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Abstract

Over the last few years, Advanced Driver Assistance Systems (ADAS) have
been shown to significantly reduce the number of vehicle accidents. Accord-
ing to the National Highway Traffic Safety Administration (NHTSA), driver
errors contribute to 94% of road collisions. This research aims to develop a
predictive model of driver eye fixation by analyzing the driver eye and head
information (cephalo-ocular) for maneuver prediction in an Advanced Driv-
ing Assistance System (ADAS). Several ADASs have been developed to help
drivers to perform driving tasks in complex environments and many studies
were conducted on improving automated systems. Some research has relied
on the fact that the driver plays a crucial role in most driving scenarios, rec-
ognizing the driver’s role as the central element in ADASs. The way in which
a driver monitors the surrounding environment is at least partially descriptive
of the driver’s situation awareness. This thesis’s primary goal is the quantita-
tive and qualitative analysis of driver behavior to determine the relationship
between driver intent and actions. The RoadLab initiative provided an in-
strumented vehicle equipped with an on-board diagnostic system, an eye-gaze
tracker, and a stereo vision system for the extraction of relevant features from
the driver, the vehicle, and the environment. Several driver behavioral features
are investigated to determine whether there is a relevant relation between the
driver’s eye fixations and the prediction of driving maneuvers.
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Lay Summary

The number of vehicles on our streets and highways increases every day. This
fact renders the analysis of traffic situations increasingly complicated. Hence,
vehicle manufacturers have been developing Advanced Driver Assistance Sys-
tems (ADASs) to avoid 40% of traffic accidents during the driving environ-
ment. This research tries to develop a predictive model of driver eye fixation by
analyzing the driver eye and head information (cephalo-ocular) for maneuver
prediction in an Advanced Driving Assistance System (ADAS). This thesis’s
primary goal is the quantitative and qualitative analysis of driver behavior to
determine the relationship between driver intent and actions. Several driver
behavioral features are investigated to determine whether there is a relevant
relationship between the driver’s eye fixations and the prediction of driving
maneuvers.

ii
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Chapter 1

Introduction

According to the World Health Organization (WHO), approximately 1.35

million fatalities and 20 to 50 million injuries occur on the roads every year.

Additionally, the WHO predicts that road traffic accidents will rise to become

the fifth primary reason for mortality in 2030 [1]. Evidence has demonstrated

that a considerable number of accidents are due to driver error. Several Ad-

vanced Driver Assistance Systems (ADASs) have been developed to overcome

this issue to diminish road fatalities and injuries by minimizing human error.

1.1 Literature Survey

In recent years, various Advanced Driver Assistance Systems (ADAS), such

as Automatic Emergency Braking, Forward-Collision Warning, Lane Keep As-

sist, and Speed Control and Warning, have been designed to assist drivers in

performing driving tasks. Improving the reliability and robustness of these

systems would certainly have a notable result in reducing the number of colli-

sions and injuries. An ADAS consists of advanced sensors and camera systems
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activated when specific conditions arise [2]. Most of these systems are human-

centric, as the driver plays an essential role in driving events. Some systems

analyze driver behavior in an attempt to predict driver intent in diverse driving

situations.

Most drivers have experienced warnings from their passengers to avoid

dangerous situations such as accidents with other vehicles or pedestrians. An

intelligent ADAS (i-ADAS) works as a co-driver by alerting the driver or even

managing the driving task itself. Detecting the driver’s eye fixation in rela-

tion with the surrounding traffic objects and events could produce meaningful

information to efficiently and effectively assist drivers in critical situations [3].

Probably the most significant research area is the determination of driver

behavioral features that make ADAS more efficient and effective. The study

of identifying objects eliciting visual responses from drivers as it relates to

maneuver prediction is known as predictive driver modeling.

This research focuses on driver maneuvers based on a model for driver’s

eye fixation. The next Section is devoted to driver maneuvers.

1.1.1 Advanced Driver Assistance Systems

ADAS, as the name suggests, are designed to provide safety for drivers in

a multitude of driving conditions. These systems assist in minimizing human

error, which has been proven to reduce road accidents. ADAS can detect

obstacles in the environment by using inputs from several sources such as lidar,

radar, and cameras. We provide a summary of ADAS systems in this Section,

considering the relationship between the driver’s role and these systems, which

is classified according to levels of automation. The Society of Automotive

Engineers (SAE) has classified driving automation into five levels [4]:
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Level 0 Systems

In Level 0 of automation, the driver performs the driving and may be

aided by systems that do not monitor the environment or the driving agent

itself. An example of this is given by Emergency Braking Systems, that do

not technically drive the vehicle but assist the driver in the braking task.

Level 1 Systems

Level 1 ADASs support single functionalities in various driving situations.

An example of a Level 1 system is Electronic Stability Control (ESC) that

enhances vehicle stability by recognizing and reducing skidding. If the sys-

tem recognizes a vehicular stability problem, it automatically and temporarily

employs braking to stabilize the dynamics of the vehicle.

Level 2 Systems

Level 2 systems can perform various maneuvers, combining longitudinal

and lateral dynamic aspects of driving. An example of Level 2 automation is

given by Highway Assistance Systems (HAS) that automatically control speed

and steering of the vehicle to remain in a particular highway lane.

Level 3 Systems

Systems at this level of automation perform most if not all driving ma-

neuvers by controlling driving actuators, but require driver vigilance. In case

of system failure, the driver must be ready to take back vehicular controls.

These systems need redundancy in sensors and control units in order to per-

form driving tasks without driver involvement.
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Level 4 Systems

Level 4 systems have the capability of performing some driving tasks with-

out requiring driver vigilance or involvement. An example of a Level 4 system

is a Level 3 vehicle equipped with independent valet parking automation. In

this scenario, the vehicle is capable of finding a parking area in the absence of

the driver.

Level 5 Systems

The final automation step is Level 5, and describes fully automated vehi-

cles. Level 5 vehicles do no require a driver to make decisions and actuate

vehicular controls. The driver is considered as a passenger who sets the desti-

nation and the vehicle performs the transportation task autonomously.

1.1.2 Driving Maneuver Prediction

Driver maneuver prediction is the primary purpose of driver modeling in

ADAS. Authors in [5], [6] and [7] categorize driver maneuvers according to

traffic and road infrastructure (See Table 1.1).

To predict driver maneuvers, we need to model the temporal aspects of the

driving context and infer driver intent. This task is challenging because driver

intent and decisions are not directly measureable, and the interactions between

them are poorly understood. Driver behavior is affected by several internal

and external factors [7]. These include driving skills, cognitive capabilities,

physical features, environmental situations, weather, traffic conditions, and so

on. Developing a model to predict driving maneuvers that includes the sum

of these factors is complex in practice. Currently the models proposed in the

current literature only consider a subset of the above factors.
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Table 1.1: Classification of driving maneuvers [5][8]

Reichart Tölle

Follow lane Start
React to obstacle Follow

Turn at intersection Approach vehicle
Cross intersection Overtake vehicle
Turn into street Cross intersection

Change lane Change lane
Turn around Turn at intersection

Drive backwards Drive backwards
Choose velocity Park
Follow vehicle

Cognitive Driver Model:

These models consider visual perception and attentional features that a

driver exhibits while performing maneuvers. From a psychological viewpoint,

cognitive driver behavior modeling involves distraction, response time, abil-

ity to react, vision, stress, fatigue, and so on [9]. Metari et al. [10] examined

cephalo-ocular behavior features in different driving scenarios, such as crossing

or stopping at an intersection. They showed the cephalo-ocular features play

a critical role in effecting maneuvers. Other researchers have studied the in-

fluence of human vision on taking actions in specific situations such as driving

[11], [12].

The study of driver behavior in a cognitive structure is a valuable source

of information to determine the driver’s motivation for making an appropriate

decision [13]. For instance, when a driver intends to make a left/right turn, the

driver’s visual behavior indicates the potential intent. Baumann and Krems

[14] used driver cognitive structures and presented an operational model of

driver situation awareness.
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Behaviorist Driver Model:

Such models utilize information in the driver’s surrounding environment,

including vehicles, pedestrians, and other objects on the road, to find modali-

ties of driver interaction with the surrounding environment. Modern vehicles

are equipped with radar [15] for detecting distance, lidar [16] for obstacle de-

tection, visual systems [17] for road object detection, and vehicle navigation

systems, such as GPS [18].

The models examined in this literature survey are based on one of these

two classes, and it is clear that each group has its own insufficiencies. Ob-

viously, a combination of information from both models can be valuable and

practical in understanding driver behavior and predicting the most probable

next maneuver.

1.2 Research Overview

Te main objective of this research is to analyse driver eye fixation for

maneuver prediction in the context of ADAS. Visual attention and eye fixation

plays a crucial role in the research on Driver Safety and Enhanced Driver

Awareness (EDA) Systems to inform drivers on incoming traffic conditions,

and warn them appropriately.

1.2.1 Primary Conjecture

Cephalo-ocular behavior has shown its usefulness in predicting driver ma-

neuvers [19]. Probably the most efficient approach may be to evaluate and

control driver maneuvers to stop or minimize hazardous maneuvers [20]. Based

on observation, we believe driver eye fixation and driver visual attention can
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be used to build better predictive models of driver behavior in the context of

predicting maneuvers [21].

1.2.2 Hypotheses

In this Section, we list and describe the hypotheses on which this research

is based. Our objective is to empirically demonstrate their validity.

1. Driver maneuvers can be partially predicted by Cephalo-ocular behavior

features and dynamic vehicle features: Zabihi et al. have demonstrated

that driver intent can be predicted by driver behavior features and vehicle

dynamics features [22]. They have demonstrated that on their own,

neither ocular behavior nor vehicular dynamics are sufficient to predict

driver maneuver with adequate accuracy.

2. Traffic object detection and recognition within the driver’s visual atten-

tion is possible: The driver’s visual attentional field consists of a circle in

3D space within the plane that contains the Point of Gaze (PoG), per-

pendicular to the Line of Gaze (LoG). The circle generally projects onto

the imaging plane of the stereo sensor as a 2D ellipse. We test this hy-

pothesis by the fact that we can identify objects in the scene. Therefore

those objects would fall inside the visual attention area, which has been

previously computed by Kowsari et al.[23]. That allows us to detect and

recognize which objects within the driver’s visual attention area.

3. The estimation of a confidence interval for the driver’s gaze allows for

a reliable and robust determination of driver eye fixation: Driver gaze

is not explicitly related to head pose due to the interplay between the

head and eye movements. However we believe that head pose is sufficient
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for estimation of gaze direction in most situations, as it is devoid from

saccadic movements.

4. Traffic saliency map helps build driver eye fixation model: It is generally

accepted that drivers eye fixations interact with traffic scene objects,

which leads to choosing a proper driver maneuver. Therefore, it is crucial

to analyze and recognize traffic objects gazed at by drivers, in order to

predict intent.

The examination of these hypotheses will increase our knowledge of driver

attention and result in the development of predictive driving behavior models

for driver maneuver.

RoadLAB Vehicular Instrumentation

To validate the suggested hypotheses, an experimental vehicle equipped

with OBD II CANbus channels, a forward stereo vision system, and an eye

tracker was provided [3] (see Fig.1.1):

1. The On-Board Diagnostic system (OBD-II) allows sensors to report on

current vehicular status in real-time. Several features are extracted from

the CANbus, such as vehicle speed, accelerator and brake pedal pressure,

steering wheel angle, and turn signals.

2. The stereo vision system located on the vehicle’s roof captures the frontal

environment at 30Hz.

3. The remote gaze tracker uses a pair of stereo cameras mounted on the

dashboard. The remote gaze tracker computes several driver features,

including head position and orientation, left and right gaze Euler angles,
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Figure 1.1: RoadLAB Vehicular instrumentation configuration.

and left and right eye center locations within the tracker’s own coordinate

system.

Sixteen drivers participated in the data collection experiment, including

nine females and seven males. Each participant was recorded by our instru-

mented vehicle on a pre-determined 28.5km route within the city of London,

ON, Canada. Each sequence represented a driving time of approximately one

hour. Sequences were recorded in different circumstances, including scenery

(downtown, urban, suburban) and traffic conditions, varying from low-traffic

to high-traffic situations. They were recorded in various weather conditions

(sunny, partially-cloudy, cloudy) and at different day times.

Data Stream

Our driver behavior model includes a Cognitive State of the Driver (head

pose, gaze direction, etc.), a Contextual Features Set (road lanes, traffic signs),

and a Vehicle Odometry Set, expressed in the form of Real-Time Descriptors

(RTDs):

1. the Cognitive State of the Driver (CSD), representative of driving ma-
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Figure 1.2: A description of the Driver-Environment-Vehicle parametrization
within software layers

neuvers, usage of vehicle equipment, acknowledged elements within the

CFS (by way of intersecting driver 3D gaze direction with elements of

the CFS), and level of attention;

2. a Contextual Feature Set (CFS), representative of driving environments

such as traffic signs, pedestrians, vehicles, lanes, and road boundaries as

obtained with on-board sensors, cameras, and vision processes;

3. the Vehicle State and Odometry (VSO), representative of dynamic ve-

hicle features such as current speed, acceleration, steering wheel angels,

brake pedal pressure, and other information related to the vehicle.

These elements describe the information required in creating an extensive

RTD suited for our plans (see Figure 1.2). Both current and predicted RTDs

help determine the driver’s status. These structures are esential for validating

the research hypotheses regarding driver intent and action prediction.
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1.3 Contributions

This dissertation is a part of the RoadLAB research program, instigated

by Professor Steven Beauchemin, and is entirely concerned with vehicular

instrumentation to study driver intent. Chapters 2, 3, 4, 5 and 6 have been

published (or in the process of) in recognized peer-reviewed venues. In what

follows, I describe my contributions with regards to each publication within

the thesis:

1. Chapter 2: N. Khairdoost, M. Shirpour, M.A. Bauer, S.S. Beauchemin,

Real-Time Driver Maneuver Prediction Using LSTM. IEEE Transactions

on Intelligent Vehicles, vol. 5, no. 4, pp. 714-724, Dec. 2020.

• After initial discussions with Professor Beauchemin about maneuver

prediction, N. Khairdoost and I developed a driver behavior model

to predict driver maneuvers some seconds before they occur.

2. Chapter 3: M. Shirpour, N. Khairdoost, M.A. Bauer, S.S. Beauchemin,

Traffic Object Detection and Recognition: A Survey and an Approach

Based on the Attentional Visual Field of Drivers. Submitted to IEEE

Transactions on Intelligent Vehicles, 2019.

• N. Khairdoost and I provide a vision-based framework that detects

and recognizes traffic objects inside and outside drivers’ attentional

visual areas.

3. Chapter 4: M. Shirpour, S.S. Beauchemin, M.A. Bauer, A Probabilistic

Model for Visual Driver Gaze Approximation from Head Pose Estima-

tion, accepted in IEEE 3rd Connected and Automated Vehicles Sympo-

sium (CAVS), 2020.
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• I presented a new stochastic method for the detection of gaze areas,

given driver head pose estimates. Rather than estimating the gaze

precisely, which relies on the driver’s visual cognitive tasks, the

method computes a probabilistic visual attention map describing

the probability of finding the actual gaze over the stereo system’s

imaging plane.

4. Chapter 5: M. Shirpour, S.S. Beauchemin, M.A. Bauer, Driver’s Eye

Fixation Prediction by Deep Neural Network, accepted in 16th Interna-

tional Conference on Computer Vision Theory and Applications (VIS-

APP 2021) Conference, Vienna Austria, 2021.

• I proposed convolution neural networks to predict the potential

saliency maps in the driving environment and then employed our

previous research results to estimate the probability of driver gaze

direction as a top-down factor. We statistically combined bottom-

up and top-down factors to obtain accurate driver visual fixation

predictions.

5. Chapter 6: M. Shirpour, S.S. Beauchemin, M.A. Bauer, What Does Vi-

sual Gaze Attend to During Driving? submitted to 7th International

Conference on Vehicle Technology and Intelligent Transport Systems

(VEHITS 2021) Conference, Prague, Czech Republic, 2020.

• We analyzed driver gaze behavior and vanishing points with respect

to vehicle speed.
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1.4 Thesis Organization

The thesis is organized as follows: in Chapter 2, we present a prediction

model to anticipate the most likely maneuver a driver will effect a few seconds

ahead of time. In Chapter 3, contributions related to traffic objects detected

and recognized within the drivers’ attentional visual area are presented. In

Chapter 4, we propose a probabilistic method for describing the visual atten-

tion of drivers. This method applies a Gaussian Process Regression (GPR)

technique that estimates the driver gaze direction probability. In Chapter 5,

we propose convolution neural networks to predict the potential saliency re-

gions in the driving environment, and then use the probability of the driver

gaze direction, given head pose as a top-down factor to predict the driver’s eye

fixation. In Chapter 6, we analyse the driver’s gaze behavior and road vanish-

ing point with the vehicle speed. Finally, in Chapter 7 we suggest conclusions

and outlines paths for future research.
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Chapter 2

Driver Maneuver Prediction

This Chapter is a reformatted version of the following article:

N. Khairdoost, M. Shirpour, M.A. Bauer, S.S. Beauchemin, Real-Time

Driver Maneuver Prediction Using LSTM. IEEE Transactions on Intelligent

Vehicles, vol. 5, no. 4, pp. 714-724, Dec. 2020.

