
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-23-2021 10:30 AM

A Lightweight and Explainable Citation Recommendation System A Lightweight and Explainable Citation Recommendation System

Juncheng Yin, The University of Western Ontario

Supervisor: Ling, Charles X., The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Juncheng Yin 2021

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Yin, Juncheng, "A Lightweight and Explainable Citation Recommendation System" (2021). Electronic
Thesis and Dissertation Repository. 7731.
https://ir.lib.uwo.ca/etd/7731

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7731&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F7731&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7731?utm_source=ir.lib.uwo.ca%2Fetd%2F7731&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

i

Abstract

The increased pressure of publications makes it more and more difficult for researchers

to find appropriate papers to cite quickly and accurately. Context-aware citation

recommendation, which can provide users suggestions mainly based on local citation

contexts, has been shown to be helpful to alleviate this problem. However, previous works

mainly use RNN models and their variance, which tend to be highly complicated with

heavy-weight computation. In this thesis, we propose a lightweight and explainable model

that is quick to train and obtains high performance. Our model is based on a pre-trained

sentence embedding model and trained with triplet loss. Quantitative results on the

benchmark dataset reveal that our model achieves impressive performance with or

without metadata. Qualitative evidence shows that our model pays different levels of

attention to adequate parts of citation contexts and metadata, suggesting that our method

is explainable and more trustable.

Keywords: Citation Recommendation, Deep learning.

ii

Summary for Lay Audience

In recent years, natural language processing has witnessed tremendous breakthroughs

in different research problems such as machine translation and word processor. These

improvements have dramatically changed human’s lifestyles and make our life much

easier. However, there are still many areas that need to be explored. The citation

recommendation, especially the local citation recommendation, is just one of these areas.

Considering the increased number of publications in recent years, it becomes harder and

harder for researchers to find appropriate papers to cite nowadays. The local citation

recommendation is aimed at solving this problem.

The local citation recommendation just imitates human’s way of thinking. Given the

citation contexts of several sentences, the local citation recommendation can provide the

user possible papers to be cited. Then the user can choose from these papers, which

dramatically reduce the user’s workload. In this thesis, we focus on the local citation

recommendation problem. We propose an innovative method based on a pre-trained

sentence encoder. Our method outperforms the baselines in all metrics.

iii

Acknowledgements

To my supervisor, Dr. Charles Ling, I owe an immense debt of gratitude for his support,

mentorship, scientific insights and contagious enthusiasm during my studies. His

consistent, patient confidence in me was essential in the performance of the work

described in this thesis. He provides much help since I came to Canada, I believe he

considerably exceeded the expectations of his role as supervisor.

I would like to thank Tanner, Xinxu, Yuanyuan, Yining, and Jinhang for their

encouragement and advice during this research and my life in Canada.

I would also like to show special gratitude to my parents for their constant support

throughout my research and life.

iv

Table of Contents

Abstract i

Summary for Lay Audience ii

Acknowledgements iii

Table of Contents iv

1．Introduction 1

1.1 Motivation 1

1.2 Contribution 2

1.3 Thesis Outline 4

2．Background 5

2.1 Terminology 5

2.2 Recurrent Neural Network 6

2.2.1 Long Short Term Memory networks 7

2.2.2 Gated Recurrent Unit 10

2.3 Word Embedding 11

2.3.1 Word2vec 11

2.3.2 GloVe 14

2.3.3 Deep contextualized word representations 17

2.4 Attention Mechanism 19

2.5 Transformer 23

2.6 Comparison on Recommendation Methods 26

2.6.1 Global Citation Recommendation 27

2.6.1.1 Collaborative Filtering for Citation Recommendation 27

2.6.1.2 Content-Based Citation Recommendation 28

2.6.2 Local Citation Recommendation 31

2.6.2.1 the Neural Probabilistic Model 31

2.6.2.2 the Neural Citation Network 33

3. Methodology 37

3.1 Problem Definition 37

3.2 Model 37

3.2.1 Citation Contexts Encoder Module 39

3.2.2 Embedding Remap Module 41

3.2.2 Grading Module 42

3.3 Learning 43

3.3.1 Modified Negative Sampling 43

3.3.2 Triplet Loss 43

3.3.3 Optimization Algorithm 44

4. Experiment 45

4.1 Dataset 45

4.2 Performance Evaluation Method 46

4.3 Implementation Detail of Our Method 47

4.4 Baselines 48

v

4.4.1 RNN & RNN model 48

4.4.2 BERT-GCN model 49

4.5 Quantitative Results 49

4.6 Qualitative Study 51

5. Conclusion and Future Work 54

5.1 Conclusion 54

5.2 Future Work 55

Bibliography 56

Curriculum Vitae 60

1

1．Introduction

In this chapter, we provide some background knowledge about the citation

recommendation problem. We also discuss the importance of this research area and our

contribution toward solving this citation recommendation problem. This thesis outline is

introduced at the end.

1.1 Motivation

With the rapid development of scientific research, there are much more papers published

every year in different research areas. The rich amount of papers makes it more and more

time consuming for researchers to find appropriate papers to cite when they write their

papers (Küçüktunç, Onur, et al. 2014). Therefore, automatic citation recommendation,

which automatically gives researchers suggestions for papers to cite, shows a very good

application prospect.

There are two main approaches of citation recommendation (Huang, Wenyi, et al. 2015).

One approach is global citation recommendation, which uses information from the whole

written paper to give suggestions. This approach is similar to the recommendation system,

mainly relying on citation relationships which are already known to provide suggestions

(Beel, Joeran, et al. 2016). Recent works also use partial text information of the

manuscripts (Bhagavatula, Chandra, et al. 2018). The other approach is local citation

recommendation, which mainly uses information of several sentences around the paper

citation location (which we call citation contexts) and some information of papers potential

to be cited (which we call candidate papers). Metadata, such as author names, venues,

and published years, can also be used to improve performance in both approaches

(Ebesu et al. 2017; Bhagavatula, Chandra, et al. 2018).

The global approach uses the whole manuscript information to make citation

recommendations. Compared to the local approach, it has more information to analyze.

Thus, it can make more general recommendations. Recommendations given by the

global approach tend to be more related to the central ideas of citing paper. However,

2

due to the difficulty of processing the semantic information of the whole manuscripts, most

global approach works only use citation relationships already provided in the training

dataset (Beel, Joeran, et al. 2016) and partial text (e.g., abstract) to make

recommendations. This limits the recommendation accuracy. On the other hand, the local

approaches mainly suggest candidate papers based on citation contexts with the scope

of several surrounding sentences (Huang, Wenyi, et al. 2015). Therefore, the suggested

candidate papers tend to be more related to the specific contexts. Traditionally, before

deep learning, a variety of methods have been used to solve this local recommendation

problem, such as Restricted Boltzmann Machines (Tang and Zhang 2009), collaborative

filtering (Liu, Haifeng, et al. 2015) and statistical machine translation (Tang, Xuewei, et al.

2014). However, the outcome is not completely satisfactory. Recently, neural networks

have also been used in this area, significantly improving the performance. Huang et al.

firstly use a feedforward neural network to learn embeddings of words in the citation

contexts and document embeddings. This method only uses a bag of words as input and

ignores the semantic information of the sequence. Ebesu et al. use the Time-Delay Neural

Networks (TDNNs) (Collobert, et. al. 2008) and RNN to extract information from citation

contexts and candidate papers. Attention mechanism is also used to better utilize

information extracted from the TDNNs. They also encode author names of both citation

contexts and candidate papers as metadata into the network, which dramatically

enhances the performance. However, this trick makes the recommendation much favor

of self-citation (the writer citing their own or their colleagues’ papers), which makes it less

useful when researchers want to obtain suggestions for candidate papers they do not

know. Some other papers also use metadata such as venues and published dates

(Bhagavatula et al. 2018). However, this also introduces biases. Due to the widely

performed peer-review process, papers that are published in the same venue as the citing

papers are more often selected as citations (Färber, M. et al. 2020).

1.2 Contribution

As we discussed earlier, it is quite common for researchers to cite their own papers, or

papers from their colleagues or the same venues. Although researches show that this is

not totally harmful (Tahamtan, I. et al. 2018), an ideal citation recommendation method

3

should be independent of any bias. In this paper, we propose an innovative neural

network model for local citation recommendation, which mainly uses the citation contexts

around potential citing location to give suggestions. Since it is based on semantic

information analysis of citation contexts, it prevents possible biases caused by authors’

preference. Specifically, we use three sentences before the potential citing location and

two sentences after the potential citing location, which is similar to human attention span.

This method has also been verified by our experiments to be the best. For candidate

papers, we extract information from their titles and abstracts. If title and abstract of citation

contexts are given, they can also be used in our model to further improve performance.

We use a pre-trained sentence embedding model to extract information from both citation

contexts and candidate papers. Since the pre-trained model is not designed for this

specific task, its embedding outcome is not very accurate. Moreover, the embeddings for

citing and cited papers have different dimensions. Therefore, we use re-embedding layers

to remap the embeddings for citing and cited papers to the same new vector space. After

that we compute the cosine similarity between the embeddings for citing and cited papers.

We use the cosine similarity scores to measure the correlation between the citing papers

and recommended cited papers. The higher the scores, the better the recommendations.

We train our network on a benchmark citation dataset (Jeong, Chanwoo et al. 2019),

which contains 4898 papers published from 2007 to 2017 as well as 17274 citation

contexts. Our method reaches a pretty good score and improves performance on

benchmark by a clear margin compared to competitive baselines.

Our model has some key features: 1. Lightweight. The proposed model is based on a

pre-trained sentence embedding encoder, which dramatically enhances the time and

compute efficiency compared with other models. 2. Explainable. Our model automatically

learns to assign different weights to adequate parts of the citation contexts, which

intuitively shows us the contribution of different parts of citation contexts. 3. Content

based. Our model is able to achieve high performance solely based on semantic

information. 4. High performance. Experimental results on the benchmark dataset

demonstrate our model produces a significant improvement on Recall and Mean

Reciprocal Rank (MRR) compared with competitive baseline models.

4

We are currently building an automatic citation recommendation system based on our

model as illustrated in Figure 1.1. When the user inputs the citation contexts, the system

will automatically suggest possible places to add citations, denoted by [?]. When the user

clicks on [?], a list of recommended papers is provided. The user can choose papers from

the list to see more concrete information. After the user selects a paper (or papers) to cite,

the model will update citation recommendations for the nearby sentences dynamically.

The system is lightweight as it can quickly respond to users’ selection on the citation

recommendation, and easy to update when new publications are added to the dataset.

Figure1.1: An illustration of our paper citation recommendation system. Different colors for the

citation contexts demonstrate the various levels of attention paid by the system. Darker colors

mean sentences that raise more attention. The recommendation list shown here is actually

generated by our model.

1.3 Thesis Outline

The structure of this thesis is organized as follows. In Chapter 2, we discuss some related

work, including TDNN to RNN, attention mechanism, BERT and its variation. In Chapter

3, we describe our innovative approach to solve the local citation recommendation

problem. In Chapter 4, we discuss the experiments, including the dataset used in our

research, baseline models, and experiment results. In Chapter 5, we demonstrate the

practice use example of our model. In Chapter 6, we conclude this thesis and outline

potential future work.

