referred to as,  

𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑚
∑ ℒ𝐶𝐸(𝑦, 𝑥; 𝜃)

𝑚

𝑖=1

 

The way to find the minimum of the cost function is to find the direction where the slope 

of the function is rising too steeply and move in its opposite direction therefore the term 

descent. For logistic regression, the cost function is convex where there is only one local 
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minimum, so the gradient descent is guaranteed to find the local minimum from any 

direction and find the minimum. In the case of a multi-layered neural network, the cost 

function is non-convex and gradient descent can get stuck in local minimum but fail to find 

the global optimum [16]. In Figure 2.8, we plotted the downward descent of parameters 

induced using gradient descent for optimization. 

The speed of descent of parameter 𝑤 in a positive direction is the value of slope regulated 

by a learning rate η which is also called a step size. If the value of the learning rate is 

greater, the parameter 𝑤 will move more each step, and the descent will be faster as well 

and vice versa. This can be summarized in the expression, 

𝑤𝑡+1 =  𝑤𝑡 −  η
𝑑

𝑑𝑤
 𝑓(𝑥; 𝑤) 

Here 
𝑑

𝑑𝑤
 𝑓(𝑥; 𝑤) is the slope's value, which also defines the magnitude of the amount to 

move 𝑤 per step in gradient descent, multiplied by the learning rate η for regulation. 

Learning rate is one of the hyperparameters that need to be tuned accordingly. Making the 

learning rate faster can make the descent become haphazard and lead to erroneous 

predictive outputs as it may miss the minimum of the function by overshooting. In contrast, 

if the learning rate is too slow, it will take a long time to get to the minimum. 

Figure 2.8: Gradient descent algorithm approaching local minimum. 
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Gradient descent can be distinguished based on the amount of training data being used for 

the algorithm. We call the method batch gradient descent if we use all the training data for 

the algorithm to compute the gradient. In contrast, if we use a subset of training batches 

smaller than the entire training dataset and process each batch size to compute the gradient, 

the method is called as mini-batch gradient descent. Stochastic gradient descent is an online 

algorithm where we minimize the loss function by computing its gradient after each 

training example.   

2.3.6 Neural Networks 

Neural networks are a family of machine learning models inspired by neurons functioning 

in a brain system. In metaphor, a neuron in a machine learning sense is a computational 

unit that has scalar inputs and outputs. Each neuron also has a weight parameter associated 

with it. The neuron multiplies each input unit by its weight, sums all the input units, and 

then applies a nonlinear function to the result to produce an output [17]. The simplest neural 

network architecture, consisting of just two layers of input and output layers, is called a 

perceptron as depicted in Figure 2.9 where we have 𝑋𝑛 input units, each with a weight 

association. We pass the input units to the next layer, which, as discussed, sums them and 

applies the activation function such as a sigmoid function like in the case of logistic 

Figure 2.9: Perceptron Architecture. 
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regression deliberated previously, to find the 𝑦̂ output based on a boundary decision 

criterion.  

Perceptron is limited to linear classification, where we can only classify linearly separable 

sets of vectors. If the vectors are not linearly separable, then perceptron will not be able to 

give correct prediction results. Whereas, if we add more layers to the perceptron 

architecture, also known as hidden layers, we progress towards a multi-layered perceptron 

or MLP architecture that can also do non-linear classifications and solve much more 

complex problems.  

2.3.7 Multi-Layered Perceptron 

A multi-layered perceptron is the augmentation of a perceptron but with more intermediate 

layers referred commonly as the hidden layers. MLP is a feed-forward neural network as 

the computation process moves iteratively to the next layers without being in a cycle of 

loops. Each layer's output becomes the input of the proceeding layers where no outputs are 

ever passed back to the previous layers. In this fashion, the data seems to be moving 

forward; hence we classify MLP as a feedforward network. The feedforward MLP has 

three central units: input layer units, hidden layer units, and output layer units. Units in 

each layer are connected to all the units in its previous layers. This way, the architecture is 

Figure 2.10: Multi-Layered Perceptron Architecture. 
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also known as a fully connected network, as shown in Figure 2.10, where we have one 

hidden layer in-between the input and output layers. 

The input layer has 𝑥𝑛 units, each with a weight association and bias, connected to each 

unit in the hidden layer. The hidden layer can be represented as a vector ℎ whose output 

can be expressed as, 

ℎ =  𝜎(𝑊𝑥 + 𝑏) 

The function represented by 𝜎 is an activation function, 𝑊 represents the single matrix of 

weight associations between the input layer and hidden layer units, whereas the 𝑏 

represents the bias vector for the whole layer. The combination of the weight vector 𝑤𝑖𝑗 

which represents the weight of the connectivity between 𝑖th input layer unit and 𝑗th hidden 

layer unit into a single matrix 𝑊 makes the computation for the hidden layer in the 

feedforward network reliant on simpler and efficient matrix operations. Further, the hidden 

layer output becomes the input of the output layer. The weight matrix between these two 

layers is represented as 𝑈. The output 𝑧 can now be computed as, 

𝑧 = 𝑈 × ℎ 

In addition, we would need to normalize the output 𝑧, which is a vector of real number 

values, into an encoding of probability distribution ŷ to predict the class labels. We 

generally use the Softmax function for normalizing the output layer in neural networks 

where, 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =  
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝑗
  

A softmax function converts the logits, which is basically another term for the numerical 

output of the last linear layer of a multi-class neural network, into probabilities by taking 

exponents of each output and normalizing it by the sum of all the exponents. This way, the 

entire vector adds up to one, giving us a probability distribution to map the correct 

prediction labels. 
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Neural networks can be thought of as a series of stacked logistic regression classifier units 

that learn the representations in the data and induce them into the neural network's further 

layers. This makes the neural networks classifier more powerful in learning data 

representations on its own without anyone handpicking the features templates for the 

network. The self-organization of neural networks sets them apart from various classical 

machine learning algorithms. In this section, we described a neural network architecture 

with one hidden layer. Such neural networks are known as shallow neural networks. In 

forthcoming sections, we will deliberate architectures that use several hidden layers, also 

known as deep neural networks. 

2.3.8 Backpropagation Algorithm 

To optimize neural networks, we use the backpropagation algorithm which aims to 

minimize the weights present in the neural network by using backward differentiation to 

update their values. The core directive of backpropagation is to compute the gradient of the 

loss function with respect to each unit present in the neural network layers. As deliberated 

in previous sections, in the case of logistic regression, we could directly compute the 

derivative of the loss function with respect to individual weight or bias [18]. Still, neural 

networks have in many cases millions of such parameters present in their overall 

architecture. In such a case, we cannot directly optimize weights in a particular layer as 

there are many more layers in precedence that influences its parameters. To optimize 

weights in a multi-layered paradigm, we make use of error backpropagation or backward 

differentiation to propagate the error signal 𝛿 back to the input neurons using partial 

derivatives and chain rule to define the relationship between a given unit in a neural 

network’s individual weight and the overall computed cost function of the network. We 

express the error signal 𝛿 as, 

𝛿 = 𝑧 − 𝑦 

Where 𝑦 is referred to as the computed output of the neural network and 𝑧 is the real and 

correct output during the training cycle. 
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To showcase the utility of chain rule for backprop, suppose we compute the derivative of 

an output function 𝐿 with respect to the variables 𝑎. The derivative 
𝜕𝐿

𝜕𝑎
 gives how much the 

change in parameter 𝑎 impacts the overall output of function 𝐿. Now say we have a 

composite function 𝑓(𝑥) = 𝑢(𝑣(𝑥)). According to the chain rule, the derivative of 𝑓(𝑥) is 

the derivative 𝑢(𝑥) with respect to 𝑣(𝑥) times the derivative of 𝑣(𝑥) with respect to 𝑥, 

which can be expressed as, 

𝜕𝑓

𝜕𝑥
=  

𝜕𝑢

𝜕𝑣
 ∙  

𝜕𝑣

𝜕𝑥
 

The computation and updating of weights in a neural network can be further demonstrated 

step by step using an example of a neural network with two hidden layers so as to 

breakdown the idea behind the working of the backpropagation algorithm. 

In Figure 2.11, we are computing the result of function unit f1(e) in the hidden layer, which 

uses the connection weights 𝑤(𝑥11) and 𝑤(𝑥21) between input units 𝑥1 and 𝑥2 where e 

= 𝑤(𝑥11) ∗ 𝑥1 + 𝑤(𝑥21)  ∗ 𝑥2. The output of function unit f1(e) then further becomes the 

input for computing function units f4(e) and f5(e). In Figure 2.12, we are computing the 

result of the output layer unit which uses the forward cascading results of the neural 

network to reach an output 𝑦̂. The algorithm now compares the output 𝑦̂ with the correct 

output 𝑦. The difference is called an error signal and is represented by  where 

Figure 2.11: Computation of hidden layer units in neural network. 
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 = 𝑦̂ −  𝑦 

The computed error signal is propagated backward in the network to the very first hidden 

layer units in the neural network as shown in Figure 2.13, where each unit in the neural 

network has an error signal computed using the same weight coefficients utilized during 

the forward pass but the direction is changed to flow backward. If the error signal is coming 

from multiple sources, they are summed to get the unit's overall error signal flowing.  

Figure 2.12: Computation of the error signal to propagate backwards. 

