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Abstract

Electronic health record systems (EHRS) facilitate the storage, retrieval, and sharing of
patient health data; however, the availability of data does not directly translate to support for
tasks that healthcare providers encounter every day. In recent years, healthcare providers
employ a large volume of clinical data stored in EHRS to perform various complex data-
intensive tasks. The overwhelming volume of clinical data stored in EHRs and a lack of
support for the execution of EHR-driven tasks are, but a few problems healthcare providers
face while working with EHR-based systems. Thus, there is a demand for computational
systems that can facilitate the performance of complex tasks that involve the use and working
with the vast amount of data stored in EHRs. Visual analytics (VA) offers great promise in
handling such information overload challenges by integrating advanced analytics techniques
with interactive visualizations. The user-controlled environment that VA systems provide
allows healthcare providers to guide the analytics techniques on analyzing and managing

EHR data through interactive visualizations.

The goal of this research is to demonstrate how VA systems can be designed systematically
to support the performance of complex EHR-driven tasks. In light of this, we present an
activity and task analysis framework to analyze EHR-driven tasks in the context of
interactive visualization systems. We also conduct a systematic literature review of EHR-
based VA systems and identify the primary dimensions of the VA design space to evaluate
these systems and identify the gaps. Two novel EHR-based VA systems (SUNRISE and
VERONICA) are then designed to bridge the gaps. SUNRISE incorporates frequent itemset
mining, extreme gradient boosting, and interactive visualizations to allow users to
interactively explore the relationships between laboratory test results and a disease outcome.
The other proposed system, VERONICA, uses a representative set of supervised machine
learning techniques to find the group of features with the strongest predictive power and
make the analytic results accessible through an interactive visual interface. We demonstrate
the usefulness of these systems through a usage scenario with acute kidney injury using large

provincial healthcare databases from Ontario, Canada, stored at ICES.
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Summary for Lay Audience

Many medical organizations adopt electronic health record systems (EHRS) to replace
traditional paper-based patient records as they modernize their operations. EHR data includes
patients’ medical history, medications, diagnoses, treatment plans, and laboratory test results.
Healthcare professionals use EHR-based systems to perform various tasks that involve the
use and working with a vast amount of data stored in EHRs. Such tasks include identifying
patients at high risk of developing diseases, monitoring a patient’s condition, and studying
the effect of treatments, among others. Despite the benefits of EHR systems, they fail to meet
the healthcare professional’s computational needs. Therefore, it seems like there is a need for
computational tools that can support the execution of various tasks on large bodies of data in
EHRs. This research aims to prove the usefulness of computational tools, known as visual
analytics, in performing different tasks on EHRs. VA combines the strength of data analytics
techniques with interactive visualizations to allow healthcare professionals to explore and
analyze the clinical data interactively. We first identify the gaps in support of tasks
performed by EHR-based systems using a proposed framework. We then provide a
comprehensive overview of EHR-based VA systems through a systematic literature review.
We evaluate these systems based on the tasks, analytics, visualizations, and interactions they
support and identify the areas with little prior work. We develop two novel VA systems
(SUNRISE and VERONICA) to show how the VA approach can be used to address the
challenges of EHRs. SUNRISE is designed to help healthcare professionals to identify
relationships between laboratory test results and a disease. VERONICA uses several
analytics techniques to find the best representative group of features in identifying high-risk
patients. We show how these VA systems can be used to solve real-world problems using the

healthcare datasets from Ontario, Canada, stored at ICES.
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Chapter 1

Introduction

1.1 Motivation

The increasing adoption of electronic health records (EHRS) by medical organizations
has created an untapped resource with the power to improve and change healthcare
(Caban & Gotz, 2015; Harerimana et al., 2019; Yazhini & Loganathan, 2019). The EHR
data includes patients’ medical history and diagnoses, laboratory test results, medications,
procedures, immunization history, allergies, treatment plans, and symptoms, among
others (Lee et al., 2017). EHR systems have made patient information easily accessible to
healthcare facilities for various basic healthcare operations. While initially developed for
archiving patient records and supporting administrative tasks, researchers have
recognized the inevitable application of EHRs to clinical research (Shickel et al., 2018).
EHR-based systems offer an opportunity to utilize information derived from real-world
patient data to better guide clinical decisions regarding patients (Murphy et al., 1999;
Reisman, 2017). Healthcare providers utilize these systems to perform various EHR-
driven tasks such as monitoring patient progression (Doupi, 2012), studying the
effectiveness of treatments and medications (Cowie et al., 2017; Feng et al., 2019),
detecting adverse clinical events (Medicine & America, 2000), and ultimately improving
quality of care (Ali et al., 2007; Christensen & Grimsmo, 2008; Tang & McDonald,
2006). Despite the many hopes that access to more information through EHR-based
systems would lead to better decisions, access to huge volumes of clinical data has made
some analytical processes more challenging (Amarasingham et al., 2014). This problem
is referred to as information overload and is very common in the healthcare domain.
Information overload arises when trying to analyze a large number of variables that
exceed human cognition’s limits (Halford et al., 2005). It results in individuals
misinterpreting, ignoring, or overlooking important information. In healthcare settings,
information overload can lead to erroneous diagnoses, incorrect treatment decisions, and
wrong interpretation of the clinical data (Caban & Gotz, 2015). Thus, there is a need for

data analytics techniques to keep pace with the large volumes of complex EHR data.



Data analytics techniques incorporate methods and algorithms from various fields, such
as statistics, machine learning, and data mining, to facilitate clinical decision making and
to examine condition-specific clinical process outcomes (Han et al., 2011). In the past
years, several data analytics techniques have been developed to support complex
analytical tasks such as identifying patient cohorts, risk prediction, and biomarker
discovery, studying the effect of treatments, and detecting adverse drug events (W. Sun et
al., 2017; Yadav et al., 2018). However, while data analytics techniques are capable of
processing a huge amount of data, they are not equipped to handle noisy and
heterogeneous EHR data efficiently. They are also not capable of managing ill-defined
clinical tasks that require human judgment (D. A. Keim et al., 2010). Since these
techniques mostly hide the intermediary steps in the analysis process, healthcare
providers can only be minimally involved in the process. Complementing data analytics,
interactive visualizations display the clinical data in a visual form, enable healthcare
providers to control the flow of the data, and let them customize representations to fulfill
their cognitive needs. Several interactive visualization tools have been developed to
explore and query EHRs (Rind et al., 2013). While beneficial, these tools fell short when
confronted with problems requiring computational analysis, such as identifying patients
at risk of certain diseases or detecting nephrotoxic medications (D. A. Keim et al., 2010).
Thus, there is an increasing demand for an approach that integrates interactive
visualizations with data analytics techniques to address the cognitive and computational

needs of healthcare providers.

Visual analytics systems (VA) have the potential to transform raw EHR data into
actionable insights by combining the strengths of data analytics and interactive
visualizations (Caban & Gotz, 2015; D. Keim, Andrienko, et al., 2008; Ola & Sedig,
2014). VA systems support the execution and performance of a wide variety of complex
EHR-driven tasks. For instance, VA could help researchers perform population-based
analysis and gain insights from the huge amount of clinical data. Patients could use VA to
understand personalized wellness plans and compare their health status and

measurements against similar patients. Healthcare administrators could be supported in



understanding the productivity of an organization, outcomes measurements, gaps in care,
and patient satisfaction. Physicians can use VA to explore patients’ trajectories and
determine how a group of patients with chronic diseases can develop other comorbidities
over time (Goldsmith et al., 2010; Perer & Sun, 2012; Rajwan et al., 2013). When using
VA systems, tasks can be distributed between the healthcare provider and the system. In
other words, the healthcare provider and the system work together to accomplish the task
(Didandeh & Sedig, 2016; Sedig et al., 2012). For instance, a physician responsible for
identifying the effect of a treatment on a patient might choose to delegate the
computational sub-task of finding similar patients to the VA system. From observing the
analytics results in the visualization, the physician can examine how similar patients
responded to the treatment. In this scenario, both the VA system and the physician
collaborate to determine the effect of a treatment on a patient. As EHR-driven tasks are
usually ill-defined and domain-knowledge intensive, this user-guided discourse is very
beneficial (Kamal, 2014; D. Keim et al., 2010). Although VA systems have shown great
promise in supporting various EHR-driven tasks, to date, health lags behind other fields
in the design and development of VA systems. The design of VA systems for EHRs is a
non-trivial endeavor that requires a deeper understanding of individual components of
VA systems and how to best develop and integrate them. There are several decisions that
need to be made by the designer. For instance, the designer needs to determine how to
organize and encode data items in the visualization, support and facilitate healthcare
providers’ tasks, and decide which data analytics technique to choose. There is currently
a lack of direction on the effective and systematic design of VA systems for EHRs
(Amarasingham et al., 2014; Shah, 2014; Silow-Carroll et al., 2012).

This research aims to show how VA systems can be designed and developed
systematically for EHRs. We first conduct a systematic literature review of all the EHR-
based interactive visualization tools that support clinical decision-making. We then
present a framework to analyze EHR-driven tasks and activities in the context of
interactive visualization tools. The framework helps us to evaluate the existing tools and
identify the gaps in support of activities performed by these tools. We also conduct a
comprehensive review of existing EHR-based visual analytics systems. These systems

are evaluated based on four key dimensions: visual analytics tasks, analytics,



visualizations, and interactions. We then identify which challenges remain insufficiently
addressed. In light of this, we design and develop two novel EHR-based VA systems-
namely, SUNRISE and VERONICA. These VA are designed for epidemiologists and
clinical researchers at ICES-KDT. ICES is a not-for-profit, independent, world-leading
research corporation that uses population-based health data and clinical and
administrative databases to produce reliable and generalizable knowledge on a wide
range of healthcare problems. KDT refers to the provincial Kidney Dialysis and
Transplantation research program located in London, Ontario, Canada. We demonstrate
the utility of these systems through usage scenarios with acute kidney injury (AKI) by
investigating the process of exploring large provincial healthcare databases from Ontario,
Canada, stored at ICES. SUNRISE and VERONICA allow healthcare providers at ICES
to gain novel and actionable insights into the data and accomplish various EHR-driven
tasks. These tasks include investigating the risk prediction result, tracking the decision
path leading to the prediction, identifying the best representative features in predicting
patients at high risk, examining the relationship between laboratory test results and a
disease outcome, and conducting what-if analysis by testing hypothetical scenarios on

patients.

