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Abstract

Intractable or drug-resistant epilepsy occurs in to 30% of epilepsy patients, with many of these patients

undergoing surgical excision of the affected brain region to achieve seizure control. Recent magnetic res-

onance imaging (MRI) sequences and analysis techniques have the potential to detect abnormalities not

identified with diagnostic MRI protocols. Prospective studies involving pre-operative imaging and collection

of surgically-resected tissue provide a unique opportunity for verification and tuning of these image analysis

techniques, since direct comparison can be made against histopathology, and can lead to better prediction

of surgical outcomes and potentially less invasive procedures. To carry out MRI and histology comparison,

spatial correspondence between the MR images and the histology images must be found. Towards this

goal, a novel pipeline is presented here for bringing ex-vivo MRI of surgically-resected temporal lobe spec-

imens and digital histology into spatial correspondence. The sparsely-sectioned histology images represent

a challenge for 3D reconstruction which we address with a combined 3D and 2D registration algorithm that

alternates between slice-based and volume-based registration with the ex-vivo MRI. We evaluated our reg-

istration method on specimens resected from patients undergoing anterior temporal lobectomy (N=7) and

found our method to have a mean target registration error of 0.76± 0.66 and 0.98± 0.60 mm for hippocam-

pal and neocortical specimens respectively. This work allows for the spatially-local comparison of histology

with post-operative MRI and paves the way for eventual correlation with pre-operative MRI image analysis

techniques.

Keywords: Image Registration, MRI, Histology, Epilepsy, Anterior Temporal Lobectomy

1. Introduction1

Intractable or drug-resistant epilepsy occurs in over 30% of epilepsy patients and is commonly charac-2

terized by partial refractory seizures (Engel, 1998). When there is a localized focus, the standard of care3
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for these patients is a surgical excision of the affected brain region in order to achieve seizure control (Engel4

et al., 1992). Current clinical imaging protocols and surface EEG techniques of epileptogenic focus localiza-5

tion may not be sufficient for pre-operative planning due to limited sensitivity to deeper brain structures,6

and low resolution of source localization techniques (Smith, 2005). These limitations often necessitate inva-7

sive electrophysiological monitoring using sub-dural strips or grid electrodes. Magnetic resonance imaging8

(MRI) techniques such as diffusion tensor imaging (DTI), relaxometry mapping, high resolution functional9

MRI (fMRI), voxel-based morphometry, and cortical thickness analysis can detect abnormalities not identi-10

fied with conventional or diagnostic MRI protocols (Bernasconi et al., 2000, 2004; Bernhardt et al., 2009).11

This is important since it has been shown that post-operative outcomes can be predicted more accurately in12

patients where lesions can be identified (de Tisi et al., 2011; Fish et al., 1993). These techniques also have13

the potential to improve pre-operative localization of the focus, paving the way towards less invasive proce-14

dures and better surgical outcomes. With the plethora of MRI sequences and analysis techniques available,15

the challenge then becomes how to verify and evaluate the sensitivity and specificity of these techniques16

for detection of abnormal brain tissue. Prospective studies involving pre-operative imaging and collection17

of resected tissue from surgery (Eriksson et al., 2007; Howe et al., 2010) provide a unique opportunity for18

verification and tuning of these image analysis techniques, since direct comparison can be made against19

high-resolution ex-vivo imagery, histology and immunohistochemistry. In order to carry out this verifica-20

tion, spatial correspondence between the MR images and the tissue-derived histology images must be found,21

which remains challenging due to the deformations involved during resection of the tissue and histological22

processing and the difficulty of accurately registering the histology slices to the MR images. Registration23

is the task of finding this spatial correspondence by modelling the transformations and deformations that24

occur due to surgical resection and tissue handling. These deformations can be divided into two types:25

those occurring during surgical resection, and those occurring during histological processing. By obtaining26

an intermediate ex-vivo MRI of the tissue specimen after surgical resection, we can divide this challenging27

registration problem into two independent sub-problems that can be tackled individually. This manuscript28

presents methodology and validation for the latter sub-problem, that is, the registration of ex-vivo MRI29

with histological slides to account for transformations due to slicing, slide mounting, and other histological30

processing. The proposed method, based on an iterative 3D and 2D image registration scheme, does not31

require implanted landmarks, block-face images, or serially sectioned histology images, and achieves a target32

registration error of 0.76 mm and 0.98 mm for hippocampal and neocortical specimens respectively.33

Histological verification of MRI is rare since tissue from surgeries or postmortem specimens are required,34

and when available validation is not a straightforward task. A previous method has been devised to manually35

match histopathology of temporal lobe resections to MRI using a cutting cradle to resample the MRI to the36

orientation of histology (Eriksson et al., 2005). However no image registration was performed and only visual37

assessment of the correspondence between the MRI and photographs of histology slices was accomplished.38
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Figure 1: Example of encountered deformations. Red arrows represent cortical sulci on the pre-operative

