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Abstract
In this thesis, we target commodity and volatility index markets, and develop a novel stochastic
volatility model that incorporates mean-reverting property and 4/2 stochastic volatility process.
Commodities and volatility indexes have been shown to be mean-reverting. The 4/2 stochastic
volatility process integrates two processes that have contrary behaviors. As a result, not only is
the 4/2 stochastic volatility process able to reproduce “smile” and “skew”, but also model the
asset price time series very well even in the most extreme situation like financial crisis where
the assets’ prices become highly volatile. In the one-dimensional study, we derive a semi-
closed form conditional characteristic function (c.f.) for our model and propose two feasible
approximation approaches. Numerical study shows that the approximations are accurate in a
large region of the parametric space. With the approximations, we are able to price options
using c.f. based pricing algorithms which outperform Monte Carlo simulation in speed. We
study two estimation methods for the 4/2 stochastic volatility process. We show numerically
that the estimation methods produce consistent estimators. By applying our model to empirical
data, especially volatility index data, we find evidence for an embedded 4/2 stochastic volatil-
ity process, which also can be seen by observing drastic spikes from data. In option pricing
applications, we realize there can be 20% difference on option prices if the underlying model
is specified by a 4/2 stochastic volatility process as opposed to a 1/2 stochastic volatility pro-
cess. We further test our approximation approaches by comparing the option prices generated
by Monte Carlo simulation and those obtained from Fast Fourier Transform using the approx-
imated c.f., the error turns out to be negligible. We next consider a generalized multivariate
model based on our one-dimensional mean-reverting 4/2 stochastic volatility model and princi-
pal component stochastic volatility framework to capture the behavior of multiple commodities
or volatility indexes. The structure enables us to express the model in terms of a linear combi-
nation of independent one-dimensional mean-reverting 4/2 stochastic volatility processes. We
find a quasi-closed form c.f. for the generalized model and analytic approximations of the c.f.
under certain model assumptions. We propose a scaling factor to connect empirical variance
series to theoretical variances and estimate the parameters with the methodology developed
for our one-dimensional mean-reverting 4/2 stochastic volatility model. The effectiveness of
our approximation approaches is supported by comparing the Value-at-Risk (VaR) values of a
portfolio of two risky assets and a cash account using Monte Carlo simulations and the approx-
imated distributions.

Keywords: Historical Volatility, Implied Volatility, VIX, Commodity, Multivariate Mod-
els, Mean-Reverting Property, Stochastic Volatility, Risk Management, Option Pricing
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Summary for Lay Audience
Financial markets and instruments are continuously evolving, displaying new and more refined
stylized facts. This requires regular reviews and empirical evaluations of advanced models.
There is evidence in literature that supports stochastic volatility models over constant volatility
models in capturing stylized facts such as “smile’ and “skew” presented in implied volatility
surfaces. In this thesis, we target commodity and volatility index markets, and develop a novel
stochastic volatility model that incorporates mean-reverting property and 4/2 stochastic volatil-
ity process. Commodities and volatility indexes have been proved to be mean-reverting, which
means their prices tend to revert to their long term mean over time; the 4/2 stochastic volatility
process is able to reproduce ”smile” and ”skew”, but also model the asset price time series very
well even in situations like financial crisis where the assets’ prices become unstable. In the
study of single asset, we study theoretical properties of our model and propose two approxi-
mation approaches. With the approximations, we are able to price options using fast pricing
algorithms instead of simulations. We are also the first to study two estimation methods for
the 4/2 stochastic volatility process. Our estimation methods can produce accurate estimators
when sample size is large enough. By applying our model to empirical data, especially volatil-
ity indexes data, we find evidence for an embedded 4/2 stochastic volatility process. In option
pricing applications, we realize there can be 20% difference on option prices if the underlying
model is incorrectly specified. We compare the option prices generated by simulation and those
obtained from approximation approaches, the error turns out to be negligible. We next consider
a multi-asset setting as an extension of our single asset study aiming to capture the behavior
of multiple commodities or volatility indexes. The model structure enables us to express one
asset as a linear combination of independent artificial ”assets”. We propose a scaling factor to
connect empirical variance series to theoretical variances and estimate the parameters. As an
application, we further construct a portfolio that consists of two risky assets and a cash account
and calculate Value-at-Risk using simulations and the approximated distributions.

ii



Acknowledgments

I would like to take this opportunity to express my greatest gratitude to the people who have
helped me directly or indirectly in my journey to achieve a Doctor of Philosophy degree in
statistics at The University of Western Ontario.

It was not an easy decision for me to make on whether or not to continue my academic career
as a PhD student. My master supervisor at Queen’s University, Dr. Bingshu Chen, strongly
encouraged me to accept the challenge of doing research at PhD level. He convinced me that
this is a unique experience that few people have the chance to have, and I would benefit from
it in my future life no matter what I do after that. So I decided to take the challenge and even
more, I decided to challenge myself to do a PhD in an area which I am not familiar with, but I
am passionate about–Financial Modelling.

I still remember the day when I received an email from Prof. Marcos Escobar-Anel. I spent the
Chinese New Year holiday with my family at the beginning of the winter term of my master
program–something I would not do in winter terms when I was a student–because my sister
had a type of tumor that was rare to see in clinical studies. One day morning, when I woke up I
saw the email from Prof. Marcos Escobar-Anel expressing his interest in taking me as his PhD
student. This email was definitely the best new year gift I had ever had and also a relief for me
and my family after witnessing all the suffer my sister had been through. I took Prof. Marcos
Escobar-Anel’s offer knowing that it would be a difficult journey for me.

Prof. Marcos Escobar-Anel carefully designed my PhD career path to make sure that I would
be successful. He guided me through all the challenging parts of my research patiently. When-
ever I had new ideas, he always had an intuition on the consequences my ideas could lead to,
which ensured I was on the right direction. His style of supervision helped me build a strong
intuition. Other than research skills, he also offered invaluable advice on the life of a PhD shar-
ing his own PhD experience. I would not make this far without Prof. Marcos Escobar-Anel’s
support. He is not just my PhD supervisor, but also my mentor and friend.

I also would like to thank Prof. Sebastian Ferrando from Ryerson University, Prof. Rogemar
Mamon, Prof. Lars Stentoft and Prof. Xingfu Zou, who served on my PhD thesis committee
and provided remarkable comments on this thesis. Without Ms. Miranda Fullerton’s excellent
work, my thesis defense would not have been so smooth. A big thanks to my friends Junhe
Chen, Yiyang Chen, Boquan Cheng, Yuyang Cheng, Xing Gu, Wenjun Jiang, Yifan Li, Ang
Li, Yuying Li, Yang Miao and Guqian Zhao who supported me through my PhD career. It is
my honor to study and live with a group of top researchers and life lovers.

As always, my family backs me up for my decisions. They did not push me to live a rou-
tine life as most people would. They always understand me and see things more clearly than
me. When I am lost, they always have a way to make me see things through. They have been
through hard time for the past couple years, but still supporting me to continue my PhD career.
I owe them more than just “Thank you”. A special thanks to Shanshan Liu who always stands
by my side.

iii



Declaration

I hereby declare that this thesis proposal and its preliminary results incorporate materials that
are direct results of my efforts.

The content of Chapter 3 is based on the paper Marcos Escobar-Anel and Zhenxian Gong.
The mean-reverting 4/2 stochastic volatility model: Properties and financial applications. Ap-
plied Stochastic Models in Business and Industry. 2020; 36: 836– 856

The content of Chapter 4 is partially selected from the paper Yuyang Cheng, Marcos Escobar-
Anel and Zhenxian Gong. Generalized mean-reverting 4/2 Factor Model. Journal of Risk and
Financial Management; 2019, 12.4: 159.

The content of Chapter 5 is based on a paper in progress titled Multivariate Mean-Reverting
4/2 Stochastic Volatility Model.

With the exception of the guidance on formulating modelling frameworks from Dr. Marcos
Escobar-Anel and contributions by Yuyang Cheng, I certify that this document is a product of
my own work.

This research was conducted from June 2017 to present under the supervision of Dr. Mar-
cos Escobar-Anel at the University of Western Ontario.

London, Ontario

iv



Contents

Abstract i

List of Figures vii

List of Tables viii

List of Appendices ix

1 Introduction 1
1.1 Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Historical Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Implied Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2.1 Model-Based Implied Volatility . . . . . . . . . . . . . . . . 7
1.1.2.2 Model-Free Implied Volatility . . . . . . . . . . . . . . . . . 8

1.1.3 Integrated Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.4 Relationship Among The Volatilities . . . . . . . . . . . . . . . . . . . 11

1.2 Commodity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Financial Markets and Trading . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Probability Spaces and Stochastic Process . . . . . . . . . . . . . . . . 14
1.3.2 Distribution Functions and Characteristic Functions . . . . . . . . . . . 17
1.3.3 Ito Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.4 Feynman-Kac Representation in One Dimension . . . . . . . . . . . . 22
1.3.5 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.5.1 The Axioms of Coherence . . . . . . . . . . . . . . . . . . . 23
1.3.5.2 VaR and Expected Shortfall . . . . . . . . . . . . . . . . . . 24

2 Overview of Relevant Models 27
2.1 One-Factor Mean-Reverting Models . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 One-Factor Schwartz Model . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 Cox-Ingersoll-Ross Model . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.3 The 3/2 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.4 The Hull-White Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.5 The Black-Karasinski Model . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Two-Factor Mean-Reverting Models . . . . . . . . . . . . . . . . . . . . . . . 33

v



2.2.1 One-Factor Schwartz Model with CIR Process for Volatility . . . . . . 33
2.2.2 The Benth Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 4/2 Stochastic Volatility Models . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Grasselli’s 4/2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Mean-Reverting 4/2 Stochastic Volatility Model with Time-Dependent

Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4 Multidimensional Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 One-Factor Schwartz Model In Multi-dimension . . . . . . . . . . . . 39
2.4.2 General Multivariate One-factor Schwartz Model . . . . . . . . . . . . 40
2.4.3 General Multivariate Multifactor Models . . . . . . . . . . . . . . . . . 41

2.4.3.1 Special Case: No Intrinsic Factor . . . . . . . . . . . . . . . 44

3 The Mean-Reverting 4/2 Stochastic Volatility Model 46
3.1 Definition and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Model Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.2 Model Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Approximation to Characteristic Function . . . . . . . . . . . . . . . . 50

3.2.1.1 No Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1.2 Schwartz Model With Heston Stochastic Volatility . . . . . . 53
3.2.1.3 Schwartz Model with Heston Stochastic Volatility with No

Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Characteristic Function Inversion Algorithm . . . . . . . . . . . . . . . 55

3.3 Change of Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Estimation Method For Volatility Group . . . . . . . . . . . . . . . . . 59
3.4.2 Estimation Method For Drift Group . . . . . . . . . . . . . . . . . . . 60
3.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.4 Estimation With Empirical Data . . . . . . . . . . . . . . . . . . . . . 62

3.5 Pricing Financial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5.1 Price VIX Call Options . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 Price USO Call Options . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5.3 Price GLD Options with Schwartz Heston Model . . . . . . . . . . . . 65

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Generalized Mean-Reverting 4/2 Factor Model 70
4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 Special Case: No Intrinsic Factor . . . . . . . . . . . . . . . . . . . . . 73
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Change of Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Characteristic Function . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Discussion: One Common Factor in Two Dimensions . . . . . . . . . . . . . . 77
4.3.1 Pricing Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

vi



5 Multivariate Mean-Reverting 4/2 Stochastic Volatility Model 83
5.1 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 General Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.1.1 Separable Spillover effect . . . . . . . . . . . . . . . . . . . 87
5.1.1.2 Model with no Spillover Effects . . . . . . . . . . . . . . . . 87

5.1.2 Properties of The Variance Vector . . . . . . . . . . . . . . . . . . . . 88
5.2 Characteristic Functions and Approximations. . . . . . . . . . . . . . . . . . . 89

5.2.1 Characteristic Function for Model with Spillover Effects . . . . . . . . 90
5.2.2 Characteristic Function for Model with Separable Spillover Effects . . . 90
5.2.3 Characteristic Function for Models with no Spillover Effects . . . . . . 91
5.2.4 Approximation Principle and Results . . . . . . . . . . . . . . . . . . . 91

5.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Estimation of Volatility Group parameters. . . . . . . . . . . . . . . . . 97

5.3.2.1 Estimation of Matrix A and the Scaling Parameters S . . . . . 99
5.3.2.2 Estimation of Volatility Group . . . . . . . . . . . . . . . . . 101

5.3.3 Estimation of Drift Group . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 Portfolio Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 The Density Function of The Portfolio Π(t) . . . . . . . . . . . . . . . 109

5.4.2.1 The Density Function via Convolution . . . . . . . . . . . . 109
5.4.2.2 Density Function via Fourier Inversion . . . . . . . . . . . . 110
5.4.2.3 Numerical Implementation of Selected Method . . . . . . . . 111

5.4.3 VaR For A Portfolio of USO and GLD . . . . . . . . . . . . . . . . . . 112
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.6 Summary and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 118

A Proofs for Theoretical Results in Chapter 3 127

B Proofs and Helpful Results for Chapter 4 133
B.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.2 Helpful Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Curriculum Vitae 141

vii



List of Figures

3.1 Density with Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Density with Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Absolute Relative Change in Implied Volatility . . . . . . . . . . . . . . . . . 66
3.4 Absolute Relative Change in Implied Volatility . . . . . . . . . . . . . . . . . 66

4.1 Impact of b1 (common factor, 3/2 component) on implied volatility, Scenario A. 80
4.2 Impact of b1 (common factor, 3/2 component) on implied volatility, Scenario B. 80
4.3 Impact of commonality (a1) on implied volatility. . . . . . . . . . . . . . . . . 81

5.1 Historical VIX (VVIX) and VSTOXX (VVSTOXX) Data . . . . . . . . . . . . 97
5.2 Historical USO (OVX) and GLD (GVZ) Data . . . . . . . . . . . . . . . . . . 97
5.3 Historical SLV (VXSLV) and GLD (GVZ) Data . . . . . . . . . . . . . . . . . 98
5.4 Principal Components With Volatility Indexes Data. . . . . . . . . . . . . . . . 103
5.5 Principal Components With Volatility Indexes Data (Varying A). . . . . . . . . 103
5.6 Principal Components. Data: USO (OVX) and GLD (GVZ) . . . . . . . . . . . 104
5.7 Principal Components With Volatility Indexes Data. . . . . . . . . . . . . . . . 104
5.8 Case 1: Density and Histogram for M̃∗

1(t) and M̃∗
2(t) . . . . . . . . . . . . . . . 113

5.9 Case 1: Density and Histogram for ln(Π(T )) . . . . . . . . . . . . . . . . . . . 114
5.10 Case 2: Density and Histogram for M̃∗

1(t) and M̃∗
2(t) . . . . . . . . . . . . . . . 115

5.11 Case 2: Density and Histogram for ln(Π(T )) . . . . . . . . . . . . . . . . . . . 115

viii



List of Tables

3.1 Parameters for Density(t=0,T=1). . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 |b̂ − b| vs. n for different α, θ, ξ, b . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Simulation Results for α = 18, θ = 0.02, ξ = 0.3, b = 0.1 With Method 1 . . . . 62
3.4 Simulation Results for α = 18, θ = 0.02, ξ = 0.3, b = 0.1 With Method 2. . . . . 62
3.5 Estimated Volatility Group Parameters With Empirical Data . . . . . . . . . . . 63
3.6 MLE Estimates For OVX and GVZ Data . . . . . . . . . . . . . . . . . . . . . 63
3.7 Estimated Drift Group Parameters . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8 Absolute Relative Price Difference: FFT vs. Simulation . . . . . . . . . . . . . 69

4.1 Toy Parametric Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 First four moments for scenarios on 3/2 component (b), Scenario A. . . . . . . 78
4.3 First four moments for scenarios on 3/2 component (b), Scenario B. . . . . . . 78
4.4 First four moments for scenarios on commonalities (a), Scenario A. . . . . . . 79
4.5 First four moments for scenarios on commonalities (a), Scenario B. . . . . . . . 79

5.1 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 Estimated Volatility Group Parameters With Empirical Data (VIX and VSTOXX)105
5.3 Estimated Volatility Group Parameters With Empirical Data (USO and GLD) . 105
5.4 Estimated Volatility Group Parameters With Empirical Data (SLV and GLD) . . 105
5.5 Estimated Drift Group Parameters (VIX and VSTOXX) . . . . . . . . . . . . . 106
5.6 Estimated Drift Group Parameters (USO and GLD) . . . . . . . . . . . . . . . 106
5.7 Estimated Drift Group Parameters (SLV and GLD) . . . . . . . . . . . . . . . 106
5.8 Estimated Original Drift Group Parameters . . . . . . . . . . . . . . . . . . . . 106
5.9 Estimated Original Drift Group Parameters . . . . . . . . . . . . . . . . . . . . 106
5.10 Estimated Drift Group Parameters (USO and GLD) . . . . . . . . . . . . . . . 113
5.11 VaR0.05 for ln(Π(t)) From Four Sources . . . . . . . . . . . . . . . . . . . . . . 113
5.12 Estimated Drift Group Parameters (USO and GLD) . . . . . . . . . . . . . . . 114
5.13 VaR0.05 for ln(Π(t)) From Four Sources . . . . . . . . . . . . . . . . . . . . . . 114

ix



List of Appendices

Appendix A Proofs for Theoretical Results in Chapter 3 . . . . . . . . . . . . . . . . . . 127
Appendix B Proofs and Helpful Results for Chapter 4 . . . . . . . . . . . . . . . . . . . 133

x



Chapter 1

Introduction

In 1900, the publication of a PhD thesis “The theory of speculation” by Louis de Bachelier
marked a milestone in quantitative finance. Bachelier’s masterpiece is recognized as a break-
through in finance and arguably considered to be the beginning of modern finance. Bachelier
creatively introduced the concept of Brownian motion from physics to finance as an essential
tool for the study of stochastic processes in his thesis. Despite the fact that Bachelier’s study of
Brownian motion in finance was revolutionary, the theory was largely overlooked for decades.
In the middle of the twentieth century, the quantitative finance field was ignited by the redis-
covery of Bachelier’s work.

In 1951, the famous Japanese mathematician, Kiyoshi Ito, published his pioneering work “On
stochastic differential equations” , which honored Ito as the founding father of stochastic calcu-
lus, placing one more layer of foundation in quantitative finance on top of Bachelier’s theory. In
Ito’s work, he, in particular, demonstrated the rule that governs differentiating a time-dependent
function of a stochastic process. The rule is known as Ito’s lemma. Ito’s lemma is so powerful
that one can derive not only new stochastic differential equations and therefore new stochas-
tic processes from existing ones, but also the differential equations describing the value of
financial derivatives. Later in the 1970s, a series of game-changing works were carried out by
Fischer Black, Myron Scholes, Robert Merton, which revolutionize the world of finance. In
particular the Nobel prize winning Black-Scholes’ model [21] helped establishing quantitative
finance as a new branch in mathematics. This new branch applies mathematical and statistical
techniques to solving problems in finance.

Since the 1970s financial markets have seen explosive growth in both volume and types of
financial products. With the new techniques, novel products like exotic and multi-asset options
can be engineered from traditional financial products using quantitative finance principles. As
a result of increase in the complexity of financial markets, the time series of assets’ prices in
financial markets have developed new stylized facts. Existing quantitative finance methodolo-
gies are thus challenged by the complex problems emerging from the evolution of financial
markets. In this thesis, we focus on one of these problems, which concerns modeling of in-
stantaneous volatility using an advanced stochastic volatility framework for commodities and
volatility indexes (VIX, VSTOXX etc.). We propose and study a Schwartz’s one-factor mean-
reverting model, as per [122] with a 4/2 stochastic volatility in chapter 3. Before we disclose

1
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more details about our model, we first briefly present the motivation of our research—why a
mean-reverting 4/2 stochastic volatility model is appealing and necessary.

The novelty of our research is that we are the first to consider a Schwartz one-factor model
with a state-of-the-art stochastic volatility process—the 4/2 process. The 4/2 stochastic volatil-
ity model was first published in 2016 and originally used to model stocks. Let’s pause here
for a moment and spend some time reviewing some history to help readers understand why 4/2
stochastic volatility is necessary, and the strength this unique process possesses.

The renowned Black-Scholes model [21] assumes a constant volatility that drives the process
of a stock price; the model leads to a closed-form and easy-to-compute option price formula
thanks to its simple construction. On the other hand, the simple construction of Black-Scholes
model also brings a number of limitations of which the most well-known is its inability in ex-
plaining volatility “smile”. Volatility “smile” together with volatility “skew” are characteristics
of the implied volatility surface. We would expect a flat implied volatility surface given differ-
ent, say call option, strike prices and maturities if the Black-Scholes’s model were compatible
with empirical data. Reality shows that this is not true. The shape of the surface is some-
what U-shaped (“smile”) or downward sloping (“skew”) with respect to strike prices. To better
explain the nature of the problem, Heston proposed a stochastic volatility framework [80] as-
suming a Cox-Ingersoll-Ross (CIR) process that drives the volatility of a stock in 1993. The
introduction of stochastic volatility increases the complexity of the underlying model, nonethe-
less an analytic option pricing formula can still be derived. More importantly, Heston model
is able to reproduce the volatility “smile” that is not possible in the case of Black-Scholes
model. Undoubtedly, Heston’s work supports the supremacy of stochastic volatility over con-
stant volatility assumption.

The story does not end with Heston’s model. Empirical data shows that Heston model would
predict a mild trend in the price time series when “spikes” are actually observed in the stock
price time series due to high volatility in the market. The reason for the converse behavior
predicted by Heston’s model is that Heston model needs a large volatility of volatility param-
eter to capture the “spikes”, which in turn jeopardizes the Feller’s condition for the variance
process of Heston’s model. This explains why calibration of Heston’s model to market data
suggests violation of Feller’s condition. In 1997, Heston and Platen independently proposed
the 3/2 stochastic volatility framework as an alternative to Heston’s model, see [81] and [117].
3/2 model considers an inverse CIR process—the power of the diffusion term in an inverse CIR
process is 3/2—instead of the original CIR process for the stochastic volatility component of
the model. Thus, Heston’s model’s shortcoming when facing “spikes” in stock price time series
is solved by the 3/2 process, see [49] for a detailed study on the comparison between Heston’s
model and 3/2 model. In particular, the author mentions that calibration to empirical data yields
a large (−99.0%) correlation parameter for the 3/2 model, which suggests the 3/2 model is less
flexible in capturing smaller leverage than Heston’s model; another difficulty faced by the 3/2
model is in the application of pricing options on realized variance, which involves first and
second moments of the integrated variance. It is shown in [49] that under the 3/2 model, com-
putation of the first moment is challenging and the second moment does not have closed-form
representation. So it is clear that we cannot use only Heston’s model or the 3/2 model for all the
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situations, we need both. Recently, Grasselli remarkably combines Heston’s model and the 3/2
model together introducing the “ultimate” 4/2 stochastic volatility [76]. The word “ultimate”
here does not mean Grasselli’s model is the final model in the world of stochastic volatility,
but the state-of-the-art model extending the Heston’s family because it inherits the advantages
of both Heston and 3/2 models, and still maintains an analytical option pricing formula. Re-
grettably, it suffers a similar pitfall as 3/2 models does: a risk-neutral measure equivalent to the
historical measure may not exist. A solution to this problem is to use the Benchmark approach
for derivative pricing as suggested in [76]. The Benchmark approach does not require the ex-
istence of an equivalent risk-neutral measure, it is can be done using a portfolio of numéraire
under historical probability measure, see [10] for details.

Grasselli’s 4/2 model is tractable and flexible for equity modeling and equity derivative pricing.
Nevertheless, the model is not appropriate for modeling commodity prices or volatility indexes
as it lacks mean-reversion, which is considered the principal property evidenced in commodity
prices and volatility indexes. We will review in the following context the progress in modeling
commodities and volatility indexes.

Commodity is a popular and widely studied asset class in finance. Arguably, the most cel-
ebrated work in the area is a paper written by Schwartz [122] in which the author proposed
three models for commodities: one-factor model, two-factor model, and three-factor model. In
all of Schwartz’s models, volatility is assumed constant; due to mounting evidence support-
ing stochastic volatility in commodities, a one-factor Schwartz model with stochastic volatility
was proposed by Eydeland and Geman in 1998 [63]. More recently Benth [16] studied two ad-
vanced stochastic volatility models for the one-factor Schwartz model using Barndoff-Nielsen
and Shephard [12]’s O-U process (BNS) and a square-root process for the variance. The latter
was inspired on the Heston’s model [80] from the equity modeling literature. The case for
stochastic volatility is nowadays trivial to make. Empirically, CBOE publishes volatility in-
dexes based on futures for commodity market, which are becoming popular for traders. The
volatility indexes can be understood as implied volatilities of options on the underlying com-
modities. The randomness of these indexes is a clear indication that the constant volatility
assumption is violated. Therefore, the appropriateness of stochastic volatility for commodities
has been proved empirically and supported theoretically.

This allows to introduce another asset class—volatility indexes, like VIX and VSTOXX. This
asset class is quite recent. Introduced by CBOE in 1993, VIX is the first volatility index that
can be traded in the market. Current VIX is based on S&P 500, and estimates expected volatil-
ity by averaging the weighted prices of S&P 500 puts and calls over a wide range of strike
prices. Hence, VIX is model-free and only depends on option prices. Derivatives on VIX
did not receive enough attention before the financial crisis in 2008; now these derivatives are
largely traded (about 2 million contracts exchanged daily) by investors everyday as a new way
to hedge risk. Eurex introduced a similar volatility index for Euro STOXX 50 index–VSTOXX
in 2005, and soon after Eurex launched VSTOXX futures contracts. Current data shows that
the trading volume of VSTOXX derivatives is around 100,000 contracts daily. Other major
markets have also set up their own volatility indexes, such as VIXC in Canada and VNKY for
Nikkei 225 in Japan. The modeling methodology of a volatility index can be classified into
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two categories: indirect modeling and direct modeling. The indirect approach (eg. [130] and
[98]) basically models the volatility index in combination and as a byproduct of the underlying
equity index. The direct method treats the volatility index as the underlying asset of interest
independently of the underlying asset that inspires the volatility index. Fernandes et.al [66]
studied the time series property of VIX by considering heterogeneous autoregressive (HAR)
model. Whaley [128] noted that volatility tends to follow a mean-reverting process, which was
confirmed by Goard and Mazur [74]. In their work, not only is the mean-reverting property
of VIX confirmed, the volatility of VIX is also shown to be stochastic. In an early work done
by Kaeck and Alexander [87], they studied one-factor affine and non-affine models as well
as a two-factor stochastic volatility model, see [52] for a detailed treatment on affine models.
Kaeck and Alexander [87] concluded that for one-factor models, non-affine structure captures
the extreme behavior of VIX better than affine models. This finding coincides with Goard and
Mazur [74] as the 3/2 model is non-affine. Although the non-affine model considered in [87]
has diffusion term proportional to the VIX level or log VIX, they also emphasized that a two-
factor stochastic volatility model is superior than one-factor models for the behavior of VIX.
The historical data of VVIX undeniably proves the randomness of the volatility of VIX, there-
fore confirming the point that a two-factor model for VIX shall be better.

The following points outline the contributions of this thesis:

• We study a new stochastic process that incorporates mean-reversion and the state-of-the-
art 4/2 stochastic volatility.

• We provide a quasi-closed-form representation for the conditional characteristic function
(c.f.) that makes computations more efficient.

• An accurate closed-form approximation of the conditional c.f. is obtained for two rel-
evant cases: mean-reverting 1/2 stochastic volatility, and the mean-reverting 4/2 model
with no leverage.

• Two economically meaningful changes of measure are studied, conditions are provided
for well-definiteness.

• Two estimation methods are studied and the consistency of the estimators is shown nu-
merically.

• The appropriateness of the model is confirmed by fitting two financial asset classes:
commodity prices and volatility indexes.

• Our model is compared to the nested Heston model, showing a significant impact of up
to 20% on option prices.

• We generalize our mean-revering 4/2 stochastic volatility model by considering a multi-
variate mean-reverting 4/2 stochastic volatility factor model to capture either multivariate
commodity behavior or multivariate volatility indexes.

• Our setting for the multivariate model reduces the dimension of the parametric space
making parameters identifiable, permitting the use of popular estimation methods.
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• The presence of independent common and intrinsic factors in the multivariate model,
each with its own stochastic volatility, enables an elegant separable structure for charac-
teristic functions (c.f.s) while capturing several stylized facts, such as: stochastic volatil-
ity, stochastic correlation among stocks, co-movements in the variances, multiple factors
in the volatilities, and spillover effects.

• We derive a semi-closed form c.f. for the multivariate model.

• We propose analytic approximations of the semi-closed form c.f..

• A scaling factor inspired by findings in literature is proposed to match empirical variance
series to theoretical variances in a multivariate setting; we then estimate the parameters
following the same methodology developed for the one-dimensional mean-reverting 4/2
stochastic volatility model.

• We construct a portfolio of two risky assets and a cash account based on the multivari-
ate model. Value-at-Risk (VaR) is computed using both simulation-based method and
approximated distributions. The results support our approximation approaches in multi-
dimensions.

In this chapter, we first give a conceptual review of volatilities in section 1.1 introducing three
major volatility categories: historical volatility, implied volatility and integrated volatility. In
section 1.2, we briefly introduce commodities and commodity markets as well as trading of
commodities. In section 1.3, we provide some mathematical background related to the main
findings of the thesis.

The rest of the thesis is organized as follows: chapter 2 offers a collection of models rele-
vant to the thesis including existing models and some interesting new models that have either
been studied recently or not been studied at all. Chapter 3 is a comprehensive treatment of
our mean-reverting 4/2 stochastic volatility model—the main topic and major contribution of
this thesis. We present our model and study its properties and financial applications. We also
propose approximation approaches that result in closed-form approximation of the character-
istic function. Chapter 4 is an extension of the mean-revering 4/2 stochastic volatility model
to multi-dimensions taking into account two categories of factors that drive the diffusion of
the model: common factors and intrinsic factors. The two categories of factors represent sys-
tematic risk and unsystematic risk respectively. We consider a convenient structure for the
covariance matrix for the multivariate model in line with [57], [58], [59] and [60] by consid-
ering Principal Component Analysis (PCA). Thanks to principal component decomposition,
we are able to boil down the multivariate structure of the model in terms of independent one
dimensional mean-reverting 4/2 stochastic volatility processes that we have studied in chapter
3. We derive a semi-closed form c.f. for the multivariate model and changes of measure with
conditions that guarantee they are well defined. In the application, we study the effects of 3/2
process and the factors on European call options and risk measures such as VaR and Expected
Shortfall (ES). In chapter 5, we consider a sub model of the generalized 4/2 factor model in
chapter 4, which consists of only common factors (no intrinsic factor, along the lines of PCA).
In addition to the results obtained in chapter 4, we further apply our approximation approaches
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developed in chapter 3 to tackle the semi-closed c.f. with analytic functions. Another im-
portant ingredient of chapter 5 is parameter estimation in a higher dimension under principal
component framework. The estimation method we use is a generalization of the one described
in chapter 3. In application part of chapter 5, we construct a portfolio with two risky assets
and a cash account with flexible trading strategies. We then compute VaR’s for the portfolio
using two methods: Monte Carlo simulation and approximated density functions. The results
support the appropriateness of our approximation approaches.

1.1 Volatility
In finance, volatility measures the variation of return for an underlying asset using standard
deviation of the return. Therefore, volatility reflects the riskiness of the underlying asset. High
volatility refers to large dispersion around the mean of the return and small volatility indicates
that the return is relatively stable at a level. That is why volatility plays a key role in financial
risk management. Depending on the objective, volatility can be subdivided into several cat-
egories. In this section, we focus on three major categories of volatility: historical volatility,
implied volatility and integrated volatility.

1.1.1 Historical Volatility
Historical volatility, also interchangeable with realized volatility1, measures the standard de-
viation of asset price over a period of time, normally 10 days to 30 days. Hence, historical
volatility is also referred as statistical volatility.

Historical volatility indicates how volatile the price of an asset is, but it is not simply cal-
culating the standard deviation of asset price over a period of time. In fact, the calculation
concerns the return of the asset, which is the same as percentage price changes of the asset.
Given daily prices, the returns are calculated for each day with respect to the price on the pre-
vious day. A standard deviation is derived from these returns. The standard deviation is then
multiplied by the square root of the number of trading days in a calendar year (eg.

√
250) to

yield the historical volatility because historical volatility is typically an annualized quantity.
The probabilistic property of historical volatility has been studied in details in [13].

Historical volatility can also be thought of as percentage. For example, a stock with 10%
historical volatility is considered to have very low volatility; while a stock with 80% histor-
ical volatility is considered very volatile. Therefore, historical volatility indicates the degree
of riskiness for an asset. Derivatives are also affected by the level of riskiness of an asset, in
particular, derivatives’ premiums for risky assets are larger than they are for lesser risky assets.

1.1.2 Implied Volatility
Unlike historical volatility, implied volatility, as its name suggests, is a volatility that can not
be observed or calculated directly, but it is “hidden” in the option prices. Sometimes the move-

1In the following sections, when we talk about realized volatility, we also mean historical volatility.
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ment of option prices does not coincide with investors’ expectation when the underlying asset
prices make anticipated moves. To see this, we take bearish stock market as an example. In a
bearish stock market, the value of stocks decreases. Normally, when the value of the underly-
ing asset decreases, the prices of related options are also affected in the same way. In a bearish
market, opposite to the trend in stocks, a surge of the options is often observed. Scenarios like
this can be explained by demand and supply of options—demand for options increases in order
to protect investment in stocks, thus higher implied volatility. In practice, implied volatility
is used as a guidance for investors to perceive how the market is going to react to a series of
events happening during the life of the option.

Option strike price, underlying asset price and maturity of an option are observable and con-
sidered key fundamentals for option pricing. Implied volatility can be extracted from option
price given the above ingredients under concrete modeling assumptions. Implied volatility is
believed to be more informative than historical volatility regarding the variations of underlying
asset prices, because option prices reflect investors’ perception of overall market performance
in the future. Hence, implied volatility reflects investors’ expectation of the market.

Not only does implied volatility better assess the magnitude of the future movement in the
underlying asset price, it is also considered as an indicator of the risk associated with the un-
derlying asset. When the underlying asset is believed to be risky, which results in potential
large fluctuation in its price, investors will purchase the options on the asset by a large amount
to hedge the risk, and the corresponding implied volatility increases due to surge in the op-
tions demand. On the other hand, volatility index provides a direct way to visualize and hedge
against implied volatility. For a risky asset, we expect high transaction volume of futures and
options on the volatility index for the asset for hedging purpose, which in turn drives up the
implied volatility directly. Conversely, options on assets with relatively low risk attracts lower
attention from investors, thus the corresponding implied volatility is low.

The implied volatility can be computed using either model-based or model-free methods. We
briefly discuss both methodologies in the following sections.

1.1.2.1 Model-Based Implied Volatility

Model-based implied volatility is straight forward: the implied volatility is calculated from a
given model. For instance, the model used to derive implied volatility could have both constant
volatility and an analytic option price formula. Given an option price, the constant volatility
that is traced back from the option price is the implied volatility. One popular model that is
widely used for equity market is the Black-Scholes model. The pricing formula for a European
call option has a closed form representation:
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C(X(t), t) = X(t)e−q(T−t)N(d1) − Ke−r(T−t)N(d2),

d1 =
ln( X(t)

K ) + (r − q + σ2

2 )(T − t)

σ
√

T − t
, d2 =

ln( X(t)
K ) + (r − q − σ2

2 )(T − t)

σ
√

T − t
,

where X(t) is the stock price at time t, K is the strike price, r is the risk-neutral interest rate,
q is the continuous dividend rate of the stock and T is the maturity of the option. For every
call option price from the market, we can solve the equation for σ that corresponds to each
call option price. The theory for the uniqueness of σ is that the Black-Scholes call price is a
monotonically increasing function in σ and also continuous (positive vega), so the function is
invertible. The σ value is regarded as implied volatility. The same can be done for European
put option, and we expect the same value of σ for the same strike and maturity due to put-call
parity for European options.

