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sediment. Maximum concentrations of ~28,000 particles per kg dry sediment 

were determined in Etobicoke Creek. The microplastic particles were 

primarily fibres and fragments < 2 mm in size. Both low- and high-density 

plastics were identified using Raman spectroscopy. We provide a baseline 

for future monitoring and discuss potential sources of microplastics in 

terms of how and where to implement preventative measures to reduce the 

contaminant influx. Although the impacts of microplastics contamination 

on ecosystem health and functioning is uncertain, understanding, 

monitoring and preventing further microplastics contamination in Lake 

Ontario and the other Great Lakes is crucial. 
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Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and 

beach sediments. 

Abstract 

Microplastics contamination of Lake Ontario sediments is investigated with the aim of 

identifying distribution patterns and hotspots in nearshore, tributary and beach depositional 

environments. Microplastics are concentrated in nearshore sediments in the vicinity of urban and 

industrial regions. In Humber Bay and Toronto Harbour microplastic concentrations were 

consistently >500 particles per kg dry sediment. Maximum concentrations of ~28,000 particles 

per kg dry sediment were determined in Etobicoke Creek. The microplastic particles were 

primarily fibres and fragments < 2 mm in size. Both low- and high-density plastics were 

identified using Raman spectroscopy. We provide a baseline for future monitoring and discuss 

potential sources of microplastics in terms of how and where to implement preventative 

measures to reduce the contaminant influx. Although the impacts of microplastics contamination 

on ecosystem health and functioning is uncertain, understanding, monitoring and preventing 

further microplastics contamination in Lake Ontario and the other Great Lakes is crucial.  

1. Introduction  

Studies concerning plastics contamination of marine environments began in the 1970s (e.g. 

Carpenter and Smith, 1972; Colton et al., 1974), and since that time, investigations have shown 

that plastic waste is consistently found in aquatic environments including beaches, ocean surface 

waters, deep-sea sediments, freshwater lakes, and tributaries (e.g. Eriksen et al., 2013; Van 

Cauwenberghe et al., 2013; Vianello et al., 2013; Cózar et al., 2014; Turra et al., 2014; Eerkes-

Medrano et al., 2015). Contamination of aquatic environments with plastics has become a global 

issue as a result of low recycling rates, designs that do not include the post-consumer stage of the 

product, and lack of policies that support a circular plastics economy (Neufeld et al., 2016 

Microplastics, defined as plastic particles < 5 mm long (NOAA, 2015), are either manufactured 

for use in applications such as cosmetics, personal care products, industrial abrasion processes 

and synthetic fabrics (Fendall and Sewell, 2009; Eriksen et al., 2013; Sundt et al., 2014), or are 

generated by the degradation of larger plastic products (Carpenter and Smith, 1972; Sundt et al., 

2014). In a recent study, microbeads, many of which were comparable to particles isolated from 

cosmetic products, comprised an estimated 58% of microplastics < 1 mm in size collected from 

the surface waters of the Great Lakes (Eriksen et al., 2013). Several countries, including Canada 

and the United States, have since begun the process of banning the sale of cosmetic products 

containing microplastics. Polyethylene (PE) and polypropylene (PP), often used in the 

production of cosmetic microplastics, have densities less than that of fresh water, but have 

nonetheless been regularly identified in submerged sediments (Claessens et al., 2011; Vianello et 

al., 2013; Corcoran et al., 2015). The study of microplastics in sediment is therefore needed for a 

comprehensive understanding of microplastics contamination in the Laurentian Great Lakes.  

Microplastics pollution has been reported from Great Lakes surface waters (Eriksen et al., 2013), 

along shorelines (Zbyszewski and Corcoran, 2011; Zbyszewski et al., 2014; Corcoran et al., 

2015) and in offshore lake bottom sediments (Corcoran et al., 2015), but its presence in 

*Manuscript (clean - no tracked changes)
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subsurface sediments of nearshore regions and tributaries is still largely unknown (Driedger et 

al., 2015). Allan et al. (2013) modeled current environmental stressors affecting the Great Lakes 

and found that cumulative stress levels were greatest in nearshore regions and generally 

decreased with distance from the shore. Only one investigation concerning microplastics 

pollution in Lake Ontario sediments has been published to date (Corcoran et al., 2015), despite it 

being the terminal lake within the Great Lakes system. In addition, the lake is surrounded by 

highly urbanized and industrialized regions, particularly along the northern shore, which have 

been associated with the accumulation of plastic debris (e.g. Barnes et al., 2009; Turra et al., 

2014). We herein provide a regional investigation of the abundance and depositional patterns of 

microplastics in nearshore, tributary and beach sediments along the Canadian shoreline of Lake 

Ontario in an effort to provide: (i) a baseline for future monitoring, (ii) a means to assess 

potential sources of microplastics to the lake, and (iii) a distribution map of current microplastics 

hotspots.  

Microplastics in benthic ecosystems pose an environmental threat primarily because organisms 

that feed on the benthic community may potentially ingest microplastics. Littoral and profundal 

fish species in large temperate lakes have diets that consist primarily of benthic organisms, and 

in Lake Ontario ~92% of fish and ~96% of invertebrate species are found in littoral habitats 

(Vadeboncoeur et al., 2011). The majority of aquatic species in Lake Ontario are closely 

connected to nearshore benthic habitats, and microplastics contamination of these sediments may 

be directly affecting the health of the lake ecosystem at many trophic levels. Although plastics 

are not classified as hazardous waste in Canada, certain plastic products, such as polycarbonate 

CD-ROM discs and polyurethane foams commonly used in furniture, are manufactured from 

hazardous derivatives (Lithner et al., 2009). Additives such as polybrominated diphenyl ethers 

(PBDEs; e.g. flame retardants) (Lithner et al., 2011; Rochman et al., 2014) and plasticizers such 

as Bisphenol-A are also often included to change the physical properties of the plastics 

(Oehlmann et al., 2009). Plasticizers have been shown to have negative impacts on the hormonal 

systems of invertebrates, fish and amphibians (Oehlmann et al., 2009). Conclusive evidence for 

the transfer of associated hazardous compounds from plastics to organisms is lacking, but several 

studies have suggested correlations between plastics ingestion and compromised physiological 

function (e.g. Teuten et al., 2009; Wright et al., 2013; Syberg et al., 2015). An additional threat 

of microplastics is their role as colonization surface habitats for bacteria or other organisms, 

which may lead to the invasive transport of microbial communities (e.g. Ye and Andrady, 1991; 

Zettler et al., 2013; Harrison et al., 2014; McCormick et al., 2014; Nauendorf et al., 2016). 

