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Abstract 

The increased pressure of publications makes it more and more difficult for researchers 

to find appropriate papers to cite quickly and accurately. Context-aware citation 

recommendation, which can provide users suggestions mainly based on local citation 

contexts, has been shown to be helpful to alleviate this problem. However, previous works 

mainly use RNN models and their variance, which tend to be highly complicated with 

heavy-weight computation. In this thesis, we propose a lightweight and explainable model 

that is quick to train and obtains high performance. Our model is based on a pre-trained 

sentence embedding model and trained with triplet loss. Quantitative results on the 

benchmark dataset reveal that our model achieves impressive performance with or 

without metadata. Qualitative evidence shows that our model pays different levels of 

attention to adequate parts of citation contexts and metadata, suggesting that our method 

is explainable and more trustable. 
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Summary for Lay Audience 

In recent years, natural language processing has witnessed tremendous breakthroughs 

in different research problems such as machine translation and word processor. These 

improvements have dramatically changed human’s lifestyles and make our life much 

easier. However, there are still many areas that need to be explored. The citation 

recommendation, especially the local citation recommendation, is just one of these areas. 

Considering the increased number of publications in recent years, it becomes harder and 

harder for researchers to find appropriate papers to cite nowadays. The local citation 

recommendation is aimed at solving this problem. 

The local citation recommendation just imitates human’s way of thinking. Given the 

citation contexts of several sentences, the local citation recommendation can provide the 

user possible papers to be cited. Then the user can choose from these papers, which 

dramatically reduce the user’s workload. In this thesis, we focus on the local citation 

recommendation problem. We propose an innovative method based on a pre-trained 

sentence encoder. Our method outperforms the baselines in all metrics. 
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1．Introduction 

In this chapter, we provide some background knowledge about the citation 

recommendation problem. We also discuss the importance of this research area and our 

contribution toward solving this citation recommendation problem. This thesis outline is 

introduced at the end. 

1.1 Motivation 

With the rapid development of scientific research, there are much more papers published 

every year in different research areas. The rich amount of papers makes it more and more 

time consuming for researchers to find appropriate papers to cite when they write their 

papers (Küçüktunç, Onur, et al. 2014). Therefore, automatic citation recommendation, 

which automatically gives researchers suggestions for papers to cite, shows a very good 

application prospect. 

There are two main approaches of citation recommendation (Huang, Wenyi, et al. 2015). 

One approach is global citation recommendation, which uses information from the whole 

written paper to give suggestions. This approach is similar to the recommendation system, 

mainly relying on citation relationships which are already known to provide suggestions 

(Beel, Joeran, et al. 2016). Recent works also use partial text information of the 

manuscripts (Bhagavatula, Chandra, et al. 2018). The other approach is local citation 

recommendation, which mainly uses information of several sentences around the paper 

citation location (which we call citation contexts) and some information of papers potential 

to be cited (which we call candidate papers). Metadata, such as author names, venues, 

and published years, can also be used to improve performance in both approaches 

(Ebesu et al. 2017; Bhagavatula, Chandra, et al. 2018).  

The global approach uses the whole manuscript information to make citation 

recommendations. Compared to the local approach, it has more information to analyze. 

Thus, it can make more general recommendations. Recommendations given by the 

global approach tend to be more related to the central ideas of citing paper. However, 



2 
 

due to the difficulty of processing the semantic information of the whole manuscripts, most 

global approach works only use citation relationships already provided in the training 

dataset (Beel, Joeran, et al. 2016) and partial text (e.g., abstract) to make 

recommendations. This limits the recommendation accuracy. On the other hand, the local 

approaches mainly suggest candidate papers based on citation contexts with the scope 

of several surrounding sentences (Huang, Wenyi, et al. 2015). Therefore, the suggested 

candidate papers tend to be more related to the specific contexts.  Traditionally, before 

deep learning, a variety of methods have been used to solve this local recommendation 

problem, such as Restricted Boltzmann Machines (Tang and Zhang 2009), collaborative 

filtering (Liu, Haifeng, et al. 2015) and statistical machine translation (Tang, Xuewei, et al. 

2014). However, the outcome is not completely satisfactory. Recently, neural networks 

have also been used in this area, significantly improving the performance. Huang et al. 

firstly use a feedforward neural network to learn embeddings of words in the citation 

contexts and document embeddings. This method only uses a bag of words as input and 

ignores the semantic information of the sequence. Ebesu et al. use the Time-Delay Neural 

Networks (TDNNs) (Collobert, et. al. 2008) and RNN to extract information from citation 

contexts and candidate papers. Attention mechanism is also used to better utilize 

information extracted from the TDNNs. They also encode author names of both citation 

contexts and candidate papers as metadata into the network, which dramatically 

enhances the performance. However, this trick makes the recommendation much favor 

of self-citation (the writer citing their own or their colleagues’ papers), which makes it less 

useful when researchers want to obtain suggestions for candidate papers they do not 

know. Some other papers also use metadata such as venues and published dates 

(Bhagavatula et al. 2018). However, this also introduces biases. Due to the widely 

performed peer-review process, papers that are published in the same venue as the citing 

papers are more often selected as citations (Färber, M. et al. 2020). 

1.2 Contribution 

As we discussed earlier, it is quite common for researchers to cite their own papers, or 

papers from their colleagues or the same venues. Although researches show that this is 

not totally harmful (Tahamtan, I. et al. 2018), an ideal citation recommendation method 
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should be independent of any bias.  In this paper, we propose an innovative neural 

network model for local citation recommendation, which mainly uses the citation contexts 

around potential citing location to give suggestions. Since it is based on semantic 

information analysis of citation contexts, it prevents possible biases caused by authors’ 

preference. Specifically, we use three sentences before the potential citing location and 

two sentences after the potential citing location, which is similar to human attention span. 

This method has also been verified by our experiments to be the best. For candidate 

papers, we extract information from their titles and abstracts. If title and abstract of citation 

contexts are given, they can also be used in our model to further improve performance. 

We use a pre-trained sentence embedding model to extract information from both citation 

contexts and candidate papers. Since the pre-trained model is not designed for this 

specific task, its embedding outcome is not very accurate. Moreover, the embeddings for 

citing and cited papers have different dimensions. Therefore, we use re-embedding layers 

to remap the embeddings for citing and cited papers to the same new vector space. After 

that we compute the cosine similarity between the embeddings for citing and cited papers. 

We use the cosine similarity scores to measure the correlation between the citing papers 

and recommended cited papers. The higher the scores, the better the recommendations. 

We train our network on a benchmark citation dataset (Jeong, Chanwoo et al. 2019), 

which contains 4898 papers published from 2007 to 2017 as well as 17274 citation 

contexts. Our method reaches a pretty good score and improves performance on 

benchmark by a clear margin compared to competitive baselines. 

Our model has some key features: 1. Lightweight. The proposed model is based on a 

pre-trained sentence embedding encoder, which dramatically enhances the time and 

compute efficiency compared with other models. 2. Explainable. Our model automatically 

learns to assign different weights to adequate parts of the citation contexts, which 

intuitively shows us the contribution of different parts of citation contexts. 3. Content 

based. Our model is able to achieve high performance solely based on semantic 

information. 4. High performance. Experimental results on the benchmark dataset 

demonstrate our model produces a significant improvement on Recall and Mean 

Reciprocal Rank (MRR) compared with competitive baseline models. 
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We are currently building an automatic citation recommendation system based on our 

model as illustrated in Figure 1.1. When the user inputs the citation contexts, the system 

will automatically suggest possible places to add citations, denoted by [?]. When the user 

clicks on [?], a list of recommended papers is provided. The user can choose papers from 

the list to see more concrete information. After the user selects a paper (or papers) to cite, 

the model will update citation recommendations for the nearby sentences dynamically. 

The system is lightweight as it can quickly respond to users’ selection on the citation 

recommendation, and easy to update when new publications are added to the dataset. 

 

Figure1.1: An illustration of our paper citation recommendation system. Different colors for the 

citation contexts demonstrate the various levels of attention paid by the system. Darker colors 

mean sentences that raise more attention. The recommendation list shown here is actually 

generated by our model. 

1.3 Thesis Outline 

The structure of this thesis is organized as follows. In Chapter 2, we discuss some related 

work, including TDNN to RNN, attention mechanism, BERT and its variation. In Chapter 

3, we describe our innovative approach to solve the local citation recommendation 

problem. In Chapter 4, we discuss the experiments, including the dataset used in our 

research, baseline models, and experiment results. In Chapter 5, we demonstrate the 

practice use example of our model. In Chapter 6, we conclude this thesis and outline 

potential future work. 
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2．Background 

In this chapter we define some terms used in the research of citation recommendation 

and review some previous work. We also make a comparison between the global citation 

recommendation and the local citation recommendation. Besides that, we provide some 

essential background knowledge needed to be known in this area. 

2.1 Terminology 

In this section we introduce some important concepts in the area of citation 

recommendation.  

 

Figure 2.1 Visualization of a citation in a research paper. 

As shown in Fig. 2.1, a typical citation is a kind of relationship between two papers. One 

paper, which we call citing paper, cites something from another paper, which we call cited 

paper (Färber, M. et al. 2020). And potential papers to be cited by the citing paper are 

called candidate papers. Both citing paper and candidate paper are composed of title, 

authors, abstract, contents and some other information. The sentences in the contents of 

the citing paper, among which contents from the candidate paper are cited, are called 
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citation contexts. The titles, abstracts, contents are categorized as context information, 

while the author names, venues, publish years et al. are categorized as metadata. If a 

research method uses information of the whole citing papers and candidate papers, it is 

called global citation recommendation, while methods mainly use citation contexts 

information are called local citation recommendation (or context-based citation 

recommendation) (Huang, W. et al. 2015). 

2.2 Recurrent Neural Network 

A recurrent neural network is a class of artificial neural networks where nodes in a directed 

graph connect to each other along the temporal axis. As we all know, the feed forward 

neural networks have a strong ability to extract information from the input tensors. 

However, this kind of neural network is densely connected and the resources and time it 

costs grow dramatically as the size of the networks grows. This limits its ability to proceed 

through really long sequences. However, humans often use really long thinking processes. 

For most of the circumstances, humans do not begin to think about something from 

scratch, but based on previous knowledge. The recurrent neural network is a derivation 

from the feed forward neural network. It can use its internal state to save previous 

information and process really long sequences. This makes the recurrent neural network 

widely used in different fields, such as speech recognition and language translation. 