One of the primary contributions of this research is developing an activity and task
analysis framework that can help researchers and designers conceptualize functionalities
of EHR-based interactive visualization tools in an organized manner. This research can
help with the evaluation and systematic design of EHR-based interactive visualization
tools using this framework. Furthermore, this research offers a comprehensive review and
characterization of the state-of-the-art in VA for EHRs. It also identifies the key
dimensions of EHR-based VA design space that unify prior work through the collection
and analysis of the literature on EHR-based VA systems. Moreover, this research
identifies the gaps and challenges of VA’s use in EHRS that remain insufficiently
addressed. When developing EHR-based VA systems, there are several challenges that a
designer might face. These challenges include providing busy clinicians with timely
information in the proper format, identifying and visualizing cause-and-effect
relationships, scaling VA systems to billions of patient records, and validating and

refining the VA systems, among others. This research addresses these challenges by



combining machine learning techniques, data mining algorithms, visualization, and
human-data interaction. This research shows how VA systems can be designed
systematically. It provides a comprehensive description of different components of VA
systems in an organized manner and explains how these components work together to
support the execution of complex data-driven tasks. This research then discusses the
design decisions that need to be considered while developing an optimized and efficient
EHR-based VA system. Finally, through the development of two unique VA systems,
this research provides the healthcare domain with evidence of VA's efficiency for
exploring EHRs.

1.2 Structure of Dissertation

The rest of this dissertation is broken into five chapters, as follows:

Chapter 2 provides a framework for identifying and analyzing EHR-driven tasks and
activities in the context of interactive visualization tools—that is, all the activities, sub-
activities, tasks, and sub-tasks that are and can be supported by EHR-based tools. To do
so, we conduct a systematic literature review to collect all the research papers that
describe the design, implementation, and evaluation of interactive visualization tools that
support exploring and querying of EHR data. We provide an overview of each tool's
overall purpose, describe its visualization, and analyze how different sub-activities, tasks,
and sub-tasks combine to achieve the tool’s main higher-level activities of predicting,
monitoring, and interpreting. The frameworks can be used to evaluate the existing EHR-
based tools and design new tools systematically. It identifies the gaps in support of some

higher-level activities that are supported by these tools.

In Chapter 3, we conduct a systematic literature review to gather articles describing the
design and implementation of EHR-based VA systems and provide a comprehensive
overview of these systems. This review also proposes a design space, including four
primary dimensions used to characterize and evaluate the state-of-the-art EHR-based VA
systems. These key dimensions include VA tasks, analytics, visualizations, and
interactions. This review illustrates the major application of analytics, visualizations, and

interactions in supporting the EHR-driven VA tasks. We also connect and unify the



existing work using the dimensions identified in the design space with this review.
Finally, we discuss the remaining challenges, areas of little prior work, and identify

promising future research directions.

Chapter 4 presents a novel proof of concept VA system called SUNRISE that utilizes
laboratory test result data to develop disease prediction models. SUNRISE allows
healthcare providers to interactively explore the associations between laboratory test
results and a disease outcome. It integrates frequent itemset mining with extreme gradient
boosting (XGBoost) to create specialized prediction models. SUNRISE also includes
interactive visualizations to enable the user to interact with the prediction model, track
the decision process, and conduct what-if analysis by generating hypothetical input and
observing how the model responds. It improves the user’s confidence in the generated
predictions by illustrating models’ underlying working mechanisms through visualization
representations. We demonstrate SUNRISE's utility through a usage scenario of
exploring the relationships between laboratory test results and acute kidney injury using

large provincial healthcare databases from Ontario, Canada stored at ICES.

Chapter 5 presents another novel VA system, called VERONICA, that takes advantage
of the natural group structure of features in EHRs to find the group of features with the
strongest predictive power. VERONICA incorporates several machine learning
techniques —namely, classification and random forest, regression and classification tree,
C5.0, support vector machines, and naive Bayes to allow the analysis of EHRs from
different perspectives. It then enables the user to compare the risk prediction models in a
systematic way through an interactive visual interface by integrating different sampling
strategies, analytics algorithms, visualization techniques, and human-data interaction. To
demonstrate the usefulness and utility of this VA system, we use the clinical dataset
stored at ICES to identify the best representative feature groups in detecting patients who

are at high risk of developing acute kidney injury.

In Chapter 6, we summarize the conclusions drawn from the research reported in the
preceding chapters, explain the contributions of this research to the wider scientific

community, and discuss some future research areas.



It should be noted that the chapters of this dissertation are self-sufficient and can be read
individually or sequentially. Chapter 2 has been published; Chapters 3,4, and 5 have been

submitted. This dissertation is written in an integrated article format, so Chapters 2

through 5 are self-contained.



Chapter 2

Data-Driven Activities Involving Electronic Health Records:
An Activity and Task Analysis Framework for Interactive
Visualization Tools

This chapter has been published as N. Rostamzadeh, S.S. Abdullah, and K. Sedig, “Data
Driven Activities Involving Electronic Health Records: An Activity and Task Analysis
Framework for Interactive Visualization Tools” in the Multimodal Technologies Interact.

Journal, 4(1), 7; February 2020.

Please note that the format has been changed to match the format of the dissertation.
Figure, Section, and Table numbers mentioned herein are relative to the chapter number.
For instance, “Figure 1” corresponds to Figure 2-1. Additionally, when the term “paper”,

“work”, or “research” is used, it refers to this particular chapter.

2.1 Introduction

An electronic health record (EHR) contains patient data, such as demographics,
prescriptions, medical history, diagnosis, surgical notes, and discharge summaries.
Healthcare providers use EHRSs to make critical decisions, study the effects of treatments,
determine the effectiveness of treatments, and monitor patient improvement after a
particular treatment. In addition to these benefits, EHRs can potentially aid clinical
researchers in detecting hidden trends and missing events, revealing unexpected
sequences, reducing the incidence of medical errors, and establishing quality control
(Christensen & Grimsmo, 2008; Tang & McDonald, 2006). Recently, several healthcare
organizations have used systems that incorporate EHR data to improve the quality of
care; these systems are intended to replace traditional paper-based medical records
(Boonstra et al., 2014). However, a few studies (Himmelstein et al., 2010; Stead & Lin,
2009) reveal that these EHR-based systems hardly improve the quality of care. One of the
reasons for this is that they do not allow for human—data interaction in a manner that fits
and supports the needs of healthcare providers (Himmelstein et al., 2010; Rind et al.,

2013). A set of technologies and techniques that can improve the efficacy and utility of



these EHR-based systems can be found in information visualization (Rind et al., 2013), or

broadly speaking interactive visualization tools (IVTs).

IVTs can be defined as computational technologies that use visual representations (i.e.,
visualizations) to amplify human cognition when working with data (Sears & Jacko,
2007; Sedig & Parsons, 2016). IVTs can help people who use them gain better insight by
providing the means to explore the data at various levels of granularity and abstraction.
An important feature of I\VTs that makes them suitable for the exploration of EHRs is the
ability to show relevant data quickly by mapping it to visualizations (Rind et al., 2013).
Another feature is interaction. Making the visualization interactive allows healthcare
providers to perform various data-driven tasks and activities. Interaction helps users
accomplish their overall goals by dynamically changing the mapping, view, and scope of
EHR data. In recent years, a number of EHR-based 1V Ts have been developed and

deployed to support healthcare providers in performing data-driven activities.

To provide a clear and systematic approach in examining EHR-based 1\VVTs for clinical
decision support, this paper provides a framework for analyzing tasks and activities
supported by these tools. To do so, we will first provide a brief survey of some of the
existing IVTs that support the exploration and querying of EHR data and examine overall
patterns in these tools. This survey does not include EHR-based IVVTs that are designed

for clinical documentation, administration, and billing processes.

There are a few studies that review EHR-based 1\VVTs and their applications. Rind et al.
(Rind et al., 2013) reviewed and compared state-of-the-art information visualization tools
that involve EHR data using four criteria: (1) data types that they cover, (2) support for
multiple variables, (3) support for one versus multiple patient records, and (4) support for
user intents. Lesselroth and Pieczkiewicz (Lesselroth & Pieczkiewicz, 2011) surveyed
different visualization techniques for EHRs. They cover a large number of visualization
tools (e.g., Lifelines, MIVA, WBIVS, and VISITORS). Their survey is organized into
five sections: (1) multimedia, (2) smart dashboards to improve situational awareness, (3)
longitudinal and problem-oriented views to tell clinical narratives, (4) iconography and

context links to support just-in-time information, and (5) probability analysis and
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decision heuristics to support decision analysis and bias identification. Combi et al.
(Combi et al., 2010) reviewed a few visualization tools (e.g., IPBC, KHOSPAD, KNAVE
I1, Paint Strips, and VISITORS) and described them based on the following features:
subject cardinality (single/multiple patients), concept cardinality (single/multiple
variables), abstraction level (raw data, abstract concepts, knowledge), and temporal
granularity (single, single but variable, multiple). Finally, in a book chapter, Aigner et al.
(Aigner et al., 2008) described strategies to visualize (1) clinical guidelines seen as plans
(e.g., GEM Cutter, DELT/A), (2) patients’ data seen as multidimensional information
space (e.g., Midgaard, VIE-VISU, Gravi++), and (3) patients’ data related to clinical

guidelines (e.g., Tallis Tester, CareVis).

A careful examination of the above surveys shows that a systematic analysis of IVTs with
a focus on how they support EHR-data-driven tasks and activities is lacking. The purpose
of the current paper is to fill this gap. Here, we present a framework for analyzing how
IVTs can support different EHR-based tasks and activities. The framework can help
designers and researchers to conceptualize the functionalities of EHR-based IVTs in an
organized manner. In addition, this paper is suggestive of how this framework can be
used to evaluate existing EHR-based IV Ts and design new ones systematically. This
paper also leads to the development of best practices for designing similar frameworks in

similar areas.