A comprehensive overview provided by Eerkes-Medrano et al. (2015) highlights our limited 

understanding of microplastics contamination in freshwater systems. Rivers and urban 

tributaries, however, have been shown to be major transport pathways for microplastics and 

macroplastics (Moore et al., 2011; Gasperi et al., 2014; Lechner et al., 2014; Rech et al., 2014; 

Zhao et al., 2014; Corcoran et al., 2015; Naidoo et al., 2015). Whereas buoyant materials are 

transported on surface waters (Gasperi et al., 2014), non-buoyant materials are transported along 

the tributary bed (Moore et al., 2011; Morritt et al., 2014). Microplastic debris loads can be 

introduced into tributaries via non-point spill and litter sources as well as point sources such as 

effluent pipes (Lechner & Ramler 2015), storm water drainage outlets (Armitage & Rooseboom 
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2000) and possibly wastewater treatment plants, particularly during combined sewage overflow 

and bypass events during heavy precipitation conditions (MacDonald and Podolsky, 2009). Rech 

et al. (2014) and Corcoran et al. (2015) showed that macroplastic and microplastic debris loads 

carried by rivers are also deposited along river banks, suggesting that rivers are both depositional 

and erosional zones for anthropogenic debris.  

2. Setting and Methods 

2.1 Setting 

Lake Ontario drains an area of slightly more than 64,000 km
2
 and is the terminal lake in the 

Laurentian Great Lakes chain (Fig. 1). Prevailing wind patterns in the Toronto region from 

November to February are mainly NW to WSW, and gradually shift to ENE-dominated from 

March to October. The western end and the northwestern shore of the lake are characterized by 

several urban and industrial regions, including the cities of Hamilton, Mississauga and Toronto, 

with populations of 0.52, 0.71 and 2.62 million, respectively. Plastics manufacturing in Canada 

is concentrated in Southern Ontario (Statistics Canada, 2012). According to a 2014 statistical 

report of the Canadian Chemical Industry (CIAC), production of synthetic resins, fibres and 

rubbers included PE, ethylene vinyl acetate, polystyrene (PS), polyvinyl chloride (PVC), 

polyacrylamides, polyethylene terephthalate (PET), nylons, latex emulsions, polyesters, silicones 

and butyl and halobutly rubbers (CIAC, 2014, p. 34). High-density resins comprised 16% and PE 

comprised 80% of Canadian synthetic resin/rubber exports by weight in 2013 (CIAC, 2014, p. 

35). In total, ~3,500 kt of PE were produced in 2013 (CIAC, 2014, p. 34). 

2.2 Sample collection  

Nearshore, tributary and beach sediments were sampled using a combination of sediment trap, 

core and grab sampling techniques in order to obtain as many data points as possible. The 

original objective was to collect all nearshore samples using a Glew gravity corer, but this 

method proved to be especially challenging as a result of the high wave action in Lake Ontario. 

The Ontario Ministry of the Environment and Climate Change (MOECC) donated Shipek grab 

samples, in addition to passive sediment trap samples that they had collected from Lake Ontario 

(Nearshore Index and Reference sites, Great Lakes Nearshore Monitoring Program). Tributary 

sediment was best sampled using a petite ponar grab that could be lowered from a standing 

position. Beach sediment was sampled using a split spoon corer, as it was originally thought that 

depth below the surface could be related to microplastics abundance. However, given the highly 

variable hydrodynamic conditions that take place on beaches, we have chosen to represent all 

sediment depths at each beach as a whole. The use of various sampling methods enabled a 

greater spatial resolution, but temporal (annual and seasonal) constraints were not possible. 

Sample names, dates, sampling instruments, depositional environments, locations, and water 

depths are detailed in Table 1.  

A total of 33 nearshore samples were collected (Table 1; Fig. 1). Five nearshore sediment 

samples were collected using a Glew gravity corer in August, 2014. The PVC cores measured 

6.5 cm in diameter, and ranged between 6 and 15 cm thick. Immediately after recovery, the 

gravity cores were extruded into 1 cm intervals (N≤15) and stored in sealed polyethylene bags. 
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Twenty-five samples were collected by the MOECC from the Canadian shoreline of Lake 

Ontario and the proximal St. Lawrence River in August, 2012 and July, 2014 using a Shipek 

grab sampler with a square opening of 20 cm and a half-cylindrical cup with a radius of 10 cm 

(Wildco, Yulee, FL). Three replicate grab samples were collected from each station, 

homogenized in a metal tray and transferred into 0.5 L PET collection bottles. Three additional 

nearshore samples were collected by the MOECC from sediment traps in November, 2014. The 

traps comprised an array of four acrylic cylinders, secured at approximately 2 m above the lake 

bed, and were allowed to collect sediment for 6 months  

Tributary sediment samples from Red Hill Creek, Etobicoke Creek, Humber River and Don 

River (Fig. 1) were obtained with a 16 x 14.5 cm hand-held, stainless steel Petite Ponar sediment 

grab (Wildco, Yulee, FL). Sample locations were constrained foremost by accessibility and 

second by the presence of sediment depositional zones. At each of seven sample locations, 2 

grab sample replicates were combined in a metal tray and were spooned into 0.5 L PET 

collection bottles.  

Sediment was also sampled from five east and south facing beaches along the north-western 

shore of Lake Ontario in June, 2015: Beachway Park, Bronte Beach, Marie Curtis Park, 

Sunnyside Beach and Woodbine Beach (Fig. 1). Much of the northern shore of Lake Ontario has 

been built up with large boulders or is inaccessible due to privatization of lands, which limited 

sample sites to public sandy beaches. Using a stainless steel split spoon corer with a height of 30 

cm, two cores were collected from each beach at approximately 2 m and 6 m from the waterline, 

representing the proximal and distal foreshore, respectively. The foreshore sediments are 

regularly submerged with seasonal changes in water level as well as during storm surges. The 

corer was equipped with an inner, segmented PVC core, each segment measuring 10 cm long. 

Upon opening the core, each segment was covered with a polyethylene cap. All proximal 

foreshore sites, except at Marie Curtis Beach, were limited to a sampling depth of 20 cm due to 

the high water content below that depth. All samples were kept cool until returned to the 

laboratory where they were stored at -25°C until analysis. 

2.3 Microplastic quantification 

The sediment samples were dried at 70°C and weighed. All samples, except those collected by 

gravity core, were sieved using a Taylor sieve shaking apparatus with sieve mesh sizes of 5.6 

mm, 2.0 mm, and 0.063 mm for 5 minutes at 60 Hz. Consolidated sediment samples with high 

clay fractions were first wet sieved through a 0.063 stainless steel sieve, then dried and weighed 

again to calculate the fine fraction. Following sieving, each fraction was weighed, the >2 mm 

and >5 mm fractions were visually examined for microplastic, and the >0.063 mm fraction was 

transferred through a sample splitter. Half of the >0.063 fraction was used for density separation. 