Driver maneuver prediction is of great importance in designing a modern

Advanced Driver Assistance System (ADAS). Such predictions can improve

driving safety by alerting the driver to the danger of unsafe or risky traffic

situations. In this research, we developed a model to predict driver maneuvers,

including left/right lane changes, left/right turns and driving straight forward

3.6 seconds on average before they occur in real-time. For this, we propose

a deep learning method based on Long Short-Term Memory (LSTM) which

utilizes data on the driver’s gaze and head pose as well as vehicle dynamics

data. We applied our approach on real data collected during drives in an

urban environment with an instrumented vehicle. In comparison with previous

IO-HMM [1] techniques that predicted three maneuvers including left/right

turns and driving straight, our prediction model is able to anticipate two more

maneuvers. In addition to this, our experimental results show that our model
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using identical datasets improved the F1 score by 4% and increased to 84%

accuracy.

2.1 Introduction

The number of vehicles on our streets and highways increases every day.

This fact renders the analysis of traffic situations increasingly complicated.

For example, in the US alone, at least 33,000 people on average die in road

accidents every year, with unsuitable maneuvers being reported as the main

cause for most of these accidents [2]. Hence, vehicle manufacturers have been

developing Advanced Driver Assistance Systems (ADASs) that able to avoid

up to 40% of accidents [3]. Examples of ADASs include adaptive cruise control,

collision avoidance systems, traffic warning systems, lane departure warning

systems, automatic lane centering, blind spot monitoring, etc. Obviously, im-

proving the reliability and robustness of these systems would have a significant

impact on decreasing the number of collisions and accident injuries.

An ADAS consists of advanced sensors and camera systems and is acti-

vated when some specific predefined conditions are satisfied. Modeling driving

behavior in different traffic scenes, in addition to understanding surrounding

environments, makes an ADAS more useful for assisting the driver in control-

ling the vehicle and avoiding collisions. The goal of this research is to model

driver behavior such that ADAS can predict the next driving maneuver a few

second before it occurs.

In order to predict driver maneuvers, we need to model the temporal as-

pects of the driving context and infer the driver’s intention. This task is still

quite challenging because a driving decisions are not directly detectable and

the interactions between them are complex.
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In this research, we have developed a model to predict driver maneuvers

using Long Short-Term Memory (LSTM) neural networks. LSTMs have the

ability to model temporal data and long-term dependencies more accurately

than traditional Recurrent Neural Networks (RNNs). Consequently, they are

more suitable for predicting driver maneuvers [4]. The model learns the pa-

rameters from real driving sequences, including vehicle dynamics, driver head

movements, and gaze data. The model infers the potential driving maneuvers

(namely, left/right turns, left/right lane changes and driving straight forward)

by means of generating a probability for each maneuver. The maneuver with

the highest probability is considered as the predicted maneuver.

The rest of this contribution is structured as follows. In Section 2.2, we

review the literature. In Section 2.3, we describe our vehicle instrumentation.

Section 2.4 contains a description of the proposed method. Section 2.5 presents

a summary of the datasets used, learning parameters, and the experimental

results obtained along with a critical analysis of those results. We discuss

several common reasons resulting in incorrect maneuver prediction in Section

2.6. We give conclusions and future research directions in Section 2.7.

2.2 Literature Survey

In general, to anticipate a driver maneuver, a trained model analyzes con-

textual driving information. This implies that each driver maneuver is pre-

dicted by analyzing data on head movements, GPS, vehicle dynamics, driver

gaze, etc.

Artificial Neural Networks (ANNs) have a powerful ability to discover im-

plicitly complicated nonlinear relationships among input variables. Hence,

ANNs are suitable techniques for pattern recognition and action prediction
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applications, provided that sufficient experimental data is available. For in-

stance, Kim et al. [5] applied an ANN to measurements from on-board sensors,

such as steering wheel angle, yaw rate and throttle position, to classify road

conditions and to predict driver intent for a lane change. Leonhardt and

Wanielik [6] employed an ANN for lane change prediction. MacAdam and

Johnson [7] represented driver steering behavior in path regulation control

tasks using elementary neural networks. Mitrovic [8] used neural networks for

short-term prediction of lateral and longitudinal vehicle acceleration.

Although traditional ANNs, such as feed-forward neural nets, are powerful

machine learning techniques, ANNs are black box learning techniques. They

cannot interpret the relationship among the input and output. Moreover, in

the standard probabilistic framework, they cannot work with uncertainties.

Another disadvantage is that ANNs consider all input data as independent of

each other.

A Bayesian Network (BN) is an acyclic directed graph that represents the

conditional dependencies among a set of variables, where the directed edges re-

flect the qualitative relationships between variables and conditional probability

distributions are considered as the quantitative relationships. BNs have been

employed for driver maneuver recognition such as overtaking, lane changes or

left/right turns [9, 10, 11]. Amata et al. [12] presented a prediction model for

driver behaviors, such as stopping at intersections based on traffic conditions.

Tezuka et al. [13] used a BN and steering wheel angle data to develop a model

to detect lane keeping, normal lane changes and emergency lane changes. In

addition, BNs have been utilized for safety systems to recognize turning ma-

neuvers at intersections and red light crossings [14]. BNs have been used for

identifying emergency braking situations [15]. BNs are suitable for applica-

tions, such as driver maneuver modeling, where considering uncertainties is
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essential. However, considering temporal data using BNs is difficult. Li et al.

[16] used a novel Dynamic Bayesian Network (DBN) in highway scenarios to

predict driver maneuvers. DBNs can model temporal changes, although they

cause increased complexity in building and analyzing the network.

Temporal behavior analysis of vehicles surrounding the ADAS vehicle plays

an essential role in the safety of the driver. Hence, other methods have been

proposed to predict the intent of surrounding vehicles. For example, Kim et

al. [17] used an LSTM to propose a trajectory prediction technique for analyz-

ing the temporal behavior of surrounding vehicles and their future positions.

Alternatively, Khosroshahi et al. [18] proposed a framework to classify ma-

neuvers of observed vehicles at four-way intersections using LSTM and 3D

trajectory cues. again using LSTM, a method has been introduced by Patel

et al. [19] to predict lane changes of surrounding vehicles in highway driving.

An RNN-based model was presented to interpret the time series data from an

observed vehicles at signal-less intersections in order to classify their intentions

[20].

Many researchers have utilized Hidden Markov Models (HMMs) for sim-

ilar purpose. Kuge et al. [21] developed steering behavior models for nor-

mal/emergency lane changes, and lane keeping using HMMs. Another ap-

proach was proposed by Tran et al. [22] to predict driver maneuvers, includ-

ing stop/non-stop, left/right lane changes and left/right turns in both urban

and highway driving environments. They employed different input sets to in-

vestigate model performance. He et al. [23] developed a double-layer HMM

structure to model driving behavior and driving intent in the lower and upper

layers, respectively. Amsalu and Homaifar [24] employed a Genetic Algorithm

(GA) for predicting driver intent when the vehicle approaches an intersec-

tion. Aoude et al. [25] developed two SVM- and HMM-based approaches
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to estimate driver behaviors at road intersections. Their results showed that

the SVM-based approach often outperformed the HMM-based model. Jain et

al. [26] proposed a maneuver prediction model based on an Autoregressive

Input-Output Hidden Markov Model (AIO-HMM), which jointly exploits the

information inside and outside of the vehicle.

Similarly, Zabihi et al. [1] developed a maneuver prediction model using an

Input-Output Hidden Markov Model (IO-HMM) that learns relevant parame-

ters from natural driving sequences. They combined vehicle dynamics features

and driver cephalo-ocular behavior, including gaze direction and head pose for

detecting driver intent. We followed the work of Kowsari et al. [27] and Zabihi

et al. [1] for feature extraction. We refer the reader to these publications for

more details.

Researchers also focused on driver maneuver prediction at (urban) inter-

sections. Klingelschmitt et al. [28] created two separate Bayesian Network

and Logistic Regression-based models for a vehicle’s driving situation and its

behavior respectively. Then, they combined them in a single Bayesian Network

to design a model able to predict driver intent. An online learning approach

using a Bernoulli-Gaussian Mixture Model (BGMM) for feature-based maneu-

ver prediction was presented in [29]. They employed a BGMM to approximate

a joint probability density function where predictions are made from a condi-

tional probability distribution function. In [30], an indicator-based approach

for driver intent prediction was proposed. They combined context informa-

tion with vehicular data. The authors in [31] proposed a new approach for

intersection maneuver prediction that was based on personalized incremen-

tal learning. In other words, they continuously improved the model accuracy

by incorporating individual driving history. Liebner et al. [32] proposed an

approach to predict driver intent including straight intersection crossing and
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Figure 2.1: a) (left): 3D infrared gaze tracker; b) (center): Forward stereo-
scopic vision system on rooftop; c) (right): Driver PoG and LoG expressed
in the reference frame of stereoscopic vision system and corresponding depth
map.

right turn with the presence or abscence of a preceding vehicle. Their model

was based on an explicit parametric model for the longitudinal velocity of

preceding vehicles.

Recently, Recurrent Neural Networks (RRNs), Long Short-Term Memories

(LSTMs) and Convolutional Neural Networks (CNNs) have been utilized in

different applications of ADAS and they have shown promising results for

driver activity prediction [33, 34]. Jain et al. [33] employed a RNN with

LSTM units to preserve long dependencies over the time. They applied their

proposed model on a real dataset to predict driver maneuvers. Olabiyi et al.

[34] proposed a method for anticipating driver action using a deep bidirectional

RNN that discovers the relationships between sensor information and future

driver maneuvers. They used a fusion of the past and future contexts.

Deep learning has been employed for other ADAS applications, and has

brought significant improvements, such as classifying a vehicle’s situation for

lane changes as safe/unsafe [35] and detecting a driver’s confusion level [36].

2.3 Vehicular Instrumentation

We instrumented a research vehicle capable of recording driver-initiated

vehicular actuation and relating the 3D driver gaze direction with environ-
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Figure 2.2: Map of predetermined route for drivers, located in London On-
tario, Canada. The path length is approximately 28.5 and includes urban and
suburban driving areas.
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Figure 2.3: The on-board data recorder interface displaying depth maps, driver
PoG, vehicular dynamics, and eye tracker data.

Figure 2.4: The attentional visual area of driver is defined as the base of the
cone located at the depth of sighted features.
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Figure 2.5: Two projections of the visual attention cone base on the stereo
imaging plane.

mental stereo imagery. The instrumented vehicle was used to collect data

sequences with 16 drivers on a pre-determined 28.5km course within the city

of London Ontario, Canada. (See Figures 2.1 and 2.2). 3TB of driving se-

quences were recorded, containing forward stereo imaging and depth, 3D PoG

and head pose, and vehicular dynamics obtained with the OBDII CANBus

interface (See Figure 2.3). Data frames are collected at a rate of 30Hz.

Our research vehicle is instrumented in such a way as to find whether driver

maneuvers could be predicted ahead of time. The vehicle is fitted with a non-

contact infra-red 3D gaze and head pose tracker working at 60Hz. Its purpose

is to record head movements and gaze direction as they happen while driving.

Both head pose and gaze are recorded in the reference frame of the tracker

(See Figure 2.1 a) for a depiction of the tracker). A forward stereoscopic

vision system is mounted on the roof of the vehicle to provide dense stereo

depth maps at 30 Hz. Depth maps are expressed in the frame of reference

of the forward stereo system. Details concerning this instrumentation were

described by Beauchemin et al. [37] and Kowsari et al. [27].

We devised a cross-calibration technique to transform the 3D driver gaze

and head pose, expressed in the tracker coordinates, in the reference frame
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of the forward stereoscopic vision system. As a result, the 3D Point of Gaze

(PoG) and Line of Gaze (LoG) of the driver into the surrounding environment

are known in absolute 3D coordinates within the frame of reference of the stereo

vision system. The attentional visual area of the average driver is defined as

the cone from the eye along the LoG (See Figure 2.4). Here, we briefly describe

the procedure we used to determine the attentional visual area, whose contour

is defined as an ellipse. We first transform the eye position e = (ex, ey, ez) and

the 3D PoG g = (gx, gy, gz) into the frame of reference of the forward stereo

system, and form a cone with apex e that contains the LoG at its center. This

cone has an opening of 6.5◦ with respect to the LoG [38]. Next, we define

a plane perpendicular to the LoG that contains the PoG, and compute the

intersection this plane makes with the cone, resulting in a 2D circle located in

3D space. The radius of this circle representing the attentional gaze area is

obtained as:

r = tan(θ)d(e, g) (2.1)

where

d(e, g) =
√

((ex − gx)2 + (ey − gy)2 + (ez − gz)2) (2.2)

The circle is reprojected onto the imaging plane of the forward stereo vision

system where it becomes a 2D ellipsoid, as pictured in Figure 2.4. The iden-

tification of objects in the scene that elicit an ocular response from the driver

can then be identified within this area (Figure 2.5). The cross calibration

procedure was devised by Kowsari et al. [27]. At the time of its deployment,

this was the first publicly known vehicle capable of identifying the 3D PoG of

the driver in real-time and in absolute 3D coordinates within the surrounding

environment.
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Figure 2.6: Overview of the proposed approach for predicting driver maneuvers

2.4 Proposed Method

In order to anticipate driver maneuvers, we need to jointly model the tem-

poral aspects of the driving context and the driver intent. For this purpose,

we employed LSTM as it has the ability to model time series data with their

long-term dependencies.

In general, the aim of driver maneuver prediction is to anticipate the

driver’s future maneuvers some time before they occur, given information on

driving context. In the model training stage, a set of sequences of observations

are fed into the model, where at the end of the sequence, an event happens.

In our application, the event can be one of five driver maneuvers: a left/right

lane change, a left/right turn, or going forward. The model receives an obser-

vation at each time slice so as to predict the driver’s future maneuver as early

as possible. In other words, the model needs to predict the event by only re-

ceiving partial observations from a data sequence. To be exact, each time slice

consists of the information of a pre-determined number of frames. Hence, by

processing the information available up to current time slice, the observation

can be represented as a feature vector (described in Section 2.4.2). We discuss

our choice for the size of time slices in Section 2.5.2. Finally, for each time

slice, the model outputs the SoftMax probability of each maneuver. Then,
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Figure 2.7: The internal view of an LSTM unit

the maneuver that has the highest probability is proposed as the predicted

maneuver, provided that its probability is higher than a preassigned threshold

value, otherwise the system makes no prediction. The choice for this threshold

value is justified in Section 2.5.3. Algorithm 1 depicts the complete procedure

of our prediction model using LSTM. We refer the reader to Zyner et al. [20]

and Jain et al. [33] for more details on this particular technique. Figure 2.6

provides an overview of our proposed method. Below we present an overview

of a standard LSTM unit, illustrated in Figure 2.7.

2.4.1 Long Short-Term Memories (LSTM)

We focus on driver maneuver prediction using LSTMs [39]. LSTM is a

particular form of RNNs which is suitable for time series data. Figure 2.7

shows the internal structure of the LSTM unit. An LSTM is able to keep

the information of previous input data in its memory, called a cell. Hence, it

can overcome the vanishing gradient problem in order to remember long-term

dependencies. LSTMs have been employed in different ADAS applications

[17, 18, 33].
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We proceed to describe the equations of an LSTM unit [33, 39]. An LSTM

unit has a memory cell and three gates, including an input gate i, a forget

gate f , and an output gate o. At each time step, given the observation xt, the

hidden status from the previous time step ht−1, and the previous cell state ct−1,

the unit computes it and ft and then updates ct−1 to ct in order to obtain ot

and ht. Unlike a RNN, the forget gate in the LSTM unit allows the network to

throw away part of memory or learn new information. The following recursive

equations encode the mechanism:

ft = sigm(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (2.3)

it = sigm(Wxixt +Whiht−1 +Wcict−1 + bi) (2.4)

gt = tanh(Wxcxt +Whcht−1 + bc) (2.5)

ct = ct−1 � ft + it � gt (2.6)

ot = sigm(Wxoxt +Whoht−1 +Wcoct + bo) (2.7)

ht = ot � tanh(ct), (2.8)

where sigm, tanh and � are the sigmoid function, the hyperbolic tangent

function, and the element-wise product, respectively. W and b stand for the

weight matrix and bias vector. For multi-class applications, we employ a Soft-

Max layer in which the SoftMax function is applied on a linear transformation

of ht. The following notation describes the internal working of a recurrent

LSTM unit concisely. In Section 2.4.2, we describe how we reach an observa-

tion x (our features):

(ct, ht) = LSTM(xt, ct−1, ht−1). (2.9)
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2.4.2 Features for Driver Maneuver Prediction

We proceed with describing the features that are extracted for maneuver

prediction. These features are divided into two major categories called driver

cephalo-ocular behavioral features and vehicle dynamics features. These fea-

tures are aggregated and normalized for each time slice (i.e. after receiving

20 consecutive frames in every 0.67 seconds of driving) and their combination

constitutes the feature vector, to be fed into the LSTM model. In what follows,

we discuss the extracted features for both categories.