Figure 2.13: Backward propagation of the error signal in the neural network. 
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When the error signal for every unit in the neural network is computed, we update the input 

weight coefficients of each neuron with the following equation, 

𝑤′(𝑥11) = 𝑤(𝑥11) +  η 𝛿1

𝑑𝑓1(𝑒)

𝑑𝑒
𝑥1 

Where 𝑤′(𝑥11) is the updated weight for connection between the input unit 𝑥1 and hidden 

layer unit 𝑓1(𝑒), coefficient η represents the learning speed, 𝛿1 represents the error signal 

computed for the unit, the equation 
𝑑𝑓1(𝑒)

𝑑𝑒
 represents the derivative of the neuron activation 

of the hidden unit 𝑓1(𝑒) whose weights are being updated. Each iteration of passing all the 

training examples through a backpropagation algorithm is referred to as an epoch. We 

continue to run the epochs until the algorithm converges towards a global optimal 

minimum, which leads to more accurate results and a lower value of overall error signal 𝛿.  

Figure 2.14 shows updating of weights by backprop in the neural network until the final 

output unit 𝑓6(𝑒) is reached. The algorithms again compute the error signal and back 

propagates the signal to update the network's weights again depending on the epoch 

numbers chosen.  

Figure 2.14: Weight updation using Backpropagation Algorithm. 
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 Deep Learning Architectures 

This section will briefly discuss the deep learning architectures that are significant to the 

IDS architecture proposed in this thesis. Deep learning allows computational models 

composed of multiple processing layers to learn representations in the data with multiple 

abstraction levels [19]. A deep learning model consists of numerous fully connected hidden 

layers, hence we refer to such models being deep learning models as compared to models 

with just a couple of hidden layers referred to as shallow learning models. Deep neural 

networks can be classified based on the information flow. If the information flows from an 

input layer to an output layer without any feedback responses, such a network is called a 

feedforward-DNN. In contrast, if a neural network architecture is integrated to function 

with various feedback loops, we refer to such networks as a recurrent neural network. One 

of the vital utility of a DNN is to learn representations from a raw dataset. A neural network 

model's ability to automatically discover the representations in data required for feature 

detection and classification is known as a representation or feature learning [20]. As shown 

in Figure 2.15, we replace the manual hand-picking of domain-specific features using deep 

learning networks, which is a vital necessity for various data mining and machine learning 

Figure 2.15 : Comparison between machine learning and deep learning classification. 
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techniques. Deep learning can simply be defined as a class of machine learning algorithms 

that uses multiple layers of functional units to progressively learn and extract features from 

a raw dataset, whereas we move from the lower end to the higher end of the layers, the 

features being extracted start becoming more and more pronounced for the learning model 

to infer accurate solutions for the given prediction or classification task. We will briefly 

deliberate two types of deep neural networks relevant to the IDS architecture in the 

proceeding sections: Convolutional Neural Network and Recurrent Neural Network.  

2.4.1 Convolutional Neural Networks 

Convolutional neural network abbreviated as CNN is a class of feed-forward deep learning 

networks applied to various visual analysis and text-based problems. The architecture of a 

CNN is inspired by the pioneering work of Hubel and Wiesel [21] which aimed at 

analyzing the neurons in the visual cortex of mammals to understand how neurons in visual 

pathways extract information from patterns cast on a retina of an eye and transform it on 

the way to cerebral cortex which evaluates and recognizes an image. This research inspired 

the architecture of Neocognitron by Kunihiko Fukushima [22], a type of multilayered 

artificial neural network consisting of cascading layers composed of two components: the 

S-cell layer and the C-cell layer. S-cell layers are the main feature extraction units in 

Neocognitron, whereas C-cell layers pools the information coming from the preceding 

simple cells and transmits the result to the successive simple cell layers in a feed-forward 

manner. A modern CNN is a successive iteration of Neocognitron architecture, with the 

exception of backpropagation being the primary mode for being the learning algorithm. 

Yann LeCun et al. [23] demonstrated one of the early implementations of a CNN 

Figure 2.16: CNN Architecture 
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architecture known as LeNet-5 to the task of hand-written digit recognition using the 

MNIST dataset. As shown in Figure 2.16, a CNN architecture consists of the stack of 

various types of layers organized into two main components, a convolution and pooling 

layers unit which extracts the features of the input layer and a fully-connected layer which 

is used for classifying the results of the preceding feature extraction units into a predictive 

label output. Each layer in CNN has a specific operation, which is briefly described as 

follows, 

1. Convolution Layer: The convolutional layer is the core building block of a CNN 

which generates feature activation maps from the input layer using various 

receptive fields commonly referred to as filters, by moving the particular filter 

across the width and height of the input layer so as to compute the dot product 

between the input layer and entries in the filter. As shown in Figure 2.17, the 

convolution operation results in the generation of various two-dimensional 

activation maps, which are later fed into subsequent pooling layers. The amount of 

movement of the filter per step is determined by the stride's value, which defaults 

to one. The convolution layer also uses an activation function ReLU, which 

converts all the negative values into value zero. 

Figure 2.17: Feature Map computation by Convolution Layer 
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2. Pooling Layer: This layer is used for the downsampling operation, which reduces 

the spatial size of generated feature maps by convolution layer by reducing their 

dimension based on a chosen criteria. Pooling aims to extract the most dominant 

feature from the feature maps and optimize the overall computation needed to 

process the data. There are various types of pooling criteria, such as max pooling, 

average pooling, and sum pooling. Figure 2.18 demonstrates the subsampling of 

the feature map using max pooling. 

3.  Fully Connected Layer: The last unit in the CNN architecture is a fully connected 

layer reminiscent of the previously deliberated artificial neural networks. After 

inferring the features from the input layer’s matrix space, the final pooling layer's 

output is flattened into a 1-D vector space, as shown in Figure 2.19. The flattened 

column vector then becomes the input for the fully connected layer to interpret 

further the features, which is done by training the network using backpropagation 

over a series of epochs. The last unit of the fully connected layer uses an activation 

Figure 2.18: Max Pooling operation with 2x2 Filter and Stride value 2. 

Figure 2.19: Flatten operation converting feature matrix into 1-D vector input. 
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function such as a sigmoid or softmax activation function to generate the class label 

predictions, which is also the CNN's final output. 

2.4.2 Recurrent Neural Network 

As discussed so far, in standard neural networks, the information flows in one forward 

direction. The network does not maintain information about its previous states in any 

sequence of events. In contrast, Recurrent Neural Network abbreviated as RNN are a type 

of deep learning architecture that, in addition to feedforward connections, also has looping 

feedback connections that allow the model to store persistent information over time [24].  

As shown in Figure 2.20, an RNN takes input 𝑥𝑡 at a time stamp 𝑡 to produce 𝑦̂
𝑡
 which is 

the output of this network. In addition, the network is also computing an internal state at 

time stamp 𝑡  denoted by ℎ𝑡, which it passes from one-time step to another internally within 

the network where, 

ℎ𝑡 = 𝑓
𝑤

(ℎ𝑡−1, 𝑥𝑡) 

Figure 2.20: A simple RNN cell Architecture. 
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In this equation, we are computing the recurrence relation in the network at every time step. 

The value of ℎ𝑡 is determined by function 𝑓 which is parametrized by a weight 𝑤, the older 

state of the network donated as ℎ𝑡−1 and the input vector 𝑥𝑡  at time 𝑡.  

To understand the inner workings of an RNN when it is processing data, we can unroll it 

to understand how it computes the output of its network which is shown in Figure 2.21, 

where we can explicitly comprehend the flow of weight matrices that remain the same 

through the network for a particular time step. Further, we compute the loss value from 

each unit in RNN, concluding a single iteration of forwarding pass through the network. 

All the computed loss values from the individual time steps are then summed into a single 

loss value 𝐿 which also defines the total loss of the network. Now the updated hidden state 

of each step in the forward pass can be expressed as follows, 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎℎ
𝑇 ℎ𝑡−1 + 𝑊ℎ𝑥

𝑇 𝑥𝑡) 

Where 𝑡𝑎𝑛ℎ represents the hyperbolic non-linear function used with RNN whose value 

can bothe negative or positive, allowing for a decrease or increase in states as a contrast to 

a sigmoid function that only outputs non-negative values. As we are feeding two separate 

Figure 2.21: Unrolled RNN Architecture. 
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inputs, one from the previous state and another from the input 𝑥𝑡, we use two weight 

matrices represented by  𝑊ℎℎ
𝑇  and 𝑊ℎ𝑥

𝑇  as shown in Figure 2.21. Now the output vector for 

each timestamp is expressed as, 

𝑦̂
𝑡

= 𝑊ℎ𝑦
𝑇 ℎ𝑡  

Where ℎ𝑡 represents the computed hidden state and 𝑊ℎ𝑦
𝑇  represents the weight matrix 

between the hidden state and the output unit. 

Training an RNN requires updating each weight present in the network at each time step, 

for which we use the variant of backpropagation called backpropagation through time 

(BPTT) algorithm, where the errors are propagated backward at each individual step and 

then finally across all the time steps to the beginning of the data sequence as shown in the 

Figure 2.22.  

In the case of deeper RNN architectures, computing the gradient in the network with 

respect to cell state ℎ0 involves several repeated multiplication of the weight matrix as well 

as repeated gradient computation using the activation functions. This results in the issue of 

exploding gradients where gradients become increasingly large due to constant 

accumulation per step and the network are unable to optimize them leading to the overall 

instability of the network due to the extreme weight updates. The other common issue faced 

by RNN architecture is vanishing gradients, where the gradients become increasingly 

Figure 2.22: RNN Gradient Flow. 
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smaller in the midst of repeated matrix multiplications leading to the network being unable 

to be trained and optimized after a few number of epoch cycles.  