The rest of this paper is organized as follows. Section 2 discusses how the proposed
framework is formed and examines the relationships among the three concepts of
activities, tasks, and low-level interactions in the context of the framework. Section 3
presents our strategy for searching relevant literature and explains our selection criteria.
Section 4 provides a brief survey of a set of IVTs and outlines their main goal(s). In this
section, using the proposed analytical framework, we identify the tasks and activities that
IVTs support. Finally, Section 5 discusses how the framework can be used to evaluate the
surveyed EHR-based IVTs.
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2.2 A Proposed Activity and Task Analysis Framework

In the context of IVTs, user-tool interaction can be conceptualized as actions that are
performed by users and consequent reactions that occur via the tool’s interface. This bi-
directional relationship between the user and the tool supports the flow of information
between the two. Interaction allows for human—information discourse (Ola & Sedig,
2018). Furthermore, it allows users to adjust different features of the IVT to suit their
analytical needs. Interaction can be characterized at different levels of granularity (Sedig
& Parsons, 2013, 2016). As displayed in Figure 1, an activity can be conceptualized at
the highest level, where it is composed of multiple lower-level tasks (e.g., ranking,
categorizing, and identifying) that work together to accomplish the activity's overall goal.
An activity and a task can consist of multiple sub-activities and sub-tasks, respectively.
At the lower level, tasks can be considered to have visual and interactive aspects; tasks
that are supported by visual processing are called visual tasks. For instance, consider a
scenario in which a user is working with a stacked bar chart that aggregates laboratory
test results. The user needs to understand the distribution of a specific test of a collection
of patients after surgery over time. Some of the visual tasks that the user may need to
perform can include detecting the time when the test is at its peak and observing the
average test result at different times. Interactive tasks require users to act upon
visualizations. For instance, in the example above, the user may want to cluster the test
results based on different time granularities (e.g., over an hour, over a day, or over a
month). Each interactive task is made up of a number of lower-level actions (i.e.,

interactions) that are carried out to complete the task.

In most complex situations, activities, sub-activities, tasks, and sub-tasks are combined to
support users in accomplishing their overall goal. It is important to note two perspectives
from which we can view human—data discourse. From a top-down perspective, users’
goals flow from higher-level activities that need to be accomplished. From here, we go
down to a number of tasks and sub-tasks (visual and interactive), and then to a set of low-
level interactions. From a bottom-up perspective, the performance of a series of low-level

interactions that users perform with visual representations gives emergence to tasks.
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Figure 2-1: Relationships among activities, tasks, and interactions. Top-down view:
activity is made up of sub-activities, tasks, sub-tasks, and interactions. Bottom-up
view: activity emerges over time, through performance of tasks and interactions.

Visualizations are depicted as Vis and reactions as R,. Source: adapted from (Sedig

& Parsons, 2016).

Similarly, the performance of a sequence of tasks gives emergence to activities all the

way up until an overall goal is accomplished.

In this paper, we present an activity and task analysis framework for examining EHR-
based IVTs (i.e., ones that involve EHRs as their main source of data with which users
perform data-driven tasks and activities). To identify what activities, sub-activities, tasks,
and sub-tasks are supported in EHR-based ITVs, we have examined a number of such
tools that have been developed by different researchers and have been reported in the
literature (see Wang et al. (Taowei David Wang et al., 2008); Wongsuphasawat et al.
(Krist Wongsuphasawat et al., 2011); Wongsuphasawat and Gotz (K. Wongsuphasawat
& Gotz, 2012); Malik et al. (Malik et al., 2014); Fails (Fails et al., 2006); Klimov et al.
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(Klimov et al., 2010a); Wongsuphasawat (Krist Wongsuphasawat, 2009); Monroe et al.
(Monroe et al., 2013); Brodbeck et al. (Brodbeck et al., 2005); Chittaro et al. (Chittaro et
al., 2003); Rind et al. (Rind, Aigner, Miksch, Wiltner, Pohl, Drexler, et al., 2011);
Plaisant et al. (Plaisant et al., 1998); Faiola and Newlon (Faiola & Newlon, 2011);
Pieczkiewicz et al. (Pieczkiewicz et al., 2007); Bade et al. (Bade et al., 2004); Hinum et
al. (Hinum et al., 2005); Rind et al. (Rind, Aigner, Miksch, Wiltner, Pohl, Turic, et al.,
2011); and Ordonez et al. (P. Ordonez et al., 2012); Gresh et al. (Gresh et al., 2002); Horn
et al. (Horn et al., 2001)). To conceptualize and develop the elements of the framework,
our focus is the identification of activities and tasks that are independent of any specific
technology or platform. To be consistent, we re-interpret how activities and tasks are
named by the authors of the afore-listed sources in light of the unified language of our
proposed framework. The activity and task terms we use might differ from the language
of the existing literature since the authors have described their tools using their own
vocabulary. Unfortunately, the language that different authors use is not consistent. Such
inconsistency makes it difficult to analyze how well and comprehensively such tools
support EHR-based tasks and how they can be improved. In the next section, we define
and categorize the higher-level activities that result from interaction and combination of

different sub-activities, tasks, and sub-tasks.

2.2.1 Higher-Level Activities: Interpreting, Predicting, and
Monitoring
After reviewing numerous papers, we have concluded that, broadly speaking, all EHR-
data-driven healthcare activities can be organized under three main categories:
interpreting (Auffray et al., 2016; Groves et al., 2003; Komaroff, 1979; M. Kumar et al.,
2007; Lag et al., 2014), predicting (Amarasingham et al., 2014; Cohen et al., 2014;
Kankanhalli et al., 2016; Raghupathi & Raghupathi, 2014; Allan F. Simpao et al., 2014,
Y. Wang et al., 2018), and monitoring (Anderson et al., 2015; Hauskrecht et al., 2013;
Kho et al., 2007; Li & Wang, 2016; Saeed et al., 2002; Tia Gao et al., 2005). Interpreting
refers to the activity of detecting patterns from patients’ medical records and making
sense of the relationships among different features. Predicting refers to the activity of

anticipating patient outcomes and creating new hypotheses by analyzing patient history
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and status (Siegel, 2013). Lastly, monitoring refers to the activity of repetitive testing
with the aim of adjusting and guiding the management of recurrent or chronic diseases
(Glasziou et al., 2005).

2.2.2  Hierarchical Structure of Activities, Sub-Activities, Tasks,
and Sub-Tasks
In this section, we identify sub-activities, tasks, and sub-tasks that blend and combine
together to give rise to the three activities of interpreting, predicting, and monitoring.
Interpreting, as a higher-level activity, can be comprised of four sub-activities: (i)
understanding (e.g., gaining insight into patient medical records), (ii) discovering (e.g.,
finding patients with interesting medical event patterns), (iii) exploring (e.g., observing
patient data in different temporal granularities), and (iv) overviewing (e.g., providing
compact visual summaries of all event sequences found in the data). Likewise, predicting
can be comprised of two sub-activities: (i) learning (e.g., generating new hypotheses
from the data), and (ii) discovering (e.g., recognizing the deterioration of the disease).
Finally, monitoring is composed of (i) investigating (e.g., examining the development of
a patient after treatment), (ii) analyzing (e.g., studying the aggregated event sequences for
quality assurance), and (iii) evaluating (e.g., assessing the quality of care based on
clinical parameters). At the next level of the hierarchy, as shown in Figure 2, each sub-
activity can be composed of a number of visual (e.g., specifying, recognizing, and
detecting) as well as interactive tasks (e.g., locating, ordering, querying, and clustering).
Moreover, as shown in Table 1, each task consists of different sub-tasks; for instance,
ordering can be carried out by a combination of sub-tasks such as ranking, aggregating,

identifying, and classifying.

2.3 Methods
2.3.1 Search Strategy

We conducted an electronic literature search in order to collect the research papers that
describe the design, implementation, or evaluation of EHR-based IVTs. In order to assure
a comprehensive document search, we included all the keywords that are relevant to the

goal of the research and also covered all the synonyms and related terms, both for EHRs
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Figure 2-2: Overview of the proposed activity and task analysis framework. The
visual tasks are represented as blue and interactive tasks are represented as yellow.

and visualization tools. We further broadened our search by adding an * to the end of a
term to make sure the search engines picked out different variations of the term. We also
added quotation marks around phrases to ensure that the exact sequence of words is
found. To ensure that relevant papers were not missed in our search, we used a relatively
large set of keywords. We used two categories of keywords. The first category concerned
visualization tools and included the following terms: “visualization*”, “visualization

00 information visualization interactive visualization interactive
tool*”, “inf t lization*”, “int t lization*”, “int t
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Table 2-1: Shows the breakdown of the interactive and visual tasks.

Task Sub-tasks
Ordering Aggregating, Classifying, Identifying, Ranking
Locating Aggregating, Aligning, Classifying, Identifying, Ranking
Querying Classifying, Identifying, Ranking,
é’ Organizing Aggregating, Classifying, Identifying, Highlighting
‘g Summarizing Aggregating, Classifying, Identifying
g Clustering Classifying, Identifying, Ranking
Observing Aggregating, Aligning, Identifying, Ranking
Recognizing Aggregating, Aligning, Classifying, Identifying, Ranking
§ Specifying | Aggregating, Aligning, Classifying, Identifying, Highlighting, Ranking
> Detecting Classifying, Identifying, Ranking

visualization tool*”, “visualization system*”, and “information visualization system™*”’.
For the second category, EHR, we used the following terms: “Health Record*”,
“Electronic Health Record*”, “EHR*”, “Electronic Patient Record*”, “Electronic
Medical Record*”, “Patients Record*”, and “Patient Record*”. As we were looking for
papers about EHR-based visualization tools, we used the keywords shown in Table 2. We
used the following search engines based on their relevance to the field: PubMed, the
ACM Digital Library, the IEEE Library, and Google Scholar. We also looked for relevant
papers in two medical informatics journals (International Journal of Medical Informatics
and Journal of the American Medical Informatics Association). Furthermore, additional
papers were collected in conference proceedings (e.g., IEEE Conference on Visual
Analytics Science and Technology (VAST), HCIL Workshop 2015, and IEEE VisWeek
Workshop on Visual Analytics in Health Care) that were published in 2007 and later. We
then manually reviewed the reference lists of the papers that met the selection criteria to
find other relevant studies that had not been identified in the database search. All the
studies included in this survey were published from 1998 until 2015. We reviewed all of
the abstracts, removed the duplicates, and shortlisted abstracts for a more detailed

assessment.