Cephalo-Ocular Behavioral Features

It is generally believed that 3D gaze direction plays a significant role in

predicting maneuvers since the driver is observing and focusing on the envi-

ronment moments before performing a maneuver [40],[1]. Hence, two features

of the cephalo-ocular behavior of the driver including 3D Point of Gaze (PoG)

in absolute coordinates also the horizontal head motion have been utilized

to predict driver maneuvers. In order to find the 3D PoG of the driver cor-

responding to its 3D LoG, we used a cross-calibration method proposed by

Kowsari et al. [27]. This method combines a binocular eye gaze tracker with

a binocular scene stereo system and still remains precise for large distances.

Once the cross-calibration step is done, the Line of Gaze (LoG) expressed in

the coordinates of the eye-tracker is projected onto the imaging plane of the

forward stereo system of the instrumented vehicle. Finally, the 3D PoG is

identified as the region obtained by intersecting this projected 3D LoG onto

the imaging plane of the stereo system with a valid depth estimate.

To extract 3D PoG features, the frame is separated into six non-overlapping

equal parts (as shown in Figure 2.8). We create a histogram of 3D PoGs falling
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(a) Left turn (b) Left lane change

(c) Right turn (d) Right lane change

(e) Going straight

Figure 2.8: Gaze points are shown on the driving frames over the last 5 seconds
before a left/right turn, left/right lane change, or going straight maneuver
occurs. Frames are divided into six areas.
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into these parts. Figure 2.8 illustrates the PoGs over the last 5 seconds before a

maneuver occurs. As can be seen, when drivers are deciding to perform one of

the five manuvers, they observe different parts of the frame. For clarification,

we discussed the positions of PoGs during a sequence of time slices for a sample

of right lane change maneuvers (See Figure 2.9). As shown in Figure 2.9, the

driver at first is looking forward, then decides to verify potential obstacles in

the right lane before performing the maneuver and then again looks forward.

Finally, the driver performs the maneuver while paying attention toward the

right lane.

Vehicle Dynamics Features

In 2011, Beauchemin et al. [37] instrumented a vehicle with OBD-II CAN-

Bus. As a matter of fact, all vehicles manufactured after 1996 equipped with

on-board diagnostic (OBD-II) systems, which allow physical scan devices by

means of vehicle sensors to gather and monitor certain vehicle data on the

current status via the OBD-II port. Moreover, since 2008, the CANBus pro-

tocol (ISO 15765) has been mandatory for OBD-II in all vehicles sold in the

US. As a result, this standardization simplifies the examination of real-time

vehicle data (which are generally captured with frequencies between 20 and

200 Hz) for researchers and industries to create or improve the performance

of intelligent ADAS (i-ADAS) applications.

Vehicle dynamics-based data include vehicle speed, steering wheel angle,

left/right turn signals, brake pedal pressure, gas pedal pressure and the speeds

of all wheels. We integrated features to benefit from the sum of them simulta-

neously. For each time slice, we made a histogram of steering wheel angles and

encoded the minimum, average and maximum values of vehicle speed, brake
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Figure 2.9: A sequence of time slices belonging to a right lane change event.
(t1): Driver goes straight and looks forward. (t2 and t3): Driver decides to
initiate an attempt to change lane, and searches visually for potential obstacles
in the right lane. (tn and tn+1): Attention of the driver returns to the current
lane and the driver still goes straight. (tT−1): The driver makes the final
decision to change lane and looks at the right lane. (tT ): Right lane change
event has occurred.
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pedal pressure, gas pedal pressure, indicating independent wheel speeds. Fi-

nally, for left and right turn signals, we considered a binary feature for each.

This feature value is 1 if the turn signal is on, and 0 otherwise.

Algorithm 1 Driver Maneuver Prediction Using LSTM

Input: Cephalo-Ocular Behavior and Vehicle Dynamics Features; Prediction
Threshold Pth

Output: Predicted Maneuver M; Time-to-Maneuver
while t = 1 to T do

Observe features available up to current time slice
Max Probability = Calculate and find the maximum of probabilities of
each maneuver using LSTM model
if Max Probability > Pth then

M = Corresponding maneuver with Max Probability
Time-to-Maneuver = T - t
break

end if
end while
Return M, Time-to-Maneuver

2.5 Experimental Results

We first give an overview of our maneuver dataset. Then, we explain how

we tuned different parameters of the proposed model. Finally, we report our

experimental results for maneuver prediction in details.

2.5.1 Dataset

To investigate our proposed model, we applied our approach to driving

sequences recorded with the RoadLAB instrumented vehicle in the city of

London, Ontario, Canada [37], with the aim of comparing our results with

those obtained by Zabihi et al. [1], using the same driving sequences as they
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did. Table 2.1 provides details on the sequences that have been collected by

different drivers for our experiments. These driving sequences contain the

data, including GPS, 3D driver gaze, head pose, vehicle speed, and steering

wheel angle, among others. We used a total of 325 events obtained from our

sequences containing 65 left lane changes, 40 right lane changes, 65 left turns,

75 right turns, and 80 randomly sampled instances of driving straight. Each

event is considered as one sample.

Table 2.1: Data Description (each sequence belongs to one driver)

Sequence Date of Capture Temperature Weather

Seq. 8 Sep. 12 2012 27 ◦C Sunny
Seq. 9 Sep. 17 2012 24 ◦C Partially cloudy
Seq. 10 Sep. 19 2012 8 ◦C Sunny
Seq. 11 Sep. 19 2012 12 ◦C Sunny
Seq. 13 Sep. 21 2012 19 ◦C Partially sunny
Seq. 14 Sep. 24 2012 7 ◦C Sunny
Seq. 15 Sep. 24 2012 13 ◦C Partially sunny

2.5.2 Learning Parameters

We used a 5-fold cross-validation process to tune network parameters and

thresholds on probabilities for driver maneuver prediction by evaluating ranges

for the given different parameters. We selected sets of parameters providing

us with the highest F1-score on the validation set. Finally, we tested the

model on pre-separated, unseen data that consists of a set of randomly selected

samples. We performed this strategy several times to estimate the accuracy

and generality of the proposed model. In addition, researchers have reported

different numbers of frames for the size of time slices such as 10 [31], 15 [29] and

20 [33]. We investigated our performance with time slices of 10, 15, 20, 25 and
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30 consecutive frames, and reached better results by employing 20 consecutive

frames. Here, we briefly report on other fine-tuned parameters.

Our proposed model consists of 3 hidden LSTM layers. The number of

hidden units for the 3 layers was set to 100. We added a dense layer with

5 units for the 5 output classes (including left/right lane changes, left/right

turns and driving straight). We employed 0.25, 100 and 10 for the parameters

of validation split, epochs and batch size, respectively. The tanh activation

function for the LSTM layers was used in our experiments. We also used a

SoftMax activation function, mean squared error, and Adam method for the

dense layer, loss function and stochastic optimization, respectively. Dropout

is very important to avoid over-fitting, and we used 0.2, 0.3 and 0.2 for the

first, second, and third LSTM layers respectively. The threshold value in our

experiments was set to 0.80.

2.5.3 Maneuver Prediction Results

In the test step, the model predicts the driver maneuver every 20 frames

and we expect the prediction system to anticipate the maneuver using only

partial observations of a sequence. Previously, Zabihi et al. [1] proposed an

IO-HMM-based model to anticipate three maneuvers of left/right turns and

driving straight using our real driving dataset. To compare the performance

of our model with theirs, as a first experiment, we employed our approach to

predict Zabihi’s maneuvers only. In the second experiment, in addition to the

aforementioned maneuvers, we utilized our method to predict the maneuvers

of left/right lane changes. For each time slice ( after receiving 20 frames), the

model generates the probability for each maneuver. Then, the maneuver with

the highest probability is chosen as the predicted maneuver only if it is higher
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than a preset threshold. If the highest probability is less than the threshold

(0.8), the system cannot predict the driver maneuver and requires reception

of additional features from the next time slice to perform its task. Note that

if the maneuver occurs and the system still has not predicted it, the system

makes no prediction. We verified the performance of our model by calculating

the measures of precision and recall for each maneuver. These measures are

defined as follows:

Pr =
TP

TP + FP
(2.10)

and

Re =
TP

TP + FN
, (2.11)

where, for each maneuver m, TP is the number of correctly predicted instances

of maneuver m, FP is the number of incorrectly predicted instances of maneu-

ver m, and FN is the number of instances of maneuver m that are wrongly

not predicted or the system is not able to choose any maneuver. Precision

is the number of correctly predicted instances of maneuver m divided by the

number of instances that were predicted as maneuver m. Recall is the number

of instances of correctly predicted maneuver m divided by the total number of

instances of maneuver m the average of precision and recall and the average of

time-to-maneuver, for true predictions (TP ), which indicates the interval be-

tween the time of algorithm’s prediction and the start of the maneuver. Zabihi

et al. [1] performed several experiments and reported that utilizing IO-HMM

with the data on the driver’s gaze and head pose (IO-HMM G+H) made the

better model in terms of precision, recall and Time-to-Maneuver.

Table 2.2 compares our results (considering three and five maneuvers) with

Zabihi et al. [1]. As can be seen, our LSTM-based model outperformed their

prediction model. To be exact, precision and recall of our model for the three
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(a) Model with three maneuvers (b) Model with five maneuvers

Figure 2.10: Confusion matrices of our prediction model

maneuvers are 6.1% and 0.8% higher for these three maneuvers. However,

their method can predict the three maneuvers 0.16s earlier on average than

ours. The last row in Table 2.2 shows the results of extending our model with

two more maneuvers. In this case, we expect increased complexity for the

problem and results show that precision, recall and time-to-maneuver have

decreased slightly in comparison with our method for predicting only three

maneuvers.

Figure 2.10 shows the confusion matrices for our prediction system for

three and five maneuvers. In these matrices, a row represents an instance of

the actual maneuver class, whereas a column represents an instance of the

predicted maneuver class. The values of the diagonal elements represent the

degree of correctly predicted classes.

Figure 2.11 compares the changes of the F1-score when we employ our

model and the IO-HMM-based model, with different values for the threshold.

The F1-score is the harmonic mean of Pr and Re, where it can reach 1 with

perfect precision and recall, and 0 in the worst case. The prediction threshold
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Table 2.2: Result of different models of driver maneuver predic-
tion on our data set.

Pr
(%)

Re
(%)

Time-to-
maneuver(s)

IO-HMM G+H (for
three maneuvers)

79.5 83.3 3.8

Our model (for three
maneuvers)

85.6 84.1 3.64

Our model (for five ma-
neuvers)

84.2 82.9 3.56

is a useful parameter to find a trade-off between the precision and recall. The

F1-score is defined as follows:

F1 =
2PrRe

Pr +Re
(2.12)

The trend of F1-scores for the IO-HMM model remains roughly stable

when the threshold changes. However, when we choose 0.8, the LSTM-based

prediction model achieves a significantly higher F1-score in comparison with

IO-HMM model. In Table 2.2, we used the threshold values which gave us

the highest F1-score. Our model predicts maneuvers every 0.67 seconds (20

frames) in 2.8 milliseconds on average, on a 3.40 GHz Core i7 − 6700 CPU

with Windows 10.

Finally, we briefly mention here the results of several previous works that

have addressed the driver maneuver prediction problem, using their own dataset

and features. For instance, Morris et al. [40] accomplished a binary classifi-

cation of lane changes and driving straight maneuvers. They employed a

Relevance Vector Machine (RVM; a Bayesian extension to the popular SVM).

In addition, Jain et al. [33] evaluated some algorithms for the same purpose

(including SVM, Bayesian Network and variants of their deep learning model).
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Figure 2.11: The effect of the threshold on the F1-score for IO-HMM and
LSTM models.

The methods listed in Table 2.3 use identical feature vectors, which guarantees

a fair comparison1. As can be observed, the SVM classification does not model

the temporal aspect of the data, and its performance is poor as a result.

Table 2.3: maneuver anticipation results of several previous
methods.

Method Pr (%) Re (%) Time-to-
maneuver(s)

SVM[40] 43.7±2.4 37.7±1.8 1.20
IO-HMM[26] 74.2±1.7 71.2±1.6 3.83
AIO-HMM[26] 77.4±2.3 71.2±1.3 3.53
S-RNN[33] 78.0±1.5 71.1±1.0 3.15
F-RNN-UL[33] 82.2±1.0 75.9±1.5 3.75
F-RNN-EL[33] 84.5±1.0 77.1±1.3 3.58

1The methods listed in the Table are: SVM: Support Vector Machine, IO-HMM: Input-
Output Hidden Markov Model, AIO-HMM: Auto-Regressive Input Output Hidden Markov
Model, S-RNN: Simple Recurrent Neural Network, F-RNN-UL: Fusion-Recurrent Neural
Network Uniform Loss, F-RNN-EL: Fusion-Recurrent Neural Network Exponential Loss.
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2.6 Common Reasons for Wrong Maneuver An-

ticipations

We discuss some major reasons that can generally result in wrong antic-

ipations in the driver maneuver prediction problem. For example, when a

driver is interacting with other passengers, head and gaze features are not

reliable enough to be taken into account. Also, a driver may be distracted

when watching videos, programming a GPS, using a cell phone, adjusting the

radio, smoking and etc. In such situations, wrong anticipation is common as

the driver may not be fully focused on the road. Moreover, different drivers

have different driving styles. For example, during lane change maneuver, some

drivers may merge slowly, while others may merge quickly: in this case, the

driver has not provided the system with enough data and time to predict the

maneuver. Hence, in this situation, other features such as speed, acceleration,

steering wheel angle can be significant to predict an accurate maneuver. As

another example, when drivers rely on their recent perception of the traffic

scene, they probably do not check blind spots and the surroundings carefully,

resulting in a lack of head information. A similar driving situation arises when

a driver is driving in left/right-turn-only lanes. In this case, the driver might

not display helpful head information.

2.7 Conclusion and Future Work

We presented an LSTM-based model to predict driver maneuvers several

seconds before they are performed. We employed driver cephalo-ocular behav-

ioral information and vehicle dynamics data as features to train our model.

Our experimental results show that our model outperformed the previous IO-
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HMM model [1]. It improved the precision from 79.5% to 85.6% and recall

from 83.3% to 84.1%. Moreover, we expanded the prediction model to antic-

ipate two more maneuvers (left/right lane changes). For predicting the five

maneuvers, our model achieved 84.2% and 82.9% for precision and recall re-

spectively. Our results show that driver maneuvers can be predicted. Several

limitations exist for improving the accuracy and generality of the model. We

suppose that adding more features from the environment such as the lane in

which the driver is locate and where the driver is gazing during the driving

maneuver could improve the accuracy of the model. In terms of generality, the

tests have been conducted in this research on limited number of drivers and

under specific weather and environmental conditions. Collecting new datasets

under different situations could help the generality of the model. Hence, for

the commercial use of this model, the mentioned items need to be considered.

Lastly, this research area is still challenging and more research and efforts

must be performed by researchers to be practical in commercial uses. As for

future work, we plan to study the extraction of features from video within the

attentional visual area of the driver. We believe that utilizing LSTM trained

with a combination of these features, with cephalo-ocular behavior and the

vehicle dynamics will improve current prediction results.
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Chapter 3

Traffic Object Detection and Recognition

This Chapter is a reformatted version of the following article:

M. Shirpour, N. Khairdoost, M.A. Bauer, S.S. Beauchemin, Traffic Object

Detection and Recognition: A Survey and an Approach Based on the Atten-

tional Visual Field of Drivers. Submitted to IEEE Transactions on Intelligent

Vehicles, 2019.

Traffic object detection and recognition systems play an essential role in

Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles (AV).

In this research, we focus on four important classes of traffic objects: traffic

signs, road vehicles, pedestrians, and traffic lights. We first review the major

traditional machine learning and deep learning methods that have been used in

the literature to detect and recognize these objects. We provide a vision-based

framework that detects and recognizes traffic objects inside and outside the

attentional visual area of drivers. This approach uses the driver 3D absolute

coordinates of the gaze point attained through the combined, cross-calibrated

use of a front-view stereo imaging system and a non-contact 3D gaze tracker.