5

2．Background

In this chapter we define some terms used in the research of citation recommendation

and review some previous work. We also make a comparison between the global citation

recommendation and the local citation recommendation. Besides that, we provide some

essential background knowledge needed to be known in this area.

2.1 Terminology

In this section we introduce some important concepts in the area of citation

recommendation.

Figure 2.1 Visualization of a citation in a research paper.

As shown in Fig. 2.1, a typical citation is a kind of relationship between two papers. One

paper, which we call citing paper, cites something from another paper, which we call cited

paper (Färber, M. et al. 2020). And potential papers to be cited by the citing paper are

called candidate papers. Both citing paper and candidate paper are composed of title,

authors, abstract, contents and some other information. The sentences in the contents of

the citing paper, among which contents from the candidate paper are cited, are called

6

citation contexts. The titles, abstracts, contents are categorized as context information,

while the author names, venues, publish years et al. are categorized as metadata. If a

research method uses information of the whole citing papers and candidate papers, it is

called global citation recommendation, while methods mainly use citation contexts

information are called local citation recommendation (or context-based citation

recommendation) (Huang, W. et al. 2015).

2.2 Recurrent Neural Network

A recurrent neural network is a class of artificial neural networks where nodes in a directed

graph connect to each other along the temporal axis. As we all know, the feed forward

neural networks have a strong ability to extract information from the input tensors.

However, this kind of neural network is densely connected and the resources and time it

costs grow dramatically as the size of the networks grows. This limits its ability to proceed

through really long sequences. However, humans often use really long thinking processes.

For most of the circumstances, humans do not begin to think about something from

scratch, but based on previous knowledge. The recurrent neural network is a derivation

from the feed forward neural network. It can use its internal state to save previous

information and process really long sequences. This makes the recurrent neural network

widely used in different fields, such as speech recognition and language translation.

Figure 2.2: Unfolded basic recurrent neural network

Fig. 2.2 shows the classic architecture of the recurrent neural network. The basic

recurrent neural network is a recurrence layer containing a series of neuron-like nodes.

7

Each node connects to itself in the next time step. In each step, each note maintains a

different hidden state, and a modifiable real-valued weight. According to the time steps,

the nodes can be divided into three categories: the input nodes, which get information

from outside of the recurrent neural network; the hidden nodes, which maintain and

modify the hidden states obtained from the previous nodes; the output nodes, which yield

the result.

2.2.1 Long Short Term Memory networks

As we mentioned before, the ordinary feed forward neural networks cannot remember

long term information properly. The basic architecture of recurrent neural networks is

proposed to solve this problem. However, this basic model fails to work in supposed

performance. Research (Bengio, Y. et al. 1994) has shown that this simple architecture

has Inherent defects which makes this basic recurrent neural network model hard to

preserve long memory in practice. Therefore, many researchers have been working to

find more efficient network architecture. The Long Short Term Memory networks is an

outstanding representative of them.

Long Short Term Memory networks is a classic special designed architecture of the

recurrent neural network, specifically aiming at solving the long term dependency problem.

This kind of networks are usually abbreviated as LSTMs. Since the first research of the

LSTM (Hochreiter, S. et al. 1997) is published, many researchers follow this work and get

it refined and widely used in different areas.

All the recurrent neural networks have a common basic architecture. They all have some

basic modules that are repeatedly used over time. In the basic recurrent neural network

models, this kind of modules are usually very simple, such as a single linear layer with

tanh activation function.

8

Figure 2.3: The architecture of a basic recurrent neural network model.

The LSTMs also follow this classic architecture. However, instead of using a simple

repeated module, the LSTMs design a pretty delicate structure inside the module, with

four neural network layers interactive in a clever way.

Figure 2.4: The architecture of a LSTM

The most important part of this module is located at the top of this module. The horizontal

line with one multiplication and one plus operation. This line denotes the operation over

the cell state, which is denoted as 𝐶𝑡. Since it runs through the whole chained network

with few changes, it is relatively easy for it to keep information unchanged through the

whole process. Moreover, the LSTM also has many special designed structures called

gates, which are used to modify the information in the cell states.

The gates are composed of sigmoid layers and multiplications operators. The sigmoid

layer computes a probability based on the input information. The probability is between 0

9

and 1. If the probability of a gate is 0, that gate will block all the information from getting

through the gate. On the other hand, if the probability of a gate is 1, that gate will let all

input information pass without any modification.

For any time step 𝑡, this basic module of the LSTM takes one input feature called 𝑥𝑡 from

outside of the network. It also inherits the cell state 𝐶𝑡−1 and hidden state ℎ𝑡−1 from the

previous repeated module. After a series of operation, it passes the new cell state 𝐶𝑡 and

hidden state ℎ𝑡 to the next module, and output ℎ𝑡 as output to the outside if necessary.

The first gate is called the forget gate. As its name shown, this gate decides how much

to forget from the previous cell state 𝐶𝑡−1. This gate takes the previous hidden state ℎ𝑡−1

and input feature 𝑥𝑡 as inputs, and use a sigmoid layer to map these inputs to a vector of

values between 0 and 1. Each value indicates a probability to remember the information

from the corresponding digits of the previous cell state 𝐶𝑡−1. If the value is 1, we keep

the value in that digit of 𝐶𝑡−1 unchanged. On the other hand, if the value is 0, the

information contains in that digit of 𝐶𝑡−1will be totally forgotten. This process can be

depicted as:

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

Where 𝑊𝑓 and 𝑏𝑓 are the trainable parameters for the gate.

The second gate is called the input gate. This gate controls how much input information

to be added to the cell state. On the one hand, we project the previous hidden state ℎ𝑡−1

and input feature 𝑥𝑡 into a tanh layer to output a vector of candidate values 𝐶�̂�, which is

added to the cell state later. On the other hand, we use a sigmoid layer to compute a

probability based on ℎ𝑡−1 and 𝑥𝑡. After that, this probability is used to decide how much

of the candidate values 𝐶�̂� will actually be added to the cell state. This process can be

depicted as:

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝐶�̂� = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)

10

After these processes, the cell state can be updated. We use 𝑓𝑡 to decide how much to

forget from the previous cell state 𝐶𝑡−1, and use 𝑖𝑡 to decide how much to add from the

new computed candidate cell state 𝐶𝑡. Finally, we add them together to get the new cell

state 𝐶𝑡:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡

Beside computing the new cell state and keeping and passing it along time steps, we may

also want to output some information to the outside. We achieve this by using a modified

version of the cell state. First we pass the original cell state 𝐶𝑡 to a tanh layer to project

the value to -1 and 1. Then we use a sigmoid layer to compute a probability vector based

on ℎ𝑡−1 and 𝑥𝑡, which is denoted as 𝑜𝑡. Finally, we use 𝑜𝑡 to control how much we output

form the cell state. This is depicted as:

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)

The hidden state ℎ𝑡 is passed into next module along time as same as the cell state 𝐶𝑡.

At the same time, ℎ𝑡 can also be output to the outside as the final output.

2.2.2 Gated Recurrent Unit

The gated recurrent unit, i.e. GRU, is a simplified version of LSTM, which was introduced

by Kyunghyun Cho et al. in 2014. Compared to the LSTM, the GRU has fewer parameters.

For example, it does not have an output gate. Due to its simplified structure, it is lighter

weighted thus more quickly to learn. On the other hand, some research shows that its

ability to handle long sequences is weaker compared to the LSTM. (Weiss, G. et al. 2018;

Britz, D. et al. 2017)

The Fig. 2.5 depicts a classic architecture of the GRU unit. For every step 𝑡, we have the

input vector 𝑥𝑡, previous hidden state ℎ𝑡−1, output hidden state ℎ𝑡 . The output hidden

state ℎ𝑡 can also be used as the final output, i.e. 𝑦𝑡.

11

Figure 2.5: architecture of the gated recurrent unit.

The process of the GRU can be depicted as follows:

𝑧𝑡 = 𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)

𝑟𝑡 = 𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)

ℎ�̂� = 𝜙ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ∙ ℎ𝑡−1) + 𝑏ℎ)

ℎ𝑡 = (1 − 𝑧𝑡) ∙ ℎ𝑡−1 + 𝑧𝑡 ∙ ℎ�̂�

Where 𝜎𝑔 is the sigmoid function, 𝜙ℎ is the tanh function, and

𝑊𝑧 , 𝑊𝑟 , 𝑊ℎ, 𝑈𝑧 , 𝑈𝑟 , 𝑈ℎ, 𝑏𝑧 , 𝑏𝑟 , 𝑏ℎ, 𝑧𝑡 is the trainable parameters.

2.3 Word Embedding

Word embedding is one of the fundamentals for the natural language process. To process

the sequences of words using neural networks, we need to map the words to matrices of

real numbers. The word embedding just provides us this approach.

2.3.1 Word2vec

Word2vec (Mikolov, T. et al. 2013) is one of the most popular methods for word

embedding. This method uses shallow neural networks to learn word embeddings

automatically. Therefore, it can be quickly achieved and is rather efficient. Moreover, this

method is a statistical method, and it is a standalone word embedding not aiming at a

12

specific task. Thus the word embeddings learned by this method can be used directly by

loads of other natural language tasks.

The Word2vec first maps the words to one-hot vectors with the size of all vocabularies.

Since the one-hot vectors are independent of each other, we cannot find any relationship

of different words based on the one-hot vectors. Therefore, Word2vec projects the one-

hot vectors to distributed representations afterwards. Intuitively, the distributed

representations are supposed to reflect the meaning or relationships of words. Words that

have similar meanings should be close to each other. This is measured by the cosine

similarity for the distributed representations in the new vector spaces.

Figure 2.6: The architecture of the CBOW model.

There are two models for doing this. Common Bag of Words (CBOW) and Skip Gram.

The CBOW uses words in a context to predict a specific word. As depicted in Fig. 2.6,

each input word is denoted as a V-dimension vector, where V is the vocabulary size. The

N-dimension hidden layer only does the matrix multiplication without any activation

function. This operation maps the input embeddings to a new vector space. Then the V-

13

dimension output layer remaps the outputs from the hidden layer to V-dimension, and

uses a softmax activation function to map its values to 0~1. This denotes the probability

distribution for the target word along the vocabulary table. The model takes C words as

input in total. These C words are projected by the hidden layer to the new vector spaces.

We take their average as the input to the softmax layer. After training the neural network,

the hidden layer is used to map V-dimension one-hot word vectors to N-dimension

distribution representations, which are the word embeddings we need.

Figure 2.7: Architecture of the Skim-Gram model

The Skim-Gram model is the other one to obtain the projection. It is just like the reverse

version of the CBOW model to some content. It uses one word as input and predicts the

contexts around this word. As depicted in Fig. 2.7, the input is the one-hot word

representation 𝑥 with dimension V, where V is the vocabulary size. The hidden layer also

only does the matrix multiplication, the same as the CBOW method. It projects the input

V-dimension 𝑥 to the N-dimension vector space. The output layers are C separate

softmax layers. Each layer predicts one word. After training the neural network, we also

14

use the hidden layer to map words to N-dimension distribution representations, which is

the word embeddings we need.