MRI and blue arrows represent the corresponding sulci on the resected neocortex specimen. a) Photograph

of surgical view before resection, b) Volume rendering of a pre-operative MRI of the patient with a zoomed

view showing the temporal pole, c) Coronal view of the pre-operative MRI demonstrating temporal gyri

with red arrows, d) Photograph of the temporal lobe neocortex post resection, e) Surface rendering of the

resected neocortex with blue arrows showing the corresponding sulci to part b), and f) Coronal view of the

ex-vivo MRI with blue arrows indicating sulci corresponding to part c); the small window in the top left

corner demonstrates the mesial (interior) side of the neocortex with an intersection of the shown MRI slice.
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To evaluate the ability of high resolution MRI to resolve underlying pathologies of focal epilepsy an accurate39

full image registration is needed as the extent of pathologies such as focal cortical dysplasia (FCD), gliosis or40

hippocampal subfield sclerosis could be on the order of millimeters. Several challenges are met in the process41

of finding spatial correspondence, or registration, between resected tissue and preoperative MRI. One of the42

main challenges encountered is tissue deformation introduced due to the physical stresses experienced during43

surgery, as well as distortions to the tissue during the histological processing. Figure 1 demonstrates such44

tissue deformations encountered during a procedure. These deformations can be divided into primary and45

secondary categories (Dauguet et al., 2007). Primary deformations can be thought of as three dimensional46

changes, such as mechanical distortions during brain extraction once the resected specimen is detached47

from surrounding brain tissue, when cutting the specimen in blocks, or non uniform shrinkage induced48

by formalin fixation. Secondary deformations are within-slice distortions which are due to stretching of49

microtome cut sections on a water bath, spreading histology slices over glass slides and staining. Histology50

slices breakage, is a major manifestation of the deformations encountered during histological processing51

of the tissue. Furthermore, differential shrinkage of the tissue is another challenge that is due to the52

different intrinsic properties of white and grey matter. Registration of histology from surgically resected53

brain specimen to MRI is more challenging than registration of post-mortem or animal tissue as the tissue54

has to be sparsely sectioned, in comparison to the possibility of serially sectioning the entire specimen. This55

is limitation is imposed by the clinical requirement of pathology departments to keep parts of the resected56

specimen in tissue banks. The very different anatomy between sparsely sectioned adjacent histology slices57

(several mm apart) presents itself as another significant challenge. To address the challenge of non-rigidly58

registration 2D sparsely sectioned histology slides of brain resections from epilepsy surgery to in-vivo 3D59

MRI, we propose a full image registration protocol that relies on ex-vivo imaging of the specimen, to enable60

accurate correlation of histopathology with MRI. This work focuses on the intermediate registration of61

histology images to ex vivo imaging of hippocamapal and temporal lobe resections from anterior temporal62

lobectomies (ATL). Our protocol reduces the complexity of the in-vivo MRI to histology registration problem63

by leaving a single-modality 3D ex-vivo to in-vivo registration as the last step.64

Presently, there are no automated histology to MRI image registration protocols that could be widely65

applicable to focal resections of human brain, such as tissue resected during epilepsy surgery. We present66

here a protocol to register ex-vivo scans of hippocampal and neocortical temporal lobe resections to histology67

as an intermediate step that reduces the complexity of the preopeartive MRI to 2D sparse histology problem.68

Specifically we describe a novel landmark-free algorithm for simultaneous reconstruction and alignment of69

sparsely sectioned histological data to ex-vivo MRI, and a quantitative validation for our registration method.70

Performing this intermediate step addresses most of the challenges of registration to in-vivo imaging due to71

the higher resolution and reduced deformations of the ex-vivo images. Furthermore, the higher resolution of72

specimen imaging is advantageous for examining the correlation between MRI and histology. The proposed73
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method represents a significant step towards in-vivo MRI to histology registration in the clinical setting74

and can be broadly applicable to MRI and histolopathology correlations of resections other than epilepsy75

surgery.76

2. Methods & Materials77

2.1. Recruitment, surgery & specimen acquisition78

Seven patients suffering from intractable temporal lobe epilepsy (TLE) were recruited as part of an79

ongoing study. This project has been approved by the office of research and ethics of the University of80

Western Ontario, and informed consent was obtained from all patients prior to their recruitment in the81

study. All such patients were recommended for ATL surgery by the department of clinical neurological82

sciences at the University Hospital (UH) of the London Health Sciences Centre, and had preoperative83

investigations including neuropsychological testing and 1.5T clinical MRI scans which included T1w, T2w,84

FLAIR, and diffusion-weighted sequences. Patients were monitored with scalp-based electroencephalogram85

(EEG) video telemetry for seizure characterization, with three patients having to undergo monitoring with86

subdural placement of strip electrodes. In addition to the 1.5T clinical MRI scans performed at the hospital,87

patients underwent a series of scans on 3T and 7T MRI research scanners, including high-resolution structural88

imaging, diffusion-tensor imaging, relaxation mapping and resting-state functional imaging prior to surgery.89

Following surgery, the resected tissue specimens were transferred to the Robarts Research Institute for90

ex-vivo specimen imaging on the same 3T scanner and then to the pathology technologist for histological91

processing. From the seven patients, fourteen resected specimens were collected, but only twelve out of the92

fourteen were used in the study due to a fragmented hippocampus specimen and missed ex-vivo hippcampus93

scan. Table 1 summarizes the patients demographic data, as well as, their clinical MRI and histopathological94

findings.95

2.2. Specimen Ex-vivo MR Imaging96

After resection, each specimen was placed in a large petri dish within a specialized sealed cooler for97

specimen transport, and orientation labels were marked on the container by the operating neurosurgeon,98

with photographs taken for future reference. MR imaging was carried out on the specimens in two sessions:99

immediately following surgical resection, and after overnight fixation in 10% formalin. For the initial session,100

referred to as the pre-fixation session, the specimens were immediately transferred from the operating room101

to the scanning suite at the Robarts Research Institute and prepared for imaging. Each specimen was102

wrapped in gauze for stabilization, transferred to suitably-sized containers for imaging, and immersed in a103

fluorine-based lubricant ‘Christo-lube’ (Lubrication Technology, Inc) prior to imaging to avoid susceptibility104

artifacts at the tissue boundaries. Identical preparation was performed for the second post-fixation session.105
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Patient Gender Age Onset age Seizure origin MRI Path. Scan Protocol