A combination of multi-scale HOG-SVM and Faster R-CNN-based models are

utilized in the detection stage. The recognition stage is performed with a
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ResNet-101 network to verify sets of generated hypotheses. We applied our

approach on real data collected during drives in an urban environment with

the RoadLAB instrumented vehicle. Our framework achieved 91% of correct

object detections and provided promising results in the object recognition

stage.

3.1 Introduction

Advanced Driver Assistance Systems (ADAS) have attracted the attention

of many researchers and vehicle manufacturers for several decades. Achieving

higher performance levels for ADAS also imposes strict requirements for ro-

bust perception of the driving environment. Hence, vision-based traffic scene

perception which refers to the identification of the position of traffic objects

such as pedestrians, vehicles, traffic signs, etc is of great importance in design-

ing a modern ADAS. However, in practice, many traffic scene issues, such as

occlusions, weather conditions, shadows and distant object identification affect

the performance of such systems. Improving the accuracy and adaptability of

such methods is still a challenging area of research [1]. In this study, we focus

on four essential categories of objects: traffic signs, vehicles, traffic lights, and

pedestrians. Problems encountered include variations in viewpoints, object

shape, size, color, distance from sensors, illumination conditions, and object

occlusion [2] [3] [4].

In this contribution, we propose the first traffic object detection and recog-

nition framework that performs its tasks within the attentional visual field of

the driver. This is an important aspect of ADAS, as it allows to identify

objects possibly seen by the driver, among other things.

This contribution is organized as follows: In Section 3.2, we review the
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related literature. Section 3.3 describes the datasets we used and the proposed

method. Section 3.4 presents the experimental results obtained along with a

critical analysis. Conclusions and future research directions are described in

Section 3.5.

3.2 Related Works

3.2.1 Generic Object Detection

Generic object detection is a challenging task in computer vision that at-

tempts to locate and identify existing objects in one image in order to label

them and estimate their extent with bounding boxes. Generic object detec-

tion algorithms can be divided into two major types of traditional and deep

learning-based methods. In this Section, we briefly review these generic object

detection methods. Several object detection surveys can be found in [5], [6],

[7], [8], [9] and [10].

Among the traditional object detectors we find the framework proposed

by Viola and Jones which employs searches based on sliding-windows and

AdaBoost classifiers [11]. Another popularly used framework is the linear

Support Vector Machine (SVM) classifier with such features as Histograms

of Oriented Gradients (HOG), Scale Invariant Feature Transforms (SIFT),

and Local Binary Patterns (LBP). For example, in [12] and [13], researchers

employed SVM and a multi-scale detection framework with HOG features to

detect birds and pedestrians respectively. In addition, Aggregated Channel

Features (ACF) can be mentioned as another successful detection framework

that has been proposed by [14]. This method also uses sliding-window searches

and AdaBoost to detect objects in a multi-scale fashion [15], [16].
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Unlike traditional object detection algorithms that benefit from prior knowl-

edge, deep learning-based object detection methods attempt to learn high-level

features from massive amounts of data. As a result, they are less sensitive to

illumination changes, deformations, and geometric transformations [17]. There

are two major types of deep learning-based object detection methods: region-

based methods and regression-based methods. The former generates region

proposals at first and then classifies them into different object categories, while

the latter transforms the object detection problem into a regression problem

and predicts locations and class probabilities directly from the whole image

[5]. The region-based methods mainly include R-CNN [10], Fast R-CNN [18],

Faster R-CNN [19], R-FCN [20], SPP-net [21] and Mask R-CNN [22]. The

regression-based methods mainly include AttentionNet [22], G-CNN [23], SSD

[24], YOLO [25], YOLOv2 [26], YOLOv3 [27], DSOD [28] and DSSD [29].

3.2.2 Traffic Sign Detection and Recognition

Sign detection methods can be generally categorized into color-based, shape-

based and hybrid approaches [30], [31]. Color-based methods use color infor-

mation as the main attribute to localize image regions containing traffic signs

in the image. Color thresholding segmentation is the more common approach

among color-based methods as it reduces the search area by ignoring untar-

geted regions [32], [33]. These methods are generally sensitive to variations

in illumination and the distance to traffic signs [34]. Traffic signs also have

specific shapes that can be searched for by shape-based methods. The Hough

Transform is one of the most common shape-based methods [35], [36], as it is

relatively robust against illumination change and image noise. Similarity de-

tection [37] and Distance Transform matching [37] also constitute shape-based
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methods. Hybrid approaches take advantage of both sign color and shape [38],

[39]. Classification stages mostly employ template matching [40], [41], SVM

[42], [43], Genetic Algorithm (GA) [44], Artificial Neural Network (ANN) [45],

[46], AdaBoost [47], [48] and deep learning-based methods. In recent years,

deep learning methods have increasingly attracted a great deal of attention.

Convolutional Neural Networks (CNNs) constitute a subset of deep neural net-

work models that have the power to learn robust and discriminative features

from raw data. There is a variety of CNN that have been employed for traffic

sign recognition such as small-scale CNN [49], multi-scale CNN [50], a commit-

tee of CNN [51], multi-column CNN [52], multi-task CNN [53], and CNN-SVM

[54], [55], among others. A number of traffic sign datasets have been created

in the past decade. Most of them were recorded in European countries. Con-

sequently, methods that have been proposed in the literature are mostly based

on European datasets. As Traffic signs in North America have different colors

and shapes, the methods that have been proposed based on European traffic

signs are not directly suitable in the North American context [56].

3.2.3 Vehicle Detection

Many traditional vehicle detection approaches comprise a Hypothesis Gen-

eration (HG) step followed by a Hypothesis Verification (HV) step. With re-

gards to HG, there are various methods that can be divided into three basic

categorizes including knowledge-based, stereo-based, and motion-based [57].

Knowledge-based methods use prior knowledge including shadows [58], sym-

metry [59], horizontal/vertical edges [60], color [61], texture [62], corners [63],

and vehicle lights [64]. Stereo-based approaches usually exploit the Inverse

Perspective Mapping (IPM) [65] or disparity maps [66] to localize vehicles,
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while motion-based methods detect vehicles with optical flow [67]. HV ap-

proaches can be classified into two major categories [57]: template-based and

appearance-based. The former employs predefined vehicle patterns and es-

timates the correlation between templates and candidate image regions [68],

while the latter uses machine learning methods such as SVM [38], [39], ANN

[69], and AdaBoost [70] to classify hypotheses into vehicle and non-vehicle

categories.

Classifiers such as SVM [71], ANN [69], and AdaBoost [70] learn the char-

acteristics of vehicle appearance to draw a decision boundary between vehicle

and non-vehicle classes. In HV, a number of local feature descriptors such as

HOG [72], PHOG [59], Harr-like [73], Gabor [74], and SURF [75] have shown a

remarkable ability in collecting contextual information. Additionally, different

vehicle detection approaches that employ deep learning-based methods dis-

cussed in Section 3.2.1 have been proposed. For instance, in [76], the authors

provided a comparative study on the performance of Alex Net and Faster R-

CNN models. Also, in [77], the authors exploited the fine-tuned YOLO [25] for

vehicle detection. In [78], vehicles are detected with a simplified Fast R-CNN.

3.2.4 Pedestrian Detection

Many traditional methods for pedestrian detection have been proposed

with the majority of them using features such as HOG [79], Haar-Like [79],

Viola-Jones [80], and LBP [81], followed by a classification stage using either

SVM, ANN, or AdaBoost. Additionally, pedestrian detection methods using

deep learning can be categorized as either single-stage or two-stage techniques.

RPN+BF [82], Fast R-CNN [83], and Faster R-CNN [19] are examples where

the authors employed a two-stage approach. Examples of single-stage ap-
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proaches have been proposed: For instance, Lan et al. [84] modified YOLO-v2

into a single-stage network called YOLO-R for pedestrian detection. Compre-

hensive surveys on pedestrian detection are provided in [85] and [86].

3.2.5 Traffic Light Detection

Color segmentation is a method often used to reduce the search space in

traffic scene images. For example, in [87] and [88], the authors employed

HSV and YCbCr color spaces respectively to detect traffic lights. In some

studies, shape-based methods such as the circular Hough transform [89] was

used after color segmentation to find round traffic lights. Blob detection is

another approach to detect traffic lights that analyses the size and aspect

ratio of the traffic lights to eliminate regions likely to produce false positives

[90]. In [91], saliency maps are employed to detect traffic lights. In [92],

GPS data and digital maps are used to identify traffic lights in urban areas.

Feature descriptors such as HOG [87], Haar-like [93], and Gabor Wavelet [88]

have been extensively used to detect traffic lights. To recognize the state

of traffic lights, several methods have been employed, mostly including SVM

[94], fuzzy algorithms [95] and more recently, deep learning methods. A simple

CNN was used by Lee and Park [96] for traffic light classification. Behrendt et

al. [2] applied YOLO-v1 for traffic light detection and classification. In [97],

YOLO-9000 [26] was applied to the LISA traffic light dataset. The authors

in [98] exploited DeepTLR networks for real-time traffic light detection and

classification. A novel Faster R-CNN hierarchical architecture was proposed

in [99] and trained on a joint traffic light and sign dataset.
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Figure 3.1: Framework Overview. Our framework detects and recognizes
traffic objects inside the visual field of driver. (from left to right: a)
The RoadLAB vehicle with forward stereoscopic and eye-tracking systems. b)
Dataset created with the RoadLAB experimental vehicle. c) Computing the ra-
dius of driver’s view as attentional gaze cone and locating the re-projected 2D
ellipse of the visual field of the driver. d) We used two different model types in
the detection stage of the framework; Model A consists of two steps including
multi-scale HOG-SVM followed by applying a CNN, and Model B is a Faster
Region-based CNN. Detection results are integrated by a NMS-based algorithm.
e) For the recognition stage, we separately trained three independent models
on traffic signs, vehicles, and traffic lights.

3.3 Proposed Method

In this Section, we describe our proposed method for traffic object detection

and recognition based on the attentional visual field of the driver. First, the

dataset used in this research is introduced. Following this, we describe the

method employed to find the attentional gaze area of the driver in the forward

stereo imaging system. Next, in the object detection stage, our trained models

and the methods used for enriching our data set are described. We then discuss

the Region of Interest (ROI) integration method we used. Finally, the object

recognition stage is presented. Figure 3.1 illustrates our proposed framework.
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3.3.1 The RoadLAB Dataset

An essential element of deep learning-based object detection systems is the

availability of a large number of sample images. In this Section, we present

our own object dataset from the RoadLAB experimental data sequences [100].

The RoadLAB project included an instrumented vehicle capable of recording

the following items:

• front view of the driving environment using calibrated stereo cameras

mounted on the roof of the vehicle

• vehicle dynamic features such as odometry and steering wheel angle

• driver cephalo-ocular behavioral features including head pose and 3D

driver gaze direction

Sixteen driving sequences were collected by our experimental vehicle on a pre-

determined, 28.5-kilometer course in the city of London, ON, Canada (details

provided in Table 3.1). Figure 3.2 illustrates the forward stereoscopic system

and the eye tracking system as part of the vehicular instrumentation.

As one of our contributions in this study, in order to train, validate and test

our models, we collected 13,546 sample images to detect and recognize traffic

objects including traffic signs, vehicles, pedestrians and traffic lights. Our

dataset contains 3,225 sample images for the background class in addition to

5,172, 1,984, 1,290 and 1,875 sample images for the object classes of traffic sign,

vehicle, pedestrian and traffic light respectively. The vehicle class consists of 3

distinct classes including car, bus and truck. The traffic light class consists of

4 distinct classes including red, yellow, green and not clear. Finally, the raffic

sign class includes 19 distinct classes of traffic signs. Additionally, some traffic

sign classes include more than one sign type such as “Maximum Speed Limit”,
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Figure 3.2: (top): Forward stereoscopic vision system on rooftop. (bottom):
Infrared gaze tracker.

Table 3.1: data description (each sequence correspondes to one
driver.)

Seq. # Date of Capture Weather Conditions Gender

1 2012-08-24 29 ◦C Sunny M
2 2012-08-24 31 ◦C Sunny M
3 2012-08-30 23 ◦C Sunny F
4 2012-08-31 24 ◦C Sunny M
5 2012-09-05 27 ◦C Partially Cloudy F
6 2012-09-10 21 ◦C Partially Cloudy F
7 2012-09-12 21 ◦C Sunny F
8 2012-09-12 27 ◦C Sunny M
9 2012-09-17 24 ◦C Partially Cloudy F
10 2012-09-19 8 ◦C Sunny M
11 2012-09-19 12 ◦C Sunny F
12 2012-09-21 18 ◦C Partially Cloudy F
13 2012-09-21 19 ◦C Partially Cloudy M
14 2012-09-24 7 ◦C Sunny F
15 2012-09-24 13 ◦C Partially Cloudy F
16 2012-09-28 14 ◦C Partially Cloudy M
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Figure 3.3: (top): Depiction of the driver attentional gaze cone. (bottom):
Re-projection of the 3D attentional circle into the corresponding 2D ellipse on
image plane of the forward stereo scene system.

“Construction”, “Parking”, etc. Our samples for traffic signs can be considered

as a complete sign dataset including warning signs, regulatory signs, direction

signs, and temporary signs. The main point of comparison work is to compare

with the Roadlab dataset and the performance achieved by zabihi et al. [56]

for the reason of practically.

3.3.2 Driver Gaze Localization

The visual attentional field of the driver consists of a circle in 3D space

within the plane that contains the Point of Gaze (PoG), perpendicular to the

Line of Gaze (LoG). The radius of the circle is determined by the angular

opening of the cone of visual attention as shown in Figure 3.3. The circle

generally projects onto the imaging plane of the stereo sensor as a 2D ellipse.

We describe the procedure we employed, as per Kowsari et al. [101].

First, both the eye position e = (ex, ey, ez) and the 3D PoG g = (gx, gy, gz)

are transormed into the reference frame of the forward stereo sensor. Next,

the radius of the circular attentional gaze area is obtained by computing the
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Euclidean distance between e and g (θ is set to 6.5 ◦: [102]).

r = tan(θ)‖e− g‖2 (3.1)

We re-project the obtained circle contained in the 3D plane perpendicular

to the LoG onto the image plane of the forward stereo imaging sensor where

it becomes an ellipse. The coordinates of the ellipse are obtained as:

(X, Y, Z) = g + r(cosφu + sinφv) (3.2)

where u=(ux, uy, uz) and v=(vx, vy, vz) are two orthonormal vectors in the

plane orthogonal to the LoG and φ ∈ [0, 2π]. Using perspective projection

x = X
Z

and y = Y
Z

and applying the intrinsic calibration matrix of the stereo

scene system from [101] yields the 2D ellipse on the image plane of the forward

stereo sensor. The mathematical details are found in [101] and [103]. Figure

3.4 illustrates several attentional visual areas for several sample frames.

3.3.3 Object Detection Stage

To detect traffic objects of interest inside and outside of the attentional

field of the driver, we employed a framework consisting of two different model

types that we proceed to describe:

Model A

The first model consists of two steps that include a multi-scale HOG-SVM

followed by the use of a ResNet-101 network. We used the multi-scale HOG-

SVM because of the model’s simplicity compared to the other model, such as

cascade-RCNN. The multi-scale HOG-SVM descriptor counts occurrences of
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Figure 3.4: Examples of attentional gaze areas projected onto the forward stereo
sensor of the vehicle.

Figure 3.5: Internal view of a multi-scale HOG-SVM
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gradient orientations in an image region followed by a block-normalization al-

gorithm that results in better invariance to edge contrast and shadows. Since

it operates on local cells, it is also relatively invariant to geometric and pho-

tometric transformations. In general, the detection algorithm is based on an

overlapping sliding window approach. Since the Region of Interest (RoI) con-

tains objects that vary in size, we used a multi-scale method for the object

detection problem. We treat the HOG features extracted from each sliding

window at each level as independent samples prior to feeding them to the

SVM classifier. Figure 3.5 illustrates the internal view of multi-scale HOG-

SVM.

We trained four independent multi-scale HOG-SVM models to find RoIs,

for our four types of traffic objects (signs, vehicles, pedestrians, and traffic

lights). The model moves a sliding window across the images and HOG fea-

tures are extracted. The model follows this strategy at several imaging scales.

Typically, SVM outputs conventional binary decision labels. However, it can

also provide a probabilistic confidence score [104] for each sliding window,

which we use to threshold on RoIs. With the use of HOG-SVM, we discard

the RoIs labelled as background while other candidates are transferred to the

next stage of processing.

The remaining ROIs from the HOG-SVM classifier were categorized into

five classes: background, traffic sign, vehicle, pedestrian and traffic light. In

the second stage we applied ResNet-101 [105], which is a popular CNN that

has been already trained with more than a million images from the ImageNet

database [106]. Figure 3.6 illustrates sample results obtained with this model.

However, we noted the multi-scale HOG-SVM sometimes had difficuly local-

izing vehicles occupying a large part of the image (Figure 3.7 illustrates this

problem). Hence, we also used a Faster R-CNN model to detect vehicles in
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Figure 3.6: Model A output examples.