Table 2-2: Overview of the search terms used.
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Terms Used

“Visualization*” +“Health Record*”’

“Visualization*” + “Electronic Health Record*”

“Visualization*” + “EHR*”

“Visualization*” + “Electronic Patient Record*”

“Visualization*” + “Electronic Medical Record*”

“Visualization*” + “Patients Record*”

“Visualization*” + “Patient Record*”

“Visualization tool*” +“Health Record*”

“Visualization tool*” + “Electronic Health Record*”

“Visualization tool*” + “EHR*”

“Visualization tool*” + “Electronic Patient Record*”

“Visualization tool*” + “Electronic Medical Record*”

“Visualization tool*” + “Patients Record*”

“Visualization tool*” + “Patient Record*”

“Information visualization*” +“Health Record*”

“Information visualization*” + “Electronic Health Record*”

“Information visualization*” + “EHR*”

“Information visualization*” + “Electronic Patient Record*”

“Information visualization*” + “Electronic Medical Record*”

“Information visualization*” + “Patients Record*”

“Information visualization*” + “Patient Record*”

“Interactive visualization*” +*“Health Record*”

“Interactive visualization*” + “Electronic Health Record*”

“Interactive visualization*”” + “EHR*”

“Interactive visualization*” + “Electronic Patient Record*”

“Interactive visualization*” + “Electronic Medical Record*”

“Interactive visualization*” + “Patients Record*”
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“Interactive visualization*” + “Patient Record*”

“Interactive visualization tool*” +“Health Record*”

“Interactive visualization tool*” + “Electronic Health Record*”

“Interactive visualization tool*” + “EHR*”

“Interactive visualization tool*” + “Electronic Patient Record*”

“Interactive visualization tool*” + “Electronic Medical Record*”

“Interactive visualization tool*” + “Patients Record*”

“Interactive visualization tool*” + “Patient Record*”

“Visualization system*” + “Health Record*”

“Visualization system*” + “Electronic Health Record*”

“Visualization system*” + “EHR*”’

“Visualization system*” + “Electronic Patient Record*”

“Visualization system*” + “Electronic Medical Record*”

“Visualization system*” + “Patients Record*”’

“Visualization system*” + “Patient Record*”

“Information visualization system*” + “Health Record*”

“Information visualization system*”’ + “Electronic Health Record*”

“Information visualization system*” + “EHR*”

“Information visualization system*” + “Electronic Patient Record*”

“Information visualization system*”” + “Electronic Medical Record*”

“Information visualization system*” + “Patients Record*”

“Information visualization system*” + “Patient Record*”

2.3.2 Selection Criteria

Out of all the studies that survived the initial filtering, we only included those that
described an interactive visualization tool and provided a detailed description of the
tool’s visualization and its interaction design in order to analyze how the tool can support
different EHR-data-driven tasks and activities. All the papers related to the visualization
of any administrative tasks with patient data, medical guidelines, genetics data, and

syndromic surveillance were excluded from our survey as we only focused on clinical
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EHR data. We also excluded the studies that were solely focused on the visualization of
free text (e.g., the patient’s progress notes) and medical images (e.g., magnetic resonance

imaging, and X-ray images).

2.3.3 Results

A total of 912 articles were identified from our initial search of electronic databases. A
search of the gray literature and manually searching references from articles resulted in
an additional 34 papers. We removed a total number of 205 duplicates that were included
in the 946 articles, both within and between search engines. We then reviewed all the
abstracts and excluded 685 further articles. Next, we read the full text of 56 remaining
articles and excluded the ones that did not meet the selection criteria. Finally, 24 studies
remained for the analysis. The results of the selection procedure are displayed in the flow

diagram in Figure 3.

2.4 Survey of the Interactive Visualization Tools

In this section, we provide a survey of 19 I\VVTs that are described in the chosen articles
and use our proposed activity and task framework to analyze them. The survey includes
an overview of the goal of the IVT, a brief description of its visualization, and an analysis
of how sub-activities, tasks, and sub-tasks blend and combine to accomplish the tool's
main higher-level activities of interpreting, predicting and, monitoring. A very
important criterion to differentiate IVTs is whether they support activities that involve
multiple patient records or exploration of an individual patient. We divide our survey into
two different types of IVTs based on this criterion: population-based tools and single-
patient tools. Initially, studies were focused on single-patient tools, but since 2010, most
of the IVTs are developed to support large numbers of patient records. Our survey
includes more population-based tools, as it seems that these are more prevalent than
single-patient tools. For the first type, we survey 14 tools, and, for the second type, we

survey five tools.
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(n=32)
Y
Articles included in
the survey
(n=24)

Figure 2-3: Search results and how we selected the 24 articles that described 19
IVTs.

2.4.1 Population-Based Tools

Population-based IV Ts support data-driven activities that involve multiplicity of patient
records in an aggregate form. Although these types of tools display fewer details about a
particular patient, they provide users with the ability to recognize patterns, detect
anomalies, find desired records, and cluster and aggregate records into different groups.

In this section, we survey fourteen population-based IVTs.
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2.4.1.1 Lifelines2

Lifelines2 (T. D. Wang et al., 2009; Taowei David Wang et al., 2008) enables users to
explore and analyze a set of temporal categorical patient records interactively. As shown
in Figure 4, each record is represented by a horizontal strip containing patient ID and
multiple events in patient history that occur at various times. Each event shows up as a
color-coded triangle icon on a horizontal timeline. Lifelines2 allows the detection of
temporal patterns and trends across EHRs to facilitate hypothesis generation and identify

cause-and-effect relationships between patient records.

This tool supports the activity of interpreting by allowing users to get a better
understanding of clinical problems and discovering patients with interesting medical
event patterns. It also supports monitoring by investigating the impact of hospital
protocol changes in patient care. It allows for temporal ordering of event sequences,
observing the distribution of temporal events, and locating records with particular event
sequences. These tasks (ordering, observing, locating) are supported by sub-tasks such as

ranking, aggregating, and identifying.

2.4.1.2 Lifeflow

Lifeflow (Guerra Gomez et al., 2011; Krist Wongsuphasawat et al., 2011) provides a
visual summary of the exploration and analysis of event sequences in EHR data. While in
Lifelines2, due to limited screen space, it is not possible to see all records simultaneously;
Lifeflow gives users the ability to answer questions that require an overview of all the
records. To convert from Lifelines2 view to Lifeflow, a data structure called “tree of
sequences” is created by aggregating all the records. This structure is then converted into
a Lifeflow view with each node representing an event bar. Figure 5 shows Lifeflow
visualization where all the records are vertically stacked on the horizontal timeline and all

the events are represented using color-coded triangles.
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Figure 2-4: Lifelines2: Interactive visualization tool for temporal categorical data.

Source: Image courtesy of the University of Maryland Human-Computer

Interaction Lab, http://hcil.umd.edu.

In this IVT, the sub-activities of exploring and overviewing medical events support the

activity of interpreting, while analyzing aggregated event sequences for quality

assurance supports the activity of monitoring. Recognizing patterns and temporal

ordering of aggregated event sequences are two tasks that enable Lifeflow to support

exploring, overviewing, and analyzing sub-activities. Finally, sub-tasks such as

aggregating, identifying, and classifying work together to accomplish higher-level tasks.
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Figure 2-5: Lifeflow: Interactive visualization tool that provides an overview of
event sequences. Source: Image courtesy of the University of Maryland Human—
Computer Interaction Lab, http://hcil.umd.edu.

2.4.1.3 Eventflow

Eventflow (Monroe et al., 2013) provides users with the ability to query, explore, and
visualize interval data interactively. It allows pattern recognition by visualizing events in
both a timeline that displays all individual records and an aggregated overview that
shows common and rare patterns. As displayed in Figure 6, all the records are shown on a
scrollable timeline browser. On the horizontal timeline, point-based events are displayed
as triangles, while interval events are represented by the connected rectangles. In the
center, an aggregated display gives users an overview of all event sequences in EHR data.
The aggregation method works exactly like the one in Lifeflow, but it has been extended

to work for interval events in the Eventflow. All the records with the same event
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sequence are aggregated into a single bar and the average time between two events
among the records in the group is represented by the horizontal gap between two bars.

This tool supports interpreting by providing an overview of all event sequences found in
the data and exploring medical events (point-based events as well as interval events). The
overviewing and exploring sub-activities can be accomplished by recognizing temporal
patterns and simplifying temporal event sequences. Monitoring can be accomplished by
investigating aggregated event sequences. The investigating sub-activity is supported by
detecting anomalies in the data. Eventflow supports predicting by learning new
hypotheses where this sub-activity can be carried out by tasks such as specifying temporal
patterns and simplifying temporal event sequences. Aggregating, identifying, classifying

are the lowest-level sub-tasks for Eventflow.
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Figure 2-6: Eventflow: Interactive visualization tool for analysis of event sequences

ir(

for both point-based and interval events. Source: image courtesy of the University of
Maryland Human-Computer Interaction Lab, http://hcil.umd.edu.

2.4.1.4 Caregiver

Caregiver (Brodbeck et al., 2005) is an IVT that supports therapeutic decision making,
intervention, and monitoring. As displayed in Figure 7, the tool has three different views
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where the upper view displays the duration and size of the patient groups that are chosen
by physicians to receive interventions. A common timeline for each patient is shown in
the lower view of the chosen attributes. Caregiver allows users to create new cohorts

from the search results based on a combination of values of any number of variables.

In this tool, the activity of interpreting can be accomplished by discovering trends,
critical incidents, and cause—effect relationships. Caregiver also supports predicting by
allowing users to learn about the deterioration in the status of a disease. It supports these
sub-activities (discovering and learning) by specifying temporal relationships and
clustering. Specifying and clustering can be carried out by sub-tasks such as identifying,

classifying, and ranking.
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Figure 2-7: Caregiver: Interactive visualization tool for visualization of categorical

and numerical data. Source: Image courtesy of Dominique Brodbeck.
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2415 CoCo

CoCo (Malik et al., 2014, 2015) is an IVT for comparing cohorts of sequences of events
recorded in EHRSs. It provides users with overview and event-level statistics of the chosen
dataset along with a list of available metrics to generate new hypotheses. It consists of a
file manager pane, a dataset statistics pane, an event legend, a list of available metrics,
the main window, and options for filtering and sorting the results (as shown in Figure 8).
The summary panel includes high-level statistics containing the total number of records

and events in each record.