1 F 51 10 Right Normal dysplasia I

2 F 22 15 Right Normal mild MTS I

3 F 52 12 Left Non-specific mild FCD I

4? F 26 20 Right Tuberous Sclerosis Cortical tubers II

5 F 22 15 Right R. MTS MTS II

6 M 20 3 Left L. MTS MTS II

7? M 19 5 Right Normal Gliosis II

Table 1: Summary of demographics and clinical data, including MRI and histopathological findigds, for

the seven recruited patients in the study. Registration was performed on both hippocampus and neocortex

specimens for all patients. In two cases (denoted by ?) registration was only performed on the neocortex

due to a missed scan and a fragmented hippocampus specimen. MTS: Mesial Temporal Sclerosis. FCD :

focal cortical dysplasia.

Specimen imaging was performed on a 3T Discovery MR750 scanner (GE Medical Systems, Milwaukee,106

WI, U.S.A.). Initially, an in-house developed gradient-insert coil was employed in the scanning setup with107

each specimen imaged sequentially using different coils. For improved time-efficiency in scanning and setup,108

the gradient-insert coil was not employed in later studies, and both specimens were imaged in the same field109

of view. Post-fixation T2-weighted scans were used in the subsequent image processing and registration.110

Both scanning protocols are described in detail below:111

2.2.1. Scan Protocol I112

The first protocol utilized a gradient-insert with a 4 channel TORO coil for the neocortex and a solenoid113

coil for the hippocampus, with each specimen scanned sequentially. T2-weighted images with a multi-114

phase balanced SSFP FIESTA sequence with 4 cycled phases were acquired for the neocortex (TR=3.5ms,115

TE=1.75ms, flip angle=40◦, N=4, matrix=200× 200, slice thickness=0.3, FOV=60mm) and the hippocam-116

pus (TR=3.97ms, TE=1.98ms, flip angle=40◦, N=4, matrix=200× 200, slice thickness=0.3, FOV=60mm).117

2.3. Scan Protocol II118

For the second protocol, a 6 channel coil, designed to image the carotid artery, was used instead of119

the gradient-insert coil of the previous configuration. Similar T2-weighted FIESTA images (TR=8.17ms,120

TE=4.08ms, flip angle=40◦, N=2, matrix=200× 200, slice thickness=0.4, FOV=120mm) with a resolution121

of 0.35 × 0.35 × 0.4mm, as well as, Fast gradient echo (fastGRE) scans with sixteen echoes (TR=65.0ms,122
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TE=38.9ms, flip angle=40◦, matrix=200 × 200, slice thickness=0.4, FOV=120 mm) were acquired for the123

study. A switch was made to the second protocol due to the significant time savings achieved during the124

setup and gradient shimming processes (from ∼45 min to ∼5 min) and minimal loss of image resolution.125

2.4. Histological processing126

Following pre-fixation and post-fixation MRI imaging, the specimens underwent accessioning and grossing127

at the Department of Pathology at UH, and were then cut into two halves midway, anterior-posterior, through128

the specimen. Each half of the specimen was then embedded in agar for a stabilization effect during slicing.129

The half-specimens were then sectioned parallel to the initial cut, into 4.4 mm pieces in the anterior to130

posterior direction using a deli slicer (Globe Food Equipment Company, Dayton, OH, U.S.A). Each block131

was embedded in paraffin and mounted on a microtome where 8 µm thick sections were cut from the face of132

each block and mounted on slides. One slide from each block was stained with hematoxylin and eosin (H&E)133

according to standard clinical neuropathology protocols, and additional stains or immunohistochemistry,134

including glial fibrillary acidic protein (GFAP), neuronal nuclei (NeuN) and neurofilament (NF), were ordered135

where deemed necessary by the neuropathologist on duty. The resulting slides were digitized on a ScanScope136

GL (Aperio Technologies, Vista, CA, USA) bright field slide scanning system at a maximum of 20x optical137

zoom, and stitched to form full-frame multi-resolution images stored in BigTIFF file format (maximum pixel138

resolution 0.5µm). Since each specimen was sectioned into blocks of 4.4mm thickness, the corresponding139

H&E stained images have a physical spacing of effectively 4.4mm in the coronal (anterior-posterior) direction.140