Figure 3.7: Examples of model A missing large vehicle objects.
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Figure 3.8: Model B output examples.

parallel with Model A.

Model B

We trained a Faster R-CNN model on our dataset to localize vehicles.

We observed that Model B outperforms Model A for detecting vehicles that

occupy a large image area, or that are very close to the instrumented vehicle.

Conversely, Faster R-CNN cannot effectively detect objects that are low in

resolution or small in size [107], [108] and [109]. We integrated the results

from both Models A and B to cirumvent their respective weaknesses. The

hypotheses generated in this stage are directly transferred to an integration

stage where detection results are merged. Figure 3.8 displays vehicle detections

obtained with Model B.
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3.3.4 Data Augmentation

In addition to collecting over 10,000 sample object images, to further en-

rich our training dataset, we employed a data augmentation technique and a

boosting algorithm. Through data augmentation, we made our dataset greater

by adding the translated, rotated, scaled, and sheared versions of our original

samples resulting in increased performance at the detection stage. To boost

the performance of our models, we employed an advanced learning method

known as Hard Examples Mining (HEM). HEM refers to examples that are

mislabeled by the current version of the model. We trained the SVM, Resnet,

and Faster R-CNN models in an iterated procedure on a portion of the train-

ing data, and at each iteration, the detector models were applied to a number

of unseen images from the training data. Then, we corrected the mislabeled

results in preparation for the next iteration. We finally provided the models

with additional key samples which made them more robust.

3.3.5 Integrating Detection Results

After completing the detection stage on test images, in order to improve

the detection performance, we eliminated redundant detections and merged

the remaining ones into a set of integrated results. For this, we used a method

that is based on Non Maximum Suppression (NMS) [56], [30]. When multiple

bounding boxes overlap, NMS retains the highest-scored bounding box and

eliminates any other whose overlap ratio exceeds a preset threshold. We em-

ployed Pascal’s overlap score [110] to find the overlap ratio a between them.

This ratio is obtained as:

a =
area(B1 ∩B2)

area(B1 ∪B2)
(3.3)
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where B1 and B2 are two overlapping bounding boxes.

The NMS algorithm is not practical in all situations. For instance, consider

a situation in which a vehicle is partially occluded by a pedestrian, and both

of them are detected. If their overlap ratio is greater than the threshold,

NMS wrongly eliminates the lower-scored object. To address this case, we

integrated all bounding boxes in three steps. We considered a lower bound

and a upper bound threshold for the overlap ratio. In the first step, we employ

NMS to merge bounding boxes that belong to the same class. In this step,

NMS eliminates the lower-scored bounding boxes whose overlap ratios are

between the lower bound and the upper bound thresholds. In the second step,

if bounding boxes belong to the same class and their overlap ratio is greater

than the upper bound threshold, they are merged into a larger bounding box.

In the last step, all remaining bounding boxes are merged without employing

NMS to generate the final set of detected hypotheses.

3.3.6 Object Recognition Stage

The output of the detection stage is a list of candidate objects that have

been labeled with the class they belong to (traffic sign, vehicle, traffic light,

and pedestrian). Except for pedestrian objects, the remaining objects from

the list are considered for further analysis at this stage. We separately trained

three independent models on traffic signs, vehicles, and traffic lights by using

ResNet-101 for recognizing the remaining objects. After feeding the candidate

object (hypothesis) into its corresponding model, the classifier decides whether

the object in the list is either a rejected object or a recognized object and,

in this case, the classifier responds with the appropriate class name. More

precisely, the traffic light recognizer is able to classify traffic light hypotheses
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Figure 3.9: Output samples from the proposed framework superimposed on the
attentional visual field of the driver

into five classes, the vehicle recognizer is able to classify vehicle hypotheses into

four classes, while the traffic sign recognizer classifies traffic sign hypotheses

into twenty classes. Fig 3.9 shows a sample of results from the proposed

framework for four classes of traffic objects.

3.4 Experimental Results

We employed the driving sequences captured with the RoadLAB experi-

mental vehicle [100] and our dataset as described in Section 3.3.1. The pro-

posed method was used to detect and recognize traffic objects inside and out-

side of the attentional visual area of the driver. We provide the parameters

which have been used in our experiments. Then we report on our experimental

results for the proposed detection and recognition stages in detail.
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3.4.1 Parameters

Table 3.2: description of data augmentation

Method Description Range

Translate Each image is translated in the horizon-
tal and vertical direction by a distance,
in pixels

(−10, 10)

Rotate Each image is rotated by an amount, in
degrees

(−15, 15)

Scale Each image is scaled in the horizontal
and vertical direction by a factor

(0.5, 1.5)

Shear Each image is sheared along the hori-
zontal or vertical axis by a factor

(−30, 30)

To obtain fine-tuned parameters for each classifier model, we used cross-

validation experiments on our training dataset. We divided the training data

into a basic training set and a validation set. Then, the basic training set was

used to train the classifier and subsequently, the validation set was used to

evaluate the model. By exploring various ranges for the tuning parameters, we

selected the parameter settings that resulted in maximum validation accuracy.

Next, the classifier was re-trained on the complete training set using the fine-

tuned parameters. Finally, we tested the models on the pre-separated unseen

data that consists of a set of randomly selected samples.

We applied a threshold to the score values that each SVM model provided,

and RoIs were considered for post-processing only if their SVM score was

higher than the threshold value. These score values ranged from 0 (definitely

negative) to 1 (definitely positive). We selected the threshold that allowed a

maximum of true positives. While some false positives passed this stage, they

could mostly be elimiated in the following stage of processing.

Threshold values of 0.50, 0.40, 0.40, and 0.60 were applied to the SVM
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models for detection of traffic signs, pedestrians, traffic lights, and vehicles

respectively. These values provided the best results. We also utilized different

augmentation methods to improve the performance of our models. Table 3.2

lists the methods we have used to augment our data.

3.4.2 Results for the Object Detection Stage

In the following Subsections, we discuss the results we obtained for the

object detection stage in detail.

Assessing the Accuracy of the Trained ResNet-101 CNN Model

As described in Section 3.3.3, after localizing RoIs by way of multi-scale

HOG-SVM, a ResNet-101 CNN was trained and used on our dataset to verify

and categorize RoIs into our five classes of traffic objects. We computed the

confusion matrix from the ResNet-101 model on the test data (See Figure 3.10).

The model classifies the test data correctly in 94.1% of cases. Notably, 10%

of vehicles have been incorrectly classified as background by ResNet 101. As

a result, we employed a Faster R-CNN-based model to detect vehicles besides

Model A.

Assessing the Accuracy of the Object Detection Stage

To verify the accuracy of the object detection stage, we report the Detection

Rate (DR) and the number of False Positives Per Frame (FPPF), defined as

follows:

DR =
TP

TP+FN
(3.4)
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Figure 3.10: Confusion matrix from trained ResNet-101 for labelling of traffic
object classes.

Table 3.3: description of detection results

Description DR FPPF

traffic lights 0.93 0.03
pedestrians 0.88 0.11
traffic signs 0.91 0.06

vehicles 0.92 0.04
object detection stage, 4 object classes 0.91 0.06

previous work [56] for traffic signs 0.84 0.04

FPPF =
FP

F
(3.5)

where TP is the number of correctly detected objects, FN is the number of

objects that are wrongly not detected, FP is the number of incorrectly detected

objects, and F is the total number of frames.

As shown in Table 3.3, our proposed object detection framework achieved

0.91 and 0.06 for DR and FPPF respectively. Previously, Zabihi et al. [56]
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Figure 3.11: Confusion matrix from trained ResNet-101 for traffic sign recog-
nition.
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Figure 3.12: Confusion matrix from trained ResNet-101 for traffic light recog-
nition.

Figure 3.13: Confusion matrix from trained ResNet-101 for vehicle recognition.
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detected traffic signs only from the RoadLAB dataset and reported 0.84 for

DR and 0.04 for FPPF (last row of Table 3.3). Our model for traffic sign

detection, when compared with the work from Zabihi et al. [56], has reached

0.07 more accuracy for DR and shows an increase in FPPF of 0.02.

3.4.3 Results for Object Recognition Stage

The object recognition stage is applied to the output of the object detection

stage to recognize hypotheses and to provide a classification result. We trained

three separate ResNet-101 models for classes corresponding to traffic signs,

traffic lights, and vehicles using our training dataset. To verify the accuracy

of the object recognition stage, we computed the confusion matrix for each

class, as displayed in Figures 3.11, 3.12, and 3.13.

Results for traffic sign recognition (Fig 3.11) show that the model reached

96.1% accuracy with our Canadian traffic sign dataset. The largest values

along the main diagonal indicate that the majority of the test sign images

were classified correctly. The lowest correct response of 83.3% was obtained

for the class PedestrianCrossover.

Fig 3.12 illustrates the confusion matrix for traffic light recognition. The

results show that the model has reached 96.2% of overall correct classification.

As can be seen, the lowest degree of correctly categorized classes belongs to

class NotClear while classes Green and Red obtained 98.8% and 99.2% respec-

tively.

The results shown in Figure 3.13 indicate that the vehicle recognizer model

achieved 94.8% of overall correct classification. This confusion matrix shows

that this model is able to discriminate vehicle objects (i.e. vehicle, bus, and

truck) with less than 3% of mislabeling error. The background class achieved
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the least accuracy with 87.3%.

3.5 Conclusion

We conducted a literature review of detection and recognition approaches

for four important classes of traffic objects including traffic signs, vehicles,

pedestrians and traffic lights. Generally, the availability of suitable and ad-

equate training data is a vital element in the learning process, in order to

achieve a discriminative model. In this work, we collected over 10,000 object

sample images from sequences belonging to the RoadLAB initiative [100]. We

also enriched our training data using augmentation and a HEM strategy. We

localized the attentional visual area of the driver onto the imaging plane of the

forward stereoscopic system, and a framework for the detection and recogni-

tion of traffic objects located inside and outside the attentional visual field of

drivers was devised. We considered 3, 4, and 19 different classes for vehicles,

traffic lights, and traffic signs respectively. The object detection stage was

built from a combination of both traditional and deep learning-based mod-

els to detect objects at various scales. Finally, in the recognition stage, by

means of trained ResNet-101 networks, our framework achieved 96.1%, 96.2%

and 94.8% of correct classification for traffic signs, traffic lights, and vehicles

respectively.
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Chapter 4

Visual Driver Gaze Approximation

This Chapter is a reformatted version of the following article:

M. Shirpour, S.S. Beauchemin, M.A. Bauer, A probabilistic model for vi-

sual driver gaze approximation from head pose estimation, accept In IEEE 3rd

Connected and Automated Vehicles Symposium (CAVS), 2020.

The direction of a vehicle driver’s visual attention plays an essential role

in the research on Advanced Driving Assistance Systems (ADAS) and au-

tonomous vehicles. How a driver monitors the surrounding environment is

at least partially descriptive of the driver’s situation awareness. While driver

gaze is not explicitly related to head pose due to the interplay between head

and eye movements, it may still provide an approximation of the visual atten-

tion that is sufficiently accurate for many applications. In this research, we

propose a probabilistic method for describing the visual attention of drivers.

This method applies a Gaussian Process Regression (GPR) technique that

estimates the probability of the driver gaze direction, given head pose. We

evaluate our model on real data collected during drives with an experimental

vehicle in urban and suburban areas. Our experimental result illustrates that

82.5% of drivers’ gaze lies within the 95% confidence interval predicted by our
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framework.

4.1 Introduction

Over the last few years, Advanced Driver Assistance Systems (ADAS) have

been shown to significantly reduce the number of vehicle accidents. According

to the National Highway Traffic Safety Administration (NHTSA), driver errors

contribute to 94% of road collisions [1]. Evidence shows that a large number

of accidents are due to driver distraction, drivers whose attention is deflected

away from the driving task for more than two seconds at a time, and so on.

Hence, real-time monitoring of a driver’s visual field of attention is at the core

of future safety systems that will be capable of further reducing the number

of accidents. In recent years the driver gaze has been studied both in driving

simulators and in real driving conditions.

In this work, the driver’s visual attention is investigated by analyzing the

head pose in the reference frame of the forward stereo system located on the

roof of the experimental vehicle. This approach is often described as looking-

out, which was coined by [2], [3]. In this contribution, we present a new

approach that applies the Gaussian Process Regression (GPR) model for esti-

mating the gaze direction and consequently, the object of visual attention of

drivers. The rest of the contribution is structured as follows: First, a sum-

mary of related work is given in Section 4.2, followed by a description of the

instrumented vehicle and data collection process in Section 4.3. Section 4.4

describes our proposed method. In Section 4.5, we present the experimental

results along with a critical analysis. We provide a short conclusion and future

research directions in Section 4.6.
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Figure 4.1: (left): Forward stereoscopic vision system on rooftop, (center):
3D infra-red gaze tracker, (right): The faceLAB system interface from See-
ingMachines

4.2 Related Works

We provide a summary of the literature focused on estimating the gaze di-

rection of drivers in order to identify objects of driver visual attention. There

are two types of approaches: vision-based methods, and learning-based meth-

ods. Vision-based gaze zone estimation falls into one of two categories: gaze

estimation inside the vehicle space, and gaze estimation located outside the ve-

hicle, in the the reference frame of the stereo system. Learning-based methods

for gaze estimation comprise traditional machine learning and deep learning

methods.

Methods presented in [4], [5], [6], [7], [8] estimate the gaze zone inside

vehicle space. Doshi et al. [4] approximated the frequency of eye gaze location

on omnidirectional images. They observed that a classifier based upon head

movement has notably more predictive power than one based on the eye’s gaze

3 seconds before a lane change, but not 2 seconds before it. Tawari et al. [5]

proposed a framework to determine if the driver is looking inside or outside

the vehicle. They considered coarse eye pose and combined the salience of the

scene with the object the driver is focused on at a particular time. Ahlstrom

et al. [6] employed a dynamic region method in which a 3D model divides
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the vehicle into different parts such as windshield, speedometer, rear-view

mirrors, dashboard, etc. Another dynamic region-based method based on the

work of [7], [8] determines whether the driver gaze is on-road or off-road. They

evaluated their approach in stationary vehicles.

Authors in [9], [10], [11], [3], and [2] study driver gaze in relation with

object instances in the image space. In particular, Martin et al. [9] introduced

an architecture that learns to allocate a probability to every object in the view

based upon their likelihood of being the driver’s object of fixation. Schwehr et

al. [11] studied various types of gaze trackers calibrated against other sensors

in order to evaluate the robustness of techniques that associate a scene object

with the gaze of drivers. Kowsari et al. [2] introduced a cross-calibration

technique to transform the driver gaze from the reference frame of a remote

gaze tracker onto the reference frame of a forward stereoscopic vision system.

Zabihi et al. [3] defined a framework that uses the 3D Point of Gaze (PoG) and

Line of Gaze (LoG) of the driver in absolute 3D coordinates. They consider

the attentional visual area of the driver as the cone originating from the eye

position along the LoG.

Machine learning methods have also been used for similar purposes. For

instance, Bar et al. [12] used a decision tree to learn how the driver’s gaze

engages to important objects in a given situation, for the purpose of estimating

an awareness confidence level. Fridman et al. [13] proposed a method to find

facial regions with a combination of histogram of oriented gradients (HOG) and

SVM classifiers, and then classify the feature vectors with respect to gaze zones

by way of a random forest classifier. Lundgren et al. [14] proposed a Bayesian

filtering method that models the visual focus of attention in the absence of gaze

observations. They estimate the probability the driver is looking in various

zones by observing the driver behavior in terms of head rotations. Jha et
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al. [15] proposed a Gaussian process that estimates the probability of specific

points on the windshield, where the driver could be looking at.

Recently, attempts at applying deep learning methods for gaze estimation

have been made. These methods need large datasets with annotated gaze

labels. Alletto et al. [16] provided the Dr(eye)ve dataset, where multiple

researchers contributed to the data collection. Jha et al. [17] proposed a

method based upon deep learning networks for estimation of driver’s attention.

They gradually up-sample the resolution of the gaze area, which improves the

accuracy and the resolution of the prediction. Vora et al. [18] used a similar

technique to categorize the driver gaze into seven non-overlapping zones.

Our proposed method employs a Gaussian Process Regression (GPR) tech-

nique to estimate the driver’s visual attention, expressed in the reference frame

of the forward stereo system, located on the roof of the vehicle.

4.3 Vehicle Equipment and Data Collection

Our vehicle is equipped with a infrared remote gaze tracker. This system

[19] uses a pair of IR-sensitive stereo cameras mounted on the dashboard. The

system has been used in several experiments for various purposes [20], [3], [2],

[21]. The remote gaze tracker computes several driver features, including head

position and orientation, left and right gaze Euler angles, and left and right

eye center locations within the coordinate system of the tracker. A stereo

system located on the vehicle’s roof captures the frontal environment. Figure

4.1 depicts the configuration of the experimental vehicle [22].