Figure 2.8: Architecture of the simplified model.

The two models we discussed earlier are both widely used. Researchers keep modifying

and improving these two models. Now we get an extremely simplified method to compute

the word embedding. For any given contexts, we just randomly pick up one word as the

input, and use this to predict a word nearby. Thus the input is a one-hot word vector with

the dimension of V, where V is the vocabulary size. The hidden layer maps the input to

N-dimensional vector space via matrix multiplication. Finally, the output layer is a softmax

layer with dimension of V, which maps the output from the hidden layer to the probability

distribution for the target word along the vocabulary table.

After training, we also use the trained hidden layer to calculate the distribution

representations for input words as the word embeddings. This method is extremely simple,

but it turns out to be pretty efficient.

2.3.2 GloVe

The Global Vectors for Word Representation (Pennington, J. et al. 2014), or GloVe,

algorithm is based on the word2vec method and makes some improvement on it to make

15

the learning process more efficient. The word2Vec method only uses the local statistical

information to learn the word embeddings, while the GloVe method also utilizes the global

information.

The GloVe is based on the idea of the co-occurrence matrix. This method believes that

the co-occurrence matrix is a good source of the semantic information. Assuming we have

a corpus with V different words, we define the set of all words to be 𝑊𝑜𝑟𝑑 =

{𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2. . . 𝑤𝑜𝑟𝑑𝑉}. The co-occurrence matrix is defined as 𝑋 ∈ ℜ𝑉×𝑉. let the 𝑋𝑖𝑗, i.e.

the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the matrix 𝑋, denotes times for 𝑤𝑜𝑟𝑑𝑖 and 𝑤𝑜𝑟𝑑𝑗to show up

together.

Figure 2.9: The co-occurrence matrix for the sentence “the cat sat on the mat”.

Fig. 2.9 depicts an example of the co-occurrence matrix. Assume the corpus only contains

one sentence: the cat sat on the mat. The word “the” shows up with “cat”, “on” and “mat”.

Thus 𝑋12, 𝑋14, 𝑋15 are all equal to 1 in the first line of the co-occurrence matrix. The same

goes for the other rows. It is worth noting that the co-occurrence matrix is a symmetric

matrix.

For three randomly picked up words 𝑤𝑜𝑟𝑑𝑖, 𝑤𝑜𝑟𝑑𝑗 , 𝑤𝑜𝑟𝑑𝑘 We define 𝑃𝑖𝑘 as the probability

to see word i and k together:

𝑃𝑖𝑘 =
𝑋𝑖𝑘

𝑋𝑖

16

Where 𝑋𝑖𝑘 denotes the number of times for 𝑤𝑜𝑟𝑑𝑖 and 𝑤𝑜𝑟𝑑𝑘 to show up together. 𝑋𝑖

denotes the total number of times for 𝑤𝑜𝑟𝑑𝑖 to show up in the corpus.

Now we can use 𝑃𝑖𝑘/𝑃𝑗𝑘 to denote the semantic similarity between 𝑤𝑜𝑟𝑑𝑖 and 𝑤𝑜𝑟𝑑𝑗

based on the third word 𝑤𝑜𝑟𝑑𝑘(i.e. the probe word). If 𝑤𝑜𝑟𝑑𝑘 is highly connective to 𝑤𝑜𝑟𝑑𝑖

but irrelevant to 𝑤𝑜𝑟𝑑𝑗, 𝑃𝑖𝑘/𝑃𝑗𝑘will be very large. If 𝑤𝑜𝑟𝑑𝑘 is irrelevant to 𝑤𝑜𝑟𝑑𝑖 but highly

connective to 𝑤𝑜𝑟𝑑𝑗, 𝑃𝑖𝑘/𝑃𝑗𝑘will be close to 0. If the similarity between 𝑤𝑜𝑟𝑑𝑖 and 𝑤𝑜𝑟𝑑𝑘

and between 𝑤𝑜𝑟𝑑𝑗 and 𝑤𝑜𝑟𝑑𝑖is similar, 𝑃𝑖𝑘/𝑃𝑗𝑘will be close to 1. The Fig. 2.10 shows a

concrete example.

Figure 2.10: The behavior of 𝑃𝑖𝑘/𝑃𝑗𝑘 for various words

The GloVe method uses neural networks to learn the embeddings. We define two

different embedding layers 𝑤 and 𝑢 . 𝑤 is for the 𝑤𝑜𝑟𝑑𝑖 and 𝑤𝑜𝑟𝑑𝑗 , while 𝑢 is for the

𝑤𝑜𝑟𝑑𝑘 . We use 𝐹(𝑖, 𝑘) = 𝑒𝑤𝑖
𝑇𝑢𝑘 to emulate 𝑃𝑖𝑘 . Therefore we have 𝐹(𝑖, 𝑘) = 𝑒𝑤𝑖

𝑇𝑢𝑘 =

𝑃𝑖𝑘 , 𝐹(𝑗, 𝑘) = 𝑒𝑤𝑗
𝑇𝑢𝑘 = 𝑃𝑗𝑘 , 𝐹(𝑖 − 𝑗, 𝑘) = 𝑒𝑤𝑖−𝑗

𝑇𝑢𝑘 = 𝑒𝑤𝑖
𝑇𝑢𝑘/𝑒𝑤𝑗

𝑇𝑢𝑘 = 𝐹(𝑖, 𝑘)/𝐹(𝑗, 𝑘) .

Moreover, we have𝑤𝑖
𝑇𝑢𝑘 = 𝑙𝑜𝑔(𝑃𝑖𝑘) = 𝑙𝑜𝑔(𝑋𝑖𝑘) − 𝑙𝑜𝑔(𝑋𝑖) , 𝑤𝑖

𝑇𝑢𝑘 + 𝑙𝑜𝑔(𝑋𝑖) = 𝑙𝑜𝑔(𝑋𝑖𝑘) .

We define 𝑏𝑤, 𝑏𝑢 to be the biases of the embedding layers 𝑤 and 𝑢, and use them to

emulate the 𝑙𝑜𝑔(𝑋𝑖). Thus we have 𝑤𝑖
𝑇𝑢𝑘 + 𝑏𝑤 + 𝑏𝑢 = 𝑙𝑜𝑔(𝑋𝑖𝑘). Or 𝑤𝑖

𝑇𝑢𝑘 + 𝑏𝑤 + 𝑏𝑢 −

𝑙𝑜𝑔(𝑋𝑖𝑘) = 0.

Therefore, the GloVe method defines the loss function as:

𝐽 = 𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇𝑢𝑘 + 𝑏𝑤 + 𝑏𝑢 − 𝑙𝑜𝑔(𝑋𝑖𝑘))2

Where 𝑓(𝑋𝑖𝑗) = (𝑥/𝑥𝑚𝑎𝑥)𝑎 𝑖𝑓 𝑥 < 𝑥𝑚𝑎𝑥 𝑒𝑙𝑠𝑒 0.

17

2.3.3 Deep contextualized word representations

Figure 2.10: The architecture of the ELMo.

In 2018, Peters, M. E. et al. proposed a new deep contextualized word representation

method, which is also called ELMo. Unlike previous word embedding methods that

calculate fixed embedding values for each word, such as the word2vec, GloVe and

fastText(Bojanowski, P. et al. 2017). The ELMo method generates the word embeddings

based on the whole sentence. They first train multilayer bidirectional LSTMs with a

coupled language model objective on a really large training dataset. After that, they

extract the inner states vector of the LSTMs and concatenate them together. Then they

use a linear layer neural network to learn the combination of the inner states. They

achieve really impressive performance by this approach.

As depicted in their work, different levels of LSTM inner state capture different levels of

information from the texts. The lower LSTM tends to focus on information about syntax

while the upper LSTM tends to learn high level information such as the word meanings in

18

specific contexts. The ELMo simultaneously exposes all these features to further

networks of different end tasks and lets them learn their key points automatically. The Fig.

2.10 depicts the overall architecture of the ELMo model.

Suppose we have a series of 𝑁 words, denoted as {𝑡1, 𝑡2, . . . , 𝑡𝑁}. A forward language

model calculates the overall possibility for the sequence to occur as the mutual possibility

for each of the 𝑁 words to occur given the previous words:

𝑝(𝑡1, 𝑡2, . . . , 𝑡𝑁) = ∏ 𝑝(𝑡𝑘|𝑡1, 𝑡2, . . . , 𝑡𝑘−1)

𝑁

𝑘=1

A backward language model is much similar to the forward model. It also calculates the

overall possibility for the sequence based on the mutual possibility. However, the

possibility is for each of the 𝑁 words to occur given the afterwards words:

𝑝(𝑡1, 𝑡2, . . . , 𝑡𝑁) = ∏ 𝑝(𝑡𝑘|𝑡𝑘+1, 𝑡𝑘+2, . . . , 𝑡𝑁)

𝑁

𝑘=1

The ELMo method jointly maximize the log likelihood for the forward and backward LSTM

models:

∑(𝑙𝑜𝑔𝑝(𝑡𝑘|𝑡1, . . . , 𝑡𝑘−1; 𝛩𝑥, 𝛩𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝐿𝑆𝑇𝑀, 𝛩𝑠) + 𝑙𝑜𝑔𝑝(𝑡𝑘|𝑡𝑘+1, . . . , 𝑡𝑁; 𝛩𝑥 , 𝛩𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝐿𝑆𝑇𝑀, 𝛩𝑠))

𝑁

𝑘=1

Where 𝛩𝑥denotes the trainable parameters for the token representation layer, 𝛩𝑠denotes

the trainable parameters for the softmax layer, 𝛩𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝐿𝑆𝑇𝑀 denotes the trainable

parameters for the forward LSTM model, 𝛩𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝐿𝑆𝑇𝑀 denotes the trainable parameters

for the backward LSTM model.

After these works, the ELMo method uses the linear combination of the intermediate state

values and changes the weight of different intermediate states based on specific tasks.

For each word 𝑡𝑘 , a L-layer bidirectional LSTMs model computes a set of 2𝐿 + 1

representations:

𝑅𝑘 = {𝑥𝑘
𝐿𝑀, ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑘,𝑗

𝐿𝑀, ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑘,𝑗
𝐿𝑀|𝑗 = 1, . . . , 𝐿} = {ℎ𝑘,𝑗

𝐿𝑀|𝑗 = 0, . . . , 𝐿}

19

Where ℎ𝑘,0
𝐿𝑀

 denotes the intermediate state for the token representation layer and ℎ𝑘,𝑗
𝐿𝑀

denotes the concatenation of ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑘,𝑗
𝐿𝑀

 and ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑘,𝑗
𝐿𝑀

.