 

Figure 2.2: Unfolded basic recurrent neural network 

Fig. 2.2 shows the classic architecture of the recurrent neural network. The basic 

recurrent neural network is a recurrence layer containing a series of neuron-like nodes. 
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Each node connects to itself in the next time step. In each step, each note maintains a 

different hidden state, and a modifiable real-valued weight. According to the time steps, 

the nodes can be divided into three categories: the input nodes, which get information 

from outside of the recurrent neural network; the hidden nodes, which maintain and 

modify the hidden states obtained from the previous nodes; the output nodes, which yield 

the result. 

2.2.1 Long Short Term Memory networks 

As we mentioned before, the ordinary feed forward neural networks cannot remember 

long term information properly. The basic architecture of recurrent neural networks is 

proposed to solve this problem. However, this basic model fails to work in supposed 

performance. Research (Bengio, Y. et al. 1994) has shown that this simple architecture 

has Inherent defects which makes this basic recurrent neural network model hard to 

preserve long memory in practice. Therefore, many researchers have been working to 

find more efficient network architecture. The Long Short Term Memory networks is an 

outstanding representative of them. 

Long Short Term Memory networks is a classic special designed architecture of the 

recurrent neural network, specifically aiming at solving the long term dependency problem. 

This kind of networks are usually abbreviated as LSTMs. Since the first research of the 

LSTM (Hochreiter, S. et al. 1997) is published, many researchers follow this work and get 

it refined and widely used in different areas.  

All the recurrent neural networks have a common basic architecture. They all have some 

basic modules that are repeatedly used over time. In the basic recurrent neural network 

models, this kind of modules are usually very simple, such as a single linear layer with 

tanh activation function. 
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Figure 2.3: The architecture of a basic recurrent neural network model. 

The LSTMs also follow this classic architecture. However, instead of using a simple 

repeated module, the LSTMs design a pretty delicate structure inside the module, with 

four neural network layers interactive in a clever way. 

 

Figure 2.4: The architecture of a LSTM  

The most important part of this module is located at the top of this module. The horizontal 

line with one multiplication and one plus operation. This line denotes the operation over 

the cell state, which is denoted as 𝐶𝑡. Since it runs through the whole chained network 

with few changes, it is relatively easy for it to keep information unchanged through the 

whole process. Moreover, the LSTM also has many special designed structures called 

gates, which are used to modify the information in the cell states. 

The gates are composed of sigmoid layers and multiplications operators. The sigmoid 

layer computes a probability based on the input information. The probability is between 0 
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and 1. If the probability of a gate is 0, that gate will block all the information from getting 

through the gate. On the other hand, if the probability of a gate is 1, that gate will let all 

input information pass without any modification. 

For any time step 𝑡, this basic module of the LSTM takes one input feature called 𝑥𝑡 from 

outside of the network. It also inherits the cell state 𝐶𝑡−1 and hidden state ℎ𝑡−1 from the 

previous repeated module. After a series of operation, it passes the new cell state 𝐶𝑡 and 

hidden state ℎ𝑡 to the next module, and output ℎ𝑡 as output to the outside if necessary. 

The first gate is called the forget gate. As its name shown, this gate decides how much 

to forget from the previous cell state 𝐶𝑡−1. This gate takes the previous hidden state ℎ𝑡−1 

and input feature 𝑥𝑡 as inputs, and use a sigmoid layer to map these inputs to a vector of 

values between 0 and 1. Each value indicates a probability to remember the information 

from the corresponding digits of the  previous cell state 𝐶𝑡−1. If the value is 1, we keep 

the value in that digit of 𝐶𝑡−1  unchanged. On the other hand, if the value is 0, the 

information contains in that digit of 𝐶𝑡−1will be totally forgotten. This process can be 

depicted as: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

Where 𝑊𝑓 and 𝑏𝑓 are the trainable parameters for the gate. 

The second gate is called the input gate. This gate controls how much input information 

to be added to the cell state. On the one hand, we project the previous hidden state ℎ𝑡−1 

and input feature 𝑥𝑡 into a tanh layer to output a vector of candidate values 𝐶𝑡̂, which is 

added to the cell state later. On the other hand, we use a sigmoid layer to compute a 

probability based on ℎ𝑡−1 and 𝑥𝑡. After that, this probability is used to decide how much 

of the candidate values 𝐶𝑡̂ will actually be added to the cell state. This process can be 

depicted as: 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶𝑡̂ = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 
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After these processes, the cell state can be updated. We use 𝑓𝑡 to decide how much to 

forget from the previous cell state 𝐶𝑡−1, and use 𝑖𝑡 to decide how much to add from the 

new computed candidate cell state 𝐶𝑡. Finally, we add them together to get the new cell 

state 𝐶𝑡: 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 

Beside computing the new cell state and keeping and passing it along time steps, we may 

also want to output some information to the outside. We achieve this by using a modified 

version of the cell state. First we pass the original cell state 𝐶𝑡 to a tanh layer to project 

the value to -1 and 1. Then we use a sigmoid layer to compute a probability vector based 

on ℎ𝑡−1 and 𝑥𝑡, which is denoted as 𝑜𝑡. Finally, we use 𝑜𝑡 to control how much we output 

form the cell state. This is depicted as: 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

The hidden state ℎ𝑡 is passed into next module along time as same as the cell state 𝐶𝑡. 

At the same time, ℎ𝑡 can also be output to the outside as the final output. 

2.2.2 Gated Recurrent Unit 

The gated recurrent unit, i.e. GRU, is a simplified version of LSTM, which was introduced 

by Kyunghyun Cho et al. in 2014. Compared to the LSTM, the GRU has fewer parameters. 

For example, it does not have an output gate. Due to its simplified structure, it is lighter 

weighted thus more quickly to learn. On the other hand, some research shows that its 

ability to handle long sequences is weaker compared to the LSTM. (Weiss, G. et al. 2018; 

Britz, D. et al. 2017) 

The Fig. 2.5 depicts a classic architecture of the GRU unit. For every step 𝑡, we have the 

input vector 𝑥𝑡, previous hidden state ℎ𝑡−1, output hidden state ℎ𝑡 . The output hidden 

state ℎ𝑡 can also be used as the final output, i.e. 𝑦𝑡. 
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Figure 2.5: architecture of the gated recurrent unit. 

The process of the GRU can be depicted as follows: 

𝑧𝑡 = 𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) 

𝑟𝑡 = 𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) 

ℎ𝑡̂ = 𝜙ℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ∙ ℎ𝑡−1) + 𝑏ℎ) 

ℎ𝑡 = (1 − 𝑧𝑡) ∙ ℎ𝑡−1 + 𝑧𝑡 ∙ ℎ𝑡̂ 

Where 𝜎𝑔  is the sigmoid function, 𝜙ℎ  is the tanh function, and 

𝑊𝑧 , 𝑊𝑟 , 𝑊ℎ, 𝑈𝑧 , 𝑈𝑟 , 𝑈ℎ, 𝑏𝑧 , 𝑏𝑟 , 𝑏ℎ, 𝑧𝑡 is the trainable parameters. 

2.3 Word Embedding 

Word embedding is one of the fundamentals for the natural language process. To process 

the sequences of words using neural networks, we need to map the words to matrices of 

real numbers. The word embedding just provides us this approach. 

2.3.1 Word2vec 

Word2vec (Mikolov, T. et al. 2013) is one of the most popular methods for word 

embedding. This method uses shallow neural networks to learn word embeddings 

automatically. Therefore, it can be quickly achieved and is rather efficient. Moreover, this 

method is a statistical method, and it is a standalone word embedding not aiming at a 
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specific task. Thus the word embeddings learned by this method can be used directly by 

loads of other natural language tasks. 

The Word2vec first maps the words to one-hot vectors with the size of all vocabularies. 

Since the one-hot vectors are independent of each other, we cannot find any relationship 

of different words based on the one-hot vectors. Therefore, Word2vec projects the one-

hot vectors to distributed representations afterwards. Intuitively, the distributed 

representations are supposed to reflect the meaning or relationships of words. Words that 

have similar meanings should be close to each other. This is measured by the cosine 

similarity for the distributed representations in the new vector spaces. 

 

Figure 2.6: The architecture of the CBOW model. 

 

There are two models for doing this. Common Bag of Words (CBOW) and Skip Gram. 

The CBOW uses words in a context to predict a specific word. As depicted in Fig. 2.6, 

each input word is denoted as a V-dimension vector, where V is the vocabulary size. The 

N-dimension hidden layer only does the matrix multiplication without any activation 

function. This operation maps the input embeddings to a new vector space. Then the V-
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dimension output layer remaps the outputs from the hidden layer to V-dimension, and 

uses a softmax activation function to map its values to 0~1. This denotes the probability 

distribution for the target word along the vocabulary table. The model takes C words as 

input in total. These C words are projected by the hidden layer to the new vector spaces. 

We take their average as the input to the softmax layer. After training the neural network, 

the hidden layer is used to map V-dimension one-hot word vectors to N-dimension 

distribution representations, which are the word embeddings we need. 

 

Figure 2.7: Architecture of the Skim-Gram model 

The Skim-Gram model is the other one to obtain the projection. It is just like the reverse 

version of the CBOW model to some content. It uses one word as input and predicts the 

contexts around this word. As depicted in Fig. 2.7, the input is the one-hot word 

representation 𝑥 with dimension V, where V is the vocabulary size. The hidden layer also 

only does the matrix multiplication, the same as the CBOW method. It projects the input 

V-dimension 𝑥  to the N-dimension vector space. The output layers are C separate 

softmax layers. Each layer predicts one word. After training the neural network, we also 
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use the hidden layer to map words to N-dimension distribution representations, which is 

the word embeddings we need. 

 

Figure 2.8: Architecture of the simplified model. 

The two models we discussed earlier are both widely used. Researchers keep modifying 

and improving these two models. Now we get an extremely simplified method to compute 

the word embedding. For any given contexts, we just randomly pick up one word as the 

input, and use this to predict a word nearby. Thus the input is a one-hot word vector with 

the dimension of V, where V is the vocabulary size. The hidden layer maps the input to 

N-dimensional vector space via matrix multiplication. Finally, the output layer is a softmax 

layer with dimension of V, which maps the output from the hidden layer to the probability 

distribution for the target word along the vocabulary table. 

After training, we also use the trained hidden layer to calculate the distribution 

representations for input words as the word embeddings. This method is extremely simple, 

but it turns out to be pretty efficient. 