The experimental vehicle is equipped with an On Board Diagnostic system

(OBD-II) that allows sensors to report on current vehicular status. It con-

stitutes the interface through which odometry is made available in real-time.
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Figure 4.2: The on-board software system displays image plane of the forward
stereo system, dynamic vehicle features, and eye tracker data.

Since 2008, the Controller Area Network bus protocol (CANbus) has become

mandatory for OBD-II. This standardization simplifies the real-time capture

of vehicular data. Several critical elements of vehicular dynamics are extracted

from the CANbus as driving indicators, such as vehicle speed, accelerator and

brake pedal pressures, steering wheel angle, and state of turn signals [22]. Six-

teen driving sequences were recorded by our experimental vehicle with test

drivers on a pre-determined 28.5km course around the city of London, ON,

Canada (see Table 4.1). A single driving sequence represents a driving time

of approximately one hour.
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Table 4.1: Description of Driving Sequences Used For Experi-
ments.

Sequence Capture Date Weather Gender

1 2012-08-24 29 ◦C Sunny M
2 2012-08-24 31 ◦C Sunny M
3 2012-08-30 23 ◦C Sunny F
4 2012-08-31 24 ◦C Sunny M
5 2012-09-05 27 ◦C Partially Cloudy F
6 2012-09-10 21 ◦C Partially Cloudy F
7 2012-09-12 21 ◦C Sunny F
8 2012-09-12 27 ◦C Sunny M
9 2012-09-17 24 ◦C Partially Cloudy F
10 2012-09-19 8 ◦C Sunny M
11 2012-09-19 12 ◦C Sunny F
12 2012-09-21 18 ◦C Partially Cloudy F
13 2012-09-21 19 ◦C Partially Cloudy M
14 2012-09-24 7 ◦C Sunny F
15 2012-09-24 13 ◦C Partially Cloudy F
16 2012-09-28 14 ◦C Partially Cloudy M

4.4 Methodology

Our interest is to build a stochastic model defining the area visual attention

of drivers projected onto the imaging plane of the forward sterescopic system.

This approach requires the cross-calibration of the stereo system with the

remote gaze tracker. Section 4.4.1 describes the calibration method used to

get the point of gaze and Section 4.4.2 discusses a method based upon the

Gaussian Process Regression to predict visual driver gaze.
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4.4.1 From Calibration to Projection of PoGs Onto the

Forward Stereo System

The calibration process between eye tracker and stereo system is an essen-

tial step towards building a useful PoG representation. We used a framework

proposed in our laboratory to calibrate the systems and to project the PoGs

onto the imaging plane of the stereo system (See Figure 4.2). The framework

is defined in the following steps [2]:

• Description of Calibration Procedure:

– Extraction of Salient Points: Selection of calibration points that

are provided by OpenCV from Hessian salient points.

– Depth Estimation: The driver fixates eyes on preselected salient

points for which the depth estimate, the gaze vector, the eye loca-

tion, and the 3D position of those points are available.

– Rotation Matrix and Translation Vector Estimates: The objective

consists of computing an estimate of the rigid body transformation

that exists between the stereo system and the eye tracker [5]. These

estimates are known as the Extrinsic Parameters of the paired sys-

tems.

• Projection of the Gaze on the Scene Image: The LoG is projected onto

the stereo system’s imaging plane. The PoG is identified onto the image

region, as long as the line intersects with a valid depth [5].
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4.4.2 Gaussian Process Regression

For reasons mentioned above, our interest is to estimate the image area onto

the imaging plane of the stereo system that elicits a visual response (fixation)

from the driver, using head pose as an approximation. To some extent, driver

head pose is indicative of driver attention orientation. This method differs

from those that propose to find the exact gaze by directly observing the eyes.

We aim to build a visual heat-map that indicates the stereo image area the

driver’s visual attention is most likely turned to.

We provide a short overview of GPR for the purpose of implementa-

tion [23]. Gaussian Process Regression is a non-parametric approach that

specifies a prior probability distribution over a latent function f , where f

is a mapping from the input X to output Y . The marginal distribution

P (f(x1), f(x2), ...f(xn)) is a multivariate normal distribution, where xi{i :∈

1, 2...n} is an input vector.

The statistical parameters of Gaussian Process are defined by mean and

covariance functions m(x) = E[f(x)] and k(x, x′) = E[(f(x)−E[f(x)])(f(x′)−

E[f(x′)])T ] respectively, where x, x′ ∈ X are input vectors and E represents

expectation value. The GP is defined as follows[24]:

y = GP(m(x), k(x, x′)) + ε, ε ∼ N (0, σ2) (4.1)

where x and y denote the input vector and noisy observation respectively.

We refer the reader to [23] and [24] for more details.

To map a feature vector X ∈ R6 containing each of the six head pose

parameters to the coordinate output Y ∈ R2, we define a training set D =

{(Xi, Yi) | i = 1, 2, ..., n}, where Xi represents an input vector of dimension

6, Yi represents the output, and n is the number of observations. In order
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to make the model predict unseen data X ′ from training data D, we need to

build a function f to predict for all inputs:

Y ′ = f(X ′) = p(Y ′, X ′ | D) (4.2)

where p is a posterior distribution for the training set. The joint distribution

of y and y′ is: y
y′

 ∼ N(0,

K(X,X) + σ2
n K(X,X ′)

K(X ′, X) K(X ′, X ′)

) (4.3)

where X denotes training set and X ′ denotes testing set. If we assume n data

from training set D and m test data, then K(X,X) is a n × n covariance

matrix of input training data, which is a symmetric positive definite matrix.

The matrix element Kij = K(xi, xj) represents the correlation between xi and

xj. K(X,X ′) = K(X ′, X)T is an n×m covariance matrix between training X

and testing data X ′. K(X ′, X ′) is a m×m covariance matrix of testing data

X ′. For instance, K(X,X ′) is given by:

σ2
fexp

(
− | X −X ′ |2

2l2

)
(4.4)

where σ2
f denotes the standard deviation that controls the degree of cor-

relation. The covariance function K(xi, xj) reaches the maximum σ2
f when

the inputs satisfy xi = xj. In other words, it occurs when f(xi) andf(xj) are

completely correlated. If xi and xj are distant from each other, we obtain

K(xi, xj) ≈ 0. l is the length-scale feature, that indicates the correlation level

related to differences between inputs.
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Figure 4.3: Various PoGs projected onto the forward stereo scene system of
the vehicle, with less than 3-pixel movement in the last 15 frames (1/2 second)
.

4.5 Experimental Evaluation

Here, we employed the driving sequences captured with our experimental

vehicle [22], as described in Section 4.3. We applied our proposed method to

estimate the most probable areas within the imaging plane of the stereoscopic

system that are being gazed at by the driver, given head pose parameters.

These probabilities are depicted with confidence intervals [25], [24]. For eval-

uation purposes, the dataset was divided into a training, a validation, and a

test data set.
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Table 4.2: Gaze Estimation Results Per Confidence Interval

Sequence Confidence

Interval

Accuracy Sequence Confidence

Interval

Accuracy

Subject 2

50% CI 60.4% 50% CI 54.9%

75% CI 75.1% Subject 3 75% CI 65.6%

95% CI 87.6% 95% CI 78.1%

Subject 4

50% CI 53.8% 50% CI 58.7%

75% CI 62.5% Subject 5 75% CI 67.9%

95% CI 80.3% 95% CI 75.1%

Subject 6

50% CI 63.3% 50% CI 51.1%

75% CI 78.2% Subject 7 75% CI 62.5%

95% CI 91.6% 95% CI 76.9%

Subject 8

50% CI 65.3% 50% CI 55.2%

75% CI 81.1% Subject

10

75% CI 73.9%

95% CI 93.6% 95% CI 87.2%

Subject 11

50% CI 53.1% 50% CI 58.5%

75% CI 63.9% Subject

12

75% CI 76.4%

95% CI 77.6% 95% CI 84.1%

Subject 13

50% CI 50.9% 50% CI 55.1%

75% CI 65.6% Subject

15

75% CI 66.8%

95% CI 80.3% 95% CI 78.9%

Average

50% CI 56.6%

75% CI 69.9%

95% CI 82.5%
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Ideally, an in-vehicle safety system must rely on sensors and cameras to

track the behavioral characteristics of drivers. Therefore, it is important to

have reliable algorithms estimating the driver head pose. Our gaze tracker

performed the head pose estimation and provided a measure of its quality.

This quality metric varied from 0 to 2, and we considered the head pose to be

reliable when this metric had a value of 1 or greater.

In order to perform an adequate analysis of the accuracy of our method, we

extracted the PoGs projected onto the forward stereo system of the vehicle, in

the preceding 15 consecutive frames (1
2

second) for which the PoGs vary less

than 3 pixel positions (see Figure 4.3), and considered those PoGs as target

gazes.

For each head pose we considered accurate, we estimated the confidence

intervals using the GPR model for their positions. We evaluated our method

with confidence intervals of 50%, 75%, and 95%. It should be noted that the

50% and 75% confidence intervals are subsets of the 95% interval. The size

of confidence intervals relies on the uncertainty of the approach, which is a

function of the estimated head pose parameters. We proceeded to calculate

the proportion of target gazes that found themselves within the image regions

corresponding to our confidence intervals.

Table 4.2 illustrates the proportion of correctly estimated target gazes for

each driver, including the 50%, 75%, and 95% confidence intervals. We observe

that the average proportion of the target gaze for the confidence interval of

95% is 82.5%. It can be seen that the majority of the points of gaze are

located inside this confidence region. Furthermore, 69.9% of the target gazes

are included in the 75% confidence region. As it is expected for the most

accurate region (50%), this confidence interval included only 56.6% of the gazes

from the test samples. As mentioned before, while the gaze direction and the
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Figure 4.4: Output samples for which the PoG falls within the confidence re-
gions

head pose are not explicitly correlated, the proposed model is nonetheless able

to provide a coarse, yet mostly correct estimation of gaze localization.

Figure 4.4 presents output samples of the probabilistic model for which

the PoG is inside a confidence region. The purple circle is the target gaze

location (real gaze), and the heatmap displays the confidence regions, where

the color red indicates a high probability of finding the gaze. The blue ellipses

represent higher variances. Notice that the sizes of the ellipses do vary, as they

are altered according to the uncertainty within the relationship between head

pose and gaze. A smaller circle indicates higher confidence in the data, whereas

a larger circle indicates greater uncertainty in the driver gaze estimates.

Figure 4.5 presents output samples for which the PoG is outside any of
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Figure 4.5: Output samples for which the PoG falls outside of the confidence
regions

the confidence regions. There is a trade-off between the size of the confidence

regions and the quality of the approximation that can be obtained from our

model. When the area of the confidence regions is large, it signifies that the

estimation is uncertain. We expect that the accuracy of our model for visual

driver gaze estimation will be improved as the number of drivers increase in

the data set.

4.6 Conclusion

We presented a new stochastic method for the detection of gaze areas,

given driver head pose estimates. Rather than estimating the gaze precisely,

which relies on the driver’s visual cognitive tasks, the method computes a

probabilistic visual attention map describing the probability of finding the
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actual gaze over the imaging plane of the stereo system.

We calculated confidence regions onto the forward stereo system of the

vehicle, as they express the uncertainty within the relationship between gaze

and head pose. Our approach is capable of estimating driver gaze without

explicitly tracking the eyes of drivers, thus simplifying the hardware require-

ments for applications in which a coarse estimate of gaze suffices, such as with

certain applications in traffic safety systems.

Our future work includes object and event identification located within

the surroundings of the vehicle that elicit driver visual attention. Our prior

research has established that driver gaze estimation is important for driver ma-

neuver prediction [21]. However, of equal importance is the ability to identify

the object of driver visual attention on a real-time basis. We believe that this

ability plays a crucial role in maneuver prediction because the driver perceives

and focuses on environmental features moments before performing a maneu-

ver. To reach this goal, we will be producing a collection of annotated datasets

in which the static (road signs, traffic lights) and dynamic (pedestrians, other

vehicles) actors within the scene are labelled. Also, the predictive model for

driver gaze direction could be used as an input feature in the driving maneuver

prediction model.
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Chapter 5

Driver’s Eye Fixation

This Chapter is a reformatted version of the following article: M. Shirpour,

S.S. Beauchemin, and M.A. Bauer, Driver’s Eye Fixation Prediction by Deep

Neural Network, accepted in VISAPP 2021 Conference, Vienna, Austria, 2021.

The driving environment is a complex dynamic scene in which a driver’s

eye fixation interacts with traffic scene objects. Prediction of a driver’s eye

fixation plays a crucial role in Advanced Driving Assistance Systems (ADAS)

and autonomous vehicles. However, currently, no computational framework

has been introduced to combine the bottom-up saliency map with the driver’s

head pose and gaze direction to estimate a driver’s eye fixation. In this work,

we first propose convolution neural networks to predict the potential saliency

regions in the driving environment, and then use the probability of the driver

gaze direction, given head pose as a top-down factor. We evaluate our model

on real data gathered during drives in an urban and suburban environment

with an experimental vehicle. Our analyses show promising results.
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5.1 Introduction

Recently, visual driver attention has become a noticeable element of in-

telligent Advanced Driver Assistance Systems (i-ADAS). Based on the World

Health Organization (WHO) studies, approximately 1.35 million fatalities and

anywhere between 20 to 50 million injuries occur every year on the roads. The

WHO predicts that road traffic accidents will rise to become the fifth pri-

mary reason for mortality in 2030 [1]. Evidence has shown that a considerable

number of accidents are due to distraction.

Driver monitoring research has been carried out for years in various re-

search fields, from science to engineering, to protect the driver from dangerous

situations. The driver’s eye fixation plays a crucial role in the research on

Driver Safety System and Enhanced Driver Awareness (EDA) systems to alert

drivers on incoming traffic conditions and warn them appropriately. Some

driver monitoring systems use head and eye location to evaluate the driver’s

gaze-direction and gaze-zone [2, 3]. Their purpose is to estimate the driver’s

intent and predict the driver’s maneuvers a few seconds before they occur

[4, 5]. Their results illustrate a strong connection between a driver’s visual

attention and action.

The driver’s eye generally fixates on parts of the driving environment that

depend on a number of objective and subjective factors that are based on

two classes of attentional mechanisms: bottom-up and top-down. Bottom-up

mechanisms consider features obtained from the driving scene such as traffic

signs, vehicles, traffic lights, and so on. In contrast, top-down mechanisms are

driven by internal factors such as a driver’s experience or intent [6]. Saliency

maps identify essential regions in the scene. In a driving context, top-down

factors significantly contribute to the estimation of traffic saliency maps, which



112

in turn provide an insight as to what a driver’s gaze may be fixated on while

driving.

In this study, we focus on developing a framework to predict the driver’s

eye fixation onto the forward stereo system’s imaging plane located on the

instrumented vehicle’s rooftop. This contribution is structured as follows: an

overview on the current literature in the field of saliency regions is provided in

Section 5.2, followed by a description of the RoadLAB vehicle instrumentation

and data collection processes in Section 5.3. Section 5.4 describes our proposed

method. In Section 5.5, we present and evaluate the experimental results. We

provide a conclusion and areas for further research in Section 5.6.

5.2 Related Works

Traffic saliency methods focus on highlighting salient regions or areas in

a given environment. This is an active area in the fields of computer vision

and intelligent vehicle systems. We provide a summary of the literature that

brings the essential concepts of visual attention and salient regions applied to

driving environments.

Saliency, as it relates to visual attention, refers to areas of fixation hu-

mans or drivers would concentrate on at a first glance. The modern history

of visual saliency goes back to the works of Itti [7]. They considered low-

level features, namely intensity, color, and orientation at multiple scales ex-

tracted from images, and then normalized and combined them with linear and

non-linear methods to estimate a saliency map. Harel et al. [8] suggested

a saliency method with Graph-Based Visual Saliency (GBVS). They defined

the equilibrium distribution of Markov chains from low-level features and then

combined them to obtain the final saliency map. Schauerte et al. [9] pro-
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posed quaternion-based spectral saliency methods that apply the integration

of quaternion DCT and FFT-based to estimate spectral saliency for predict-

ing human eye fixations. Li et al. [10] proposed a bottom-up factor for visual

saliency detection, which is considered a scale-space analysis of amplitude spec-

tra of images. They convolved image spectra with properly scaled low-pass

Gaussian kernels to obtain saliency maps. Some research demonstrated that

a driver’s attention was mainly focused on the vanishing points present in the

scene [11, 6] . Deng et al. [6] applied the road vanishing point as guidance for

the for traffic saliency detection. Subsequently, they proposed a model based

on a random forest to predict a driver’s eye fixation according to low-level

features (color, orientation, intensity) and vanishing points [12]. Details on

low-level features for non-deep learning approaches are provided in [13].