CoCo supports the activity of interpreting by allowing users to explore and investigate
two groups of temporal event sequences simultaneously. The activity of predicting can
be accomplished by learning new hypotheses from the statistical analysis while
comparing the event sequences (i.e., detecting differences among groups of patients).

Ranking, classifying, and identifying are the lowest-level sub-tasks in CoCo.
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Figure 2-8: CoCo: Interactive visualization tool for comparing cohorts of event
sequences. Source: image courtesy of the University of Maryland Human-Computer

Interaction Lab, http://hcil.umd.edu.
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2.4.1.6 Similan

Similan (Krist Wongsuphasawat, 2009) is a tool that provides users with the ability to
discover and explore similar records in the temporal categorical dataset. Records are
ranked by their similarity to a target record that can be either a reference record or a
user's specified sequence of events. The similarity measure considers the transposition of
events, addition, removal, and temporal differences of matching to estimate the similarity
of temporal sequences. Simian lets users to visually compare the selected target with a set
of records and rank those records based on the matching score, as shown in the left side

middle panel in Figure 9.

In this IVT, interpreting can be carried out by exploring and discovering similar records
in temporal categorical data where these sub-activities themselves are supported by
detecting (calculating similarity measure among records) and recognizing similarity
among records. Predicting is accomplished by discovering patients with similar
symptoms to a certain target patient. The sub-activity discovering can be carried out by
tasks such as temporal ordering and dynamic query. Finally, sub-tasks such as ranking,

identifying, and classifying work together to accomplish higher-level tasks.

2.4.1.7 Outflow

Outflow (K. Wongsuphasawat & Gotz, 2012; Krist Wongsuphasawat & Gotz, 2011) is a
graph-based visualization that shows the eventual outcome across the event sequences in
patient records. It aggregates and displays event progression pathways and their
corresponding properties, such as cardinality, outcomes, and timing. The tool allows
users to interactively analyze the event sequences and detect their correlation with
external factors (e.g., beyond the collection of event types that specify an event
sequence). The tool is a state transition diagram, which is represented by a directed
acyclic graph. The states (nodes) are unique combinations of patient symptoms that are
mapped to rectangles, where the height of each rectangle is proportional to the number of
patients. The graph is divided into different layers vertically, where layer i consists of all
states in the graph with i symptoms. These layers are arranged from left to right,

displaying patient history from past to future. Edges display transitions among symptoms
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Figure 2-9: Similan: interactive visualization tool for the exploration of similar

records in the temporal categorical data. Source: image courtesy of the University of

Maryland Human-Computer Interaction Lab, http://hcil.umd.edu.

where each edge encodes the number of patents that are invol

average time interval between different states. The end state t

ved in the transition and the
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trapezoid followed by a circle is used to mark points where the patient paths have ended.

Finally, the color of the edges and end states represents the average outcome for the

corresponding group of patients.

In this tool, sub-activities of exploring and overviewing event sequences work together to

accomplish the activity of interpreting. Outflow also support

s predicting by allowing

users to discover the progression of temporal event sequences. The sub-activities of

exploring, overviewing, and discovering can be accomplished by summarizing temporal

event sequences, specifying temporal relationships, and detecting patterns from statistical




29

summaries. Finally, aggregating, identifying, and classifying are the lowest-level sub-

tasks.

24.1.8 IPBC

IPBC (Chittaro et al., 2003) (interactive parallel bar charts) is an interactive 3D
visualization of temporal data. IPBC applies visual data mining to a real medical problem
such as the management of multiple hemodialysis sessions. It provides users with the
ability to make various decisions regarding such things as therapy, management, and
medical research. Each time series is displayed as a 3D bar chart where one of the
horizontal axes shows time and the vertical axis represents the value, as displayed in
Figure 10. Lined up bar charts on the second horizontal axis enable users to view all the

series simultaneously.

IPBC supports interpreting by allowing users to explore patient data interactively.
Monitoring can be carried out by evaluating the quality of care based on certain clinical
parameters. The sub-activities of exploring and evaluating are supported by specifying
temporal relationships and recognizing similar patterns where these tasks themselves can

be accomplished by sub-tasks such as identifying, classifying, and ranking.

2.4.1.9 Gravi++.

Gravi++ (Hinum et al., 2005) allows users to explore and analyze multiple categorical
variables using interactive visual clustering. This tool uses a spring-based layout to place
both patient and variable icons across the visualization, where the value of a variable for
a patient identifies the distance between that patient's icon and the variable’s icon.
Gravi++ provides users with the ability to detect clusters since patients with similar
values are placed together on screen. In order to visualize the exact values of each
variable for each patient, the tool shows each patient’s value as a circle around variables.
The patient icons are represented by spheres while the variable icons are encoded by
squares. Moreover, the tool can encode different patient attributes using patient icons; for
instance, the size of the sphere can be mapped to the body mass index of the patient and

its color can encode the patient’s gender or therapeutic outcome.
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Figure 2-10: IPBC: 3D visualization tool for analysis of numerical data from
multiple hemodialysis sessions. Source: reprinted from Journal of Visual Languages
& Computing, 14, Chittaro L, Combi C, Trapasso G, Data mining on temporal
data: a visual approach and its

This tool supports the activity of interpreting by allowing users to explore patient data
and discover clusters of similar patients. Monitoring can be accomplished by
investigating the development of a patient after a certain treatment. The sub-activities of
exploring, discovering, and investigating are supported by tasks such as recognizing
patterns and specifying temporal relationships. Finally, identifying and classifying are the

lowest-level sub-tasks that are supported by the tool.
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2.4.1.10 PatternFinder

PatternFinder (Fails et al., 2006) is a query-based tool for data visualization and visual
query that can help users search and discover temporal patterns within multivariate
categorical data. PatternFinder allows users to specify queries for temporal events with
time span and value constraints and enables them to look for temporally ordered
events/values/trends as well as the existence of events. Also, users can set a range of
possible time spans among the events to specify how far apart the events are from each
other. The tool has two main panels: the pattern design and query specification panel and
the result visualization panel. The leftmost part of the pattern design panel is the
Person/People panel that enables users to limit the types of patients by name, by choosing
from a list of patients, or by typing a text string. Any modifications that are done in this
panel are dynamic queries that lead to an immediate update of the results in the result
visualization panel. The temporal panel that is placed to the right of the Person/People
panel enables users to form temporal pattern queries by chaining the events together.
Users are able to search for the presence of events, the temporal sequence of events (e.g.,
an emergency doctor's visit followed by a hospitalization), the temporal sequence of
values (e.g., 200 or below cholesterol followed by 240 or higher), and the temporal value
patterns (e.g., monotonically decreasing). The result visualization panel displays a
graphical table of all the matches where each row shows a single pattern match for one
patient. Pattern matches are represented as a timeline in a "ball-and-chain” visualization
fashion where the event points are shown as circles and time spans are displayed by blue
bars between the events. The color of the event point in the result visualization panel
matches the color of the associated event in the query specification panel. All the events

that match the query pattern specified by users are linked together by horizontal lines.

In this tool, the activity of interpreting is supported by discovering patterns and exploring
patient data dynamically, where these sub-activities themselves can be carried out by
tasks such as specifying temporal relationships and issuing dynamic queries. Identifying
and ranking are the two low-level sub-tasks that work together to support the

aforementioned tasks.
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TimeRider (Rind, Aigner, Miksch, Wiltner, Pohl, Drexler, et al., 2011) offers an

animated scatter plot to help users discover patterns in irregularly sampled patient data

covering several time spans. As shown in Figure 11, time is represented by either traces

or animation in TimeRider. Color, shape, and size of marks are used to encode up to three

additional variables. Users can compare patient records of different time spans by

synchronizing patients' age, calendar date, and the start and end of the treatment.
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Figure 2-11: TimeRider: Interactive visualization tool for pattern recognition in

patient cohort data. Source: reprinted by permission from Springer Nature:
Springer, Ergonomics and Health Aspects of Work with Computers, Visually

Exploring Multivariate Trends in Patient Cohorts Using Animated Scatter Plots, Rind

A, Aigner W, Miksch S, et al., copyright (2011).
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This tool supports interpreting by allowing users to detect trends, clusters, and
correlations and providing them with an overview to visually compare patient data in
parallel. The sub-activities of detecting and overviewing can be carried out by tasks such
as specifying temporal relationships, clustering, and recognizing patterns. Identifying and

aligning are the sub-tasks that work together to support the aforementioned tasks.

2.4.1.12 VISITORS

VISITORS (Klimov et al., 2010a, 2010b) is an IVT that allows for exploration, analysis,
and retrieval of raw temporal data. The tool uses raw numerical data (e.g., white blood
cell counts) across time to derive temporal abstractions (e.g., durations of low, normal, or
high blood-cell-count levels for patients). It then uses lower-level temporal abstractions
in conjunction with raw data to generate higher-level abstractions. Finally, patient
groups’ values are aggregated and displayed. Figure 12 shows this tool’s visualization
environment, where raw numerical data is represented by line charts, whereas categorical

data is displayed as tick marks or bars on a horizontal zoomable timeline.

In this tool, the activity of interpreting is supported by exploring patient data in different
temporal granularities. The sub-activity of exploring can be carried out by tasks such as
specifying relationships, observing the distribution of aggregated values of a group of
patients, and locating records based on specific time and value constraints. VISITORS
supports the activity of monitoring by sub-activities, such as investigating treatment
effects, clinical trial results, and quality of clinical management processes. The latter sub-
activity, investigating, can be carried out by the task of recognizing patterns as well as all
the other tasks needed to support the activity of interpreting. Finally, aggregating,
classifying, aligning, and identifying are the lowest-level sub-tasks that are supported by

this tool.