2.3.2 GloVe 

The Global Vectors for Word Representation (Pennington, J. et al. 2014), or GloVe, 

algorithm is based on the word2vec method and makes some improvement on it to make 
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the learning process more efficient. The word2Vec method only uses the local statistical 

information to learn the word embeddings, while the GloVe method also utilizes the global 

information. 

The GloVe is based on the idea of the co-occurrence matrix. This method believes that 

the co-occurrence matrix is a good source of the semantic information. Assuming we have 

a corpus with V different words, we define the set of all words to be 𝑊𝑜𝑟𝑑 =

{𝑤𝑜𝑟𝑑1, 𝑤𝑜𝑟𝑑2. . . 𝑤𝑜𝑟𝑑𝑉}. The co-occurrence matrix is defined as 𝑋 ∈ ℜ𝑉×𝑉. let the 𝑋𝑖𝑗, i.e. 

the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the matrix 𝑋, denotes times for 𝑤𝑜𝑟𝑑𝑖 and 𝑤𝑜𝑟𝑑𝑗to show up 

together. 

 

Figure 2.9: The co-occurrence matrix for the sentence “the cat sat on the mat”.  

Fig. 2.9 depicts an example of the co-occurrence matrix. Assume the corpus only contains 

one sentence: the cat sat on the mat. The word “the” shows up with “cat”, “on” and “mat”. 

Thus 𝑋12, 𝑋14, 𝑋15 are all equal to 1 in the first line of the co-occurrence matrix. The same 

goes for the other rows. It is worth noting that the co-occurrence matrix is a symmetric 

matrix. 

For three randomly picked up words 𝑤𝑜𝑟𝑑𝑖, 𝑤𝑜𝑟𝑑𝑗 , 𝑤𝑜𝑟𝑑𝑘 We define 𝑃𝑖𝑘 as the probability 

to see word i and k together: 

𝑃𝑖𝑘 =
𝑋𝑖𝑘

𝑋𝑖
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Where 𝑋𝑖𝑘 denotes the number of times for 𝑤𝑜𝑟𝑑𝑖  and 𝑤𝑜𝑟𝑑𝑘  to show up together. 𝑋𝑖 

denotes the total number of times for 𝑤𝑜𝑟𝑑𝑖 to show up in the corpus. 

Now we can use 𝑃𝑖𝑘/𝑃𝑗𝑘  to denote the semantic similarity between 𝑤𝑜𝑟𝑑𝑖  and 𝑤𝑜𝑟𝑑𝑗 

based on the third word 𝑤𝑜𝑟𝑑𝑘(i.e. the probe word). If 𝑤𝑜𝑟𝑑𝑘 is highly connective to 𝑤𝑜𝑟𝑑𝑖 

but irrelevant to 𝑤𝑜𝑟𝑑𝑗, 𝑃𝑖𝑘/𝑃𝑗𝑘will be very large. If 𝑤𝑜𝑟𝑑𝑘 is irrelevant to 𝑤𝑜𝑟𝑑𝑖 but highly 

connective to 𝑤𝑜𝑟𝑑𝑗, 𝑃𝑖𝑘/𝑃𝑗𝑘will be close to 0. If the similarity between 𝑤𝑜𝑟𝑑𝑖 and 𝑤𝑜𝑟𝑑𝑘 

and between 𝑤𝑜𝑟𝑑𝑗 and 𝑤𝑜𝑟𝑑𝑖is similar, 𝑃𝑖𝑘/𝑃𝑗𝑘will be close to 1. The Fig. 2.10 shows a 

concrete example. 

 

Figure 2.10: The behavior of 𝑃𝑖𝑘/𝑃𝑗𝑘 for various words 

The GloVe method uses neural networks to learn the embeddings. We define two 

different embedding layers 𝑤  and 𝑢 . 𝑤  is for the 𝑤𝑜𝑟𝑑𝑖  and 𝑤𝑜𝑟𝑑𝑗 , while 𝑢  is for the 

𝑤𝑜𝑟𝑑𝑘 .  We use 𝐹(𝑖, 𝑘) = 𝑒𝑤𝑖
𝑇𝑢𝑘  to emulate 𝑃𝑖𝑘 . Therefore we have 𝐹(𝑖, 𝑘) = 𝑒𝑤𝑖

𝑇𝑢𝑘 =

𝑃𝑖𝑘 , 𝐹(𝑗, 𝑘) = 𝑒𝑤𝑗
𝑇𝑢𝑘 = 𝑃𝑗𝑘 , 𝐹(𝑖 − 𝑗, 𝑘) = 𝑒𝑤𝑖−𝑗

𝑇𝑢𝑘 = 𝑒𝑤𝑖
𝑇𝑢𝑘/𝑒𝑤𝑗

𝑇𝑢𝑘 = 𝐹(𝑖, 𝑘)/𝐹(𝑗, 𝑘) . 

Moreover, we have𝑤𝑖
𝑇𝑢𝑘 = 𝑙𝑜𝑔(𝑃𝑖𝑘) = 𝑙𝑜𝑔(𝑋𝑖𝑘) − 𝑙𝑜𝑔(𝑋𝑖) , 𝑤𝑖

𝑇𝑢𝑘 + 𝑙𝑜𝑔(𝑋𝑖) = 𝑙𝑜𝑔(𝑋𝑖𝑘) . 

We define 𝑏𝑤, 𝑏𝑢 to be the biases of the embedding layers 𝑤 and 𝑢, and use them to 

emulate the 𝑙𝑜𝑔(𝑋𝑖). Thus we have 𝑤𝑖
𝑇𝑢𝑘 + 𝑏𝑤 + 𝑏𝑢 = 𝑙𝑜𝑔(𝑋𝑖𝑘). Or 𝑤𝑖

𝑇𝑢𝑘 + 𝑏𝑤 + 𝑏𝑢 −

𝑙𝑜𝑔(𝑋𝑖𝑘) = 0. 

Therefore, the GloVe method defines the loss function as: 

𝐽 = 𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇𝑢𝑘 + 𝑏𝑤 + 𝑏𝑢 − 𝑙𝑜𝑔(𝑋𝑖𝑘))2 

Where 𝑓(𝑋𝑖𝑗) = (𝑥/𝑥𝑚𝑎𝑥)𝑎 𝑖𝑓 𝑥 < 𝑥𝑚𝑎𝑥 𝑒𝑙𝑠𝑒 0. 
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2.3.3 Deep contextualized word representations 

 

Figure 2.10: The architecture of the ELMo. 

In 2018, Peters, M. E. et al. proposed a new deep contextualized word representation 

method, which is also called ELMo. Unlike previous word embedding methods that 

calculate fixed embedding values for each word, such as the word2vec, GloVe and 

fastText(Bojanowski, P. et al. 2017). The ELMo method generates the word embeddings 

based on the whole sentence. They first train multilayer bidirectional LSTMs with a 

coupled language model objective on a really large training dataset. After that, they 

extract the inner states vector of the LSTMs and concatenate them together. Then they 

use a linear layer neural network to learn the combination of the inner states. They 

achieve really impressive performance by this approach. 

As depicted in their work, different levels of LSTM inner state capture different levels of 

information from the texts. The lower LSTM tends to focus on information about syntax 

while the upper LSTM tends to learn high level information such as the word meanings in 



18 
 

specific contexts. The ELMo simultaneously exposes all these features to further 

networks of different end tasks and lets them learn their key points automatically. The Fig. 

2.10 depicts the overall architecture of the ELMo model. 

Suppose we have a series of 𝑁 words, denoted as {𝑡1, 𝑡2, . . . , 𝑡𝑁}. A forward language 

model calculates the overall possibility for the sequence to occur as the mutual possibility 

for each of the 𝑁 words to occur given the previous words: 

𝑝(𝑡1, 𝑡2, . . . , 𝑡𝑁) = ∏ 𝑝(𝑡𝑘|𝑡1, 𝑡2, . . . , 𝑡𝑘−1)

𝑁

𝑘=1

 

A backward language model is much similar to the forward model. It also calculates the 

overall possibility for the sequence based on the mutual possibility.  However, the 

possibility is for each of the 𝑁 words to occur given the afterwards words: 

𝑝(𝑡1, 𝑡2, . . . , 𝑡𝑁) = ∏ 𝑝(𝑡𝑘|𝑡𝑘+1, 𝑡𝑘+2, . . . , 𝑡𝑁)

𝑁

𝑘=1

 

The ELMo method jointly maximize the log likelihood for the forward and backward LSTM 

models: 

∑(𝑙𝑜𝑔𝑝(𝑡𝑘|𝑡1, . . . , 𝑡𝑘−1; 𝛩𝑥, 𝛩𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝐿𝑆𝑇𝑀, 𝛩𝑠) + 𝑙𝑜𝑔𝑝(𝑡𝑘|𝑡𝑘+1, . . . , 𝑡𝑁; 𝛩𝑥 , 𝛩𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝐿𝑆𝑇𝑀, 𝛩𝑠))

𝑁

𝑘=1

 

Where 𝛩𝑥denotes the trainable parameters for the token representation layer, 𝛩𝑠denotes 

the trainable parameters for the softmax layer, 𝛩𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝐿𝑆𝑇𝑀 denotes the trainable 

parameters for the forward LSTM model, 𝛩𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝐿𝑆𝑇𝑀 denotes the trainable parameters 

for the backward LSTM model. 

After these works, the ELMo method uses the linear combination of the intermediate state 

values and changes the weight of different intermediate states based on specific tasks. 

For each word 𝑡𝑘 , a L-layer bidirectional LSTMs model computes a set of 2𝐿 + 1 

representations: 

𝑅𝑘 = {𝑥𝑘
𝐿𝑀, ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑘,𝑗

𝐿𝑀, ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑘,𝑗
𝐿𝑀|𝑗 = 1, . . . , 𝐿} = {ℎ𝑘,𝑗

𝐿𝑀|𝑗 = 0, . . . , 𝐿} 
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Where ℎ𝑘,0
𝐿𝑀

 denotes the intermediate state for the token representation layer and ℎ𝑘,𝑗
𝐿𝑀

 

denotes the concatenation of ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑,𝑘,𝑗
𝐿𝑀

 and ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑,𝑘,𝑗
𝐿𝑀

.  