After all of these, the ELMO concatenates all the 2𝐿 + 1 representations in 𝑅𝑘 into a

single vector. Then it learns the linear combination of 𝑅𝑘. Thus we have:

𝐸𝐿𝑀𝑜𝑘
𝑡𝑎𝑠𝑘 = 𝐸(𝑅𝑘; 𝛩𝑡𝑎𝑠𝑘) = 𝛾𝑡𝑎𝑠𝑘 ∑ 𝑠𝑗

𝑡𝑎𝑠𝑘ℎ𝑘,𝑗
𝐿𝑀

𝐿

𝑗=0

Where the 𝑠𝑡𝑎𝑠𝑘 are softmax-normalized weight for the intermediate states, and 𝛾𝑡𝑎𝑠𝑘 is a

scalar variable used to scale the entire model.

2.4 Attention Mechanism

Figure 2.11: A Shiba Inu in a men’s outfit

Attention mechanism is a recently proposed method and widely used in machine learning

lately. This mechanism is in part inspired by the way humans observe. The Fig. 2.11

demonstrates a concrete example. Looking at a scene, we humans may focus on specific

parts with high resolution, such as the dog face, while leaving the other parts in low

resolution, such as the forest in the background. We may change the part focused on

over time and make some references based on the information we learned from some

parts of the image. Given the red boxes in the second picture, we can see the dog’s nose,

20

eye and a right ear. It is reasonable for us to guess that there is also a left ear in the

yellow box. However, as depicted in the third picture, it is hard for us to guess what is

hidden behind the blank box giving the sweater and blanket.

Figure 2.12: The attention distribution along a sentence.

The same circumstances can occur in the sentence reading cases. As depicted in Fig.

2.12. When we see the word “eating”, it is reasonable for us to expect a word indicating

some food to follow. Thus we pay great attention to the word “apple” and “eating” together.

While the word “green” makes necessary supplements for the description of the word

“apple”, it is less relevant to the word “eating” directly.

In a summary, the attention mechanism applies different weights to the raw input features,

no matter whether the input is an image or a sentence or something else. This helps

downstream networks to focus on more important parts of the raw input.

As we discussed earlier, the RNN networks have its inherent flaws. When used as a

sentence encoder, the RNN only uses the last hidden states as the final output to

represent the whole sentence. This makes the RNN hard to memorize long distance

information. The attention mechanism makes it possible for the final output to peek

information directly from the whole raw input sentence. The weights for the attention

changed according to different outputs.

The Fig. 2.13 depicts an application of the attention mechanism in the Seq2Seq model

(Sutskever, I. et al. 2014). In every time step, the context vector can see all information

from the encoder, and learn to focus on different parts automatically. This dramatically

boosts the performance of the whole model.

21

Figure 2.13. The encoder-decoder model with additive attention mechanism (Bahdanau

et al., 2014)

Let us consider the application of the attention mechanism in the circumstance of neural

machine translation (Bahdanau, D. et al.2014). Suppose we have an input sentences 𝑥 ∈

ℜ𝑛 and the purpose of our model is to output a sentence 𝑦 ∈ ℜ𝑚:

𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]

𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑚]

We use the bidirectional RNN as the encoder. This helps the hidden states ℎ =

[ℎ1, ℎ2, . . . , ℎ𝑛] to remember the information from both the preceding and following words.

The decoder hidden states is denoted as 𝑠 = [𝑠1, 𝑠2, . . . , 𝑠𝑚]. For each time step 𝑡, 𝑠𝑡 =

𝑓(𝑠𝑡−1, 𝑦𝑡−1, 𝑐𝑡) , where 𝑐𝑡 is called the context vector. 𝑐𝑡 is the weighted sum of the

encoder hidden states ℎ:

𝑐𝑡 = ∑ 𝛼𝑡,𝑖ℎ𝑖
𝑛
𝑖=1

𝛼𝑡,𝑖 = 𝑎𝑙𝑖𝑔𝑛(𝑦𝑖, 𝑥𝑖) =
𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ𝑖))

∑ 𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ𝑖′))𝑛
𝑖′=1

22

The 𝛼𝑡,𝑖, which is called alignment score in Bahdanau’s paper, measures the correlation

between the input at time step i and output at time step t. The scores are calculated by a

single hidden layer feed-forward neural network. Therefore, the score function can be

depicted as follows:

𝑠𝑐𝑜𝑟𝑒(𝑠𝑡, ℎ𝑖) = 𝑣𝑎
𝑇𝑡𝑎𝑛ℎ(𝑊𝑎[𝑠𝑡; ℎ𝑖])

Where 𝑣𝑎 and 𝑊𝑎 are both trainable parameters of the feed-forward neural network.

This network is trained together with the encoder-decoder model. According to

Bahdanau’s paper, the matrix of alignment scores can well demonstrate the relationship

between words from the source and output, as depicted in Fig. 2.14.

Figure 2.14: Alignment matrix of “L’accord sur l’Espace économique européen a été signé

en août 1992” (French) and its English translation “The agreement on the European

Economic Area was signed in August 1992”. (Bahdanau, D. et al.2014)

The attention mechanism helps researchers make great progress in machine learning

visualization. As depicted in Fig 2.15, this machine reading work (Cheng, J. et al. 2016)

23

uses attention to learn the correlation between current words and previous parts of

sentences.

Figure 2.15. The current word is in red and the size of the blue shade indicates the activation

level. (Cheng, J. et al. 2016)

2.5 Transformer

The development of the attention mechanism has dramatically boosted the research

about sequence models. Vaswani, et al. (2017) proposed a novel architecture to realize

Seq2Seq modeling fully based on attention mechanism without the use of recurrent

network units.

One of the core ideas of the transformer is the multi-head scaled dot-product attention

mechanism. In this module, the raw input sequence is firstly mapped to three different

embeddings using three different weight matrices. Thus, we get three matrices 𝑉, 𝐾, 𝑄.

After this we calculates the weight matrix using 𝑉and 𝐾. Finally, we use these new weight

matrices to calculate the weighted sum of 𝑄. This process can be depicted as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑛
)𝑉

24

Figure 2.16: Multi-head scaled dot-product attention mechanism

In order to get a more comprehensive understanding of the raw inputs, this process is

repeated multiple times. Then all the outputs are concatenated together and projected to

a new vector space:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = [ℎ𝑒𝑎𝑑1; . . . ; ℎ𝑒𝑎𝑑ℎ]𝑊𝑂

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉)

Where 𝑊𝑖
𝑄 , 𝑊𝑖

𝐾, 𝑊𝑖
𝑉𝑎𝑛𝑑 𝑊𝑂 are learnable parameters.

Figure 2.17: The transformer’s encoder

25

The Fig. 2.17 depicts the architecture of the encoder for the transformer. The input

feature is first processed by the multi-head attention mechanism then projected to another

vector space by the feed-forward neural network. The residual connection and layer

normalization are also deployed for each sub-network. This module is repeated for 6

times to get a more comprehensive function.

Figure 2.18: The decoder of the transformer.

The Fig. 2.18 depicts the architecture of the decoder. This module contains two multi-

head attention blocks and one feed-forward block. The residual connection and layer

normalization are also deployed for each block. The first multi-head attention block is

modified to get subsequent points in the input feature masked, since we don’t want the

encoder to peek at the future information of the target sequences when making

predictions. The encoder module is also repeated 6 times for a more comprehensive

function.

Fig. 2.19 depicts the whole model architecture of the transformer. Both the input and

target features are first projected to the same vector space by the embedding layer. a

sinusoid-wave-based positional encoding is applied and summed with the embedding

output to compact the position information into the features. After the encoding and

decoding procedure, the softmax layer is deployed to make the final prediction.

26

Figure 2.19: the whole model architecture of the transformer.

2.6 Comparison on Recommendation Methods

Methods to provide citation recommendations have been published over the years, using

a variety of approaches, and focus on different aspects of this area. Overall, about 50

papers propose some innovative, either global or local citation recommendation methods,

among which about a third are local citation recommendation methods (Färber, M. et al.

2020). The global citation recommendation has been exploited by researchers earlier

than the local one, probably because that it can be achieved by analyzing the citation

relationship graphs, which is unavailable in most cases of the local citation

recommendation. With the continuing development of machine learning, researchers can

utilize context information better now, which boosts research about local citation

recommendations enormously.

In the sections below, we briefly introduced several methods of global citation

recommendations. Then we dive into local citation recommendations which are more

related to our work.

27

2.6.1 Global Citation Recommendation

In this section, we briefly walk through several global citation recommendation methods.

2.6.1.1 Collaborative Filtering for Citation Recommendation

Collaborative filtering is a classic method for citation recommendation. This method treats

citation recommendations similar to circumstances of e-commerce. Citing papers

(customers) make citations of cited papers (items). Similar citing papers (customers) tend

to cite similar cited papers (items). Therefore, citing papers making citations of common

cited papers can be seen as similar. Their similarity is measured by the common papers

that they cite. As depicted in Fig. 2.20, both citing paper i1 and i2 cite the cited paper j2.

Thus they are considered to be similar. Citing paper i1 and i4 do not cite some same

paper. However, citing paper i1, i2 and i3 cite the same paper j1, while citing paper i2, i3

and i4 cite the same paper j2. Therefore, i1 and i4 can also be considered to have a

certain degree of similarity. We can use this citation relationship information to do

association mining. Every citing paper can be represented by some other similar citing

papers. Therefore, when we make citation recommendations for a specific target paper,

we can check which papers are cited by citing papers similar to the target paper.

Figure 2.20 Citing papers are similar based on (a) common cited papers or (b) co-

occurred citing papers.

28

2.6.1.2 Content-Based Citation Recommendation

Recent years, some research also uses partial context information and neural networks

to do global citation recommendations. Here we briefly introduce a representative study

by Bhagavatula, C. et al. Fig. 2.3 depicted the overall architecture of their model.

Their model uses a neural network model to map both the citing papers and cited papers

to a new vector space. It is worth noting that they map the citing papers and cited papers

to the same vector space, which is much different to researches in the local citation

recommendation research area.

As depicted in Fig. 2.3, their citation recommendation method consists of two stages. In

the first stage, for a query document 𝑑𝑞(i.e., the citing document), their model embeds it

to a document embedding vector space. They use the K nearest neighbors (K = 4 here)

as the candidate selection, which is the collection of possible cited papers. In Fig. 2.21

these are 𝑑2, 𝑑3, 𝑑6, 𝑑4. Since 𝑑7is very close to the selected range, and that 𝑑7is cited by

𝑑3, 𝑑7is also added to the candidate selection. In the second stage, they use another

neural network model to compute a recommendation score for every candidate paper.

The rerank all the candidate selections according to the scores from high to low. After

that, they can give the top k recommendations.

Figure 2.21 An overview of the architecture of the system architecture proposed by Bhagavatula,

C. et al.

29

Their citation recommendation method uses the titles and abstracts of documents to

compute the embeddings. For each textual field, i.e. title or abstract, they use the bag of

word representation and compute the weighted average of word embeddings as the

feature vectors. For any document d:

𝑓𝑑[𝑡𝑖𝑡𝑙𝑒] = ∑ 𝑤𝑡
𝑚𝑎𝑔 𝑤𝑡

𝑑𝑖𝑟

||𝑤𝑡
𝑑𝑖𝑟||

2

𝑡∈𝑑[𝑡𝑖𝑡𝑙𝑒]

𝑓𝑑[𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡] = ∑ 𝑤𝑡
𝑚𝑎𝑔

𝑤𝑡
𝑑𝑖𝑟

||𝑤𝑡
𝑑𝑖𝑟||2

𝑡∈𝑑[𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡]

Where 𝑤𝑡
𝑑𝑖𝑟is the word direction embedding and 𝑤𝑡

𝑚𝑎𝑔 is the magnitude for a word t.