Gravity core samples were not separated by sieving because their very fine grain size resulted in 

flocculation during drying. The resultant clumps did not disaggregate during sieving, but the 

estimated lower grain size limit was 0.025 mm.  All samples were density separated using a 

sodium polytungstate (SPT) density separation technique. Each sample was combined with SPT, 

(1.5 g cm
-3

), magnetically stirred for 2 minutes and then transferred to a glass separation funnel 

to settle. After draining the non-buoyant material, the buoyant material was drained into a 
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polycarbonate/polyester 0.053 μm sieve, rinsed thoroughly with filtered deionized water, 

transferred to a second separation funnel containing 500 mL of filtered deionized water, and then 

allowed to settle. The resulting non-buoyant and buoyant fractions were consecutively drained 

through a polycarbonate/polyester 0.053 μm sieve and transferred to glass vials. Samples were 

dried at 70°C and were covered until visual processing. Samples collected using the gravity corer 

were not split or sieved; the microplastic-containing fraction was separated by decanting and 

filtering through VWR
® 

Grade 114 qualitative fast flow 25 μm filter paper.  

Microplastics were visually identified using a Nikon SMZ1500 stereo microscope at 

magnifications ranging from 15× to 225×. With decreasing particle size, the ability to identify a 

particle as plastic becomes reduced due to fewer visual and textural clues as discussed by Lenz et 

al. (2015) and Song et al. (2015). Even though particles at the lower end of the size limit defined 

by the filter or sieve can be magnified sufficiently, lower observation limits are constrained by 

the ability to distinguish synthetic particles from other particles using color (bright, non-natural 

colors are easier to detect), presence of shiny lustre (often associated with plastics) and other 

visual and textural cues. In addition, the higher the magnification, the more time is needed to 

process a sample. In light of these limitations, the lower size limit of visual identification of 

plastics is estimated to be ~0.25 mm. Microplastic particles were counted and sorted by type into 

3 categories: fibres, fragments and spherical beads. All particles were photographed using a 

Nikon digital camera DXM1200F connected to the microscope. 

Throughout the sampling and laboratory analysis, precautions were taken to minimize 

contamination of the samples from airborne microplastic. Containers holding samples were kept 

covered with aluminum foil throughout the process except during periods when the samples were 

drying in the closed oven. The laboratory surfaces were routinely wiped down and all beakers, 

trays, containers, funnels, tools and sieves were thoroughly washed and rinsed with filtered 

deionized water before and after each use and were stored with openings covered in aluminum 

foil. Metal and glass containers and tools were used in all analyses, except for a 

polycarbonate/polyester mesh sieve. Sampling containers used in the field were plastic; however, 

precautions were taken that all materials were either cleaned prior to use or were new and 

unopened containers. Clothing worn by researchers were of natural fibres and in the laboratory, 

white cotton laboratory coats were worn. During analysis, doors to the corridors were kept closed 

whenever possible. To test for airborne microplastic contamination levels during sample 

processing in the laboratory, petri dishes (cleaned and microscope inspected) were set in the 

working space of each lab room and the drying oven for 2 hours, immediately followed by visual 

inspection with the same stereo microscope used for sediment sample analysis. Two replicate 

tests were conducted for each space. 

2.4 Polymer identification 

In order to determine the relative abundance of various polymer compositions, microplastic 

fragments and beads were randomly selected for analysis by Raman spectroscopy and X-ray 

fluorescence spectroscopy (XRF) at the Museum Conservation Institute at the Smithsonian 

Institution. Raman spectroscopy was conducted with a NXR Fourier-transform Raman module 

coupled to a 6700 Fourier transform infrared spectrometer (Thermo Electron Corporation, 
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Madison, WI, USA). The FT-Raman module was equipped with a continuous wave near infrared 

ND:YVO4 excitation laser (1064 nm), a germanium detector cooled with liquid nitrogen and a 

CaF2 beam splitter. Laser power was chosen empirically to maximize signal-to-noise ratio (SNR) 

without damaging the sample, and ranged from 0.01-0.07 Watts across a 50 micron round laser 

spot.  Spectra comprised a co-addition of 64-2048 scans collected at 8 cm
-1

 resolution across 98-

3994 cm
-1

 Raman shift. The performance of the spectrometer was checked against a reference 

scan of polystyrene and recalibrated as necessary each day of analysis. Raman spectra were 

plotted with OMNIC™ software (Thermo Scientific, Madison, WI, USA) and compared to 

commercial spectral libraries
1
 and custom libraries prepared by the Smithsonian’s Museum 

Conservation Institute. All spectra were analyzed using the automated search function of the 

software and also visually before identification was finalized. Of the 6,331 plastic particles 

identified in the sediment samples, a total of 90 particles were analyzed by Raman spectroscopy. 

Using a random number generator, up to twelve particles were selected from three tributary 

samples and two 1 cm intervals from each of the five nearshore gravity core samples. Particles 

selected by the random number generator that could not be successfully analyzed (i.e. the 

material was too dark or thin) were replaced by those associated with the next randomly 

generated number. Fibres were excluded due to their insufficient diameter and volume. Some 

samples were also analyzed by X-ray fluorescence spectroscopy (XRF) to confirm the presence 

of chlorides in suspected polyvinyl chloride plastics. The instrument used was a Bruker Artax 

400 μXRF spectrometer equipped with a Rh-tube, a poly-capillary lens with a ~100 μm focal 

spot and a Peltier-cooled Si-drift detector. The excitation voltage ranged between 25-50 kV and 

the current ranged between 490 and 492 μA.  

2.5 Geographic spatial analysis 

Population density and plastics-related industries were mapped on a watershed basis to gain 

insight into the relative levels of urban and industrial waste that may be expected to enter the 

lake through tributaries along the shoreline of Lake Ontario. Esri
®
 geographic information 

software ArcGIS was used to calculate and map these two variables and to map the spatial 

variation of microplastics. Geographic shapefile datasets for the primary-level watershed 

boundaries (areas draining to Lake Ontario and the St. Lawrence River) and quaternary-level 

watershed boundaries (river and coastal stream catchment basins) were retrieved from the 

Government of Ontario Open Source Data Catalogue and Land Information Ontario. The 

datasets were used to generate a shapefile for quarternary-level watershed boundaries in which 

only those watersheds that drain into Lake Ontario and the St. Lawrence River were included, 

and in which all watersheds include a portion of the Lake Ontario or St. Lawrence River 

shoreline (Fig. 1). Multiple drainage points per watershed were permitted where small coastal 

creeks were located and for which separate quaternary-level watersheds were not delineated. 

                                                           
1
 HR FT-Raman Polymer Library (copyright 1997-2001, 2004 Thermo Electron Corporation for Nicolet Raman). 

HR Pharmaceutical Excipients FT-Raman Library (copyright 1999, 2004 Thermo Electron Corporation for Marcel 

Dekker, Inc.). FDM Retail Adhesives & Sealants (Fiveash Data Management, Inc., Madison, Wisconsin, USA) 
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Canadian 2011 Census data obtained from Statistics Canada were used to determine the 

approximate human population of each watershed. Wastewater treatment plants proximal to the 

Ontario shoreline of Lake Ontario and St. Lawrence River were plotted using facility addresses. 