Figure 2 shows an overview of all these histological processing steps.141

2.5. Image registration142

To motivate our registration approach we first describe how the numerous physical processing steps143

between ex-vivo MR imaging and slide digitization affect the specimen, and how these steps could be144

accounted for with registration. As outlined in the previous section, after imaging, the tissue specimen is145

sectioned coronally, but this slicing plane is not enforced to be along the orthogonal axes corresponding to146

the MRI coordinate system. We therefore need to obtain a transformation between the MRI axes and tissue147

slicing axes. Next, when the specimen is mounted on the microtome, there may be variability in the angle at148

which sections are taken and in the number of partial sections removed before a full section is retained. This149

effectively leads to variability in the angle and spacing between sections. For similar procedures carried out150

on prostate specimens, Gibson et al. (2012) quantified the variability to be 1.7± 1.1◦ and 1.0± 0.5 mm in151

angle and spacing respectively. Because of the relatively small magnitude of variability, and ease of working152

with parallel sections, we do not explicitly account for this and and instead assume sections are parallel and153

spaced by 4.4mm. The tissue being sectioned in the microtome is highly folded after the blade is brought154

down, thus to mount the section on a slide, it is first placed in a water bath to unfold, then eased onto155
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Figure 2: Overview of histological processing from specimen generation to digitization. Processed performed

at in a standard clinical workflow at the hospital are included in dashed boxes.
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the glass slide. This procedure can introduce folds or tears in the mounted section, and placement on the156

slide is variable. Histological processing and staining of the section can introduce further distortions, such157

as differential shrinkage or expansion of tissue. Since all these deformations are present in the thin (8µm)158

section of tissue mounted on the slide, these can be modelled as transformations and warps constrained to159

the 2D plane.160

In summary, we require a registration approach that can model: 1) the transformation between the 3D161

MRI axes to the specimen slicing axes (3D rigid transformation), and 2) the transformations and deforma-162

tions of each slide-mounted section constrained to the 2D space of the slide (2D rigid transformations and163

non-rigid deformations).164

2.6. Iterative registration algorithm165

In this section we outline our iterative registration approach to attain the transformations and deforma-166

tions and to establish correspondence between the MRI and histology images. Note that the registration167

procedures for hippocampus and neocortex images were carried out separately in each case. Preliminary168

results for neocortex registration were shown in Goubran et al. (2012).169

If a 3D reconstruction of the histology were given, 3D rigid image registration could be used to align the170

MRI to the histology. However, to generate a 3D reconstruction of the histology, the individual histology171

slices would need to be corrected, using the registered MRI as a reference. Thus we see that obtaining the172

3D rigid transformation is dependent on having a 3D histology reconstruction, and this is in turn dependent173

on the 2D histology registration with the MRI for a reference. To resolve this circularity, we propose174

an iterative registration scheme that alternates between 1) finding the 3D rigid transformations given the175

current histology reconstruction, and 2) finding the 2D rigid transformations and non-rigid deformations to176

reconstruct the histology volume given the current 3D rigid transformations.177

Figure 3 presents a block diagram overview of our overall registration algorithm. First, the histology178

and MRI images are pre-processed separately to obtain image pairs of the same resolution and field of179

view suitable for image registration. Then the images are fed into an iterative registration algorithm that180

alternates between registration of the MRI volume to the current estimate of the histology volume (3D181

Rigid Registration), and registration of the histology slides to the reference MRI slides for histology volume182

reconstruction (2D Rigid Registration and 2D Non-rigid Registration). The details of this registration are183

shown in Algorithm 1.184

2.6.1. MR image pre-processing185

Prior to image registration, the images underwent a series of pre-processing steps, carried out with186

command-line tools from the FSL image analysis suite (FSL, http://fsl.fmrib.ox.ac.uk) and scripts187

written in MATLAB (The MathWorks Inc., Natick, MA, USA). First, ex-vivo MRI images scanned with188

9



Input: Histology and MRI volumes: H0 = {Hj}j=1...N , M

Output: Final volume and transformations: Himax , T imax

3D , T imax

2D,j=1...N ,Φimax

2D,j=1...N

for i = 0 to imax do

// 3D rigid registration between histology and MRI volume:

T i
3D = RigidReg3D

(
Hi,M

)
// Transformed MRI volume:

MT i

= T i
3D ◦M

// For each histology slice:

for j = 1 to N do

// 2D rigid registration between histology and MRI slice:

T i
2D,j = RigidReg2D

(
MT i

j , Hi
j

)
if i > 2 then

// 2D non-rigid registration between histology and MRI slice:

Φi
2D,j = NonRigidReg2D

(
MT i

j , T i
2D,j ◦Hi

j

)
;

else

Φi
2D,j = Id;

end

// Deformed histology slice

Hi+1
j = Φi

2D,j ◦ T i
2D,j ◦Hi

j ;

end

// Updated histology volume

Hi+1 = {Hi+1
j }j=1...N ;

end

Algorithm 1: Iterative 3D and 2D registration of input histology volume H0 = {Hj}j=1...N and MRI

volume M. Here, we represent image volumes in boldface (H) and the corresponding slices with subscripts

(Hj). In the first part of each iteration, 3D registration is carried out on the current estimate of the histology

volume and the MRI volume to obtain the transformation between the MRI axes to the specimen slicing

axes. In the second part, 2D registration is carried out to obtain the transformations and deformations of

each slide-mounted histology section using the current estimate of the aligned reference MRI.
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Figure 3: Registration pipeline showing pre-processing steps of the data and our iterative 2D-3D approach.

The left column demonstrates the pre-processing steps applied to the histology slides sequentially from top to

bottom. Likewise, the right column represents the pre-processing steps applied to the MRI of the specimens.

The resulting histology stack acts as a fixed image to transform the MR image in a 3D rigid registration.