2.4.3 Long-Short Term Memory  

In order to mitigate the problem of exploding and vanishing gradients, Hochreiter and 

Schmidhuber [25] developed long short-term memory (LSTM) units that are retrofitted 

with simple RNN cells to enable them to control the information flowing through them 

selectively. The core component of LSTM units is the information gates, which can 

selectively add or remove information from its cell state. Gates basically consist of a 

sigmoid neural network layer and a pointwise multiplier unit. The sigmoid layer constricts 

the retention of information flowing through the cell from zero and one, which essentially 

gates the flow of information. As shown in Figure 2.23, an LSTM unit is made of three key 

gate components briefly described below, 

A. Forget Gate: This gate determines what information is to be thrown away from the 

cell state. This decision is made by the sigmoid layer, which looks at the values of 

ℎ𝑡−1 and 𝑥𝑡 to output a number between 0 and 1 for the cell state 𝐶𝑡−1. The output 

represents the degree to which information is to be kept. A value of 1 represents 

keep everything, whereas the value of 0 represents completely forget this 

information. This gate can be expressed by, 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

Figure 2.23: Structure of a LSTM unit. 
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B. Store Gate: This gate determines what information we are going to store in the new 

cell state. In this two-part process, first, a sigmoid layer also denoted as the input 

gate layer 𝑖𝑡 decides which values we will be updating. The next layer 𝑡𝑎𝑛ℎ creates 

a vector of new candidate 𝐶̂𝑡 which will be added to the new state. These steps can 

be expressed as follows, 

𝑖𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

       𝐶̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

Now we update the old cell state 𝐶𝑡−1 into the next cell state 𝐶𝑡 based on the 

computation of the last two gates. We multiply the old state 𝑓𝑡 hence forgetting the 

information earlier, then we add it with the information from store gate i.e. the value 

derived from  𝑖𝑡 ∗  𝐶̂𝑡. This step is expressed by the equation, 

𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡−1 +  𝑖𝑡 ∗  𝐶̂𝑡  

C. Output Gate: Finally, the cell needs to determine what information it will be output 

at the current cell state. Using the gate’s sigmoid layer, we decide how much 

information of the cell state will be outputted. Further, the cell state is put through 

𝑡𝑎𝑛ℎ unit, which squashes the values between -1 and 1, which is multiplied by the 

output of the sigmoid gate. The process can be expressed in the following equations, 

   𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

The primary instinct behind LSTM is its ability to create an uninterrupted gradient flow 

between various cell states by maintaining independence for each cell in the network, 

which alleviates the problems of vanishing and exploding gradients seen in simple 

recurrent neural networks. This enables the network to create long-term and short-term 

retention dependencies without losing essential information and filtering the non-important 

information. 
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Chapter 3 

 Related Work 

In this section, we review the literature which is significant for the development of this 

thesis. The section is divided into three distinct areas related to the nature of algorithms 

applied in the design of intrusion detection systems.  

 Statistical based Approach  

Dorothy E. Denning proposed the earliest sketch of a real-time intrusion detection system 

in 1986, which aimed to create a general-purpose architecture, independent from any 

particular system, application environment, or type of intrusion [5]. Her work took 

inspiration from a  prior study of Jim Anderson in 1980, which formulated a way to audit 

a computer’s data to identify abnormal usage patterns at the end of each day. Anderson’s 

method primarily used a statistical analysis approach using large dump files consolidated 

from all the infrastructure machines [6]. This research further augmented into IDES, 

abbreviated for Intrusion Detection Expert System developed by Teresa F. Lunt at SRI 

International in 1988 [7]. IDES had two main components. The first component adaptively 

learns the user’s normal behavior pattern and detects patterns that deviate from them. The 

second component uses a rule-based approach to encode the encountered system 

vulnerabilities and store them in a knowledge base. Lunt proposed integrating an artificial 

neural network in the expert system as a third component, which was not fully implemented 

in IDES' follow-up derivations. By the 1990s, intrusion detection systems were started to 

get implemented by various research labs and business computing firms, including AT&T 

Bell Labs, who built their own versions of detection systems, using IDES as a base on 

multiple other hardware and different programming languages. The introduction of a well-

labeled KDD-99 intrusion detection dataset enabled researchers to work in computer 

security to apply data mining and machine learning algorithms to build many efficient and 

generalized IDS. 
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 Data Mining, Machine Learning based Approach 

In 2001, Tamas Abraham used data mining techniques to formulate the IDDM, abbreviated 

for Intrusion Detection Using Data Mining architecture [26]. Traditionally, data mining 

systems operated on large off-line data sets. IDDM architecture was designed to use data 

mining in real-time environments to identify anomalies and misuse. IDDM’s rule-based 

components evolved continuously as the system observed and identified a new type of 

attack. For updating the rule-set, IDDM used meta-mining, which derives new rules from 

the database's snapshots containing rule-sets at a given time. Z. Zhang et al. proposed a 

hierarchical network intrusion detection system named HIDE, which used a Perceptron-

Backpropagation hybrid model to classify anomalous and normal network traffic for 

recognizing UDP flood attacks [27]. The architecture of HIDE was divided into various 

tiers where each tier contains Intrusion Detection Agents, which are the components that 

monitor the activities of hosts and networks as well as multiple units that make up those 

infrastructures. Tier 1 agents would monitor the server's system activities and bridges 

present in a single department to generate reports for Tier 2 agents in the HIDE system. 

Tier 2 agents would monitor an entire LAN topology's network status and process the Tier 

1 agents' information. Tier 3 agents collect data from the Tier 1 and Tier 2 agents to take 

necessary measures to detect potential security threats and maintain a user interface to give 

insight into the entire tiered topology.  

In 2002, Eskin et al. proposed an unsupervised intrusion detection framework using SVM, 

K-Nearest Neighbor, and clustering algorithms [28]. The geometric framework for 

unsupervised anomaly detection introduced in this paper maps the normal usage data 

collected into a feature space. The system's newly observed data is also mapped into a 

feature space compared with the normal feature space to detect outliers and points present 

in the sparse regions. The framework can detect intrusions over unlabeled datasets, 

enabling the system to work with a large swath of raw collected system data without 

manual labeling. Weiming Hu et al. used an Adaboost-based algorithm with an adaptive 

weight strategy to build a detection model reporting low computational complexity and 

error rates [29]. J. Zhang et al. used random forest algorithm-based data mining techniques 

to build a hybrid IDS, which is capable of functioning as both a misuse and anomaly 
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detection system [30]. The framework's misuse detection component builds and maintains 

the patterns of intrusions in a dataset during its offline phase, which is used for juxtaposing 

with the live data during the online phase. The anomaly detection component is used to 

detect anomalies and outliers in the data flow using supervised learning. The hybrid IDS 

first applies the misuse detection component to filter out the known intrusions before the 

anomaly detection component observes novel attacks. Chandrasekhar et al. applied k-

means clustering, fuzzy neural networks, and radial support vector machine consequently 

to build their variation of IDS [31], which claimed better experimental results than the 

Backpropagation Neural Networks and other well-known machine learning methods. The 

framework was shown to attain higher detection rates with boosted speed due to the fact 

that in each step of the designed IDS framework, the subset of data’s complexity is reduced 

with the application of each algorithm successively.  

 Deep Learning based Approach 

The 2012 ImageNet victory led by Hinton et al. demonstrated that deep neural networks 

could outperform complex machine learning models in image recognition tasks [32]. The 

neural network was able to beat the state-of-the-art algorithms by a whopping 10.8 error 

percentage margin rate and creating a renewed interest in the field of deep learning. The 

team's researchers trained an extensive deep convolutional neural network to classify 1.2 

million high-resolution images with more than 1000 different classes. The neural network 

itself had 60 million parameters and 650,000 neurons consisting of convolutional layers 

with a final 1000-way SoftMax layer to determine the output. Such an extensive neural 

network would take a long time to train, so to make the overall network faster, the 

researchers used GPU-powered machines and regularization method dropout. In the 

proceeding years, academics working in computer security also started integrating deep 

neural networks in their research.  

In 2014, N. Gao et al. applied Deep Belief Networks (DBN), a class of DNN, which 

reported the lowest published false-positive results with the KDD-99 dataset [33]. Their 

method combines the Deep Belief Networks with Genetic Algorithms (GA) to reduce 

network structure complexity. The framework applies multiple iterations of GA on the 

network flow data to produce an optimal network structure used by DBN as an intrusion 
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detection model to classify the attacks. This method is shown to improve the classification 

accuracy and generalization of the model. The model also acts as self-adapting where 

different types of attacks can change the network structure to produce associated results 

and maintain high detection rates. N. Moustafa et al. [34] reinvigorated the field by creating 

the UNSW-NB15 network dataset, which contains hybrid records of real normal and 

contemporary synthesized network attack activities.  The UNSW-NB15 network dataset is 

more superior for evaluating NIDS performance as it reflects current traffic scenarios more 

fittingly than decade-old intrusion datasets such as KDD-99 and NSLKDD.   

In 2018, N. Moustafa et al. used the UNSW-NB15 dataset to create NIDS for IoT traffic 

data for classifying normal and suspicious instances by applying AdaBoost ensemble 

techniques [35]. The applied AdaBoost ensemble consists of three techniques, namely 

Decision Trees, Naïve Bayes, and Artificial Neural Network. The framework focused on 

MQTT, DNS, and HTTP protocols and their flow identifiers to build the NIDS specific to 

detecting exploits in IoT networks. A. Ahim et al. [36] combined three different classifier 

approaches based on decision trees and various rules-based concepts to build a novel IDS 

using the CICIDS2017 dataset. In this hierarchal framework, two classifiers operate in 

parallel and feed their output to the third classifier. The framework has relatively low 

computational time making the system ideal for real-time intrusion detection.  