In this case, if we plot the implied volatilities against strike price, we will see either a U-
shape curve with a minimum at-the-money or a downward sloping skew. The former is called
“smile”, and latter is known as “skew”. Both “smile” and “skew” are commonly observed facts
in option markets. These facts prove that the volatility is not constant as prescribed by Black-
Scholes’s model. Therefore, stochastic volatility models such as Heston model are developed
to capture these facts.

1.1.2.2 Model-Free Implied Volatility

Model-free implied volatility is calculated without assuming any models for the underlying
asset, in other words, it solely depends on the inputs (the characteristics of an option) from the
market. Hence, it does not suffer from “the inconsistency of forecasting changes in volatility
from a model based on constant volatility” [23].

Model-free implied volatility was first studied by Dupire [55], Neuberger [112], Demeterfi et.al
(DDKZ) [42]. In the early work, deterministic volatility is considered. However, later research
shows that deterministic volatility is quite restrictive, and thus non-deterministic volatility is
preferred [54] [53] [26]. Britten-Jones and Neuberger [23] then proposed a reverse method
that takes a complete set of option prices to extract as much information as possible about the
underlying price process. Based on [23], the integrated squared volatility is expressed as the
integration of call option prices:

E
[ ∫ T

0

(dX(t)
X(t)

)2]
= 2

∫ ∞

0

C(T,K) − (X(0) − K)+

K2 dK, (1.1)

where, X(t) denotes the price of the underlying asset at time t. C(T,K) denotes the European
call option price at time T , and K is the strike price. In practice, since strike prices are finite
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and discrete, a discrete approximation to the formula above is:

E
[ ∫ T

0

(dX(t)
X(t)

)2]
≈ 2

n∑
i=1

C(T,Ki) − (X(0) − Ki)+

K2
i

∆K,

∆K =
Kmax − Kmin

n
,Ki = Kmin + i∆K.

(1.2)

As a consequence of the approximation, the formula has two types of errors: truncation error
and discretization error. The first type of error arises from the limited range of strikes prices
[Kmin,Kmax] instead of (0,∞); the second type derives from discretization of the integral. Jiang
and Tian [85], however, discovered that the two types of errors can be ignored under certain
conditions: if Kmin < X(0) − 2σX(0) or Kmax > X(0) + 2σX(0), then truncation error is negli-
gible as the truncation errors diminish when truncation points Kmin and Kmax move away from
initial price X(0); if ∆K < 0.35σX(0), discretization error can be ignored. In both cases, σ is
the realized volatility of the underlying asset for the remaining maturity of the option. Jiang
and Tian [85] also suggested cubic splines to fit the implied volatilities because not all strike
prices in the range are accessible in the market.

According to Jiang and Tian [85], model-free implied volatility “aggregates information across
options with different strike prices and should be informationally more efficient”. They also
asserted that Equation 1.1 is also satisfied when the underlying asset price process has jumps.
More importantly, the model-free implied volatility is found to contain all the information of
the Black-Scholes implied volatility and of past realized volatility, thus it is a more efficient
forecast for future realized volatility [85]. We can see that model-free implied volatility is ad-
vantageous over model-based implied volatility except the two errors when using Formula 1.2
as noted by Jiang and Tian, which are truncation error and discretization error [85]. Hence, it
beneficial for investors to hedge risk if a list of standardized model-free implied volatilities is
available for different financial markets.

It is worth noting a useful reference on implied volatility: volatility indexes. In 1993, CBOE
published the first volatility index—VIX—to reflect implied volatility based on S&P 100 in-
dex. Today VIX futures and options are largely traded by investors as a way to hedge risk. VIX
was first developed based on Whaley’s work [127] in 1993 as a model-based implied volatility
based on Black-Scholes’ model and prices of S&P 100 options. The calculation of VIX took
into account only eight option contracts to determine the value. The 1993 approach is limited
in that, first, it uses a limited number of American option contracts; second, it focuses on S&P
100 index that has a much narrower scope than S&P 500 index in terms of completeness of the
stock market. In 2003, CBOE updated the definition and calculation of VIX based on a discrete
approximation to DDKZ, which is in fact equivalent to Britten-Jones and Neuberger [23] theo-
retically [86]. The new methodology was developed in collaboration with Goldman Sachs. The
methodology is based on S&P 500 and estimates expected volatility by averaging the weighted
prices of S&P 500 puts and calls over a wide range of strike prices. So current VIX is model-
free and only depends on option prices. Nowadays there is a broad range of volatility indexes
available pretty much covering from stock markets to commodity markets.
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1.1.3 Integrated Volatility
We talked about realized volatility and implied volatility above. Volatility family has two other
members that are as important: instantaneous volatility and integrated volatility. Instantaneous
volatility refers to the volatility of an asset over a short period of time, as this period approaches
0. We denote instantaneous volatility as σ(t). Integrated volatility is then defined as σ∗(t) =∫ t

0
σ(s)ds. An intuitive interpretation of the definition is that integrated volatility is the “total”

or “true” volatility from time 0 to time t. Studying integrated volatility is crucial, especially for
stochastic volatility model. The instantaneous volatility component, σ(t), which is the object
modeled by most stochastic volatility models, is the derivative with respect to (w.r.t) time of
the integrated volatility. This is why it is important to understand the integrated volatility. In
reality what brings challenges to practitioners is that exact calculation of integrated volatility
is difficult since financial time series are discrete in time. The financial statistic that is closely
related to integrated volatility is realized volatility. To see this, suppose we record n log asset

prices Y(ti) for ti ∈ [t − 1, t] and calculate the returns as r(n)
ti = Y

(
ti

)
− Y

(
ti −

1
n

)
, ti = t − 1 + i

n for

i = 1, . . . , n. By definition, the realized volatility over the period [t − 1, t] is given by RVt(n) =
n∑

i=1
r(n)2

t−1+ i
n
. Barndorff-Nielsen and Shepard [13] [14] [15] provide the asymptotic distribution for

RVt(n) over the period [t − 1, t]:

√
n
(
RVt(n) −

∫ t

t−1
σ2(s)ds

)
→ N

(
0, 2

∫ t

t−1
σ4(s)ds

)
.

Hence, realized volatility is a discrete time analog to integrated volatility as well as an estima-
tor for integrated volatility, thus there exists estimation error. Meddahi [105] further explored
the relationship between realized volatility and integrated volatility.

In calculus, to estimate an integral as accurately as possible, taking smaller increment is a
common practice. In finance, the idea refers to using high frequency data to estimate inte-
grated volatility because high frequency data is taken at very small time interval for example
every 30 seconds, 5 minutes or 10 minutes throughout a trading day. There have been numerous
publications on estimation of integrated volatility using high frequency data since 2000 when
high frequency financial data first became available. Some of the articles outline an approx-
imation of the integrated volatility using the sum of squared high frequency intraday returns,
which is the realized volatility, see [5] and [13]. However, studies also found out that using
high frequency data is not necessarily the best approach because of the microstructure effects
in the market, see [6] and [8].

Microstructure or microstructure noise is a property that is hidden in high frequency data. The
cause of microstructure consists of several sources, one of the best known source is the bid-ask
spread. To see this intuitively, imagine our goal is to estimate intraday volatility. On an hourly
price time series, a point means the price at that specific hour. If we narrow down the scope of
time to minute, we will observe another time series of prices at every minute, which is more
refined comparing to hourly data. In statistics, larger data size usually gives better results;
however, calculating volatility using high frequency leads to unstable realized volatility and
tends to overestimate the integrated volatility. In literature, one solution is to use data sampled
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at lower frequency, for example 15 to 30 minutes for intraday volatility estimation. To solve
the microstructure in high frequency data so that the data can be used for the original purpose,
Zhang et.al provided a better solution in [131], which uses high frequency data to produce an
unbiased and consistent estimator of integrated volatility.

1.1.4 Relationship Among The Volatilities

So far we have briefly introduced three types of volatilities that attract the most attention both
academically and practically. In this section, we will talk about the relationship between them.

• Realized Volatility vs. Integrated Volatility In section 1.1.3, we talk about the relation-
ship between realized volatility and integrated volatility while we introduce the concept
of integrated volatility. Realized volatility is directly calculated from data. Depending
on the frequency of the data being used to calculate realized volatility, the results will be
interpreted as, for example, the intraday, daily or annual volatility. It reflects the magni-
tude of the price change in the given period of time. On the other hand, realized volatility
can be treated as least squares estimator or maximum likelihood estimator in the context
of parametric volatility. We have learned that realized volatility is also an estimator of
the derivative with respect to time of the integrated volatility–the “true” volatility, which
is important in stochastic volatility models. When high frequency data became avail-
able, estimation of integrated volatility using realized volatility based on high frequency
data was common practice until microstructure effects were discovered. To reduce these
effects, a solution against using high frequency data was proposed in [131]. Hence the
connection between realized volatility and integrated volatility is tight.

• Realized Volatility vs. Implied Volatility Implied volatility reflects investors expecta-
tion on the future trend of market, hence it is tied to investors’ perception of the risk in
the market in the future. Realized volatility, on the other hand, more directly reflects
current risk in the market. So a natural connection is that implied volatility can be used
to predict future realized volatility. However, in early research, the results on the fore-
casting power of implied volatility are mixed. Christensen and Prabhala [35] carefully
reviewed previous work and argued in their paper that implied volatility is capable of pre-
dicting future volatility, confirming that in an efficient option market, implied volatility
should be an efficient forecast of future realized volatility. Other factors that may affect
the forecasting power of implied volatility are moneyness of options and risk premiums,
see [33]. With the introduction of VIX, we have a simpler and straight forward way to as-
sess the relationship between realized volatility and implied volatility. Normally implied
volatility is larger than realized volatility [77]. When compared with S&P 500 realized
volatility, VIX tends to be larger than realized volatility resulting in overestimation of
future volatility.

We have seen that realized volatility plays a crucial role in finance due to its connection to
integrated volatility and implied volatility. There is a rich literature on the properties of real-
ized volatility. It is also the center of the popular stochastic volatility models. Understanding
realized volatility helps us understand the market and its risk.
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1.2 Commodity
Nowadays financial markets consist of many different kinds of sub-markets. Among all the
markets, fixed income market (eg. corporate bonds, government bonds) and stock market draw
most attention from the investors due to their liquidity and volume. Commodity market has
a history almost as long as human civilization. Although relatively small today in terms of
market volume, it is closely related to our life and affects other major financial markets. If an
abnormal movement is witnessed in commodity prices one can foresee crisis and impact in the
economic cycle. For example, a surge of oil prices caused a global economic crisis in 1970s.
Hence, commodity is a vital and widely studied asset classes in finance.

1.2.1 Definition
A basic economic definition of commodity is that a commodity is a physical good attributable
to a natural resource that is tradable and supplied without substantial differentiation by the
general public. The concept of commodities varies from industry to industry. For example,
corn can be made into menthol and starch, these are considered commodities to, say, medical
and food industries. Hence, it is not easy to classify all the commodities into certain groups
based on their physical characteristics; however, the commodities used in the initial phase of
production cycle are from two types of sources:

• Soft Commodities: Goods that are agricultural products or livestock. For example: rice,
corn and wheat.

• Hard Commodities: Typically natural resources that are mined or extracted. For exam-
ple: gold, iron ore and oil.

The products made from these commodities are also considered commodities to different in-
dustries. Note that being a physical good is not enough to be a commodity. One can notice
another important characteristic of commodities described in definition is “without substantial
differentiation by the general public” or “fungibility”, which means the value added to the com-
modities due to differentiation based on non-competitive factors is minimum. In other words,
the pricing of commodities highly depend on supply and demand and competition as well as
logistics, so the production location and manufacturer of the commodities do not affect the
pricing process as much as they do in a monopolistic market2. Then it is worth talking about a
concept called commoditization.

Some goods are not commodities when they are first produced due to scarcity and high tech-
nology, so the marginal profits of these good are quite large. As technology evolves, entry level
to the industry lowers and more competitors emerge, which brings down the marginal profits
early players enjoyed and calls for competition. Eventually these good become commodities.
Over-the-counter drugs and health products like fish oils are best examples of commoditization.

2We in no way mean to say that there is absolutely no differentiation among the same type of commodities.
For a single type of commodity, say steel, the quality of iron ore and the technology a manufacturer uses and even
the reputation of the manufacturer or preference of clients are factors that differentiate one steel manufacturer
from other steel manufacturers. However, the steel price is a result of competition.
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1.2.2 Financial Markets and Trading

So far we have talked about the definition of commodities. From raw materials to final prod-
ucts, there are many kinds of commodities. Among these commodities, hard and soft com-
modities draw most attention from investors as they directly determine the prices of all other
commodities. In general, investing in commodities is time consuming and requires specialties,
that is why for a long time trading these commodities has been a highly specialized activity.
Only some specialized companies or specialized departments of general organizations get in-
volved in the trading of commodities.

Today individual investors also have access to trading commodities thanks to the evolution
of financial markets. Trading commodities has various ways, such as investing in the stocks of
commodity companies and trading ETF’s of the commodities, among which trading in physical
(spot) markets and derivative markets are considered the most common and direct ways.

Physical markets, as the name suggests, is where commodities exchange hands physically,
so the physical markets are also called exchanges. The exchanges normally only carry a few
commodities with some specializing in only one kind of commodities like London Metal Ex-
change. Before the transaction happens, vendors and buyers mainly negotiate about the prices
since commodities are standardized. Other details like means of delivery and financial trans-
action are also negotiated, but prices are the main concern to both parties. If an agreement on
a certain price is reached, the transaction is carried out. Upon delivery, if the quality of the
commodities is better than standard, the vendor asks for a higher price, otherwise the buyer
asks for a discount [119]. Depending on the agreement, the quality of the commodities may
be inspected upon delivery; under a more standard and strict agreement, such inspection is not
necessary.

Derivative markets consist of derivatives whose values are derived from underlying commodi-
ties. Futures contracts, swaps, exchange-traded commodities and forward contracts are most
traded commodity derivatives. The derivatives are not only used as a convenient way to invest
in commodities, it is also an important way to hedge risk. As we introduced above, the prices
of commodities depend largely on supply and demand. The demand for oil, for example, is
inelastic, so buyers of oil purchase forwards/futures in case suppliers (eg. OPEC) decides to
reduce supply or there is political crisis that may boost the oil price. On the other hand, suppli-
ers like corn farmers use derivatives in the case of overproduction.

In the end, the prices of commodities are also affected by physical markets and derivative mar-
kets since the vendors and buyers from both markets complete the picture of supply and demand
of certain commodities. Even tough most commodities see large fluctuations in price [119],
unlike stocks, the prices of commodities tend to revert to their overall average over long time.
This is a well known property for commodities, hence it is a key to select models for modeling
of commodities.

Next, we briefly talk about modeling of commodities. We then review some popular mod-
els to model commodities in chapter 2.
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For modeling of stocks, the most important and famous models are no doubt Black-Scholes
model [21] and Heston model [80]. Arguably, the most celebrated work in the area is a paper
written by Schwartz [122], in which the author proposed three models for commodities: one-
factor model, two-factor model, and three-factor model. In all of Schwartz’s models, volatil-
ity is assumed constant; not long thereafter, due to mounting evidence supporting stochastic
volatility in commodities, a one-factor Schwartz model with stochastic volatility was proposed
by Eydeland and Geman in 1998 [63]. More recently Benth [16] studied two advanced stochas-
tic volatility models for the one-factor Schwartz model using Barndoff-Nielsen and Shephard’s
Non-Gaussian O-U process (BNS) [12] and a square-root process for the variance. The latter
is also known as the Heston model [80] in the equity modeling literature. Empirically, CBOE
publishes volatility indexes based on futures for commodity market. The volatility indexes,
which are perceived as implied volatilities by investors, show strong volatile nature. The vari-
ations in the value of the indexes is an indicator that constant volatility assumption is violated.
Therefore, stochastic volatility models are ideal candidates in modeling commodities.

1.3 Mathematical Background
In this section, we cover mathematical preliminaries that are related to our research. In sec-
tion 1.3.1, we give brief introduction to probability spaces and stochastic processes; sec-
tion 1.3.2 is about characteristic function; in section 1.3.3 we describe Ito’s calculus, core
in mathematical finance; section 1.3.4 is a introduction to Feynman-Kac theorem; in section
1.3.5, we present the concept of risk measures. We consult the following literature as ref-
erences: [7], [17], [65], [88], [93], [101], [100], [104], [114], [125], [129] for the materials
presented in this section.

1.3.1 Probability Spaces and Stochastic Process
Definition 1.3.1 (Probability Space) If Ω is a given non-empty set, then a σ-algebra F on Ω

is a family of subsets of Ω with the following properties:

• ∅ ∈ F ,

• A ∈ F =⇒ AC ∈ F ,where AC = Ω \ A is the complement of A ∈ Ω,

• A1, A2, · · · ∈ F =⇒ A :=
∞⋃

i=1
Ai ∈ F .

The pair (Ω,F ) is called a measurable space. A probability measure P on a measurable space
(Ω,F ) is a function P : Ω→ [0, 1] such that

• P(∅) = 0,P(Ω) = 1,

• If A1, A2, · · · ∈ F are pairwise disjoint (i.e Ai ∩ A j = ∅ i f i , j), then

P
( ∞⋃

i=1

Ai

)
=

∞∑
i=1

P(Ai)
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The triple (Ω,F ,P) is called a probability space. A set A0 ∈ F with P(A0) = 0 is called a null
set. (Ω,F ,P) is called a complete probability space if F contains all subsets of the null sets.

Definition 1.3.2 (Filtration) A filtration F is a non-decreasing family of sub-sigma-algebras
(Ft)t≥0 with Ft ⊂ F and Fs ⊂ Ft for all 0 ≤ s < t < ∞. The quadruple (Ω,F ,F,P) is called a
filtered probability space if

• F0 contains all subsets of the null sets of F ,

• F is right-continuous, i.e Ft = Ft+ :=
⋂
s>t
Fs.

Note that in the rest of the thesis, we may also use (Ω,F , (Ft)t≥0,P) to denote a filtered proba-
bility space.

Given a probability space (Ω,F ,P), a function Y : Ω→ Rn is called F − measurable if

Y−1(U) := {ω ∈ Ω; Y(ω) ∈ U} ∈ F

for all open sets U ∈ Rn (or, equivalently, for all Borel sets U ⊂ Rn) [114].

A random variable is an F − measurable function X : Ω → Rn. Every random variable
induces a probability measure PX on Rn, defined by

PX(B) = P(X−1(B)).

PX is called the distribution of X [114].

Definition 1.3.3 (Random Vector and Distribution Function) A random vector X is a real
function X : Ω → Rd, d ∈ N, which is measurable with respect to its underlying σ-algebra F .
For d = 1, X is a random variable. The function F defined by F(x) = P(X ≤ x) is called the
distribution function of X.

The definitions covered so far are basic definitions in probability theory, and foundational for
stochastic processes, which is defined next.

Definition 1.3.4 (Stochastic Process) A stochastic process is a family X(t) = (X(t))t≥0 of ran-
dom vectors X(t) defined on the filtered probability space (Ω,F , (Ft)t≥0,P). The stochastic
process X(t) is called

• adapted to the filtration (Ft)t≥0 if X(t) is Ft measurable for all t ≥ 0,

• measurable if the mapping X(t) : [0,∞)×Ω→ Rd, d ∈ N is (B([0,∞))⊗F ) measurable
with B([0,∞))⊗F denoting the product sigma-algebra of B([0,∞)) and F , where B(A)
denotes the Borel σ-algebra of A,

• progressively measurable if the mapping X(t) : [0, t] × Ω → Rd is (B([0,∞)) ⊗ Ft)
measurable for each t ≥ 0.
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Note that for each t fixed, we have a random variable

ω→ X(t, ω), ω ∈ Ω.

When fixing ω, we have a function in t

t → X(t, ω),

which is called a path of X(t). If the paths are continuous, i.e t → X(t, ω) is a continuous
function for all ω, X(t) is a continuous process.

Definition 1.3.5 (Quadratic Variation) For real-valued stochastic process Xt defined on prob-
ability space (Ω,F , (Ft)t≥0,P) with t ≥ 0, the quadratic variation over the time interval [0, t] is
defined as:

〈Xt〉 = lim
∆→0

n−1∑
i=0

|X(ti+1) − X(ti)|2

for ti ∈ [0, t], i = 0, 2, . . . , n − 1 and ∆ = max(ti+1 − ti)

More generally, the variation of two different processes (let’s call this covariation), say X(t)
and Y(t), is defined as:

〈X(t),Y(t)〉 = lim
∆→0

n−1∑
i=0

(X(ti+1) − X(ti))(Y(ti+1) − Y(ti))

Definition 1.3.6 (Brownian motion) An adapted process W(t) for t ≥ 0 is called a Brownian
motion (or a Wiener process), if W(t) satisfies the following properties:

• W(0) = 0,

• W(t) has independent increments, i.e. W(t)−W(s) is independent of W(t′)−W(s′) where
0 ≤ s′ ≤ t′ ≤ s ≤ t < ∞,

• W(t) has Gaussian increments, W(t + s) −W(t) ∼ N(0, s), for all s > 0.

Definition 1.3.7 (n-dimensional Brownian Motion) Wt given by Wt =
(
W1(t), . . . ,Wn(t)

)′
for t ≥ 0 is called a d-dimensional Brownian motion (or n-dimensional Wiener process) if its
components W j(t), for j = 1, . . . , n are independent Brownian motions.

Definition 1.3.8 (Martingale) Let (Ω,F ,P, (Ft)t≥0) be a filtered probability space. A stochas-
tic process X(t) = (X(t))t≥0 is called a martingale relative to (P, (Ft)t≥0) if X(t) is adapted,
E(||X(t)||) < ∞ for all t ≥ 0, and

E(X(t) |Fs) = X(s),∀ 0 ≤ s ≤ t < ∞.
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1.3.2 Distribution Functions and Characteristic Functions
In this section, we give an overview of distribution functions and characteristic function. In the
following, we start with introduction of distribution functions, moment generating functions
and characteristic functions in one dimension followed by an introduction to characteristic
functions in higher dimensions. Then we introduce the class of analytic characteristic func-
tions.

Definition 1.3.9 (Distribution Functions) A point function F on a line is a distribution func-
tion if

• F is non-decreasing, that is a < b =⇒ F(a) ≤ F(b),

• F is right-continuous, that is F(a) = lim
x→a+

F(x),

• F(−∞) = 0 and F(∞) < ∞.

F is a probability distribution function is it is a distribution function and F(∞) = 1.

Definition 1.3.10 (Algebraic and Absolute Moments) Let X be a random variable with prob-
ability distribution function F. The algebraic moment of oder k of F(x), x ∈ R, is then given
by

E(Xk) =

∫ ∞

−∞

xkdF(x).

Similarly, the absolute moment of order k of F(x) is defined by

E(|X|k) =

∫ ∞

−∞

|x|kdF(x).

Next theorem provides necessary and sufficient conditions for algebraic moment to exist.

Theorem 1.3.1 The algebraic moment of order k of a distribution function F(x) exists if and
only if its absolute moment of order k exists. Suppose that the algebraic moment of order k of
F(x) exists then the moments E(Xn) and E(|X|n) exist for all orders n ≤ k.

See [100] for proof. Now we give the definition for moment generating function and charac-
teristic function.

Definition 1.3.11 (Moment Generating Function and Characteristic Function) Let X be a
random variable with probability distribution function F. The moment generating function of
F(x), x ∈ R (or of X) is defined for real u by

φX(u) =

∫ ∞

−∞

euxdF(x).

The characteristic function of X is defined by

ψX(u) =

∫ ∞

−∞

eiuxdF(x) =

∫ ∞

−∞

cos(ux)dF(x) + i
∫ ∞

−∞

sin(ux)dF(x).

ψX(u) is also called the Fourier transform of F(X).
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Note that φX(u) may not be defined for every u ∈ R, but ψX(u) does not suffer from this problem
as |ψX(u)| ≤ 1. So φX(iu) = ψX(u) only if φX(u) is defined for every u ∈ R.

Characteristic function is essential to option pricing because Carr and Madan’s Fast Fourier
Transform (FFT) approach [29] offers a fast yet robust way for option pricing. The following
theorem is also an important theoretical result that supports the FFT option pricing approach.

Theorem 1.3.2 (Inversion Theorem) Let X be a random variable with probability distribu-
tion function F and ψX(u) be the characteristic function of the distribution of X. Then X has a
bounded continuous density f (x), x ∈ R given by

f (x) = F′(x) =
1

2π

∫ ∞

−∞

e−iuxψX(u)du.

See [65] for proof.

The characteristic function in higher dimensions is closely related to the characteristic function
in one dimension.

Definition 1.3.12 (Characteristic Function in Higher Dimensions) Let X be a vector of ran-
dom variables X1, . . . , Xn with probability distribution F(X). The characteristic function of X
is the function ψX(u) defined for a vector of real numbers u:

ψX(u) =

∫ ∞

−∞

eiu′xdF(x)

The multidimensional version of Theorem 1.3.2 is still valid.

Theorem 1.3.3 (Inversion Theorem in Higher Dimensions) Let ψX(u) be the characteristic
function of of X and suppose ψX(u) ∈ L1. Then F(X) has a bounded continuous density
f (x), x ∈ Rn given by

f (x) = F′(x) =
1

2π

∫ ∞

−∞

e−iu′xψX(u)du.

Next, we introduce the class of analytic characteristic functions. Suppose now u is a complex
number defined by u = a + ib where a, b ∈ R.

Definition 1.3.13 (Analytic Characteristic Function) A characteristic function ψ(u) is said
to be an analytic characteristic function is there exists a function e(u) of the complex variable
u which is regular in a circle |u| < c (c > 0) and a constant ε > 0 such that e(a) = ψ(a) for
|a| < ε.

An informal alternative to express Definition 1.3.13 is by saying that an analytic characteristic
function is a characteristic function that is equivalent to a holomorphic function in some neigh-
borhood of the origin in the complex u-plane. A holomorphic function, according to [93], is a
complex function defined on a region D ⊂ C and is complex differentiable at every point in D.
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Theorem 1.3.4 If a characteristic function ψ(u) is regular in a neighbourhood of the origin,
then it is also regular in a horizontal strip and can be represented by a Fourier integral. This
strip is either the whole plane, or it has one or two horizontal lines, The purely imaginary points
on the boundary of the strip of regularity (if this strip is not the whole plane) are singular points
of ψ(u).

See [100] for a proof.

An example considered in [101] is the characteristic function given by:

ψ(u) =

(
1 −

iu
λ

)−1

.

We recognize that this is the characteristic function for an exponential random variable with
parameter λ if u ∈ R. As we defined u = a + bi, the characteristic function has a singularity
when u = −iλ and is regular near the origin in the strip −λ < Im(u) < ∞, where Im(u) denotes
the imaginary part of u.

Given a complex number u = a + ib, according to [125], the existence of the Fourier trans-
form Ft(u) =

∫ ∞
−∞

eiux f (x)dx implies certain restrictions on f (x) at infinity. If Ft(u) does not
exist, partial integrals:

Ft+(u) =

∫ ∞

0
eiux f (x)dx

Ft−(u) =

∫ 0

−∞

eiux f (x)dx

may exist for sufficiently large positive b and large negative b respectively. For the inversion
we may have:

f (x) =
1

2π

( ∫ ib1+∞

ib1−∞

Ft+(u)e−iuxdu +

∫ ib2+∞

ib2−∞

Ft−(u)e−iuxdu
)

where b1 is a sufficiently large positive number and b2 is a sufficiently large negative number.

1.3.3 Ito Process

In this section, we briefly introduce core components in Ito calculus, which are also essential
to stochastic processes. Topics we cover in this section are Ito process, Ito’s lemma and Ito
isometry. Next we give the definition of Ito process.

Definition 1.3.14 (Ito Process) Let Xt = (X1(t), . . . , Xn(t))′ be an n-dimensional stochastic
process defined on a probability space (Ω,F , (Ft)t≥0),P). It is called an Itô process if it satisfies
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the following equation:

Xt =X0 +

∫ t

0
µsds +

∫ t

0
ΣsdWs (1.3)

=


X1(0) +

∫ t

0
µ1(s)ds +

m∑
j=1

∫ t

0
Σ1, j(s)dW j(s)

...

Xn(0) +
∫ t

0
µn(s)ds +

m∑
j=1

∫ t

0
Σm, j(s)dW j(s)


, (1.4)

where:

• X0 = (X1(0), . . . , Xn(0))′ is an n-dimensional F0-measurable random variable,

• µt = (µ1(t), . . . , µn(t))′ is an n-dimensional stochastic process, where µi is adapted and∫ t

0
|µi(s)|ds < ∞, for all i = 1, . . . , n,

• Σt =


σ11(t) · · · σ1m(t)
... · · ·

...
σn1(t) · · · σnm(t)

 is an n × m-dimensional stochastic process, where σi j(t) is

adapted, B([0,∞)) ⊗ F -measurable and
∫ t

0
E[(σi j(t))2]ds < ∞, for all i = 1, . . . , n and

j = 1, . . . ,m,

• Wt = (W1(t), . . . ,Wm(t))′ is an m-dimensional Brownian motion.

For convenience, we can rewrite Equation (1.4) in the following form:

dXt = µtdt + ΣtdWt.

We call this expression a stochastic differential equation (SDE) with drift µt and diffusion term
Σt.

Generally speaking, an Ito process is the integral representation of a stochastic differential
equation. Studying an Ito process leads to many statistical properties, for example moment
generating function and characteristic function of X(T ) conditioning on Ft. For Ito processes
X(t) and Y(t) with SDE’s in general forms:

dX(t) = µ(X(t), t)dt + σ(X(t), t)dW(t)
dY(t) = µ(Y(t), t)dt + σ(Y(t), s)dB(t)

W(t) and B(t) are two standard Wiener processes with correlation −1 ≤ ρ ≤ 1. The quadratic
variation of dX(t) is given by:

〈dXt〉 = σ2(X(t), t)dt.

The covariation of dW(t) and dB(t) is < dW(t), dB(t) = ρdt, hence the covariation of dX(t) and
dY(t) is

〈dX(t), dY(t)〉 = ρσ(X(t), t)σ(Y(t), t)dt

The following theorem is the famous Ito’s lemma, which produces the SDE of a transformed
process.
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Theorem 1.3.5 (Ito’s Lemma) Let W(t) be Brownian motion and X(t) be an Ito process sat-
isfying following stochastic differential equation:

dX(t) = µ(X(t), t)dt + σ(X(t), t)dW(t).

If f (X(t), t) ∈ C2(R,R), then f (X(t), t) is also an Ito process with the stochastic differential
equation:

d( f (X(t), t)) =
∂ f (X(t), t)

∂t
dt +

∂ f (X(t), t)
∂X(t)

dX(t) +
1
2
∂2 f (X(t), t)
∂X2(t)

〈dXt〉

=

(
∂ f (X(t), t)

∂t
+
∂ f (X(t), t)
∂X(t)

µ(X(t), t) +
1
2
∂2 f (X(t), t)
∂X2(t)

σ2(X(t), t)
)
dt

+
∂ f (X(t), t)
∂X(t)

σ(X(t), t)dW(t).

Before we get into Ito isometry, we first briefly introduce another important concept called
Ito integral. If Y(t) is some bounded continuous stochastic process which is adapted to the
same filtration Ft generated by W(t), then

∫ T

t
Y(s)dW(s) is an Ito integral. An Ito integral is a

martingale. Ito isometry is a key fact about Ito integrals, which is given by:

E
[( ∫ T

t
Y(s)dW(s)

)2∣∣∣∣∣Ft

]
= E

[ ∫ T

t
Y2(s)ds

∣∣∣∣∣Ft

]
.

Next lemma and theorem lead to the theoretical foundation of change of measure for Itô pro-
cesses.

Lemma 1.3.1 (Novikov’s condition) Let Wt = (W1(t), . . . ,Wn(t))′ be a n-dimensional Brow-
nian motion and γt = (γ1(t), . . . , γn(t))′ for 0 ≤ t ≤ T is a measurable, adapted, n-dimensional
process with

∫ T

0
γi(t)dt < ∞ a.s., for all i = 1, . . . , n. Assume that

E
[

exp
(1
2

∫ T

0
||γs||

2ds
)]
< ∞.

Then process L(t) for 0 ≤ t ≤ T is defined as follows:

L(t) := exp
(
−

∫ t

0
γsdWs −

1
2

∫ t

0
||γs||

2ds
)

is a continuous martingale.

Under Novikov’s condition:
∫ t

0
||γs||

2ds < ∞ a.s., for all t ∈ [0,T ] so that the stochastic integral
in L(t) is well-defined. For a detailed explanation see [129].

Novikov’s condition is a critical for change of measure practice in financial mathematics, which
is given in following theorem.
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Theorem 1.3.6 (Girsanov theorem) Let processes Wt, γt and L(t) be as in Lemma 1.3.1.
Define the equivalent probability measure Q on (Ω,FT ) by:

dQ
dP

= L(T ) i.e. Q(A) = E[1A L(T )] =

∫
A

L(T )dP,∀A ∈ FT .

Then, the process W̃t = (W̃1(t), . . . , W̃n(t))′ given by:

W̃i(t) = Wi(t) +

∫ t

0
γi(s)ds,

for t ∈ [0,T ] and i = 1, . . . , n is a Q-Brownian motion. Process L(t) is called the density or the
change of measure from P to Q.

A typical application of Girsanov theorem is to change the probability measure (eg. historical
measure) where the model is defined to another equivalent probability measure (eg. risk neutral
measure). In chapter 2 we will see models defined under historical measure, denoted P as well
as models defined under risk neutral measure, denotedQ. We often interpret historical measure
as real world. Models defined under this measure reflects risks undertaken by investors i.e
investors bearing high risk expect high returns. Risk neutral measure, on the other hand, is
a world where there is no risk or arbitrage. Everyone is in a fair game with one price. Next
definition gives the mathematical aspect of risk neutral measure.

Definition 1.3.15 (Risk Neutral Measure) A measure Q ∼ P such that the discounted price
process at risk-free interest rate is a (local) martingale with respect toQ is called an equivalent
(local) martingale measure.

The martingale property guarantees that the price under risk neutral measure is unique, thus
arbitrage is excluded.

1.3.4 Feynman-Kac Representation in One Dimension
Feynman-Kac formula provides stochastic representations for solutions of partial differential
equations. There are formulas for one-simensional and multidimensional cases, we first state
Feynman-Kac’s representation in one dimension.

Theorem 1.3.7 (Feynman-Kac) Define X(t) on the probability space (Ω,F , (Ft)t≥0,P) with
following SDE:

dX(t) = µ(X(t), t)dt + σ(X(t), t)dW(t).

with initial condition X(t) = x and u(X(t), t) ∈ C2(R,R+) be a solution for the PDE:

ut + µ(x, t)ux +
1
2
σ2(x, t)uxx − V(x, t)u + f (x, t) = 0

where ut =
∂u(x,t)
∂t , ux =

∂u(x,t)
∂x and uxx =

∂2u(x,t)
∂x2 for all t ∈ [0,T ] and x ∈ R with terminal

condition
u(X(T ),T ) = h(X(T ))

then

u(x, t) = EP
[ ∫ T

t
e−

∫ s
t V(X(τ),τ)dτ f (X(s), s)ds + e−

∫ T
t V(X(τ),τ)dτh(X(T ))

∣∣∣∣∣X(t) = x
]
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Next we give Feynman-Kac’s representation in higher dimensions.