The transformed image as well as the stack are split into slices 4.4 mm apart where each histology slice has

a corresponding MRI slice. These MR slices act as fixed images to deform the histology slices rigidly then

non-rigidly. The resulting deformed histology slices are stacked and fed back into the 3D rigid registration

for the next iteration.
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Scan Setup II, containing both neocortex and hippocampus specimens in the same field of view, were189

converted from the scanner output Dicom (dcm) format to the standard Nifti (nii) format, then bisected to190

produce separate volumes. Since the orientation of these specimens in the scanner bore did not correspond191

to the anatomical orientation, the orientation matrices of the images volumes were updated to reflect the192

correct pose. This operation was performed using photographs of the annotated specimens and 3D models of193

ex-vivo images, and the resulting orientation matrices were applied to all the acquired images in the session.194

The images were then background masked using a percentile threshold, resampled to 0.2 mm isotropic195

resolution, and cropped around the perimeter of the specimen.196

2.6.2. Histology image pre-processing197

The digitized histology images were similarly reoriented into a standard orientation, with the origin198

in the top-left image corner corresponding to superior-right in anatomical orientation, using the Aperio199

ImageScope software (Aperio Technologies, Vista, CA, USA) and the corresponding MRI as a reference.200

The images were then down-sampled to 100 µm in-plane resolution and converted into NIFTI format, where201

each RGB channel was represented as a slice in a 3D volume. We converted the images to grayscale by202

extracting the green channel, since this channel was found to possess the best gray/white matter contrast203

in the H&E stained slides. Finally, the images were background masked and centered in a standard 60mm204

field of view using the image-based center-of-mass in each slide.205

2.6.3. Rigid registration206

Rigid registration in our iterative scheme was carried out with the flirt tool from (Jenkinson and Smith,207

2001) (FSL, http://fsl.fmrib.ox.ac.uk/flirt) to perform the 3D and 2D registration. The default208

multi-modal cost function (correlation ratio) was applied and the registration was constrained to a rigid209

transform model with 6 and 3 degrees of freedom respectively for the 3D and 2D steps.210

2.6.4. Non-rigid registration211

A deformable registration between corresponding histology and MRI slices was employed to account for212

any anisotropic tissue deformations that can occur during histological processing, sectioning, and staining.213

We used a fast non-rigid registration that makes use of a B-spline deformation field and a normalized mutual214

information cost-function (Rueckert et al., 1999; Modat et al., 2010) (NiftyReg,http://sourceforge.net/215

projects/niftyreg/). The B-spline image registration used a three-level multi-resolution image pyramid216

with final control point spacing of 2 mm. Non-rigid registration was carried out starting at iteration 3 of217

the algorithm and not having been employed in the first two iterations to ensure the sufficient convergence218

of the rigid registration step. Furthermore, for slices where foreground of the MRI image or histology image219

were below a specified threshold, non-rigid registration was not performed and a zero deformation was220

assumed for the slice. The deformation penalty term (bending energy of the spline at a control point), was221
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successively relaxed after each iteration to allow for greater deformations as the alignment is improved over222

each iteration. Specifically the sequence of bending energies employed at the iterative registration steps were223

{0.5,0.025,0.01}, for iterations 3-5.224

Due to histology tissue breakage and loss, a final registration step was added where binary ‘ignore’225

masks defined on the registered histology slices were included in the deformable registration scheme. These226

ignore masks were manually-defined in 3D Slicer (http://www.slicer.org) using a large 2 mm radius227

paintbrush on regions of the MRI image where tissue loss is readily apparent in corresponding regions of228

the histology image, preventing these regions from contributing to the registration, which would result in229

incorrect deformations since one-to-one tissue correspondence is unattainable.230

2.7. Registration validation231

2.7.1. Landmark-based validation232

To validate our registration protocol, we computed target registration error (TRE) based on manually-233

identified corresponding intrinsic landmarks on MR images and histology slices. These landmarks were used234

as independent targets to assess the accuracy of the registration at each iteration of the iterative registration235

scheme, as well as after deformable warping of the images.236

We found that micro-vasculature or micro-bleeds that were visible on the H&E histology slides appeared237

as dark hypo-intense regions in the ex-vivo T2-weighted MRI, as demonstrated in Figure 4. First, one rater238

identified landmarks on histology slides (downsampled to 10µm per pixel), restricting selection to vasculature239

with a transverse diameter of more than 35 pixels wide, assuming an ellipsoid shape. The most anterior and240

posterior histology slices in many cases of both specimens did not contain sufficient intact tissue for reliable241

placement of anatomical landmarks. Three raters then independently searched through the ex-vivo MRI to242

locate corresponding landmarks in the MRI images representing the centroid of these micro-vasculature or243

micro-bleeds. Since tissue contrast varies throughout the specimen, other MR scans of the specimen were244

used to facilitate the localization process. To compute the TRE the coordinates for all three raters were245

averaged to generate a consensus set of MRI landmarks. A total of 215 pairs of corresponding landmarks246

were identified for the TRE calculations in the twelve specimens. Note that only a single set of the histology247

landmarks were used to ensure consistent landmark locations.248

2.7.2. Localization error and statistical analysis249

Target localization incorporates human error in localizing the coordinates which combines with the image250

registration error to produce the TRE measurements. The target localization error (TLE) was calculated251

on ex-vivo MRI images as an unbiased estimator of the standard deviation of repeated localizations of the252

same landmark by the same rater (Fitzpatrick et al., 1998), described by the equation below:253
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TLE =