Storm drain outlets and combined sewer overflow outfalls along the tributaries and lake shore are 

densely located, particularly in urban regions. The abundance of outfalls would be expected to 

correlate well with population levels on the scale of the study, as indicated by a map showing 

storm drain outfalls along Taylor Creek, tributary of the Don River (City of Toronto, 2006). 

They are therefore not individually mapped in this study. Plastics-related industry contact 

addresses were collected from ThomasNet, an online supplier discovery and product-sourcing 

directory. Through the search engine, businesses with descriptions or names containing the word 

‘plastic’ were selected, and verified to be in the plastics industry by qualitative analysis of the 

description. Results were constrained to suppliers located in Ontario, Canada and categorized 

according to type: manufacturer, distributor and service. All businesses were considered equally 

in counting the number of businesses located in each watershed. For businesses with multiple 

locations, all locations in Ontario were included. The search was not exhaustive, and the list of 

locations used in this study may be incomplete; however, registration in the ThomasNet directory 

is free and includes a large number of plastics-related businesses. Geographic locations of 

microplastics samples (N=51), recorded using a handheld Geographic Positioning Device (GPS), 

were formatted into a point feature shapefile. Datasets were converted within ArcGIS to a 

common projected coordinate system used for this project: North American Datum 1983, 

Universal Transverse Mercator, Zone 18 North (NAD83 / UTM-18N). Spatial analysis was 

completed primarily in vector space, but drainage area and population were calculated in raster 

space at a resolution of 100 m. Plastics-related industry counts were calculated using a spatial 

join function.  

3. Results 

3.1 Microplastics abundance 

A total of 6,331 particles were visually identified as microplastics. Microplastics abundance for 

each sample site was normalized to particles per kg of dry sediment (N kg
-1

, dw) using the initial 

mass of the dried sediment sample (Table 1). Microplastics were identified in every sediment 

sample, and abundances varied between 20 and 27830 kg
-1

 (Fig. 2). Maximum microplastics 

abundance was found at site P-EC2, at the mouth of Etobicoke Creek. The sample was primarily 

composed of algae, and therefore the extrapolated total number of microplastics is exceptionally 

high due to the low mass of the dried algae. Additional results and analyses presented here 

exclude this data point unless specifically noted. On average (not including P-EC2), 

microplastics abundance was 760 kg
-1

. In the sample processing lab, the drying oven and 

microscopy lab airborne contamination levels were 2, 3 and 1.5 fibres hr-1 of exposure, 

respectively on the scale of a standard glass Petri dish (area: A=64 cm
2
). During processing, 

extreme caution was taken to minimize sample exposure. Contamination of the sediment samples 

with fibres may have occurred during the drying stages of sample preparation during which 

sample containers (A=2-315 cm
2
) were exposed for up to 24 hours.  
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Nearshore sediments contained on average the greatest abundance of microplastics (980 kg
-1

), 

followed by tributary sediments with 610 kg
-1 

and beach sediments with 140 kg
-1

 (Fig. 3a). 

Microplastics in nearshore sediments were most concentrated in Humber Bay and Toronto 

Harbour. Microplastic abundances of > 1000 kg
-1

 were found only at sites in the Greater Toronto 

Area (GTA) and offshore of Oakville (sample S-7541), west of Toronto. Microplastics 

abundance, as recorded in the sediments sampled from the gravity core, generally decreased 

within the top 2 g cm
-2 

of sediment accumulation, but microplastics were found at all sampled 

depths up to 15 cm (equivalent to 11.2 g cm
-2

 accumulated sediment mass) below the sediment 

surface (Fig. 4a). Nearshore sediments collected with the gravity cores had relatively high 

microplastic concentrations compared to the trap and grab samples; average microplastic 

abundance for gravity core, trap and grab samples were 2130 kg
-1

, 1070 kg
-1

 and 730 kg
-1

, 

respectively.   

Microplastics abundance in tributary sediments appear to display variability on small spatial 

scales (Fig. 2, Table 1). For example, in Humber River and Etobicoke Creek, downstream sites 

contained microplastic counts one to two orders of magnitude greater than sites within 1 km 

upstream. Abundances of microplastics in beach samples appear to decrease with greater 

distance from Toronto (Fig. 4c). Microplastic contamination loads in Lake Ontario are 

comparable to those reported in similar studies from around the world, as summarized in Table 

2. 

3.2 Microplastic morphology 

Microplastics in nearshore depositional zones were almost exclusively < 2 mm in size. 

Microplastics > 2 mm were found only in one nearshore sediment sample in Toronto Harbour 

(site S-3030). Plastic particles > 2 mm were slightly more common in tributary sediments with 

84 particles at site P-EC2 and 1 particle at site P-RC2; overall, 4% of the microplastics found in 

tributary samples were > 2 mm in size. Approximately 8% of plastics in beach samples were > 2 

mm, the majority of which were found at Marie Curtis and Sunnyside (Fig. 5a) beach sites and at 

the mouth of Etobicoke Creek (sample P-EC2).  

Fragments and fibres were the dominant morphologies for microplastics < 2 mm across all 

depositional zones, with beads being a minor component (Fig. 3b). Fragments (including films) 

and beads (industrial pellets) were the most common microplastics > 2 mm. Fibres were most 

abundant in nearshore samples and least abundant in tributary samples. Beads were found in all 

depositional environments, but were not found in the sediment traps.  

In general, microplastics were of variable colour, texture, grade of degradation, size and shape. 

Fibres were highly regular in diameter along their entire length and varied in colour and length 

from tens of microns to several millimeters (Fig. 5b). Irregularly shaped, bulbous to wispy 

fragments with smooth surfaces and translucent diaphaneity were common (e.g. Fig. 5c, f). 

Beads were mainly spherical, translucent, amber or black, and sometimes cracked or fragmented 

(Fig. 5c, far right column). Oblong, helical forms composed of rigid, opaque material were 

common in the tributary and nearshore sediments, particularly in Etobicoke Creek (Fig. 5d). 

These particles had smooth clean surfaces and did not appear fragmented. In a conservative 
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classification, we estimate that at least 4% of all microplastics were of this form. At Etobicoke 

Creek, however, these particles made up ~30% of all fragments < 2 mm. Non-rigid, black, 

opaque particles appearing as amorphous chunks or long thin helical twists accounted for 7% of 

microplastics collected in the study (Fig. 5e).  

3.3 Polymer composition 

Of 90 suspected microplastics analyzed using Raman spectroscopy, 60 (67%) were positively 

identified as synthetic polymers. An additional five particles could not be identified but were 

found to contain phthalates, which are plasticizers, and toluidine red, a pigment commonly used 

for plastic products. Three samples were identified as non-plastic. These particles, mistaken for 

microbeads, were identified as quartz and calcium carbonate and were likely well-rounded sand 

grains. Thirty-one percent of the analyzed particles were identified as PE, 10% as PS and 4% as 

polyurethane (PU) (Fig. 6). Polypropylene (PP), PVC, and polystyrene sulfonate (PSS) each 

made up 3% of the analyzed particles. Other polymers including PET, polymethyl methacrylate 

(PMMA), polyvinyl/vinyl acetate copolymer, PMMA-PS copolymer or mixture, acrylonitrile 

butadiene styrene (ABS), nylon, phenoxy/epoxy resin, and polymethylsiloxane (silicone) were 

identified (Fig. 6). Twenty-two samples remain unidentified. Microplastic counts were not 

adjusted to reflect the plastic to non-plastic ratio of the Raman analysis results due to the low 

percentage (1.4%) of particles analyzed.  