After all of these, the ELMO concatenates all the 2𝐿 + 1 representations in 𝑅𝑘  into a 

single vector. Then it learns the linear combination of 𝑅𝑘. Thus we have: 

𝐸𝐿𝑀𝑜𝑘
𝑡𝑎𝑠𝑘 = 𝐸(𝑅𝑘; 𝛩𝑡𝑎𝑠𝑘) = 𝛾𝑡𝑎𝑠𝑘 ∑ 𝑠𝑗

𝑡𝑎𝑠𝑘ℎ𝑘,𝑗
𝐿𝑀

𝐿

𝑗=0

 

Where the 𝑠𝑡𝑎𝑠𝑘 are softmax-normalized weight for the intermediate states, and 𝛾𝑡𝑎𝑠𝑘 is a 

scalar variable used to scale the entire model.  

2.4 Attention Mechanism  

 

Figure 2.11: A Shiba Inu in a men’s outfit 

Attention mechanism is a recently proposed method and widely used in machine learning 

lately. This mechanism is in part inspired by the way humans observe. The Fig. 2.11 

demonstrates a concrete example. Looking at a scene, we humans may focus on specific 

parts with high resolution, such as the dog face, while leaving the other parts in low 

resolution, such as the forest in the background. We may change the part focused on 

over time and make some references based on the information we learned from some 

parts of the image. Given the red boxes in the second picture, we can see the dog’s nose, 
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eye and a right ear. It is reasonable for us to guess that there is also a left ear in the 

yellow box. However, as depicted in the third picture, it is hard for us to guess what is 

hidden behind the blank box giving the sweater and blanket. 

 

Figure 2.12: The attention distribution along a sentence. 

The same circumstances can occur in the sentence reading cases. As depicted in Fig. 

2.12. When we see the word “eating”, it is reasonable for us to expect a word indicating 

some food to follow. Thus we pay great attention to the word “apple” and “eating” together. 

While the word “green” makes necessary supplements for the description of the word 

“apple”, it is less relevant to the word “eating” directly. 

In a summary, the attention mechanism applies different weights to the raw input features, 

no matter whether the input is an image or a sentence or something else. This helps 

downstream networks to focus on more important parts of the raw input. 

As we discussed earlier, the RNN networks have its inherent flaws. When used as a 

sentence encoder, the RNN only uses the last hidden states as the final output to 

represent the whole sentence. This makes the RNN hard to memorize long distance 

information. The attention mechanism makes it possible for the final output to peek 

information directly from the whole raw input sentence. The weights for the attention 

changed according to different outputs. 

The Fig. 2.13 depicts an application of the attention mechanism in the Seq2Seq model 

(Sutskever, I. et al. 2014). In every time step, the context vector can see all information 

from the encoder, and learn to focus on different parts automatically. This dramatically 

boosts the performance of the whole model. 
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Figure 2.13. The encoder-decoder model with additive attention mechanism (Bahdanau 

et al., 2014) 

Let us consider the application of the attention mechanism in the circumstance of neural 

machine translation (Bahdanau, D. et al.2014). Suppose we have an input sentences 𝑥 ∈

ℜ𝑛 and the purpose of our model is to output a sentence 𝑦 ∈ ℜ𝑚: 

𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] 

𝑦 = [𝑦1, 𝑦2, . . . , 𝑦𝑚] 

We use the bidirectional RNN as the encoder. This helps the hidden states ℎ =

[ℎ1, ℎ2, . . . , ℎ𝑛] to remember the information from both the preceding and following words. 

The decoder hidden states is denoted as 𝑠 = [𝑠1, 𝑠2, . . . , 𝑠𝑚]. For each time step 𝑡, 𝑠𝑡 =

𝑓(𝑠𝑡−1, 𝑦𝑡−1, 𝑐𝑡) , where 𝑐𝑡  is called the context vector. 𝑐𝑡  is the weighted sum of the 

encoder hidden states ℎ: 

𝑐𝑡 = ∑ 𝛼𝑡,𝑖ℎ𝑖
𝑛
𝑖=1   

𝛼𝑡,𝑖 = 𝑎𝑙𝑖𝑔𝑛(𝑦𝑖, 𝑥𝑖) =
𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ𝑖))

∑ 𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(𝑠𝑡−1, ℎ𝑖′))𝑛
𝑖′=1
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The 𝛼𝑡,𝑖, which is called alignment score in Bahdanau’s paper, measures the correlation 

between the input at time step i and output at time step t. The scores are calculated by a 

single hidden layer feed-forward neural network. Therefore, the score function can be 

depicted as follows: 

𝑠𝑐𝑜𝑟𝑒(𝑠𝑡, ℎ𝑖) = 𝑣𝑎
𝑇𝑡𝑎𝑛ℎ(𝑊𝑎[𝑠𝑡; ℎ𝑖]) 

Where 𝑣𝑎 and 𝑊𝑎 are both trainable parameters of the feed-forward neural network. 

This network is trained together with the encoder-decoder model. According to 

Bahdanau’s paper, the matrix of alignment scores can well demonstrate the relationship 

between words from the source and output, as depicted in Fig. 2.14. 

 

Figure 2.14: Alignment matrix of “L’accord sur l’Espace économique européen a été signé 

en août 1992” (French) and its English translation “The agreement on the European 

Economic Area was signed in August 1992”. (Bahdanau, D. et al.2014) 

The attention mechanism helps researchers make great progress in machine learning 

visualization. As depicted in Fig 2.15, this machine reading work (Cheng, J. et al. 2016) 
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uses attention to learn the correlation between current words and previous parts of 

sentences. 

 

Figure 2.15. The current word is in red and the size of the blue shade indicates the activation 

level. (Cheng, J. et al. 2016) 

2.5 Transformer 

The development of the attention mechanism has dramatically boosted the research 

about sequence models. Vaswani, et al. (2017) proposed a novel architecture to realize 

Seq2Seq modeling fully based on attention mechanism without the use of recurrent 

network units. 

One of the core ideas of the transformer is the multi-head scaled dot-product attention 

mechanism. In this module, the raw input sequence is firstly mapped to three different 

embeddings using three different weight matrices. Thus, we get three matrices 𝑉, 𝐾, 𝑄. 

After this we calculates the weight matrix using 𝑉and 𝐾. Finally, we use these new weight 

matrices to calculate the weighted sum of 𝑄. This process can be depicted as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑛
)𝑉 
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Figure 2.16: Multi-head scaled dot-product attention mechanism 

In order to get a more comprehensive understanding of the raw inputs, this process is 

repeated multiple times. Then all the outputs are concatenated together and projected to 

a new vector space: 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = [ℎ𝑒𝑎𝑑1; . . . ; ℎ𝑒𝑎𝑑ℎ]𝑊𝑂 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉) 

Where 𝑊𝑖
𝑄 , 𝑊𝑖

𝐾, 𝑊𝑖
𝑉𝑎𝑛𝑑 𝑊𝑂 are learnable parameters. 

 

Figure 2.17: The transformer’s encoder 
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The Fig. 2.17 depicts the architecture of the encoder for the transformer.  The input 

feature is first processed by the multi-head attention mechanism then projected to another 

vector space by the feed-forward neural network. The residual connection and layer 

normalization are also deployed for each sub-network. This module is repeated for 6 

times to get a more comprehensive function. 

 

Figure 2.18: The decoder of the transformer. 

The Fig. 2.18 depicts the architecture of the decoder.  This module contains two multi-

head attention blocks and one feed-forward block. The residual connection and layer 

normalization are also deployed for each block. The first multi-head attention block is 

modified to get subsequent points in the input feature masked, since we don’t want the 

encoder to peek at the future information of the target sequences when making 

predictions. The encoder module is also repeated 6 times for a more comprehensive 

function. 

Fig. 2.19 depicts the whole model architecture of the transformer. Both the input and 

target features are first projected to the same vector space by the embedding layer.  a 

sinusoid-wave-based positional encoding is applied and summed with the embedding 

output to compact the position information into the features. After the encoding and 

decoding procedure, the softmax layer is deployed to make the final prediction. 
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Figure 2.19: the whole model architecture of the transformer. 

2.6 Comparison on Recommendation Methods 

Methods to provide citation recommendations have been published over the years, using 

a variety of approaches, and focus on different aspects of this area. Overall, about 50 

papers propose some innovative, either global or local citation recommendation methods, 

among which about a third are local citation recommendation methods (Färber, M. et al. 

2020). The global citation recommendation has been exploited by researchers earlier 

than the local one, probably because that it can be achieved by analyzing the citation 

relationship graphs, which is unavailable in most cases of the local citation 

recommendation. With the continuing development of machine learning, researchers can 

utilize context information better now, which boosts research about local citation 

recommendations enormously.  

In the sections below, we briefly introduced several methods of global citation 

recommendations. Then we dive into local citation recommendations which are more 

related to our work. 
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2.6.1 Global Citation Recommendation 

In this section, we briefly walk through several global citation recommendation methods. 

2.6.1.1 Collaborative Filtering for Citation Recommendation 

Collaborative filtering is a classic method for citation recommendation. This method treats 

citation recommendations similar to circumstances of e-commerce. Citing papers 

(customers) make citations of cited papers (items). Similar citing papers (customers) tend 

to cite similar cited papers (items). Therefore, citing papers making citations of common 

cited papers can be seen as similar. Their similarity is measured by the common papers 

that they cite. As depicted in Fig. 2.20, both citing paper i1 and i2 cite the cited paper j2. 

Thus they are considered to be similar. Citing paper i1 and i4 do not cite some same 

paper. However, citing paper i1, i2 and i3 cite the same paper j1, while citing paper i2, i3 

and i4 cite the same paper j2. Therefore, i1 and i4 can also be considered to have a 

certain degree of similarity. We can use this citation relationship information to do 

association mining. Every citing paper can be represented by some other similar citing 

papers. Therefore, when we make citation recommendations for a specific target paper, 

we can check which papers are cited by citing papers similar to the target paper. 

 

Figure 2.20 Citing papers are similar based on (a) common cited papers or (b) co-

occurred citing papers.  
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2.6.1.2 Content-Based Citation Recommendation 

Recent years, some research also uses partial context information and neural networks 

to do global citation recommendations. Here we briefly introduce a representative study 

by Bhagavatula, C. et al. Fig. 2.3 depicted the overall architecture of their model.  

Their model uses a neural network model to map both the citing papers and cited papers 

to a new vector space. It is worth noting that they map the citing papers and cited papers 

to the same vector space, which is much different to researches in the local citation 

recommendation research area. 