In 2019, Y. Xiao et al. [37] implemented a CNN-based IDS using Batch Normalization 

with KDD99 Dataset. The proposed framework also removed unused and redundant 

features using an auto-encoder (AE) network as a dimensionality reductionality technique. 

Vinayakumar et al. [38] created a hybrid IDS to monitor network and host level activities. 

Upon conducting an exhaustive comparative study with various machine learning and deep 

learning classifiers, DNN demonstrated to outperform other traditional machine learning 

classifiers. B. Riyaz et al. [39] designed an IDS for application in wireless networks with 

a CNN architecture using the KDD-99 dataset. The framework utilized a novel coefficient-

based feature selection algorithm (CRF-LCFS), which enhanced the model’s performance 

in terms of detection accuracy and computation times. The researcher’s proposed method 

demonstrated a 98.9% detection accuracy and a less than 1% false alarm rate. M. Injadat 

et al. [40] proposed a multi-stage optimized machine learning framework for 
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Network Intrusion Detection. Their technique showcased a 99% detection accuracy on 

CICIDS 2017 as well as UNSW-15 datasets and reduced the false alarm rate by 1-2%. 

In this thesis, we proposed a novel network intrusion detection system based on a unified 

CNN-LSTM model. To augment the applied model’s classification accuracy and speed in 

real-world environments, we used transfer learning techniques where we transferred the 

domain knowledge learned by our model in a source domain to a target domain. The target 

domain is aimed at simulating a resource sparse real-world environment with moderately 

less amount of data and computational resources. In contrast with recent related works 

where the experimentation is performed in highly available and resource plentiful 

environments, our work focuses on securing infrastructures in domains where data and 

resource availability can be sparse, but the IDS model is still capable of performing 

optimally despite the limitations. Such methodology also ensures that the model is not 

overfitting in the source domain and can be tested for performance before deployment in 

live production environments with critical security needs. The overall effectiveness of our 

model, in terms of accuracy and speed performance, showcases the utility of the applied 

transfer learning methodology to design and implement efficient and real-time intrusion 

detection systems. 
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Chapter 4 

 Proposed Model and Methodology 

This chapter will discuss the proposed model and techniques applied to build for our novel 

IDS architecture. Section 4.1 will describe the unified deep learning architecture illustrated 

in this thesis. Section 4.2 will discuss the transfer learning methodology used to make our 

applied model perform with optimal accuracy and speed in a real-world environment. 

Section 4.3 will explore the system architecture and data pipeline of the proposed novel 

methodology. Section 4.4 will explore the development environment for our research. In 

Section 4.5, we will examine the UNSW-15 Dataset as well as various data-preprocessing 

techniques applied. Section 4.6 will discuss the evaluation principles we will be using to 

judge our candidate IDS model. 

 Unified Deep Learning Architecture 

In this thesis, our chosen deep learning architecture for the IDS consists of a CNN with 

LSTM present in its hidden layers and fully connected layer units to predict the 

classification labels. As shown in Fig. 4.1, the proposed unified IDS model uses a modular 

approach of combining the three distinguished deep learning models' architecture and 

combines their latent feature extraction, memory retention, and classification abilities to 

give a higher accuracy score as compared to the models applied separately.  

Figure 4.1: Unified IDS Learning Model 
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A CNN can learn and recognize patterns over an input space, whereas LSTM units can 

learn and recognize patterns across time. A DNN or a fully connected layer, on the other 

hand, is capable of learning mappings from an input vector to give precise class wise 

outputs. Both CNN and DNN belong to the feedforward networks class where data can 

only flow in the forward direction. CNN can use a 2D input and transform it into internal 

vector representations to further extract its features. In contrast, when we apply LSTM with 

CNN, LSTM provides the capability of using the feature vector output of the CNN and 

further build internal states whose weights can repeatedly be updated because data in 

LSTM flows in a recurrent manner. During this entire process, the CNN extracts the 

inherent features from the input. In contrast, LSTM interprets those features across various 

time steps, making the architecture more efficient to learn more in-depth representations 

and relationships in the data, in contrast with any network architecture applied separately. 

Combining DNN, CNN and LSTM have been explored in the past in [41], where the 

models are being trained separately, and then their outputs are later combined. In our 

approach, we are training the unified model jointly with each model providing their 

processed feature outputs as an input to the subsequent models in the scheme.  

In this thesis, we will be using a modular approach to create a novel deep learning model 

for our Intrusion Detection System. During our research progression, we applied various 

machine learning and deep learning techniques to select the candidate model for our IDS. 

After benchmarking each technique's performance, we used a modular approach of 

assorting distinct layers of distinct deep learning models and combining them to create a 

unified model. The unified model was able to outperform other applied models, as it was 

able to draw on the strengths and advantages of other models. The unified model consists 

of feature extraction layers of CNN known as convolutional layers, the temporal 

sequencing layers of LSTM, and fully connected layers of DNN for label classification. 

Table Ⅰ shows the summary of our candidate CNN-LSTM model, where we are first using 

CNN layers to extract the contextual features in the training set. The utility of CNN’s to 

downsample the input while conserving the essential features during the extraction process 

reduces the feature parameters' overall dimension. The output of CNN is then fed into the 
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LSTM layers to model the signal in time and train the weights using the backpropagation 

in time (BPTT) algorithm. Finally, after the signal is modeled in the LSTM layers, the 

output is passed into fully connected layers, which are used to learn higher-order feature 

representations suitable for separating the output into different class labels.   

 

Table 4.1  

CNN-LSTM IDS Model Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Layer Type Output Shape Total Units 

conv1d_1 (Conv1D) (None, 32, 64) 256 

conv1d_2 (Conv1D) (None, 32, 64) 12352 

max_pooling1d_1 (Pooling) (None, 16, 64) 0 

conv1d_3 (Conv1D) (None, 16, 128) 24704 

conv1d_4 (Conv1D) (None, 16, 128) 49280 

max_pooling1d_2 (Pooling) (None, 8, 128) 0 

conv1d_5 (Conv1D) (None, 8, 256) 98560 

conv1d_6 (Conv1D) (None, 8, 256) 196864 

max_pooling1d_3 (Pooling) (None, 4, 256) 0 

lstm_1 (LSTM) (None, 100) 142800 

dense_1 (Dense) (None, 256) 25856 

dropout_1 (Dropout) (None, 256) 0 

dense_2 (Dense) (None, 128) 32896 

dropout_2 (Dropout) (None, 128) 0 

dense_3 (Dense) (None, 1) 129 

Total Trainable Units 583,697 
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 Transfer learning  

Transfer learning is a concept where a learning algorithm reuses the knowledge from the 

past related tasks to ease the process of learning to perform a new task [42]. The ability to 

transfer the knowledge gained from previous tasks has a wide range of real-world 

applications, including building real-time intrusion detection systems that can perform 

optimally even with scarcity of data and computing resources. Using deep transfer learning 

alleviates the massive data dependency of deep learning algorithms, which they require to 

learn the underlying patterns in the data. In general, terms, using transfer learning, we aim 

to transfer the knowledge from a source domain to a target domain by relaxing the 

assumption that the training data and the test data must be independent and identically 

distributed, which is rare for real-world data. Fig. 4.2 shows the process of transferring a 

model’s network architecture and learned weights from a source domain with a large 

dataset and higher computational resources to a target domain with a smaller dataset and 

limited computational resources. 

A domain can be represented as, 𝐷 = {𝑋, 𝑃(𝑋)}, which consists of two parts: the feature 

space 𝑋 and a margin distribution P(X), Where X = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, 𝑥𝑖 ∈  𝑋.  

Whereas A task can be represented as, 𝑇 = {𝑌, 𝑃(𝑌|𝑋)} = {𝑌, 𝜂}, Y = {𝑦1, 𝑦2, . . . , 𝑦𝑛}, 𝑦𝑖 ∈

 𝑌, where 𝑌 is a label space, and 𝜂 represents the predictive function which can be learned 

Figure 4.2: Transfer Learning Process 
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from the training data including pairs {𝑥𝑖 , 𝑦𝑖}, where 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 ; for each feature vector 

in the domain, 𝜂 predicts its corresponding label as 𝜂(𝑥𝑖) = 𝑦𝑖 [43].  

we consider our source domain as 𝐷𝑆, and target domain as 𝐷𝑇. The source domain data is 

denoted as 𝐷𝑆 = {(𝑥𝑆1
, 𝑦𝑆1

), . . . , (𝑥𝑆𝑛
, 𝑦𝑆𝑛

)}, where 𝑥𝑆𝑖
∈ 𝑋𝑆 is the data instance and 𝑦𝑆𝑖

∈ 𝑌𝑆 

is the corresponding class label. In our IDS, 𝐷𝑆 is the set of term vectors together with their 

associated attack and malicious labels. Similarly, we denote the target domain data as 𝐷𝑇 

= {(𝑥𝑇1
, 𝑦𝑇1

), . . . , (𝑥𝑇𝑛
, 𝑦𝑇𝑛

)}, where the input 𝑥𝑇𝑖
 is in 𝑋𝑇 and 𝑦𝑇𝑖

∈ 𝑌𝑇 is the corresponding 

output. We can now give the transfer learning definitions as follows, 

Given a source domain 𝐷𝑆, learning task 𝑇𝑆, a target domain 𝐷𝑇 and learning task 𝑇𝑇, 

transfer learning aims to help improve the learning of the target predictive function 𝜂𝑡 by 

using the knowledge in the source domain  𝐷𝑆 and learning task 𝑇𝑆, where 𝐷𝑇 ≠ 𝐷𝑆 , or 

𝑇𝑆 ≠ 𝑇𝑇 .  The size of 𝐷𝑆 is much bigger than 𝐷𝑇 in various applied situations. Additionally, 

when there is some relationship, explicit or implicit, between the two domain’s feature 

spaces, we say that the source and target domains are related. In this paper, the two domains 

are related as they share a similar feature space from intrusion datasets. A transfer learning 

task defined by (𝐷𝑆 , 𝑇𝑆, 𝐷𝑇 , 𝑇𝑇 , 𝜂𝑡)  becomes a deep transfer learning task if  𝜂𝑡 is a non-

linear function represented by a deep neural network.  