Theorem 1.3.8 (Feynman-Kac in Higher Dimensions) Define a vector of n stochastic pro-
cesses Xt = (X1(t), . . . , Xn(t))′ and a vector of independent Brownian motions Wt = (W1(t), . . . ,
Wn(t))′ on a probability space (Ω,F , (Ft)t≥0),P). The SDE for individual process Xi(t) is given
by

dXi(t) = µi(Xt, t)dt +

n∑
j=1

σi j(Xt, t)dW j(t).

with initial condition Xt = x and u(Xt, t) ∈ C2(Rn,R+) be a solution for the PDE:

ut +

n∑
i=1

µi(x, t)uxi +

n∑
i=1

n∑
j=1

1
2
σ2

i j(x, t)uxi xi +

n∑
i=1

n∑
j,i

σii(x, t)σ ji(x, t)uxi x j − V(x, t)u + f (x, t) = 0

where ut =
∂u(x,t)
∂t , uxi =

∂u(x,t)
∂xi

, uxi xi =
∂2u(x,t)
∂x2

i
and uxi x j =

∂2u(x,t)
∂xi∂x j

for all t ∈ [0,T ] and x ∈ Rn with
terminal condition

u(XT,T ) = h(XT)

then

u(x, t) = EP
[ ∫ T

t
e−

∫ s
t V(Xτ,τ)dτ f (Xs, s)ds + e−

∫ T
t V(Xτ,τ)dτh(XT)

∣∣∣∣∣Xt = x
]

1.3.5 Risk Measures
In this section, we discuss risk measures that are used in the area of financial risk management.
Risk management in general is “a discipline for living with the possibility that future events
may cause adverse effects” [90]. Financial institutions like banks and insurance companies
make business by taking on risks in the form of loans and insurance policies. Hence, risk
management is the core of banks and insurance companies to keep them away from crisis or
catastrophes. Financial institutions use various approaches to manage risk, part of this process
involves measuring the risk.

A risk measure is a statistic used to determine the amount of assets to be kept in reserve. This
amount is set by regulators for the risk taken by financial institutions so that there won’t be
dramatically change in the operations in the worst case scenario. In this section, we introduce
properties that a good measure of risk should have by listing a set of properties (axioms) that a
good risk measure should have. The risk measures that satisfy these axioms are called coher-
ent risk measures. The characteristics of these risk measures are studied by Artzner et.al [7] in
great detail. Here, we briefly introduce some widely used risk measures in practice.

1.3.5.1 The Axioms of Coherence

We first define a probability space (Ω,F ,P) and a time horizon ∆. Define M be the set of all
finite random variables on (Ω,F ,P), which represents losses over the time horizon ∆. Then
financial risks are represented by a subset of M i.e R ⊂ M. It is often assumed that R is a
convex cone i.e R1 ∈ R,R2 ∈ R =⇒ R1 + R2 ∈ R and aR1 ∈ R for every a > 0. Risk measures
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are real-valued functions ρ : R → R. We follow the interpretation of R ∈ R as in [104] that
R represents a loss rather than future value as in [7]. We also assume zero interest rate so that
there is no discounting. The axioms are defined in the same way as in [104]. Let ρ(R) denote
the risk measure for random variable R (the amount of capital that should be added to a position
given a loss R), a coherent risk measure should satisfy:

• Axiom 1 (Translation Invariance): For all R ∈ R and every a ∈ R, we have ρ(R + a) =

ρ(R) + a;

• Axiom 2 (Subadditivity): For all R1,R2 ∈ R, we have ρ(R1 + R2) ≤ ρ(R1) + ρ(R2);

• Axiom 3 (Positive Homogeneity): For all R ∈ R and every a ∈ R, we have ρ(aR) =

aρ(R);

• Axiom 4 (Monotonicity): For all R1,R2 ∈ R such that R1 ≤ R2, then ρ(R1) ≤ ρ(R2).

The definition of coherent risk measure is given by:

Definition 1.3.16 (Coherent Risk Measure) A risk measure ρwhose domain includes the con-
vex cone M is called coherent (on M) if it satisfies Axioms 1-4.

It is worth noting that a risk measure is not equivalent to a coherent risk measure. As Definition
1.3.16 suggests, a coherent risk measure is more formally and strictly defined whereas a risk
measure is a general term. In next section, we discuss two popular risk measures used in
practice.

1.3.5.2 VaR and Expected Shortfall

We start with the definition of VaR. Consider a portfolio of some risky assets over the time
horizon ∆. Let R denote the size of the loss experienced by the portfolio. VaR is defined by

Definition 1.3.17 (Value-at-Risk (VaR)) Given a confidence level α ∈ (0, 1), the VaR of our
portfolio at the confidence level α is given by the smallest number r∗ such that the probability
that the loss R exceeds r∗ is no larger than (1 − α):

VaRα(R) = in f {r∗ ∈ R : P(R > r∗) ≤ 1 − α} = in f {r∗ ∈ R : FR(r∗) ≥ α}

Another commonly used interpretation of α is that it is the probability that R does exceeds a
certain amount r∗. No matter which version of the interpretations of α is used, it does not affect
the fact that VaR is simply a quantile of the loss distribution in a probabilistic context. A formal
definition of quantiles is given by the next definition.

Definition 1.3.18 (General Inverse and Quantile Function)

• Given an increasing function T : R → R, the generalized inverse of T is defined by
T−1(t∗) = in f {t ∈ R : T (t) ≥ t∗}, where we use the convention that the infimum of an
empty set is∞.
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• Given a distribution function F, the generalized inverse F−1 is called the quantile func-
tion of F. For α ∈ (0, 1), the α−th quantile of F is given by

qα(F) = F−1(α) = in f {x ∈ R : F(x) ≥ α}

Next lemma is a direct result of Definition 1.3.18 and the right-continuity property of distribu-
tion functions.

Lemma 1.3.2 A point xα ∈ R is the α−th quantile of a distribution function F iff. the following
two conditions are satisfied:

• F(xα) ≥ α;

• F(x) < α for all x < xα.

In practice, normal distribution is usually assumed for the loss distribution and the computation
of VaR is straightforward: if the loss R ∼ N(µ, σ2), then the VaR at level α is then:

VaRα(R) = µ + σΦ−1(α),

where Φ−1(α) is the α−th quantile of standard normal distribution. Similarly, if t distribution is
assumed with the same mean and variance νσ2

ν−2 when degrees of freedom ν > 2, we have

VaRα(R) = µ + σt−1
ν (α),

where tν(x) is the standard t distribution function with degrees of freedom ν. It can be seen that
VaR is easy to calculate under normal or t distribution assumptions. VaR is also recognized as
a key statistic in Basel Accords (Basel II and Basel III) for risk measurement and capital re-
quirement calculation. However, VaR has been criticized for its weakness in loss aggregations.
The critique originally outlined in [7] is that VaR violates subadditivity axiom of coherent risk
measures. Thus, VaR is not a coherent risk measure.

As a illustration, consider a portfolio with individual loss distribution FR1 and FR2 , and the
merged loss distribution S = R1 + R2 for the portfolio is FS . It is not necessarily true that
qα(FS ) ≤ qα(FR1) + qα(FR2). This contradicts our intuition that diversification reduces risk; we
can not use aggregated VaR’s to set a bound for the overall risk either.

Another drawback of VaR comes from model risk. That is the models for modeling the losses
are misspecified or the model assumptions are violated in practice. A typical example is that
the symmetric distributions (normal or t distribution) are adopted for modeling losses, but in
fact the distribution of losses is heavy-tailed, in which case symmetric distribution assumptions
are not appropriate, see Figure 12.4 of [83].

To overcome the lack of subadditivity issue of VaR, another loss distribution-based coher-
ent risk measure is introduced, the expected shortfall (ES). ES is closely related to VaR and
preferred by risk managers in practice. The formal definition of ES is given as follows.
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Definition 1.3.19 (Expected Shortfall) For a loss R with E(|R|) < ∞ and distribution function
FR, the expected shortfall (ES) at confidence level α ∈ (0, 1) is defined as

ES α(R) =
1

1 − α

∫ 1

α

qu(FR)du,

where qu(FR) is the u−th quantile of FR.

By Definition 1.3.17, therefore the relationship between ES and VaR is established by

ES α(R) =
1

1 − α

∫ 1

α

VaRu(R)du.

Again, depending on the interpretation of α, we also have following relationship:

ES α(R) = −
1
α

∫ α

0
VaRu(R)du,

which is also true. See [104] for proof of ES to be coherent risk measure. If the loss distribu-
tions are continuous, then a more intuitive expression of ES is given by the next lemma,

Lemma 1.3.3 For an integrable loss R with continuous distribution function FR and for α ∈
(0, 1), we have

ES α(R) =
E(R; R ≥ qα(R))

1 − α
= E(R |R ≥ VaRα)

where E(R; A) denotes E(RIA) for a generic integrable random variable R and a generic set
A ∈ F .

See [104] for proof. So for losses with a continuous distribution, the ES α is simply the con-
ditional expectation of loss R given the loss already exceeds VaRα or the expected tail loss.
Sometimes, this is also called “Tail-Value-at-Risk” (TVaR). For completeness, a formula sim-
ilar to Lemma 1.3.3 is also available for a discontinuous loss distribution function FR, but is
more complicated:

ES α(R) =
1

1 − α
(E(R; R ≥ qα(R)) + qα(R)(1 − α − P(R ≥ qα(R)))).

See [1] for proof.

Next we give the ES for normal distribution with mean µ variance σ2 and t distribution as
examples. For normal distribution:

ES α(R) = µ + σ
φ(Φ−1(α))

1 − α
.

where φ(x) is the density function for standard normal distribution. For t distribution with the
same mean and variance νσ2

ν−2 when degrees of freedom ν > 2, we have

ES α(R) = µ + σ
gν(t−1

ν (α))
1 − α

(ν + (t−1
ν (α))2

ν − 1

)
,

where gν(x) is the density function of standard t distribution.
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Overview of Relevant Models

We dedicate this chapter to provide an overview of relevant models in the literature and inter-
esting extensions which has not been studied in literature. Since mean-reverting models and
Grasselli’s 4/2 stochastic volatility model [76] are central to this thesis, we will spend most
of the chapter covering mean-reverting models and the 4/2 stochastic volatility model as well
as a few potential innovations based on the 4/2 type of stochastic volatility model. In section
1.2.2, we highlighted the most important models in the context of commodities, which is one of
the oldest asset classes with the mean-reverting property. In finance, mean reversion property
indicates that the asset prices will eventually revert to their long-run means. Graphically, the
trend of the asset prices’ series moves up and down with respect to their long-run means. As
typical representatives from the mean-reverting family, commodities can be used as a guide to
select models or to develop interesting models. Exchange rates and interest rates are yet other
examples of well known financial asset classes that behave in a mean-reverting way. Most
recently, volatility indexes (e.g. VIX) are yet another financial asset class that has been shown
to be mean-reverting in the long run. In this perspective, popular models in finance like GBM
or Heston model, that does not have mean-reverting property, are not suitable for modeling
commodities, or volatility indexes.

The applications of mean-reverting models are quite versatile in finance. As mentioned above,
other than commodities and volatility indexes, mean-reverting models are also used to model
foreign exchange rates and interest rates therefore the whole world of fixed income products
and currency modeling are influenced, but these last two asset classes won’t be the focus of
the thesis. The most basic yet famous mean-reverting model is the Vasicek model [126],
which is better known as an application of Ornstein-Uhlenbeck (O-U) processes to interest
rates. A problem or limitation of the Vasicek modelling is that the process can generate neg-
ative values, which is not realistic for positive asset classes. Later, Cox et.al [38] proposed
the Cox-Ingersoll-Ross (CIR) model that guarantees positive values given Feller’s condition
on the parameters is satisfied, this way CIR model solves the negative values issue faced by
Vasicek model [126]. Since then, the mean-revering model family has continued evolving and
growing with more complex models, developed to better understand the market and to capture
new stylized facts, e.g. stochastic volatility, spillover effects, leverage effect, and multivariate
models.

27
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In this chapter, we denote P as historical probability measure and Q as risk-neutral probability
measure. In general, P measure is convenient for parameter estimation while Q measure is
crucial for pricing practice where arbitrage should be excluded. Change of measure is required
to perform certain task that is not suitable under the probability measure where the model is
currently defined. For example, if the model is defined under P measure, and we would like
to assess the model performance in option pricing, then we need to change the measure from
P to Q for the model. We will see models defined under P measure as well as Q. The models
we will be reviewing cover continuous time mean-reverting models and stochastic volatility
models that inspire our research. In particular, in section 2.1, we focus on one-factor models,
i.e. with only the asset price as the stochastic factor. In section 2.2, we review models that has
a stochastic volatility component, hence two factors. In section 2.3, we provide an overview of
models in a multidimensional setting.

Discrete time stochastic volatility models such as ARCH and GARCH models are also es-
sential in modelling volatility in econometrics. A continuous limit of GARCH models are also
studied in e.g [111] [25] [50]. The continuous limit of GARCH(1,1) model found in [111] has
a mean-reverting stochastic variance process that drives by an independent Brownian motion,
which is different from the original GARCH(1,1) process in which case both the asset pro-
cess and the stochastic variance process are driven by the same white noise. Even though the
stochastic variance process has mean-reverting property, unlike the CIR process considered in
Heston model [80], it does not preserve positivity. For higher order of GARCH(p, q) when
p > 1, q > 1, it adds more complexity with more parameters to estimate. For these reasons, we
do not consider GARCH family and its continuous time limit in this thesis.

2.1 One-Factor Mean-Reverting Models
In this section, we review five fundamental continuous-time mean-reverting models. These
models have either constant volatility or constant elasticity of variance (CEV, local volatility),
e.g. they do not use a separated correlated process as a driver for the instantaneous volatility.
What all these models have in common is that the asset price is driven by a single stochastic
process. We will review models with one more stochastic process that drives the stochastic
volatility in section 2.2.

2.1.1 One-Factor Schwartz Model
Schwartz [122] proposed three models to study commodity prices, one of which (the one-
factor) assumes the logarithm of the spot price of the commodity follows a mean-reverting
process of O-U type. The first model is a simple one-factor O-U process driving the logarithm
of commodity prices as the factor; the second model adds convenience yield of the commodity
as the second factor besides the log of the commodity price; the third model includes stochastic
interest rates as an additional factor. The one-factor Schwartz model can be also considered to
model volatility indexes in that volatility indexes have the same mean-reverting property and
positivity as commodity prices.
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Assume the asset price follows the stochastic process on a probability space (Ω,F , (Ft)t≥0,P)
under historical measure P:

dX(t)
X(t)

= (L − βln(X(t)))dt + σdWP(t).

β, L and σ are positive constants. Let Y(t) = ln(X(t)) then we obtain the process for Y(t) by
Ito’s lemma:

dY(t) = (L∗ − βY(t))dt + σdWP(t),

L∗ = L −
σ2

2
.

We can see that Y(t) is a standard O-U process with β measuring the mean-reverting speed and
L∗
β

indicating the long-run average of the asset price. σ is the volatility parameter. Hence, Y(t)
is a normally distributed random variable with mean and variances [122]:

E(Y(t)|Y(0)) = e−βtY(0) + (1 − e−βt)
L∗

β
,

Var(Y(t)|Y(0)) =
σ2

2β
(1 − e−2βt),

while the covariance between two times (autocovariance) is,

Cov(Y(t),Y(s)) =
σ2

2β

(
e−β|t−s| − e−β(t+s)

)
.

It directly follows that X(t) has lognormal distribution whose mean and variance can be ob-
tained from those of Y(t).

The models to be discussed in the following were originally developed for the term struc-
tures of interest rates and commodity prices. Since interest rates (non-negative) and volatility
indexes share mean-reverting and non-negative properties, these models can also be applied in
modeling volatility indexes.

2.1.2 Cox-Ingersoll-Ross Model
Cox et.al [38] developed a model (“CIR”) that is defined by the following stochastic differential
equation for X(t) on a probability space (Ω,F , (Ft)t≥0,P) under historical measure P:

dX(t) = κ(θ − X(t))dt + σ
√

X(t)dWP(t).

κ and θ are strictly positive constants, which determine the speed of mean reversion and the the
long term mean of X(t), respectively. σ > 0 is the volatility of the process. W(t) is a standard
Brownian motion. An important condition (Feller condition) of the model is κθ ≥ σ2

2 which
ensures that the process remains positive. So the CIR model itself can be a good candidate to
model commodities and volatility indexes due to its positivity and mean-reverting properties.
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Cox et.al [38] also have shown that the conditional distribution of X(t) given X(0) is non-central
χ2, χ2[2cX(0); 2q + 2, 2u] with degrees of freedom 2q + 2 and parameter of noncentrality 2u,
where c = 2κ

σ2(1−e−κt) , u = cX(0)e−κt and q = 2κθ
σ2 − 1. The conditional characteristic function for

X(t) given X(0) can be obtained as follows, see [67]:

ψ(τ) = E(eiτX(t)|X(0)) =

(
1 −

σ2

2κ
(1 − e−κt)iτ

)− 2κθ
σ2

exp

 e−κtiτX(0)

1 − σ2

2κ (1 − e−κt)iτ

 .
The mean and variance can be calculated as:

E(X(t)|X(0)) = X(0)e−κt + θ(1 − e−κt),

Var(X(t)|X(0)) = X(0)(
σ2

κ
)(e−κt − e−2κt) + θ(

σ2

2κ
)(1 − e−κt)2.

An autocovariance expression is not given explicitly in the original CIR paper [38]. It is not
hard to derive the covariance formula for CIR process, see eg. [103]. For 0 ≤ s ≤ t:

Cov(X(t), X(s)) = X(0)(
σ2

κ
)(e−κt − e−κ(t+s)) + θ(

σ2

2κ
)(e−κ(t−s) − e−κ(t+s))

CIR model is not only used to model asset price or interest rates, it is also used to capture
the instantaneous variance in stochastic volatility models. For instance, the renowned Heston
model [80] assumes the variance of the equity process follows a CIR.

2.1.3 The 3/2 Process
Heston model has been proved to be able to capture many stylized facts observed in equity
option market and it is computationally tractable. However, in reality, Feller condition is not
always satisfied when calibrating on data as seen by Da Fonseca and Grasselli [39]. Heston
model is also not sensitive to high volatility-of-volatility because it assigns more weight to
lower and vanishing volatility as it predicts that the skew in equity option market will flatten
when the instantaneous volatility increases [76].

Heston [81] and Platen [117] independently developed a model for the instantaneous volatility
as the inverse of a CIR process, which is known as the 3/2 model, for the purpose of eliminating
the drawbacks of the original Heston model. Baldeaux and Platen [11] give a brief introduction
on 3/2 process. Goard et.al [74] applied this 3/2 process to model VIX and for pricing VIX
options.

Suppose X(t) is a 3/2 process on a probability space (Ω,F , (Ft)t≥0,P) under historical mea-
sure P, the dynamics is given by:

dX(t) = κX(t)(θ − X(t))dt + σX(t)
3
2 dWP(t).

Let X̄(t) = 1
X(t) , we recover the “underlying” CIR process by Ito’s lemma:

dX̄(t) = (κ + σ2 − κθX̄(t))dt − σ
√

X̄(t)dWP(t).
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If we rearrange the parameters in the dX̄(t) expression: κ̃ = κθ, θ̃ = κ+σ2

κ̃
and σ̃ = −σ, then X̄(t)

is a CIR process. So the conditional distribution of X̄(t) is non-central chi-square. We can find
the mean and variance of X(t) given its relationship to X̄(t). There are methods available to find
inverse moments of non-central chi-square random variables analytically [115] or asymptoti-
cally [68]. Let X ∼ χ2(n, λ), a general formula for E(Xs), s ∈ R, s > −n

2 is provided in [115]
as:

E(Xs) =

∫ ∞

0
xs fX(x)dx = 2s

∞∑
i=0

ωi,λ
Γ(n

2 + i + s)
Γ( n

2 + i)
,

ωi,λ is the probability mass function of a Poisson random variable with parameter λ
2 .

Even though an expression to calculate the moments of 3/2 process is given above, there is
no closed-form c.f. available for us to apply FFT option pricing method [29] directly. Thanks
to the relationship between 3/2 process and CIR process, the best way to handle a 3/2 process
is via CIR process as Goard et.al did in pricing options with 3/2 process [74] as the underly-
ing process. Hence, we can infer the statistical properties of 3/2 process with the help of CIR
process.

2.1.4 The Hull-White Model
Hull and White [84] proposed two models to be consistent with current term structure of in-
terest rates and the current volatilities of all interest rates. Their work is an extension of
Vasicek [126] model and CIR [38] model. Vasicek and CIR models on a probability space
(Ω,F , (Ft)t≥0,P) under historical measure P can be summarized in one expression as:

dX(t) = κ(θ − X(t))dt + σX(t)adWP(t).

When a = 0, it becomes a Vasicek model; when a = 0.5, it is a CIR model. Other parame-
ters κ, θ and σ are positive constants controlling mean-reverting speed, long-run average and
volatility. The disadvantages of these two models, as critiqued by Hull and White, “are that
they involve several unobservable parameters and do not provide a perfect fit to the initial term
structure of interest rates.” [84] Hull and White further assume time-dependent parameters with
an extra time-dependent drift term:

dX(t) = [b(t) + κ(t)(θ − X(t))]dt + σ(t)X(t)adWP(t).

The processes in the two models (a = 0 and a = 0.5) can be deduced from the term structure
of interest rates and the term structure of spot or forward interest-rate volatilities. The deter-
ministic functions b(t) and κ(t) of the process can be determined analytically in the case of
the extended Vasicek model (a = 0), and numerically in the case of the extended CIR model
(a = 0.5). σ(t) should be chosen to reflect the current and future volatilities of X(t) [84].

The distribution for extended Vasicek model (a=0) is normal. Since the parameters are time-
varying, the mean and variance depend on time. Let θ(t) = b(t) + κ(t)θ, then the above expres-
sion becomes:

dX(t) = (θ(t) − κ(t)X(t))dt + σ(t)dWP(t).
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Then,

X(t) = e−
∫ t

0 κ(s)ds[X(0) +

∫ t

0
e
∫ s

0 κ(u)duθ(s)ds +

∫ t

0
e
∫ s

0 κ(u)duσ(s)dWP(s)],

so, X(t) has the following moments conditional on X(0):

E(X(t)|X(0)) = e−
∫ t

0 κ(s)ds[X(0) +

∫ t

0
e
∫ s

0 κ(u)duθ(s)ds],

Var(X(t)|X(0)) = e−2
∫ t

0 κ(s)ds
∫ t

0
e2

∫ s
0 κ(u)duσ2(s)ds,

We can also find the autocovariance between X(t) and X(s) for s < t to be:

Cov(X(t), X(s)) = e−
∫ t

0 κ(u)du−
∫ s

0 κ(u)du
∫ s

0
e2

∫ u
0 κ(v)dvσ2(u)du.

One important limitation of this modelling, for a = 1/2, is the lack of closed-form expressions
for the conditional distribution, not only in terms of densities but also the lack of an analytical
moment generating function.

2.1.5 The Black-Karasinski Model
Black-Karasinski model [20] is a generalization of Black-Derman-Toy (“BDT”) model [19]
in continuous time as well as a special case of Hull and White model. BDT model has a
continuous time representation on the risk-neutral probability space (Ω,F , (Ft)t≥0,Q):

dln(X(t)) =

[
b(t) +

σ′(t)
σ(t)

ln(X(t))
]
dt + σ(t)dWQ(t).

where σ′(t) denotes first derivative.

Let φ(t) = −
σ′(t)
σ(t) , Black and Karasinski proposed their model as:

dln(X(t)) = φ(t)(ln(µ(t)) − ln(X(t)))dt + σ(t)dWQ(t).

µ(t) is defined as the “target interest rate” [20].

Black-Karasinski model has a similar form to the one-factor Schwartz model after log transfor-
mation, but it takes time-varying parameters instead of constants. We can obtain the Gaussian
distribution for ln(X(t)) given ln(X(0)) the same way as we did for Hull-White extended Va-
sicek model:

E(ln(X(t))|ln(X(0))) = e−
∫ t

0 φ(s)ds[ln(X(0)) +

∫ t

0
e
∫ s

0 φ(u)duµ′(s)ds],

Var(ln(X(t))|ln(X(0))) = e−2
∫ t

0 φ(s)ds
∫ t

0
e2

∫ s
0 φ(u)duσ2(s)ds

The autocovariance between ln(X(t)) and ln(X(s)) for s < t is:

Cov(ln(X(t)), ln(X(s)) = e−
∫ t

0 φ(u)du−
∫ s

0 φ(u)du
∫ s

0
e2

∫ u
0 φ(v)dvσ2(u)du.

where µ′(t) = φ(t)ln(µ(t)).
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2.2 Two-Factor Mean-Reverting Models
In this section, we review models with two stochastic factors driving the commodity or volatil-
ity index X(t). This is because usually a single process is not able to capture all the stylized facts
of a financial instrument. For example, Heston model [80] is able to reproduce the “smile” and
“skew” surface of implied volatility, which proves that the single factor Black-Scholes model is
not appropriate. So far, we have covered some CEV models in Section 2.1. It is common to as-
sume volatility as another stochastic factor that is driven by a different but correlated stochastic
process due to leverage effect, which refers to the negative correlation between an asset return
and its volatility. The models reviewed in this section are defined on the probability space
(Ω,F , (Ft)t≥0,P) with historical probability measure P.

2.2.1 One-Factor Schwartz Model with CIR Process for Volatility
The model is given by the following system of SDEs: dX(t)

X(t) = (L − βln(X(t)))dt +
√
ν(t)dWP(t),

dν(t) = α(θ − ν(t))dt + ξ
√
ν(t)dBP(t).

where α, θ and ξ are all positive constants with αθ ≥ ξ2

2 and < WP(t), BP(t) >= ρt, −1 < ρ ≤ 1.
Benth [16] briefly discussed about the distribution of Y(t) = ln(X(t)) with stochastic volatility
following a CIR process while assuming independence between WP(t) and BP(t). In this case,
the characteristic function of Y(t) is found to be:

E[exp(iτY(t))|Y(0)] = exp(iτ(e−βtY(0) + (1 − e−βt)
L
β

))E
[(
−

1
2
τ2

∫ t

0
ν(s)e−2β(t−s)ds

)]
. (2.1)

The expression involves an expectation term whose value is not possible to evaluate analyti-
cally. This is a similar problem as the one encountered in the Hull-White model with a = 1/2
where the parameters of the CIR process where time dependent. Also noted by Hikspoors
and Jaimungal [82], the existence of an analytic solution for the forward price with mean-
reverting spot dynamics with Heston model is “doubtful”. Benth further analyzed the structure
of Equation 2.1 and commented that it “is a Feynman-Kac solution of a partial differential equa-
tion...the coefficients in the solution will themselves be solutions of Riccatti equations which
seem difficult to solve analytically” [16]. Hence, both [16] and [82] do not provide analytic so-
lution to Equation 2.1. Considering the possibilities of future application to derivative pricing,
we have to overcome those shortcomings by using this model. For example, one solution is to
approximate E

[(
− 1

2τ
2
∫ t

0
ν(s)e−2β(t−s)ds

)]
by a closed form expression. We will explore such

approximation in chapter 3.

2.2.2 The Benth Model
Benth model is essentially a one-factor Schwartz model with the addition of stochastic volatil-
ity as a second factor. A Barndorff-Nielsen Shephard non-Gaussian O-U process [12] is delib-
erately chosen for the stochastic process so that the model has a simple structure and offers a
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flexible framework for modeling time dependence structures. Analytic pricing of some deriva-
tives is also possible, see [16].

Define the asset process:

dX(t)
X(t)

= (L +
ν2(t)

2
− βln(X(t)))dt +

√
ν(t)dWP(t),

then the process for Y(t) = ln(X(t)) is:

dY(t) = (L − βY(t))dt +
√
ν(t)dWP(t).

Next, we define the process for ν(t). First, define following O-U processes:

dZ j(t) = −γ jZ j(t)dt + dLPj (t), j = 1, . . . , n,

where γ j > 0 is constant, LPj (t) is an increasing and driftless Lévy process with Lévy measure
PL j . The process for ν(t) is defined as:

ν(t) =

n∑
j=1

w jZ j(t),

with the conditions that w j > 0 and
∑n

j=1 w j = 1. The case of n = 1 would lead to a two-factor
model, appropriate for this section. Any n > 1 would lead to multiple factors driving the vari-
ance and therefore a n + 1 factor model.

Recall the process we defined earlier for Y(t), Benth showed that Y(t) − L
β

is a sum of mean-
variance mixture models with limiting properties:

lim
t→∞
E(Y(t)) =

L
β
,

lim
t→∞

Var(Y(t)) = lim
t→∞
E[ν(t)]/2β.

These results match what we have for one-factor Schwartz models when constant parameters
are assumed if σ2 =: limt→∞ E(ν(t)). The autocovariance of Y(t) is proved to be:

Cov(Y(t),Y(t + τ)) = e−βτ
∫ t

0
E[ν(s)]e−2β(t−s)ds,

where ∫ t

0
E[ν(s)]e−2β(t−s)ds =

n∑
j=1

w j

[
Z j(0)γ

(
t; 2β, γ j

)
+

∫ ∞

0
l jdPL j

∫ t

0
γ
(
u; 2β, γ j

)
du,

]
with

γ
(
s; a, b

)
=

 1
a−b

(
e−bs − e−as), a , b

se−as, a = b
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2.3 4/2 Stochastic Volatility Models
In previous two section, we reviewed some important mean-reverting models in the literature.
These mean-reverting models lay the foundation for our development of novel mean-reverting
model in this thesis. Recently, a 4/2 stochastic volatility model has been studied, which expands
the renowned Heston family, demonstrating interesting properties and versatility. As the other
important component in our novel mean-reverting 4/2 stochastic volatility model, we introduce
this new member in Heston family and an innovation based on a mean-reverting model in this
section.

2.3.1 Grasselli’s 4/2 Model
Grasselli [76] proposed what he calls a “4/2” model that combines Heston model and 3/2
model. This model is proposed to solve issues faced by Heston and by 3/2 separately.

As we pointed out in chapter 1, an issue with Heston model is that it is not capable of mod-
eling extreme behaviors of stock prices. In these situations, Heston volatility process requires
high volatility-of-volatility parameter to capture the extreme behaviors, thus Feller condition is
likely violated. This explains why Heston model is not supported as evidenced in calibration
to market data exercises. On the other hand, 3/2 process admits extreme paths, therefore it
can capture the stylized facts such as steep “skew” due to abnormal movements in the stock
prices’ series. Despite the capability of modeling extreme behaviors in stock prices’ series, 3/2
process is also found to be “wild” and suffer computational difficulties [49]. The 4/2 model
incorporates both Heston and 3/2 models to resolve the issues Heston model and 3/2 model suf-
fer. Inspired by Grasselli’s 4/2 model, we extend this model to account for the mean-reverting
property so that it can also be applied to other markets like commodity market and volatility
index market. A detailed study of our mean-reverting 4/2 model will be performed in chapter 3.

In the original Heston framework, a geometric Brownian motion is assumed for the under-
lying, X(t), with stochastic volatility as a CIR process. In the 4/2 model, an extra inverse of
volatility term is added:  dX(t)

X(t) = rdt + (a
√
ν(t) + b

√
ν(t)

)dWQ(t),

dν(t) = α(θ − ν(t))dt + ξ
√
ν(t)dBQ(t).

a and b are some constants. α, θ and ξ are defined as usual for a CIR process. The Feller
condition is also required. WQ(t) and BQ(t) are defined on a probability space (Ω,F , (Ft)t≥0,Q)
with risk-neutral probability measureQ and 〈WQ(t), BQ(t)〉 = ρt. By defining underQmeasure,
it is straightforward to justify the existence of an equivalent Q measure by checking whether
the discounted price process is a true martingale. If the model is defined under historical mea-
sure, it takes redundant steps for the same purpose. When a = 0, this is the 3/2 model while it
becomes the Heston model when b = 0. When a and b are strictly positive, (a

√
ν(t) + b

√
ν(t)

) is

uniformly bounded away from 0 and also greater than
√

ab. This is a new feature that is not
presented in either Heston or 3/2 models. In fact, the discovery of this new feature is in line
with the stylized fact that volatility processes should not be too close to zero, see e.g. [71].
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Grasselli also discussed about a multifactor extension of 4/2 model taking a = (a1
′, 01×m),

b = (01×n,b2
′), ν(t) = (ν1(t)′, ν2(t)′)′ with a1, ν1(t), 01×n ∈ R

n and b2, ν2(t), 01×m ∈ R
m. The

processes ν1(t) and ν2(t) are independent, but they are correlated to (vector) Brownian motion
WQ

t in the usual way. In the simplest case, when m = n = 1, the model has the following
format: 

dX(t)
X(t) = rdt + a

√
ν1(t)dW1(t) + b

√
ν2(t)

dWQ
2 (t),

dν1(t) = α1(θ1 − ν1(t))dt + ξ1
√
ν1(t)dBQ1 (t),

dν2(t) = α2(θ2 − ν2(t))dt + ξ2
√
ν2(t)dBQ2 (t),

where WQ
1 (t) and WQ

2 (t) are independent, BQ1 (t) and BQ2 (t) are independent and 〈WQ
k (t), BQk (t)〉 =

ρkt, k = 1, 2. Since the CIR factor and 3/2 factor are independent, this model shares the same
limitations as the usual affine specification, that is the positive factors must be driven by in-
dependent noises, see [76]. Also note that this setting with two extra factors does not lead to
a closed-form characteristic function. Nonetheless, this setting offers more flexibility than a
single factor driving the volatility, which receives a comprehensive treatment in [76].

In the single factor case, an analytical conditional characteristic function is derived using Lie
symmetries for partial differential equations. The results is summarized in Proposition 3.1
in [76] and presented here for completeness.

ψ0,t(τ) = E
(
eτY(t)|Y(0)

)
= exp

{
τY(0) +

α2θ

ξ2 t + τ
(
r − ab −

aραθ
ξ

+
bρα
ξ

)
t + τ2(1 − ρ2)abt

}
·

( √
Aτ

ξ2sinh
( √Aτ

2 t
) )mτ+1

ν(0)
1
2 +

mτ
2 −

αθ

ξ2
−
τbρ
ξ

(
Kτ(t) −

τaρ
ξ

)−( 1
2 +

mτ
2 + αθ

ξ2
+
τbρ
ξ

)

· exp
{
ν(0)
ξ2

(
−

√
Aτcoth

( √Aτt
2

)
+ α − τaρξ

)} Γ
( 1

2 +
mτ

2 + αθ
ξ2 +

τbρ
ξ

)
Γ(mτ + 1)

· 1F1

(1
2

+
mτ

2
+
αθ

ξ2 +
τbρ
ξ
,mτ + 1,

Aτν(0)

ξ4sinh2( √Aτt
2

)
(Kτ(t) −

τaρ
ξ

)

)
,

where,

Aτ = α2 − 2ξ2
(
τ
(aρα
ξ
−

1
2

a2
)

+
1
2
τ2(1 − ρ2)a2

)
,

mτ =
2
ξ2

√(
αθ −

ξ2

2

)2
− 2ξ2

(
τ
(bρ
ξ

(
ξ2

2
− αθ

)
−

1
2

b2
)

+
1
2
τ2(1 − ρ2)b2

)
,

Kτ(t) =
1
ξ2

( √
Aτcoth

( √Aτt
2

)
+ α

)
,

(2.2)

and Γ(·), 1F1(·, ·, ·) denote the Gamma and hypergeometric confluent functions respectively.
The characteristic function is well defined for all t ≥ 0 when the complex number τ belongs to
the stripD0,+∞ = A0,+∞ + iR ⊂ C, whereA0,+∞ is given by:

A0,+∞ = {τ ∈ R : Aτ ≥ 0 and fi(τ), (i = 1, . . . , 4)},
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with

f1(τ) = τ
(aρα
ξ
−

1
2

a2
)

+
1
2
τ2(1 − ρ2)a2 −

α2

2ξ2 ≤ 0,

f2(τ) =
1
2

+
mτ

2
+
αθ

ξ2 +
τbρ
ξ

> 0,

f3(τ) =

(
αθ −

ξ2

2

)2

− 2ξ2
(
τ
(bρ
ξ

(
ξ2

2
− αθ

)
−

1
2

b2
)

+
1
2
τ2(1 − ρ2)b2

)
≥ 0

f4(τ) =
√

Aτ + α − τaρξ ≥ 0.