After that, they normalize the embeddings of these two feature vectors and compute a

weighted average of them called 𝑒𝑑.

𝑒𝑑 = 𝜆𝑡𝑖𝑡𝑙𝑒
𝑓𝑑[𝑡𝑖𝑡𝑙𝑒]

||𝑓𝑑[𝑡𝑖𝑡𝑙𝑒]||2

+ 𝜆𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡
𝑓𝑑[𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡]

||𝑓𝑑[𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡]||2

They use 𝑒𝑑 to as the document embedding for the document 𝑑. The 𝑤𝑡
𝑑𝑖𝑟 , 𝑤𝑡

𝑚𝑎𝑔 and 𝜆

are all trainable parameters in their neural networks.

They use the supervised learning to thain their neural networks. Specifically, they use

training sets of triplets < 𝑑𝑞 , 𝑑+, 𝑑− >, where 𝑑𝑞 is the citing paper, 𝑑+ is the paper that is

actually cited in 𝑑𝑞, 𝑑−is the paper that is not cited in 𝑑𝑞. They use the cosine similarity to

measure the relativity between the paper citation pairs. This means that 𝑑𝑞 and 𝑑+shall

have high similarity, while 𝑑𝑞 and 𝑑−shall have low similarity. For the loss function, they

use the per-instance triplet loss (Wang et al., 2014):

𝑙𝑜𝑠𝑠 = 𝑚𝑎𝑥(𝛼 + 𝑠(𝑑𝑞, 𝑑−) − 𝑠(𝑑𝑞, 𝑑+),0)

Where 𝑠(𝑑𝑖, 𝑑𝑗)is defined as the cosine similarity between papers 𝑑𝑖 and 𝑑𝑗 , while the

margin parameter 𝛼is a hyperparameter.

30

It is easy to get the positive training pairs since they are provided by the dataset. However,

the negative training pairs need to be chosen much carefully in order to obtain an ideal

performance for the trained model. They basically choose the negative pairs via three

approaches. Firstly, they randomly choose some papers not cited by the citing papers in

the training dataset. Secondly, they choose some papers that are close to the citing

papers in the vector space, but not cited by the citing papers. They use cosine similarity

to measure the distance in the vector space. Since the vector space is obtained by their

model, they can only get negative examples by this approach started from training the

second epoch. After training each epoch, they remap the papers in their training dataset

to a new vector space based on their model, and obtain the new nearest neighbors for

the citing papers. Thirdly, they choose some papers that are cited by papers which are

cited by the citing papers, and that are not directly cited by the citing papers.

In the second phase, they use another model that takes the citing paper and cited paper

pairs as inputs and compute a score indicating the possibility for the cited papers to be

cited by the citing papers.

Figure 2.22 Architecture for the computing score model

Fig 2.22 demonstrates the architecture of their computing score model. For each field (if

available) in the query and candidate documents, such as the titles, abstracts, authors,

venues, and key phrases, they compute the weighted average embeddings of them using

31

the method we discussed earlier. They also sum the scalar weights of the words that

appear in both titles and abstracts of the citing papers and cited papers, and pass this as

another input feature. Besides this, they also use the times the cied papers occur in their

training dataset as another input feature. They use the logarithm to modify the times to

mitigate the impacts of over highly cited papers. After that, they concatenate all these

features together as inputs to their final feed-forward neural network to compute the final

possibility. Different from the previous phase, here they use the sigmoid function to

compute the possibility. This process can be depicted as:

𝑠(𝑑𝑖, 𝑑𝑗) = 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(ℎ)

ℎ = [𝑔𝑡𝑖𝑡𝑙𝑒; 𝑔𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡; 𝑔𝑎𝑢𝑡ℎ𝑜𝑟𝑠; 𝑔𝑣𝑒𝑛𝑢𝑒; 𝑔𝑘𝑒𝑦𝑝ℎ𝑟𝑎𝑠𝑒𝑠; 𝑐𝑜𝑠

− 𝑠𝑖𝑚(𝑒𝑑𝑞
, 𝑒𝑑𝑖

); ∑ 𝑤𝑡
∩

𝑡∈∩𝑡𝑖𝑡𝑙𝑒

; ∑ 𝑤𝑡
∩; 𝑑𝑖[𝑖𝑛−𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠]

𝑡∈∩𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡

]

𝑔𝑓𝑖𝑒𝑙𝑑 = 𝑐𝑜𝑠 − 𝑠𝑖𝑚(𝑓𝑑𝑞[𝑓𝑖𝑒𝑙𝑑], 𝑓𝑑𝑖[𝑓𝑖𝑒𝑙𝑑])

2.6.2 Local Citation Recommendation

In this section, we briefly walk through several local citation recommendation methods.

2.6.2.1 the Neural Probabilistic Model

One representative model in the local citation recommendation area is the the Neural

Probabilistic Model, i.e. NPM (Huang, W. et al. 2015). This model combines the statistical

principles with neural networks.

Suppose the citation context to be 𝑐, the cited paper to be 𝑑, the goal of local citation

recommendation can be seen as find paper 𝑑 that maximize the probability 𝑝(𝑑|𝑐). I.e.

the probability to cite paper 𝑑 given citation context 𝑐. According to the Bayes’ rule, we

have:

𝑝(𝑑|𝑐) =
𝑝(𝑐|𝑑)𝑝(𝑑)

𝑝(𝑐)

Suppose that the citation context 𝑐 consists of 𝑛 words 𝑤1, 𝑤2, 𝑤3. . . 𝑤𝑛, we have:

32

𝑝(𝑐) = 𝑝(𝑤1, 𝑤2, 𝑤3. . . 𝑤𝑛)

The NPM suppose words in the citation context 𝑐 to be mutually conditional independent,

thuw we have:

𝑝(𝑤1, 𝑤2, 𝑤3. . . 𝑤𝑛) = 𝑝(𝑤1)𝑝(𝑤2)𝑝(𝑤3). . . 𝑝(𝑤𝑛)

The 𝑝(𝑤) and 𝑝(𝑑)can be computed by observing the whole dataset. Thus we only need

to maximize 𝑝(𝑐|𝑑).

Suppose the training dataset contains 𝑚 pair of the citation contexts and cited papers.

Then the goal for us is to maximize the probability for all these cited papers to be cited.

I.e. we maximize:

∏ 𝑝(𝑐𝑡|𝑑𝑡)

𝑚

𝑡

We apply the logarithm to it; thus we get:

∑ 𝑙𝑜𝑔𝑝(𝑐𝑡|𝑑𝑡)

𝑚

𝑡

As we talked earlier, words in the citation context 𝑐 is considered to be mutually

conditional independent. Therefore, we have:

𝑝(𝑐𝑡|𝑑𝑡) = 𝑝(𝑤𝑡1
, 𝑤𝑡2

, 𝑤𝑡3
. . . 𝑤|𝑐𝑡||𝑑𝑡) = ∏ 𝑝(𝑤𝑡𝑖

|𝑑𝑡)

|𝑐𝑡|

𝑖=1

Therefore, the objective function for the NPM can be depicted as:

∑ ∑ 𝑙𝑜𝑔𝑝(𝑤𝑡𝑖
|𝑑𝑡)

|𝑐𝑡|

𝑖=1

𝑚

𝑡=1

The NPM model uses neural networks to compute 𝑝(𝑤|𝑑), i.e. the probability for a specific

word to occur when cited document is 𝑑𝑡. Specifically, we have:

33

𝑝𝜃(𝑤|𝑑) =
𝑒𝑥𝑝(𝑠𝜃(𝑤, 𝑑))

∑ 𝑒𝑥𝑝(𝑠𝜃(𝑤𝑖, 𝑑))
|𝑉|
𝑖=1

Where 𝜃is the trainable parameters for the score neural networks denoted as 𝑠𝜃. This

score neural networks takes word 𝑤 and document 𝑑 as inputs and output a score. The

word 𝑤 is mapped to word embedding 𝑣𝑤 by the score neural networks. The document 𝑑

is also mapped to document embedding 𝑣𝑑 with the same dimension of 𝑣𝑤. Then the

score neural networks compute the inner product of the document embedding 𝑣𝑑 and

word embedding 𝑣𝑤. After that, the score neural networks use the sigmoid function to

map it to values between 0 and 1. The whole process can be depicted as:

𝑠𝜃(𝑤, 𝑑) = 𝑓(𝑣𝑤
𝑇𝑣𝑑)

Since the vocabulary size for a whole dataset is to large, computation for the initial

𝑝𝜃(𝑤|𝑑) is too time consuming. Thus the NPM applies the negative sampling proposed

in the skip-gram model (Mikolov et al. 2013) to accelerate the computation.

For a given word 𝑤 in the citation contexts, the skip-gram model chooses words that close

the given word 𝑤in the citation contexts as positive examples, and randomly chooses

words the vocabulary sets as negative examples. Therefore, the purpose for training is to

maximize the log-likelihood:

𝑙𝑚(𝜃) = 𝑙𝑜𝑔𝑠𝜃(𝑤𝑝, 𝑤𝑚) + ∑ 𝑙𝑜𝑔(1 − 𝑠𝜃(𝑤𝑛𝑖
, 𝑤𝑚))

𝑘

𝑖=1

2.6.2.2 the Neural Citation Network

The Neural Citation Network (NCN) (Ebesu, T. et al. 2017) is another representative

model for local citation recommendation. This is the first model that uses the semantic

information from the citation contexts rather than bags of words. It uses an encoder-

decoder architecture as well as the attention mechanism.

34

Figure 2.5: The architecture of the Neural Citation Network (NCN) with the attention mechanism

and author networks.

The architecture of the NCN is depicted in Fig. 2.5. As we talked earlier, it is an encoder-

decoder model. Their encoder uses the Time-Delay Neural Networks (TDNNs) (Collobert,

et. al. 2008). It is a modification to the classic convolutional neural network. For a given

sentence, it can be seen as word sequences. Every word can be mapped to word

embeddings. Thus the given sentence can be seen as a sequence of word embeddings.

The TDNN computes the convolution of the convolution kernel and word embeddings

over the time axis, i.e. the sequence of words.