Deep learning-based models brought a paradigm shift in computer vision

research. Deep-learning methods commonly perform better when compared

with classical learning methods. Vig et al. [14] introduced one of the early net-

works that performed large scale searches over different model configurations

to predict saliency regions. Liu et al. [15] proposed Multi-resolution Convolu-

tional Neural Networks (Mr-CNN) to learn two types of visual features from

images simultaneously. The Mr-CNNs were trained to classify image regions

for saliency at different scales. Their model used top-down feature factors

learned in upper-level layers, and bottom-up features gathered by a combina-

tion of information over various resolutions. They then integrated bottom-up

and top-down features with a logistic regression layer that predicted eye fix-

ations. Kummerer et al. [16] presented the DeepGaze model that applied

the VGG-19 deep neural network for feature extraction, where features for

saliency prediction were extracted without any additional fine-tuning. Huang

et al. [17] proposed a deep neural network (DNN) obtained from concatenating
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two pathways: the first path considered a large scale image to extract coarse

features, and the second path considered a smaller image scale to extract fine

ones. This model and similar ones are suitable to extract features at various

scales. Wang et al. [18] proposed a framework that extracted features from

deep coarse-layers with global information and shallow fine layers with local

information that captured hierarchical saliency features to predict eye fixation.

Subsequently, they designed the Attentive Saliency Network (ASNet) from the

fixations to detect salient objects [19].

In the driving context, Palazzi et al. [20] proposed a model based on a

multi-branch deep neural network on the DR(eye)VE dataset, which consisted

of three-stream convolutional networks for color, motion, and semantics. Each

stream possessed its parameter set, and the final map aggregated a three-

stream prediction. Also, Tawari et al. [21] estimated drivers’ visual attention

with the use of a Bayesian Network model and detected the saliency region

with a fully convolutional neural network. Deng et al. [22] proposed a model

to detect driver’s eye fixations based on a convolutional-deconvolutional neural

network (CDNN). Their framework could predict the primary fixation location

and the second saliency region in the driving context, if it existed.

This contribution aims to apply a Deep Neural Network to our natural

driving sequences for the estimation of saliency maps followed by a Gaussian

Process Regression (GPR) to estimate the driver’s confidence region for the

final estimation of driver’s eye fixation.
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Figure 5.1: RoadLAB configuration. (top): vehicular configuration: stereo-
scopic vision system on rooftop and 3D infrared eye-tracker located on the
dashboard. (bottom): software systems: The on-board system displays frame
sequences with depth maps, dynamic vehicle features, and eye-tracker data.
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5.3 Vehicle Instrumentation And Data Collec-

tion

5.3.1 Vehicle Configuration

Our experimental vehicle is equipped with a stereo system placed on the

vehicle’s roof to capture the frontal driving environment. A remote eye-gaze

tracker located on the dashboard captures several features related to the driver,

including head position and orientation, left and right gaze Euler angles, and

left and right eye center locations within the coordinate system of the tracker.

Furthermore, the On-Board Diagnostic system (OBD-II) records the current

status of vehicular dynamics such as vehicle speed, brake and accelerator pedal

pressure, steering wheel angle, etc. Figure 5.1 depicts the RoadLAB experi-

mental vehicle and its software systems as described in [23].

5.3.2 Cross-Calibration Technique

The calibration process between the eye-tracker and stereo system is es-

sential for generating a useful Point of Gaze (PoG). We applied a technique

developed in our laboratory to cross-calibrate these systems and project the

PoGs onto the stereo system imaging plane. Details are provided in [24].

5.3.3 Participants

Sixteen drivers participated in this experiment, including nine females and

seven males. Each participant was recorded by our instrumented vehicle on a

pre-determined 28.5km route within the city of London, ON, Canada. Each

sequence represented a driving time of approximately one hour. Sequences
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were recorded in different circumstances, including scenery (downtown, ur-

ban, suburban) and traffic conditions varying from low-traffic to high-traffic

situations. They were recorded in various weather conditions (sunny, partially-

cloudy, cloudy) and at various times of the day (see Table 5.1).

5.3.4 Driver Gaze-Movement Analysis

Our eye-tracker performed the gaze estimation and provided a confidence

measure on its quality. This metric ranged from 0 to 3, and we considered the

driver’s gaze to be reliable when this metric had a value of 2 or higher. We

selected the PoGs projected onto the vehicle’s forward stereo system in the

preceding 15 consecutive frames. The driver’s POG data implemented with

the Gaussian distribution (Fig.5.2 ) were considered the ground-truth data.

Figure 5.2: An example of PoG and matching fixation saliency map. (left):
PoGs projected onto the forward stereo system of the vehicle obtained with the
preceding 15 consecutive frames. (right): The driver’s point of gaze as a 2-D
Gaussian distribution.
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Table 5.1: Description of RoadLab Dataset.

Seq# Date Weather Gender

1 2012-08-24 29 ◦C Sunny M

2 2012-08-24 31 ◦C Sunny M

3 2012-08-30 23 ◦C Sunny F

4 2012-08-31 24 ◦C Sunny M

5 2012-09-05 27 ◦C Partially Cloudy F

6 2012-09-10 21 ◦C Partially Cloudy F

7 2012-09-12 21 ◦C Sunny F

8 2012-09-12 27 ◦C Sunny M

9 2012-09-17 24 ◦C Partially Cloudy F

10 2012-09-19 8 ◦C Sunny M

11 2012-09-19 12 ◦C Sunny F

12 2012-09-21 18 ◦C Partially Cloudy F

13 2012-09-21 19 ◦C Partially Cloudy M

14 2012-09-24 7 ◦C Sunny F

15 2012-09-24 13 ◦C Partially Cloudy F

16 2012-09-28 14 ◦C Partially Cloudy M

5.4 Driver Fixation

We proposed method to predict a driver’s eye fixation in the forward stereo

vision reference frame. First, we introduce a model to predict the saliency

maps in the driving scene, inspired by [18]. Following this, we use a frame-

work proposed in our laboratory to estimate the probability of driver’s gaze
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GPR: Driver gaze direction

Encoder Decoder

ConV1 ConV2 ConV3 ConV4 ConV5 DeConV1 DeConV2 DeConV3

Figure 5.3: Network configuration

direction, as top-down information for prediction of driver’s eye fixation [3].

5.4.1 Model Architecture

The network configuration selection is a fundamental step when using a

neural network. There are various types of deep neural network saliency mod-

els, mainly divided into three groups: single stream, multi-stream, and skip

layer networks. Our network inherits the advantage of skip layer networks

capable of capturing hierarchical features. This network configuration learns

multi-scale features inside the model; the low-level layers reflect primitive fea-

tures such as edges, corners, etc; and the high-level layers represent meaningful

information such as parts of objects in various positions. The network archi-
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tecture is shown in Fig. 5.3. This architecture promotes performance via:

• the creation of multi-scale saliency features inside the network

• the preservation of high-resolution features from the encoder path

Our network encoder is based on the first five convolutional layers of

VGG16 [25], used for feature extraction from input images. The dimensions

of the input images are H ×W × 3. The network encoder includes a stack of

convolution layers that gradually learns from local to global information. The

spatial feature dimensions generated from VGG16 are consequently divided

by 2 until, in the last convolution layers, the dimensions reach H/16×W/16.

We choose three feature maps from the encoder path generated by convolu-

tion layers ConV 3 − 3, ConV 4 − 3, and ConV 5 − 3 to capture multi-scale

saliency information. We use these three-channel feature maps with different

dimensions and resolutions to obtain the final saliency prediction.

In the decoder part for each path, we apply multiple deconvolution layers to

increase the spatial dimension toward getting a saliency prediction map with

dimensions identical to those of the input images. For instance, the feature

map in the ConV 3 − 3 layer has a H/4 ×W/4 spatial dimension (after each

convolution block, the spatial dimension size is halved). Its decoder network

path includes two deconvolution layers, where the first one doubles the spatial

size of feature map to H/2×W/2, while the second deconvolution increases the

spatial size of the feature map to H ×W . Each deconvolution in these paths

is followed by a Rectified Linear Unit ReLU layer, which learns a nonlinear

upsampling. Similarly, the other decoder path related to ConV 4 − 3 and

ConV 5− 3 layers has three and four deconvolution layers, respectively.
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The loss function L(SF , SG) is defined as follows:

L(SF , SG) =
1

N

N∑
n=1

SGi
log(SFi

) + (1− SGi
)log(1− SFi

) (5.1)

where N is the number of pixels, SGi
is the ith pixel from the ground truth

driver’s fixation map, and SFi
is the ith pixel from the predicted driver’s fixation

map.

5.4.2 Top-Down Information

The driver gaze is not explicitly related to the head pose due to the inter-

action between head and eye movements. Generally, the driver moves both the

head and the eyes to obtain a fixation. In our previous research, we suggested

a stochastic model for describing a driver’s visual attention. This method uses

a Gaussian Process Regression (GPR) approach that estimates the driver gaze

direction probability, given head pose. We refer the reader to [3] for details on

the confidence interval for the driver’s gaze direction process.

Based on the driver’s head pose information, we propose a traffic saliency

maps framework, which utilizes the gaze direction as a top-down constraint.

The primary part of the framework is to find top-down features according

to the driver’s head pose and to estimate the probability of a driver’s gaze

direction, which is then fused with the saliency map, as follows:

SF (x, y) = wSCI(x, y) + (1− w)Sm(x, y) (5.2)

where w is the weighting factor, SCI(x, y) represents the confidence interval of

driver’s gaze according to the head pose information, and Sm(x, y) represents

the saliency map model. The weight w in 5.2 is a critical parameter of the
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framework, as it dictates the importance of the top-down factor in our model.

To choose a correct weight, we have shown that the drivers focus most of their

attention on the 95% confidence interval region estimated with the driver head

pose. Since the top-down saliency area includes 80% of the information that

is related to a driver’s fixation within the area of the confidence interval of the

driver’s head pose, we hypothesized that 0.8 was a suitable value for w.

5.5 Experimental Evaluation

In this Section, we describe the training of our proposed network and eval-

uate its performance both qualitatively and quantitatively.

5.5.1 Qualitative Evaluation

To evaluate our model against a number of cutting-edge methods, we chose

various sample frames from challenging driving environments, including diffi-

cult situations and conditions, such as traffic objects with different sizes, low

contrast scenes, and multiple traffic objects. Figure 5.4 illustrates the com-

parison of our network against other methods, namely: Graph-based Visual

Saliency (GBVS) [8], Image Signature [26], Itti [7], and Hypercomplex Fourier

Transform (HFT) [10]. Results clearly demonstrate that our method highlights

the drivers’ fixation areas more accurately and preserves details compared to

other methods. Our model displays excellent prediction of traffic objects such

as traffic signs, traffic lights, pedestrians, vehicles, among others. Other mod-

els displayed difficulties when attempting to detect relevant information from

the driving environments. Conversely, by way of bottom-up and top-down

processes, our model accurately predicts the driver’s fixation, including the
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Figure 5.4: (from left to right:) input frames, ground truth fixation maps,
our predicted saliency maps, and the predictions of Itti [7], GBVS [8], Image
Signature [26], and HFT [10]
.
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primaray and secondary fixation, if they exist.

5.5.2 Quantitative Evaluation Metrics

We have evaluated our model’s performance on various metrics to measure

the correspondence between the driver’s eye fixation prediction and the ground

truth driver’s eye fixation.

Some of the metrics considered herein are based on the location of fixation,

such as Normalized Scanpath Saliency (NSS) [27], and Area under ROC Curve

(AUC-Borji [28], AUC-Judd [29]). They evaluate the similarity between the

driver’s eye fixation prediction and ground-truth. In contrast, others are based

on distributions, such as Earth Movers Distance (EMD) [30], Similarity Met-

ric (SIM) [29], and Linear Correlation Coefficient (CC) [31]. They evaluate

the dissimilarity between the model’s prediction and ground truth. Let SG

represent the ground-truth driver’s eye fixation map and SF the saliency maps

prediction provied by the various methods:

• Normalized Scanpath Saliency (NSS): The NSS metric is computed

by the average normalized saliency at driver’s eye fixation locations, as

follows:

NSS =
1

N

N∑
n=1

SF (xn, yn)− µSF

σSF

(5.3)

where N is the number of eye positions, (xn, yn) the eye-fixation point

location, and µSF
, and σSF

are the mean and standard deviation of a

driver’s eye fixation map predication.

• Area Under the ROC Curve (AUC): AUC is commonly used for

evaluating estimated saliency maps. With AUC, two types of locations

are considered: the true driver fixation points, regarded as the positive
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set, versus a negative set consisting of the sum of other fixation points.

The driver’s eye fixation map is classified into the salient and non-salient

regions with a predetermined threshold. Then, the ROC curve is plotted

by the true-positive (TP) rate versus the false-positive (FP) rate, as the

threshold varies from 0 to 1. Depending on the non-fixation distribution’s

selection, there are two commonly used types of AUC, namely AUC-Judd

and AUC-Borji.

• Linear Correlation Coefficient (CC): The CC provides a measure of

the linear relationship between SF and SG. This metric varies between

−1 and 1, and a value close to either −1 or 1 shows alignment between

SF and SG:

CC =
cov(SF , SG)

σSF
× σSG

(5.4)

• Similarity Metric (SIM): This metric estimates the similarity between

the distributions of predicted and ground truth driver’s eye fixation maps

by easuring the intersection between two distributions, calculated by

a sum of the minimum values at any pixel location from distributions

(SF (n) and SG(n)):

SIM =
N∑

n=1

min(SF (n), SG(n)) (5.5)

where, SF (n) and, SG(n) are normalized distributions, and N is the

number of locations of interest in the maps. A value close to 1 indicates

that the two saliency maps are similar, while the score close to zero

denotes little overlap.

• Earth Mover’s Distance (EMD): This metric computes the spatial
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distance between two probability distributions SF (n) and SG(n) over a

region, as the minimum cost of transforming the probability distribution

of the computed driver’s eye fixation map SF (n) into the ground truth

SG(n). A high value for EMD indicates little similarity between the

distributions.
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Table 5.2: Saliency metric scores of our model as compared with
state-of-the-art saliency models on the RoadLab dataset.

Models NSS CC SIM AUC-

Borji

AUC-

Judd

EMD

GT 3.26 1 1 0.88 0.94 0

ITTI [7] 1.15 0.23 0.25 0.62 0.64 2.13

GBVS [8] 1.32 0.29 0.32 0.69 0.71 1.91

Image Signature [26] 1.48 0.29 0.30 0.73 0.75 2.06

HFT [10] 1.42 0.42 0.38 0.64 0.66 2.31

∆QDCT [9] 1.68 0.34 0.32 0.71 0.73 1.72

RARE2012 [32] 1.34 0.31 0.33 0.67 0.68 1.48

ML Net [33] 2.47 0.72 0.66 0.76 0.80 1.43

Wang [18] 2.87 0.78 0.68 0.81 0.85 1.23

Proposed 2.98 0.82 0.72 0.81 0.89 1.06

To illustrate the effectiveness of the saliency map model in predicting a

driver’s eye fixation, we compared our model with eight state-of-the-art tech-
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niques, including six non-AI models: ITTI [7], GBVS [8], Image Signature [26],

HFT [10], RARE2012 [32], ∆QDCT [9], and two deep learning-based models:

ML-Net [33], and Wang [18]. These models have been introduced in recent

years and are often utilized for comparison purposes.

The quantitative results obtained on the RoadLAB dataset [23] are pre-

sented in Table 5.2. Our proposed model gives the maximum similarity and

minimum dissimilarity with respect to the ground truth data. We conclude

that our model predicts the driver’s eye fixation maps more accurately than

other saliency models.

5.6 Conclusions

We proposed convolution neural networks to predict the potential saliency

maps in the driving environment, and then employed our previous research

results to estimate the probability of the driver gaze direction, given head

pose as a top-down factor. Finally, we statistaically combined bottom-up

and top-down factors to obtain accurate drivers’ fixation predictions. Due to

simplicity, we test out model on selected frames from the RoadLab dataset in

which the quality of head and gaze matrices, estimated by remote eye tracker,

is more than a predetermined threshold.

Our previous study established that driver gaze estimation is a crucial

factor for driver maneuver prediction. The identification of objects that drivers

tend to fixate on is of equal importance in maneuver prediction models. We

believe that the ability to estimate these aspects of visual behavior contitutes

a significant improvement for the prediction of maneuvers, as drivers generally

focus on environmental features a few seconds before effecting one or more

maneuvers.
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Chapter 6

Vanishing Points

This Chapter is a reformatted version of the following article: M. Shirpour,

S.S. Beauchemin, and M.A. Bauer, What Does Visual Gaze Attend to During

Driving?, submitted in 7th International Conference on Vehicle Technology and

Intelligent Transport Systems (VEHITS) Conference, Prague, Czech Republic,

2021.