√√√√ 1

J

J∑
j=1

1

K − 1

K∑
K=1

||Pj,k −
1

K

K∑
k=1

Pj,k||2

where Pj,k is the k−th localization of the j−th landmark. A total of five localization (K = 5) of twenty254

landmarks (J = 20) was performed.255

Figure 4: Preview of chosen intrinsic landmarks on histology and their localized corresponding landmark

on Ex MRI. The arrows in blue pinpoint the micro vasculature used as targets for the TLE calculations on

both histology and MRI. A zoomed in window demonstrates the targets on both modalities with cross hairs

indicating the target coordinates on MRI and a circle showing the chosen coordinates on histology.

Inter-rater variability was measured as an estimator of the standard of deviation of repeated localization256

of the same landmarks by different raters, where a hundred and twenty eight landmarks (J = 128) were257

placed by three different raters (K = 3). Statistical analyses were performed in Prism 5.04 (GraphPad258

Software, San Diego, CA). To assess for significant differences between the several iterations of the algorithm259

and across rigid and non-rigid steps , we computed a repeated-measures analysis of variance (ANOVA) of the260

mean TRE value of each of these steps followed by Bonferroni multiple-comparison correction. A Bartlett’s261

test for equal variances was conducted between all iterations (rigid and non-rigid) of the algorithm to verify262

the equal variance assumption of the ANOVA tests.263

3. Results264

The proposed methodology required ∼ 85 min (including setup) for ex-vivo imaging and < 10 min for265

execution of both the rigid and non rigid components of the algorithm (excluding the manual re-orientation266

step in the pre-processing scheme and the time for definition of ignore masks). Evaluation of the protocol267

was performed by localization of micro vasculature landmarks seen on both modalities by three raters. The268

localization protocol yielded 2-4 homologous landmarks on each of 8-12 sections per neocortex specimen and269

1-3 landmarks on each of 6-8 sections per hippocampus specimen. Our registration protocol produced a270
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mean target registration error of 0.76±0.66 for hippocampal specimens, as shown in table 2, and 0.98±0.60271

for neocortical specimens. The mean TRE was below 1.2 mm after the last step of the registration algorithm272

in all cases including both specimens. The mean landmark localization error for the three raters was found273

to be 0.21 mm, relative to an MRI voxel size of 0.35×0.35×0.4 mm. The inter-rater reliability between the274

raters was found to be 0.33 mm. Figure 5 shows the registration errors across all steps of the algorithm275

including both rigid and non-rigid components for both specimens. The errors are shown first along iterations276

1, 3 and 5 of the rigid component then the non-rigid steps beginning with a step using a high bending energy277

regularization penalty; then a low penalty weight and finally deformable registration utilizing ignore masks,278

that account for tissue breakage and differential shrinkage. The mean error of the rigid iterations reaches a279

plateau around iteration 5 for both specimens. The masked imaged based step outperformed the non-masked280

registration as expected by avoiding tissue breakage.281

Figure 6 shows three neocortical slices with their corresponding MRI slices, that represents the loca-282

tion where the histology cuts were made with respect to the MRI scans of the resections, as well as the283

transformations of the slices after deformable registration. A picture of the resected specimen along with a284

volume rendering demonstrating the location of these histology slices in respect to the whole specimen are285

also shown in the figure. Checkerboard images of both rigid and non-rigid registration for a hippocampal286

slice are displayed in figure 7, which also shows a rendered representation of both sides of the hippocampus287

where the histology slice was cut.288

The Bartlett’s test confirmed the validity of the equal variance assumption for the ANOVA analyses of289

both specimens (P > 0.05). The significant results of the ANOVA analysis are shown in the ‘Mean’ row of290

tables 2 and 3. The ANOVA analysis, between the first deformable registration step (High Bending Energy)291

and the last rigid step (Iteration 5), failed to show a statistically significant difference of the mean TREs292

for both the hippocampus (P > 0.05 , 95 % Confidence Interval [CI] of difference -0.2666 to 1.653 ) and293

neocortex (P > 0.05 , 95 % CI -0.0147 to 1.54 ). However, this test did demonstrate a significant decrease294

in TRE between (High Bending Energy) and the first rigid iteration (Iteration 1) for the hippocampus and295

neocortex respectively (P ≤ 0.01 , 95 % CI 0.143 to 1.69 and P ≤ 0.05, 95 % CI -0.2040 to 1.715). In296

comparison, decreasing the bending energy weight penalty produced significantly lower mean TRE than the297

final rigid iteration step (Iteration 5) for the hippocampus and neocortex respectively (P ≤ 0.001 , 95 %298

CI 0.449 to 2.00 and P ≤ 0.01, 95 % CI 0.3516 to 2.271). The proposed masked non-rigid scheme (Masked299

NR) had as well significantly lower TRE (P ≤ 0.0001) than Iteration5 for both the hippocampus (95 % CI300

0.590 to 2.14 mm) and neocortex (95 % CI 0.5143 - 2.434).301
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It.1 It.3 It.5 H.B.E L.B.E Masked N.R