Specifically, for a given sentence, we suppose its length to be 𝑛. For the 𝑡𝑡ℎ word 𝑤𝑜𝑟𝑑𝑡,

we assume it is 𝑞dimensional. Thus the matrix for the whole sentence can be seen as

𝑤𝑞
1:𝑛 = 𝑤𝑞

1 ⊕ 𝑤𝑞
2 ⊕. . .⊕ 𝑤𝑞

𝑛, which is the concatenation of all the word embeddings

along the time axis. Suppose a convolutional filter 𝑤𝑙×𝑞compute over the scope of 𝑙 word

embeddings at a time over the time axis. We use the rectifier (ReLU) as the activation

function. Thus we have:

𝑣𝑎𝑙𝑢𝑒 = 𝑅𝑒𝐿𝑈(𝑤𝑇𝑥𝑞
𝑘:𝑘+𝑙−1 + 𝑏𝑘)

Where 𝑤and 𝑏𝑘is the trainable parameters in the convolutional neural network. After that,

we use the max pooling over time to get a more stable feature. Finally, the feed-forward

neural network is used to extract information furtherly. It is worth noting that the filter size

is not fixed. Different filter can have different scope 𝑙 to get various levels of

understanding for phrases, e.g. bigrams, trigrams. To capture a more comprehensive and

wide range understanding of sentences, this whole process is repeated multiple times.

35

The TDNN can compute all these filters in parallel, which makes it much more time

efficient than the RNN.

For the decoder part, the NCN uses a different model. The inputs for the decoder are

cited paper titles, and the titles are usually much shorter than the citation contexts, but

have more comprehensive information. Therefore, the NCN chooses to use RNN to

process it due to the better capability of RNN to remember long scope previous

information. Specifically, they use the Gated Recurrent Unit (GRU) (Cho, K. et al. 2014)

to help prevent the gradient vanish or explosion problem.

As we talked earlier, the TCNN is much more time efficient. However, its ability to handle

long span information is still limited due to its architecture. The max pooling layer also

has some drawbacks. Words in the margin of the sentences get less influence in the

output compared to other words. Therefore, the NCN uses the attention mechanism to

adjust the weights of the output from the encoder. The attention weight is computed from

the hidden stats of the RNN decoder and the outputs from the TCNN.

The NCN also uses the author names to further boost the performance. As indicated in

their paper, the author names have a large impact on the actual citation. Therefore, the

NCN treats the author names as context information and passes them into the TDNNs to

extract feature representations too. It is worth noting that the same person may have

different behaviour between citing others’ papers or being cited. For example, a famous

researcher’s paper may be cited by a great number of people, but he can’t cite that many

papers while writing his own paper. Therefore, the author name of the citing papers and

cited papers are mapped to different vector spaces. Then the output of the author

networks is concatenated with the output of the citation contexts encoder and passed to

the decoder.

For the encoder part, the NCN uses a RNN network to take the candidate paper titles as

input. After that, the final output of the RNN network is passed into a softmax layer to

project the output to the probability distribution over the vocabulary. Each time it only

takes one word and bases on it as well as all the previous input words to give a predicted

probability:

36

𝑝(𝑦𝑖|𝑦≤𝑖, 𝑠) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉ℎ𝑖)

The NCN uses the mutual probability of all the words in the candidate paper title as the

measure. It computes the log sum of probability:

𝑙𝑜𝑔𝑃(𝑦) = ∑ 𝑙𝑜𝑔𝑃(𝑦𝑖|𝑦 ≤ 𝑖, 𝑠)

𝑚

𝑖

37

3. Methodology

In this chapter, we explain our approach for solving the citation recommendation problems

in detail. Firstly, we analyze the problem we aim to solve and make a clearer illustration

of the citation recommendation system we hope to build, as well as the input and output

of the system. Secondly, we demonstrate the architecture of our model, and the function

of each built module in our model. Finally, we show our thoughts in the training process

in detail.

3.1 Problem Definition

We mainly focus on the local citation recommendation problem. The local citation

recommendation means that we use citation contexts information of the citing papers,

rather than the whole manuscripts of the citing papers, to make recommendations. Some

information from the cited papers are also needed, such as the title and abstract of the

cited papers. The aim of local citation recommendations is to provide users lists of

reasonable candidate papers to cite from, based on just several sentences most close to

the citation location. Therefore, users can use local citation recommendation systems to

get timely recommendations while writing their drafts.

3.2 Model

In order to solve the local citation recommendation problems. We build an innovative

neural network model. Our model is composed of three parts: 1) Citation contexts encoder

module. 2) Embedding remap module. 3) Grading module. Fig. 3.2 illustrates the

simplified process in solving the local citation recommendation problems through our

approach.

Firstly, we use the citation contexts encoder module to extract information from citation

contexts and cited papers. The citation contexts encoder module uses a pretrained

sentence embedding model. The citation contexts before and after the citation locations

are passed into the citation contexts encoder module separately. The citation contexts

encoder module takes these input and output embeddings contain essential information

38

to represent citation contexts. If additional metadata, such as titles and abstracts of

citation contexts are provided, they can also be used in extracting the citation context

embeddings. Metadata of cited papers (or candidate papers) are also passed into the

citation contexts encoder module. The module then converses the inputs to embeddings

containing essential information to represent cited papers. We add different weights to

different sentences and metadata. These weights are learnable parameters. Then we

concatenate them together.

Figure 3.2 Model architecture

Secondly, since the citation contexts encoder module uses the pretrained sentence

embedding model, the output embeddings for citation contexts and cited papers are not

totally accurate. Moreover, the dimensions of them are also not the same. Therefore, we

use the embedding remap modules to make some modifications for them. The

embeddings for citations contexts and cited papers are passed into this module and

remapped separately to the same vector space. Thus, we get more embeddings of the

same dimensions for further processing.

Finally, the new embeddings are passed into the grading module. This module computes

the cosine similarity for the citing and cited papers. The scores are between 0 and 1. The

higher the scores, the more recommended the candidate papers are.

39

3.2.1 Citation Contexts Encoder Module

To extract semantic information from citation contexts and cited papers (or candidate

papers), we use the pre-trained Sentence-BERT model (Reimers, N. et al. 2019). This

model is a modification of the BERT model (Devlin, J. et al., 2018) using siamese and

triplet networks. The original BERT model is aimed to provide a backbone for all kinds of

natural language processing problems, which makes it not much suitable for getting

accurate sentence embeddings. The Sentence-BERT model is designed to solve this

problem. The BERT model’s output is varied, while the Sentence-BERT model adds a

pooling layer to the end of it and makes the final output to a fixed length. The Sentence-

BERT model uses pairs of sentences and computes their similarity based on cosine

similarity or Manhattan / Euclidean distance for training. This makes the Sentence-BERT

model pretty efficient in semantic similarity search and for clustering problems.

Figure 3.3 Sentence-BERT training model on classification problems (left) and similarity

compute problems (right)

Fig. 3.3 depicts two training circumstances for the Sentence-BERT model. The left one is

with the classification objective function. The two BERT models in it have tied weights.

We input sentences A and B to BERTs separately. The outputs from BERT then get

mapped in pooling layers and change to u and v. Then we compute the distance between

u and v, which is denoted as |𝑢 − 𝑣|. After that, we concatenate u, v and |𝑢 − 𝑣|together

and input it to the softmax classifier. It can be depicted as:

40

𝑜 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(𝑢, 𝑣, |𝑢 − 𝑣|))

where 𝑊 ∈ 𝑅3𝑛×𝑘 is a trainable weight matrix. n is the dimension of the sentence

embeddings, i.e. u,v and |𝑢 − 𝑣|. k is the number of labels. And the goal of this task is to

optimize the cross entropy.

The right one is with the regressive objective function. This task focuses on computing

the cosine similarity of the two sentence embeddings u and v. And the goal of this task is

to minimize the mean square error loss between the outputs and ground truths.

The Sentence-BERT model also uses a Siamese and triplet training method. For every

anchor sentence s, we have a positive sentence p, and a negative sentence n. Then we

can get the differences between s and p/n, which is denoted as |𝑠 − 𝑝|and |𝑠 − 𝑛|. We

train the network to make |𝑠 − 𝑝|significantly smaller than |𝑠 − 𝑛|. Mathematically, we

minimize the following loss function:

𝑚𝑎𝑥(0, |𝑠 − 𝑝| − |𝑠 − 𝑛| + 𝜀)

The 𝜀 denotes the least margin, which means that the positive sentence p should be at

least 𝜀 closer to s than the negative sentence n. And 𝜀 is set to be 1 in the Sentence-

BERT model training process.

Fig. 3.4 shows the architecture of sentence encoding part of the citation contexts encoder

module. Since the Sentence-BERT model (SBERT in the figure) has already been well

trained in a really large corpus, i.e., the combination of the SNLI (Bowman, S. R. et al.

2015) and the Multi-Genre NLI (Williams, A. et al. 2018) dataset, and that it has too many

parameters for us to train in a reasonable time, we just keep its weight parameters frozen.

For citing document, we pass the left citation contexts, right citation contexts, cited paper

titles and cited paper abstracts to the Sentence-BERT model separately. The citation

contexts are composed of a series of sentences. Each sentence is processed by the

Sentence-BERT model separately. After processed by the Sentence-BERT model, we

get a series of sentence embeddings. We add weight to these sentence embeddings.

Then we concatenate them together. For cited document, a similar process is used except

we do not have citation contexts. Therefore, the final feature representations for citing

41

and cited documents have different dimensions. We handle this issue later in the remap

module.

Figure 3.4 the architecture of the citation contexts encoder module.

3.2.2 Embedding Remap Module

Fig. 3.5 shows the architecture of our embedding remap module. Although the Sentence-

BERT is already pretty efficient, it is designed for general sentence embedding. Thus it is

not totally suitable for our specific citation contexts and cited document embedding task.

Moreover, our feature representations got from the citation context encoder module have

different dimensions as we mentioned before. Therefore, we design this remap module

to refine the embeddings extracted by our citation contexts encoder module and map

them to the same vector space.

For every citation context embedding 𝑢1, we multiply it with the trainable weight 𝑊1 ∈

𝑅𝑚1×𝑛1, it can be depicted as:

𝑣1 = 𝑢1 × 𝑊1

42

Where 𝑣1 is the new citation context embedding, 𝑚1 is the dimension of initial citation

context embedding, 𝑛1is the dimension of the new citation context embedding.

The same are with cited document (or candidate paper) embeddings. For every cited

document embedding 𝑢2, we multiply it with the trainable weight 𝑊2 ∈ 𝑅𝑚2×𝑛2, it can be

depicted as:

𝑣2 = 𝑢2 × 𝑊2

Where 𝑣2 is the new cited document embedding, 𝑚2 is the dimension of initial cited

document embedding, 𝑛2is the dimension of the new cited document embedding.

Figure 3.5 Embedding remap module

3.2.2 Grading Module

The grading module is composed of a single layer of cosine similarity. Specifically, given

the embeddings for citing document as 𝑥1, the embeddings for cited document as 𝑥2, we

have

43

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑥1 ∙ 𝑥2

max (||𝑥1||
2

∙ ||𝑥2||
2

, 𝜖)

Where 𝜖 is a very small value to avoid division by zero.

We use the similarity as our final score for measuring the correlation between the citing

document and cited document. The score is between zero and one. The higher the score,

the more possible that the cited document is actually cited by the citing document.

3.3 Learning

In this section we briefly show some core ideas in our training process.