2.4.1.13 Prima

Prima (Gresh et al., 2002) is a population-based IVT that allows users to explore the
categorical and numerical data by constructing different linked views. This helps users to
not only understand the large set of patient records but also discover patterns and trends

in the dataset. The aggregated window provides an overview of the categorical variables
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Figure 2-12: VISITORS: Interactive visualization tool for the exploration of
multiple patient records. (A) displays lists of patients. (B) displays a list of time
intervals. (C) displays the data for a group of 58 patients over the current time

interval. Panel 1 shows the white blood cell raw counts for the patients, while Panels
2 and 3 display the states of monthly distribution of platelet and haemoglobin in
higher abstraction, respectively. Abstractions are encoded in medical ontologies
displayed in panels (D). Source: reprinted from Journal of Artificial Intelligence in
Medicine, 49, Klimov D, Shahar Y, Taieb-Maimon M, Intelligent visualization and
exploration of time-oriented data of multiple patients, 11-31., copyright (2010), with

permission from Elsevier.

by showing the proportions of patients in each category for those variables using stacked
bar charts. This window enables users to filter patients by applying a color “brush”. It
also displays correlations among different categorical variables through interactive
coloring. Another view displays a histogram of numerical variables. The data can also be

explored with a 2D scatter plot. Another view of the data is called multiple category
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tables. It shows the values of either a single variable or multiple categories. Finally, the
tool incorporates the Kaplan—Meier curve to estimate the survival function from the

patient data.

Prima supports the activity of interpreting by allowing users to explore patient data
interactively, where this sub-activity itself can be accomplished by recognizing patterns
and specifying temporal relationships. Finally, aggregating and ranking are the lowest-

level sub-tasks that are supported by the tool.

2.4.1.14 WBIVS

WBIVS (Pieczkiewicz et al., 2007) is a web-based interactive tool that visualizes
numerical and categorical variables for lung transplant home monitoring data. Numerical
variables are displayed in line plots, while categorical variables are visualized in matrix
plots. The tool visualizes ten variables in total. When a data point gets selected, all the
other data points that belong to the same time period will get highlighted in the other
charts. Moreover, users can find details about the last two chosen data points on the right

part of the graph.

This tool supports the interpreting activity by allowing users to explore patient data
interactively and discover patterns. Monitoring is supported by investigating treatment
effects. The exploring and discovering sub-activities can be accomplished by tasks such
as specifying temporal relationships among data points and organizing data for pattern
recognition. These tasks can be composed of lowest-level sub-tasks, such as identifying,
classifying, and highlighting.

2.4.2  Single-Patient Tools

Single-patient IVTs provide visualizations of one single-patient record at a time. These
tools enable users to overview a given patient’s historical data, detect important events in
the patient’s history, and recognize trends. In this section, we survey five single-patient

IVTs.
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2.4.2.1 Midgaard

Midgaard (Bade et al., 2004) allows for exploration of the intensive care units’ data at
different levels of abstraction from overview to details. It uses visualizations to display
numerical variables of treatment plans. It incorporates a complex semantic zoom method
for numerical variables by calculating their categorical abstractions based on the
available screen area and zoom level. Midgaard provides users with the ability to switch
between different views such as a colored background, colored bars, area charts, or
augmented line charts based on the level of details. The tool can progressively switches
to a more detailed view to display all the individual data points when users zoom in or

switch back to more compact graphical elements when they zoom out.

Midgaard can also visualize medical treatment plans using colored bars where each bar
can contain further bars displaying sub-plans. It allows users to navigate and zoom by
interacting with two time axes that are placed below the visualization area. The bottom
axis displays a temporal overview of the patient record while the middle axis allows users

to see specific time intervals in more detail.

The activity of interpreting is supported by exploring patient data at different levels of
abstraction, where this sub-activity itself can be accomplished by tasks such as
recognizing fluctuations in data. Identifying and classifying are the two sub-tasks that are

supported by this tool.

2422 MIVA

MIVA (Faiola & Newlon, 2011) (Medical information visualization assistant) is a tool
that transforms and organizes biometric data into temporal resolutions to provide
healthcare providers with contextual knowledge. It allows users to prioritize and
customize visualizations based on specific clinical problems. It visualizes the data using
point plots to display temporal changes in numerical values, where each variable is
represented by a separate plot, as shown in Figure 13. MIVA enables users to detect
changes in multiple physiological data points over time for faster and more accurate
diagnosis. Users can control the data source, time resolutions, and time periods to narrow

down the assessment of a patient’s condition.
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Figure 2-13: MIVA: Interactive visualization tool to show the temporal change of
numerical values where each variable is represented by an individual point plot.

Source: image courtesy of Antony Faiola.

This tool supports the activity of interpreting by enabling users to carry out sub-activities
such as exploring longitudinal relationships in patient data where this sub-activity can be
accomplished by tasks such as specifying temporal relationships and recognizing patterns.

At the level of sub-tasks, this tool supports identifying as well as classifying.

24.2.3 VIE-VISU

VIE-VISU (Horn et al., 2001) uses a set of glyphs to display changes in a patient's status
over time in intensive care. Each glyph’s geometrical shape and color encodes categorical
variables, while the numerical variables are represented by size of the glyph's elements.
Every glyph can encode 15 variables that are classified by physiological systems. For
instance, the respiratory parameters are mapped to a rectangle in the middle of the glyph;
circulatory parameters are mapped to a triangle on top of the glyph, and the fluid balance
parameters are shown by two smaller rectangles at the bottom of the glyph. By default,

the tool displays 24 glyphs, one per hour.
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The activity of interpreting can be accomplished by overviewing a patient’s status, where
this sub-activity is supported by tasks such as recognizing patterns. This tool supports
monitoring by evaluating changes in patient’s status over time. The task of identifying
temporal relationships supports the sub-activity of evaluating. Finally, aggregating and

classifying are two sub-tasks that can be carried out by the tool.

2.4.2.4 Lifelines

Lifelines (Plaisant et al., 1998) offers a visualization environment to show patient history
on a zoomable timeline, where a patient's medical record is displayed by a set of events
and lines. Episodes and events in a patient record are represented by a set of multiple line
segments as shown in Figure 14. Color can be used to encode the states of categorical
variables. This IVT provides an overview of a patient history to recognize trends, specify

important events, and detect omissions in data.

The activity of interpreting is supported by understanding patient’s status where this sub-
activity itself can be carried out by tasks such as recognizing patterns and specifying
temporal relationships. The tool supports monitoring by allowing users to carry out sub-
activities such as investigating trends and anomalies in patient data. The investigating
sub-activity is supported by outlining and summarizing the patient data. Finally,

aggregating, classifying, and identifying are the sub-tasks that are supported by the tool.

2.4.2.5 VisuExplore

VisuExplore (Pohl et al., 2011; Rind, Aigner, Miksch, Wiltner, Pohl, Turic, et al., 2011)
displays patient data in different views aligned with a horizontal timeline, where each
view shows multiple variables. This IVT uses common visualization techniques that
make it easy to use and learn. In this tool, numerical data are displayed using bar charts
and line plots, whereas categorical data are represented using event charts and timeline

charts, as shown in Figure 15.

In this tool, the activity of interpreting is supported by exploring temporal data of

patients with chronic diseases, where this sub-activity can be carried out by tasks such as
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Figure 2-14: Lifelines: interactive visualization tool that displays patient’s medical

histories on a timeline. Source: image courtesy of the University of Maryland

Human-Computer Interaction Lab, http://hcil.umd.edu.

specifying temporal relationships. Finally, aligning and identifying are two sub-tasks that

can be carried out by the tool.

2.5 Discussion and Limitations

In this paper, we have presented and proposed a framework to identify and analyze EHR-

data-driven tasks and activities in the context of IVTs—that is, all the activities, sub-

activities, tasks, and sub-tasks that are supported by EHR-based I\VVTs. Using a survey of
19 EHR-based IVTs, we demonstrate how these IV Ts support activities by identifying
the combination of sub-activities, tasks, and sub-tasks that work together to help users

carry out the three higher-level activities as displayed in Table 3. Interpreting is

supported by all IVTs surveyed in this paper. Eventflow, Similan, CoCo, Outflow, and
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Figure 2-15: VisuExplore: interactive visualization tool that displays patient data in
various views on a timeline. Source: reprinted by permission from Springer Nature:
Springer, Human-Computer Interaction, Patient Development at a Glance: An
Evaluation of a Medical Data Visualization, Pohl M, Wiltner S, Rind A, et al.,
copyright (2011).

Caregiver are the only 1VTs that support predicting, whereas Lifelines2, Lifeflow,
Eventflow, Gravi++, IPBC, TimeRider, VISITORS, WBIVS, VIE-VISU, Lifelines,
CoCo, and Visu-Explore are the tools that facilitate monitoring. Going down from high-
level activities, recognizing patterns and specifying temporal relationships are the most
common sub-activities that help users with the activity of interpreting in most of the
IVTs. The existing EHR-based IVTs support predicting by giving users the ability to
perform sub-activities such as learning new hypotheses, discovering patients with similar

symptoms to a target patient, and detecting early deterioration of a disease. Finally, the
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most common sub-activities that facilitate monitoring are evaluating the quality of care

and investigating the development of a patient's status after treatment.