Subj 1 2.07± 0.96 2.05± 0.97 2.05± 0.98 1.35± 0.85 0.88± 0.67 0.73± 0.85

Subj 2 2.81± 0.54 2.87± 0.63 2.74± 0.80 2.52± 0.94 1.42± 0.94 1.03± 0.94

Subj 3 2.13± 1.78 2.12± 1.74 2.09± 1.73 1.30± 0.78 0.73± 0.42 0.62± 0.40

Subj 4 2.19± 1.02 2.09± 1.02 2.07± 1.21 1.01± 0.54 0.68± 0.37 0.68± 0.42

Subj 5 2.05± 0.84 1.86± 0.85 1.78± 0.95 1.15± 0.68 0.75± 0.43 0.72± 0.45

Mean 2.25± 1.10 2.18± 1.11 2.15± 1.14 1.46± 0.77† 0.89± 0.61‡ 0.76± 0.66‡

Table 2: TRE values for hippocampal registration across iterations. H.B.E: Non-rigid with a High Bending

Energy penalty, L.B.E: Non-rigid with a Low Bending Energy penalty. † : P ≤ 0.01 between means

registration step and Rigid Iteration 1. ‡ : P ≤ 0.01 between means of registration step and Rigid Iteration

5.

It.1 It.3 It.5 H.B.E L.B.E Masked N.R

Subj 1 2.97± 0.86 2.98± 0.86 2.96± 0.87 1.55± 1.21 1.26± 0.66 1.08± 0.52

Subj 2 2.36± 0.83 1.92± 0.84 1.91± 0.94 1.69± 1.17 0.83± 0.85 0.72± 0.68

Subj 3 2.23± 1.40 2.08± 1.37 2.07± 1.37 1.15± 1.15 0.98± 0.99 0.83± 0.70

Subj 4 2.41± 1.61 2.40± 1.76 2.38± 1.89 2.17± 0.88 1.17± 0.68 1.05± 0.65

Subj 5 2.19± 1.02 2.08± 1.02 2.06± 1.01 1.01± 0.43 1.02± 0.45 0.87± 0.38

Subj 6 2.23± 1.63 2.24± 1.65 2.25± 1.65 2.06± 0.61 1.35± 0.57 1.12± 0.52

Subj 7 2.16± 1.41 2.14± 1.44 2.11± 1.44 1.42± 0.55 1.15± 0.49 1.15± 0.35

Mean 2.37± 1.19 2.26± 1.22 2.25± 1.28 1.60± 1.01† 1.11± 0.75‡ 0.98± 0.60‡

Table 3: TRE values for neocortical registration across iterations.H.BE: Non-rigid with a High Bending

Energy penalty,L. B.E: Non-rigid with a Low Bending Energy penalty. † : P ≤ 0.01 between means

registration step and Rigid Iteration 1. ‡ : P ≤ 0.01 between means of registration step and Rigid Iteration

5.
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Figure 5: Boxplots with 5-95% whiskers of Hippocampal and Neocortical registration target registration

errors at each stage of the iterative registration scheme.

4. Discussion302

In this article, we have described a method to reliably register ex-vivo MRI and sparsely sliced histology303

slides of neocortex and hippocampus specimens. Our protocol is a landmark free algorithm that produced304

sub-millimeter accuracy for hippocampal registration and close to 1-mm of error for temporal lobe neocortical305

registration. Correlating MRI with histopathology is imperative in the validation of new imaging sequences,306

since verification of pathological anomalies underlying signal changes is needed to enable these sequences to307

ultimately gain clinical acceptance. The intrinsic higher resolution of ex-vivo MR images provides a superior308

opportunity to further examine the correlation between MRI and histology. By addressing many challenges of309

the in-vivo MRI to histology registration, our protocol leaves single modality registration between specimen310

and preoperative MRI scans as the remaining step. In addition, ex-vivo to MRI registration can be used to311

validate specimen imaging, as it has been shown by Madabhushi et al. (2005) in prostate ex-vivo imaging312

examples. While using an intermediate ex vivo registration interrupts the clinical flow for specimen imaging,313

our algorithm requires ∼9 min ±37 seconds on average (for the automated iterative 3D/2D rigid approach314

plus the non-rigid steps) to register 100 µm coronally sliced (anterior to posterior) histology slices to ex-vivo315

MRI images.316

Previous studies on registration of histopathology to in-vivo imaging were reported mostly for rodents317

(Jacobs et al., 1999; Humm et al., 2003; Meyer et al., 2006; Lebenberg et al., 2010) and primates (Malandain318
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Figure 6: Example of a neocortex rigid and deformable registration showing: a) photograph of a neocortical

specimen after resected with orientation labels placed by the operating surgeon, b) volume rendering of the

MRI of the specimen showing the location of three consecutive histology slices. c) rendering of both sides

of the specimen where the middle slice of histology was cut, d) the three histology slices shown in b), e)

the corresponding MRI slices after 3D rigid registration, and f) the deformed histology slices after non-rigid

registration to their corresponding MRI slices.
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Figure 7: Example of a hippocampal rigid and deformable registration showing: a) photograph of a hip-

pocampus before grossing, b) volume rendering of the MRI of the hippocampus demonstrating the location

of a histology slice through the specimen, c) rendering of both sides of the hippocampus where the histology

slice was cut, and d) three orthogonal views of the hippocampal MRI (left to right: coronal, sagittal, axial).