When t < ∞, τ ∈ D0,t = A0,t+iRwithA0,t = {τ ∈ R : Aτ ≥ 0 and fi(τ), (i = 1, . . . , 3) and f4(τ) <
0}. Then there exists a maximal (explosion) time t∗ given by:

t∗ =
1
√

Aτ

log
(
1 −

2
√

Aτ

α − τaρξ +
√

Aτ

)
.

i.e when f1(τ) − f3(τ) are satisfied but f4(τ) < 0, there is a t∗ such that for t < t∗, Kτ(t) −
τaρ
ξ

remains positive, therefore ψ0,t(τ) is well defined. Grasselli also provides an exact simulation
approach for the 4/2 model. Exact simulation approach does not suffer the problem that a dis-
cretization approach normally does, which introduces a bias. A drawback of exact simulation
in the case of the 4/2 model is that it is time-consuming comparing to discretization. The goal
of this exact simulation approach is to simulate the pair (Y(t), ν(t)) for any t, hence producing
the distribution of the pair at any time. If we know the distribution of Y(t) conditional on ν(t)
and the distribution of ν(t), then we can sample (Y(t), ν(t)) exactly. Given ν(t) has non-central
χ2 distribution, the key step is to solve for the distribution of Y(t) given ν(t). Proposition 4.1
of [76] gives this special moment generating function:

E
(
euY(t)|ν(t)

)
= exp

{
uY(0) + u

(
r − ab −

aραθ
ξ

+
bρα
ξ

)
t + u2(1 − ρ2)abt

}
· exp

{
uaρ
ξ

(ν(t) − ν(0)) +
ubρ
ξ

log
ν(t)
ν(0)

}
·

√
Ausinh

(αt
2

)
αsinh

( √Aut
2

) e
ν(0)+ν(t)

ξ2

(
αcoth

(
αt
2

)
−
√

Aucoth
( √

Aut
2

))

·

I
2
ξ2

√(
αθ−

ξ2
2

)2
+2ξ2Bu

(
2
√

Auν(t)ν(0)

ξ2 sinh
( √

Aut
2

))
I 2αθ
ξ2
−1

(
2α
√
ν(t)ν(0)

ξ2 sinh
(
αt
2

) ) ,

with

Au = α2 − 2ξ2
(
u
(aρα
ξ
−

1
2

a2
)

+
1
2

u2(1 − ρ2)a2
)
,

Bu = u
(bρ
ξ

(
ξ2

2
− αθ

)
−

1
2

b2
)

+
1
2

u2(1 − ρ2)b2,
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where Iz(x) is the modified Bessel function of the first kind.

Grasselli puts a note on pricing using 4/2 model that a risk-neutral measure may not exist,
which is also the case for the 3/2 model. Further, he shows that if the discounted stock price
is a true martingale under (putative) risk-neutral measure, the process ν(t) has to satisfy Feller
condition under both historical and risk-neutral measure. At the end, the process ν(t) is discov-
ered to have different behavior at 0 under the two probability measures if:

2αθ + 2ρξb < ξ2 ≤ 2αθ.

Hence, risk-neutral pricing methodology is not applicable in this case, but one can still use
the Benchmark approach, which only assumes the existence of a numéraire portfolio for both
portfolio optimization and derivative pricing. Using the numéraire portfolio, derivative pricing
can be done with historical probability measure, thus it does not require a risk-neutral measure
to exist, see [10] for the theory of benchmark approaches to pricing.

2.3.2 Mean-Reverting 4/2 Stochastic Volatility Model with Time-Dependent
Parameters

The model considered in this section is a variation of the mean-reverting 4/2 stochastic volatil-
ity model that will be studied in detail in chapter 3. The model we present here is a partial
improvement as it allows for time-dependent parameters while imposing some structural condi-
tions. Let us define the process on the interval [0,T ] on the probability space (Ω,F , (Ft)t≥0,P):

dX(t)
X(t) =

[
L + c(t)

(
a
√
ν(t) + b

√
ν(t)

)2
− β(t)ln(X(t))

]
dt + g(t)

(
a
√
ν(t) + b

√
ν(t)

)
dWP(t),

dν(t) = α(θ − ν(t))dt + ξ
√
ν(t)dBP(t)

〈dWP(t), dBP(t)〉 = ρdt,

where a, b, L are arbitrary constants; α, θ, ξ are positive constants satisfying Feller condition:

αθ ≥ ξ2

2 , and −1 ≤ ρ ≤ 1; c(t) = 1
2g2(t) + c0, g(t) = exp

(∫ T

t
β(s)ds

)
and β(t) are deterministic

functions of time. Let Y(t) = ln(X(t)) then we have:

dY(t) =

[
L + c0

(
a
√
ν(t) +

b
√
ν(t)

)2
− β(t)Y(t)

]
dt + g(t)

(
a
√
ν(t) +

b
√
ν(t)

)
dWP(t)

Define Z(t) = Y(t) exp
(
−

∫ T

t
β(s)ds

)
then:

dZ(t) =

[
L + c0

(
a
√
ν(t) +

b
√
ν(t)

)2 ]
dt +

(
a
√
ν(t) +

b
√
ν(t)

)
dWP(t).

The SDE of Z(t) process represents the SDE of the log stock price in [76], which means we are

able to find a closed-form c.f. for Z(T ) conditional on Ft, i.e ψt,T (τ) = E
(
eτZ(t)|Ft

)
, by directly

using the results from [76] with L instead of r.
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A natural question is what the possible candidates for β(t) are. We propose two candidates
for β(s) in the examples below.

Example 1:

β(t) = β0 > 0
g(t) = exp ((T − t)β0)

Note in this example the speed of reversion β(t) is constant β0 but the volatility as controlled
by g(t) decreases with time since g(0) = exp (β0T ) is greater than g(T ) = 1, which seems
practically counterintuitive because the volatility should increase as clock tics, in other words,
we would expect the underlying asset price to be more volatile further into future due to uncer-
tainty becoming more obvious.

Example 2:

β(t) = β0 − β1t > 0 (with 0 ≤ β1 ≤
β0

T
)

g(t) = exp
(
(T − t)β0 −

(
T 2

2
−

t2

2

)
β1

)
In this example, the mean reversion speed decreases with time. On the other hand, we have
control on how ”slowly” the variance decreases with time from g(0) = exp

(
β0T − T 2

2 β1

)
to

g(T ) = 1 compared to Example 1. Note that an increase in β0 leads to drastic decrease in g(t),
hence a reduction of the volatility.

2.4 Multidimensional Models
In previous sections we review models for a single asset from the basic one-factor model with
constant volatility to complex stochastic volatility models with volatility as another stochastic
factor, and there is potential for more factors. In practice, when it comes to pricing multi-asset
options, this requires modeling joint behavior of many underlying assets with likely as many
extra factors. That is why we need to study multidimensional models.

In this section we first review some existing multidimensional models in sections 2.4.1-2.4.2.
We list some advanced models incorporating the newly developed 4/2 stochastic volatility in
section 2.4.3. The model introduced in section 2.4.3.1 has not been studied in details, but it can
be a topic for future research.

Similar to section 2.2, we define the following models on the probability space (Ω,F , (Ft)t≥0,P)
under historical measure P.

2.4.1 One-Factor Schwartz Model In Multi-dimension
Ware et.al [47] studied a portfolio with multiple commodities and the optimal allocation prob-
lem for such portfolio. A multivariate model based on one-factor Schwartz model [122] is
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proposed in the aforementioned paper. Such model has all the ingredients to be entertained in
the context of multiple volatility indexes.

Suppose we observe prices for n assets. We define the model as follows:

dXi(t)
Xi(t)

= (Li − βiln(Xi(t)))dt +
∑

j

ai jdWP
j (t), Xi(t) > 0, j = 1, . . . , n, (2.3)

where Xi(t) is the price for i-th asset; βi > 0 is the mean-reversion speed; Li
βi

is the long term
average of each Xi(t); WP

j (t) is standard Brownian motion and independent for all j; ai j is the
i j-th entry of volatility matrix Σ.

Define Yi(t) = ln(Xi(t)), then by Ito’s lemma Yi(t) is a standard O-U process in the follow-
ing form:

dYi(t) = βi(L∗i − Yi(t))dt +
∑

j

ai jdWP
j (t),

L∗i = Li −

∑
j

a2
i j

2βi
.

So Y(t) = (Y1(t), . . . ,Yn(t)) is a normally distributed random vector with mean and covari-
ance [47]:

E(Yi(t)) = e−βitYi(0) + (1 − e−βit)L∗i ,

Cov(Yi(t),Y j(t)) =

∑
k aika jk

βi + β j
(1 − e−(βi+β j)t).

It directly follows that X(t) = (X1(t), . . . , Xn(t)) is a multivariate lognormal random vector. The
mean and variance of Xi(t) can be calculated using the mean and variance of Yi(t).

2.4.2 General Multivariate One-factor Schwartz Model
The one-factor Schwartz model can be generalized to multidimensions in a way that allows for
asset i to influence the expected returns of asset j. Let us take Yi(t)=ln(Xi(t)) where Xi(t) is
either a commodity or a volatility index, the model would be:

dYi(t) = (Li −
∑

j

βi jY j(t))dt +
∑

j

ai jdWP
j (t), j = 1, . . . , n. (2.4)

The above models are present in Larsen’s paper [95] in the context of optimal investment
strategies in the international economy. The model is used to model short interest rates in two
countries.
In practice, one could have used the model for commodities or volatility indexes. For example,
one could use the following model for VIX and VIXC jointly:

d(ln(VIXt)) = (L1 − β11ln(VIXt) − β12ln(VIXCt))dt + a11dWP
1 (t) + a12dWP

2 (t), (2.5)

d(ln(VIXCt)) = (L2 − β21ln(VIXt) − β22ln(VIXCt))dt + a21dWP
1 (t) + a22dWP

2 (t). (2.6)
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Where L1, L2, β11, β12, β21 and β22 are all positive constants. a11, a12, a21 and a22 are entries
affecting Σ. The correlation between the volatility indexes of two countries (US and Canada in
the example) are incorporated in ai j for i, j = 1, 2. An important property of this model is that
the interdependence of the drift in volatility indexes across markets can be captured, namely
the spillover effects are taken into account for. Generally speaking, spillover effects refer to
the impact of one asset or underlying stock on the remaining assets/stocks in regards to trends
(drift) or the long term average of a second asset. We will emphasize the concept of spillover
effects again in chapter 5.

In such situation, depending on the relative effect that one index has on the other, we can
choose the drift parameters accordingly. In the example, Canadian market is tied to US mar-
ket, so VIX is more influential than VIXC. Hence, we can set β12 to 0, and (2.5) becomes a
standard O-U process. On the other hand, if we are interested in studying VIX and VSTOXX
(the volatility index for Euro STOXX 50) together, then β12 need not be 0 since US market
and European market are comparable, VIX and VSTOXX shall impact one another. It is also
assumed that

√
(β11 − β22)2 + 4β12β21 ≤ β11 + β22. This assumption is originally from [94] to

ensure that the eigenvalues of
(
−β11 −β12
−β21 −β22

)
are all negative so that the term structure does not go

to infinity. Later in Larsen’s paper, she shows that zero-coupon bond prices can go to infinity,
in finite time, without such assumption. In chapter 5, we also impose this assumption on our
model.

Nielsen and Saá-Requejo [113] proposed similar models in 1993 in a Cox-Ingersoll-Ross
framework. Larsen argued that “the reason for choosing a Gaussian setup instead of a CIR
setup is the tractability of a Gaussian model.” [95]. The argument again points to the limi-
tations of finding closed-form expressions for moment generating function in the context of
mean-reverting stochastic volatility models, obviously affecting larger dimensions.

2.4.3 General Multivariate Multifactor Models

In mathematical finance, factor models are used to explore the relationship between asset re-
turns and other market/risk factors. For example, the capital asset pricing model (CAPM) is a
one-factor model. The “one” here refers to the number of common factors excluding intrinsic
factor; therefore this is equivalent to a two-factor model in the language of this thesis. The
common factor in CAPM, called systematic factor, explains the dependence among stock re-
turns. Later, Fama and French [64] extend this basic model to include three common factors:
excess market return, stock size and book-to-market equity. These are discrete-time models
targeting the empirical discrete time data available, the power of these factors in explaining
stock returns are empirically studied via linear regression models in the literature.

The extension from discrete-time to continuous-time has been neglected in the literature. For
stochastic processes, one is not only interested in factors that explain the daily behaviour of
stocks, but also in terms of capturing the stylized facts reported on the assets under study. The
factors in the context of continuous-time stochastic process can be observable (extension of
CAPM) or unobservable (Factor Analysis), naturally they would be continuous-time stochastic
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processes themselves and could appear in nonlinear ways.

In previous sections we reviewed one-factor Schwartz model, which has only the asset price
as stochastic factor. Schwartz also proposes two-factor and three-factor models which in-
clude convenience yield and interest rate as, potentially unobservable/hidden, stochastic fac-
tors [122]. The well known Heston model is also a two-factor model with stock price and
volatility as factors. Although Heston outperforms the classic Black-Scholes model in produc-
ing “volatility smile” and “volatility skew/smirk”, it cannot “explain such largely independent
fluctuations in its level and slope over time” [36]. Christoffersen et.al [36] first performed a
principal component analysis on Black-Scholes’ implied variance data to investigate the factors
that determine the variation of the data. They found the first two of the four principal compo-
nents explain more than 95% of the variation. Furthermore, the authors found that the first
two principal components are highly correlated to volatility level and the slope of the smirk.
A simple stylized fact about volatility level and the slope of the smirk is that they are largely
independent. All the analysis point to a two-factor model which can capture the stylized fact.
the authors proposed a multifactor stochastic covariance model based on Heston model trying
to reproduce the shape and term structure of the “smirk”. This is an example of multiple unob-
servable stochastic factors been used to capture stylized facts of a single asset.

Similarly, the authors assume a Heston-type multifactor stochastic covariance model with
principal component analysis treatment for the purpose of modeling foreign exchange rates
in [41]. Escobar and Moreno further studied a multifactor Heston model with jumps in the
context of dynamic portfolio optimization [62]. Another direction of studying the structure
of multifactor covariance models is by applying principal component analysis techniques on
the stochastic covariance matrix, see for example [41] [60]. In [41], the authors consider a
similar setting to [36]. The methodology undertaken in [60] directly goes into the heart of
principal component–the authors decompose the covariance matrix using principal component
techniques yielding constant eigenvectors and stochastic eigenvalues. Structurally the diffu-
sions in [41] and [60] may seem the same; however, with the model in [60], we are able to
rewrite the original multifactor stochastic covariance model in terms of independent one di-
mensional processes (the principal components) as the eigenvectors contains the correlation
information among assets, which in fact reduces the dimension of the model in that theory de-
veloped for one dimensional model, in this case Heston, can be directly applied thanks to the
independence property.

In this section, we review advanced stochastic factor models in the spirit of [60] by assuming
advanced processes on the systematic risk factors, which accounts for the total common vari-
ance among the assets, and also advanced processes on the idiosyncratic factors. Generally, the
systematic risk is the risk that affects the market and it is therefore non-diversifiable. Without
the addition of the systematic factors, the variation of the model only comes from the assets
themselves. We assume no interaction between the systematic factor and the existing idiosyn-
cratic factors. See [32] for details.

We first provide the processes under the historical measure P. Suppose that Xt = (X1(t), ..., Xn(t))′
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is a vector of asset prices with the following P-measure representation:

dXi(t)
Xi(t)

=

Li + ci
∑p

j=1 a2
i j

(√
v j(t) +

b j√
v j(t)

)2

−
∑p

j=1 βi j ln(X j(t)) + c̃i

(
√

ṽi(t) + b̃i√
ṽi(t)

)2
 dt

+
∑p

j=1 ai j

(√
v j(t) +

b j√
v j(t)

)
dWPj (t) +

(
√

ṽi(t) + b̃i√
ṽi(t)

)
dW̃Pi (t)

dv j(t) = α j(θ j − v j(t))dt + ξ j
√

v j(t)dBPj (t), j = 1, ..., p

dṽi(t) = α̃i(θ̃i − ṽi(t))dt + ξ̃i
√

ṽi(t)dB̃Pi (t), i = 1, ..., n

The quadratic variation structure is
〈
dBPj (t), dWP

j (t)
〉

= ρ jdt,
〈
dB̃Pi (t), dW̃P

i (t)
〉

= ρ̃idt and zero
otherwise. In the language of factor analysis, ai j is the i jth entry of the matrix of factor loadings
(A) that captures the correlations among assets. The commonalities are represented by V j(t) =(√

v j(t) +
b j√
v j(t)

)2

(in matrix form, Λnxp = Adiag
(
V1/2

t

)
) and the intrinsic residual variance

is Ψ = diag(Ṽt), with Ṽ j(t) =
(√

ṽi(t) + b̃i√
ṽi(t)

)2
. This leads to a factor decomposition of the

quadratic variation of asset prices as follows:

Σtdt =
(
ΛΛ′ + Ψ

)
dt =

(
Adiag(Vt)A′ + diag(Ṽt)

)
dt

Note the correlation between assets is incorporated in ai j’s, See [32] and chapter 4 for more
details about this model. We include a spacial case in section 2.4.3.1 where the impact of in-
trinsic factor is ignored.

Whenever necessary, we assume n = p and A = (ai j)n×p to be an orthogonal matrix. In
this setting, ci and c̃i represent risk premiums of asset Xi(t) associated with the common and
intrinsic factors, respectively. β = (βi j)n×n is an invertible matrix, which captures the spillover
at the expected return level Xi(t) on asset X j(t). In other words, it represents the impact from
other assets on the long term average price of the current one.

Based on the quadratic variation relationship defined in this model, if we assume that BPj ,
BPj (t)

⊥, B̃Pi (t), B̃Pi (t)⊥ are independent Brownian motions with −1 ≤ ρ j ≤ 1 and −1 ≤ ρ̃i ≤ 1.
Then,

dWP
j (t) = ρ jdBPj (t) +

√
1 − ρ2

jdBPj (t)
⊥

dW̃P
i (t) = ρ̃idB̃Pi (t) +

√
1 − ρ̃2

i dB̃Pi (t)⊥.

v j j = 1, .., n and ṽi i = 1, .., n follow standard CIR processes, hence α j, θ j, and ξ j are positive

constants satisfying α jθ j ≥
ξ2

j

2 (the Feller condition). Similarly, α̃i, θ̃i, and ξ̃i are positive con-

stants satisfying α̃iθ̃i ≥
ξ̃i

2

2 . Note that the Feller condition guarantees that the CIR processes
remain positive and therefore the covariance matrix is definite positive.

The transformation Yt = ln(Xt) would create a multivariate Ornstein–Uhlenbeck process with
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a 4/2 stochastic factor structure:

dYi(t) =

Li +

(
ci −

1
2

) n∑
j=1

a2
i j

√v j(t) +
b j√
v j(t)

2

−

n∑
j=1

βi jY j(t) +

(
c̃i −

1
2

) (√
ṽi(t) +

b̃i
√

ṽi(t)

)2 dt

+

n∑
j=1

ai j

√v j(t) +
b j√
v j(t)

 dW j(t) +

(√
ṽi(t) +

b̃i
√

ṽi(t)

)
dW̃i(t)

To stay in line with [94] and [95], we enforce the same assumption that the eigenvalues of the
matrix 

−β11 · · · −β1n
...

. . .
...

−βn1 · · · −βnn


are all negative.

2.4.3.1 Special Case: No Intrinsic Factor

In this section, we introduce a model as a special case of our generalized mean-reverting 4/2
factor model. In this case, the only factors that impacts the asset are the common/idiosyncratic
factors, i.e Ψ = 0. This can be interpreted as a Principal Component model.

Suppose Xt = (X1(t), . . . , Xn(t))′ is a vector of assets, the dynamics of log price Yi(t) = ln(Xi(t))
is then:

dYi(t) =

[
Li + (ci −

1
2 )

n∑
j=1

a2
i j
( √

ν j(t) +
b j√
ν j(t)

)2
−

n∑
j=1
βi jY j(t)

]
dt +

∑n
j=1 ai j

( √
ν j(t) +

b j√
ν j(t)

)
dWP

j (t),

dν j(t) = α j(θ j − ν j(t))dt + ξ j
√
ν j(t)dBPj (t), j = 1, . . . , n.

(2.7)
For the covariance matrix Σt, the factor decomposition is therefore:

Σtdt = ΛΛ′dt = Adiag(Vt)A′dt

For example, we are modeling two assets leads to:

dX1(t)
X1(t)

=

[
L1 + a2

11c1
( √

ν1(t) +
b1
√
ν1(t)

)2
+ a2

12c1
( √

ν2(t) +
b2
√
ν2(t)

)2
− β11ln(X1(t)) − β12ln(X2(t))

]
dt

+ a11
( √

ν1(t) +
b1
√
ν1(t)

)
dWP

1 (t) + a12
( √

ν2(t) +
b2
√
ν2(t)

)
dWP

2 (t),

dX2(t)
X2(t)

=

[
L2 + a2

21c2
( √

ν1(t) +
b1
√
ν1(t)

)2
+ a2

22c2
( √

ν2(t) +
b2
√
ν2(t)

)2
− β21ln(X1(t)) − β22ln(X2(t))

]
dt

+ a21
( √

ν1(t) +
b1
√
ν1(t)

)
dWP

1 (t) + a22
( √

ν2(t) +
b2
√
ν2(t)

)
dWP

2 (t),

In this chapter, we have provided an overview on models that are related to this thesis. We
focused mostly on mean-reverting models as they are the fundamental models to this thesis.
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The majority of the models we covered are well-known. In cases like section 2.3.2, the model
is an extension of Grasselli’s 4/2 model, yet has not been studied. We entertain this extension
because it is a natural generalization of the 4/2 model with the potential of a closed-form c.f..
The challenge is, as we pointed out, how to determine the time-dependent coefficients such that
they are financially reasonable. The model discussed section 2.4.3 has been studied in a recent
paper by Cheng et.al [32]. The model introduced in Section 2.4.3.1 will be studied in details in
chapter 5.



Chapter 3

The Mean-Reverting 4/2 Stochastic
Volatility Model

In this chapter we define and study a stochastic process that combines two important stylized
facts of financial data: reversion to the mean, and a flexible generalized stochastic volatility
process: the 4/2 process. Our work is motivated by the modeling of at least two financial asset
classes: commodities and volatility indexes. Thus, we do not consider convenience yield in
our model since this is not a common property shared by all mean-reverting assets. Our model
targets a broad range of asset classes, not only commodities. We provide analytical expressions
for the conditional characteristic functions and closed-form approximations to relevant partic-
ular cases such as a mean-reverting Heston stochastic volatility model. The results also cover
feasible changes of measure with the final aim of pricing financial products. The empirical
analysis and the estimation methodology confirm the need of such a model in several examples
from the targeted asset classes. Applications to option pricing corroborate the substantial im-
pact on the implied volatility surfaces of the new parameters.

The chapter is organized in as follows: the models (Type I and Type II) and its main properties
and simulation are covered in section 3.1. We derive a semi-closed conditional characteristic
functions and provide closed-form approximations to the characteristic function in section 3.2.
We study feasible changes of measure in section 3.3. In section 3.4, we propose two estima-
tion methods, their performance is shown numerically and they are applied to several financial
time series. In section 3.5, we apply our model to the pricing of vanilla European call options
two different markets: VIX and Gold ETF (GLD) using simulation and Fast Fourier Transform
(FFT) approaches.

3.1 Definition and Properties

In this section, we first give the definition of the mean-reverting 4/2 stochastic volatility model
as well as volatility process and volatility-of-volatility process. We also derive a representation
for the leverage effect, which displays interesting property and coincides with empirical expe-
rience. Next, we outline the Euler discretization scheme for simulation of our model including
a discussion of other available discretization schemes.

46
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3.1.1 Model Specifications
We assume a probability space (Ω,F , (Ft)t≥0,P) with historical probability measure P. Our
model has the following representation: dX(t)

X(t) =
[
L + c

(
a
√
ν(t) + b

√
ν(t)

)2
− βln(X(t))

]
dt + (a

√
ν(t) + b

√
ν(t)

)dWP(t),

dν(t) = α(θ − ν(t))dt + ξ
√
ν(t)dBP(t).

(3.1)

where X(t) is represents the underlying asset price (commodity or volatility index); WP(t) and
BP(t) are correlated Brownian motions with < WP(t), BP(t) >= ρt; and a, b, L and c are arbitrary
constants. The positive constants α, θ and ξ satisfy Feller condition (Condition I): 2αθ ≥ ξ2.
When a = 0, b , 0, our model becomes a 3/2 model while a , 0, b = 0 leads to the 1/2
(Heston) model. When a and b are strictly positive, a

√
ν(t) + b

√
ν(t)

is uniformly bounded away

from 0 and is also greater than
√

ab.

Practitioners and researchers are also interested in the logarithm of asset price, especially in
commodity market. In fact, Schwartz’s models are developed based on what is known as expo-
nential O-U process: the logarithm of asset price takes normal O-U process. Let Y(t) = ln(X(t))
then we have:

dY(t) =

[
L + (c −

1
2

)
(
a
√
ν(t) +

b
√
ν(t)

)2
− βY(t)

]
dt + (a

√
ν(t) +

b
√
ν(t)

)dWP(t). (3.2)

Some stylized facts of our model are presented next. First, the variance,

V2(t) = a2ν(t) +
b2

ν(t)
+ 2ab (3.3)

is a combination of a 1/2 and 3/2 processes, both driven by ν(t), therefore it is also mean-
reverting, the volatility follows the SDE:

dV(t) =

{[ a
2
√
ν(t)
−

b

2ν
3
2 (t)

]
α(θ − ν(t)) + ξ2

[ 3b

8ν
3
2 (t)
−

a

8ν
1
2 (t)

]}
dt +

[aξ
2
−

bξ
2ν(t)

]
dBP(t).

Another byproduct of this model is that the variance of volatility, (ν
′

)2(t) =
ξ2

4

[
a − b

ν(t)

]2

, is a

fractional function of ν(t), which is also mean-reverting, the SDE of the volatility of volatility
is given next:

dν
′

(t) =
bξ

2ν2(t)
[αθ − ξ2 − αν(t)]dt +

bξ2

2ν
3
2 (t)

dBP(t) (3.4)

The leverage usually refers to the negative correlation between the return of the asset and the
change of asset volatility. In our case we obtain:

ρ0 = sign
(
a
√
ν(t) +

b
√
ν(t)

)
sign

([aξ
2
−

bξ
2ν(t)

])
ρ (3.5)
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Because ξ and ν(t) are positive, then Equation 3.5 is further simplified to:

ρ0 = sign
(
a +

b
ν(t)

)
sign

(
a −

b
ν(t)

)
ρ (3.6)

From Equation 3.5, we can see that the sign of leverage effect is determined by both sign
of volatility and sign of volatility of volatility, which is not surprising. From Equation 3.6,
it is clear that the sign of leverage effect changes over time whenever ν(t) crosses | ba |, this is
similar to Stein and Stein’s model [123]. The changing sign of leverage effect suggests that
the correlation between the return of the asset and the change of asset volatility is not always
negative over time, sometimes higher volatility leads to better return on asset. This coincides
with the fact that in the long run risky asset tends to generate higher payoff.

3.1.2 Model Simulation
There is rich literature on how to simulate Heston model, see [99] for a summary of discretiza-
tion schemes of a CIR process. Andersen[4] proposed two different discretization schemes for
volatility process in Heston model using moment-matching method. Other than discretization
methods, exact simulation methods are also available. Broadie and Kaya[24] first developed
an algorithm for exact simulation of CIR process. Inspired by Broadie and Kaya, Baldeaux[9]
proposed an exact simulation method for 3/2 process and Grasselli[76] included an exact sim-
ulation method for his 4/2 model. Exact simulation method requires a closed-form expression
for the characteristic function and does not work well when a full path of the volatility is re-
quired. Hence, we will use a discretization method for simulation.

It is widely agreed that traditional Euler-Maruyama scheme leads to negative values for CIR
process. In practice, two fixes are considered to solve this problem: absorption and reflec-
tion. In our case, absorption-like methods can not be considered as they may drive volatility
of underlying asset to infinity due to the 3/2 part. So we choose reflection method for variance
process and Euler-Maruyama scheme for underlying asset process. The discretization of ν(t)
and Y(t) for simulations looks as follow:

ν(t + ∆t)
′

= |ν(t)| + α(θ − |ν(t)|)∆t + ξ
√
|ν(t)|B∆t,

ν(t + ∆t) = |ν(t + ∆t)
′

|.
(3.7)

Y(t + ∆t) = Y(t) + (L + (c −
1
2

)
(
a
√
ν(t) +

b
√
ν(t)

)2
− βY(t))∆t +

(
a
√
ν(t) +

b
√
ν(t)

)
·
(
ρB∆t +

√
1 − ρ2B⊥∆t

)
.

(3.8)

where B and B⊥ are independent standard normal variables. As we mentioned at the beginning
of this section, exact simulation method generates better results than discretization; however,
due to the need of a characteristic function in closed form, it is not always possible for any
process to be simulated via an exact simulation method or does an exact simulation method
outperform discretization when Monte Carlo simulation is required. In our case, we find a
semi-closed form characteristic function for our model. Since there is an expectation term
which is not solved analytically, Monte Carlo method is still required for simulation even we
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reach an exact simulation scheme for our model. Hence, in our case an exact simulation method
does not show absolute advantage over discretization and Monte Carlo. We apply discretiza-
tion scheme to simulate our model and then use Monte Carlo for pricing purpose in section 4.

The study of convergence rate of the Euler scheme of our model itself can be an interesting
research topic, detailed discussion of the convergence rate is beyond the scope of this chapter.
However, we briefly touch on the known results of convergence rate for CIR process and Hes-
ton model and challenges in finding the convergence rate for our model.

Convergence rate has two categories: strong convergence and weak convergence. Strong con-
vergence refers to how fast an approximation converges to the true solution of the SDE on
average; weak converge concerns such convergence in the values some functions. A typical
example of weak convergence is studying how fast the option prices from simulation using Eu-
ler scheme converges to the prices evaluated from a closed-form solution if one exists. There
has been rich literature on the study of discretization schemes and their convergence rate for
CIR process, see [99] and [89] for a scan of methods in this area. According to [99] and [89]
and references therein, the strong convergence rate for certain CIR discretization schemes is
1
2 with conditions on the process coefficients. In particular, the discretization we choose is
shown to have weak convergence rate 1 and strong convergence 1

2 in Lp(p ≥ 2) sense under
a restrictive condition [46] [22]. In the case of Heston model, Lord et.al show that reflection
scheme has a weak order of convergence slightly under 1

2 . For our model, both strong and weak
convergence are difficult to show due to model complexity and theoretical limitations.

In the end, we would like to comment a little bit on [4] Truncated Gaussian (TG) and Quadratic
Exponential (QE) method. These two methods also discretize the variance process, but in a
way that is neither absorption nor reflection style. They are based on the idea of moment-
matching. For full details of algorithms for these two methods, please see [4]. Both methods
produce non-negative values and account for the density of CIR process, as commented by
Andersen, QE is accurate enough in practice. In our simulation, QE is also considered, but
this method should be used with caution. Since QE assigns a mass at origin, based on the
choice of parameters, there is probability that simulated variance can hit zero, even though
all positive values for variance are generated during our simulation process with parameters:
α = 1.8, θ = 0.04, ξ = 0.2,∆t = 0.001 and the switching rule 1.5.

3.2 Characteristic Function

In this section we present a semi-closed form solution for the conditional characteristic function
(c.f). Define Z(t) = eβtY(t). The dynamics of Z(t) follows Ito’s lemma:

dZ(t) =

[
Leβt + eβt(c −

1
2

)(a
√
ν(t) +

b
√
ν(t)

)2
]
dt + eβt(a

√
ν(t) +

b
√
ν(t)

)dWP(t). (3.9)
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In integral form:

Z(T ) = Z(t) +
L
β

(eβT − eβt) +

∫ T

t
eβs(c −

1
2

)(a
√
ν(s) +

b
√
ν(s)

)2ds +

∫ T

t
eβs(a

√
ν(s) +

b
√
ν(s)

)dWP(s)

(3.10)

The conditional characteristic function of Z(T ) given Ft is given by next proposition.

Proposition 3.2.1 Let Z(T ) follows Equation 3.10 then the c.f. has the following representa-
tion:

E(eiuZ(T )|Ft) =exp
{

iuZ(t) + iu
(
L −

aραθ
ξ

+
bρα
ξ

+ 2ab(c −
1
2

)
) (eβT − eβt)

β
− u2(1 − ρ2)

(e2βT − e2βt)ab
2β

}
× exp

{
−

iuaρeβt

ξ
ν(t) −

iubρeβt

ξ
ln(ν(t))

}
× E

[
ν(T )−Aexp

{
− Bν(T ) −C

∫ T

t
eβsln(ν(s))ds

−

∫ T

t

(
Deβs + Ee2βs) 1

ν(s)
ds −

∫ T

t

(
Feβs + Ge2βs)ν(s)ds

}∣∣∣∣∣Ft

]
.

where,

A = −
iubρ
ξ

eβT , B = −
iuaρ
ξ

eβT ,C =
iubρβ
ξ

,D = −
iubρ
ξ

(
ξ2

2
− αθ

)
− iub2(c −

1
2

),

E =
1
2

u2(1 − ρ2)b2, F =
iuaρ(β − α)

ξ
− iua2(c −

1
2

),G =
1
2

u2(1 − ρ2)a2.

(3.11)

See the proof in the Appendix.

The characteristic function involves an expected value with respect to only one Brownian mo-
tion (B(t)), i.e. the second Brownian W(t) is eliminated. Therefore it constitute a simplification
as oppose to the original expectation; however, the conditional expectation term in the ex-
pression can not be solved analytically due to its complex structure. In the next section, we
propose approximation approaches to the conditional expectation term so that the semi-closed
characteristic function can be approximated by an analytical expression.

3.2.1 Approximation to Characteristic Function
In this section, we propose two approaches and apply them to two scenarios in which the semi-
closed characteristic function can be approximated by an analytic formula that is available in
literature. Then we show the goodness of our approximation approaches by showing the den-
sity functions obtained via inversion of the true and approximated characteristic functions.

Two reasons lead to this semi-closed c.f. First, the expectation of integrated CIR process with
time dependent factor is not easy to solve analytically [16]. Second reason, integrated log of
CIR process with time-dependent factor has not been studied in the literature. Grasselli [72]
offers a solution to his geometric 4/2 process, but there is no integrated log of CIR process
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involved in the conditional expectation that needs to be solved.

Hence, we propose two approximation approaches to approximate the integrals
∫ T

t

(
Deβs +

Ee2βs) 1
ν(s)ds and

∫ T

t

(
Feβs + Ge2βs)ν(s)ds so that we can apply existing analytical expressions

to approximate our c.f. We will show our approximations for cases ρ = 0, b , 0; b = 0, ρ , 0;
and b = 0, ρ = 0.

We propose midpoint approximation approach and average approximation approach. The goal
is two approximate the time-dependent factors by a constant. We will show numerically the
performance of our approximation approaches.

• Midpoint Approximation: g1(t) and g2(t) are bounded functions on [t,T ], so the inte-
grals are bounded by:

min
[t,T ]

(g1(s))
∫ T

t

1
ν(s)

ds ≤
∫ T

t
g1(s)

1
ν(s)

ds ≤ max
[t,T ]

(g1(s))
∫ T

t

1
ν(s)

ds,

min
[t,T ]

(g2(s))
∫ T

t
ν(s)ds ≤

∫ T

t
g2(s)ν(s)ds ≤ max

[t,T ]
(g2(s))

∫ T

t
ν(s)ds,

then we approximate the integrals by the midpoints:∫ T

t
g1(s)

1
ν(s)

ds ≈ m
∫ T

t

1
ν(s)

ds,∫ T

t
g2(s)ν(s)ds ≈ n

∫ T

t
ν(s)ds,

where,

m =

min
[t,T ]

(g1(s)) + max
[t,T ]

(g1(s))

2
, n =

min
[t,T ]

(g2(s)) + max
[t,T ]

(g2(s))

2

• Average Approximation: In last example we claim that g1(t) and g2(t) are bounded
functions and deduce m and n as midpoints. Average is also a choice for approximation.
We approximate our target integrals by averages as:∫ T

t
g1(s)

1
ν(s)

ds ≈
1

T − t

∫ T

t
g1(s)ds

∫ T

t

1
ν(s)

ds = m
∫ T

t

1
ν(s)

ds∫ T

t
g2(s)ν(s)ds ≈

1
T − t

∫ T

t
g2(s)ds

∫ T

t
ν(s)ds = n

∫ T

t
ν(s)ds

where,

m =
1

T − t

[D′

β
(eβT − eβt) +

E′

2β
(e2βT − e2βt)

]
,

n =
1

T − t

[F′

β
(eβT − eβt) +

G′

2β
(e2βT − e2βt)

]
.