As depicted in Fig. 2.3, their citation recommendation method consists of two stages. In 

the first stage, for a query document 𝑑𝑞(i.e., the citing document), their model embeds it 

to a document embedding vector space. They use the K nearest neighbors (K = 4 here) 

as the candidate selection, which is the collection of possible cited papers. In Fig. 2.21 

these are 𝑑2, 𝑑3, 𝑑6, 𝑑4. Since 𝑑7is very close to the selected range, and that 𝑑7is cited by 

𝑑3, 𝑑7is also added to the candidate selection. In the second stage, they use another 

neural network model to compute a recommendation score for every candidate paper. 

The rerank all the candidate selections according to the scores from high to low. After 

that, they can give the top k recommendations. 

 

Figure 2.21 An overview of the architecture of the system architecture proposed by Bhagavatula, 

C. et al. 
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Their citation recommendation method uses the titles and abstracts of documents to 

compute the embeddings. For each textual field, i.e. title or abstract, they use the bag of 

word representation and compute the weighted average of word embeddings as the 

feature vectors. For any document d: 

𝑓𝑑[𝑡𝑖𝑡𝑙𝑒] = ∑ 𝑤𝑡
𝑚𝑎𝑔 𝑤𝑡

𝑑𝑖𝑟

||𝑤𝑡
𝑑𝑖𝑟||

2

 

𝑡∈𝑑[𝑡𝑖𝑡𝑙𝑒]

 

𝑓𝑑[𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡] = ∑ 𝑤𝑡
𝑚𝑎𝑔

𝑤𝑡
𝑑𝑖𝑟

||𝑤𝑡
𝑑𝑖𝑟||2

𝑡∈𝑑[𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡]

 

Where 𝑤𝑡
𝑑𝑖𝑟is the word direction embedding and 𝑤𝑡

𝑚𝑎𝑔 is the magnitude for a word t.  

After that, they normalize the embeddings of these two feature vectors and compute a 

weighted average of them called 𝑒𝑑.  

𝑒𝑑 = 𝜆𝑡𝑖𝑡𝑙𝑒
𝑓𝑑[𝑡𝑖𝑡𝑙𝑒]

||𝑓𝑑[𝑡𝑖𝑡𝑙𝑒]||2

+ 𝜆𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡
𝑓𝑑[𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡]

||𝑓𝑑[𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡]||2
 

They use 𝑒𝑑 to as the document embedding for the document 𝑑.  The 𝑤𝑡
𝑑𝑖𝑟 , 𝑤𝑡

𝑚𝑎𝑔 and 𝜆 

are all trainable parameters in their neural networks.  

They use the supervised learning to thain their neural networks. Specifically, they use 

training sets of triplets < 𝑑𝑞 , 𝑑+, 𝑑− >, where 𝑑𝑞 is the citing paper, 𝑑+ is the paper that is 

actually cited in 𝑑𝑞, 𝑑−is the paper that is not cited in 𝑑𝑞. They use the cosine similarity to 

measure the relativity between the paper citation pairs. This means that 𝑑𝑞 and 𝑑+shall 

have high similarity, while 𝑑𝑞 and 𝑑−shall have low similarity. For the loss function, they 

use the per-instance triplet loss (Wang et al., 2014): 

𝑙𝑜𝑠𝑠 = 𝑚𝑎𝑥(𝛼 + 𝑠(𝑑𝑞, 𝑑−) − 𝑠(𝑑𝑞, 𝑑+),0) 

Where 𝑠(𝑑𝑖, 𝑑𝑗)is defined as the cosine similarity between papers 𝑑𝑖  and 𝑑𝑗 , while the 

margin parameter 𝛼is a hyperparameter. 
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It is easy to get the positive training pairs since they are provided by the dataset. However, 

the negative training pairs need to be chosen much carefully in order to obtain an ideal 

performance for the trained model. They basically choose the negative pairs via three 

approaches. Firstly, they randomly choose some papers not cited by the citing papers in 

the training dataset. Secondly, they choose some papers that are close to the citing 

papers in the vector space, but not cited by the citing papers. They use cosine similarity 

to measure the distance in the vector space. Since the vector space is obtained by their 

model, they can only get negative examples by this approach started from training the 

second epoch. After training each epoch, they remap the papers in their training dataset 

to a new vector space based on their model, and obtain the new nearest neighbors for 

the citing papers. Thirdly, they choose some papers that are cited by papers which are 

cited by the citing papers, and that are not directly cited by the citing papers. 

In the second phase, they use another model that takes the citing paper and cited paper 

pairs as inputs and compute a score indicating the possibility for the cited papers to be 

cited by the citing papers. 

 

Figure 2.22 Architecture for the computing score model 

Fig 2.22 demonstrates the architecture of their computing score model. For each field (if 

available) in the query and candidate documents, such as the titles, abstracts, authors, 

venues, and key phrases, they compute the weighted average embeddings of them using 
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the method we discussed earlier. They also sum the scalar weights of the words that 

appear in both titles and abstracts of the citing papers and cited papers, and pass this as 

another input feature. Besides this, they also use the times the cied papers occur in their 

training dataset as another input feature. They use the logarithm to modify the times to 

mitigate the impacts of over highly cited papers. After that, they concatenate all these 

features together as inputs to their final feed-forward neural network to compute the final 

possibility. Different from the previous phase, here they use the sigmoid function to 

compute the possibility. This process can be depicted as: 

𝑠(𝑑𝑖, 𝑑𝑗) = 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(ℎ) 

ℎ = [𝑔𝑡𝑖𝑡𝑙𝑒; 𝑔𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡; 𝑔𝑎𝑢𝑡ℎ𝑜𝑟𝑠; 𝑔𝑣𝑒𝑛𝑢𝑒; 𝑔𝑘𝑒𝑦𝑝ℎ𝑟𝑎𝑠𝑒𝑠; 𝑐𝑜𝑠

− 𝑠𝑖𝑚(𝑒𝑑𝑞
, 𝑒𝑑𝑖

); ∑ 𝑤𝑡
∩

𝑡∈∩𝑡𝑖𝑡𝑙𝑒

; ∑ 𝑤𝑡
∩; 𝑑𝑖[𝑖𝑛−𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑠]

𝑡∈∩𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡

] 

𝑔𝑓𝑖𝑒𝑙𝑑 = 𝑐𝑜𝑠 − 𝑠𝑖𝑚(𝑓𝑑𝑞[𝑓𝑖𝑒𝑙𝑑], 𝑓𝑑𝑖[𝑓𝑖𝑒𝑙𝑑]) 

2.6.2 Local Citation Recommendation 

In this section, we briefly walk through several local citation recommendation methods. 

2.6.2.1 the Neural Probabilistic Model 

One representative model in the local citation recommendation area is the the Neural 

Probabilistic Model, i.e. NPM (Huang, W. et al. 2015). This model combines the statistical 

principles with neural networks.  

Suppose the citation context to be 𝑐, the cited paper to be 𝑑, the goal of local citation 

recommendation can be seen as find paper 𝑑 that maximize the probability 𝑝(𝑑|𝑐). I.e. 

the probability to cite paper 𝑑 given citation context 𝑐. According to the Bayes’ rule, we 

have: 

𝑝(𝑑|𝑐) =
𝑝(𝑐|𝑑)𝑝(𝑑)

𝑝(𝑐)
 

Suppose that the citation context 𝑐 consists of 𝑛 words 𝑤1, 𝑤2, 𝑤3. . . 𝑤𝑛, we have: 
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𝑝(𝑐) = 𝑝(𝑤1, 𝑤2, 𝑤3. . . 𝑤𝑛) 

The NPM suppose words in the citation context 𝑐 to be mutually conditional independent, 

thuw we have: 

𝑝(𝑤1, 𝑤2, 𝑤3. . . 𝑤𝑛) = 𝑝(𝑤1)𝑝(𝑤2)𝑝(𝑤3). . . 𝑝(𝑤𝑛 ) 

The 𝑝(𝑤) and 𝑝(𝑑)can be computed by observing the whole dataset. Thus we only need 

to maximize 𝑝(𝑐|𝑑). 

Suppose the training dataset contains 𝑚 pair of the citation contexts and cited papers. 

Then the goal for us is to maximize the probability for all these cited papers to be cited. 

I.e. we maximize: 

∏ 𝑝(𝑐𝑡|𝑑𝑡)

𝑚

𝑡

 

We apply the logarithm to it; thus we get: 

∑ 𝑙𝑜𝑔𝑝(𝑐𝑡|𝑑𝑡)

𝑚

𝑡

 

As we talked earlier, words in the citation context 𝑐  is considered to be mutually 

conditional independent. Therefore, we have: 

𝑝(𝑐𝑡|𝑑𝑡) = 𝑝(𝑤𝑡1
, 𝑤𝑡2

, 𝑤𝑡3
. . . 𝑤|𝑐𝑡||𝑑𝑡) = ∏ 𝑝(𝑤𝑡𝑖

|𝑑𝑡)

|𝑐𝑡|

𝑖=1

 

Therefore, the objective function for the NPM can be depicted as: 

∑ ∑ 𝑙𝑜𝑔𝑝(𝑤𝑡𝑖
|𝑑𝑡)

|𝑐𝑡|

𝑖=1

𝑚

𝑡=1

 

The NPM model uses neural networks to compute 𝑝(𝑤|𝑑), i.e. the probability for a specific 

word to occur when cited document is 𝑑𝑡. Specifically, we have: 
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𝑝𝜃(𝑤|𝑑) =
𝑒𝑥𝑝(𝑠𝜃(𝑤, 𝑑))

∑ 𝑒𝑥𝑝(𝑠𝜃(𝑤𝑖, 𝑑))
|𝑉|
𝑖=1

 

Where 𝜃is the trainable parameters for the score neural networks denoted as 𝑠𝜃. This 

score neural networks takes word 𝑤 and document 𝑑 as inputs and output a score. The 

word 𝑤 is mapped to word embedding 𝑣𝑤 by the score neural networks. The document 𝑑 

is also mapped to document embedding 𝑣𝑑  with the same dimension of 𝑣𝑤. Then the 

score neural networks compute the inner product of the document embedding 𝑣𝑑 and 

word embedding 𝑣𝑤. After that, the score neural networks use the sigmoid function to 

map it to values between 0 and 1. The whole process can be depicted as: 

𝑠𝜃(𝑤, 𝑑) = 𝑓(𝑣𝑤
𝑇𝑣𝑑) 

Since the vocabulary size for a whole dataset is to large, computation for the initial 

𝑝𝜃(𝑤|𝑑) is too time consuming. Thus the NPM applies the negative sampling proposed 

in the skip-gram model (Mikolov et al. 2013) to accelerate the computation. 