Our proposed framework can offer a number of benefits for designers, researchers, and
evaluators of EHR-based IVTs. Firstly, the framework can help the designer to
conceptualize activities, tasks, and sub-tasks of EHR-based I\VVTs systematically.
Secondly, it can assist researchers in making sense of IVTs by providing them with all
the activities that can be accomplished by carrying out different sets of sub-activities,
tasks, and sub-tasks. Thirdly, this framework can be used by evaluators to identify the
gaps in support of higher-level activities supported by existing IVTs. It appears that
almost all existing IVTs focus on the activity of interpreting, while only a few of them
support predicting despite the importance of this activity in supporting users to find the
patients that are at high risk and identify the risk factors of various diseases. Also, some
of the EHR-based 1\VTs do not pay enough attention to monitoring, even though this
activity is beneficial in investigating the quality of clinical management processes. All
these higher-level activities should be an integral part of a properly designed EHR-based
IVT since healthcare providers use such tools to (1) better understand patients' condition,
(2) anticipate the discourse of a specific disease, and (3) track patients' condition after
treatment. Most of the tools surveyed in this paper can only satisfy a certain aspect of
users' needs. According to a recent survey in the US, 40% of the clinicians are not
satisfied with the existing EHR-based systems (EHRIntelligence, 2018). Therefore, a
framework is needed to guide the designer of an IVT in choosing which activities, tasks,
and sub-tasks the tool should support. Using questions such as, "What activities can users
accomplish by executing a set of tasks?" or "What tasks should be supported to provide
users with the ability to perform their activities?", we demonstrate how the proposed
framework can be used by designers of EHR-based 1VTs to systematically conceptualize
and design the tasks and activities of such tools. Given the framework, all designers need
to know is, which low-level sub-tasks, tasks, and sub-activities to select and how to blend
and combine them to support higher-level activities and allow users to accomplish their
overall goal. For instance, if a designer wants to design an IVT to monitor an infant's
condition in the neonatal intensive care unit, they can choose different sets of sub-

activities, such as investigating the effect of a specific treatment or evaluating changes in
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infant's status over time. Then, the designer selects a combination of tasks such as the
temporal ordering of event sequences or displaying the distribution of temporal events to
support the chosen sub-activities. Finally, a set of sub-tasks, such as ranking,
aggregating, and identifying, are chosen to support the selected tasks.

We believe a successful EHR-based tool should be capable of doing more than just
storing, retrieving, and exchanging patient data. It should support more complex
activities, tasks, and sub-tasks to allow healthcare providers to accomplish their goals.
Our proposed framework promises a new means for designers of EHR-based IVTs to
understand the effectiveness of incorporating such activities, tasks, and sub-tasks in their
tool. The use of our framework in EHR-based I1\VVTs will also help physicians to make

better treatment decisions and track changes in a patient's condition over time.

This paper has three key limitations. First, we do not investigate the completeness and
accuracy of the data sources that IVTs are using as our survey relies on the descriptions
of the IVTs found in publications and video tutorials. Second, as the main goal of this
paper is the analysis of EHR-based IV Ts, we exclude tools that are mainly dependent on
statistical and machine learning methods. Finally, we do not consider commercial tools in
this paper. This is because online descriptions of such tools do not systematically and
thoroughly cover the features of these tools, i.e., their visualizations, interactions, and

results.

The findings of this paper will lead to the development of best practices for creating
similar frameworks in other domains. A possible area of future research involves
developing frameworks for visual analytics tools that incorporate automated analysis
techniques along with interactive visualizations to support the increasingly large and

complex datasets in EHRSs.

Table 2-3: Evaluation summary of the 19 existing tools based on the proposed

framework.

IVTs Interpreting Predicting Monitoring
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Chapter 3

Visual Analytics for Electronic Health Records: a Review

This chapter has been submitted to Health Informatics journal.

Please note that the format has been changed to match the format of the dissertation.
Figure, Section, and Table numbers mentioned herein are relative to the chapter number.
For instance, “Figure 1" corresponds to Figure 3-1. Additionally, when the term “paper”,

“work”, or “research” is used, it refers to this particular chapter.

3.1 Introduction

In recent years, medical organizations are increasingly deploying electronic health record
(EHR)-based systems that generate, store, and manage their data. Therefore, the amount
of data available to clinical researchers and clinicians continues to grow at an
unprecedented rate, creating an untapped resource with the capacity to improve the
healthcare system (Murdoch & Detsky, 2013). The EHR-based systems are used to detect
hidden patterns and trends, monitor patient conditions (Doupi, 2012), reduce medical
errors (A. Agrawal, 2009), detect adverse drug events (S. S. Abdullah, Rostamzadeh,
Sedig, Lizotte, et al., 2020; Dey et al., 2018), and ultimately improve quality of care
(Christensen & Grimsmo, 2008; Rostamzadeh et al., 2020; Tang & McDonald, 2006).
However, despite the evidence showing the benefits of EHR-based systems, they rarely
improve healthcare experts' ability to make better clinical decisions by having access to
more comprehensive information (Heisey-Grove et al., 2014; Lau et al., 2012). Access to
large volumes of clinical data has made some analytical and cognitive processes more
difficult for healthcare experts. As the amount of data stored in EHRs continues to grow
exponentially, and new EHR-based systems are implemented for those already overrun
with too much data, there is a growing demand for computational systems that can handle

the huge amount of clinical data.

Visual analytics (VA) systems have shown significant promise in addressing information
overload challenges in EHRs by combining analytics techniques with interactive
visualizations (D. A. Keim et al., 2010; Ola & Sedig, 2014). For a VA system to work
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well, there must be a strong coupling among all its components (Ribarsky et al., 2009;
Sedig et al., 2012). Such components include but are not limited to tasks, interactive
visual representations, and analytics techniques. Analytics has the potential to facilitate
healthcare experts' clinical decision-making process by using techniques from various
fields such as statistics, machine learning, and data mining. Completing analytics,
interactive visualizations allow healthcare experts to explore the underlying data, alter the
representations, and guide the analytics techniques to accomplish their tasks (Cortez &
Embrechts, 2013; D. A. Keim et al., 2015; Vamathevan et al., 2019). VA systems fuse
the strengths of both analytics techniques and interactive visualizations to support the
execution of EHR-driven tasks. VA is needed to support the intuitive analysis of EHRS
for healthcare experts while masking the data's underlying complexity. Clinical
researchers can use VA to perform population-based analysis and gain insights from large
volumes of patient data. Moreover, VA can also support physicians in tracking symptom
evolution during disease progression and creating and visualizing detection models for
disease surveillance (Goldsmith et al., 2010; Lo et al., 2013; Perer & Sun, 2012; Rajwan
et al., 2013). The complex and diverse challenges and applications of VA in the analysis
and exploration of EHRs have led to the development of several EHR-based VA systems,
which aim to fulfill the computational and cognitive needs of healthcare experts. The
design and development of such systems require collaboration with healthcare experts to
assess their requirements and challenges and to better understand EHR-driven tasks from
their perspective. This motivates us to systematically study and gather healthcare experts’
needs and expectations and get an overview of the state-of-the-art EHR-based VA

systems.

The purpose of this paper is to provide a comprehensive review of the state-of-the-art in
EHR-based VA systems. We identify the primary dimensions of the EHR-based VA
design space through the analysis of the literature. We then use these dimensions along
with a characterization of different types of EHR-driven VA tasks to organize the
existing systems. Furthermore, we identify the gaps and areas with little prior work,
which remains a challenge for future research. To the best of our knowledge, no study
has been conducted to review the existing VA systems that have been applied to EHRs.

Thus, this review is equipped to help researchers identify which challenges remain
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insufficiently addressed and understand the primary dimensions that unify the existing
work. Finally, the result can provide value to researchers and designers as an organized

catalog of various approaches that are most appropriate for EHR-driven VA tasks.

The rest of the review is organized as follows. Section 2 presents the strategy for
searching relevant literature and explains the selection criteria. Section 3 provides a brief
overview of the EHR-based VA systems that met the selection criteria. In Section 4, we
identify and explain the key dimensions of the EHR-based VA design space. Finally, in
Section 5, we discuss how the selected EHR-based VA systems support these dimensions
and identify the gaps.

3.2 Methods
3.2.1  Search Strategy

We conducted a systematic literature review to retain all the peer-reviewed studies
published between 2010 to 2020. We collected all the studies that describe the design,
development, and implementation of VA systems that have been applied to EHRs. Search
keywords were grouped into three categories: visualization, analytics, and EHR (Table
1). An electronic literature search was conducted in August 2020 using PUBMED, IEEE
XPLORE, WEB of SCIENCE, and GOOGLE SCHOLAR. We also utilized the related
article function in PubMed on studies that were initially included to identify additional
ones. This was supplemented using citation searching. Reference lists from highly

relevant studies were also reviewed to find other relevant studies.

Table 3-1: Search terms used to identify studies related to EHR-based VA

KEYWORDS: (K1) AND (K2) AND (K3)

within each group, the keywords are combined by the "OR" operator

K1 (Visualization) | Visualization or visual

K2 (Analytics) Analytics or analysis or data mining or machine learning
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K3 (EHR) EHR or electronic health record or electronic medical record or

EMR or healthcare record or patient record or clinical data

3.2.2 Inclusion and exclusion criteria

Articles had to describe the development of VA systems that would be applied to EHRs.
We included articles in our review if they met the following criteria: 1) articles must be
published in a peer-reviewed journal or conference proceedings; 2) articles must be full
papers with empirical evidence; and 3) articles must implement a VA system to support

EHR-driven analytical tasks.

Articles were excluded if they were position papers explaining the need for VA, describe
medical guidelines, or VA systems designed for administrative tasks with or in relation to
patient data (e.g., scheduling and billing). We also excluded articles describing static
visualizations because interaction is a key characteristic of VA systems. We also did not
include articles on VA of syndromic surveillance, geospatial environmentally aware data,
and genetics in our review because we were focused on clinical EHR data. Furthermore,
we excluded articles that report the result of abstracts, surveys, feasibility studies, short

reports, commentaries, letters, and studies not published in English.

3.2.3  Article selection and Analysis

We collected the authors, journal, title, year of publication, and abstract for each article in
an Excel spreadsheet. In the first step, two reviewers screened the title and abstract for
each article and eliminated those categorized with exclusion criteria or lacked inclusion
criteria. If the reviewers could not assess the article's relevance based on the information
provided by its title and abstract, they assessed the full article. In the next step, the full
texts of articles that were deemed to be potentially relevant and/or the articles without
enough information were reviewed by reviewers. The studies that were cited in eligible
articles were also reviewed using a similar screening process. The articles identified for

the review were examined by reviewers qualitatively, as described in Section 3.
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3.24 Results

A total of 1037 references were retrieved from our initial search of electronic databases.
A search of the gray literature and hand-searching references from articles resulted in an
additional 32 papers. All titles and abstracts were reviewed, with duplicates removed
(n=256). We then excluded 781 articles based on the exclusion criteria. Then the full
text of each of the remaining 32 articles was then read; 10 of these articles were excluded
since they only described a visualization technique or an analysis technique with static
visualization. The results of the screening process in the analysis are noted in the flow

diagram in Figure 1. Finally, 22 articles were included in the review.