52 Chapter 3. TheMean-Reverting 4/2 Stochastic VolatilityModel

3.2.1.1 No Correlation

The first scenario we will study is no correlation between W(t) and B(t). When ρ = 0, Formula
3.11 reduces to a simpler expression:

E(eiuZ(T )|Ft) =exp
{

iuZ(t) + iu
(
L + 2ab(c −

1
2

)
) (eβT − eβt)

β
− u2 (e2βT − e2βt)ab

2β

}
× E

[
exp

{
−

∫ T

t

(
D′eβs + E′e2βs) 1

ν(s)
ds −

∫ T

t

(
F′eβs + G′e2βs)ν(s)ds

}∣∣∣∣∣Ft

]
.

where,

D′ = −iub2(c −
1
2

), E′ =
1
2

u2b2, F′ = −iua2(c −
1
2

),G′ =
1
2

u2a2.

(3.12)

It is a shown in Grasselli [76] that the conditional expectation of the form E
[
exp

{
−m

∫ T

t
1
ν(s)ds−

n
∫ T

t
ν(s)ds

}∣∣∣∣∣Ft

]
has an analytical solution for constants m > − (2αθ−ξ2)2

8ξ2 and n ≥ − α2

2ξ2 . Hence,

we aim to approximate the integrals
∫ T

t

(
D′eβs + E′e2βs) 1

ν(s)ds and
∫ T

t

(
F′eβs + G′e2βs)ν(s)ds as

follows: ∫ T

t

(
D′eβs + E′e2βs) 1

ν(s)
ds ≈ m

∫ T

t

1
ν(s)

ds, (3.13)∫ T

t

(
F′eβs + G′e2βs)ν(s)ds ≈ n

∫ T

t
ν(s)ds, (3.14)

such that c.f can be approximated by an analytical function. Let g1(s) = D′eβs + E′e2βs and
g2(s) = F′eβs + G′e2βs, we approximate g1(s) and g2(s) on interval [t,T ] by m and n for some
s1, s2 ∈ [t,T ] respectively. The expectation term in the characteristic function can be approxi-
mated by a function described by following proposition:

Proposition 3.2.2

E
[
exp

{
−

∫ T

t

(
D′eβs + E′e2βs) 1

ν(s)
ds −

∫ T

t

(
F′eβs + G′e2βs)ν(s)ds

}∣∣∣∣∣Ft

]

≈

(
γ(T, ν(t))

2

)k+1

ν(t)−
αθ

ξ2 K(T )
−

(
1
2 + k

2 + αθ

ξ2

)
e

1
ξ2

(
θ(T−t)−

√
Hν(t)coth

(
√

H(T−t)
2

)
+αν(t)

)
Γ

(
1
2 + k

2 + αθ
ξ2

)
Γ(k + 1)

× 1F1

(1
2

+
k
2

+
αθ

ξ2 , k + 1,
γ(T, ν(t))2

4K(T )

)
,

k =
1
ξ2

√
(2αθ − ξ2)2 + 8mξ2,H = α2 + 2nξ2, γ(T, ν(t)) =

2
√

Hν(t)

ξ2sinh
( √

H(T−t)
2

) ,
K(T ) =

1
ξ2

(√
Hν(t)coth

( √H(T − t)
2

)
+ α

)
.

(3.15)
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3.2.1.2 Schwartz Model With Heston Stochastic Volatility

In this section we study the scenario where there is no 3/2 diffusion term, but W(t) and B(t)
are correlated i.e b = 0, ρ , 0. We follow the approximation approaches introduced in Section
3.2.1.1. In this case, the characteristic function can be approximated by following function:

Proposition 3.2.3

E(eiuZ(T )|Ft) ≈exp
{

iuZ(t) + iu
(
L −

aραθ
ξ

) (eβT − eβt)
β

}
× exp

{
−

iuaρeβt

ξ
ν(t)

}
×

( (Bξ2 + α)(e
√

A(T−t) − 1) +
√

A(e
√

A(T−t) + 1)

2
√

Ae
√

A+α
2 (T−t)

)− 2αθ
ξ2

× e
ν(t)

(
(Bα−2n)(e

√
A(T−t)−1)−B

√
A(e
√

A(T−t)+1)

(Bξ2+α)(e
√

A(T−t)−1)+
√

A(e
√

A(T−t)+1)

)
where,

B = −
iuaρ
ξ

eβT , F =
iuaρ(β − α)

ξ
− iua2(c −

1
2

),G =
1
2

u2(1 − ρ2)a2, A = α2 + 2nξ2,

(3.16)

Value of n depends on the approximation method being chosen.

3.2.1.3 Schwartz Model with Heston Stochastic Volatility with No Correlation

In this section, we explore a special case in which there is no 3/2 diffusion term or correlation.
We will apply average approach to approximate the characteristic function. When b = 0, ρ = 0,
we have:

 dY(t) =
[
L + (c − 1

2 )a2ν(t) − βY(t)
]
dt + a

√
ν(t)dWP(t),

dν(t) = α(θ − ν(t))dt + ξ
√
ν(t)dBP(t).

(3.17)

Taking the transformation Z(t) = Y(t)eβt gives:

 dZ(t) =

[
Leβt + eβt(c − 1

2 )a2ν(t)
]
dt + eβta

√
ν(t)dWP(t)

dν(t) = α(θ − ν(t))dt + ξ
√
ν(t)dBP(t).

(3.18)
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The conditional characteristic function in this case is:

E(eiuZ(T )|Ft) =exp
{

iuZ(t) + iuL
(eβT − eβt)

β

}
× E

[
exp

{
−

∫ T

t

(
F′eβs + G′e2βs)ν(s)ds

}∣∣∣∣∣Ft

]
≈ exp

{
iuZ(t) + iuL

(eβT − eβt)
β

}
×

(
α(e

√
A(T−t) − 1) +

√
A(e

√
A(T−t) + 1)

2
√

Ae
√

A+α
2 (T−t)

)− 2αθ
ξ2

× e
ν(t)

(
−2n(e

√
A(T−t)−1)

α(e
√

A(T−t)−1)+
√

A(e
√

A(T−t)+1)

)
where,

F′ = −iua2(c −
1
2

),G′ =
1
2

u2a2, A = α2 + 2nξ2, n =
1

T − t

[F′

β
(eβT − eβt) +

G′

2β
(e2βT − e2βt)

]
Next exercise, we show that when β → 0, a = 1 and c = 0, the characteristic function of Z(T )
actually coincides with the characteristic function of Heston model. The characteristic function
of Z(T ) when β→ 0, a = 1, c = 0 and ρ = 0:

E(eiuZ(T )|Ft) =exp
{

iuZ(t) + iuL
(eβT − eβt)

β

}
× E

[
exp

{
−

∫ T

t

( iu
2

eβs +
u2

2
e2βs)ν(s)ds

}∣∣∣∣∣Ft

]
As β→ 0,

E(eiuZ(T )|Ft) =exp {iuZ(t) + iuL(T − t)} × E
[
exp

{
−

u2 + iu
2

∫ T

t
ν(s)ds

}∣∣∣∣∣Ft

]
.

The conditional expectation can be solved by Pitman and Yor’s [116]:

E(eiuZ(T )|Ft) =exp {iuZ(t) + iuL(T − t)} ×
(
α(e

√
A(T−t) − 1) +

√
A(e

√
A(T−t) + 1)

2
√

Ae
√

A+α
2 (T−t)

)− 2αθ
ξ2

× e
ν(t)

(
−(u2+iu)(e

√
A(T−t)−1)

α(e
√

A(T−t)−1)+
√

A(e
√

A(T−t)+1)

)
,

where

A = α2 + ξ2(u2 + iu)

Recall the characteristic function of Heston’s model:

ψt,T (u) = exp {iuY(t) + iur(T − t) + C(T − t, u) + D(T − t, u)ν(t)}

where,

C(T − t, u) =
αθ

ξ2

(α +
√
α2 + ξ2(u2 + iu))(T − t) − 2ln

(1 − ge−(T−t)
√
α2+ξ2(u2+iu)

1 − g

)
D(T − t, u) =

α +
√
α2 + ξ2(u2 + iu)

ξ2 ×
1 − e−(T−t)

√
α2+ξ2(u2+iu)

1 − ge−(T−t)
√
α2+ξ2(u2+iu)

g =
α +

√
α2 + αθ(u2 + iu)

α −
√
α2 + αθ(u2 + iu)
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See proof in Appendix that

ln
(
α(e

√
A(T−t) − 1) +

√
A(e

√
A(T−t) + 1)

2
√

Ae
√

A+α
2 (T−t)

)− 2αθ
ξ2

= C(T − t, u)

−(u2 + iu)(e
√

A(T−t) − 1)

α(e
√

A(T−t) − 1) +
√

A(e
√

A(T−t) + 1)
= D(T − t, u)

Back to approximation, when b = 0, it is not hard to see that as β→ 0, n→ F′ +G′. Under the
conditions that a = 1 and c = 0, we have n→ u2 + iu. Hence, as β→ 0, average approximation
is able to recover the characteristic function of Heston’s model when a = 1, ρ = 0 and c = 0. In
the next section, we study the goodness of our approximation approaches to the characteristic
function numerically by comparing densities via inversion of characteristic functions.

3.2.2 Characteristic Function Inversion Algorithm
• Step 1: Generate a vector U = [u1, u2, . . . , um−1, um] as well as simulate N paths of

Y(t) = [Y(t),Y(t1), . . . ,Y(tn−1),Y(T )] and N paths of V(t) = [ν(t), ν(t1), . . . , ν(tn−1), ν(T )]
using the simulation scheme (Equation 3.7 and Equation 3.8) introduced in Section 3.1.2.
Z(t) is obtained by multiplying Y(t) by eβT with T = t, t1, . . . , tn − 1,T . For approxima-
tions, no need to simulate, proceed to Step 3 directly.

• Step 2: For each element in U, compute the integrals
∫ T

t

(
D′eβs + E′e2βs) 1

ν(s)ds and∫ T

t

(
F′eβs + G′e2βs)ν(s)ds numerically using each path of V(t). We end up with two

vectors of length N each. Taking average of the sum of these vectors gives estimates of

E
[
exp

{
−

∫ T

t

(
D′eβs + E′e2βs) 1

ν(s)ds −
∫ T

t

(
F′eβs + G′e2βs)ν(s)ds

}∣∣∣∣∣Ft

]
.

• Step 3: Given characteristic function, density function is given by inverse Fourier trans-
form of characteristic function:

f (z|Ft) =
1

2π

∫ ∞

−∞

e−iuzE(eiuZ(T )|Ft)du.

From Step 1, we have N simulated values of Z(T ). To speed up the computation, we
draw (uniformly) a smaller sample of Z(T ) between min(Z(T )) and max(Z(T )). Then
we integrate numerically over U for every value in the new sample of Z(T ) to obtain the
density function.

Following the algorithm steps, we implement it in Matlab. Parameters used to generate the
density plots are summarized in Table 3.1. Starting point of Z(t) is log(0.22). 10000 paths of
length 251 are generated for Z(t). U is a vector consists of 500 points evenly distributed be-
tween -40 and 40. Figures 3.1 and 3.2 both show the densities as inverse Fourier transformation
of the characteristic function. A histogram is also included as reference. From the figures we
can see that as β gets larger, the goodness of approximation of both approaches decrease, but
at different speed. When β is close to 0, as expected, the approximated densities coincide with
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Table 3.1: Parameters for Density(t=0,T=1).

L β c α θ ξ a b ρ

log(0.22) (0.0001,0.5,2) (0,0.5) 17 0.0153 0.27 1 (0,0.1) (0,-0.6)

Figure 3.1: Density with Histogram

the true density. Midpoint approach fails to approximate the true density when β is 2. All of
the cases, only average approach gives the density that stays close to the true. In particular, the
true density greatly overlaps with the average approximation as shown in Figure 3.1. Overall,
the difference between true density and average approximation is negligible, and the actual size
of error will be assessed later.

3.3 Change of Measure
So far we have worked with the historical probability measure. However, this is not appro-
priate for option pricing according to the fundamental theorem of asset pricing. Therefore, in
this section we study two families of feasible changes of measure for our model, these families
come from specifications of the excess return.

Let (Ω,F , (Ft)0≤t≤T ,Q) denote a probability measure space where Q is equivalent to P. Let
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Figure 3.2: Density with Histogram

WQ(t) be a Wiener process under Q. Since our model consists of two processes (underlying
asset and volatility), we will explore change of measures with sound economical interpretation
and permitting for the processes to remain within the same family.

For convenience we split W(t) into two Brownian motions: B(t) and its orthogonal part B(t)⊥:
W(t) = ρB(t) +

√
1 − ρ2B(t)⊥. Using Girsanov’s theorem, we need to find a vector of processes

(γ(t), γ⊥(t)) that satisfy Novikov’s condition E[exp(1
2 (

∫ T

0
γ2(s)ds +

∫ T

0
(γ⊥)2(s)ds))] < ∞. In

such case we have: {
dBQ(t) = dB(t) + γ(t)dt,
dBQ(t)⊥ = dB(t)⊥ + γ(t)⊥dt.

The change of measure for Y(t) would be dWQ(t) = dW(t) + γ(t)′dt, where γ(t)′ = ργ(t) +√
1 − ρ2γ(t)⊥. The processes γ(t)′ and γ(t) can be seen as the market price of commodity

(volatility index) risk and market price of volatility risk for commodity (volatility of volatility
index) respectively. Let us now define g(ν(t)) = (a

√
ν(t) + b

√
ν(t)

)γ(t)′ which represents the
change in the drift of Y . The next proposition gives sufficient conditions for two feasible
changes of measure that are compatible with the financial literature. In particular, Options 1
and 2 prescribes a change of measure where the excess return of Y(t) (g(ν(t)) is proportional
to the variance of the underlying process (see [80]). On the other hand in Option 1 the excess
return of ν(t) i.e γ(t) = λ

√
ν(t) is proportional to itself, while in Option 2 it is constant.

Proposition 3.3.1 Let’s assume a, b non-zero, the following two changes of measure are well-
defined:
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• Option 1 γ(t) = λ
√
ν(t)

g(ν(t)) = Λ(a
√
ν(t) + b

√
ν(t)

)2

where (λ,Λ) shall satisfy the following constraints: I =

{
λ > −α

ξ

}
and II = {Λ3 < Λ < Λ4}

with Λ3 = max
[

1
a

(
− α

ξ
+ ρλ

)
,− 1
|b|

(αθ
ξ
−

ξ

2

)]
and Λ4 = min

[
1
a

(α
ξ

+ ρλ
)
, 1
|b|

(αθ
ξ
−

ξ

2

)]
Here the model under risk-neutral measure becomes: dX(t)

X(t) =
[
L + (c − Λ)

(
a
√
ν(t) + b

√
ν(t)

)2
− βln(X(t))

]
dt + (a

√
ν(t) + b

√
ν(t)

)dWQ(t)

dν(t) = (αθ − (α + λξ)ν(t))dt + ξ
√
ν(t)dBQ(t)

• Option 2 γ(t) = λ′
√
ν(t)

g(ν(t)) = Λ′(a
√
ν(t) + b

√
ν(t)

)2

where (λ′,Λ′) shall satisfy the following constraints: I =

{
− (αθ

ξ
−

ξ

2 ) ≤ λ′ ≤ 0
}

and II =

{Λ3 < Λ < Λ4} with Λ3 = max
[
− 1

b

(αθ
ξ
−

ξ

2 −ρλ
′
)
,− α
|a|ξ

]
and Λ4 = min

[
1
b

(αθ
ξ
−

ξ

2 +ρλ′
)
, α
|a|ξ

]
Here the model under risk-neutral measure is: dX(t)

X(t) =
[
L + (c − Λ′)

(
a
√
ν(t) + b

√
ν(t)

)2
− βln(X(t))

]
dt + (a

√
ν(t) + b

√
ν(t)

)dWQ(t)

dν(t) = (αθ − λ′ξ − αν(t))dt + ξ
√
ν(t)dBQ(t)

The change of measure we studied is different from [76]. In the aforementioned paper, the
stock price process is directly defined under the risk-neutral measure. The author checked
whether the discounted stock price is a true martingale. However, our model is defined under
historical measure and our change of measure is done by taking into account the market price
of risk and market price of volatility risk.

3.4 Estimation
In our model, there are nine parameters to be determined: L, c, β, a, b, α, θ and ξ plus corre-
lation ρ. For estimation we divide them into two groups: drift group (L, c, β, ρ) and volatility
group (a, b, α, θ, ξ) with the later being our main objective. Volatility index (eg. VIX and
VSTOXX) and commodities (eg. crude oil) are applications of our model, therefore we use
daily observations of VVIX, V-VSTOXX (the volatility of VSTOXX), OVX (volatility of oil
ETF, USO) and GVZ (volatility of gold ETF, GLD) to estimate parameters in volatility group
respectively. We use volatility indexes data and commodity price data for estimation of drift
group parameters. In section 3.4.1, we first estimate b, then propose two methods to estimate
the remaining parameters in the volatility group. We present a method to estimate parameters
in the drift group in section 3.4.2. In section 3.4.3 we show, via simulation, the consistency of
the estimator for volatility group parameters using the methods proposed in 3.4.1. In section
3.4.4, we estimate parameters in volatility group and drift group from empirical data.



3.4. Estimation 59

3.4.1 Estimation Method For Volatility Group

In our model, the observed volatility data is modeled by square root of Equation (3.3). Let
V(t) denote the observed volatility at time t with a = 1. By setting a = 1 we avoid a potential
“identifiability” problem (i.e infinitely many solutions for the pair (a, b)). We can then interpret
the volatility as “Heston plus a fraction of 3/2 model”. This way, the celebrated Heston model
becomes a benchmark model.

We first estimate b. From V2(t) = ν(t) + b2

ν(t) + 2b, one observes that the infimum value of V2(t)
occurs when the process ν(t) hits b. Using the fact that CIR processes can attain any strictly
positive barrier, with probability one (see eg. [3] and [108]), then we conclude b = min

0≤t<∞

V2(t)
4 ,

i.e. P( min
0≤t<∞

V2(t)
4 = b) = 1. Since the data is in discrete time, we propose the following estimator

for b: b̂ =
min

ti∈ΩT
V2(ti)

4 , where ΩT = {ti}
n
i=0, t0 = 0, tn = T . The consistency of this estimator is

studied numerically in the coming sections.

Next we consider two methods that involve moments to estimate the parameters in the volatil-
ity process.

Method 1
The first method starts by solving Equation (3.3) as a quadratic function of ν(t), which results

in two solutions. We use V(ti) and b̂ to calculate
√
ν̂±(ti) =

V(ti)±
√

V2(ti)−4b̂
2 . Then we use MLE

on ν̂+(ti) and ν̂−(ti) respectively to obtain two sets of estimates of α, θ and ξ: Θ̂+ = (α̂+, θ̂+, ξ̂+)
and Θ̂− = (α̂−, θ̂−, ξ̂−). A selection criteria to determine which one of Θ̂+ and Θ̂− is a better
candidate to estimate the true parameters Θ = (α, θ, ξ) is based on the observations and mo-
ments of V2(t).
We now use [38], the authors proved that as t → ∞, ν(t) is asymptotically gamma distributed
with shape parameter 2αθ

ξ2 and scale parameter ξ2

2α , 1
ν(t) is hence asymptotic inverse gamma dis-

tribution with corresponding paramters 2αθ
ξ2 and 2α

ξ2 . Since the moments of gamma distribution
and inverse gamma distribution are known, our selection criteria proceeds with calculation of
the following moments:

µ
′

1 = E
(
ν(t) +

b̂2

ν(t)

)
=

2αb̂2

2αθ − ξ2 + θ

µ
′

2 = E

{(
ν(t) +

b̂2

ν(t)

)2}
=

2αθ(2αθ + ξ2)
4α2 +

4α2b̂4

(2αθ − ξ2)(2αθ − 2ξ2)
+ 2b̂2

µ
′

3 = E

{(
ν(t) +

b̂2

ν(t)

)3}
=

2αθ(2αθ + ξ2)(2αθ + 2ξ2)
8α3 +

8α3b̂6

(2αθ − ξ2)(2αθ − 2ξ2)(2αθ − 3ξ2)
+ 3b̂2θ +

6αb̂4

2αθ − ξ2 ,

where we have used the moments up to third degree from gamma distribution and inverse
gamma distribution because we have three parameters to estimate. In order for the third mo-
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ment of inverse gamma distribution to exist, we need a condition:

2αθ ≥ 3ξ2, (3.19)

which we denote as Condition II. This condition is stronger than Condition I. Then we sub-
stitute Θ̂+ and Θ̂− for Θ in µ

′

1, µ
′

2 and µ
′

3 respectively, a candidate is determined by the set of
estimates that minimizes the objective function

F =

(
µ
′

1 −
1

n + 1

n∑
i=0

(V2(ti) − 2b̂)
)2

+

(
µ
′

2 −
1

n + 1

n∑
i=0

(V2(ti) − 2b̂)2
)2

+

(
µ
′

3 −
1

n + 1

n∑
i=0

(V2(ti) − 2b̂)3
)2

.

Remark: Because we can obtain Θ̂+ and Θ̂− from data directly, they may not satisfy Condition
II. In this case, one can use as many moments as feasible. For example, if the estimates only
satisfy Condition I, then the selection criteria only concerns µ

′

1.

Method 2
This method can be viewed as an improvement over Method 1. Unlike Method 1, we use
methods of moments by taking into account all three moments and imposing Condition II. We
estimate the parameters by minimizing F to find α̂, θ̂ and ξ̂ over the region 2αθ ≥ 3ξ2. The
optimization step is done numerically with initial values Θ̂+ and Θ̂− leading to two sets of
estimates. The set with smallest F value is our estimate for Θ.

The key of this method is that the series ν(t) + b2

ν(t) is weakly stationary and ergodic under
Condition II. [78] has shown stationarity and ergodicity are requirements for method of mo-
ments to ensure consistency. It is known that CIR process is stationary and ergodic as shown
in [38]. [2] examined conditions under which 3/2 process is stationary and ergodic, which re-
quires mean-reverting speed to be positive. Note in our case, the mean-reverting speed of 1

ν(t)

is αθ − ξ2. Hence, a condition for 1
ν(t) to be stationary and ergodic is:

αθ ≥ ξ2 (3.20)

denoted as Condition III. Condition III is stronger than Condition I but weaker than Condition
II. By Proposition 2.1.7 and Corollary 2.1.8 of [120], our process ν(t) + b2

ν(t) satisfies weak
stationary and ergodic hence we can ensure consistency via method of moments.
Remark: In both methods above we estimate b via b̂. We could have alternatively tried
estimating b via method of moments at the expense of much stronger condition 2αθ ≥ 4ξ2

(Condition IV).

3.4.2 Estimation Method For Drift Group
The method above provides us estimated volatility group parameters. Next, we use least
squares method to estimate parameters in drift group.
We first start with discretization scheme of Y(t) described in Equation (3.8) yielding:

yi = β1x1i + β2x2i + β3x3i + εi, i = 0, . . . , n
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where,

yi =
Y(ti+1) − Y(ti)
√
ν(ti) + b

√
ν(ti)

, x1i =
1

√
ν(ti) + b

√
ν(ti)

, x2i =
√
ν(ti) +

b
√
ν(ti)

, x3i =
Y(ti)

√
ν(ti) + b

√
ν(ti)

,

β1 = L∆t, β2 = (c −
1
2

)∆t, β3 = −β∆t.

εi = W(ti+1) −W(ti) is the error term with N(0,∆t) distribution. β1, β2 and β3 can be estimated
from data using least square method. Hence, the estimated drift group parameters follow as:
L̂ =

β̂1
∆t , ĉ =

β̂2
∆t + 0.5 and β̂ = −

β̂3
∆t .

To estimate ρ, we obtain a similar regression form for ν(t) process

vi = β4x4i + β5x5i + ε
′

i , i = 0, . . . , n

where,

vi =
ν(ti+1) − ν(ti)
ξ
√
ν(ti)

, x4i =
1
√
ν(ti)

, x5i =
√
ν(ti), β4 =

αθ

ξ
, β5 = −

α

ξ
.

ε
′

i = B(ti+1)−B(ti) is the error term. ρ is estimated as the correlation between two residual terms:
y − Xβ̂ and v − X̃β̃ where X = {x1, x2, x3}, β̂ = (β̂1, β̂2, β̂3)

′

, X̃ = {x4, x5} and β̃ = (β̂4, β̂5)
′

.

3.4.3 Simulation Results

In this section, we first show that b can be recovered as sample size increases. To show this,
we simulate time series of {V(ti)}i=n

i=0 with increment ∆t = 1
250 for different α, θ, ξ, b and n and

calculate b̂. Then we report the absolute error of |b̂ − b| versus n in Table 3.2. From Table 3.2
we can see that the absolute error decreases as n gets larger. This is a numerical indication that
b̂ is a consistent estimator for b. Second, we run 1000 simulations for each of sample sizes

Table 3.2: |b̂ − b| vs. n for different α, θ, ξ, b

(α, θ, ξ, b) n=1000 n=10000 n=100000 n=1000000
(18, 0.02, 0.3, 0.1) 0.015 0.0064 0.0028 0.0013
(15, 0.5, 1.5, 0.05) 0.0106 0.007 0.0043 0.0035

(1, 0.15, 0.3, 0.005) 0.0055 0.0015 7.2e-11 7.4e-9

1000, 10000, 100000 and 1000000 with true parameters α = 18, θ = 0.02, ξ = 0.3, b = 0.1 and
report the mean as well as standard errors (s.e) of the estimated parameters from Method 1 and
Method 2 in Table 3.3 and Table 3.4, respectively. We can see from both tables that, as sample
size gets larger, the estimated parameters get closer to the true value with smaller standard
deviation. As expected Method 2 has smaller bias for small sample sizes and converges faster
to the true parameters. The results confirm that under Condition II our method provide good
estimation of α, θ and ξ.
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Table 3.3: Simulation Results for α = 18, θ = 0.02, ξ = 0.3, b = 0.1 With Method 1

Sample Size n mean of b̂ s.e of b̂ mean of α̂ s.e of α̂ mean of θ̂ s.e of θ̂ mean of ξ̂ s.e of ξ̂
1000 0.1165 1.52e-4 22.4114 0.1146 0.3525 0.007608 1.408 0.02307

10000 0.1091 2.5e-5 18.7259 0.01313 0.0471 0.001046 0.4262 0.003072
100000 0.1051 4.74e-6 18.447 0.001166 0.0227 2.62e-6 0.3286 2.88e-5

1000000 0.1028 9.18e-7 18.081 1.03e-4 0.0215 5.02e-7 0.317 5.8e-6

3.4.4 Estimation With Empirical Data

In this section we will apply our estimation method to data. First, we estimate volatility group
parameters. We use four datasets: VVIX, V-VSTOXX , OVX and GVZ. The estimated param-
eters with standard errors (s.e) obtained from parametric bootstrap are summarized in Table
3.5. Next we estimate drift group parameters following the method described in section 3.4.2
as well as correlation parameter ρ. Here we use volatility index data (eg. VVIX) as well as
asset (index) data (VIX). Sample size of asset price data is tailored to meet the sample size of
volatility index data as asset price data are larger. Results, estimated parameters and p-values
are summarized in Table 3.7.

We can see from Table 3.5 that the results for VVIX and V-VSTOXX are comparable. Be-
cause b̂ is small for OVX and GVZ data, we could possibly ignore the 3/2 process component
of V(t) in which case our model becomes Schwartz one-factor model with stochastic volatility
(Schwartz Heston model), a popular model used in modeling commodity prices. This shows
that our estimation method is in line with empirical experience and our model is flexible that it
can capture different financial instruments with mean-reverting property. To compare, we also
include MLE estimators for OVX and GVZ data in Table 3.6. It can be seen that, the estimators
using our estimation approach with small b are close to MLE estimators.

From Table 3.7 we can determine the final models for all three datasets based on p-values.
Note for L, β and ρ, the hypothesis against 0 is tested; for c the hypothesis against 0.5 is tested.
So the final model for USO only has volatility component; models for VIX, VVIX and GLD
have non-zero drift component.

Table 3.4: Simulation Results for α = 18, θ = 0.02, ξ = 0.3, b = 0.1 With Method 2.

Sample Size n mean of b̂ s.e of b̂ mean of α̂ s.e of α̂ mean of θ̂ s.e of θ̂ mean of ξ̂ s.e of ξ̂
1000 0.1165 1.52e-4 22.1666 0.1164 0.2433 0.007773 1.1591 0.02709

10000 0.1091 2.5e-5 18.9948 0.011237 0.0266 2.85e-4 0.3584 9.78e-4
100000 0.1051 4.74e-6 18.175 9.94e-4 0.0228 2.88e-6 0.3326 3.35e-5

1000000 0.1028 9.18e-7 18.2613 1.33e-4 0.0214 4.91e-7 0.3157 5.2e-6
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Table 3.5: Estimated Volatility Group Parameters With Empirical Data

Data: VVIX Data: V-VSTOXX Data: OVX Data: GVZ
b̂ 0.0892 0.067 0.0053 0.002
Mean of b̂ (s.e) 0.104 (7.54e-5) 0.0848 (7.99e-5) 0.0061 (1.91e-5) 0.0026 (7.81e-6)
α̂ 17.00512 19.48345 3.6754 4.7937
Mean of α̂ (s.e) 18.691 (0.06836) 21.309 (0.05850) 4.09 (0.01806) 5.0976 (0.01977)
θ̂ 0.015293 0.00961 0.1472 0.0395
Mean of θ̂ (s.e) 0.0273 (9.51e-4) 0.0172 (4.28e-5) 0.1444 (3.54e-4) 0.0382 (7.62e-5)
ξ̂ 0.27014 0.21462 0.6006 0.2873
Mean of ξ̂ (s.e) 0.36 (0.001407) 0.315 (7.15e-4) 0.5946 (9.45e-4) 0.2876 (4.3e-4)

Table 3.6: MLE Estimates For OVX and GVZ Data

Data: OVX Data: GVZ
α̂ 3.9042 5.028
Mean of α̂ (s.e) 4.2791 (0.01785) 5.4036 (0.01878)
θ̂ 0.1530 0.0426
Mean of θ̂ (s.e) 0.1522 (4.02e-4) 0.0423 (9.33e-5)
ξ̂ 0.6849 0.4149
Mean of ξ̂ (s.e) 0.6848 (1.8e-4) 0.4149 (1.07e-4)

Table 3.7: Estimated Drift Group Parameters

Data L̂ p-value ĉ p-value β̂ p-vale ρ̂ p-value
VIX&VVIX -1.6411 0.44 -5.320 0.000145 3.7020 3.44e-5 -0.67 0
VSTOXX&VVSTOXX -7.060 0.044252 -1.580 0.360 5.4841 0.000483 -0.49 0
USO&OVX 0.0870 0.678 -0.579 0.313 -0.0376 0.793 -0.35 0
GLD&GVZ 3.7672 0.015 0.572 0.97 0.78 0.014 -0.08 0

3.5 Pricing Financial Derivatives

In this section, we price vanilla European call options based on our model for different assets:
VIX, USO Oil ETF and Gold ETF (GLD). We use the parameters estimated in section 3.4.4
and assume risk-free interest rate of 2%. Our purpose is to assess the effect of b (as a was set
to 1) on the price. We investigate whether the presence of b makes a difference by looking at
the absolute value of the relative change (ARC) in implied volatility (IV):ARC = |

IVb=0−IVb=b̂
IVb=b̂

|

for b = 0 against b = b̂ (Figure 3.3 and Figure 3.4). We also report the maximum absolute
value of the relative change in terms of option prices for completeness.

In section 3.5.1, we display how b affects the call option prices for VIX. In section 3.5.2,
we study the effect on call option prices for USO. In section 3.5.3, we compare two popu-
lar option pricing methods for GLD: Fast Fourier Transform (FFT) developed by Carr and
Madan [29] and Monte Carlo simulation in a special setting (Schwartz Heston model) where
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the characteristic function can be approximated by an analytical solution. We list in section 3.3
the options for change of measure. For illustration purpose we only consider Option 1 in this
section following [80].

3.5.1 Price VIX Call Options
Our model for VIX under risk-neutral measure is defined as:

dX(t)
X(t) =

[
(c − Λ)

(√
ν(t) + b

√
ν(t)

)2
− βln(X(t))

]
dt + (

√
ν(t) + b

√
ν(t)

)dWQ(t),

dν(t) = (αθ − (α + λξ)ν(t))dt + ξ
√
ν(t)dBQ(t),

dWQ(t)dBQ(t) = ρdt.

With the parameters obtained from section 3.4.1, we determine that I = {λ > −63} and II =

{−9.3 < Λ < Λ4} with Λ4 = min(63 − 0.67λ, 9.3). [37] find that market price of volatility risk
is negative. [51] assume the price to be -0.1 in their simulation. Λ, in this case, represents the
market price of volatility risk. Therefore, we price VIX options under two assumptions of Λ:
Λ = −0.1, 0. We then pick λ = −0.5, 0, 0.5 so that −0.1 ∈ II and 0 ∈ II. Strike prices are
0.2, 0.21, 0.22, 0.23, 0.24, 0.25 with expiry dates 0.2, 0.4, 0.6, 0.8 and 1 year assuming current
VIX at 0.22.
Implied volatilities are obtained by matching Black-Scholes option price formula with call
option prices then solving for the volatility parameter. In our case, the dynamics of Y(t) is an
O-U process if we assume constant volatility:

dY(t) = (L + (c − 0.5 − Λ)σ2 − βY(t))dt + σdWQ(t).

So we need to match call prices for VIX with a formula based on exponential O-U process.
[44] derived call option price formula for X(t) with strike price K and maturity T :

C(X(0),K) = e−rT
[
X(0)φT exp

{
θ(σ)
β

(1 − φT ) +
1
2

a2
T

}
N(d + aT ) − KN(d)

]
,

where,

φT = e−βT , θ(σ) = L + (c − 0.5 − Λ)σ2, aT =
σ√
2β

(1 − φ2
T )

1
2 ,

d =
1
aT

(
φT ln(X(0)) − ln(K) +

θ(σ)
β

(1 − φT )
)
.

and r is risk-free interest rate. We can extract implied volatilities from given call option prices
using this formula. When b = 0, we re-estimate volatility group parameters using MLE:
α̂ = 19.345, θ̂ = 0.8, ξ̂ = 1.617 and drift group parameters remain the same except correlation
ρ̂ = 0.76, then we calculate the implied volatilities. Figure 3.3 shows the surface of ARC. It
is observed from Figure 3.3 that λ = −0.5 results in larger ARC, in particular there could be
a difference of up to 4.5% in implied volatility and up to 20% in terms of call price due to a
wrong choice of model. Another observation is λ has greater impact than Λ.
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3.5.2 Price USO Call Options
From Table 3.7, the constrains on λ and Λ are: I = {λ > −3.21} and II = {Λ3 < Λ <
3.21 − 0.35λ} with Λ3 = max(−3.21 − 0.35λ,−60.13). Kolos and Ronn [91] showed that
market price of risk is positive for crude oil. In this case, Λ is the market price of risk and
we assume Λ = 0.05, 0.06. Doran and Ronn [48] found that market price of volatility risk is
negative for crude oil. Hence, we assume λ − 0.1,−0.15,−0.2. Note the values assumed for λ
and Λ satisfy the constrains. Strike prices range from $12 to $15. Expiry date setup is same as
above. We assume current value of USO is $13.
Implied volatilities are calculated based on following call option price formula:

C(X(0),K) = X(0)e−(r+Λσ2−0.5σ2)T N(d1) − Ke−rT N(d2),

where,d1 =
ln
(

X(0)
K

)
+(1−Λ)σ2T

σ
√

T
,d2 = d1 − σ

√
T . Next, we calculate implied volatilities for b =

0.0053 and b = 0, for the latter we re-estimate volatility group parameters using MLE: α̂ =

3.904, θ̂ = 0.153, ξ̂ = 0.685. Figure 3.4 shows the surface of ARC. The shape of the surface
in Figure 3.4 do not vary as much as they do in Figure 3.3 for different λ values. Figure 3.4
shows a difference, of up to 5% in implied volatility and up to 10% in terms of call price due
to a wrong choice of model (i.e. working with b = 0 instead of the true b).