Chuanqi Tan et al. [43] classified the deep transfer learning approach into four main 

categories, namely instance-based, mapping-based, network-based, and adversarial-based 

transfer learning. In this paper, we utilize the network-based transfer learning approach. 

Network transfer learning refers to the transfer of a partial network trained in the source 

domain, which includes its network structure and learned weights to the target domain, 

where it becomes part of its existing architecture. The network-based transfer learning 

architecture works with the notion that neural networks should become as iterative as 

human brains. Human brains use prior knowledge even when they are performing new 

tasks and often perform well with the new tasks by using the previously learned concepts. 

As discussed from a domain perspective, transfer learning can be understood as domain 

adaption where knowledge learned to perform a task in one setting, or distribution is 

utilized to improve the generalization of the task in another setting or distribution. In case 
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of our IDS model, the task remains the same, but the input distribution becomes different 

with a forthcoming flow of network packet data. The main objective of transfer learning is 

to use the first domain setting and extract information that will be useful for making 

necessary predictions about the nature of new data.  

There are two extreme forms of transfer learning referred to as one-shot learning and zero-

shot learning, which were also studied during this thesis's progression. In one-shot learning, 

only one labeled example of the transfer learning task is given to the model to learn and 

make inferences on future data in a separate domain, whereas in zero-shot learning, no 

labeled examples are given at all for learning the task. These forms of transfer learning 

work in the scope of different use cases and specifically if we are using unsupervised deep 

learning where the model has to find the underlying structure and nature of the given data 

or the amount of training data at hand is of less size. In the case of our use case, because 

we are interested in a number of cybersecurity attacks and the data at our disposal is of 

large quantity, we used the standard approach towards transfer learning.  

As shown in figure 4.3, transfer learning methodology is fundamentally different from the 

traditional learning methods and systems. The figure represents the tasks and domains 

where we have a similar distribution and type of data, in the case of IDS, a network flow 

that shares a similar type of labels and datapoints. In traditional methodology, we construct 

a neural network model and use the same model to perform different tasks of similar nature 

Figure 4.3: Comparison between Traditional learning and Transfer learning method. 
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independently. The model will perform optimally as long as the data which it is classifying 

is found to have an underlying structure it learned to detect in its training phase, but as 

deliberated previously, the results will falter when the data observed by the neural network 

is entirely new that might not have been present in the training dataset. In transfer learning 

methodology, we extract the knowledge learned from a model in one or more task setting 

to build a knowledge base in the form of a neural network architecture and learned weights 

to apply them for other similar tasks. The advantage this provides the system is that now 

we have the ability to run simulations in a lab setting to evolve our models to improve their 

performance each time before we deploy them in real-world environments. The model 

learns underlying patterns in a different segment of data with similar distribution in each 

simulation, which optimizes its weights to accommodate all the knowledge learned from 

the previous tasks for the application in the future tasks. The performance is also not just 

limited to the accuracy measure. The model already has a primary structure intact from 

previous tasks and does not take more time to start anew, which speeds up the overall 

system. The transfer learning methodology reduces the time taken by the model to give its 

output results. These large neural network models usually take a longer time to test an 

entire dataset work faster to provide their classification results. This enables the conception 

of real-time based neural network architectures that work in live production environments 

to give classification results on impulse.  

In this thesis, we applied the transfer learning methodology to augment large neural 

networks to classify the network traffic flow, aimed to find pervasive intrusion and 

cybersecurity attacks to safeguard the modern network infrastructure. The design of a 

robust intrusion detection system requires it to continuously monitor network traffic and 

drive the defense mechanisms to detect any suspicious activities or threat patterns in the 

network flow. We previously established that neural networks are capable of detecting such 

threats at a greater granularity compared to the traditional data mining and machine 

learning methods, but for their full utility, we also need deep neural networks to work at a 

robust pace as the entire paradigm of training, validating and testing takes more time 

compared to other rudimentary methods. The transfer learning methodology enables the 

system to improve its speed and accuracy performance to become viable in an event-driven, 

real-time environment. 
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 System Architecture  

This section will discuss the system architecture of the proposed network classification and 

intrusion detection system. Figure 4.4 outlines the system architecture of the end-to-end 

deep learning pipeline applied to network classification tasks using different 

subcomponents.   

The pipeline’s system architecture can be divided into 7 main steps briefed as follows, 

1. Data Capture: The pipeline begins with capturing data from the source domain as well 

as the target domain’s network flows. The UNSW-15 dataset, which is also further 

discussed in more depth, used the IXIA PerfectStorm tool to capture the real network 

traffic and the synthetic contemporary cyber-attacks in the form of packet data. Further, 

the TCPdump tool is used to generate Pcap files, which is further fragmented from the 

100 GB of captured data into 1000 MB segmentations. 

2. Data Cleaning: The raw Pcap files are then synthesized to generate reliable features 

using Argus and Bro-IDS toolsets. Argus tool processes the Pcap files and generates the 

network flow features as outlined in Table 4.2. The open-source Bro-IDS tool analyzes 

network traffic using the raw Pcap files and generates connection information such as 

HTTP, FTP requests, and replies. These tool’s output is then matched and combined to 

create a full length of a feature set, including both flow-based and packet-based features.  

Figure 4.4: System Architecture Flowchart 
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3. Feature Engineering:  To further improve our data's efficacy and its raw features, we 

use various data pre-processing techniques such as feature selection, feature scaling, and 

feature normalization, also discussed at length in proceeding sections. The main aim of 

feature engineering is to get the best speed and accuracy performance when the data is 

used with a model to draw inferences. Feature engineering creates the most accurate 

representation of the underlying patterns in the data flow. 

4. Model Training: During this phase, we use the deep learning frameworks alongside the 

formatted data from the previous steps to train and build analytical models capable of 

learning semantic relationships in the data.  Learning the data's fundamental structure 

enables the model to predict the newly seen data's nature, which can be utilized for 

various classification tasks. In our case, we are using network flow data consisting of 

both normal and malicious packets for training our model so that the model becomes 

efficient in recognizing and classifying new network flow data based on that criteria.  

This is an iterative process where we incrementally improve our model’s classification 

abilities using labeled data until the model can give accurate prediction results.  

5. Model Evaluation: Once we are satisfied with our analytical model results from the 

training phase, we evaluate the model using a subset of unseen data that was not used 

during its training. We use the predefined evaluation criteria to judge the performance 

and efficacy of the applied model. Section 4.6 lays out the evaluation criteria for the 

intrusion detection system defined in this thesis.  Based on the evaluation results, we 

can further fine-tune the applied model’s various hyperparameters to retrain the model, 

improving our results with each iteration as shown in Figure 4.5. 

Figure 4.5 : Model Training Process 
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6. Transfer Learning Methodology: When the model provides satisfactory results based on 

the defined evaluation criteria, we will save the model and its weights in the HDF5 

format designed to store large and complex data hierarchically. The model is then 

transferred to our target domain with an entirely different network flow with similar 

engineered features. If the output labels are required to be different in the target domain, 

we will unfreeze the last layers of the model and train them again. Using the pre-trained 

model with intact weight parameters, we utilize the derived knowledge from the source 

domain, which cuts down the training time and required computational resources. If the 

source domain model were large and powerful, trained with an extensive amount of 

training examples, it would generalize appropriately in the target domain. In section 5.4, 

we would show our results from the transfer learning methodology experimentally.  

7. Deployment: The architected model has been through various iterations in both source 

and target domains based on our set evaluation criteria and metrics. Once we are 

satisfied with the classification results, we can deploy the system in a live production 

environment. The advantage transfer learning methodology brings is that now we can 

iterate and evolve our model and augment its performance abilities with the new subset 

of network flow it observes and learns to classify. This improves the model over time 

to recognize many types of packet data in the network traffic while working in the real 

world environment, which is not possible using the traditional deep learning 

methodology.    

As shown, we train the unified model to classify network packets iteratively. The model 

then becomes an integral part of the Intrusion Detection System, which receives the 

network flow and performs various data pre-processing methods to augment its 

classification performance. This designed architecture is then transferred to a different 

domain with less data and computation resources using the transfer learning methodology, 

where it adapts to the target domain to maintain its performance on an unseen data flow, 

while improving its overall classification speed significantly. This outlined framework can 

be utilized to deploy large and powerful deep learning based intrusion detection systems 

on resource sparse edge devices to maintain their security, despite the data and 

computational limitations. 
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 Development Environment 

The development of IDS architecture was done using the google cloud platform. Offered 

by Google, the platform provides a number of services among which the most relevant to 

this thesis were google compute engine, which is an infrastructure as a service component 

for provisioning dynamic computing clusters, cloud AI platform which provides services 

for building and training machine learning, and deep learning models and various cloud 

network services such as cloud storage, DNS management, and cloud API.  