For a given word 𝑤 in the citation contexts, the skip-gram model chooses words that close 

the given word 𝑤in the citation contexts as positive examples, and randomly chooses 

words the vocabulary sets as negative examples. Therefore, the purpose for training is to 

maximize the log-likelihood: 

𝑙𝑚(𝜃) = 𝑙𝑜𝑔𝑠𝜃(𝑤𝑝, 𝑤𝑚) + ∑ 𝑙𝑜𝑔(1 − 𝑠𝜃(𝑤𝑛𝑖
, 𝑤𝑚))

𝑘

𝑖=1

 

2.6.2.2 the Neural Citation Network 

The Neural Citation Network (NCN) (Ebesu, T. et al. 2017) is another representative 

model for local citation recommendation. This is the first model that uses the semantic 

information from the citation contexts rather than bags of words. It uses an encoder-

decoder architecture as well as the attention mechanism.  
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Figure 2.5: The architecture of the Neural Citation Network (NCN) with the attention mechanism 

and author networks. 

The architecture of the NCN is depicted in Fig. 2.5. As we talked earlier, it is an encoder-

decoder model. Their encoder uses the Time-Delay Neural Networks (TDNNs) (Collobert, 

et. al. 2008). It is a modification to the classic convolutional neural network. For a given 

sentence, it can be seen as word sequences. Every word can be mapped to word 

embeddings. Thus the given sentence can be seen as a sequence of word embeddings. 

The TDNN computes the convolution of the convolution kernel and word embeddings 

over the time axis, i.e. the sequence of words.  

Specifically, for a given sentence, we suppose its length to be 𝑛. For the 𝑡𝑡ℎ word 𝑤𝑜𝑟𝑑𝑡, 

we assume it is 𝑞dimensional. Thus the matrix for the whole sentence can be seen as 

𝑤𝑞
1:𝑛 = 𝑤𝑞

1 ⊕ 𝑤𝑞
2 ⊕. . .⊕ 𝑤𝑞

𝑛, which is the concatenation of all the word embeddings 

along the time axis. Suppose a convolutional filter 𝑤𝑙×𝑞compute over the scope of 𝑙 word 

embeddings at a time over the time axis. We use the rectifier (ReLU) as the activation 

function. Thus we have: 

𝑣𝑎𝑙𝑢𝑒 = 𝑅𝑒𝐿𝑈(𝑤𝑇𝑥𝑞
𝑘:𝑘+𝑙−1 + 𝑏𝑘) 

Where 𝑤and 𝑏𝑘is the trainable parameters in the convolutional neural network. After that, 

we use the max pooling over time to get a more stable feature. Finally, the feed-forward 

neural network is used to extract information furtherly. It is worth noting that the filter size 

is not fixed. Different filter can have different scope 𝑙  to get various levels of 

understanding for phrases, e.g. bigrams, trigrams. To capture a more comprehensive and 

wide range understanding of sentences, this whole process is repeated multiple times. 
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The TDNN can compute all these filters in parallel, which makes it much more time 

efficient than the RNN. 

For the decoder part, the NCN uses a different model. The inputs for the decoder are 

cited paper titles, and the titles are usually much shorter than the citation contexts, but 

have more comprehensive information. Therefore, the NCN chooses to use RNN to 

process it due to the better capability of RNN to remember long scope previous 

information. Specifically, they use the Gated Recurrent Unit (GRU) (Cho, K. et al. 2014) 

to help prevent the gradient vanish or explosion problem.  

As we talked earlier, the TCNN is much more time efficient. However, its ability to handle 

long span information is still limited due to its architecture. The max pooling layer also 

has some drawbacks. Words in the margin of the sentences get less influence in the 

output compared to other words. Therefore, the NCN uses the attention mechanism to 

adjust the weights of the output from the encoder. The attention weight is computed from 

the hidden stats of the RNN decoder and the outputs from the TCNN. 

The NCN also uses the author names to further boost the performance. As indicated in 

their paper, the author names have a large impact on the actual citation. Therefore, the 

NCN treats the author names as context information and passes them into the TDNNs to 

extract feature representations too. It is worth noting that the same person may have 

different behaviour between citing others’ papers or being cited. For example, a famous 

researcher’s paper may be cited by a great number of people, but he can’t cite that many 

papers while writing his own paper. Therefore, the author name of the citing papers and 

cited papers are mapped to different vector spaces. Then the output of the author 

networks is concatenated with the output of the citation contexts encoder and passed to 

the decoder. 

For the encoder part, the NCN uses a RNN network to take the candidate paper titles as 

input. After that, the final output of the RNN network is passed into a softmax layer to 

project the output to the probability distribution over the vocabulary. Each time it only 

takes one word and bases on it as well as all the previous input words to give a predicted 

probability: 
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𝑝(𝑦𝑖|𝑦≤𝑖, 𝑠) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉ℎ𝑖) 

The NCN uses the mutual probability of all the words in the candidate paper title as the 

measure. It computes the log sum of probability: 

𝑙𝑜𝑔𝑃(𝑦) = ∑ 𝑙𝑜𝑔𝑃(𝑦𝑖|𝑦 ≤ 𝑖, 𝑠)

𝑚

𝑖
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3. Methodology 

In this chapter, we explain our approach for solving the citation recommendation problems 

in detail. Firstly, we analyze the problem we aim to solve and make a clearer illustration 

of the citation recommendation system we hope to build, as well as the input and output 

of the system. Secondly, we demonstrate the architecture of our model, and the function 

of each built module in our model.  Finally, we show our thoughts in the training process 

in detail. 

3.1 Problem Definition 

We mainly focus on the local citation recommendation problem. The local citation 

recommendation means that we use citation contexts information of the citing papers, 

rather than the whole manuscripts of the citing papers, to make recommendations. Some 

information from the cited papers are also needed, such as the title and abstract of the 

cited papers. The aim of local citation recommendations is to provide users lists of 

reasonable candidate papers to cite from, based on just several sentences most close to 

the citation location. Therefore, users can use local citation recommendation systems to 

get timely recommendations while writing their drafts. 

3.2 Model 

In order to solve the local citation recommendation problems. We build an innovative 

neural network model. Our model is composed of three parts: 1) Citation contexts encoder 

module. 2) Embedding remap module. 3) Grading module. Fig. 3.2 illustrates the 

simplified process in solving the local citation recommendation problems through our 

approach. 

Firstly, we use the citation contexts encoder module to extract information from citation 

contexts and cited papers. The citation contexts encoder module uses a pretrained 

sentence embedding model. The citation contexts before and after the citation locations 

are passed into the citation contexts encoder module separately. The citation contexts 

encoder module takes these input and output embeddings contain essential information 
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to represent citation contexts. If additional metadata, such as titles and abstracts of 

citation contexts are provided, they can also be used in extracting the citation context 

embeddings. Metadata of cited papers (or candidate papers) are also passed into the 

citation contexts encoder module. The module then converses the inputs to embeddings 

containing essential information to represent cited papers. We add different weights to 

different sentences and metadata. These weights are learnable parameters. Then we 

concatenate them together. 

 

Figure 3.2 Model architecture  

Secondly, since the citation contexts encoder module uses the pretrained sentence 

embedding model, the output embeddings for citation contexts and cited papers are not 

totally accurate. Moreover, the dimensions of them are also not the same. Therefore, we 

use the embedding remap modules to make some modifications for them. The 

embeddings for citations contexts and cited papers are passed into this module and 

remapped separately to the same vector space. Thus, we get more embeddings of the 

same dimensions for further processing. 

Finally, the new embeddings are passed into the grading module. This module computes 

the cosine similarity for the citing and cited papers. The scores are between 0 and 1. The 

higher the scores, the more recommended the candidate papers are. 
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3.2.1 Citation Contexts Encoder Module 

To extract semantic information from citation contexts and cited papers (or candidate 

papers), we use the pre-trained Sentence-BERT model (Reimers, N. et al. 2019). This 

model is a modification of the BERT model (Devlin, J. et al., 2018) using siamese and 

triplet networks. The original BERT model is aimed to provide a backbone for all kinds of 

natural language processing problems, which makes it not much suitable for getting 

accurate sentence embeddings. The Sentence-BERT model is designed to solve this 

problem. The BERT model’s output is varied, while the Sentence-BERT model adds a 

pooling layer to the end of it and makes the final output to a fixed length. The Sentence-

BERT model uses pairs of sentences and computes their similarity based on cosine 

similarity or Manhattan / Euclidean distance for training. This makes the Sentence-BERT 

model pretty efficient in semantic similarity search and for clustering problems.  

 

Figure 3.3 Sentence-BERT training model on classification problems (left) and similarity 

compute problems (right) 

Fig. 3.3 depicts two training circumstances for the Sentence-BERT model. The left one is 

with the classification objective function. The two BERT models in it have tied weights. 

We input sentences A and B to BERTs separately. The outputs from BERT then get 

mapped in pooling layers and change to u and v. Then we compute the distance between 

u and v, which is denoted as |𝑢 − 𝑣|.  After that, we concatenate u, v and |𝑢 − 𝑣|together 

and input it to the softmax classifier. It can be depicted as: 



40 
 

𝑜 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(𝑢, 𝑣, |𝑢 − 𝑣|)) 

where 𝑊 ∈ 𝑅3𝑛×𝑘  is a trainable weight matrix. n is the dimension of the sentence 

embeddings, i.e. u,v and |𝑢 − 𝑣|. k is the number of labels. And the goal of this task is to 

optimize the cross entropy. 

The right one is with the regressive objective function. This task focuses on computing 

the cosine similarity of the two sentence embeddings u and v. And the goal of this task is 

to minimize the mean square error loss between the outputs and ground truths. 

The Sentence-BERT model also uses a Siamese and triplet training method. For every 

anchor sentence s, we have a positive sentence p, and a negative sentence n. Then we 

can get the differences between s and p/n, which is denoted as |𝑠 − 𝑝|and |𝑠 − 𝑛|. We 

train the network to make |𝑠 − 𝑝|significantly smaller than |𝑠 − 𝑛|. Mathematically, we 

minimize the following loss function: 

𝑚𝑎𝑥(0, |𝑠 − 𝑝| − |𝑠 − 𝑛| + 𝜀) 

The 𝜀 denotes the least margin, which means that the positive sentence p should be at 

least 𝜀 closer to s than the negative sentence n. And 𝜀 is set to be 1 in the Sentence-

BERT model training process. 