Articles identified Articles identified by
through database hand-searching
search references
(n=1037) (n=27)

Articles after duplicates
removed
(n=256)

Articles removed based

Articles screened : ki
on exclusion criteria

(n=808) (n=776)
Articles included for Articles removed based
further assesment on selection Criteria

(n=32) (n=10)

Articles included in the
review
(n=22)

Figure 3-1: Flow diagram of literature search results.

3.3 EHR-based Visual Analytics Systems

In this section, we provide an overview of the state-of-the-art VA systems that are

applied to EHRs. We offer a brief summary of the system's overall goal and its analytics
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and visualization techniques. We then briefly describe how the system integrates

analytical processes with interactive visualizations to help users accomplish their tasks.

3.3.1 Overview of Systems

DecisionFlow (D. Gotz & Stavropoulos, 2014) is a VA system that supports the analysis
and exploration of temporal event sequences in high-dimensional datasets. It allows users
to test different hypotheses regarding the factors that might affect the patient outcome
and compare multiple complex patient event pathways by integrating on-demand
statistical analysis techniques with interactive flow-based visualization. DecisionFlow
helps users to specify a subsequence of interest with a milestone-based query interface.
Then the matching data is aggregated to generate a DecisionFlow graph that contains a
linear sequence of nodes (i.e., milestones) connected by directed edges. The system then
analyzes the graph to extract multiple statistics (e.g., gender and age distributions and
edge summary statistics). The system includes three main linked views-namely, the
temporal flow view, edge overview view, and event statists view. The temporal flow
view visualizes the DecisionFlow graph using a directed graph of nodes representing
milestones where nodes are mapped to grey rectangles and are arranged in temporal order
from left to right. The edges that connect these nodes are represented by two marks—
namely, the time edges and the link edges, and they are color-coded to encode the
average outcome. The edge overview panel summarizes the subsequence of interest that
are returned from the query interface by showing multiple aggregate statistics. The event
statistic view displays a color-coded bubble chart that represents different edge summary

statistics.

RetainVIS (Kwon et al., 2018) is a VA system that assists healthcare experts in the
exploration of patient medical records in the context of risk prediction tasks. It provides
users with the means to investigate common patterns in a patient's history to identify
which medical codes or patient visits (i.e., sequence and timing) contribute to the
prediction score. It can also help users to conduct different what-if analysis by testing
hypothetical scenarios on patients (e.g., edit/add/remove medical code, alter visit
intervals). Furthermore, RetainVIs allows users to provide feedback to the model based

on their domain knowledge if the model acts in an undesirable manner. RetainVIS
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generates prediction scores based on the RetainEX technique, a bidirectional recurrent
neural networks (RNN) model that harnesses the temporal information stored in patient
records (e.g., time intervals between patient visits). It increases the interpretability and

interactivity of models by calculating code-level and visit-level contribution scores.

This system integrates RetainEX with multiple interactive visualizations. The Overview
summarizes patients regarding their contribution scores, medical codes, and predicted
diagnosis risks using a scatter plot, multiple bar charts, an area chart, and a circle chart.
Patient Summary shows a temporal summary of the selected patients. It contains a table,
a code bar chart, and a contribution progress area chart. Patient Summary provides a
summary description of the selected patients and represents aggregated contribution
scores of medical codes over time and their mean contribution scores. Patient List shows
selected patients in a row of rectangles. It allows users to compare and explore multiple
patients and select a patient of interest to view their details in the Patient Details view.
Patient Details view is composed of a line chart of prediction scores, a temporal code
chart of contribution scores of medical codes, and a code bar chart representing the most
contributing medical codes for each patient. Finally, Patient Editor represents each
patient visit horizontally in a temporal order and lists medical codes for each visit
downwards. It allows users to test hypothetical scenarios by changing the date of the visit
or inserting new medical codes into a visit. Once the user changes are complete, the
system generates the new model and returns the new predicted risk and contribution

scores on top of the original records.

DPvis (Kwon et al., 2020) is a VA system that supports clinical researchers in
interactively discovering and exploring disease progression patterns and studying
interactions between such patterns and patient's characteristics. It also allows users to test
and refine hypotheses for multiple clinically relevant subgroup cohorts in an ad hoc
manner. DPVis models disease progression pathways by characterizing a patient's clinical
course as a sequence of transitions between multiple states where each state describes a
co-occurring pattern of observed symptoms and variables. Then, it uses a class of
unsupervised models, namely- continuous-time hidden Markov models (CT-HMMs), to

discover these hidden states and state transitions from large-scale longitudinal patient
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records. These models identify associations between disease progression patterns and
various observed variables and predict a patient's future states. DPVis combines the
outcome of HMM models with interactive visualizations to assist medical experts in
interpreting these models and clinically make sense of the discovered patterns.

DPVis is composed of seven linked views. The Static Variable Distribution view contains
a list of selected measures in a horizontal bar chart. The Observed Attributes view
contains feature matrix, feature distribution, feature heatmap over time, and feature over
time. It summarizes all the characteristics of disease states that are discovered by HMM.
State Transitions view shows multiple representations of state-to-state transition patterns
over a series of visits or over time. It includes four views-namely, Pathway over
Observation, Pathway by Time Unit, Pathway Waterfall, and State Transition Chord
Diagram. Frequently Occurring State Transition Pattern view shows a list of frequently
occurring state sequential patterns. Subject Timeline represents an individual patient's
observations over time. It contains Dual Kernel Densities view and Subject List view.
State Sequence Query Builder allows users to create and refine cohorts based on state
transitions. Cohort view enables users to load and save intermediate results. Once users
create more than two cohorts in the Cohorts view, they can trigger the Comparison Mode
between the selected views. This selection then turns all views into the Comparison
Mode.

The VA system for pharmacovigilance (i.e., drug safety) in electronic medical records
developed by Ledieu et al. (Ledieu et al., 2018) integrates a modified version of the
Smith-Waterman (SW) sequence alignment algorithm with an interactive web interface to
detect inappropriate drug administration and inadequate treatment decisions in patient
sequences. The SW algorithm is used to compare a reference sequence (i.e., a sequence
specified by the user) and a patient's sequence, where each sequence is considered a
string of characters. Each character in the sequence represents a clinical event, such as a
laboratory test result or a drug administration. The algorithm calculates a similarity score
for each comparison. A high similarity score corresponds to a higher similarity between
the reference and the patient sequences. This VA system allows users to create the

reference sequence(s) in a query interface. It provides them with a visual dictionary of
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event types (e.g., the discretized numerical events are encoded by color-coded squares or
the direction of arrows represents the trend of change) in a grey rectangular area. To form
a pattern, users can drag and drop these icons down to a query line. The system also
enables the user to indicate time-constraint events in the query. The adopted SW
algorithm returns the search result, which is displayed as a list of patients and their
corresponding sequences, sorted based on their similarity score to the reference sequence.
Each sequence is aligned to the reference pattern or its closest match. The time interval
between the time-constraint event and the aligned events is shown by a vertical line along

with the time duration in days on top of it.

Gotz et al. (D. Gotz et al., 2014) develop a VA system to explore and query clinical
event sequences stored in EHRs by combining on-demand analytics with visual queries
and interactive visualizations (Figure 2). The visual query module provides an intuitive
user interface that enables users to retrieve cohorts of patients that satisfy complex
clinical episode specifications. Users can define a clinical episode by specifying
milestones, time gaps, preconditions (i.e., a set of constraints that should be satisfied
before the starting milestone), and outcome measures in the query interface. Upon
submission of the query, the system returns a set of matching patient event sequences.
The returned event sequence for each patient includes the specified milestones and
several intermediate events that occur between milestones. Each episode is subdivided

into a series of intermediate episodes at each milestone.

Frequent pattern mining (FPM) is then performed first on the overall episode as well as
on each of the intermediate episodes that are retrieved by the visual query module. The

FPM engine includes two main components-namely, the frequent pattern miner and the
statistical pattern analyzer. The frequent pattern miner uses the bitmap-based Sequential
PAttern Miner (SPAM) (Ayres et al., 2002) algorithm for pattern discovery. SPAM

employs a search strategy that combines a depth-first traversal of the search space with an



56

i

« c =
Data Source Sefttings Actions Help
- Episode Definition Outcome: 0% I — 1 00% - Selected Patients
Preconditions. Cohort Size:
187 patients.
Episode: Average o:
. 8% of the cohort (15 patients)
DYSLIPIDEMIA GOAL has the outcome event (HEART
LOL BELOW 160 § VALVE REPLACEMENT NEC)
c i sbril .
& mamapecTonis Gender Distribution:
NEC-NOS
9 ven 98 Womon
Oods fato: 5.0 IS — 00
HEAART FAILURE. emation Gan: 0.0 02 Odds Ratio: Age Distribution:
ETIOLOGY UNKNOWN 0.214
104 Information Gain:
Outcome: 0.033
& veraTvave > os Rolative Risk:
REPLACEMENT NEC 2473
= Correlati
jon:
B Add Event ¥ Add Gap 0.274
o7 . =
Click the "Analyzs® button to P-Value (<0.05 s significant):
apply the episode definition % 0.000
08
specified above. Postive Cor :
0.243
& Analyze a4

Negative Coverage:

0.600

Pattern:

AORTOCORONARY BYPASS STATUS (V45.81)
03 DYSUPIDEMIA, GOAL LDL BELOW 160 (272.0)

00ei0m0D) GrreboN

©) Overall Cohort Statistics

+) System Status

Figure 3-2: The screenshot of the VA system developed by Gotz et al. (D. Gotz et al.,
2014) including, the visual query panel, the milestone timeline, the cohort overview,
and the pattern diagram. Source: Reprinted from Journal of Biomedical
Informatics, 48, Gotz D, Wang F, Peter A, A methodology for interactive mining
and visual analysis of clinical event patterns using electronic health record data,
148-159., Copyright (2014), with permission from Elsevier.

efficient pruning mechanism. It takes a set of event sequences and a user-specified
support as inputs and returns a set of frequent patterns as an output. Then the statistical
pattern analyzer computes correlations (e.g., Pearson correlation, odds ra