3.3.1 Modified Negative Sampling

We use negative sampling proposed in the skip-gram model (Mikolov et al. 2013) to

generate the negative examples. And we modify this approach a little bit. For every

citation context, we randomly choose a candidate paper in cited paper dataset different

from the ground truth as a negative example.

3.3.2 Triplet Loss

Our model is trained using a triplet set of 𝑑𝑝, 𝑑𝑞 , 𝑑𝑞
−, where 𝑑𝑝 is the citing paper, 𝑑𝑞 is the

cited paper as we stated before, and 𝑑𝑞
− is the paper randomly chosen from our cited

paper dataset that is not𝑑𝑞. Our model aims to predict a high score for the input pair of

(𝑑𝑝, 𝑑𝑞), and predict a relatively low score for the input pair of 𝑑𝑝, 𝑑𝑞
−. The loss function is

defined using the per-instance triplet loss (Wang J. et at., 2014):

𝑙𝑜𝑠𝑠 = max(𝜂 + 𝑠(𝑑𝑝, 𝑑𝑞
−) − 𝑠(𝑑𝑝, 𝑑𝑞), 0)

Where 𝑠(𝑑𝑖, 𝑑𝑗) is our model output given input pair (𝑑𝑖, 𝑑𝑗), and 𝜂 is a hyperparameter of

our model.

44

3.3.3 Optimization Algorithm

We use the Adam optimization algorithm (Kingma et al. 2014), which is an extension to

the stochastic gradient descent algorithm (Robbins, H. 1951), to adjust the weights in our

neural network model.

Adam can be considered as a combination of Root Mean Square Propagation (RMSprop)

and momentum. Similar to RMSprop, which uses exponential moving average for second-

order momentum, Adam uses exponential moving average to calculate not only second-

order momentum but also first-order momentum.

First, we compute the gradient towards the objective function (i.e., the loss function).

𝑔𝑡 = 𝛻𝜃𝐽(𝜃)

Second, we calculate the first and second order momentum based on historical gradients:

𝑚𝑡 = 𝜂[𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡]

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2). 𝑑𝑖𝑎𝑔(𝑔𝑡
2)

where 𝜂 is the learning rate; 𝛽
1

, 𝛽2is the Momentum. 𝑚0 = 0, 𝑣0 = 0. 𝑔𝑡 ⊙ 𝑔𝑡is denoted as

𝑔𝑡
2. 𝑑𝑖𝑎𝑔means diagonal matrix. It is worth noting that there is a shift to the initial value

in the beginning stage of the iteration. Therefore, we can do some bias correction to the

first and second order momentum:

𝑚�̂� =
𝑚𝑡

1 − 𝛽𝑡
1

𝑣�̂� =
𝑣𝑡

1 − 𝛽𝑡
2

Then we have,

𝜃𝑡+1 = 𝜃𝑡 −
1

√𝑣�̂� + 𝜀
𝑚�̂�

This makes the iterations more stable.

45

4. Experiment

4.1 Dataset

In this thesis, we use the FullTextPeerRead dataset (Jeong, Chanwoo et al. 2019) as

our benchmark dataset. This dataset is created by processing the PeerRead dataset

(Kang, D. et al. 2018).

Header Description

target_id Citing paper id

source_id Cited paper id

left_citated_text Text to the left of the citation tag when
citing

right_citated_text Text to the right of the citation tag when
citing

target_year Release citing paper year

source_year Release cited paper year

target_title Citing paper title

source_title Cited paper title

target_abstract Citing paper abstract

source_abstract Cited paper abstract

target_author Author names of citing paper

source_author Author names of cited paper

target_venue Name of venue citing paper published in

source_venue Name of venue cited paper published in

Table 4.1 Description of elements in dataset

As depicted in Table 4.1, this dataset contains context information (title, abstract, citation

contexts) and metadata (author names, published venues, published years) for both citing

46

papers and cited papers. A concrete example is shown in Fig. 4.1. The [REF] indicates

that the citing paper makes a citation here. The sentences before [REF], i.e., “The feature-

based approach, such as ELMo”, is called left_citated_text in the dataset. The sentences

after [REF], i.e., “,uses task-specific architectures that include the pre-trained

representations as additional features. The fine-tuning approach, such as the Generative

Pre-trained Transformer (OpenAI GPT)”, is called right_citated_text. (It is worth

mentioning that the previous sentences can also be seen as left_citated_text for the

second [REF].)

Figure 4.1: An example citation context with citation placeholders to find potential references.

This example is from the BERT paper (Devlin, J. et al., 2018).

This dataset contains 4898 papers in total. 3761papers show as citing papers. 2478

papers show as cited papers. It contains altogether 17274 citation contexts. Papers in it

were published between 2007 and 2017. There is some noise and errors in this dataset.

For example, some words may not be parse correctly; two words may be connected and

seen as one word. For these noise data, we see them as unknown token in the input.

Therefore, they are just ignored by the sentence encoder.

4.2 Performance Evaluation Method

We use accuracy, Recall Top@K and Mean Reciprocal Rank (MRR) to measure our

experiment performance. The accuracy is defined as the ratio for the model to make the

correct prediction for whether the input is a positive or negative example. Recall Top@K

is defined as the ratio of the ground truth cited paper occurring in a Top@K

47

recommendation list. MRR takes the rank sequences of cited papers in the

recommendation list into consideration. It is defined as follows:

𝑀𝑅𝑅 =
1

𝐼
∑

1

𝑖𝑛𝑑𝑒𝑥(𝑖)
𝑖∈𝐼

Where 𝐼 denotes the set of all citing papers, index(i) indicates the index of the ground

truth cited paper in the recommendation list of citing paper i.

4.3 Implementation Detail of Our Method

As discussed in Chapter 3, our neural network model is composed of three parts: the

citation contexts encoder module, embedding remap module and the grading module.

The core part in our citation contexts encoder module is the Sentence-BERT module

(Reimers, N. et al. 2019). Specifically, we use the bert-base-nli-mean-tokens pretrained

Sentence-BERT model. The Sentence-BERT model accepts sentences with variable

lengths and output vectors of fixed size (768). We try variable length for the left and right

citation contexts. It results out that 3 sentences for the left citation contexts and 2

sentences for the right citation contexts is the best in our case. We pass each sentence

to the Sentence-BERT separately. Therefore, the dimension of the citation context

embeddings in our model is 3840. For the cited papers (or candidate papers), we process

their abstracts as single sentences. Therefore, the dimension of the cited paper

embedding is 1536. (If the titles and abstract of the citation contexts are provided, the

dimension of the citation context embeddings is 5376). We add scaler parameters to each

embedding of sentence as well as metadata.

For the remap module, we use the basic linear layers without activation to remap the

embeddings output from the citation contexts encoder module1. We use two separated

remap layers for the citation context embeddings and the cited paper embeddings. Since

the embeddings of citation contexts and the cited papers have different dimensions, our

1 We have tried different activation function for the remap linear previously. We also tried multi-layer neural networks.

However, all of these choices make the final performance much worse. This may be due to that over complicated

neural network architecture may leave out too much valuable information extracted from the initial inputs by the

sentence BERT model.

48

remap layers also have different dimensions. The dimension for the weight matrix of the

layer for citation context embeddings is 3849*768. The dimension for the weight matrix of

the lay for cited paper embeddings is 1536*768.

For grading module, we use a cosine similarity layer as we mentioned before. The 𝜖 is

set to 1 ∗ 𝑒−8.

The values for all learnable weights of our linear layers are initialized for 𝑈(−√𝑘, √𝑘). For

the Adam optimizer, we set the initial learning rate to be 0.001. We set the coefficients

used for computing running averages of the gradients and its square to be 0.9 and 0.999.

We don’t use the weight decay.

We use mini-batch gradient descent and set the batch size for positive training examples

128. We generate the same number of negative examples randomly for every batch. We

use dropout for the grading module and set the dropout probability to be 0.5.

4.4 Baselines

4.4.1 RNN & RNN model

Figure 4.2 Architecture of the RNN & RNN model

49

The RNN & RNN model uses RNN to handle both the citation contexts and the cited

papers. We use the GRU (Cho, K. et al. 2014) to encode the left citation contexts, right

citation contexts, cited paper titles and cited papers abstract separately. The hidden state

dimension of all the GRUs are set as 1024. We use the pre-trained word to vector

embeddings from spaCy (Honnibal, M. et al. 2017), which traverses words to embeddings

with the dimension of 300. We use gradient clipping (Zhang, J. et al. 2019) and set the

max threshold to be 1. The structure is depicted in Fig. 4.2.

4.4.2 BERT-GCN model

Figure 4.3 Architecture of the BERT-GCN model

The Fig. 4.3 depicts the architecture of the BERT-GCN model. It uses BERT model to

process the input context sentences and output context embeddings. Moreover, it uses

GCN to process the citation graph. Then it concatenates the outputs of these two modules

together. Then the concatenated vector is projected into the feedforward neural networks

and used to compute the final probability.

4.5 Quantitative Results

We train our model and the baselines for 400 epochs in the same benchmark dataset we

mentioned before. We split the dataset randomly into training and testing dataset

50

according to the ratio of 8:2. This leads to 13808 citations in our training set and 3452

citations in our testing set. We get the following experiment results.

 Recall@5 Recall@10 Recall@30 Recall@50 Recall@80 MRR

RNN-to-RNN 0.31 0.38 0.51 0.57 0.64 0.23

BERT-GCN 0.49 0.53 0.60 0.65 0.70 0.42

Our model - 0.41 0.49 0.62 0.68 0.74 0.26

Our model 0.54 0.64 0.77 0.82 0.85 0.35

Our model + 0.56 0.66 0.78 0.82 0.85 0.36

Table 4.2: An overview of experiment results measured by MRR and Recall.

Table 4.2 reports the recall and MRR results for the two baselines and three variants of

our method.

The first variant, labeled “Our Model -”, only uses citation contexts and titles of cited paper.

Although the provided information is highly limited, it still achieves impressive

performance.

The second variant, labeled “Our Model”, uses all the semantic information (i.e., citation

contexts, titles and abstracts of both citing and cited paper). This boosts the performance

greatly. This variant outperforms the BERT-GCN by a clear margin on recall, though a

little lower on MRR. Considering that the BERT-GCN preprocesses the dataset and filters

out a large number of relatively low-cited documents and requires a dense citation graph

as we stated before, while our model uses all papers in the dataset and is solely content

based, this outcome is quite reasonable. Moreover, since our model is solely content

based, our model does not prefer papers that are highly cited or published in famous

conferences. This effectively helps researchers to overcome the Google scholar effect

(i.e., researchers tend to cite papers appearing at the top of the Google search results,

without checking the actual relevance of these citations to their papers. Serenko, A.,

2015). This content-based recommendation method also makes our model also

generalizes well to new papers not presented in our dataset.

51

The third variant, labeled “Our Model +”, further encodes metadata (i.e., author names

and venues) to our model. This furtherly improves the performance of our model.