Several patterns relating plastic morphology and composition were recognised. Fragments 

identified as PE were consistently characterised by translucent diaphaneity and irregular wispy 

and bulbous forms, also noted by Corcoran et al. (2015). The black opaque rubbery particles 

could not be identified using Raman spectroscopy due to their tendency to combust even at very 

lower laser power. This problem was also noted by Lenz et al. (2015); however, their analyses 

provided identification of similarly described particles as black tire rubber. Yellow, translucent, 

rigid fragments were commonly identified as PU. Several of the smooth, spherical, transparent, 

amber-red beads (Fig. 5c, bottom right) were identified as polystyrene sulfonate (PSS).  

3.4 Watershed analysis 

A total of 66 watersheds were analyzed for their population and abundance of plastics-related 

industries. The Don River watershed had the greatest population, whereas the Toronto Urban 

Catchment watershed had the highest population density with ~7380 people km
-2

 (Fig. 7).  Both 

of these watersheds empty into the Toronto Harbour. There are approximately 20 major 

wastewater treatment plants along the Canadian shore of Lake Ontario and the upper St. 

Lawrence River (Fig. 7), which could contribute plastic debris to the lake. With regards to 

industry intensity, Etobicoke Creek contains the largest number of plastic product manufacturers, 

distributors and service businesses combined, at 62 business facilities. There is a clear clustering 

of the plastic industry in the Greater Toronto Area extending towards the Hamilton Region (Fig. 

8). Several watersheds did not include any plastic industry facilities, as identified through the 

ThomasNet directory.  

4. Discussion 
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4.1 Lateral trends in deposition 

The intense microplastics contamination in samples from the Greater Toronto Region may be 

attributed to the high population density and industrial activity in the watersheds draining into 

this region. The Etobicoke Creek, Mimico Creek, Humber River, Toronto Urban Catchment, and 

Don River watersheds have a combined population of 3.4 million, which accounts for 40% of the 

total population of all watersheds draining into Lake Ontario, in Canada. Likewise, half of the 

plastics production facilities in the study region are located in the same five watersheds. Higher 

resolution sediment sampling along the northwest shore of Lake Ontario may reveal a clearer 

trend between microplastics abundance and watershed population- and industry-density. For the 

same reason, accounting for sewage and storm outlets as point sources of microplastics by 

sampling consistently near these outlets is suggested for future studies.  

The high concentrations of microplastics in Toronto Harbour and Humber Bay may also be 

influenced by the morphology of the shoreline at those locations. It has been shown that 

deposition of microplastics in bottom sediments occurs in low energy environments, such as 

harbours and lagoons, where fine particles supplied by fluvial and anthropogenic outputs can 

settle (Claessens et al., 2011; Vianello et al., 2013). Average circulation patterns in Lake Ontario 

as modeled by Beletsky et al. (1999) show that in both summer and winter, currents in the 

vicinity of Toronto Harbour move along the shore from southwest to northeast. We expect that 

the peninsula located just west of Humber Bay protects the southeast shore of Humber Bay and 

the Inner Toronto Harbour from severe waves during the dominant anticyclonic surface water 

circulation during the summer and winter in the northwestern basin of Lake Ontario (Beletsky et 

al., 1999).  Similarly, the Toronto Islands may reduce water flow velocity in the Inner Toronto 

Harbour and Humber Bay during easterly long-fetch storm events. The relative abundance of 

microplastics in this region may result from the lower frequency of resuspension and transport 

events associated with weaker hydrodynamic forcing. Although the “harbouring effect” may 

allow greater accumulation of microplastics contamination, it is only one of many variables 

affecting the spatial variability of plastic debris. For example, Hamilton Harbour has has 

relatively low microplastic contamination levels in comparison to what would be expected given 

the coastal morphology of the harbour. This indicates that microplastics in sediments are 

foremost dependent on source loads. 

The dense concentration of microplastics at the mouth of Etobicoke Creek compared to upstream 

sediments is consistent with reduced boundary shear stress, the driving force of particle motion 

in a transport fluid, as tributaries widen and flatten into the lake. In a marine model study, strong 

unidirectional flows associated with internal waves and storm events were needed to transport 

non-buoyant plastic particles down-slope in a submerged environment (Ballent et al., 2013). As 

theoretically applied to Lake Ontario, microplastics should be transported by rapid flow in 

tributaries and during storm events and deposited as turbulence and bottom currents subside, for 

example, at the mouths and banks of tributaries. Our results show, however, that microplastics 

are also found in tributary sediments where higher flow regimes dominate, and in nearshore, 

open environments where sediments are exposed to erosion and large-scale transport. Further 

research is needed to understand the similarities and differences between the transport mechanics 
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of microplastics and other sedimentary particles such as clastic grains, clays and organic 

aggregates in aquatic environments.  

Microplastic contamination levels may also be influenced by the presence of obstructing 

structures, variations in topography, and areal extent of the watershed. Reduced flow rates due to 

obstructing structures or flatter topography may be associated with increased microplastic 

deposition upstream, thereby reducing microplastics abundance at the river mouth. Several of the 

watersheds in the study are amalgamated river systems, many of which have control structures 

such as dams, weirs, reservoirs and lakes. The input locations of microplastics should be 

considered in geographic relation to the topographic and anthropogenic features of the tributary. 

Several questions to be addressed by future investigations of microplastics transport through 

tributaries are: What distances are microplastics being transported before being deposited? What 

are the minimum flow velocities and shear stresses found in tributaries and how much do these 

values vary over the length of a tributary? Where in the tributaries are shear stresses sufficient to 

transport microplastic? What percentage of the plastics found in the sediments were originally 

positively buoyant?  

Spatial variability on scales of tens to several hundreds of meters was exhibited in the Toronto 

Harbour and Humber Bay region where sample sites were close and where multiple samples 

were collected from the same site. Tributary site P-EC2, for example, had two orders of 

magnitude more microplastic particles than the beach sediments within 100 m away at Marie 

Curtis Park, and one order of magnitude more microplastics than sediments only 350 m 

upstream. Similarly, the four separate grab and trap samples taken from the Humber Bay Index 

station (S-7546 and S-HB14, S-3025, T-2047) along the Toronto waterfront had microplastic 

counts between 40 and 2210 kg
-1 

highlighting the temporal variability and meter-scale spatial 

variability of samples collected from the same station. The observed variability is possibly 

reflective of the turbulent and random nature of fluid flows and surface characteristics such as 

substrate type, topography, roughness and presence of vegetation (e.g. Vianello et al., 2013; 

Corcoran et al., 2015).   