As shown in Figure 4.6, we provisioned two separate clusters in the compute engine for 

our research. To experiment and build the model, we used machine type n1-standard-8, 

which is fitted with 8 vCPUs and a 30 GB memory. For domain-specific tests, we 

provisioned a cluster with machine type n1-standard-1, which comes with 1 vCPUs and a 

3.75 GB memory. Both clusters used Debian GNU/Linux10 as their boot operating system. 

The programming language primarily used in this research is Python 3.7 with deep learning 

framework TensorFlow 1.15 and Keras in the backend. The development environment used 

mostly throughout the research was Jupyter Notebook. This efficient web-based integrated 

platform enables various kinds of data processing and statistical modeling and provides a 

single place for all the libraries to be utilized in a project. We used Sci-Kit learn as our 

machine learning library, Pandas library for data analysis and manipulation, NumPy for n-

dimensional array support, and Matplotlib to produce all the graphs for the results.  

Figure 4.6: Research instance setup in Google Cloud Platform 
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 Dataset Description 

The primary dataset used for architecting the intrusion detection system was the UNSW-

15 dataset created by capturing raw network packets using the IXIA PerfectStorm tool. The 

Cyber Range Lab made the Australian Center for Cyber Security (ACCS) dataset open 

source at the University of New South Wales, Australia. As shown in Figure 4.7, the dataset 

has nine types of cyber-attacks, specifically DOS, Reconnaissance, Generic, Fuzzers, 

Shellcode, Worms, and Backdoors, as well as packets with normal activity. 

UNSW-15 dataset contains a total 2 million network packet records which is partitioned 

into four CSV files. We will use a subset of this data, which includes 257,673 records and 

will further divide the selected partition into a training set with 154,603 records. We will 

also use a validation set and a testing set, both with 51,535 records, to aptly evaluate the 

applied deep learning model’s performance in the separate domains. 

Figure 4.7: UNSW-15 Dataset Description 
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4.5.1 Data Pre-Processing 

The first data pre-processing technique we will elucidate upon is feature selection. The 

features we use to train our model form the core of our model and significantly impact the 

model's overall performance and efficacy. In total, the UNSW-15 dataset has 49 features 

with appropriate class labels. To optimize a dataset with many features that may or may 

not improve the performance, we clean the data, which is irrelevant to the task. We 

performed the feature importance test, which uses a filter-based method to extract the best 

features in the dataset as shown in Figure 4.8, where each feature has a scoring value that 

represents how important and relevant the feature is to the output variable. 

We can further drop the unnecessary feature entries from the dataset based on this 

computed scoring. Feature selection enables the model to allocate its computational 

resources appropriately, increasing the speed of training times because we are reducing 

down the data to process and construct the model.  The presence of irrelevant and redundant 

data makes the ultimate goal of knowledge discovery much harder also. Table 4.2 shows 

few key features determined by feature selection as important well as their brief 

descriptions.  

Figure 4.8: Feature Selection Plot 
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Table 4.2  

Dataset Key Feature Descriptions 

 

Further, to visualize the correlation between each feature, we plotted the correlation heat 

map as shown in Figure 4.9. A correlation matrix shows the importance and relationship 

between two features in a dataset. The main aim of such visualization is to understand and 

see patterns in the data. It becomes clear which features are highly correlated to each other 

and have a linear relationship between each other, as the change in one feature will lead to 

a definite change in another. This is an important data-preprocessing step as these patterns 

can be further utilized to build predictive models which harness the co-related features to 

judge the unseen data with these similar label feature which makes it essential to establish 

before continuing on with any form of statistical modeling or analysis of the dataset. 

Feature Name Data Type Description 

sload Float Source bits per second. 

dload Float Destination bits per second. 

stcpb Integer Source TCP base sequence number. 

dtcpb Integer Destination TCP base sequence number. 

sbytes Integer Source to destination transaction bytes. 

dbytes Integer Destination to source transaction bytes. 

sttl Integer Source to destination time to live value. 

dttl Integer Destination to source time to live value. 

swin Integer Source TCP window advertisement value. 

dwin Integer Destination TCP window advertisement value. 

sjit Integer Source jitter (millisecond). 

djit Float Destination jitter (millisecond). 

stcpb Integer Source TCP base sequence number. 

dtcpb Integer Destination TCP base sequence number. 

spkts Integer Source to destination packet count. 

dpkts Integer Destination to source packet count. 
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4.5.2 Data Normalization 

Data normalization or feature scaling is a data preprocessing technique where we convert 

all input values to be used in the learning model to a standard scale. As commonly noticed, 

without scaling the data the features with a large range value will have a greater impact on 

the learning model's output. This leads to other features that may also be important but with 

a smaller range become less effective to the overall inferences drawn by the predictive 

model. To make all features equal, it is important to scale the data, which also helps the 

algorithm reach convergence faster, and optimizing also becomes much more comfortable 

using the gradient descent algorithm. 

Figure 4.9: Features Correlation Heat Map 
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Figure 4.10: Data Normalization Visualization per Feature 



57 

 

 

While scaling helps to bring the ranges of features within a specific scale, normalization 

changes the shape of our dataset's distribution to become a normal distribution. A normal 

distribution, also known as a probability bell curve, is the statistical distribution where the 

observations are symmetrical around the mean. Normalization independently rescales the 

data feature-wise from its natural range into a standard range where for every feature, the 

minimum value gets transformed into the value of zero, and the maximum value gets 

transformed into the value of one, hence giving all the features in data an equal footing for 

drawing the statistical inference. The formula for normalization can be expressed as, 

𝑥́ =
(𝑥 − 𝑥min) 

(𝑥max − 𝑥min) 
 

This normalization technique is also known as min-max normalization which was used to 

rescale and normalize the UNSW-15 dataset for the IDS architecture. The min-max 

normalization retains the shape of the feature intact during scale as compared to other 

normalization we tested during the course of design. Figure 4.10 visualizes how the 

normalization changed the natural range of raw features in the dataset to the standard range 

[0,1]. This particular data pre-processing step is vital as various algorithms such as logistic 

regression and neural networks etc. assume that the input data for processing will be scaled 

and normalized. 

 Evaluation Criteria 

This section will discuss the evaluation criteria for quantifying the performance and 

efficacy of our IDS machine learning and deep learning models.  

4.6.1 Classification Accuracy 

Accuracy is an evaluation metric used for classification models where we compare the 

number of correct predictions drawn with the total number of predictions made by the 

model. The formula for classification accuracy can be expressed as, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
∗ 100 
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The formula converts the model's accuracy into a percentile value that can be used to 

evaluate the model’s performance. But classification accuracy by itself is not a good 

indicator of the performance. It does not consider the class imbalance that might persist in 

a dataset, where there can be a large difference between the number of positive and negative 

labels. Hence, we need to judge a model by other metrics as well. 

4.6.2 Confusion Matrix 

A confusion matrix is a visual representation of the performance of a classification model. 

It basically is a table with four different combinations of predicted and actual values. A 

classification model’s outcome can be summarized into these four possible categories, 

1. True Positive: This corresponds to the values which were predicted to be positive, 

and they turn out to be positive and correct. In the case of IDS, the model predicted 

the packet to be malicious, and it indeed is malicious. Hence the IDS made a correct 

prediction. A higher true positive value means the model is making good positive 

predictions. 

2. False Positive: This corresponds to the values which were predictive to be positive, 

but they turn out to be negative and hence false. In the case of IDS, the model 

predicted the packet to be malicious, but the packet was actually a normal packet. 

A high false positivity of an IDS leads to unnecessary false alarms and causes 

needless disruption of services. A low false-positive value is an indicator of an 

accurate IDS model.  

3. True Negative: This corresponds to the values which were predicted to be negative 

and they turn out to be negative and hence correct. In the case of IDS, the model 

predicted the packet to be normal and it was indeed a normal packet. Again, a higher 

true negative is also deemed to be a positive indicator of the model’s performance. 
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4. False Negative: This corresponds to the values which were predicted to be negative, 

but they were in actual positive values. In the case of IDS, the model predicted the 

packet to be normal, but the packet was actually a malicious packet. This is the 

most crucial indicator of an intrusion detection system’s performance. This value 

represents how many wrong predictions the model made as each such instance can 

prove harmful to the infrastructure the IDS aims to protect and safeguard.  

Figure 4.11 is a visual example of a sample confusion matrix. In essence, among these 

values, we are interested in the scope of a false positive and false negative, both of which 

cause the IDS to perform poorly in an applied sense. The research in part aims to mitigate 

and improve the score of the detection system’s false positivity and false negativity. 

4.6.3 AUC - ROC  

AUC-ROC curve is another applied performance metric criteria for the classification 

model. Term AUC is abbreviated for Area Under the Curve which measures the two-

dimensional area underneath the ROC abbreviated for Receiver Operating Characteristic 

Curve at various threshold settings. To plot a ROC, we compare the parameters namely 

True Positive Rate and False Positive Rate which can be summarized as follows, 

A. True Positive Rate is also known as sensitivity of a model which determines the 

proportion of the values which are positive and were indeed correctly identified as 

positive. This can be expressed as, 

Figure 4.11: Confusion Matrix Sample 
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𝑇𝑃𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

B. False Positive Rate is also known as the specificity of a model which determines 

the proportion of values that are negative and were also identified by the model as 

negative. This can be expressed as, 

𝐹𝑃𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

ROC curve plots the True Positive Rate of a model with False Positive Rate at various 

classification thresholds as shown in Figure 4.12. The AUC value aggregates the 

performance of the model across all possible classification thresholds.  