On the other hand, when using the same training batch size, it takes about 36 minutes

and 38 seconds to train the RNN-to-RNN model for 100 epochs, while our model only

needs 6 minutes and 36 seconds. This outcome clearly demonstrates the advantage of

our lightweight model. In practical situations, since a large number of papers are

published in different conferences every year, the citation recommendation dataset may

be updated from time to time. Therefore, our lightweight model, which is easy to train and

update, has a much better application prospect.

4.6 Qualitative Study

Figure 4.4: weights assigned to different parts of citation contexts and metadata. Each

block for citation contexts denotes one sentence.

We analyze the weights (i.e., 𝜆, 𝛼, 𝛽) learned during training and show them in Fig. 4.4. It

is clear that our model succeeds in learning to pay different levels of attention to adequate

parts of citation contexts and metadata. For citation contexts, the sentence right before

the citation location raises the most attention while the sentence after the location is the

second. This is consistent with human behaviors. The titles and abstracts also contribute

a lot. Unlike previous study (Ebesu, T. et al., 2017), the weight value for the author

52

information is relatively less than the weight values for title and abstract, which may

indicate that the author information is less important in our model. Finally, our model tends

to omit the venue information since the weight value for it are much close to zero. This

makes sense since papers in the benchmark dataset are all from top-tier venues of

artificial intelligence.2

Table 4.3 shows two concrete examples of our model’s top 3 recommendations for a

specific citation context. It is worth noting that the citation contexts contain some noise.

Some words in the contexts is concatenated together, such as the “asdiscussed” and the

“newcitehill2016learning”, which should be “as discussed” and “new citehill 2016 learning”

in fact. Although there is much noise data, our model still gets reasonable

recommendations, which prove our model’s accuracy and robustness.

Citing title 1:

Gradients of Counterfactuals

Citation context 1:

ever, asdiscussed earlier, naively using the gradients at the actual input doesnot

accurate quantify feature importance as gradients suffer fromsaturation.Score back-

propagation based methods. The second set ofapproaches involve backpropagating

the final prediction score througheach layer of the network down to the individual

features. Theseinclude DeepLift , Layer-wise relevance propagation LRPder . 2016,

Deconvolution networks DeConvNets & 2014, andded back-propagation

Top recommendations 1:

Batch Normalization: Accelerating Deep Network Training by Reducing Internal

Covariate Shift

Estimating or Propagating Gradients Through Stochastic Neurons

Maxout Networks

Network In Network

2 We also tested using different combinations of only a part of various metadata and compare the final performances.

The results we get are consistent with the conclusions drawn from our analysis of the attention mechanism.

53

Citing title 2:

Learning Paraphrastic Sentence Embeddings from Back-Translated Bitext

Citation context 2:

Other work in learning general purpose sentence embeddings has used autoencoders.

encoder-decoder architectures or other learning frameworks.newcitewieting-16-full and

newcitehill2016learning provide many empirical comparisons to this prior work. For

conciseness, we compare only to the strongest configurations from their

results.Paraphrase generation and discovery.

Top recommendations 1:

Teaching Machines to Read and Comprehend

Learning to Compose Neural Networks for Question Answering

Pointer Networks

Sequence to Sequence Learning with Neural Networks

Learning Dependency-Based Compositional Semantics

Table 4.3 Two examples of the top 3 recommendations for our model.

54

5. Conclusion and Future Work

In this chapter we summarize our work presented in this thesis. Lastly, we discuss our

future plans.

5.1 Conclusion

The local citation recommendation has growing demand in recent years. Many

researchers use different methods to solve this problem. Research has shown that the

traditional RNN model is slow in processing texts with really large spans, such as

paragraphs. The TDNN is proposed to solve this problem. Although it computes much

faster than the RNN model, its accuracy drops as the length of the sentences needed to

be processed grows. This limitation makes previous research usually just use short

citation context sequences. Some long context information, such as abstract which may

be also valuable, are omitted due to this limitation.

In this thesis, we promote an innovative approach to solve this problem. We design a

neural network model which is based on the pretrained Sentence-BERT as encoder. The

pretrained model dramatically boosts the acceleration of the training process and makes

it possible for extracting information in large scale texts. Since the Sentence-BERT is

trained for general sentence embedding but not the specific citation recommendation task,

the embeddings it generated are not totally accurate. Besides, the embeddings of citing

and cited papers have different dimensions. Therefore, we use the remapping layer to

refine the embeddings and map them to the same vector space. Finally, the cosine

similarity is used to get the recommendation scores.

For the experimentation results, it can be observed that our model outperforms the

baselines by a clear margin in most cases. And the use of additional information boosts

the performance furtherly. Our model also uses much less time to train over the same

amount of data. Besides, our model shows robustness against noise data, which makes

our model more applicable to different circumstances.

In conclusion, we propose a powerful and efficient model to give citation recommendation.

Our model mainly uses the citation context information and focuses on the semantic

55

analysis. Additional information can also boost our model’s performance. Our model is

also explainable, which makes our model more reliable. We believe this work will boost

future research on the local citation recommendation area.

5.2 Future Work

We believe this work can provide a solid step towards solving the local citation

recommendation problem. However, more aspects in this research area can be explored

further.

First of all, we focus on research of the relationship between citation contexts and cited

documents. For one citation context, we only take one cited paper into consideration.

However, the previous citation may influence the following citation behavior. Further

research may explore the influence of previous citations to the citation in a specific place.

Secondly, our works do not distinguish between different topics. Modern scientific

research has so many different areas. Researchers in different research areas may have

different ways of thinking. Thus their citation behavior may vary a lot. Further research

may explore the difference citation behaviors between research areas thoroughly.

Lastly, the computation process of providing reasonable citation recommendations is

really time consuming. All previous works (include us) need to extract information from all

the candidate papers and compute a score for each of them using neural networks, which

is really time and resource consuming. Future work may think about a more efficient way

to find suitable citation recommendations.

56

Bibliography

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of

mathematical statistics, 400-407.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,

9(8), 1735-1780.

Collobert, R., & Weston, J. (2008, July). A unified architecture for natural language

processing: Deep neural networks with multitask learning. In Proceedings of the 25th

international conference on Machine learning (pp. 160-167).

Tang, J., & Zhang, J. (2009, April). A discriminative approach to topic-based citation

recommendation. In Pacific-Asia Conference on Knowledge Discovery and Data Mining

(pp. 572-579). Springer, Berlin, Heidelberg.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances in neural

information processing systems (pp. 3111-3119).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. Advances in neural

information processing systems, 26, 3111-3119.

Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., ... & Wu, Y. (2014).

Learning fine-grained image similarity with deep ranking. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 1386-1393).

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP) (pp. 1532-1543).

57

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,

& Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for

statistical machine translation. arXiv preprint arXiv:1406.1078.

Küçüktunç, O., Saule, E., Kaya, K., & Çatalyürek, Ü. V. (2014). Diversifying citation

recommendations. ACM Transactions on Intelligent Systems and Technology (TIST),

5(4), 1-21.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Tang, X., Wan, X., & Zhang, X. (2014, July). Cross-language context-aware citation

recommendation in scientific articles. In Proceedings of the 37th international ACM SIGIR

conference on Research & development in information retrieval (pp. 817-826).

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural

networks. In Advances in neural information processing systems (pp. 3104-3112).

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning

to align and translate. arXiv preprint arXiv:1409.0473.

Huang, W., Wu, Z., Liang, C., Mitra, P., & Giles, C. L. (2015, February). A neural

probabilistic model for context based citation recommendation. In Twenty-ninth AAAI

conference on artificial intelligence.

Liu, H., Kong, X., Bai, X., Wang, W., Bekele, T. M., & Xia, F. (2015). Context-based

collaborative filtering for citation recommendation. IEEE Access, 3, 1695-1703.

Bowman, S. R., Angeli, G., Potts, C., & Manning, C. D. (2015). A large annotated corpus

for learning natural language inference. arXiv preprint arXiv:1508.05326.

Serenko, A., & Dumay, J. (2015). Citation classics published in Knowledge Management

journals. Part II: studying research trends and discovering the Google Scholar

Effect. Journal of Knowledge Management.

58

Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016). paper recommender systems: a

literature survey. International Journal on Digital Libraries, 17(4), 305-338.

Cheng, J., Dong, L., & Lapata, M. (2016). Long short-term memory-networks for machine

reading. arXiv preprint arXiv:1601.06733.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with

subword information. Transactions of the Association for Computational Linguistics, 5,

135-146.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... &

Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing

systems, 30, 5998-6008.

Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom

embeddings, convolutional neural networks and incremental parsing.

Ebesu, T., & Fang, Y. (2017, August). Neural citation network for context-aware citation

recommendation. In Proceedings of the 40th international ACM SIGIR conference on

research and development in information retrieval (pp. 1093-1096).

Williams, A., Nangia, N., & Bowman, S. R. (2017). A broad-coverage challenge corpus

for sentence understanding through inference. arXiv preprint arXiv:1704.05426.

Britz, D., Goldie, A., Luong, M. T., & Le, Q. (2017). Massive exploration of neural machine

translation architectures. arXiv preprint arXiv:1703.03906.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.

(2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Weiss, G., Goldberg, Y., & Yahav, E. (2018). On the practical computational power of

finite precision RNNs for language recognition. arXiv preprint arXiv:1805.04908.

Bhagavatula, C., Feldman, S., Power, R., & Ammar, W. (2018). Content-based citation

recommendation. arXiv preprint arXiv:1802.08301.

59

Kang, D., Ammar, W., Dalvi, B., van Zuylen, M., Kohlmeier, S., Hovy, E., & Schwartz, R.

(2018). A dataset of peer reviews (peerread): Collection, insights and nlp applications.

arXiv preprint arXiv:1804.09635.

Ayala-Gómez, F., Daróczy, B., Benczúr, A., Mathioudakis, M., & Gionis, A. (2018). Global

citation recommendation using knowledge graphs. Journal of Intelligent & Fuzzy Systems,

34(5), 3089-3100.

Tahamtan, I., & Bornmann, L. (2018). Core elements in the process of citing publications:

Conceptual overview of the literature. Journal of Informetrics, 12(1), 203-216.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Zhang, J., He, T., Sra, S., & Jadbabaie, A. (2019). Why gradient clipping accelerates

training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881.

Jeong, C., Jang, S., Shin, H., Park, E., & Choi, S. (2019). A context-aware citation

recommendation model with BERT and graph convolutional networks. arXiv preprint

arXiv:1903.06464.

Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese

bert-networks. arXiv preprint arXiv:1908.10084.

Färber, M., & Jatowt, A. (2020). Citation Recommendation: Approaches and Datasets.

arXiv preprint arXiv:2002.06961.

60

Curriculum Vitae

Name: Juncheng Yin

Post-Secondary University of Electronic Science and Technology of China

Education and Chengdu, Sichuan, China

Degrees: 2015 - 2019 B.A.

Honours and Western Graduate Research Scholarships (WGRS)

Awards: 2019 - 2020

Related Work Teaching Assistant and Research Assistant

Experience: The University of Western Ontario

2019 - 2020

	A Lightweight and Explainable Citation Recommendation System
	Recommended Citation

	tmp.1619381490.pdf.OlSXH