4.2 Vertical trends in deposition 

The nearshore gravity core samples provide insight into the vertical variability of microplastics 

in lake bottom sediments where plastic concentrations are possibly the highest in Lake Ontario 

(Fig. 4a). Microplastic abundance was extrapolated according to sediment weight, and therefore 

the relative abundance of microplastics in the top 2 cm can be attributed to the greater content of 

water and natural organic material in the upper unconsolidated layer.  

Sediment accumulation rates of ~1.7 mm yr
-1

 are estimated for the nearshore environment of the 

western basin of Lake Ontario based on pollen dating of Ambrosia (first occurrence 120 years 

B.P.) as calculated by Rukavina (1976). The deepest gravity core, which penetrated to a depth of 

15 cm, may therefore represent the last ~90 years. However, the increase in water content in the 

unconsolidated sediment of the upper layer points to a much shorter time period. Furthermore, 

frequent resuspension of surface sediments in nearshore (depth < 40 m) lake environments by 

storm events (Klump et al., 2000) can resuspend material on scales equal to those deposited 
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annually in lake basins within a period of days, as shown for Lake Michigan (Eadie et al., 1996; 

Schwab et al., 2000). Material resuspended by these events may be confined to the nearshore in 

the presence of a coastal plume (Mortimer, 1988; Hall, 2008). Further research is needed to 

constrain the timescales of microplastics transport and deposition in transient nearshore and more 

permanent offshore basins. Microplastics in offshore basin sediments of Lake Ontario were 

reported to extend to a maximum of 8 cm below the sediment surface (Corcoran et al., 2015), 

which is consistent with a lower sediment accumulation rate compared with that of the nearshore 

locations studied here.  

4.3 Physical characteristics and transport behaviour  

The density and shape of microplastic particles may also impact distribution patterns identified 

in Lake Ontario. Plastics range in density from ~0.8 to 1.4 g cm
-3

, which is less than the average 

density of mineral sediments (1.6-2.7 g cm
-3

, (Fettweis et al., 2007; Hidalgo-Ruz et al., 2012). 

Theoretically, PE and PP particles should float because their densities are lower than that of 

freshwater, however, PE was the most common type of plastic among the Raman analyzed 

samples. Plausible mechanisms for the deposition of low-density polymers in submerged 

sedimentary environments include net density increase of microplastic particles by biofouling 

(e.g. Ye and Andrady, 1991; Andrady, 2011; Zettler et al., 2013; McCormick et al., 2014), 

adsorption of natural substances to the surface (Frias et al., 2016), inclusion of inorganic fillers 

during manufacturing (Corcoran et al., 2015) and faecal express (Cole et al., 2013; Setälä et al., 

2014; Zalasiewicz et al., 2015). Inorganic fillers were not identified in any of the Raman spectra 

of the particles identified as PE and PP in this study, however, many microplastics in our study, 

particularly those with irregularly shaped, textured or degraded surfaces, appeared to have clay-

like particles adhered to their surfaces. Microplastic particles made of PE and PP and with 

greater surface area to volume ratios, such as fibres and irregularly shaped fragments, are 

expected to have lower settling velocities and lower shear stress values needed to initiate particle 

motion than microplastic particles of high-density polymer types and mineral sediments. They 

may therefore be transported at lower flow and turbulence levels and be more readily transported 

offshore, consistent with the findings of Corcoran et al. (2015). Denser microplastics may behave 

more similarly to mineral sediments and be more constrained to nearshore areas.  

Comparisons of microplastic types recovered from samples of different sedimentary 

environments is challenging because of the variations in sampling methods. Simply comparing 

abundances, as normalized to sediment mass, the high proportion of fibres to fragments in the 

nearshore sediments compared to the tributary sediments may suggest that fibres are transported 

through suspension for greater distances than fragments, which may have higher settling 

velocities or are transported as bedload. Sediment traps, which collect particles falling out of 

suspension from the overlying water column, contained almost exclusively fibres. The overall 

low proportion of microbeads in all environments contrasts with the surface water results of 

Eriksen et al. (2013), suggesting that microbeads remain suspended in the water column as a 

result of their low density. Notwithstanding, the low sampling resolution combined with the use 

of multiple sampling techniques make these observations speculative. More thorough analysis of 

microplastic morphology and composition may reveal trends regarding which types of plastics 

are most easily transported to depth in an aquatic environment. 

 

4.4 Potential sources 
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Our results indicate that microplastics in coastal sediments of Lake Ontario likely originate in 

proximal watersheds and are likely transported to the site of deposition through tributaries. 

Future studies of microplastics in sediments directly adjacent to storm water, wastewater 

treatment plant, and combined sewer outfalls may reveal a clearer trend regarding how much 

plastic is contributed by these sources, and how microplastics abundance in the sediment varies 

with distance from outfalls. Assigning particular origins to the microplastics is challenging due 

to their small size, fragmented nature, and the unknown range of possible sources. A speculative 

discussion of the potential sources of microplastics contamination in Lake Ontario follows.  

Polyurethanes are commonly used in the production of foams for furniture, as well as in 

adhesives such as construction glue products, surface coatings and sealing applications. The 

black, opaque fragments with rubber-like consistency (Fig. 5e) may originate from vehicle tires 

as suggested by Lenz et al. (2015). The natural wear down process of tires during driving may 

contribute small particles such as those seen in our study. These particles could easily be washed 

from roads to storm drains during rain events. Similarly, the shredding of used tires for recycling 

purposes referred to as crumb rubber, as defined by Regulation 347: General Waste Management 

under the Environmental Protection Act, Revised Statute of Ontario, 1990, may also contribute < 

2 mm particles. Fibrous microplastics are thought to originate from the production, washing and 

the natural aging of textiles, such as synthetic clothing and carpets (e.g. Browne et al., 2011).  

The amber-colored beads (Fig. 5c, right most column) identified to contain PSS may be 

polystyrene resin beads that are commonly used as an ion exchange medium for water 

purification and softening, as well as in various medical and industrial applications (Dardel, 

2016). The beads represent a source of microplastics not yet discussed in the literature. 

Microbeads have recently become an environmental focus in the scientific and political realms 

with the result of new legislation. The Microbead-Free Waters Act, adopted in the United States 

in 2015, bans the manufacture of microbead-containing cosmetic products by July 2017. In 

Canada, microbeads manufactured for use in cosmetic products may be added to the List of 

Toxic Substances in Schedule 1 of the Environmental Protection Act of 1999. This ban would 

not, however, address the majority of the beads identified in the sediments, assuming they are 

indeed used for non-cosmetic purposes. It is possible, however, that many of the irregularly 

shaped particles in our samples which were categorized as fragments, originate from cosmetic 

products. Leslie (2014) reports that microplastics used in cosmetics, such as facewashes and 

toothpastes, range in shape from spherical to amorphous, suggesting that ‘microbeads’ are not 

limited to bead morphologies.  