3.5.3 Price GLD Options with Schwartz Heston Model
Since GVX data yields the smallest b that is negligible, we assume Schwartz Heston model
for GLD&GVX data and price GLD options accordingly. We first perform pricing via Monte
Carlo simulation. Then we apply the result given by Proposition 3.2.3 to perform FFT pricing
method and compare the results with simulation. We use parameters from Table 3.6 and Table
3.7; we also assume Λ = 0.25 and λ = 0.9.

We price GLD options based on following model:
dX(t)
X(t) =

[
L + (c − Λ)ν(t) − βln(X(t))

]
dt +

√
ν(t)dWQ(t),

dν(t) = (αθ − (α + λξ)ν(t))dt + ξ
√
ν(t)dBQ(t),

dWQ(t)dBQ(t) = ρdt.

So far we have done option pricing via Monte Carlo simulation. Pricing via simulation is a
fundamental approach that can be applied for all models; however, simulation scheme has to
be carefully chosen so that the discretized process converges to the continuous-time process.
In practice, option pricing using Fast Fourier Transform (FFT) is considered faster and more
robust than simulation provided an analytical characteristic function is available. In this sec-
tion, we compare two popular option pricing methods: FFT and Monte Carlo simulation under
risk-neutral measure Q.

A widely used FFT pricing formula was first introduced by Carr and Madan [29]. The for-
mula expresses the call option price as a function that involves the characteristic function of
log price Y(t). Carr and Madan’s method does not separate payoff from density, so it requires
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an exponential damping factor to ensure the integrability of option payoff. Lewis [96] further
proposed a generalized Fourier-transform approach to European options pricing. Both methods
require the conditional characteristic function of the underlying process to be known explicitly
or at least efficiently computed. Instead of introducing the damping factor, Lewis’s method
works with the region where the conditional characteristic function is defined. In this section,
we follow Carr and Madan’s framework but modify the formula a little bit since our character-
istic function and its approximations are based on Z(t) process instead of Y(t).

Suppose a given option with maturity T and strike K at given time t, t ≥ 0, whose payoff, P, is
a function of V(T ), i.e P = F(V(T )) (for a European call option P = F(V(T )) = (V(T ) − K)+).
Recall that Z(t) = eβtY(t) and Y(t) = ln(X(t)), so X(t) = exp(e−βtZ(t)), or we express X(t) as a
function of Z(t), i.e X(t) = g(Z(t)). Then we have the relationship between the payoff of the
VIX option and Z(T ):

P = F(g(Z(T ))) = G(Z(T )).

The price, C(t,T ), of the option is the conditional expected value of P under risk-neutral mea-
sure:

C(t,T ) = e−r(T−t)EQ(P|Ft)

= e−r(T−t)EQ(G(Z(T ))|Ft),

where r is the risk-neutral interest rate.

Let fT (z) be the risk-neutral density function of Z(T ) and the price at t = 0 be CT (k) = C(0,T ),
a function of strike price k with k = g−1(K) = eβT ln(K). By definition the characteristic func-
tion of Z(T ) is the Fourier transform of fT (z):

ψ(u) =

∫ ∞

−∞

eiuz fT (z)dz,

As we work on European call option on of VIX and Z(T ), hence the payoff function is:

P = G(Z(T )) = (exp(e−βT Z(T )) − exp(e−βT k))+.

So we have the option price expressed in terms of z:

CT (k) = e−rT
∫ ∞

k
(exp(e−βT z) − exp(e−βT k)) fT (z)dz. (3.21)

An issue with 3.21 is that the integral is not square integrable as k → −∞. To solve the problem,
Carr and Madan [29] modified the price by multiplying a damping factor eck to the price. Let
cT (k) denote the modified price, so:

cT (k) = eckCT (k).

Now we apply Fourier transform to cT (k):

ψ
′

(v) =

∫ ∞

−∞

eivkcT (k)dk,
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for v ∈ R. Then CT (k) is the inverse Fourier transform of cT (k):

CT (k) =
e−ck

2π

∫ ∞

−∞

e−ivkψ
′

(v)dv. (3.22)

The price being real implies that ψ
′

(v) is odd in its imaginary part and even in its real part [29].
We can also simplify CT (k) to be:

CT (k) =
e−ck

π

∫ ∞

0
e−ivkψ

′

(v)dv. (3.23)

If we can find an expression for ψ
′

(v), we can plug it into 3.23 to find the price numerically
using Fast Fourier Transform (FFT) algorithm. Therefore, we don’t need to worry about the
density function fT (z) in 3.21 as long as we have found the characteristic function for the un-
derlying process.

From above we have:

ψ
′

(v) = e−rT
∫ ∞

−∞

eivkeck
∫ ∞

k
(exp(e−βT z) − exp(e−βT k)) fT (z)dzdk

By Fubini’s Theorem:

ψ
′

(v) = e−rT
∫ ∞

−∞

( ∫ z

−∞

(exp(e−βT z) − exp(e−βT k))e(iv+c)kdk
)

fT (z)dz

= e−rT
∫ ∞

−∞

(e(e−βT +iv+c)z

iv + c
−

e(e−βT +iv+c)z

e−βT + iv + c

)
fT (z)dz

= e−(r+β)T
∫ ∞

−∞

e(e−βT +iv+c)z

c2 + e−βT c − v2 + (2c + e−βT )iv
fT (z)dz

=
e−(r+β)Tψ(v − i(e−βT + c))

c2 + e−βT c − v2 + (2c + e−βT )iv

ψ
′

(v) is now a function which involves the characteristic function of Z(T ). So the original price
CT (k) can be written as:

CT (k) =
e−ck

π

∫ ∞

0
e−ivk e−(r+β)Tψ(v − i(e−βT + c))

c2 + e−βT c − v2 + (2c + e−βT )iv
dv. (3.24)

Now we apply FFT to compute the price numerically. Assuming current GLD price is $120,
we set the strike prices $118, $119.4, $120.8, $122.2, $123.6, $125 with quarterly maturity
throughout a year i.e t = 0 and T ∈ [0.25, 0.5, 0.75, 1]. We calculate the absolute relative price
difference with respect to the prices from simulation and summarize our findings in Table 3.8.
From the table, we can see that option prices using FFT are less that 1% different from prices
from simulation in absolute value. The results, on the other hand, suggest that our approxima-
tion approach is able to capture the behavior of the characteristic function of Schwartz Heston
model. Hence, we can use FFT method to price options, which is faster than simulation.
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Table 3.8: Absolute Relative Price Difference: FFT vs. Simulation

Strike T=0.25 T=0.5 T=0.75 T=1
118 0.0027 0.0015 0.0035 0.005

119.4 0.0032 0.0021 0.0036 0.0056
120.8 0.0036 0.0026 0.0038 0.0063
122.2 0.0042 0.0032 0.004 0.0071
123.6 0.005 0.0038 0.0042 0.0079
125 0.0059 0.0046 0.0045 0.0087

3.6 Conclusion
In this chapter we define and show properties of a new model displaying mean-reversion and
stochastic volatility. We find a semi-analytic solution for the characteristic function. Even
though simulation is still required to find this characteristic function, the cost of computation is
greatly reduced from simulating two stochastic processes to one process (the underlying CIR
process that drives the stochastic volatility). The benefit of the semi-closed characteristic func-
tion becomes more significant in higher dimensions. We further propose two approximation
approaches to improve the computational efficiency of the characteristic function. The nu-
merical results are promising showing our approximation approaches perform well in a wide
parametric region, especially the average approach yields negligible approximation errors. We
are also the first proposing a method to estimate the parameters of the 4/2 family of stochastic
volatility models, the methods are simple and requires low computational power. From the ta-
bles in section 3.4.4, it can be seen that our estimation method, though biased for low sample,
still provides consistent estimates for the true parameters. By adding a 3/2 component in the
volatility, we generate more flexibility in our model than [16]. For volatility index markets
(VIX and VSTOXX) and for the commodity USO market, the effect of this 3/2 addition is
confirmed empirically and substantial in terms of impact on option pricing. Since our model
incorporates two models ( [122] and [76]), there could exist various applications to different
markets (eg. interest rate and exchange rate). Table 3.8 again supports the appropriateness
of our average approximation approach as the option prices from FFT method using approx-
imated characteristic function is close to the option prices from Monte Carlo simulation, the
absolute price difference is at 10−3 level. One exercise that is not demonstrated in this chap-
ter is revisiting estimation with approximated characteristic function and methods that depend
on closed-form characteristic functions. With semi-closed form characteristic functions, we
cannot use estimation methods such as efficient method of moments (EMM) [70], generalized
method of moments (GMM) [78] and quasi-maximum likelihood (QML) [110] [79], which
rely on analytic density/transition density functions. We will mention about this again in chap-
ter 5. The approximation approaches give us analytic functions, thus the EMM, GMM or QML
can be used and their performance can be evaluated against our proposed estimation method.
This is an interesting exercise for future research.



Chapter 4

Generalized Mean-Reverting 4/2 Factor
Model

Continuous-time stochastic covariance models are crucial in capturing many stylized facts in
financial data, from heteroscedasticity and fat tails to changing correlations and leverage ef-
fects. Early work in this field focused on discrete time models in the form of generalized
autoregressive conditional heteroskedasticity (GARCH) models (see [56]). The best-known
representatives in continuous time, are the stochastic Wishart family (see [75, 40]) and the
Ornstein–Uhlenbeck (OU) family (see [109]) of models, as well as general linear-quadratic
jump-diffusions (see [31]). These approaches are more realistic than the classical Black–
Scholes lognormal model, but they quickly become intractable as dimensions increase in terms
of the number of parameters and simulation paths, commonly known as the “curse of dimen-
sionality”. Recent papers (see [57, 41]) have presented models built from linear combination of
tractable one-dimensional counterparts. These models involve fewer parameters than Wishart-
or OU-type approaches, owing to a reduction in dimensionality while providing a closed-form
solution to financial problems.

In this chapter, we introduce a multivariate mean-reverting stochastic volatility factor model
that combines 1/2 (Heston-type, [80]) and 3/2 processes [117] for the modeling of volatility.
Such underlying volatility processes were coined 4/2 by [76]. In section 4.1, we give the
definitions of our model. Our model takes advantage of the factor structure in asset prices and
allows for a mean-reverting structure on the assets thereby aiming at capturing either multivari-
ate commodity behavior or multiple volatility indexes (see [73] for an alternative multivariate
non-mean-reverting generalization based on a pairwise-structure applied to the exchange-rate
market). In particular, our setting reduces the dimension of the parametric space which is a way
of controlling the “curse of dimensionality” making parameters identifiable and popular esti-
mation methods feasible. Secondly, the presence of independent common and intrinsic factors,
each with its own stochastic volatility, enables an elegant separable structure for characteristic
functions (c.f.s) and captures several stylized facts, such as: stochastic volatility, stochastic
correlation among stocks (see [56]), co-movements in the variances (see [45]), multiple factors
in the volatilities (see [36]) and stock correlations (see [40]). Thirdly, a factor representation
is compatible with economical interpretations, where common factors are exogenous variables
explaining financial markets, and intrinsic factors relate to companies’ intrinsic risks. Lastly,
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closed-form expressions are available for joint c.f.s; this is useful for derivative pricing and
risk management calculations via Fourier transformations, and it makes c.f.-based estimations
methods feasible (see [29] [69] [27]).

The rationale for a 4/2 volatility process rather than a 1/2 or 3/2 model is masterly presented
in [76] for a one-dimensional structure. For instance, as observed by the author, the 1/2 process
predicts that the implied volatility skew will flatten when the instantaneous volatility increases
(crises), while the 3/2 model predicts steepening skews. The empirical violation of the Feller
condition in the 1/2 model is also noted, which makes volatility paths stay closer to 0 for
a longer period than empirically supported, while the 3/2 model admits extreme paths with
spikes in instantaneous volatility. The two processes complement each other as they imply
very different dynamics for the evolution of the implied volatility surface. It stands to reason
that such a convenient underlying driver for multidimensional structures should be used to im-
prove not only marginal volatility behavior, but also the dependence structure.

In section 4.2, we obtain an analytical representation for the c.f. of the vector of asset prices,
which is in closed-form for non-mean-reverting nested cases. This type of c.f. is helpful for
derivative pricing purposes. We also produce a second conditional c.f. that can be used for
exact simulations of the non-mean reverting assets given the terminal volatilities, where the
latter can be simulated exactly via chi-squares. We identify a set of conditions that not only
produces well-defined changes of measure, but also avoids local martingales; hence, it can be
used for risk-neutral pricing purposes.

In section 4.3, our results are applied numerically to parameters inspired by commodity prices1.
There is a vast literature on commodity modeling (see, for instance, [122] [34], and more re-
cently [121]). In our numerical study, we investigated the impact of the new parameters (b,
the weight of 3/2 in the overall instantaneous volatility) on the shape of the implied volatility
surface. This chapter is a result of collaboration with Prof. Marcos Escobar-Anel and Yuyang
Cheng.

4.1 Model Description

Next, we define the model in a filtered probability space (Ω,F ,P, {Ft}t≥0) where F0 contains all
subsets of the (P−) null sets of F and {Ft}t≥0 is right-continuous. We first provide the processes
under the historical measure P, then followed by the processes under a (conveniently chosen)
risk-neutral measure Q. Suppose that Xt = (X1(t), ..., Xn(t))′ is a vector of asset prices with the

1This can also be applied to volatility indexes, such as those reported by the Chicago Board Options Exchange
(CBOE), which are clearly a mean-reverting asset class with stochastic volatility.
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following P-measure representation:

dXi(t)
Xi(t)
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 dt
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ṽi(t)dB̃Pi (t), i = 1, ..., n

The quadratic variation structure is
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j (t)
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= ρ jdt,
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dB̃Pi (t), dW̃P

i (t)
〉

= ρ̃idt and zero
otherwise. In the language of factor analysis, ai j is the i jth entry of the matrix of factor loadings
(A) that captures the correlations among assets. The commonalities are represented by V j(t) =(√

v j(t) +
b j√
v j(t)

)2

(in matrix form, Λnxp = Adiag
(
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t

)
) and the intrinsic residual variance is

Ψ = diag(Ṽt), with Ṽ j(t) =
(√
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)2
. This leads to a factors decomposition of the

quadratic variation of asset prices as follows:

Σtdt =
(
ΛΛ′ + Ψ

)
dt =

(
Adiag(Vt)A′ + diag(Ṽt)

)
dt

Whenever necessary, we assume n = p and A = (ai j)n×p to be an orthogonal matrix. In this
setting, ci and c̃i represent risk premiums of asset Xi(t) associated with the common and intrin-
sic factors, respectively. B = (βi j)n×n is an invertible matrix, which captures the spillover at the
expected return level Xi(t) on asset X j(t). In other words, it represents the impact from other
assets on the long term average price of the current one.

Based on the quadratic variation relationship defined in this model, if we assume that BPj ,
BPj (t)

⊥, B̃Pi (t), B̃Pi (t)⊥ are independent Brownian motions with −1 ≤ ρ j ≤ 1 and −1 ≤ ρ̃i ≤ 1.
Then,

dWP
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v j j = 1, .., n and ṽi i = 1, .., n follow standard CIR processes, hence α j, θ j, and ξ j are posi-

tive constants satisfying α jθ j ≥
ξ2

j

2 (the Feller condition). Similarly, α̃i, θ̃i, and ξ̃i are positive

constants satisfying α̃iθ̃i ≥
ξ̃i

2

2 . Note that the Feller condition in CIR model guarantees that the
process remains positive.

The transformation Yt = ln(Xt) would create a multivariate Ornstein–Uhlenbeck process with
a 4/2 stochastic factor structure:
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To stay in line with [94] and [95], we enforce the same assumption that the eigenvalues of the
matrix 

−β11 · · · −β1n
...

. . .
...

−βn1 · · · −βnn


are all negative.

This general model includes a notable particular case, which is a direct generalization of [76]
to a factor setting when βi j = 0, i, j = 1, .., n ; this case is studied in more detail and it is named
FG, given its analytical flexibility.

4.1.1 Special Case: No Intrinsic Factor
In this section, we introduce a model as a special case of our generalized mean-reverting 4/2
factor model. In this case, the only factor that impacts the asset is the common factor of the
asset i.e Ψ = 0.

Suppose Xt = (X1(t), . . . , Xn(t))′ is a vector of assets. The dynamics for each asset Xi(t) under
historical measure P is defined as:
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(4.1)
The dynamics of log price Yi(t) = ln(Xi(t)) is then:
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(4.2)
For the covariance matrix Σt, the factor decomposition is therefore:

Σtdt = ΛΛ′dt = Adiag(Vt)A′dt

For example, we are modeling two assets with SDE 4.1:
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4.2 Results
This section describes viable changes of measure and two key characteristic functions of the
targeted multivariate process; one for pricing and the other for simulations. The proofs are
presented in B.1.

4.2.1 Change of Measure

Here, we explore the topic of creating a risk-neutral measure Q for pricing purposes. As noted
by [76] [118] and [10] among others, a risk-neutral measure may not be supported by data in
the presence of a 3/2 model (e.g., 1

√
v(t)

), as the parametric constraints needed for the discounted
asset price process to be a Q- martingale are violated with real data; hence, we can only pro-
duce a strict Q-local martingale (i.e., Q would be absolute continuous but not equivalent to
P). In such situation, the standard risk-neutral pricing methodology would fail (biased prices),
and we have to turn to the benchmark approach for pricing (see [10]).

The next proposition entertains the following changes of measure with constant λ j, λ⊥j , λ̃i

and λ̃⊥i (see chapter 3 for other types of changes of measures) then identifies the parametric
conditions needed for the existence of a valid risk-neutral measure Q.
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Proposition 4.2.1 The change of measure is well-defined for pricing purposes under the fol-
lowing four conditions:
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Moreover, if βi j = 0 for i, j = 1, .., n, then the following must also be satisfied:
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Proof is included in Appendix.
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4.2.2 Characteristic Function

This section aims at obtaining an analytical representation for the c.f.. If Z(t) = eBtY(t) is
defined such that eBt is a matrix exponential, then Zi(t) is represented as:
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(4.8)

For convenience, we use
(
eBt

)
i j

as the i j component of the matrix eBt. Note that Zi(t) is no
longer a mean-reverting process although it accounts for time dependent coefficients.

Next, we find the conditional c.f. for the increments of Z(t), defined as

ΦZ(t),v(t)(T, ω) = E
[
exp {iω′(Z(T) − Z(t))} | Z(t) = zt, v(t) = vt

]
(4.9)

Under a risk neutral measure, this c.f. can be used for pricing some financial products, given
the integrability conditions (a discussion of the generalized c.f. as per [76] is beyond the scope
of this chapter.). For convenience, we formulate the information given at t on volatility as
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(
√

V1(t), ..,
√

Vn(t),
√
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, j, k = 1, . . . , n.

Proposition 4.2.2 Let (Z(t))t≥0 evolve according to the model in Equation (4.8). The c.f.
ΦZ(t),v(t) is then given as follows:

ΦZ(t),v(t)(T, ω) = E
[
exp iω′(Z(T) − Z(t)) | Z(t) = zt, v(t) = vt

]
=
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∗ j
t

)
where ΦGG is a one-dimensional generalization of the c.f. from [76] provided in Lemma B.1.1.

Proof is provided in Appendix. The c.f. above involves single expected values with respect to
Brownian motion B(t). In each term, ΦGG (i.e., the second set of Brownian W(t)) is eliminated,
hence this is a drastic simplification compared to the original 2n dimensional joint expectation.

A particular, fully solvable case is the FG model (βi j = 0, i, j = 1, .., n).
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Corollary 4.2.3 Let (Z(t))t≥0 evolve according to the FG model (βi j = 0, i, j = 1, .., n). The c.f.
ΦZ(t),v(t) is subsequently presented as follows:

ΦZ(t),v(t)(T, ω) = E
[
exp iω′(Z(T) − Z(t)) | Z(t) = zt, v(t) = vt

]
=

n∏
k=1
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∗ j
t

)
where ΦG is the one-dimensional c.f provided by [76] in Proposition 3.1 and given in the
Appendix for completeness.

See Appendix for proof. Next, we turn to the conditional c.f. of the increments of Z(t) given
the terminal value of the CIR processes. This is defined as follows:

ΦZ(t),v(T )(τ, ω) = E
[
exp

[
ω′(Z(T) − Z(t))

]
| Z(t) = zt, v(T ) = vT

]
(4.10)

The above is useful when we need to work with the joint distribution of (Z(T), v(T )) given
(Z(t), v(t)). For such cases, we can try to rely on a convenient simulation scheme combining
the distribution of Z(T) given (Z(t), v(T )) (via Equation (4.10)) with that of v(T ) given v(t), the
latter is known to be non-centered chi-squared. In this way, we can avoid usual discretization
algorithms such as the Euler–Maruyama or Milstein schemes, which are generally not suitable
for the CIR process (due to failure of the Lipschitz condition at 0).

In this vein, when working with the non mean-reverting factor model (βi j = 0, i, j = 1, .., n),
we can easily adapt the procedures in [76] to provide an exact simulation scheme for the model
given the vector of the independent CIR process at maturity T (i.e., v(T )). This requires only
the c.f. provided next:

Corollary 4.2.4 Let (Z(t))t≥0 evolve according to the FG model (βi j = 0, i, j = 1, .., n). Then,
the c.f. ΦZ(t),v(T ) is then given as follows:

ΦZ(t),v(T )(T, ω) =

n∏
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)
where ΦG,T is the one-dimensional c.f provided by [76] in Proposition 4.1 and given in the
Appendix for completeness.

Proof of this result is provided in Appendix. Unsurprisingly, the previous result cannot be
extended to the mean-reverting case, due to the absence of closed formulas for the object:
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1
ν(s)
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D(s) ln(ν(s))ds

)}
| ν(T )

]
which is not solvable even when two of the three deterministic functions B(s), C(s) and D(s)
are zero.
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4.3 Discussion: One Common Factor in Two Dimensions
We assume two assets, i.e., X1(t) and X2(t), with one common volatility component, and one
intrinsic factor each. The asset prices thereby follow the system of SDE for i = 1, 2:
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ṽi(t) +
b̃i
√
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dv1(t) = α1(θ1 − v1(t))dt + ξ1

√
v1(t)dB1(t)

dṽi(t) = α̃i(θ̃i − ṽi(t))dt + ξ̃i

√
ṽi(t)dB̃i(t)

with
〈
dB j(t), dW j(t)

〉
= ρ jdt,

〈
dB̃i(t), dW̃i(t)

〉
= ρ̃idt for j = 1; i = 1, 2.

The following table (Table 4.1) gives a baseline parameter set for the one-factor, two-dimensional
4/2 factor model used in the subsequent sections. The choice of parameters in Scenario A was
made by combining the seminal works of [122] (see Oil and Copper in Tables IV and V)
and [80]. Scenario B combines [122] (see Oil and Copper, Tables IV and V) with [36]. In both
cases, we assume a simple structure for the market price of risk (c1 = c2 = c̃1 = c̃2 = 0)2.

The θ̃i, i = 1, 2 in the table are set to match the long term volatilities as estimated in [122],
which are 0.334 (Oil, Table IV) and 0.233 (Copper, Table V):

E

a2
1

(√
v1(t) +

b1
√

v1(t)

)2

+

(√
ṽ1(t) +

b̃1
√

ṽ1(t)

)2 (4.11)

= a2
1

(
2α1b2

1

2α1θ1 − ξ
2
1

+ 2b1 + θ1

)
+

2α̃1b̃2
1

2α̃1θ̃1 − ξ̃
2
1

+ 2b̃1 + θ̃1 = (0.334)2 (4.12)

This explains the values of θ̃i in the table. The present section considers two independent cases.
First, we study the impact of the parameters b1, b̃1 and b̃2 on implied volatility surfaces and on
two risk measures for a portfolio of underlyings. We then assess the impact of the commonali-
ties a1 and a2 on these same targets, i.e., implied volatilities and risk measures. To ensure that
the cases lead to reasonable assets behavior, we report the expected return, variance of return
for each asset, as well as the correlation between two assets and the leverage effects in Tables
4.2 and 4.3 under Scenarios A and B, respectively.

We simulated 500, 000 paths with dt = 0.1 and considered the following scenarios for b: b1 = 0.008,
b̃1 = b̃2 = 0 ; b1 = 0, b̃1 = b̃2 = 0.008; b1 = b̃1 = b̃2 = 0 and b1 = b̃1 = b̃2 = 0.008.
Similarly, we considered the following scenarios for a: a1 = a2 = 0; a1 = 0.75, a2 = 0; a1 = 0,
a2 = 0.75 and a1 = a2 = 0.75. Tables 4.4 and 4.5 present key statistics for the returns under
Scenarios A and B, respectively.

2Variations on c will be studied in future research as part of a calibration exercise (see [106] for viable ap-
proaches and [61] for some pitfalls).
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Table 4.1: Toy Parametric Values

Initial Values

X1(0) = 18, X2(0) = 100
v1(0) = θ1, ṽ1(0) = θ̃1, ṽ2(0) = θ̃2

Commodity Drift, [122]
β11 = 0.301, β12 = 0, β21 = 0, β22 = 0.369
L1 = 3.09β11 = 0.93, L2 = 4.85β22 = 1.79
Commodity St. Volatility, [80, 122]. Scenario A
α1 = α̃1 = α̃2 = 2
θ1 = 0.01, θ̃1 = 0.0753, θ̃2 = 0.0124
ξ1 = ξ̃1 = ξ̃2 = 0.1
ρ1 = ρ̃1 = ρ̃2 = −0.5
Commodity St. Volatility, [36, 122]. Scenario B
α1 = α̃1 = α̃2 = 0.2098
θ1 = 0.1633, θ̃1 = 0.0685, θ̃2 = 0.0689
ξ1 = ξ̃1 = ξ̃2 = 0.1706
ρ1 = ρ̃1 = ρ̃2 = −0.9
New parameters.
c1 = c2 = c̃1 = c̃2 = 0
a1 = a2 = 0.75
b1 = b̃1 = b̃2 = 0.008

Table 4.2: First four moments for scenarios on 3/2 component (b), Scenario A.

b1 = 0.008, b̃1 = b̃2 = 0 b1 = 0, b̃1 = b̃2 = 0.008 b1 = b̃1 = b̃2 = 0 b1 = b̃1 = b̃2 = 0.008

E[ X1(T )−X1(0)
X1(0) ] 0.0494 0.0489 0.0503 0.0480

E[ X2(T )−X2(0)
X2(0) ] 0.0760 0.0754 0.0764 0.0750

V[ X1(T )−X1(0)
X1(0) ] 0.0663 0.0680 0.0618 0.0729

V[ X2(T )−X2(0)
X2(0) ] 0.0367 0.0390 0.0323 0.0445

Corr(ln X1(T ) , ln X2(T )) 0.3194 0.0896 0.1060 0.2799
Corr(ln X1(T ) , < ln X1(T ) >) −0.4287 −0.4520 −0.4443 −0.4406
Corr(ln X2(T ) , < ln X2(T ) >) -0.4148 −0.4511 −0.4420 −0.4280

Table 4.3: First four moments for scenarios on 3/2 component (b), Scenario B.

b1 = 0.008, b̃1 = b̃2 = 0 b1 = 0, b̃1 = b̃2 = 0.008 b1 = b̃1 = b̃2 = 0 b1 = b̃1 = b̃2 = 0.008

E[ X1(T )−X1(0)
X1(0) ] 0.0514 0.0504 0.0527 0.0499

E[ X2(T )−X2(0)
X2(0) ] 0.0774 0.0775 0.0787 0.0754

V[ X1(T )−X1(0)
X1(0) ] 0.0360 0.0606 0.0247 0.1022

V[ X2(T )−X2(0)
X2(0) ] 0.0359 0.1508 0.0248 0.0723

Corr(ln X1(T ) , ln X2(T )) 0.7533 0.0099 0.4698 0.0156
Corr(ln X1(T ) , < ln X1(T ) >) −0.4509 −0.2031 −0.5560 −0.0273
Corr(ln X2(T ) , < ln X2(T ) >) −0.4496 −0.0398 −0.5517 −0.2444

4.3.1 Pricing Option
The section prices European call option on the asset X1 based on our 4/2 generalized factor
model. It explores the implied volatility surface in a three-dimensional plot with strike prices
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Table 4.4: First four moments for scenarios on commonalities (a), Scenario A.

a1 = a2 = 0 a1 = 0.75, a2 = 0 a1 = 0, a2 = 0.75 a1 = a2 = 0.75

E[ X1(T )−X1(0)
X1(0) ] 0.0491 0.0492 0.0493 0.0492

E[ X2(T )−X2(0)
X2(0) ] 0.0761 0.0757 0.0746 0.0759

V[ X1(T )−X1(0)
X1(0) ] 0.0658 0.0727 0.0660 0.0732

V[ X2(T )−X2(0)
X2(0) ] 0.0371 0.0370 0.0444 0.0447

Corr(lnX1(T ) , lnX2(T )) 0.0000 -0.0011 0.0004 0.2841
Corr(lnX1(T ) , < lnX1(T ) >) -0.4523 -0.4400 -0.4529 -0.4430
Corr(lnX2(T ) , < lnX2(T ) >) -0.4507 -0.4521 -0.4285 -0.4279

Table 4.5: First four moments for scenarios on commonalities (a), Scenario B.

a1 = a2 = 0 a1 = 0.75, a2 = 0 a1 = 0, a2 = 0.75 a1 = a2 = 0.75

E[ X1(T )−X1(0)
X1(0) ] 0.0514 0.0496 0.0512 0.0500

E[ X2(T )−X2(0)
X2(0) ] 0.0768 0.0772 0.0756 0.0752

V[ X1(T )−X1(0)
X1(0) ] 0.0420 0.0733 0.0420 0.0857

V[ X2(T )−X2(0)
X2(0) ] 0.0507 0.0564 0.0746 0.0719

Corr(lnX1(T ) , lnX2(T )) 0.0004 -0.0000 -0.0005 0.0039
Corr(lnX1(T ) , < lnX1(T ) >) −0.1126 −0.0047 −0.3203 −0.2634
Corr(lnX2(T ) , < lnX2(T ) >) −0.1600 −0.2544 −0.0164 −0.0111

as the x-axis, time to maturity as the y-axis, and corresponding implied volatility as z-axis. We
take the strike prices K to be 15, 16.4, 17.8, 19.2, 20.6, and 22 and the expiry dates T are 0.2,
0.36, 0.52, 0.68, 0.84 and 1.0. By choosing these strike prices, we account for the in-the-money,
at-the-money, and out-of-the-money options, given the initial asset price 18. Subsequently, for
each strike price and expiry date, we can obtain a simulated call price as follows

c(T,K) = e−rTEQ[(X1(T ) − K)+],

where X1(T ) is approximated using the Euler method.

We extract the implied volatility by matching the Black–Scholes option price formula with
simulated call prices and solve for the volatility parameter. Hence, we can treat the dynamics
of Y(t) as an O-U process such that:

dY(t) = (L1 − 0.5σ2 − βY(t))dt + σdW∗(t).

Next, we consider the two cases described above. The first one studies the impact of b, which
represents the size of the 3/2 component on the covariance; and the second examines the impact
of a, the size of the commonality.

In the case of b, we first extract the implied volatility surface by matching the standard BS
formula for changes on b and b̃ respectively (see Figures 4.1 and 4.2).
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(a) b̃1=0, b1 between (0, 0.008) (b) b̃1=0.008, b1 between (0, 0.008)

Figure 4.1: Impact of b1 (common factor, 3/2 component) on implied volatility, Scenario A.

(a) b̃1=0, b1 between (0, 0.008) (b) b̃1=0.008, b1 between (0, 0.008)

Figure 4.2: Impact of b1 (common factor, 3/2 component) on implied volatility, Scenario B.

For Scenario A, Figure 4.1a,b illustrate that even small changes in (b1) the common factor
3/2 component (from 0 to 0.008) can lead to a 7% difference in implied volatility (from 0.275
to 0.295, or 0.285 to 0.305). The joint effect of the common and intrinsic 3/2 components (b1

and b̃1) can be obtained by combining those two figures leading to a 11% change (from 0.275
to 0.305) in the presence of relatively small values of b.

For Scenario B, we observe that the impact of intrinsic factor on volatility surface is more
significant than in Scenario A through a comparison of Figure 4.2a,b. The effect of b1 on im-
plied volatility increase by approximately 31% (0.145 to 0.19), as shown in Figure 4.2a, when
only the common factor is present. In Figure 4.2b, we observe a volatility “smile” with the dif-
ference of approximately 12.2% (0.245 to 0.275). The joint effect of the common and intrinsic
3/2 components in this case is 100% (0.145 to 0.29).
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Figures 4.1 and 4.2 jointly demonstrate that, given different underlying process for common
and intrinsic factors, the impact of the 3/2 component can be crucial.

Next, we study a, the weight of the common factor (commonality). We again extract the
implied volatility surface from matching the standard BS formula for changes on a.

Figure 4.3a,b displays the significant increase in implied volatility due to the commonality
of the asset with the market (a1). The change in implied volatility can increase up to 12.5%
(from 0.28 to 0.315) in Scenario A and up to 30% (from 0.22 to 0.32) in Scenario B.

(a) a1 between (0, 1). Scenario A (b) a1 between (0, 1). Scenario B

Figure 4.3: Impact of commonality (a1) on implied volatility.
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4.4 Conclusions
In previous chapter 3, we consider a single asset whose diffusion is affected by common factor
or systematic/market risk, and we assume the factor follows a 4/2 porcess because 4/2 pro-
cess is capable of capturing the stylized facts in asset price time series through out the entire
business cycle. In this chapter, we propose and explore the generalized mean-reverting 4/2
factor model. The generalized model is a more realistic model than the one-dimensional model
since in the real market there is more than the common factors that influence the asset prices.
There are also intrinsic factors and spillover effects from other assets. The generalized model
incorporates spillover effects, common factors and intrinsic factor. We assume 4/2 processes
for both common factor and intrinsic factors not only because 4/2 processes are powerful cap-
turing the stylized facts, they are also flexible by adjusting the “weights” of 3/2 components.

In this study, we first provide analytical expressions for key characteristic functions and con-
ditions for well-defined changes of measures. Thanks to principal component decomposition,
we are able to write the generalized model in terms of a linear combination of independent
mean-reverting 4/2 stochastic volatility models. Thus the generalized model inherits the same
theoretical challenges of the mean-reverting 4/2 stochastic volatility model, which is a closed-
form solution of the characteristic function is not available. As we mentioned in chapter 3,
even with the semi-closed form characteristic function, we can still reduce the computational
cost. We are also able to derive an analytic characteristic function for a special case, which
we call the generalized Grasselli’s 4/2 model [76]. This opens a new window for studying
multi-factor model in stock market. In numerical application section, we assess the impact of
b, i.e. the 3/2 component of the model in the volatility process, and a, the commonalities in
the absence and presence of stochastic volatility on the common factor. These impacts were
measured with respect to implied volatility surfaces and two important risk measures. The re-
sults demonstrate that even small values of the 3/2 component (b) can lead to a 100% change
in the implied volatility surface, which in turn shows the significance of the 3/2 component in
the factors’ processes. In next chapter, we will focus on a subclass of the generalized model
and further evaluate the model performance.



Chapter 5

Multivariate Mean-Reverting 4/2
Stochastic Volatility Model

Chapter 4 introduced a generalized multivariate mean-reverting 4/2 factor model. Thanks to
a principal component decomposition (P.C), we expressed the stochastic covariance matrix in
terms of constant eigenvectors that drives the correlation and stochastic eigenvalues modeled
by 4/2 stochastic processes. This means we can rewrite our multidimensional model in the
form of linear combination of independent one-dimensional mean-reverting 4/2 processes. In
chapter 4, we entertained interesting structures and studied properties of the model such as
changes of measure and characteristics functions (c.f.s), we also applied the model to option
pricing.

Now, in chapter 5, we extend two of the results of chapter 3 to the principal component setting
of chapter 4. These are: 1) obtaining a closed-form approximation of the c.f.s; 2) estimation
of the parameters of the model. Moreover we will expose our model to a setting of portfolio
optimization for the fist time, to study its implications.