The bottom row depicts: e) a coronal view of the same histological slice, f) a checkerboard image showing

the MRI and histology before non-rigid registration, and g) a checkerboard image showing the MRI and

non-rigidly deformed histology slice.
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et al., 2004; Breen et al., 2005; Dauguet et al., 2007; Ceritoglu et al., 2010). Relatively few studies were319

developed to register human whole-brain or single hemisphere postmortem MRI with histology (Schormann320

et al., 1995; Kim et al., 2000; Singh et al., 2008). These landmark-based and image-based registration321

algorithms, however, are not likely to be applicable to the registration of specimens from lobectomies to322

full preoperative MR images, due to the drastic change in shape and coherence when the specimen is323

separated from neighbouring tissue. Several previous works reconstructed a 3D histology volume from324

serially sectioned brain specimens at < 700µm to register to the MRI volume (Bardinet et al., 2002; Humm325

et al., 2003; Dauguet et al., 2007; Lebenberg et al., 2010; Chakravarty et al., 2006). This technique while326

producing accurate results is not compatible with the clinical work flow of pathology departments, where the327

tissue is sparsely sectioned at a thickness of more than a few mm. Other methods have been proposed that328

allow co-registration of histology to other modalities through the use of stereotactic systems using target329

points (Schmierer et al., 2003; Humm et al., 2003), however the design of these systems is tissue-specific and330

is not broadly applicable to other brain resections.331

The measurement of TRE requires the identification of homologous landmarks on images of both modali-332

ties used for registration and is frequently lacking in analyses of these methods. A few articles have quantified333

and reported TRE in brain histology to MRI. Jacobs et al. (1999) reported a registration residual root-mean334

square (RMS) error of 0.83 mm between histological sections and MRI of ischemic rats and Humm et al.335

(2003) obtained a 0.25 mm registration error for tumor xenografts of one mice using stereotactic fiduciary336

markers. Both studies could not be extrapolated or compared to human cases due to the methodological337

differences between these protocols and resected human specimens, as well as the mechanical differences338

between excised human and whole primate brain. Singh et al. (2008) reported a 5.1 mm TRE computed as339

3D coordinates of centroid of marked lesions in both modalities, which exceeds the desired error range for340

correlation between histopathology and MRI in focal epilepsy as underlying pathologies may be found on the341

scale of millimetres. Our method produced a mean TRE of 0.76± 0.66 and 0.98± 0.60 for hippocampal and342

neocortical specimens respectively, which is sufficient for exploring underlying pathologies of focal epilepsy.343

For a very small FCD with a volume of 128mm3 (Besson et al., 2008), the mean TRE obtained from our344

algorithm is able to achieve a 70% overlap of the FCD, assuming it is a sphere. Our mean TLE of 0.21 mm345

is indicative that the localization variability is not dominating in the TRE measurements. The significantly346

lower mean TRE for the latter deformable registration found by our ANOVA analysis motivates the use of347

the hierarchal bending energies as well as the incorporation of ignore masks.348

A previous method proposed visual comparison of photographs of temporal lobe neoctorex tissue slices349

to MRI, and reported a < 2 mm difference between two observers in most cases (Eriksson et al., 2005).350

This manual matching technique suffers from a major limitation that is the lack of image registration351

between the histology and MRI, which in turn dictates the use of region of interest (ROI) based analysis352

in further studies of correlation (Eriksson et al., 2007, 2009; Lockwood-Estrin et al., 2012). This operator-353
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based method incorporates human bias in locating the corresponding slice of MRI, which explains the 4-mm354

difference between raters in their last case. Only two ROIs in temporal lobe neocortical specimen were355

assessed in Lockwood-Estrin’s and Eriksson’s work to analyze histopathology to MRI correlation. In one356

instance a negative correlation was seen between grey matter T2 values of fast Flair (fFT2) and NeuN357

field fraction (Eriksson et al., 2007), and another no correlation was found between normalized FLAIR358

signal intensity (nFSI) and NeuN field fraction within these ROIs (Lockwood-Estrin et al., 2012). While359

the differences between fFT2 and nFSI may not necessarily explain this discrepancy, averaging across the360

whole area of the ROI may mask signal changes of pathologies smaller than the size of the ROI. Moreover,361

unlike our protocol, Eriksson et al. (2005) focused on matching temporal lobe neocortical specimen and362

no hippocampal correspondence was performed. Registration of the hippocampus is very challenging due363

to the smaller size of the resection and the higher susceptibility of the tissue to deform and the histology364

slices to break apart. Furthermore, performing an image-based registration allows exploratory hypothesis-365

free analysis at a voxel-wise level and does not require ROI definition, which may be more sensitive to366

subtle pathologies. Our protocol will be complemented with 3D in-vivo to ex-vivo MR registration in order367

to explore the correlations between MRI and histology at greater depth, and provide histopathological368

validation of multi-modal MRI analysis techniques.369

5. Conclusion370

We present here a protocol for registration of ex-vivo specimen MRI to histopathology, specifically hip-371

pocampal and neocortical temporal lobe sections. Sub-millimeter errors have been shown for ex-vivo MRI to372

histology registration on twelve collected specimens from seven patients. A successful registration between373

histology - currently considered as the ground truth - and post-operative MRI of resected tissue is imperative374

for better understanding of focal epilepsy at both the micro and macro levels. This correspondence is a key375

component towards achieving MRI and histology correlation by bringing together information from both376

domains.377
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