 

 

 

  

Figure 4.12: ROC Curve example with a Sample Classifier 
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Chapter 5 

 Experiment Results 

This section will show our results and their analysis from the experiments performed to 

guide our design of the Intrusion Detection System. Section 5.1 discusses the initial design 

of the IDS model using various machine learning algorithms. In section 5.2, we will discuss 

the utility of deep learning algorithms in design our candidate model. Further, in section 

5.3 we will demonstrate the experimentation result of the unified learning model proposed 

in this thesis. Section 5.4 will showcase the results and improvements in performance from 

applying the transfer learning methodology to our candidate IDS model. In section 5.5, we 

will discuss our overall results and findings. 

 Machine Learning Methods 

During the progression of this thesis, we studied and applied various machine learning 

algorithms to design the initial IDS architecture. This section will elucidate our 

experimentation and results in this area. As previously deliberated, machine learning in an 

application sense means we are predicting the nature of data based on our prior analysis 

during a training phase. For the IDS, we are interested in knowing the nature of a data 

packet, especially whether the packet is a normal network packet, or it belongs to the class 

of nine distinguished cyber-attack types the model is trained to identify. The main mode 

used to build such a system is supervised learning where we are building a model with 

various training examples with both normal and malicious packets being used to draw 

signatures and patterns, which are then precedingly used to classify the new future data 

packets encountered by the model as either normal or malicious. In this case, the malicious 

packets will always seem like an anomaly to the system and in a statistical sense, their 

feature data will look like an outlier when compared to the normal baseline. The model 

helps us establish an optimal baseline of the normal network usage where during the normal 

network use, the packets flowing through the network will identify with the feature values 

that are recognized to belong to a normal network packet’s features. In contrast, when the 

network is in the midst of an ongoing misusage that is deemed a cybercriminal activity, the 

packets flowing through the network will exhibit the feature values that mirror that of the 
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malicious packet observations used in training the model. In essence, the model is 

continually looking for any outliers from the established normal baseline to filter the 

forthcoming network packets in terms of normal use or misuse.  

We concentrated our efforts on three separate and distinct machine learning models, 

namely 

• Logistic Regression. 

• K-Nearest Neighbors. 

• Decision Trees. 

Figure 5.1 plots the bar chart for the classification accuracy of each machine learning model 

applied for the task of intrusion detection. From the experimentation, we observed that 

Decision Trees performed best in terms of accuracy amongst the applied models with a 

90.64% classification accuracy performance. K-Nearest Neighbor gave 85.32% 

classification accuracy, whereas Logistic Regression gave 75.27% classification accuracy. 

Because we also aim to design an IDS architecture that can classify the network data at a 

fast processing speed. We also considered each machine learning model based on the time 

it took for them to process an entire testing dataset partition to classify the data. Among 

the applied models, Decision Trees took 6.33 seconds whereas, K-Nearest Neighbor took 

31.6 seconds. Logistic regression gave the best testing performance time with 3.01 seconds.  

Figure 5.1: Classification Accuracy of Applied Machine Learning Models 
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We further used the ROC curve to visualize each applied machine learning model's 

performance at different thresholds, as shown in Figure 5.2. 

 

Table 5.1  

Machine Learning Model Performance Summary 

 

 

 

 

 

 

Table 5.1 summarizes our experimentation results in the area of machine learning to design 

and select our target IDS model. Based on our experimental results, we chose Decision 

Model Accuracy Speed AUC 

Logistic Regression 75.27% 3.01s 0.84 

K-Nearest Neighbors 85.32% 31.6s 0.93 

Decision Trees 90.64% 6.33s 0.91 

Figure 5.2: ROC curve visualization for applied Machine Learning Models 
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Trees as our target machine learning model to design the IDS. We further studied its results 

in-depth using the Confusion Matrix metrics, as shown in Figure 5.3. 

According to the confusion matrix, the decision trees had 5.98% False Positive outcomes 

and 6.27% False Negative outcomes. As discussed before, false-positive determines the 

percentage of normal packets identified as malicious, and false-negative determines the 

percentage of malicious packets identified as normal by the Intrusion Detection System. 

So, in essence, what this means is that the decision trees based IDS are susceptible to allow 

6.72% malicious attacks pass through its system undetected, which may open doors for 

more concealed attacks and identified 5.98% normal packets as malicious, which will lead 

to that percentage of packets being dropped or blocked by the system affecting the network 

quality of service.  

Despite the fast speed and high classification accuracy performance, we were not satisfied 

with the predicted outcomes of decision trees based IDS due to the fact of its high false 

positivity and high false negativity. After an exhaustive effort to improve the classification 

results, we chose to further investigate the field of deep learning to build our candidate IDS 

model to deliver high classification accuracy, speed performance, and precise prediction 

outcomes. 

Figure 5.3: Decision Trees based IDS - Confusion Matrix 
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 Deep Learning Methods 

This section will discuss our experimentation and results in the field of deep learning. As 

previously discussed, deep learning architectures offer an ability to extract essential 

features in a given dataset by transforming its data iteratively. The algorithm aims to build 

and learn deeper representations and patterns using multi-layered network architectures. 

Unlike machine learning algorithms, which may require human intervention to be trained 

towards an accurate outcome, deep learning algorithms are self-adjusting. They don’t 

require any explicit human intervention to hardcode the features for improving their results. 

In the deep learning space, we focused our efforts specifically on three main algorithms, 

namely 

• Deep Neural Network. 

• Convolutional Neural Network. 

• Long Short-term Memory Network. 

For our experimentation, we will use our source domain which is modeled in the Google 

Cloud Platform’s provisioned VM instance named n1-standard-8, which has a total number 

of 8 vCPUs and a 30 GB memory to simulate a computationally resource abundant 

environment.  

For training and validating our model, we will use the two preprocessed partitions of the 

training dataset and validation dataset as described in section 4.4. In total, we are using 

206,138 packet observations for our experimentation in the source domain environment. 
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Figure 5.4 plots the bar chart for the classification accuracy for each of the deep learning 

models applied to the task of intrusion detection. From our experimentation, we observed 

that LSTM demonstrated a 94.42% classification accuracy, CNN gave a 92.16% 

classification accuracy whereas, DNN gave an 87.66% classification accuracy. 

We further studied our applied deep learning models using a ROC curve to visualize our 

results at various thresholds which are plotted in Figure 5.5. 

Figure 5.4: Classification Accuracy of Applied Deep Learning Models 

Figure 5.5: ROC curve visualization for applied Deep Learning Models 
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We will also consider each deep learning model based on the time it took for them to 

process an entire validation dataset partition to classify the data. Among the applied 

models, DNN took only 28 seconds, whereas CNN took a total of 2 minutes and 15 

seconds. LSTM took 3 minutes and 15 seconds for its complete processing. 

 

Table 5.2  

Deep Learning Model Performance Summary 

 

 

 

 

 

 

Table 5.2 summarizes our initial experimentation results in the area of deep learning to 

design and select our target IDS model. We decided to further study both CNN and LSTM 

models to design our candidate Intrusion Detection System based on our experimental 

results.  We used confusion matrix metrics for both of these models to thoroughly look into 

their precise prediction outcomes, as shown in Figure 5.6, which plots the confusion matrix 

for the applied CNN model. Figure 5.7 plots the confusion matrix for the LSTM model.  

 

 

Model Accuracy Speed AUC 

Deep Neural Network 87.66% 28s 0.85 

Convolutional Neural Network 92.16% 135s 0.91 

Long Short-Term Memory 94.42% 195s 0.94 
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According to the confusion matrix, the CNN-based IDS model has a 4.10% False Positive 

and a 3.74% False Negative value. This is an improvement in the prediction outcomes from 

our machine learning models, but we still require our candidate IDS to have even lower 

false outcomes. 

The LSTM based IDS model demonstrates an improvement in the False Negative and False 

Positive values when compared to the CNN model according to the confusion matrix. But 

a 3.72% False Negative value is still too high, as it means that the IDS based on the LSTM 

Figure 5.6 : CNN based IDS - Confusion Matrix 

Figure 5.7 : LSTM based IDS - Confusion Matrix 
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model will let that percentage of incoming malicious packets through its system. The 

LSTM model’s 2.27% False Positive value on the other hand will lead to that percentage 

of incoming normal packets being dropped by the system due to misidentification as 

malicious packets.  

The standard deep learning models performed much better in terms of their predictive 

outcomes and classification accuracy when compared with the applied machine learning 

models. But they still did not provide us the precise outcome results expected from an 

intrusion detection system aimed to be developed in this thesis. 

 Unified Deep Learning Network 

Our continued experimentation lead us to consider adopting a modular approach towards 

constructing our candidate IDS model, where we are using the advantages of the three 

applied deep learning models and combine their latent feature extraction, memory 

retention, and classification abilities to give a higher accuracy score and prediction 

outcomes as compared to these models being applied separately. In section 4, we have 

discussed the overall architecture of our proposed deep learning model. This section will 

report our experimentation findings using the unified CNN-LSTM model and will compare 

our results with previously applied deep learning models. 