This study aims to analyze driver Cephalo-Ocular behavior features and

road vanishing points according with repsect to vehicle speed in urban and sub-

urban areas using data obtained from an instrumented vehicle’s eye tracker.

This study utilizes two models for driver gaze estimation. The first model

estimates the 3D point of the driver’s gaze in absolute coordinates obtained

through the combined use of an imaging plane of the forward stereo vision

system and an eye-gaze tracker system. The second approach uses a stochas-

tic model, known as Gaussian Process Regression (GPR), that estimates the

most probable gaze direction given head pose. We evaluated models on real

data gathered in an urban and suburban environment with the RoadLAB ex-

perimental vehicle.
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6.1 Introduction

The human visual system collects about 90% of the information that is

needed to adequately perform driving tasks [1]. Driver gaze has been studied

for many years in driving simulators and real driving environments. It has been

demonstrated that driver gaze direction in relation to the surrounding driving

environment is predictive of driver maneuvers [2]. In addition to these results,

our aim is to elucidate the rules that govern driver gaze with respect to the

characteristics of vehicular dynamics. In particular, this contribution reports

on our investigation of the relationship that exists between gaze behavior,

vanishing points, and vehicle speed.

6.1.1 Literature Survey

Driver visual attention plays a prominent role in intelligent Advanced

Driver Assistance Systems (i-ADAS). Some driver monitoring systems utilize

the driver’s head pose and eyes to evaluate the driver’s gaze-direction and zone

[3, 4]. We recently presented a stochastic model that derives gaze direction

from head pose data provided by a contactless gaze tracking system [4]. This

model computes a probabilistic visual attention map that estimates the prob-

ability of finding the actual gaze over the stereo system’s imaging plane, with

a Gaussian Process Regression (GPR) technique. Subsequently, we proposed

a deep learning model to predict driver eye fixation according to driver’s visual

attention [5]. In addition, other contributions use the direction of gaze to de-

tect 2D image gaze regions [6, 7]. Others have defined a framework that uses

the 3D Point of Gaze (PoG) and Line of Gaze (LoG) in absolute coordinates

for similar purposes [8].

In other works, the driver’s attentional visual area was modelled as in-
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tersection of the elliptical region formed by the cone emanating from the eye

position with the LoG as its symmetrical axis along its length, with the imaging

plane of the forward stereoscopic vision system installed in the experimental

vehicle, as depicted in Figure 6.1. Using this mechanism, several authors were

able to estimate the driver’s most probable next maneuver some time before it

occurred [2, 9]. Their evaluation showed a strong relationship between driver

gaze behaviour and maneuvers.

In general, a driver concentrates on parts of the driving scene that contain

some objective and subjective elements. Objective elements are obtained with

bottom-up approaches that consider features extracted from the driving envi-

ronment such as traffic-related objects. On the other hand, subjective elements

are obtained with top-down approaches and are attributed to a driver’s inter-

nal factors, such as experience or intention [10]. Top-down strategies provide

insight into what a driver’s gaze could be fixated on while driving.

6.1.2 Human Vision System

The human visual field affords a remarkably broad view of the world, in

the range of 90◦ to the left and right, and more than 60◦ above and below the

gaze [11]. Information within 2◦ of the gaze is processed in foveal vision. More

broadly, parafoveal vision covers up to 6◦ of visual angle [12]. This implies that

the existing information in the parafovea is combined with that from the fovea.

The information from the fovea is clearer when compared with the information

present in the parafovea [13]. Together, the foveal and parafoveal areas are

known as the central visual field, where objects are clearly and sharply seen

and used to perform most activities [11].
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Figure 6.1: The attentional area is defined as the elliptical region formed by
the cross-section of a cone emanating from the eye position with the LoG as
its symmetrical axis along its length, and the imaging plane of the forward
stereoscopic vision system.

Figure 6.2: (left): Stereo vision system located on the vehicle’s roof; (center):
infrared gaze tracker; (right:) FaceLAB system interface.

6.1.3 Experimental Vehicle

Our research vehicle is equipped with instruments that capture driver-

initiated vehicular actuation and relate the 3D driver gaze direction on the

imaging plane of the forward stereoscopic vision system. The vehicle was used

to gather data sequences from 16 different test drivers on a pre-determined

28.5km route within the city of London, Ontario, Canada. 3TB of driving

sequences were recorded. The data contains significant driving information,

including forward stereo imaging and depth, 3D PoG and head pose, and ve-

hicular dynamics obtained with the OBDII CANBus interface. Image and

data frames are collected at a rate of 30Hz. The vehicular instrumentation

consists of a non-contact infrared remote gaze and head pose tracker, with

two cameras mounted on the vehicle dashboard, operating at 60Hz. This in-

strument provides head movement and pose, eye position, and gaze direction
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Figure 6.3: RoadLab software systems: The on-board system displays frame
sequences with depth maps, dynamic vehicle features, and eye-tracker data.

within its own coordinate system. A forward stereoscopic vision system is lo-

cated on the vehicle’s roof to capture frontal view information such as dense

stereo depth maps at 30 Hz (See Figure 6.2). Details concerning this instru-

mentation are available in [14]. The sum of our data was recorded with the

RoadLAB software system, as shown in Figure 6.3.

6.2 Methodology

This Section describes two models for describing driver gaze visual atten-

tion in the forward stereo imaging system. Section 6.2.1 addresses the calibra-

tion procedure applied to provide the Point of Gaze (PoG) onto the imaging

plane of the forward stereo system. We introduce a Gaussian Process Regres-

sion (GPR) that estimates the probability of gaze direction according to driver

head pose in Section 6.2.2. Section 6.2.3 describes the tecnique we employ to
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locate vanishing points from the stereoscopic imagery.

6.2.1 Projection of PoGs Onto Stereo System

The calibration process brings the eye tracker data into the coordinate sys-

tem of the forward steroscopic instrumentation. We used a cross-calibration

technique developed in our laboratory to transform the 3D driver gaze ex-

pressed in the eye tracker reference frame to that of forward stereoscopic vision

system [8]. This calibration process is defined as follows:

• Salient Points Extraction: A sufficient number of salient points are ex-

tracted from the steroscopic imagery (around 20 points provide sufficient

data)

• Depth Estimation: The driver’s eye fixates on preselected salient points

for a short period (about 2 seconds). The depth estimate of the salient

point, the gaze vector, and the position of the eye center are recorded.

• Estimation of Rotation and Translation Matrices: The process estimates

the rigid body transformation between the reference frame of the stereo-

scopic system and the remote eye tracker. The elements composing this

transformation are known as extrinsic calibration parameters.

• Gaze projection onto the imaging plane of stereoscopic system: The LoG,

expressed in eye tracker coordinates, is projected onto the imaging plane

of the stereo system using the extrinsic calibration parameters. The PoG

is determined as the location where the LoG intersects with a valid depth

estimate within the reference frame of the stereo vision system.
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6.2.2 Gaussian Process Regression

Technically, direct use of gaze is complicated by the fact that eyes may ex-

hibit rapid saccadic movements resulting in difficulties for assessing the correct

image area corresponding to a driver’s visual attention. Our research lab pro-

posed another model to alleviate this problem by approximating the 3D gaze

from the 3D head pose, as the head does not experience saccadic movements.

In our recent research, instead of directly estimating the gaze, which de-

pends on the driver’s visual cognitive tasks, we introduced a stochastic model

for representing driver visual attention. This model inherits the advantage of

the Gaussian Process Regression (GPR) technique to estimate the probability

of the driver’s gaze direction according to head pose over the imaging plane

of the stereo system. It establishes a confidence area within which the driver

gaze is most likely contained. We have shown that drivers concentrate most of

their attention on the 95% confidence interval region estimated from the head

pose. We refer the reader to [? ] for details on the GPR technique.

6.2.3 Vanishing Points

A vanishing point is a point on the image plane where the two-dimensional

perspective projections of mutually parallel lines in three-dimensional space

appear to converge. The vanishing point plays an essential role in the pre-

diction of driver eye fixations. The vanishing point is considered as guidance

for predicting driver intent, as drivers mostly gaze at traffic objects near the

vanishing point.

Available methods to detect the vanishing point are mainly edge, region,

or texture-based models. Edge-based models are adequate when edge bound-

aries and lane markings are available within the driving scene. Region-based
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Figure 6.4: Examples of vanishing-points (from left to right:) input frames,
voting map, and detected vanishing points.

Figure 6.5: Driver attention versus vanishing point with respect to speed. a)
to h): As the speed increases, the driver gaze converges to the vanishing point.
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Table 6.1: Description of Data Used For Analyze of Drivers Gaze and Vanish-
ing Point according to vehicle speed: A (0≤Speed <10), B (10≤Speed <20),
C (20≤Speed <30), D (30≤Speed <40), E ( 40≤Speed <50), F (50≤Speed
<60), G ( 60≤Speed <70), and H( Speed≥70)

Seq# A B C D E F G H

Seq.
2

11530 2693 3181 4426 4475 3930 4371 2350

Seq.
8

8515 2556 2959 3297 3594 3679 2157 2543

Seq.
9

7756 2544 3263 4197 3131 3148 3169 2166

Seq.
10

7199 1538 2068 3912 4665 4200 3042 1211

Seq.
11

8008 1714 2425 3373 3417 3330 2954 887

Seq.
13

11545 1956 2098 2248 2447 2711 3528 2605

Seq.
14

4495 1123 1311 1986 2285 2442 1204 1448

Seq.
16

9056 2085 2440 3046 2874 3321 1241 1628
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Figure 6.6: Model A (Left): Average and variance of distance from driver
gaze fixation to vanishing point versus vehicle speed for each driver. (right):
Average of all drivers.

methods divide the driving view into path and non-path according to low-level

features (color, intensity, etc). These two types of models are suitable for struc-

tured roads. They experience difficulty with scenery involving unstructured

or complex features.

Because the RoadLab dataset includes both structured and unstructured

imaging elements, we adopted a texture-based model proposed by [15]. Their

model is based on Gabor filters to estimate the local orientation of pixels.

Figure 6.4 shows a sample of RoadLab frames with detected vanishing points.

6.3 Analysis of Driver Attention

In this Section, we describe the preprocessing we applied to the RoadLAB

dataset and provide our analysis of the results we obtained.
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Figure 6.7: Model B (Left): Average and variance of distance from driver
gaze fixation to vanishing point versus vehicle speed for each driver. (right):
Average of all drivers.

6.3.1 Data Preparation

Our experimental vehicle relies on sensors and cameras to track its driver’s

behavioral features. The RoadLab software provided a confidence measure on

the quality of its estimations of head pose and gaze. The head pose confidence

measure ranged from 0 to 2, while the gaze quality metric ranged from 0 to 3.

We considered the head pose and gaze as reliable elements when these metrics

had a minumum value of 1 or, and 2 or higher for the gaze. The PoG that

passed the quality metric thresholds were projected onto the vehicle forward

stereo system for the 5 preceding consecutive frames. Table 6.1 provides the

number of frames selected from test drivers according to vehicular speed.
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6.3.2 Speed and Visual Attention Analysis

Our results show that drivers generally tend to concentrate their gaze on

vanishing points created by the motion of the vehicle. Figure 6.5 illustrates

the fact that the frequency of driver gaze fixations near the vanishing point

is considerably higher than that of fixations on other image regions. This

indicates that driver attention is more likely to fixate on traffic objects near

the vanishing point. Also, Figure 6.5 illustrates how the gaze position changes

at different vehicle speeds (for one particular driving sequence). When the

vehicle speed smoothly increases from below 10 km/h to over 70 km/h, the

gaze position rapidly converges to the vanishing point.

We estimated driver visual attention with two different models for gaze

direction: model A which estimates the probability of driver gaze direction

according to head pose, and model B which directly uses the 3D driver gaze

in absolute coordinates. We measured the logarithmic distance of gazes from

vanishing points and calculated the averages and variances of these distances

for a range of vehicle speeds. As observed in Figures 6.6 and 6.7 the distance

average of gaze fixations and vanishing points decreases significantly with an

increase in vehicle speed. These results show that the drivers were more fo-

cused on vanishing points at high the vehicle speeds. The variance of gaze

fixations at high vehicluar speeds is significantly lower than that observed at

lower speeds.

The human visual system is limited in the quantity of information it is able

to process per time unit, and compensates by decreasing its visual field when

the mass of elements to process in the spatial or temporal context increases.

In driving circumstances, this generally occurs at high speeds, as the amount

of available information per unit of time increases proportionally.
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6.4 Conclusions

The literature shows that the vanishing point is a helpful clue in driving and

other visual tasks. We analyzed driver gaze behavior in relation to vanishing

points with respect to increasing vehicular speeds with the RoadLab dataset

obtained from an instrumented vehicle. This research investigated two models

for driver gaze estimation. The first model estimated 3D point of gaze in

absolute coordinate, while the second model used a probabilistic process to

estimate the probability of driver gaze direction based on the head pose. The

results clearly indicate that vanishing points attract driver gaze with increasing

force at high vehicle speeds for both models. These results can be considered a

measure of driver distraction when the driver gaze deviates from the vanishing

point in different vehicle speeds.
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Chapter 7

Conclusion and Future Work

In this research, we have demonstrated that maneuver prediction is possi-

ble a few seconds ahead of time. Therefore such functionalities would allow

an ADAS to determine whether the next most probable maneuver is safe or

unsafe.

In Chapter 2 we developed a prediction model using LSTM that anticipates

5 types of driver maneuvers. Our model used both vehicular dynamics and

driver cephalo-ocular behavior as a basis for maneuver prediction. Quantita-

tive results in this contribution demonstrated the superiority of deep learning

techniques over traditional machine learning for the purpose of real-time driver

maneuver prediction.

Identifying objects that drivers visually atttend to potentially reveals the

objects of driver visual attention. Chapter 3 provides a vision-based frame-

work that detects and recognizes traffic objects inside and outside the driver’s

attentional visual area. This approach uses the driver 3D absolute gaze point

obtained through the combined use of a front-view stereo imaging system and

a non-contact 3D gaze tracker. We built a model from a combination of multi-
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scale HOG-SVM and Faster R-CNN-based models. The recognition stage is

performed by employing a ResNet-101. This contribution empirically demon-

strates that the identification of objects drivers visually attend to is indeed

feasible in a real-time fasion. Conversely, it becomes equally feasible to iden-

tify objects drivers may incorrectly not visually attend to.

Generally, the driver moves both the head and eyes to obtain a fixation.

In Chapters 4, we provided techniques to obtain confidence intervals within

which driver gaze may fall into, using head pose instead of explicit gaze di-

rection. These results may simplify the on-board equipment required for gaze

estimation within the immediate environment of the vehicle.

In Chapter 5, we proposed convolution neural networks to predict saliency

regions in the driving environment and used the estimated driver gaze direc-

tion heat map as estimated in Chapter 4 to obtain the intersections of most

probable gaze direction and location of salient objects. These results may be

used to ascertain if a driver is gazing at salient traffic objects, which may be of

importance in assessing a driver’s competence in safely performaing the task

of driving a vehicle in real-time.

In Chapter 6 we analyzed driver gaze behavior with respect to driving speed

and vehicular motion-induced vanishing points. We were able to demonstrate

that drivers visual attention tend to shift towards these vanishing points with

a probability that increased with vehicular speed. This result extends our

knowledge of driver visual behavior in a general sense.

Our contributions are summarized as follows:

1. Proposing a real-time model to predict driver maneuvers

2. Presenting a framework to detect and recognize traffic objects inside a

driver’s attentional field.
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3. Collecting and labeling a large dataset for different traffic objects

4. Proposing a stochastic method to identify forward image regions attract-

ing the visual attention of drivers

5. Proposing a deep neural network for the prediction of drivers eye fixa-

tions

6. Analysing driver gaze behavior with respect to vanishing points and

vehicle speed

7.1 Future Work

Research on modeling driver intent is a recent endeavour with the potential

for notable results in the near future. Here are five possible research areas that

could be undertaken directly:

1. The predictive model for driver gaze direction could be used as an input

feature in the driving maneuver prediction model.

2. The driver gaze prediction model coupled with the identification of salient

objects could be used to assess if a driver’s visual attention is attending

to relevant traffic objects, given the most likely next maneuver.

3. While the instrumentation represents a successful proof of concept, it was

noted that wider viewing angles for the stereo cameras and eye-trackers

using more than two cameras (to compensate for head rotations) would

allow us to track the 3D driver gaze into the surroundings in a more

comprehensive manner.
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4. The physical limitations of the instrumentation prevented its use at night

and in adverse weather conditions. Such limitations could be removed

entirely by a judicious choice of hardware, enabling the study of driver

intent in diverse conditions.

5. Features play a critical role in maneuver prediction system. Moreover,

using the SHAP (Shapley Additive exPlanations) method, we can de-

termine which of the features is of higher importance to the prediction

systems. The importance of these features has not been taken into ac-

count in the current research.
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