In particular, we remind the reader that the c.f.’s we found in chapter 4 have quasi-closed form
expressions, which requires simulation of a lower dimensional process. This lack of analyticity
is not surprising as we have already shown in chapter 3 the challenges of finding closed-form
c.f. in one dimension, which can be traced back to the combination of mean-reverting and
stochastic volatility features. As a result, in chapter 3, we were left with a quasi-closed form
c.f., and some analytical expressions for very special cases of our model. An alternative so-
lution was to find an analytic function that approximates the c.f. with acceptable accuracy
within a region of the parametric space, i.e. for embedded models. In chapter 5, the two ap-
proximation approaches developed in chapter 3 are implemented in multidimension: midpoint
approximation and average approximation. Here we need to carefully design the embedded
models where the methodology works, which leads to three special cases. We illustrate their
performance in higher dimensions, demonstrating high accuracy of the average approximation
in capturing not only marginal densities but also joint behaviour.

This chapter also answers another question that is not addressed in chapter 4, namely esti-
mation. We use the estimation approaches developed in chapter 3 to estimate the parameters

83
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for special cases of P.C mean-reverting 4/2 model. For this exercise we use two pairs of bivari-
ate time series capturing underlying and variance behaviour. Estimation of multi-dimensional
processes is rare in the literature. Popular estimation methods, for example efficient method
of moments (EMM) [70], generalized method of moments (GMM) [78] and quasi-maximum
likelihood (QML) [110] [79], rely on analytic density/transition density functions of the un-
derlying process, which is not the case for our model as our model has semi-closed form c.f..
Our work shows that many but not all the parameters are statistical significant, confirming and
revealing stylized facts of commodity prices and volatility indexes like stochastic correlation
and spillover effects.

In the applications part, we focus on the risk management of a portfolio that follows con-
stant proportion strategies. In particular, we calculate a distribution based risk measure for this
portfolio, i.e Value at Risk (VaR). As the quasi-closed form c.f. of chapter 4 does not bring
efficiency to calculating distribution based risk measures due to simulation, we use the analytic
approximations in chapter 5. We demonstrate that the error computing VaR with the approx-
imation is negligible. The various examples presented in the context of portfolio allocation
bring justification to the validity of the multidimensional approximation via c.f..

5.1 Model Definition
In this section, we start with the definition of the general model targeted in this chapter. In
the general model setup, we introduce a model with spillover effects and only common factors
that drive the volatility processes. Later we cover models with separable spillover effects and
no spillover effects as special cases of the general model. These models are particular cases of
those developed in chapter 4. As a reminder, spillover effects refer to the impact of one asset or
underlying stock on the remaining assets/stocks in regards to trends (drift), in other words the
impact of one asset on the long term average, “stationary price” of a second asset. In particular,
the presence of (positive) spillover implies that large increases in the value of one stock lead to
an increase in the mean reverting value of a second stock, the opposite for negative spillovers.

5.1.1 General Model Setup
Recall in section 4.1.1, we briefly introduce a special case of our generalized factor 4/2 model,
which has no intrinsic factor, hence inspired in Principal Component Analysis. Suppose Xt =

(X1(t), . . . , Xn(t))′ is a vector of assets. The dynamics for each asset Xi(t) under historical
measure P is defined as:

dXi(t)
Xi(t)

=

[
Li +

n∑
j=1

ci j
( √

ν j(t) +
b j√
ν j(t)

)2
−

n∑
j=1
βi jln(X j(t))

]
dt +

n∑
j=1

ai j
( √

ν j(t) +
b j√
ν j(t)

)
dWP

j (t),

dν j(t) = α j(θ j − ν j(t))dt + ξ j
√
ν j(t)dBPj (t), j = 1, . . . , n

(5.1)
where WP

i (t) and BPj (t) are independent Brownian motions if i , j and are correlated if i = j, i.e
the quadratic variation 〈WP

i (t), BPi (t)〉 = ρit, where ρi is constant. The parameters for each ν j(t)

process are positive and satisfy Feller condition: α jθ j >
ξ2

j

2 . Moreover, we assume the mean-
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reverting level of ν j(t) decreases as j increases, i.e 0 < θ j < θ j−1, for j = 2, . . . , n. This last
feature is intended to sort the eigenvalues in order of importance. b j’s measure the “weights”
of 3/2 components.

This model is not like a traditional mean-reverting model as it takes into account the spillover
effects in the drift, which appears in the form of βi j, i , j. We mentioned above that the
spillover effects show the impacts of one assets on others, which shall not be confused with
correlations. The correlations are reflected in the price trend of both assets, capturing co-
movements between assets. Spillover effects describe the impact on the mean-reverting level
of one asset by others, i.e the shift in the long term mean due to movements of other assets.
The concept of spillover effects can be understood as how much, for example, a demand curve
of one good shifts according to the change of factors on other goods.

Writing Equation 5.1 in matrix form:

dXt = diag(Xt)
[
(L + CVt − B · ln(Xt))dt + Σ

1
2
t dWP

t
]
. (5.2)

where Wt = (WP
1 (t), . . . ,WP

n (t))′ is a vector of independent standard Brownian motions; B =
β11 · · · β1n
...

. . .
...

βn1 · · · βnn

, L = (L1, . . . , Ln)′, C =


c11 · · · c1n
...

. . .
...

cn1 · · · cnn

, Vt =

((√
ν1(t) + b1√

ν1(t)

)2
, . . . ,

(√
νn(t) +

bn√
νn(t)

)2
)′

and ln(Xt) = (ln(X1(t)), . . . , ln(Xn(t)))′. We first assume that the eigenvalues of the

matrix 
−β11 · · · −β1n
...

. . .
...

−βn1 · · · −βnn


are all negative as per [94] and [95]. This is assumption will be used to justify estimation results
in estimation section. Similarly to chapter 4, we have B captures the spillover effects; C con-
tains risk premiums associated to the assets; long term average for the assets is determined by
E
[
B−1(L + CVt

)]
. We next assume a principal component decomposition on the instantaneous

covariance matrix Σt:
Σtdt = Adiag(Vt)A′dt,

where A = (ai j)n×n is an orthogonal matrix with constant entries, which captures the correlation
among assets.

We craft the matrix C in such a way that allows for c.f. analytical approximations, this is
C = AC̃ + 1

2 (A ◦ A) where C̃ = diag(c1, . . . , cn) and (A ◦ A) denotes Hadamard product of A.
The dynamics of log price Yi(t) = ln(Xi(t)) is as follows:

dYi(t) =

[
Li +

n∑
j=1

ai jc j
( √

ν j(t) +
b j√
ν j(t)

)2
−

n∑
j=1
βi jY j(t)

]
dt +

∑n
j=1 ai j

( √
ν j(t) +

b j√
ν j(t)

)
dWP

j (t),

dν j(t) = α j(θ j − ν j(t))dt + ξ j
√
ν j(t)dBPj (t), j = 1, . . . , n.

(5.3)



86 Chapter 5. MultivariateMean-Reverting 4/2 Stochastic VolatilityModel

Based on the applications, our model can be reduced to three sub cases for which we are able
to approximate the c.f. with analytic functions.

• bj = 0, ρj , 0: The advantage of 4/2 model is that it integrates two diffusion processes
with different behavior, which enables the model to capture the stylized facts of the un-
derlying asset under different financial situations. During the period when the financial
markets enjoy stable business cycles, 3/2 diffusion process may be redundant in mod-
eling the underlying asset as 1/2 diffusion is good enough to capture the stylized facts.
Therefore, the dynamics for log price is defined as:

dYi(t) =

[
Li +

n∑
j=1

ai jc jν j(t) −
n∑

j=1
βi jY j(t)

]
dt +

∑n
j=1 ai j

√
ν j(t)dWP

j (t),

dν j(t) = α j(θ j − ν j(t))dt + ξ j
√
ν j(t)dBPj (t), j = 1, . . . , n,

〈dWP
j (t), dBPj (t)〉 = ρ jdt

(5.4)
If n = 1, we have a mean-reverting Heston model, which is also considered in [16].

• bj , 0, ρj = 0: This case applies to the assets whose price series demonstrates abnormal
increase or decrease, but there is no leverage effect observed for the assets of interest.
The term “leverage effect” was first defined and studied in [18]. It describes the negative
correlation between asset’s volatility and asset’s return. In this situation, we know that
the trend of asset’s volatility provides no information on the trend of asset’s return. The
model for log price is therefore defined as:

dYi(t) =

[
Li +

n∑
j=1

ai jc j
( √

ν j(t) +
b j√
ν j(t)

)2
−

n∑
j=1
βi jY j(t)

]
dt

+
∑n

j=1 ai j
( √

ν j(t) +
b j√
ν j(t)

)
dWP

j (t),

dν j(t) = α j(θ j − ν j(t))dt + ξ j
√
ν j(t)dBPj (t), j = 1, . . . , n,

〈dWP
j (t), dBPj (t)〉 = 0

(5.5)

• bj = 0, ρj = 0: This case can be generated by either of previous two cases. It better
applies to assets that exhibit mild behavior in their price series, at the same time no
leverage effect is identified. Then the model for log price follows from either Equation
5.4 or Equation 5.5:

dYi(t) =

[
Li +

n∑
j=1

ai jc jν j(t) −
n∑

j=1
βi jY j(t)

]
dt +

∑n
j=1 ai j

√
ν j(t)dWP

j (t),

dν j(t) = α j(θ j − ν j(t))dt + ξ j
√
ν j(t)dBPj (t), j = 1, . . . , n,

〈dWP
j (t), dBPj (t)〉 = 0

(5.6)

We will show how to approximate the c.f. with analytic functions for these three cases in
section 5.2.
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5.1.1.1 Separable Spillover effect

In this section, we assume a convenient structure in the spillover matrix B together with a slight
variation of the methodology to obtain the c.f.. By doing so we obtain another solvable case.

In model setup described above, we defined our model using principal component stochastic
volatility framework, we can further simplify our model by rewriting it in terms of n indepen-
dent processes as we did in chapter 4. Recall that in chapter 4, we define the transformation
Z(t) = eBtY(t). It is also possible that we directly work with log price processes Y(t) instead
of going through with the transformation Zt, avoiding the matrix exponential.

We demonstrate this procedure by first writing Equation 5.3 in matrix form:

dYt = (L + AC̃Vt − BYt)dt + Adiag(Vt)
1
2 dWP

t . (5.7)

Multiplying both sides of Equation 5.7 by A−1, we get:

A−1dYt = (A−1L + A−1AC̃Vt − A−1BYt)dt + diag(Vt)
1
2 dWP

t . (5.8)

Suppose the matrix B can be written as follows:

B = AB̃A−1

where B̃ = diag(β̃1, . . . , β̃n) is a diagonal matrix, i.e whose entries are eigenvalues of B. Using
this result, Equation 5.8 can be written as

A−1dYt = (A−1L + C̃Vt − B̃A−1Yt)dt + diag(Vt)
1
2 dWP

t .

Applying a simple transformation Mt = A−1Yt, we end up with a new mean-reverting process
with a diagonal matrix B̃:

dMt = (A−1L + C̃Vt − B̃Mt)dt + diag(Vt)
1
2 dWP

t .

It is easy to see that each element of dMt is a mean-reverting 4/2 stochastic volatility process
as per chapter 3 i.e:

dM j(t) =

[
L̃ j + c̃ j

( √
ν j(t) +

b j√
ν j(t)

)2
− β̃ jM j(t)

]
dt +

( √
ν j(t) +

b j√
ν j(t)

)
dWP

j (t)

dν j(t) = α j(θ j − ν j(t))dt + ξ j
√
ν j(t)dBPj (t)

〈dWP
j (t), dBPj (t)〉 = ρ jdt

(5.9)

where L̃ j =
n∑

i=1
Lia∗i j and a∗i j are the entries of A−1. dMt is also a vector of independent processes.

5.1.1.2 Model with no Spillover Effects

In this section we assume no spillover effects among the assets, i.e matrix B is diagonal, which
means other assets movements do not affect the mean-reverting level of current asset. This



88 Chapter 5. MultivariateMean-Reverting 4/2 Stochastic VolatilityModel

further simplified our model to:
dXi(t)
Xi(t)

=

[
Li +

n∑
j=1

ci j
( √

ν j(t) +
b j√
ν j(t)

)2
− βiln(Xi(t))

]
dt +

n∑
j=1

ai j
( √

ν j(t) +
b j√
ν j(t)

)
dWP

j (t),

dν j(t) = α j(θ j − ν j(t))dt + ξ j
√
ν j(t)dBPj (t), j = 1, . . . , n

(5.10)
The corresponding matrix representation has the same form:

dXt = diag(Xt)
[
(L + CVt − B · ln(Xt))dt + Σ

1
2
t dWP

t
]
, (5.11)

with B = diag(β1, . . . , βn). The dynamics of log price Yi(t) = ln(Xi(t)) is then:
dYi(t) =

[
Li +

n∑
j=1

ai jc j
( √

ν j(t) +
b j√
ν j(t)

)2
− βiYi(t)

]
dt +

∑n
j=1 ai j

( √
ν j(t) +

b j√
ν j(t)

)
dWP

j (t),

dν j(t) = α j(θ j − ν j(t))dt + ξ j
√
ν j(t)dBPj (t), j = 1, . . . , n.

(5.12)

5.1.2 Properties of The Variance Vector

We devote this subsection to explore the properties of the variance vector. This is important
for understanding the instantaneous volatilities implied by our model. Recall empirical data
is related to these volatilities, therefore one should ensure that these implied processes reflect
stylized facts of the data they cater to.

Let σ2
t denote the variance vector. By definition, we have:

σ2
t = diag(Σt) = (A ◦ A)Vt.

As defined before, Vt is a vector of 4/2 processes (the sum of 1/2 and 3/2 processes). Therefore,
σ2

t can be written in terms of linear combination of these two processes:

σ2
t =



∑
j=1

a2
1 j
(
ν j(t) +

b2
j

ν j(t)
+ 2b j

)
...∑

j=1
a2

n j
(
ν j(t) +

b2
j

ν j(t)
+ 2b j

)


=


∑
j=1

a2
1 jν j(t)

...∑
j=1

a2
n jν j(t)

 +



∑
j=1

a2
1 j
( b2

j

ν j(t)

)
...∑

j=1
a2

n j
( b2

j

ν j(t)

)


+


∑
j=1

a2
1 j2b j

...∑
j=1

a2
n j2b j


This model for the variance can be interpreted as factor model with n 4/2 factors. Due to the
popularity of factor models to explain asset classes, it stands to reason that volatility indexes
(these variances) can also be expressed in terms of factors, which could reflect intrinsic and
systemic economical movements.
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One can obtain the dynamics of σ2
t :

dσ2
t =


∑
j=1

a2
1 jdν j(t)

...∑
j=1

a2
n jdν j(t)

 +


∑
j=1

a2
1 j
(
b2

jd
1

ν j(t)

)
...∑

j=1
a2

n j
(
b2

jd
1

ν j(t)

)


=



∑
j=1

a2
1 j

[(
α j(θ j − ν j(t)) +

b2
j

ν2
j (t)

(
ξ2

j − α jθ j + α jν j(t)
))

dt + ξ j(
√
ν j(t) − b2

jν
3
2
j (t))dBPj (t)

]
...∑

j=1
a2

n j

[(
α j(θ j − ν j(t)) +

b2
j

ν2
j (t)

(
ξ2

j − α jθ j + α jν j(t)
))

dt + ξ j(
√
ν j(t) − b2

jν
3
2
j (t))dBPj (t)

]


From the above SDE, we are able to obtain the variance and covariance of the vector dσ2
t

via quadratic variations. Note these can be interpreted as the volatility of variance and the
correlation among variances respectively:

〈dσ2
i (t), dσ2

i (t)〉 =

n∑
j=1

a4
i j

[
ξ j(

√
ν j(t) − b2

jν
3
2
j (t))

]2

dt (5.13)

〈dσ2
i (t), dσ2

j(t)〉 =

n∑
k=1

a2
ika

2
jk

[
ξ j(

√
ν j(t) − b2

jν
3
2
j (t))

]2

dt (5.14)

Equations 5.13 and 5.14 suggest that the instantaneous variance and covariance of σ2
t are

stochastic in a local way, i.e. driven by the same Brownian as the underlying.

5.2 Characteristic Functions and Approximations.

In this section, we approximate the c.f.’s from Proposition 4.2.2 in line with the approximation
approaches of chapter 3. Note that in chapter 3, we obtained analytical approximations of the
c.f.’s for the special cases: ρ = 0, b , 0; b = 0, ρ , 0 using results from [76]. Solutions
for a third case b = 0, ρ = 0 can be obtained from either one of previous two special cases.
Similarly in this chapter, the two approximation approaches lead to analytical representations
for special cases of the generalized mean-reverting 4/2 factor model. Taking advantage of the
principal component structure of the model, the representations boil down to a multiplication
of the approximations in sections 3.2.1.1 to 3.2.1.3.

In the following, we first show the c.f. for the general model and its sub models described
in 5.1.1, namely the model with general spillover effects, the model with separable spillover
effects and the model with no spillover effects. Then we present the principle used to approx-
imate the c.f.’s in section 5.2.3, especially under the special scenarios defined by Equations
5.4-5.6, as well as the approximation results.
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5.2.1 Characteristic Function for Model with Spillover Effects
Similarly to chapter 4, we first define Zt = eBtYt such that eBt is a matrix exponential, then
Zi(t) is represented as:

dZi(t) =

n∑
j=1

(
eBt

)
i j

L j +

n∑
k=1

ai jc j

(√
vk(t) +

bk
√

vk(t)

)2
 dt+

n∑
j=1

(
eBt

)
i j

 n∑
k=1

a jk

(√
vk(t) +

bk
√

vk(t)

)
dWk(t)


(5.15)

For convenience, we use
(
eBt

)
i j

as the i j-th component of the matrix eBt. Note that Zi(t) is no
longer a mean-reverting process although it accounts for time dependent coefficients.

Recall we define v(t) =

(
√

V1(t), ..,
√

Vn(t),
√

Ṽ1(t), ..,
√

Ṽn(t)
)

where
√

Vk(t) =
√

vk(t) + bk√
vk(t)

and
√

Ṽk(t) =
√

ṽ j(t) +
b̃ j√
ṽ j(t)

, j, k = 1, . . . , n to denote a vector of 4/2 volatility processes with

vv
k accounting for common factors and ṽv

j(t) accounting for intrinsic factors. Since we do not
consider intrinsic factors in this chapter, v(t) = (vv

1(t), .., vv
n(t)). The conditional c.f. for the

increments of Z(t) follows from Proposition 4.2.2:

Corollary 5.2.1 Let (Z(t))t≥0 evolve according to the model in Equation (5.15). The c.f. ΦZ(t),v(t)
is then given as follows:

ΦZ(t),νt(T, ω) = E
[
exp iω′(Z(T) − Z(t)) | Z(t) = zt, v(t) = vt

]
=

n∏
k=1

ΦGG
(
T, 1; L(ω), hk(ω), gk(ω), αk, θk, ξk, ρk, bk, ck, vk,t,Z(t)

)
where hk(ω, t) =

∑n
j=1 a jkck f j(ω, t), L(ω, t) =

∑n
j=1

L j

n f j(ω, t), gk (ω, t) =
∑n

j=1 a jk f j(ω, t) and
f j(ω, t) =

∑n
m=1 iωm

(
eβt

)
m j

. ΦGG is a one-dimensional generalization of the c.f. from [76]
provided in Lemma B.1.1.

The proof follows as a direct application of the proof of Proposition 4.2.2.

5.2.2 Characteristic Function for Model with Separable Spillover Effects
In order to derive the c.f. of Mi(t), we do the transformation S j(t) = eβ̃ jtM j(t), recognizing that
the c.f. of S j(t) has been derived in chapter 3. Hence, the c.f. of Yt is just a product of the
corresponding c.f. of S j(t). The result is summarized in the following corollary.

Corollary 5.2.2 Let ΦMR
(
T, u; L, c, a, β, α, θ, ξ, ρ, b, ν(t),Z(t)

)
denote the characteristic func-

tion provided in Proposition 3.2.1, then the characteristic function of Yt is given by the follow-
ing equation:

E(eiu′YT |Ft) =

n∏
j=1

ΦMR

(
T,u∗; L̃ j, c̃ j, 1, β̃ j, α j, θ j, ξ j, ρ j, b j, ν j(t), S j(t)

)
(5.16)

where u∗ is a new vector of real numbers with element u∗j =
∑
i=1

uiai je−β̃ jt.
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The proof is straightforward using the relationship Yt = AMt, we know that each individual
process Yi(t) is a linear combination of M j(t), j = 1, 2, . . . , n, and therefore S j(t), processes.
The product u′YT can be further written in terms of S j(t):

u′YT = u′AMT =

n∑
j=1

n∑
i=1

uiai jM j(T ) =

n∑
j=1

n∑
i=1

uiai je−β̃ jtS j(T ) =

n∑
j=1

u∗jS j(T ).

The independence property of random variables leads to Equation 5.16.

5.2.3 Characteristic Function for Models with no Spillover Effects
The process Zt = eBtYt has a less complicated representation if B were diagonal, in this case
the matrix exponential eBt is a diagonal matrix with diagonal entries (eβ1t, . . . , eβnt). In such
case, Zi(t) can be represented as:

dZm(t) = eβmt

Lm +

n∑
j=1

am jc j

√v j(t) +
b j√
v j(t)

2
 dt + eβmt


n∑

j=1

am j

√v j(t) +
b j√
v j(t)

 dW j(t)


(5.17)

The characteristic function for the increment Z(T ) − Z(t) is provided in the next corollary:

Corollary 5.2.3 Let (Z(t))t≥0 evolve according to the model in Equation (5.17). The c.f. ΦZi(t),v(t)
is then given as follows:

ΦZ(t),νt(T, ω) = E
[
exp iω′(Z(T ) − Z(t)) | Z(t) = zt, ν(t) = νt

]
=

n∏
j=1

ΦGG

(
T, 1; L(ω), h j(ω), g j(ω), α j, θ j, ξ j, ρ j, b j, c j, ν j,t,Z(t)

)

where ΦGG is provided in Lemma B.1.1. L(ω, t) =
n∑

j=1

iω je
β jtL j

n , h j(ω, t) =
n∑

m=1
iωmeβmtam jc j and

g j(ω, t) =
n∑

m=1
iωmeβmtam j

Proof follows similarly to the proof of Proposition 4.2.2.

5.2.4 Approximation Principle and Results
From above, we have learned that the c.f. in both categories (the model with spillover effects
and the model without spillover effects) can be written in terms of a product of the c.f.’s of n
independent one dimensional processes thanks to principal component decomposition. These
one dimensional processes defined in Equation 5.15 and Equation 5.17 are only different in
the structure of the matrix exponential term i.e eBt, which is deterministic, and they resem-
ble the same Z(t) process we studied in chapter 3. Therefore, the principles to approximate
ΦZ(t),νt(T, ω) follow those we adopted in chapter 3. In other words, we only need to work out
an approximation to the individual c.f. ΦGG, and the approximation can be realized under three
scenarios as we have shown in section 5.1.1: b j = 0, ρ j , 0; b j , 0, ρ j = 0 and b j = 0, ρ j = 0.
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Recall that we give the formula for ΦGG in Lemma B.1.1 as follows:

ΦGG (T, u; L, h, g, κ, θ, ξ, ρ, b, c, vt,Zt) = exp
{

iu
∫ T

t
A (s) ds

}
ν(t)iu bρ

ξ g(t) exp
{
−iuρ

g (t) ν(t)
ξ

}
×E

[
ν(T )iu bρ

ξ g(T ) exp
{
iu

( ∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +

∫ T

t
D(s) ln(ν(s))ds

+ρ
g (T ) ν(T )

ξ

)}
| Ft

]
.

As we pointed out in chapter 4, ΦGG can not be solved in closed-form for a core reason that
can be traced down to simpler 1/2 models, namely the lack of a representation for the moment
generating function of an integrated CIR process with time dependent integrands. Therefore,
we propose an analytic function that approximates ΦGG. Recall that we studied two cases where
the c.f. can be approximated by analytic functions in chapter 3; here ΦGG has the same structure
as the c.f. we studied in one dimension, so we can approximate ΦGG in a similar fashion. Since
the unsolvable conditional expectation brings all the complexity, we approximate the c.f. by
approximating the conditional expectation. In this regard, following the same principle, we
come up with two approximation approaches. Under certain conditions, as we will see in
Corollary 5.2.4, the conditional expectation in ΦGG is approximated in the following form by a
conditional expectation whose analytic representation is known in the literature:

E

[
ν(T )

bρ
ξ g(T ) exp

{∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +

∫ T

t
D(s) ln(ν(s))ds + ρ

g (T ) ν(T )
ξ

}
| Ft

]
≈ E

[
ν(T )

bρ
ξ g(T ) exp

{
ρ

g (T ) ν(T )
ξ

− n
∫ T

t
ν(s)ds − m

∫ T

t

1
ν(s)

ds
}
| Ft

]
,

for some complex constants m and n:

m ≈ −
∫ T

t
C(s)ds,

n ≈ −
∫ T

t
B(s)ds,

and,

D(s) = 0,

for s ∈ [t,T ]. Recall that in chapter 3, we obtain m and n via two approximation approaches
for the integrals

∫ T

t
C(s)ds and

∫ T

t
B(s)ds: midpoint and average. We briefly cover the results,

see chapter 3 for details:

• Midpoint:

m =

min
[t,T ]

(C(s)) + max
[t,T ]

(C(s))

2
, n =

min
[t,T ]

(B(s)) + max
[t,T ]

(B(s))

2
.
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• Average:

m =
1

T − t

∫ T

t
C(s)ds, n =

1
T − t

∫ T

t
B(s)ds.

The approximated conditional expectation is solvable as shown in [76]. We summarize the
results in the following corollary for the general model with spillover effects. Since the model
with separable spillover effects and the model without spillover effects are special cases of the
general model, we can easily apply the results to the special cases. We leave some comments
after next corollary on approximation procedures for the special cases.

Corollary 5.2.4 Given deterministic functions B j(s) and C j(s) defined in Lemma B.1.1 and
g j(s) defined in Corollary 5.2.1 for s ∈ [t,T ],

E
[
ν j(T )

b jρ j
ξ j

g j(T ) exp
{ ∫ T

t
B j(s)ν j(s)ds +

∫ T

t
C j(s)

1
ν j(s)

ds +

∫ T

t
D j(s) ln(ν j(s))ds

+ ρ j
g j (T ) ν j(T )

ξ j

}
| Ft

]
can be approximated by analytic functions for constants m j and n j satisfying

n j =


min
[t,T ]

(B j(s))+max
[t,T ]

(B j(s))

2 , if Midpoint approach is considered
1

T−t

∫ T

t
B j(s)ds, if Average Approach is considered

m j =


min
[t,T ]

(C j(s))+max
[t,T ]

(C j(s))

2 , if Midpoint approach is considered
1

T−t

∫ T

t
C j(s)ds, if Average Approach is considered

under three scenarios:

• bj = 0, ρj , 0: Given b j = 0, ρ j , 0, C(s) = 0 and D(s) = 0, s ∈ [t,T ]. If n j ≥ −
α2

j

2ξ2
j
, then

the conditional expectation is approximated by:

E

[
exp

{∫ T

t
B j(s)ν j(s)ds + ρ j

g j (T ) ν j(T )
ξ j

}
| Ft

]
≈ E

[
exp

{
ρ j

g j (T ) ν j(T )
ξ j

− n j

∫ T

t
ν j(s)ds

}
| Ft

]

=

( (B jξ
2
j + α)

(
e
√

A j(T−t)
− 1

)
+

√
A j

(
e
√

A j(T−t) + 1
)

2
√

A je
√

A j+α j
2 (T−t)

)− 2α jθ j
ξ2j e

ν j(t)

(
(B jα j−2n j)

(
e
√

A j(T−t)
−1
)
−B j
√

A j

(
e
√

A j(T−t)
+1
)

(B jξ
2
j +α j)

(
e
√

A j(T−t)
−1
)

+
√

A j

(
e
√

A j(T−t)
+1
) )

,

B j = −
ρ jg j(T )
ξ j

, A j = α2
j + 2n jξ

2
j ,

(5.18)



94 Chapter 5. MultivariateMean-Reverting 4/2 Stochastic VolatilityModel

• bj , 0, ρj = 0: Given b j = 0, ρ j , 0 and D(s) = 0, s ∈ [t,T ]. If m j > −
(2α jθ j−ξ

2
j )

2

8ξ2
j

, n j ≥

−
α2

j

2ξ2
j
, then the conditional expectation is approximated by:

E
[

exp
{ ∫ T

t
B j(s)ν j(s)ds +

∫ T

t
C j(s)

1
ν j(s)

ds
}
| Ft

]
≈ E

[
exp

{
−n j

∫ T

t
ν j(s)ds − m j

∫ T

t

1
ν j(s)

ds
}
| Ft

]

=

(γ j(T, ν j(t))
2

)k j+1

ν j(t)
−
α jθ j
ξ2j K j(T )

−

(
1
2 +

k j
2 +

α jθ j
ξ2j

)
e

1
ξ2j

(
θ j(T−t)−

√
H jν j(t)coth

(
√

H j(T−t)
2

)
+α jν j(t)

)
Γ

(
1
2 +

k j

2 +
α jθ j

ξ2
j

)
Γ(k j + 1)

× 1F1

(1
2

+
k j

2
+
α jθ j

ξ2
j

, k j + 1,
γ j(T, ν j(t))2

4K j(T )

)
,

k j =
1
ξ2

j

√
(2α jθ j − ξ

2
j )2 + 8m jξ

2
j ,H j = α2

j + 2n jξ
2
j , γ j(T, ν j(t)) =

2
√

H jν j(t)

ξ2
j sinh

( √
H j(T−t)

2

) ,
K j(T ) =

1
ξ2

j

( √
H jν j(t)coth

( √
H j(T − t)

2

)
+ α j

)
.

(5.19)

• bj = 0, ρj = 0: Given b j = 0, ρ j = 0, C(t) = 0 and D(t) = 0, s ∈ [t,T ]. If n j ≥ −
α2

j

2ξ2
j
, then

the conditional expectation is approximated by:

E
[

exp
{ ∫ T

t
B j(s)ν j(s)ds

}
| Ft

]
≈ E

[
exp

{
−n j

∫ T

t
ν j(s)ds

}
| Ft

]

=

(α j(e
√

A j(T−t)
− 1) +

√
A j(e
√

A j(T−t) + 1)

2
√

A je
√

A j+α j
2 (T−t)

)− 2α jθ j
ξ2j × e

ν j(t)

(
−2n j(e

√
A j(T−t)

−1)

α j(e
√

A j(T−t)
−1)+
√

A j(e
√

A j(T−t)
+1)

)
,

A j = α2
j + 2n jξ

2
j .

(5.20)

Corollary 5.2.4 follows directly from Proposition 3.2.2 and Proposition 3.2.3. The approxima-
tion for the c.f. when there are no spillover effects follows the same procedure as presented
in Corollary 5.2.4. For the case when the spillover effects are separable, note that after the
decomposition, we end up with a series of independent mean-reverting 4/2 stochastic volatility
processes as shown in Formula 5.9, for which we have studied complete approximation proce-
dure in chapter 3. As a result, Proposition 3.2.2 and Proposition 3.2.3 can be directly applied
to approximate the c.f.s for these processes.
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5.3 Estimation
In this section, we consider the model with separable spillover effects as the underlying model
for estimation. This way we fulfill the purpose of studying spillover effects among assets,
and on the other hand we avoid the complexity of matrix exponential. Recall the model with
separable spillover effects can be expressed as follows:

dYt = (L + AC̃Vt − BYt)dt + Adiag(Vt)
1
2 dWP

t .

where B is constructed in a way such that it can be decomposed into a product of three matrices:
B = AB̃A−1. In this case, dYi(t) is a linear combination of independent processes dM j(t), i.e
dYt = AdMt:

dM j(t) =

[
L̃ j + c̃ j

( √
ν j(t) +

b j√
ν j(t)

)2
− β̃ jM j(t)

]
dt +

( √
ν j(t) +

b j√
ν j(t)

)
dWP

j (t)

dν j(t) = α j(θ j − ν j(t))dt + ξ j
√
ν j(t)dBPj (t)

〈dWP
j (t), dBPj (t)〉 = ρ jdt

For simplicity, we focus on two dimensions hence studying pairs of assets with their respective
volatility indexes. For example, VIX (VVIX) and VSTOXX (VVSTOXX); USO (OVX) and
GLD (GVZ), or USO (OVX) and SLV (VXSLV). Then we follow the same estimation proce-
dure as outlined in chapter 3 splitting the parameters into two groups: volatility group and drift
group.

After a section on data description in 5.3.1, section 5.3.2 estimates the parameters in the
volatility group. Under the model with separable spillover effects, we first need to estimate
covariance matrix (Σ̂) from asset data as a long term average of the stochastic covariance ma-
trix (Σt). This permits us to produce and estimate for the constant eigenvectors, denoted as Â.
With the estimated eigenvectors, we decompose our original asset processes into sum of inde-
pendent mean-reverting 4/2 models. The volatility group then consists of parameters for the
underlying CIR processes driving the principal components: b j, α j, θ j, ξ j, and the estimation
method follows along the lines of chapter 3. Section 5.3.3 tackles the estimation of drift group
parameters. This is done using least squares as in chapter 3.

Here we would like to remind the reader about volatility indexes and their meaning before we
proceed further. As we discussed in chapter 1, volatility indexes are a kind of implied volatility
that is model free and directly calculated from option prices from the market, thus they are a
good measure of market’s expectation about future volatility. See chapter 1 for a discussion on
the relation among four broadly used volatility measures: realized volatility, implied volatility,
instantaneous volatility and integrated volatility, and how tightly connected they are. In chap-
ters 3 and 5, we use volatility indexes data as a convenient proxy for instantaneous volatility. In
fact, instantaneous volatility is rather impossible to capture from empirical data, even with high
frequency data, as it requires instantaneous periods rather than the available discrete periods.
On the other hand, once a model is specified, volatility indexes can be used to represent instan-
taneous volatility with some multiplicative (scaling) adjustment or factor, see eg. [102], [130]
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and references therein. These works fall under “indirect modelling” methods for volatility in-
dexes and assume either Heston’s model or Heston with jumps for the underlying asset process.
In these Heston-related modelling methodologies, the relationship between the instantaneous
volatility and the volatility index of interest, for example VIX, can be expressed in terms of
a closed-form equation, where the difference between the two, under some conditions, lies on
a multiplicative factor. In a recent paper, see [97], the author assumes Grasselli’s 4/2 model
with the addition of jumps as the underlying, obtaining a far more complicated relationship,
nonetheless still with a multiplicative factor. All these works demonstrate that due to the short
horizon of volatility indexes (21 day options), the multiplicative factor could be close to one in
a large region of the parametric space, which implies that volatility indexes are almost equal to
instantaneous volatilities regardless of the structural choice of underlying model.

Inspired by these pioneer works, we introduce scale parameters to adjust empirical volatil-
ity indexes data to estimate instantaneous volatilities. This is done in a way that the empirical
means of the observed variance series (Vobs

t ) match the corresponding long term asset vari-
ances. These new scaling parameters can be estimated at an early stage of the estimation
process and are methodologically independent of other parameters. The reason we did not
introduce this scaling parameter earlier in chapter 3 is that in a one-dimensional case, their
values would be absorbed by the mean-revering level of the underlying CIR process; in other
words, the final estimation results already reflect the scaling operation. In this chapter, due
to the multiple dimensions and the principal components decomposition, it turns out that the
information of the scaling could be absorbed by either the eigenvectors (denoted A), the mean
reverting level (MRL) of the principal components (i.e. θ) or both. This creates scenarios
where the model is not compatible with data, e.g. given A, there is no reasonable θ matching
data-implied MRLs. This can be fixed by acknowledging scaling parameters for every under-
lying CIR process. Hence, the estimation introduces the concept of ”scaling” to accommodate
the instantaneous covariances with the vector of observable volatility indexes.

5.3.1 Data Description
Before we officially engage in estimation procedures with empirical data, we devote this sec-
tion to briefly describe the data we use and how we process the data for our purpose.