Fig. 3.4 shows the architecture of sentence encoding part of the citation contexts encoder 

module. Since the Sentence-BERT model (SBERT in the figure) has already been well 

trained in a really large corpus, i.e., the combination of the SNLI (Bowman, S. R. et al. 

2015) and the Multi-Genre NLI (Williams, A. et al. 2018) dataset, and that it has too many 

parameters for us to train in a reasonable time, we just keep its weight parameters frozen. 

For citing document, we pass the left citation contexts, right citation contexts, cited paper 

titles and cited paper abstracts to the Sentence-BERT model separately. The citation 

contexts are composed of a series of sentences. Each sentence is processed by the 

Sentence-BERT model separately. After processed by the Sentence-BERT model, we 

get a series of sentence embeddings. We add weight to these sentence embeddings. 

Then we concatenate them together. For cited document, a similar process is used except 

we do not have citation contexts. Therefore, the final feature representations for citing 
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and cited documents have different dimensions. We handle this issue later in the remap 

module. 

 

Figure 3.4 the architecture of the citation contexts encoder module.  

 

3.2.2 Embedding Remap Module 

Fig. 3.5 shows the architecture of our embedding remap module. Although the Sentence-

BERT is already pretty efficient, it is designed for general sentence embedding. Thus it is 

not totally suitable for our specific citation contexts and cited document embedding task. 

Moreover, our feature representations got from the citation context encoder module have 

different dimensions as we mentioned before. Therefore, we design this remap module 

to refine the embeddings extracted by our citation contexts encoder module and map 

them to the same vector space. 

For every citation context embedding 𝑢1,  we multiply it with the trainable weight 𝑊1 ∈

𝑅𝑚1×𝑛1, it can be depicted as: 

𝑣1 = 𝑢1 × 𝑊1 
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Where 𝑣1 is the new citation context embedding, 𝑚1 is the dimension of initial citation 

context embedding, 𝑛1is the dimension of the new citation context embedding. 

The same are with cited document (or candidate paper) embeddings. For every cited 

document embedding 𝑢2,  we multiply it with the trainable weight 𝑊2 ∈ 𝑅𝑚2×𝑛2, it can be 

depicted as: 

𝑣2 = 𝑢2 × 𝑊2 

Where 𝑣2 is the new cited document embedding, 𝑚2 is the dimension of initial cited 

document embedding, 𝑛2is the dimension of the new cited document embedding. 

 

Figure 3.5 Embedding remap module 

3.2.2 Grading Module 

The grading module is composed of a single layer of cosine similarity. Specifically, given 

the embeddings for citing document as 𝑥1, the embeddings for cited document as 𝑥2, we 

have 
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𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑥1 ∙ 𝑥2

max (||𝑥1||
2

∙ ||𝑥2||
2

, 𝜖)
 

Where 𝜖 is a very small value to avoid division by zero. 

We use the similarity as our final score for measuring the correlation between the citing 

document and cited document. The score is between zero and one. The higher the score, 

the more possible that the cited document is actually cited by the citing document. 

3.3 Learning 

In this section we briefly show some core ideas in our training process. 

3.3.1 Modified Negative Sampling 

We use negative sampling proposed in the skip-gram model (Mikolov et al. 2013) to 

generate the negative examples. And we modify this approach a little bit. For every 

citation context, we randomly choose a candidate paper in cited paper dataset different 

from the ground truth as a negative example.  

3.3.2 Triplet Loss 

Our model is trained using a triplet set of 𝑑𝑝, 𝑑𝑞 , 𝑑𝑞
−, where 𝑑𝑝 is the citing paper, 𝑑𝑞 is the 

cited paper as we stated before, and 𝑑𝑞
− is the paper randomly chosen from our cited 

paper dataset that is not𝑑𝑞. Our model aims to predict a high score for the input pair of 

(𝑑𝑝, 𝑑𝑞), and predict a relatively low score for the input pair of 𝑑𝑝, 𝑑𝑞
−. The loss function is 

defined using the per-instance triplet loss (Wang J. et at., 2014): 

𝑙𝑜𝑠𝑠 = max(𝜂 + 𝑠(𝑑𝑝, 𝑑𝑞
−) − 𝑠(𝑑𝑝, 𝑑𝑞), 0) 

Where 𝑠(𝑑𝑖, 𝑑𝑗) is our model output given input pair (𝑑𝑖, 𝑑𝑗), and 𝜂 is a hyperparameter of 

our model. 
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3.3.3 Optimization Algorithm 

We use the Adam optimization algorithm (Kingma et al. 2014), which is an extension to 

the stochastic gradient descent algorithm (Robbins, H. 1951), to adjust the weights in our 

neural network model.  

Adam can be considered as a combination of Root Mean Square Propagation (RMSprop) 

and momentum. Similar to RMSprop, which uses exponential moving average for second-

order momentum, Adam uses exponential moving average to calculate not only second-

order momentum but also first-order momentum. 

First, we compute the gradient towards the objective function (i.e., the loss function). 

𝑔𝑡 = 𝛻𝜃𝐽(𝜃) 

Second, we calculate the first and second order momentum based on historical gradients: 

𝑚𝑡 = 𝜂[𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡] 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2). 𝑑𝑖𝑎𝑔(𝑔𝑡
2) 

where 𝜂 is the learning rate; 𝛽
1

, 𝛽2is the Momentum. 𝑚0 = 0, 𝑣0 = 0. 𝑔𝑡 ⊙ 𝑔𝑡is denoted as 

𝑔𝑡
2. 𝑑𝑖𝑎𝑔means diagonal matrix. It is worth noting that there is a shift to the initial value 

in the beginning stage of the iteration. Therefore, we can do some bias correction to the 

first and second order momentum: 

𝑚𝑡̂ =
𝑚𝑡

1 − 𝛽𝑡
1

 

𝑣𝑡̂ =
𝑣𝑡

1 − 𝛽𝑡
2

 

Then we have, 

𝜃𝑡+1 = 𝜃𝑡 −
1

√𝑣𝑡̂ + 𝜀
𝑚𝑡̂ 

This makes the iterations more stable. 
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4. Experiment 

4.1 Dataset 

In this thesis, we use the FullTextPeerRead dataset (Jeong, Chanwoo et al. 2019) as 

our benchmark dataset. This dataset is created by processing the PeerRead dataset 

(Kang, D. et al. 2018). 

 

Header Description 

target_id Citing paper id 

source_id Cited paper id 

left_citated_text Text to the left of the citation tag when 
citing 

right_citated_text Text to the right of the citation tag when 
citing 

target_year Release citing paper year 

source_year Release cited paper year 

target_title Citing paper title 

source_title Cited paper title 

target_abstract Citing paper abstract 

source_abstract Cited paper abstract 

target_author Author names of citing paper 

source_author Author names of cited paper 

target_venue Name of venue citing paper published in 

source_venue Name of venue cited paper published in 

 
Table 4.1 Description of elements in dataset 

As depicted in Table 4.1, this dataset contains context information (title, abstract, citation 

contexts) and metadata (author names, published venues, published years) for both citing 
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papers and cited papers. A concrete example is shown in Fig. 4.1. The [REF] indicates 

that the citing paper makes a citation here. The sentences before [REF], i.e., “The feature-

based approach, such as ELMo”, is called left_citated_text in the dataset. The sentences 

after [REF], i.e., “,uses task-specific architectures that include the pre-trained 

representations as additional features. The fine-tuning approach, such as the Generative 

Pre-trained Transformer (OpenAI GPT)”, is called right_citated_text. (It is worth 

mentioning that the previous sentences can also be seen as left_citated_text for the 

second [REF].) 

 

Figure 4.1: An example citation context with citation placeholders to find potential references. 

This example is from the BERT paper (Devlin, J. et al., 2018).  

This dataset contains 4898 papers in total. 3761papers show as citing papers. 2478 

papers show as cited papers. It contains altogether 17274 citation contexts. Papers in it 

were published between 2007 and 2017. There is some noise and errors in this dataset. 

For example, some words may not be parse correctly; two words may be connected and 

seen as one word. For these noise data, we see them as unknown token in the input. 

Therefore, they are just ignored by the sentence encoder. 

4.2 Performance Evaluation Method 

We use accuracy, Recall Top@K and Mean Reciprocal Rank (MRR) to measure our 

experiment performance. The accuracy is defined as the ratio for the model to make the 

correct prediction for whether the input is a positive or negative example. Recall Top@K 

is defined as the ratio of the ground truth cited paper occurring in a Top@K 
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recommendation list. MRR takes the rank sequences of cited papers in the 

recommendation list into consideration. It is defined as follows: 

𝑀𝑅𝑅 =
1

𝐼
∑

1

𝑖𝑛𝑑𝑒𝑥(𝑖)
𝑖∈𝐼

 

Where 𝐼 denotes the set of all citing papers, index(i) indicates the index of the ground 

truth cited paper in the recommendation list of citing paper i.  

4.3 Implementation Detail of Our Method 

As discussed in Chapter 3, our neural network model is composed of three parts: the 

citation contexts encoder module, embedding remap module and the grading module. 

The core part in our citation contexts encoder module is the Sentence-BERT module 

(Reimers, N. et al. 2019). Specifically, we use the bert-base-nli-mean-tokens pretrained 

Sentence-BERT model. The Sentence-BERT model accepts sentences with variable 

lengths and output vectors of fixed size (768). We try variable length for the left and right 

citation contexts. It results out that 3 sentences for the left citation contexts and 2 

sentences for the right citation contexts is the best in our case. We pass each sentence 

to the Sentence-BERT separately. Therefore, the dimension of the citation context 

embeddings in our model is 3840. For the cited papers (or candidate papers), we process 

their abstracts as single sentences. Therefore, the dimension of the cited paper 

embedding is 1536. (If the titles and abstract of the citation contexts are provided, the 

dimension of the citation context embeddings is 5376). We add scaler parameters to each 

embedding of sentence as well as metadata. 

For the remap module, we use the basic linear layers without activation to remap the 

embeddings output from the citation contexts encoder module1. We use two separated 

remap layers for the citation context embeddings and the cited paper embeddings. Since 

the embeddings of citation contexts and the cited papers have different dimensions, our 

 
1 We have tried different activation function for the remap linear previously. We also tried multi-layer neural networks. 