The oblong, helical fragments (Fig. 5d) could originate from finishing processes during the 

manufacture of injection-moulded plastics. A common finishing process, termed deflashing, 

involves the removal of extraneous material, flash, from the seams and edges of solidified 

products where resin may have leaked into voids between the mould halves (SME, 2016). The 

shaving-like particles identified in our samples could potentially be the waste flash particles 

resulting from this process. A study by Lechner and Ramler (2015) identified an industrial point 

source of microplastics along the Danube River in Austria. According to their investigation, the 

allowable plastic loads in wastewater of the manufacturing plant was 30 mg l
-1

, which translates 
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to the equivalent of almost 95 tons of plastic waste per year, as calculated for flow rates of 100 l 

s
-1

. Considering that plastics are not a regulated constituent of waste water in Ontario under the 

Ontario Environmental Protection Act, R.S.O. 1990, it is possible that substantial loads of 

microplastics are being released by the manufacturing and moulding facilities and draining 

directly into Lake Ontario.  

5. Conclusions and Outlook 

The spread and quantity of microplastics found in nearshore, tributary and beach sediments of 

Lake Ontario suggest that this contaminant may be entering the food web through ingestion by 

benthic fauna and higher-trophic organisms such as birds and fish. The wide range of polymers 

and particle morphologies represented in Lake Ontario sediments reflects various sources, 

potentially traced to industrial, transportation, construction and consumer activities. Reducing 

the influx of microplastics contamination will similarly require a range of measures addressing 

the various sources, for example, continued improvement and monitoring of waste management 

programs in cities and in industrial settings, such as Operation Clean Sweep, as well as an 

accelerated transition to a circular plastics economy (Neufeld et al., 2016). We suggest future 

monitoring of microplastics in the sediments of Lake Ontario and feeding tributaries, particularly 

in the GTA region, as well as a more detailed investigation of the input locations of microplastic 

along the tributaries and lake shoreline to further improve strategies targeting contamination 

reduction.  
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depth of zero is assigned to beach samples taken above the lake water level. Microplastic 

abundance is reported as particles kg of dry sediment; N kg
-1

. The fine fraction (clay and silt 

sized particles) is reported as the percent of sediment < 63 μm.  

Sample Site* Environ. Type Year Month Lat. (°N) Long. (°) 

Depth 

(m) N kg
-1

  

% sed. 