Figure 5.8 :  Classification Accuracy of Unified Model in comparison with DL Models 
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As shown in the bar chart plotted in Figure 5.8, our applied unified CNN-LSTM model 

demonstrated an improved 98.30% accuracy score which was the highest result when 

compared to other applied deep learning models. We further used the confusion matrix to 

study in-depth the individual classification of the unified model.  

Figure 5.9: CNN- LSTM based IDS – Source Domain Confusion Matrix 

Figure 5.10: ROC curve visualization of Unified CNN-LSTM Model 
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Based on our confusion matrix metrics as shown in Figure 5.9, our unified model showed 

improvements in the overall classification of normal as well as malicious packets. The 

model demonstrated a 1.03% False Positive value and a 0.67% False Negative value. As 

per these values, the unified model performs much better at predicting the nature packets 

when we compare its results with the LSTM model which demonstrated a 2.27% False 

Positive and 3.72% False Negative value. We further plotted the unified model’s ROC 

curve with the other deep learning models as shown in Figure 5.10. The ROC curve of the 

unified CNN-LSTM model covers the most area on the graph which represents its ability 

to correctly identify a larger number of packet samples when compared to other deep 

learning models. 

Because we aim to build a highly accurate model that also performs at a fast processing 

speed, we also need to consider our unified CNN-LSTM model based on the time it took 

to process the validation data set. Overall, the model took 3 minutes and 56 seconds for its 

entire processing. The results from all the deep learning models applied in our source 

domain results are summarized in Table 5.3. 

 

Table 5.3 

 Model Performance Summary – Source Domain 

 

 

 

 

 

 

 

Model Accuracy Speed AUC 

Deep Neural Network 87.66% 28s 0.85 

Convolutional Neural Network 92.16% 135s 0.91 

Long Short-Term Memory 94.42% 195s 0.94 

CNN-LSTM Neural Network 98.30% 236s 0.98 
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As shown from our summarized experimentation results, the unified model was able to 

outperform the distinctly applied deep learning models. Overall, our candidate model 

reached a high accuracy of 98.30% and an AUC score of 0.98. The model demonstrated a 

satisfactory classification performance, but it took a longer time to process data due to the 

fact that it’s a much deeper and larger model.  

 Transfer Learning Results 

One of the key criteria for our candidate model is that it should perform at the same 

accuracy and improve its overall performance speed in real-world environments. For 

ensuring this goal, we will be using transfer learning methodologies to transfer the learned 

weights and network architecture from our source domain to a resource sparse target 

domain. The target domain is simulated to act as a real-world environment. The transfer 

learning methodology is deliberated in section 4.2. This section will illustrate the 

experimental results in our simulated target domain using the Google Cloud Platform. We 

will also compare our deep learning model’s performance in both the source and target 

domains.  

To apply the learned knowledge in the target domain, we will use the unseen testing data-

set in this domain to simulate the IDS model being in a real environment where it 

encounters entirely new data. This helps in evaluating how the model will essentially react 

when it is deployed in a real-world network infrastructure.  

Figure 5.11: Classification Accuracy of Applied Deep Learning models in 

Target Domain 
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As shown in the bar plot illustrated in Figure 5.11, the deep learning models were able to 

maintain their accuracy performance in the target domain with an entirely new dataset 

unseen by each model. The unified model CNN-LSTM’s accuracy improved to 98.43% 

whereas other models also reported an accuracy improvement in their results. The LSTM 

model reported an improved 94.18% accuracy while the DNN model reported an improved 

88% accuracy score percentage.  

To further study our results in the target domain, we used confusion matrix metrics to 

visualize our candidate CNN-LSTM model's classification performance, as shown in 

Figure 5.12. According to the confusion matrix, our novel CNN-LSTM unified model 

reached a false positive value of 0.95% and a false negative value of 0.62%. This was by 

far the best classification performance amongst each neural network model applied in both 

domains. The models demonstrated that they could classify the network packets at a high 

level of accuracy using their learned weights in the target domain. The ROC curve charted 

in Figure 5.13 shows that our IDS model’s diagnostic ability remained comparable in the 

target domain.  

Figure 5.12: CNN- LSTM based IDS – Target Domain 

Confusion Matrix 
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Table 5.4  

Model Performance Summary – Target Domain 

 

 

 

 

 

 

 

Overall, in terms of the classification performance, each model applied in the target domain 

using the transfer learning approach maintained and slightly improved their accuracy on 

an entirely new and unseen dataset. In terms of the speed performance, the models 

Model Accuracy Speed AUC 

Deep Neural Network 88.05% 1.6s 0.85 

Convolutional Neural Network 91.88% 18.1s 0.91 

Long Short-Term Memory 94.00% 10.9s 0.94 

CNN-LSTM Neural Network 98.43% 19.5s 0.98 

Figure 5.13: ROC curve visualization -Target Domain 
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showcase huge improvements that enable us to build real-time IDS models in real-world 

settings. Our candidate CNN-LSTM model took mere 19.5 seconds to process the entire 

dataset, which is a dramatic change from its 3 minutes and 56-second performance speed 

in the source domain. Table 5.4 showcases the summary of our results in the target domain 

for each neural network model applied.  

 Discussion 

This chapter illustrated our experimentation and techniques to build a real-time, fast 

processing intrusion detection system that also demonstrates a high level of accuracy. We 

showcased the application of both machine learning and deep learning models to architect 

our model. Upon an exhaustive comparative study, we applied a novel modular approach 

towards building a unified CNN-LSTM model. Our candidate model outperforms other 

applied deep learning models for the task of packet classification. To further augment our 

model to work efficiently in real-world settings, we used transfer learning methodology to 

transfer our learned weights and model architecture from our primary source domain to a 

target domain. The target domain is simulated as the real-world environment, with very 

low computational resources and data availability. Our results show that our models not 

only maintained their classification accuracy as well as improved their performance speed 

dramatically. The candidate CNN-LSTM unified model demonstrated a 98.30% 

classification accuracy in the source domain and a 98.43% classification accuracy in the 

target domain with a new and priorly unseen dataset. Our candidate model's speed also saw 

a boost, wherein the source domain the model processed the validation dataset in 3 minutes 

and 56 seconds. In the target domain, it processed the entire testing dataset in 19.5 seconds. 

Our results show that using our novel modular approach towards building IDS models 

enhances the overall classification ability of neural networks to identify potential intrusion 

attempts. Adding transfer learning methodology in our design further boosted our models' 

speed. It made our architecture promising to work efficiently with real-time processing 

power in the real-world settings on unseen data partitions. 
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Chapter 6 

 Conclusion 

This thesis architected a novel intrusion detection system that uses state of the art deep 

learning algorithms and techniques to give highly accurate network packet classifications. 

For improving the efficacy of our overall architecture, we used our novel modular approach 

to develop a unified neural network model that outperforms other techniques illustrated in 

our research. To make our architecture work efficiently in real-world settings, we used 

deep transfer learning methodologies. Our research demonstrates that the deep transfer 

learning approach can be highly effective in developing an efficient, unified network 

intrusion detection system that maintains and improves its classification accuracy and 

speed in a simulated real-world setting via knowledge transfer.  

Using the proposed method, we can train a large and powerful deep learning IDS model in 

a source domain with a high allocation of data and computational resources. After 

validating our model’s performance, we can then transfer its architecture and learned 

weights in a target domain with reduced computational resources. We observe that the 

model maintains its efficiency and improves its testing speed. The target domain aims to 

simulate the real-world environment where we are using a partition of the dataset, which 

is entirely unseen by our models during their training and development.  

This thesis showcases that high powered deep learning-based IDS architectures can be 

deployed on real-world devices with lesser resources, maintaining their efficiency and 

improving their speed using the transfer learning approach. Applying transfer learning in 

the overall design of an IDS enhances its performance in a real-world setting. It essentially 

increases its classification speed, which is a tremendously required feature demanded by 

an IDS to protect and secure modern network infrastructures. Our research is one of the 

earliest practical implementations of integrating transfer learning techniques in the core 

architecture of an IDS.   
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 Limitations 

Despite the showcased potential of deep learning and transfer learning methodologies to 

architect data-driven intrusion detection systems, certain limitations and challenges may 

present themselves when deploying the systems in live production environments. We have 

discussed the efficacy of transfer learning to improve learning models' performance in the 

target domain. Still, there may be certain times when transfer learning may lead to a drop 

in performance, also known as a negative transfer. This happens when the source domain’s 

data is fundamentally different from the type of data used in the target domain leading to 

the learning model not being able to build a semantic relationship between the domains 

appropriately. This can be avoided by carefully examining the data in the source as well as 

target domains and prudently planning the data ingestion and feature engineering 

subcomponents.  

 Future Work 

We would like to add stream processing in the overall design of our IDS architecture in the 

future. We also aim to use the models constructed in this thesis and apply them to a live 

network stream to provide our inferences in real-time. Exploring the IDS’s design as a 

system daemon is also a noteworthy aim. The daemon mode will enable our IDS to work 

ubiquitously in the background as a process and oversee the live network traffic in a 

parallel, multitasking fashion. A real-time, stream-based IDS architecture can be further 

deployed on any edge device which uses networking for its day-to-day functioning. Adding 

GPU support in the source domain will also make the entire architecture dramatically faster 

in its processing.  We would also like to add dimensionality reduction techniques as a pre-

processing step in our design, making the architecture work with an even larger volume of 

datasets. As part of the future work, it would be interesting to use an ensemble approach 

for our models and compare the results with our current approach. In the future, we would 

also aim to build our own data sources and test our techniques on various modern network 

infrastructures. 
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