However, all of these choices make the final performance much worse. This may be due to that over complicated 

neural network architecture may leave out too much valuable information extracted from the initial inputs by the 

sentence BERT model. 
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remap layers also have different dimensions. The dimension for the weight matrix of the 

layer for citation context embeddings is 3849*768. The dimension for the weight matrix of 

the lay for cited paper embeddings is 1536*768. 

For grading module, we use a cosine similarity layer as we mentioned before. The 𝜖 is 

set to 1 ∗ 𝑒−8. 

The values for all learnable weights of our linear layers are initialized for 𝑈(−√𝑘, √𝑘). For 

the Adam optimizer, we set the initial learning rate to be 0.001. We set the coefficients 

used for computing running averages of the gradients and its square to be 0.9 and 0.999. 

We don’t use the weight decay. 

We use mini-batch gradient descent and set the batch size for positive training examples 

128. We generate the same number of negative examples randomly for every batch. We 

use dropout for the grading module and set the dropout probability to be 0.5. 

4.4 Baselines 

4.4.1 RNN & RNN model 

 

Figure 4.2 Architecture of the RNN & RNN model 
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The RNN & RNN model uses RNN to handle both the citation contexts and the cited 

papers. We use the GRU (Cho, K. et al. 2014) to encode the left citation contexts, right 

citation contexts, cited paper titles and cited papers abstract separately. The hidden state 

dimension of all the GRUs are set as 1024. We use the pre-trained word to vector 

embeddings from spaCy (Honnibal, M. et al. 2017), which traverses words to embeddings 

with the dimension of 300. We use gradient clipping (Zhang, J. et al. 2019) and set the 

max threshold to be 1. The structure is depicted in Fig. 4.2. 

4.4.2 BERT-GCN model 

 

Figure 4.3 Architecture of the BERT-GCN model 

The Fig. 4.3 depicts the architecture of the BERT-GCN model. It uses BERT model to 

process the input context sentences and output context embeddings. Moreover, it uses 

GCN to process the citation graph. Then it concatenates the outputs of these two modules 

together. Then the concatenated vector is projected into the feedforward neural networks 

and used to compute the final probability. 

4.5 Quantitative Results 

We train our model and the baselines for 400 epochs in the same benchmark dataset we 

mentioned before. We split the dataset randomly into training and testing dataset 
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according to the ratio of 8:2. This leads to 13808 citations in our training set and 3452 

citations in our testing set. We get the following experiment results. 

 Recall@5 Recall@10 Recall@30 Recall@50 Recall@80 MRR 

RNN-to-RNN 0.31 0.38 0.51 0.57 0.64 0.23 

BERT-GCN 0.49 0.53 0.60 0.65 0.70 0.42 

Our model - 0.41 0.49 0.62 0.68 0.74 0.26 

Our model 0.54 0.64 0.77 0.82 0.85 0.35 

Our model + 0.56 0.66 0.78 0.82 0.85 0.36 

Table 4.2:  An overview of experiment results measured by MRR and Recall.  

Table 4.2 reports the recall and MRR results for the two baselines and three variants of 

our method. 

The first variant, labeled “Our Model -”, only uses citation contexts and titles of cited paper. 

Although the provided information is highly limited, it still achieves impressive 

performance.  

The second variant, labeled “Our Model”, uses all the semantic information (i.e., citation 

contexts, titles and abstracts of both citing and cited paper). This boosts the performance 

greatly. This variant outperforms the BERT-GCN by a clear margin on recall, though a 

little lower on MRR. Considering that the BERT-GCN preprocesses the dataset and filters 

out a large number of relatively low-cited documents and requires a dense citation graph 

as we stated before, while our model uses all papers in the dataset and is solely content 

based, this outcome is quite reasonable. Moreover, since our model is solely content 

based, our model does not prefer papers that are highly cited or published in famous 

conferences. This effectively helps researchers to overcome the Google scholar effect 

(i.e., researchers tend to cite papers appearing at the top of the Google search results, 

without checking the actual relevance of these citations to their papers. Serenko, A., 

2015). This content-based recommendation method also makes our model also 

generalizes well to new papers not presented in our dataset.  
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The third variant, labeled “Our Model +”, further encodes metadata (i.e., author names 

and venues) to our model. This furtherly improves the performance of our model.  

On the other hand, when using the same training batch size, it takes about 36 minutes 

and 38 seconds to train the RNN-to-RNN model for 100 epochs, while our model only 

needs 6 minutes and 36 seconds. This outcome clearly demonstrates the advantage of 

our lightweight model.  In practical situations, since a large number of papers are 

published in different conferences every year, the citation recommendation dataset may 

be updated from time to time. Therefore, our lightweight model, which is easy to train and 

update, has a much better application prospect. 

4.6 Qualitative Study 

 

Figure 4.4: weights assigned to different parts of citation contexts and metadata. Each 

block for citation contexts denotes one sentence. 

We analyze the weights (i.e., 𝜆, 𝛼, 𝛽) learned during training and show them in Fig. 4.4. It 

is clear that our model succeeds in learning to pay different levels of attention to adequate 

parts of citation contexts and metadata. For citation contexts, the sentence right before 

the citation location raises the most attention while the sentence after the location is the 

second. This is consistent with human behaviors. The titles and abstracts also contribute 

a lot. Unlike previous study (Ebesu, T. et al., 2017), the weight value for the author 
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information is relatively less than the weight values for title and abstract, which may 

indicate that the author information is less important in our model. Finally, our model tends 

to omit the venue information since the weight value for it are much close to zero. This 

makes sense since papers in the benchmark dataset are all from top-tier venues of 

artificial intelligence.2 

Table 4.3 shows two concrete examples of our model’s top 3 recommendations for a 

specific citation context. It is worth noting that the citation contexts contain some noise. 

Some words in the contexts is concatenated together, such as the “asdiscussed” and the 

“newcitehill2016learning”, which should be “as discussed” and “new citehill 2016 learning” 

in fact. Although there is much noise data, our model still gets reasonable 

recommendations, which prove our model’s accuracy and robustness. 

Citing title 1:  

Gradients of Counterfactuals 

Citation context 1: 

ever, asdiscussed earlier, naively using the gradients at the actual input doesnot 

accurate quantify feature importance as gradients suffer fromsaturation.Score back-

propagation based methods. The second set ofapproaches involve backpropagating 

the final prediction score througheach layer of the network down to the individual 

features. Theseinclude DeepLift , Layer-wise relevance propagation LRPder . 2016, 

Deconvolution networks DeConvNets & 2014, andded back-propagation 

Top recommendations 1: 

Batch Normalization: Accelerating Deep Network Training by Reducing Internal 

Covariate Shift 

Estimating or Propagating Gradients Through Stochastic Neurons 

Maxout Networks 

Network In Network 

 
2 We also tested using different combinations of only a part of various metadata and compare the final performances. 

The results we get are consistent with the conclusions drawn from our analysis of the attention mechanism. 
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Citing title 2:  

Learning Paraphrastic Sentence Embeddings from Back-Translated Bitext 

Citation context 2: 

Other work in learning general purpose sentence embeddings has used autoencoders. 

encoder-decoder architectures or other learning frameworks.newcitewieting-16-full and 

newcitehill2016learning provide many empirical comparisons to this prior work. For 

conciseness, we compare only to the strongest configurations from their 

results.Paraphrase generation and discovery. 

Top recommendations 1: 

Teaching Machines to Read and Comprehend 

Learning to Compose Neural Networks for Question Answering 

Pointer Networks 

Sequence to Sequence Learning with Neural Networks 

Learning Dependency-Based Compositional Semantics 

Table 4.3 Two examples of the top 3 recommendations for our model. 
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5. Conclusion and Future Work 

In this chapter we summarize our work presented in this thesis. Lastly, we discuss our 

future plans. 

5.1 Conclusion 

The local citation recommendation has growing demand in recent years. Many 

researchers use different methods to solve this problem. Research has shown that the 

traditional RNN model is slow in processing texts with really large spans, such as 

paragraphs. The TDNN is proposed to solve this problem. Although it computes much 

faster than the RNN model, its accuracy drops as the length of the sentences needed to 

be processed grows. This limitation makes previous research usually just use short 

citation context sequences. Some long context information, such as abstract which may 

be also valuable, are omitted due to this limitation.  

In this thesis, we promote an innovative approach to solve this problem. We design a 

neural network model which is based on the pretrained Sentence-BERT as encoder. The 

pretrained model dramatically boosts the acceleration of the training process and makes 

it possible for extracting information in large scale texts. Since the Sentence-BERT is 

trained for general sentence embedding but not the specific citation recommendation task, 

the embeddings it generated are not totally accurate. Besides, the embeddings of citing 

and cited papers have different dimensions. Therefore, we use the remapping layer to 

refine the embeddings and map them to the same vector space. Finally, the cosine 

similarity is used to get the recommendation scores. 

For the experimentation results, it can be observed that our model outperforms the 

baselines by a clear margin in most cases. And the use of additional information boosts 

the performance furtherly. Our model also uses much less time to train over the same 

amount of data. Besides, our model shows robustness against noise data, which makes 

our model more applicable to different circumstances. 

In conclusion, we propose a powerful and efficient model to give citation recommendation. 

Our model mainly uses the citation context information and focuses on the semantic 
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analysis. Additional information can also boost our model’s performance. Our model is 

also explainable, which makes our model more reliable. We believe this work will boost 

future research on the local citation recommendation area. 

5.2 Future Work 

We believe this work can provide a solid step towards solving the local citation 

recommendation problem. However, more aspects in this research area can be explored 

further.  

First of all, we focus on research of the relationship between citation contexts and cited 

documents. For one citation context, we only take one cited paper into consideration. 

However, the previous citation may influence the following citation behavior. Further 

research may explore the influence of previous citations to the citation in a specific place. 

Secondly, our works do not distinguish between different topics. Modern scientific 

research has so many different areas. Researchers in different research areas may have 

different ways of thinking. Thus their citation behavior may vary a lot. Further research 

may explore the difference citation behaviors between research areas thoroughly.  

Lastly, the computation process of providing reasonable citation recommendations is 

really time consuming. All previous works (include us) need to extract information from all 

the candidate papers and compute a score for each of them using neural networks, which 

is really time and resource consuming. Future work may think about a more efficient way 

to find suitable citation recommendations. 
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