<63 μm 

S-7481 Six Mile Cr Nearshore Grab 2012 Aug 43.320 -78.979 18 320 6.79 

S-7486 Port Dalhousie Nearshore Grab 2012 Aug 43.228 -79.283 19 290 92.0 

S-7491 Stoney Cr Nearshore Grab 2012 Aug 43.268 -79.671 22 70 24.4 

S-7541 Oakville Nearshore Grab 2012 Aug 43.426 -79.661 21 1360 78.9 

S-7546 Humber Bay Nearshore Grab 2012 Aug 43.623 -79.447 15 280 59.0 

S-7553 Toronto Hb Nearshore Grab 2012 Aug 43.632 -79.370 9 3210 96.7 

S-7501 Pickering Nearshore Grab 2012 Aug 43.794 -79.085 20 230 4.40 

S-7506 Chub Point Nearshore Grab 2012 Aug 43.953 -78.012 21 140 4.23 

S-7514 Trenton Nearshore Grab 2012 Aug 44.088 -77.544 3 800 31.4 

S-7509 Prince Edward Nearshore Grab 2012 Aug 43.958 -76.812 21 430 81.7 

S-7521 North Channel Nearshore Grab 2012 Aug 44.181 -76.735 24 780 97.4 

S-7526 McDonnell Bay Nearshore Grab 2012 Aug 44.234 -76.375 4 120 15.8 

S-7531 Prescott Nearshore Grab 2012 Aug 44.698 -75.532 3 40 1.41 

S-7536 Lake St. Francis Nearshore Grab 2012 Aug 45.137 -74.416 12 80 5.84 

S-3025 Humber Bay, index Nearshore Grab 2014 Jul 43.623 -79.447 15 230 46.6 

S-3026 Humber Rv, mouth Nearshore Grab 2014 Jul 43.633 -79.464 8 730 3.47 

S-3027 Humber Bay, STP  Nearshore Grab 2014 Jul 43.626 -79.466 8 2550 71.2 

S-3028 Toronto Hb, index Nearshore Grab 2014 Jul 43.632 -79.370 9 1590 91.6 

S-3029 Don Rv, mouth Nearshore Grab 2014 Jul 43.642 -79.361 9 1250 96.2 

S-3030 Toronto Hb, west Nearshore Grab 2014 Jul 43.633 -79.390 7 2790 82.0 

S-HB14 Humber Bay Nearshore Grab 2014 Jul 43.623 -79.447 15 50 66.4 

S-TH14 Toronto Hb Nearshore Grab 2014 Jul 43.632 -79.370 9 530 92.6 

S-3031 Hamilton Hb, index Nearshore Grab 2014 Jul 43.289 -79.836 24 130 N/A 

S-3032 Hamilton Hb, west Nearshore Grab 2014 Jul 43.281 -79.872 13 210 N/A 

S-3033 Hamilton Hb, SE Nearshore Grab 2014 Jul 43.285 -79.794 22 160 N/A  

T-258 Hamilton Hb, index Nearshore Trap 2014 Nov 43.289 -79.836 24 260 90.0 

T-2047 Humber Bay, index Nearshore Trap 2014 Nov 43.623 -79.447 15 2210 97.0 

T-1364 Toronto Hb, index Nearshore Trap 2014 Nov 43.632 -79.370 9 750 96.0 

G-HB1 Humber Bay Nearshore Core 2014 Aug 43.630 -79.466 6 1240 77.9 

G-HB2 Humber Bay Nearshore Core 2014 Aug 43.629 -79.469 4 990 88.4 

G-HB3 Humber Bay Nearshore Core 2014 Aug 43.626 -79.473 4.5 3470 91.7 

G-TH1 Toronto Harbour Nearshore Core 2014 Aug 43.631 -79.409 2.5 4270 36.7 

G-TH2 Toronto Harbour Nearshore Core 2014 Aug 43.627 -79.383 5 670 66.2 

P-DR1 Don Rv Tributary Grab 2015 Jun 43.691 -79.360 0.18 480 23.3 

P-HR1 Humber Rv Tributary Grab 2015 Jun 43.652 -79.493 0.23 100 0.28 

P-HR2 Humber Rv Tributary Grab 2015 Jun 43.642 -79.491 0.26 1740 51.8 

P-EC1 Etobicoke Cr Tributary Grab 2015 Jun 43.587 -79.545 0.09 1210 27.7 

P-EC2 Etobicoke Cr Tributary Grab 2015 Jun 43.585 -79.542 2.5 27830 0.00 

P-RC1 Red Hill Cr Tributary Grab 2015 Jun 43.240 -79.774 0.35 100 22.7 

P-RC2 Red Hill Cr Tributary Grab 2015 Jun 43.240 -79.774 0.11 40 1.01 

C-BW1 Beachway Park Beach Core 2015 Jun 43.312 -79.800 0 60 0.09 

C-BW2 Beachway Park Beach Core 2015 Jun 43.312 -79.800 0 60 0.09 

C-BB1 Bronte Beach Beach Core 2015 Jun 43.392 -79.710 0 20 0.04 

C-BB2 Bronte Beach Beach Core 2015 Jun 43.392 -79.710 0 70 0.03 

C-MC1 Marie Curtis Park Beach Core 2015 Jun 43.584 -79.542 0 50 0.06 

C-MC2 Marie Curtis Park Beach Core 2015 Jun 43.584 -79.542 0 190 0.09 

C-SS1 Sunnyside Beach Beach Core 2015 Jun 43.637 -79.450 0 470 0.05 

C-SS2 Sunnyside Beach Beach Core 2015 Jun 43.637 -79.450 0 250 0.09 

C-WB1 Woodbine Beach Beach Core 2015 Jun 43.666 -79.299 0 170 0.03 
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C-WB2 Woodbine Beach Beach Core 2015 Jun 43.666 -79.299 0 50 0.05 

*Abbreviations: Hb: harbour; Rv: river; Cr: creek; STP: sewage treatment plant outfall 

 

Table 2. A summary of average microplastics contamination in various marine and freshwater 

sediments, worldwide, is given. Microplastics contamination is reported as average particle 

abundance per kilogram dry sediment, N kg
-1

 (dw).  

Study Study Area 

Depositional 

Environment 

Avg. 

N kg
-1

 (dw) 

Turra et al., 2014 Sao Paulo, Brazil Marine Beach  0.1
b
  

Dekiff et al., 2014 Germany Marine Beach 2
a
  

VanCauwenberghe et al., 2015 Belgium Marine Beach 6 

Browne et al., 2010 UK Marine Beach ~60
a,b

  

Claessens et al., 2011 Belgium Marine Beach 95
a 

This study Ontario, Canada Lacustrine Beach 140 

Costa et al., 2010 Brazil Marine Beach 310
a,b

 

Mathalon and Hill, 2014 Halifax, Canada Marine Beach 5000  

Claessens et al., 2011 Belgium Marine Harbour 165
a 

Naidoo et al., 2015 Durban, S. Africa Marine Harbour 1165
b,c 

Vianello et al., 2013 Venice, Italy Marine Lagoon 1500
a
  

Frias et al., 2016 Portugal Marine Nearshore 55 

Claessens et al., 2011 Belgium Marine Nearshore 90
a 

This study Ontario, Canada Lacustrine Nearshore 980 

Corcoran et al., 2015 Ontario, Canada Lacustrine Offshore 352
 

This study Ontario, Canada Tributary  760
d 

a
 Modified from Van Cauwenberghe et al. (2015) Table 1 

b
 Using an average sediment density of 1600 kg m

-3
 (Fettweis et al., 2007) 

c
 Using a 1.25 average wet/dry ratio (Van Cauwenberghe et al., 2015) 

d
 Not including site P-EC2. 

 

Figures 

Figure 1. Sampling sites by depositional environment and instrument type for which 

microplastics in sediments in Lake Ontario and the St. Lawrence River were analyzed. 

Watershed boundaries indicate the regions that drain directly into Lake Ontario and the St. 

Lawrence River. 

Figure 2. Microplastics abundance normalized to particles N kg
-1

 sediment (dry weight, dw), 

for 50 study sites in Lake Ontario. The inset shows the Greater Toronto Area in detail.  

Figure 3. (a) Microplastics (< 2 mm) abundance, N kg
-1

 sediment (dw), for beach, tributary and 

nearshore sediments of Lake Ontario averaged (error bars indicate standard deviation) across 

depositional environment. (b) The relative abundance of fibers, fragments and beads averaged 

across beach, tributary and nearshore samples. Samples collected from the St. Lawrence River 

are considered as nearshore samples. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Ballent, Anika  Manuscript page 23 

 

Figure 4. (a) Microplastics (< 2 mm) abundance, N g
-1

 sediment (dw), plotted against cumulative 

sediment mass (g cm
-2

), dw, for nearshore sediments of Humber Bay and Toronto Harbour as 

sampled by gravity core. Cumulative sediment mass (CSM) is a function of the core radius (r), 

sediment mass of the core interval (m), and depth of interval in cm (d): CMS = . (b) 

Microplastics (< 2 mm) abundance, N kg
-1

 sediment (dw), averaged (error bars indicate standard 

deviation) for tributaries draining into Lake Ontario including Don River (DR), Humber River 

(HR), Etobicoke Creek (EC) and Red Hill Creek (RC). In each tributary (except DR), two 

proximal sites were sampled. (c) Microplastics (< 2 mm) abundance, N kg
-1

 sediment (dw), at 

Beachway (BW), Bronte (BB), Marie Curtis Park (MC), Sunnyside (SS) and Woodbine (WB) 

beaches. One proximal and one distal foreshore sample from each beach was collected along a 

transect perpendicular to the waterline. Proximal and distal sites are denoted with a ‘1’ and ‘2’, 

respectively, in the sample name as listed in Table 1.  

Figure 5. Examples of microplastics identified in sediment samples from tributaries, beaches and 

the nearshore lake bottom of Lake Ontario. All scale bars are 1 mm. (a) Macro- and microplastic 

fragments, fibers, foams and pellet isolated from the upper 10 cm of proximal foreshore 

sediments at Sunnyside Beach. (b) Microplastic fragments and fibers isolated from nearshore 

sediment in Toronto Harbour as collected in a sediment trap. (c) Microplastics found in grab 

sediments (sample S-3027) in Humber Bay. Fragments include hexagonal glitter (N=4) and 

whole and fragmented PSS beads (N=4), on right, among other fragments of unidentified source. 

(d) Microplastics from Etobicoke Creek. Long helical fragments may be derived from deflashing 

processes used for finishing injection moulded plastic products. (e) Examples of black, opaque 

fragments with rubber-like consistency found in Humber Bay. (f) Microplastic fragment 

exhibiting bulbous to wispy form and isolated from Toronto Harbour sample G-TH1 at a depth 

of 1-2 cm below the sediment surface. 

Figure 6. Synthetic polymers and compounds which were identified in the FT-Raman 

spectroscopic analysis of particles isolated from Lake Ontario nearshore and tributary sediments. 

Of ninety particles analyzed, 60 were plastic in composition, 3 were non-plastics (e.g. quartz, 

calcium carbonate), 5 were plastic-associated compounds (e.g. phthalates, toluidine colourant), 

and 22 could not be identified.  

Figure 7. Human population map for watersheds draining into Lake Ontario and the St. 

Lawrence River. Locations of wastewater treatment plants on the shoreline of the study are 

included.  

Figure 8. Locations of plastics-related manufacturing, distributing and service facilities within 

the watersheds draining into Lake Ontario and the St. Lawrence River.  
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