Generally, the model with separable spillover effects is good for multiple assets. As a demon-
stration, we consider the following pairs of assets: VIX and VSTOXX; USO and GLD; SLV
and GLD. Recall from chapter 3 that our estimation method is a two-stage method due to the
structure of our model. A two-stage method means that we need the asset data as well as its
corresponding volatility index data, then we estimate a group of the parameters in the first stage
with volatility index data and the other group of parameters next with asset data and volatility
index data. Therefore, we also consider the related volatility indexes (VVIX and VVSTOXX,
OVX and GVZ, VXSLV and GVZ) for the corresponding assets.

The sample size of the raw data is different across all the assets and volatility indexes. Hence,
we have to further process the data to better suit our estimation purpose, in particular ensuring
we take only the trading days when both assets and their volatilities can be observed. Fig-
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ure 5.1 to Figure 5.3 show the pairs of asset data and their volatility indexed. Note that the
volatility index data is quoted as annualized volatility multiplied by 100. When we use the
volatility index for estimation, we transform the volatility index to daily volatility by dividing
by 100 ∗

√
250.

(a) Data: VIX and VVIX (b) Data: VSTOXX and VVSTOXX

Figure 5.1: Historical VIX (VVIX) and VSTOXX (VVSTOXX) Data

(a) Data: USO and OVX (b) Data: GLD and GVZ

Figure 5.2: Historical USO (OVX) and GLD (GVZ) Data

5.3.2 Estimation of Volatility Group parameters.
We first take the chance to emphasize that there are two possible models that can be used
for estimation of the “volatility group” parameters in this section: the model with separable
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(a) Data: SLV and VXSLV (b) Data: GLD and GVZ

Figure 5.3: Historical SLV (VXSLV) and GLD (GVZ) Data

spillover effects and without spillover effects. The former is the model we consider in this
section. Both models are described next for completeness.

• Model with Separable Spillover Effects
Recall that Equation 5.9 gives us the representation for each principal component that
reflects on our mean-reverting 4/2 stochastic volatility model, this is dlog(Xt) = dYt =

AdMt with dMi(t) defined as:
dMi(t) =

[
L̃i + c̃i

(√
νi(t) + bi√

νi(t)

)2
− β̃iMi(t)

]
dt +

(√
νi(t) + bi√

νi(t)

)
dWP

i (t)

dνi(t) = αi(θi − νi(t))dt + ξi
√
νi(t)dBPi (t)

〈dWP
i (t), dBPi (t)〉 = ρidt

The estimation procedure for this model setup can be summarized as we first transform
the data using matrix A to produce Mi(t) process following the relationship among Xt,
Yt and Mt; then we can use the estimation method developed in chapter 3 for each Mi(t)
process, finally we recover the parameters for each Xi(t) process.

The model without spillover effects, defined by Equation 5.17, is simpler in setup because it
does not involve spillover effects, thus the matrix B is a diagonal matrix with mean-reverting
speed parameters for Xt processes on the diagonal. We consider the transformation Zt =

eBtYt = eBtlog(Xt). We can see from this relationship that in order to obtain Zt we need the
matrix B available, which is difficult to estimate at an early stage of the estimation process.
Assuming B can be estimated at the beginning of the estimation process, we can proceed in the
following procedures.

• Model without Spillover Effects
We write Equation 5.17 in matrix form:

dZt = eBt(L + AC̃Vt)dt + eBtAdiag(Vt)
1
2 dWP

t . (5.21)



5.3. Estimation 99

Multiplying both sides by A−1, we get:

A−1dZt = eBt(A−1L + C̃Vt)dt + eBtdiag(Vt)
1
2 dWP

t . (5.22)

Similarly, we take the transformation Z̃t = A−1Zt, then we obtain dynamics for process
Z̃t as follows:

dZ̃t = eBt(A−1L + C̃Vt)dt + eBtdiag(Vt)
1
2 dWP

t , (5.23)

which indicates Z̃t is a vector of independent processes in the form:
dZ̃i(t) = eβit

[
L̃i + c̃i

(√
νi(t) + bi√

νi(t)

)2
]

dt + eβit
(√
νi(t) + bi√

νi(t)

)
dWP

i (t)

dνi(t) = αi(θi − νi(t))dt + ξi
√
νi(t)dBPi (t)

〈dWP
i (t), dBPi (t)〉 = ρidt

The key in this second model is to decompose our original process into a linear com-
bination of independent mean-reverting 4/2 processes, so that we can apply the same
estimation methodology developed in chapter 3 to each Z̃i(t) process. We can see that
the matrix B is required for the decomposition, which represents a challenge and re-
quires a modification to our chapter 3 estimation methodology. Recall that in chapter 3,
our estimation considers log price. With no spillover effects, we have to work with dZt
as it leads to linear combination of independent 4/2 processes to which we can apply our
estimation methodology.

5.3.2.1 Estimation of Matrix A and the Scaling Parameters S .

In this section and the following section, we perform a preliminary analysis prior to estimating
parameters in volatility group. Some metrics from this analysis play key roles in our estimation
process. The empirical results are summarized in Table 5.1.

The first step is to estimate matrix A as it connects log asset prices Yt and principal com-
ponents Mt. Recall that A is an orthogonal matrix comprising the eigenvectors of covariance
matrix Σt. Given daily data, we estimate A by first calculating the covariance matrix Σ̂ and
applying eigenvalue decomposition:

Σ̂ = Âdiag(σ(1), . . . , σ(n))Â′.

(σ(1), . . . , σ(n)) is a vector of eigenvalues of Σ̂ and Â is the estimate of matrix A. In Table 5.1,
we include the results for Σ̂, Â and eigenvalues (σ(1), σ(2)) from empirical data. Note that Â
is not unique in that the signs of each element in the matrix can be manipulated such that the
column vectors are still the eigenvectors for the corresponding eigenvalues, while Â preserve
its orthogonality.

As we mentioned at the beginning of this section, volatility indexes are good proxy for in-
stantaneous volatility, but it may require scaling adjustment. Let Vobs

t = (V(1)
t , . . . ,V(n)

t )′ denote
the squared observed volatility indexes data for n assets respectively, we introduce a scale pa-
rameter si to bridge observed volatility indexes series V(i)

t ’s to theoretical variances via the
following relationship:

SVobs
t = (A ◦ A)Vt (5.24)
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Vt = (A ◦ A)−1SVobs
t . (5.25)

where S is a diagonal matrix with diagonal vector (s1, . . . , sn). In theory, si is a function of
t,T, bi, αi, θi, ξi, see [102], [130], some of which fall into volatility group and are to be esti-
mated. Hence, it is crucial to come up with an estimate that does not depend on these param-
eters. We propose an estimate that matches the long run first empirical moment of both sides
of Equation 5.24. The long term average of the left-hand side of Equation 5.24 can be directly
calculated from squared volatility indexes data. The long term average of the right-hand side
may not seem as straight forward as it is a stochastic process. In our definition (A ◦A)Vt is the
diagonal of covariance matrix and refers to instantaneous variance process. So in the long run,
the expectation of the variance process should converge to the variance of the underlying asset.
Let σ̂2

i denote the empirical long term variance of asset i and µ̂i denote the long term average
of the corresponding squared volatility index data. We estimate si as:

ŝi =
σ̂2

i

µ̂i
. (5.26)

Substituting Equation 5.26 and Â back to the right-hand side of Equation 5.25, then the long
term average gives us: 

σ(1)

...
σ(n)

 = E
[
(A ◦ A)−1ŜVobs

t

]
,

which matches the left-hand side of Equation 5.25 in long term average as Vt is the eigenvalue
of Σt and converges to (σ(1), . . . , σ(n)) in the long run. Table 5.1 also shows the results for Σ̂,
(σ(1), σ(2)) and (ŝ1, ŝ2).

VIX&VSTOXX USO&GLD SLV&GLD

Σ̂

(
0.0062 0.0030
0.0030 0.0048

) (
4.779e − 4 4.616e − 5
4.616e − 5 1.2547e − 5

) (
0.0724 0.0331
0.0331 0.0237

)
(µ̂1, µ̂2) (0.0034,0.0028) (6.0109e-4,1.6689e-4) (3.6258e-4,1.1843e-4)

(a): Covariance Matrix and Long Term Average of Squared Volatility Indexes
VIX&VSTOXX USO&GLD SLV&GLD

Â
(
0.7825 −0.6226
0.6226 0.7825

) (
0.9918 −0.1278
0.1278 0.9918

) (
0.8925 −0.451
0.451 0.8925

)
Ȧ

(
2.725 −1.725
−1.725 2.725

) (
1.0169 −0.0169
−0.0169 1.0169

) (
1.3429 −0.3429
−0.3429 1.3429

)
(σ(1), σ(2)) (2.1372, 0.592) (0.121, 0.0299) (0.0891, 0.007)
(ŝ1, ŝ2) (1.8074, 1.7229) (0.795, 0.7518) (0.799, 0.8)

(b): Eigenvectors, Eigenvalues and Scaling Factors

Table 5.1: Empirical Results
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5.3.2.2 Estimation of Volatility Group

Now we apply the estimation methods we developed in chapter 3. In chapter 3, we work with
1 dimensional process, and the volatility process (a

√
ν(t) + b

√
ν(t)

) is mapped to the observed
volatility for the corresponding asset (eg. VVIX for VIX and VSTOXX for VSTOXX). In a
multidimensional setting, the volatility process is driven by more than one diffusion, but the
idea is the same.

Let (Â ◦ Â)−1 = Ȧ = {ȧi j}
n
i, j=1 and j-th eigenvalue of Σt be defined as V j(t) = ν j(t) +

b2
j

ν j(t)
+ 2b j, then V j(t) is represented by

n∑
i=1

ȧ ji ŝiV(i)
t according to Equation 5.25. Suppose V(i)

t =

(V (i)(t1), . . . ,V (i)(tn)) is a series of squared volatility indexes for asset i observed on ΩT =

{ti}
m
i=0, t0 = 0, tm = T , then at time 0 ≤ tk ≤ T , we have V j(tk) =

n∑
i=1

ȧ ji ŝiV (i)(tk).

In theory, we expect the Vt series to be non-negative since it is related to the series of in-
stantaneous variances ((A ◦ A)Vt) for the underlying assets. In practice, however, we observe
inconsistencies in some cases. For example, as it can be seen in Figure 5.4a, V2(t) has quite a
few negative values (labeled by “V2”), which are non negligible. Next we perform a prelimi-
nary analysis aiming at locating the root of the issue.

We first consider the limitations of our model to be the source of the inconsistency. Since
we assume fixed constant orthogonal matrix A, which contains information about correlation
between assets, our model lacks the flexibility to capture varying correlation between assets.
This could create a mismatch with the market’s opinion on the actual correlation implied by
a vector of volatility indexes. In other words, the correlation between assets captured by A
might not be supported by their corresponding volatility indexes, otherwise we should observe
positive V2(t).

In order to test this assumption, we estimate A at a higher frequency, for example, once a
decade to once every year, thus we allow the matrix A to change in time aiming to capture the
varying correlation between assets. A quick way to assess whether time-dependent A serves as
a good solution, we picture the time series each year and check if we can still observe negative
values in V2(t) series. We have 2450 observations for V1(t) and V2(t) respectively from 2011 to
2020. We break the two series into 10 observing sections with 245 observations in each section,
roughly representing observations in a trading year. This way we have A changing every year
instead of being fixed for 10 years. The result is shown in Figure 5.5. In Figure 5.5a, there are
still negative values in V2(t) series. Rather, between 2018 and 2019, we even see negative V1(t).
Figure 5.5b records the percentages of negative values in V2(t) in each observing section. We
see a decreasing trend from section 1 to section 7, but it suddenly increases between section 7
to section 10.

Even though the preliminary analysis does not show exactly what causes the inconsistency,
it on the other hand verifies that the cause is not necessarily due to deficiencies of our model
in terms of matrix A. Even more, by letting A change from year to year, this allows the scaling
factors (s1, s2) to vary as well. This means the model has plenty of flexibility to adapt to data.
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The percentage of negative values, however, does not decrease with this flexibility. It stands
to reason that for a very high frequency, i.e. time stochastic At, s1t, s2t, all negative values in
V2(t) shall disappear. This tells us that there might be a need for an extra stochastic driver in
the covariance to fully capture the observable volatility indexes. We also suspect a disconnec-
tion between asset prices and their trade-able variances as a reason for this problem, which can
be noticed more evidently at the multivariate level. Such disconnection could imply arbitrage
opportunities (completing further the market), potential material for future research.

To solve the problem of inconsistency without modifying our model, we deal with the neg-
ative values as if they are missing values. So we replace the negative values by the weekly
averages centered at those negative values. Figure 5.4b shows the series of V1(t) and V2(t) after
this modification.

Figure 5.6 shows two series: V1(t) and V2(t) after transforming the original OVX and GVZ
data. In this case, we do not observe the inconsistency as shown in Figure 5.4b, which means
the data supports our model. The figure also illustrates the trend as expected with the first
principal component generating largest variation (V1(t)) in asset price compared to the second
principal component (V2(t)).

In Figure 5.7a, we also observe some inconsistency in silver ETF (SLV) and gold ETF (GLD)
data between 2011 and 2012. Because the correlation between SLV and GLD is large, V2(t)
series stays very close to 0, which implies that the two assets are probably driven by the same
random factor. Since the negative values do not appear as often as in Figure 5.4a and are close
to 0, we simply take absolute value of the negative values and show the modified series in Fig-
ure 5.7b.

Now we have prepared all the data for estimation. We apply the estimation method we have
developed in chapter 3 to V1(t) and V2(t) to estimate b1, α1, θ1, ξ1 and b2, α2, θ2, ξ2. Note that,
in all three scenarios, the minimum of V2(t) is approximately 0, which implies that b2 is zero
as seen from Figures 5.4b, 5.6 and 5.7. Therefore, it is sufficient to model V2(t) as a CIR (1/2)
process instead of a 4/2 process. On the other hand, the “spikes” occurred frequently in V1(t)
(labeled by “V1”) shown by the figures are signals that V1(t) should be a 4/2 process given all
three pairs of assets-volatility indexes data. Since we assume V2(t) follows a CIR process, we
estimate α2, θ2, ξ2 using maximum likelihood. Tables 5.2 to 5.4 show the estimated parameters
and their standard errors (s.e’s) with the chosen data sets for parameters in volatility group. The
inference on the parameters (asymptotic mean and variance) is done via parametric bootstrap.
In other words, we simulate the corresponding processes with the estimated parameters 1000
times and repeat the estimation procedure for each simulation. In the end, we obtain a pool of
1000 sets of estimates. The law of large numbers suggests that the means calculated from the
pool of estimates are the asymptotic means for each estimator.

5.3.3 Estimation of Drift Group
Similarly, we use the least square approach from chapter 3 to estimate parameters in the drift
group. Tables 5.5 to 5.7 show the results. Some parameters are assessed to be non significant
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(a) Principal Components. Data: VIX (VVIX) and
VSTOXX (VVSTOXX)

(b) Principal Components After Modification.
Data: VIX (VVIX) and VSTOXX (VVSTOXX)

Figure 5.4: Principal Components With Volatility Indexes Data.

(a) Principal Components With Changing A. Data:
VIX (VVIX) and VSTOXX (VVSTOXX)

(b) Percentage of Negative Values Each Section

Figure 5.5: Principal Components With Volatility Indexes Data (Varying A).

based on the p-values. We decide to keep all the parameters because our sample sizes are not
large enough to draw concrete conclusions on the significance of the parameters.

Note that the estimated parameters reported in the tables are for the parameters of the M1(t) and
M2(t) processes. We can recover the estimates for original parameters using the relationship
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Figure 5.6: Principal Components. Data: USO (OVX) and GLD (GVZ)

(a) Principal Components. Data: SLV (VXSLV)
and GLD (GVZ)

(b) Principal Components After Modification.
Data: SLV (VXSLV) and GLD (GVZ)

Figure 5.7: Principal Components With Volatility Indexes Data.

we defined earlier:

L̂ = ÂL̃
B̂ = ÂB̃Â−1

Ĉ = ÂC̃ +
1
2

(Â ◦ Â)
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Table 5.2: Estimated Volatility Group Parameters With Empirical Data (VIX and VSTOXX)

Data: V1(t) Data: V2(t)
b̂ 3.11e-4 ∼ 0
Mean of b̂ (s.e) 4.511e-4(1.1581e-6) 0(0)
α̂ 42.1811 19.1624
Mean of α̂ (s.e) 41.6498(0.0695) 19.5827(0.0552)
θ̂ 0.0079 0.0027
Mean of θ̂ (s.e) 0.0076(4.8578e-6) 0.0027(8.0796e-6)
ξ̂ 0.3436 0.3885
Mean of ξ̂ (s.e) 0.3537(1.3937e-4) 0.3877(5.1103e-4)

Table 5.3: Estimated Volatility Group Parameters With Empirical Data (USO and GLD)

Data: V1(t) Data: V2(t)
b̂ 1.6776e-5 ∼ 0
Mean of b̂ (s.e) 7.5578e-5(1.3892e-6) 0(0)
α̂ 3.62 5.3597
Mean of α̂ (s.e) 5.9253(0.0465) 5.6994(0.0186)
θ̂ 8.9803e-4 1.1859e-4
Mean of θ̂ (s.e) 4.6621e-4(7.4231e-6) 1.1779e-4(2.4962e-7)
ξ̂ 0.0271 0.0231
Mean of ξ̂ (s.e) 0.02(2.4446e-4) 0.0231(5.3704e-6)

Table 5.4: Estimated Volatility Group Parameters With Empirical Data (SLV and GLD)

Data: V1(t) Data: V2(t)
b̂ 2.0968e-5 ∼ 0
Mean of b̂ (s.e) 7.4123e-5(2.85e-7) 0(0)
α̂ 5.178 24.3083
Mean of α̂ (s.e) 7.7687(0.0664) 24.8349(0.057)
θ̂ 8.3026e-4 3.8644e-5
Mean of θ̂ (s.e) 4.6417e-4(7.5518e-6) 3.8753e-5(6.5274e-8)
ξ̂ 0.0307 0.0343
Mean of ξ̂ (s.e) 0.024(3.0304e-4) 0.0344(1.1187e-5)

The estimates for original parameters are reported in Table 5.8. The diagonal entries in B̂
matrices give us the information on the mean-revering speed for all the assets. Note that for
the pair SLV&GLD, one of the eigenvalues (−0.5401) of B̂ does not satisfy the assumption
imposed on the eigenvalues of B, which is a sign that the data does not support our model. The
correlation coefficients are not included since they are not affected by the transformation.
It is worth noting that L̂ in Table 5.8 does not reflect the actual mean-reverting level. To see
what the mean-reverting level is for each asset, we must go back to Equation 5.7 and rewrite it
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Table 5.5: Estimated Drift Group Parameters (VIX and VSTOXX)

Data ˆ̃Li p-value ˆ̃ci p-value ˆ̃βi p-vale ρ̂ p-value
M1(t)&V1(t) 25.6041 0 -114.6521 0.436 6.1077 0 0.5621 0
M2(t)&V2(t) 9.4459 0 73.6448 0.734 15.6266 0 0.00419 0

Table 5.6: Estimated Drift Group Parameters (USO and GLD)

Data ˆ̃Li p-value ˆ̃ci p-value ˆ̃βi p-vale ρ̂ p-value
M1(t)&V1(t) 0.8096 0.154 -416.2006 0.214 0.214 0.134 -0.3723 0
M2(t)&V2(t) 2.6418 0.07 -646.7339 0.384 0.5701 0.079 -0.00294 0

Table 5.7: Estimated Drift Group Parameters (SLV and GLD)

Data ˆ̃Li p-value ˆ̃ci p-value ˆ̃βi p-vale ρ̂ p-value
M1(t)&V1(t) 4.5459 0.009 842.936 0.153 1.0183 0.008 -0.2323 0
M2(t)&V2(t) -1.5092 0.23 -1787.0546 0.16 -0.5401 0.191 0.1228 0

Table 5.8: Estimated Original Drift Group Parameters

Data L̂ Ĉ B̂

VIX&VSTOXX (25.9172,8.5495)
(
−89.4091 46.0451
−71.1886 −57.3209

) (
9.7978 −4.6378
−4.6378 11.9365

)
USO&GLD (0.4653,2.7236)

(
−412.2959 −82.6444
−53.1823 641.9225

) (
0.2198 −0.0451
−0.0451 0.5643

)
SLV&GLD (4.7379,0.7032)

(
752.7178 −805.8599
380.2658 1595.3

) (
0.7013 0.6273
0.6273 −0.2231

)

in following format:

dYt = B(B−1L + B−1AC̃Vt − Yt)dt + Adiag(Vt)
1
2 dWP

t .

We can see that the mean-revering level is B−1L plus a random component, which we define as
H(Vt) = B−1AC̃Vt. The long term mean indicated by the model is basically B−1L + E

[
H(Vt)

]
.

We report these estimates in Table 5.9 and compare with the averages calculated from empiri-
cal data.

Table 5.9: Estimated Original Drift Group Parameters

Data B−1L E
[
H(Vt)

] Estimated Mean-
Reverting Level Empirical Averages

VIX&VSTOXX (2.9042,3.0832) (-0.0952,-0.0631) (2.809,3.0219) (2.6497,2.9139)
USO&GLD (3.1598,5.0794) (-0.961,-0.2547) (2.244,4.8247) (3.1342,4.8096)
SLV&GLD (2.7242,4.5075) (0.2215,0.2158) (2.9457,4.7232) (2.9468, 4.8645)
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From Table 5.9, we can see that the estimated MRLs are closed to empirical log price aver-
ages except for USO case where the estimated mean is quite smaller than the empirical mean.
This latest point might be due to the impact of the initial value on the stationary value of a
4/2 process. We can see that VIX&VSTOXX have the largest mean-reverting speed compar-
ing to the other two commodity ETF pairs. This is not a surprise as evidenced by empirical
data. Volatility indexes tend to return to mean faster due to economic cycle whilst commodities
normally have longer time horizon to revert to mean level due to scarcity, demand and supply.

5.4 Risk Measures

In section 1.3.5, we provided some definitions and concepts related to risk measures and finan-
cial risk management. Risk measures determine the minimum amount of capital to be kept in
reserve in worst case scenarios as a way of protecting financial institutions. There are many
risk measures in the literature see, for example, [7] and [104], one of which is considered fun-
damental yet crucial: Value-at-Risk (VaR). VaR is a distribution-based risk measure, in other
words, VaR calculation takes into account the distribution of the underlying (VaR is in fact a
quantile). It is more robust to outliers than mean and variance.

In this section, we compute the VaR of a portfolio consisting of two assets, for example USO
and GLD. To calculate the VaR, we first need to find the distribution of this portfolio, which
might not be available due to, in particular, the correlation among the underlyings. In language
of mathematical statistics, we need to find the joint distribution of USO and GLD in order to
compute VaR. Theoretically, in general, it is difficult to find closed-form expressions for the
joint distribution of two non-Gaussian stochastic processes. In fact, USO and GLD have very
complex distribution functions under our multidimensional 4/2 model setting. Fortunately, us-
ing principal component decomposition, we can decompose a multidimensional structure into
independent one dimensional pieces. What is more attractive is that we are able to express
the joint distribution at any given date of USO and GLD in terms of two independent random
variables, which simplifies our problem significantly and allow for the use of c.f.s to compute
properties of the portfolio distribution.

5.4.1 Portfolio Setup

Suppose we have a portfolio Π consisting of two assets X1(t) and X2(t):

Π(t) = φ1(t)X1(t) + φ2(t)X2(t) + φ3(t)B(t), (5.27)

where φ1 and φ2 represent the weights of X1(t) and X2(t) in the portfolio and B(t) is a cash
account with interest rate r. In a short period of time, we can also write the problem using the
self-financing condition and relative portfolio weights π1, π2 and (1 − π1 − π2) (i.e. proportion
allocated to the assets and cash account, allocations) see [28]:

dΠ(t)
Π(t)

= π1
dX1(t)
X1(t)

+ π2
dX2(t)
X2(t)

+ (1 − π1 − π2)rdt. (5.28)
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For the purpose of this chapter we will only consider constant allocations, i.e. constant π, as
this is the most popular investment strategy in the market, supported by [107]. From the process
dXi(t)
Xi(t)

, we can easily obtain dYi(t) (Yi(t) = log(Xi(t)) by using Ito’s lemma. When comparing
dXi(t)
Xi(t)

and dYi(t), we observe that only the drift term is adjusted, diffusion terms stay the same.
Assuming (X1(t), X2(t)) are modeled by Equation 5.2, the log prices (Y1(t),Y2(t)) then have the
SDE specified in Equation 5.7 under the PCSV framework. Moreover, we can also write dXi(t)

Xi(t)
in terms of dYi(t):

dXi(t)
Xi(t)

= dYi(t) +
1
2

∑
j

a2
i j

( √
ν j(t) +

b j

ν j(t)

)2

dt.

Hence, we rewrite Equation 5.28 as:

dΠ(t)
Π(t)

= π1

[
dY1(t) +

1
2

2∑
j=1

a2
1 j

( √
ν j(t) +

b j

ν j(t)

)2

dt
]

+ π2

[
dY2(t) +

1
2

2∑
j=1

a2
2 j

( √
ν j(t) +

b j

ν j(t)

)2

dt
]

+ (1 − π1 − π2)rdt.
(5.29)

We have also demonstrated that Y1(t) and Y2(t) are linear combinations of two independent
stochastic processes/random variables M1(t) and M2(t), hence we can write the dynamics of
Y1(t) and Y2(t) in terms of M1(t) and M2(t) as follows:

dY1(t) = a11dM1(t) + a12dM2(t), (5.30)
dY2(t) = a21dM1(t) + a22dM2(t). (5.31)

We now substitute dY1(t) and dY2(t) in Equation 5.29 with Equations 5.30 and 5.31:

dΠ(t)
Π(t)

= (π1a11 + π2a21)dM1(t) +
1
2

(π1a2
11 + π2a2

21)
( √

ν1(t) +
b1

ν1(t)

)2

dt

+ (π1a12 + π2a22)dM2(t) +
1
2

(π1a2
12 + π2a2

22)
( √

ν2(t) +
b2

ν2(t)

)2

dt

+ (1 − π1 − π2)rdt.

(5.32)

From Equation 5.32, we can conclude that dΠ(t)
Π(t) is also a linear combination of dM1(t) and

dM2(t) with adjustment done to the drift terms, which does not affect the independent relation-
ship between dM1(t) and dM2(t). We organize Equation 5.32 into the following expression:

dΠ(t)
Π(t)

= dM∗
1(t) + dM∗

2(t) (5.33)

where dM∗
1(t) and dM∗

2(t) are independent with

dM∗
i (t) =

[
L∗i + c∗i

( √
νi(t) +

bi
√
νi(t)

)2
− β∗i M∗

i (t)
]

dt + a∗i
( √

νi(t) +
bi
√
νi(t)

)
dWP

i (t),
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where,

L∗1 = L̃1a∗1 + (1 − π1 − π2)r, L∗2 = L̃2a∗2

c∗i = c̃ia∗i +
1
2

a∗∗i ,

β∗i = β̃ia∗i ,

a∗i =

2∑
j=1

π ja ji,

a∗∗i =

2∑
j=1

π ja2
ji.

Note we included the growth rate on the cash account into long term average of M∗
1(t) for

convenience. From a mathematical perspective, M∗
1(t) is constructed based on M1(t), which

is the first principal component that determines most variation among the assets. As a result,
M∗

1(t) affects the performance of Π(t) more than M∗
2(t) financially. For this reason, the effect of

the growth rate on the portfolio can also be interpreted as if it impacts the long term average of
M∗

1(t). Now we apply Ito’s lemma to Equation 5.33 to obtain the dynamics for ln(Π(t)):

dln(Π(t)) = dM̃∗
1(t) + dM̃∗

2(t) (5.34)

where,

dM̃∗
i (t) =

[
L∗i +

(
c∗i −

1
2

(a∗i )2)( √νi(t) +
bi
√
νi(t)

)2
− β∗i M̃∗

i (t)
]

dt + a∗i
( √

νi(t) +
bi
√
νi(t)

)
dWP

i (t).

It is straightforward to find the characteristic function of dln(Π(t)) using results from chapter 4
and chapter 5.

5.4.2 The Density Function of The Portfolio Π(t)

From Equation 5.34, our portfolio now basically contains two new “assets” that are independent
of each other. Thanks to this independence, we can derive the characteristic function as well
as the density function of our portfolio. Since our goal is to calculate VaR, it is convenient to
use density function and integrate numerically. In this section, we list two approaches to obtain
such density function.

5.4.2.1 The Density Function via Convolution

One way to obtain the conditional density function for ln(Π(T )) is via convolution of two
conditional density functions for M̃∗

1(T ) and M̃∗
2(T ). In probability, if two random variables X

and Y are independent with density functions fX(x) and fY(y) respectively. Let Z = X + Y , then
the density for Z, fZ(z), can be found via convolution, i.e:

fZ(z) =

∫ ∞

−∞

fX(x) fY(z − x)dx. (5.35)
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If X and Y have analytical density functions, then convolution method is straightforward. In our
case, we obtain the conditional c.f. first. Theoretically, the Fourier inversion of the conditional
c.f. gives the density function. Due to the structure of our original c.f. and the approxi-
mations, we need to invert the original c.f. and the approximated c.f.’s numerically for the
corresponding density functions. For M̃∗

1(T ) and M̃∗
2(T ), we can obtain their conditional cor-

responding density functions f1(m1|Ft) and f2(m2|Ft) by inverting the c.f. of Z̃∗1(t) = eβ
∗
1tM̃∗

1(t)
and Z̃∗2(t) = eβ

∗
2tM̃∗

2(t):

f1(m1|Ft) =
1

2π

∫ ∞

−∞

e−ium1ΦMR

(
T, u; L∗1, c

∗
1, a

∗
1, β

∗
1, α1, θ1, ξ1, ρ1, a∗1b1, ν1(t), e−β

∗
1tZ̃∗1(t)

)
du.

(5.36)

f2(m2|Ft) =
1

2π

∫ ∞

−∞

e−ium2ΦMR

(
T, u; L∗2, c

∗
2, a

∗
2, β

∗
2, α2, θ2, ξ2, ρ2, a∗2b2, ν2(t), e−β

∗
2tZ̃∗2(t)

)
du.

(5.37)
We can now write Equation 5.40 as a convolution of Equations 5.36 and 5.37:

f (p|Ft) =

∫ ∞

−∞

f1(m1|Ft) f2(p − m1|Ft)dm1. (5.38)

A challenging part of this method is that we need to invert the semi-closed c.f.s first to obtain
the density functions for M̃∗

1(t) and M̃∗
2(t) (artificial assets), which involves approximations.

As we have well-developed approximation approaches for ΦMR, we can apply the results to
obtain analytic function as approximation of the c.f. for individual artificial asset and then find
the density via Fourier inversion. Then we can use Equation 5.38 to obtain the density of the
portfolio. Recall that our approximation approaches work well in a parametric region as seen
in Figures 3.1 and 3.2 for three scenarios (bi = 0, ρi , 0; bi , 0, ρi = 0; bi = 0, ρi = 0), the
goodness of approximations depend on L∗i , c

∗
i , a
∗
i , β
∗
i , αi, θi, ξi, ρi, bi.

Also in the scenario where the 3/2 component is not negligible, we involve a hypergeomet-
ric function in the approximated function, which requires numerical computation methods,
either we find the hypergeometric function numerically or avoid the hypergeometric function
with partial simulation (only need to simulate νi(t) process to obtain the c.f.). These are the
difficulties involved in finding the individual c.f. Despite these difficulties, our approximation
approaches have been proved effective in chapter 3. With analytic approximations, we can find
the individual c.f. efficiently.

5.4.2.2 Density Function via Fourier Inversion

Another way to obtain density function is to apply inverse Fourier transform to the charac-
teristic function. Before we give the formula for the characteristic function, we consider the
transformation Z̃∗i (t) = eβ

∗
i tM̃∗

i (t). By Ito’s lemma, we have:

dZ̃∗i (t) = eβ
∗
i t

[
L∗i +

(
c∗i −

1
2

(a∗i )2)( √νi(t) +
bi
√
νi(t)

)2
]

dt + eβ
∗
i ta∗i

( √
νi(t) +

bi
√
νi(t)

)
dWP

i (t).

Next corollary illustrates how to derive the characteristic function:
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Corollary 5.4.1 Let ΦMR
(
T, u; L, c, a, β, α, θ, ξ, ρ, b, ν(t),Z(t)

)
denote the characteristic func-

tion provided in Proposition 3.2.1, then the characteristic function of ln(Π(T )) is given by the
following equation:

E(eiuln(Π(T ))|Ft) =

2∏
i=1

ΦMR

(
T, u; L∗i , c

∗
i , a
∗
i , β
∗
i , αi, θi, ξi, ρi, a∗i bi, νi(t), Z̃∗i (t)

)
(5.39)

where L∗1 = L̃1a∗1 + (1 − π1 − π2)r, L∗2 = L̃2a∗2, c
∗
i = c̃ia∗i + 1

2a∗∗i , β
∗
i = β̃ia∗i , a

∗
i =

∑2
j=1 π ja ji, a∗∗i =∑2

j=1 π ja2
ji.

Let p denote all possible values in the domain of ln(Π(T )), the density function hence follows:

f (p|Ft) =
1

2π

∫ ∞

−∞

e−iupE(eiuln(Π(T ))|Ft)du. (5.40)

It is not hard to see that the c.f. of the portfolio does not have a closed-form representation since
it is a product of semi-closed c.f.s (ΦMR) from chapter 3. As a result, we only have a term (a
product of conditional expectations in the case of portfolio c.f.) that requires approximations
for fast computations. Hence, the Fourier inversion method still face both theoretical and
numerical difficulties as we outlined at the end of previous section. The convolution method
and the Fourier inversion method both require finding the c.f.s first, which may require either
working with a hypergeometric function, a partial simulation (simulating νi(t) process) or an
approximation.

5.4.2.3 Numerical Implementation of Selected Method

Theoretically, the Fourier inversion method and the convolution method yield the same density
function for the portfolio. In a portfolio which only consists of two (artificial) risky assets, both
methods are not complicated to implement. We decide to implement convolution method with
partial simulation as it directly uses the well-developed algorithm from chapter 3. However,
it would be more efficient to use the Fourier inversion method when the portfolio has a large
pool of assets (e.g. over 100). To see this, note the convolution method involves, for n, n >> 2
assets, the simulation of n processes with n+1 integrations, while the Fourier inversion method
reduces the number of integrations to just one.

We summarize the numerical implementation to compute the conditional density function of
the portfolio in following steps:

• Step 1: Simulate two CIR processes ν1(t) and ν2(t) and compute ΦMR for M̃∗
1(t) and

M̃∗
2(t).

• Step 2: Invert the c.f.s obtained in Step 1 to get f1(m1|Ft) and f2(m2|Ft).

• Step 3: Integrate numerically the product of the conditional density of M̃∗
1(T ) and M̃∗

2(T )
for the conditional density function of ln(Π(T )).
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Even though we use partial simulation to get the density function of the portfolio, partial sim-
ulation is not time-consuming as there are efficient methods to simulate CIR processes, see for
example [4]. Moreover, both of the convolution method and the direct Fourier inversion method
require fewer simulations or no simulations with appropriate approximations, compared the the
simulation of 4 processes required otherwise. In the worst case where the semi-closed c.f.s are
involved, we would only need to simulate at most n, n ≥ 2 processes (νi(t) for i = 1, . . . , n
process), instead of an simulation of the M̃∗

1(t) processes altogether (2n processes). Most im-
portantly, thanks to P.C principles, we would likely need m such volatility drivers to explain
the stochastic covariance of n assets with m << n. This means a substantial reduction in com-
putational complexity (partial, simulations, integrations or approximations).

To sum up, under a PCSV framework partial simulation is a good choice in terms of efficiency.
The P.C principles reduces computational complexity as fewer diffusions may be required in
explaining the variation of all assets. Our approximations further improve the efficiency for
computing the c.f.s with analytic functions.

In the next application section, we entertain the convolution method from section 5.4.2.1 to
compute the VaR at popular quantile αq = 0.95 (VaR0.95).

5.4.3 VaR For A Portfolio of USO and GLD
We consider a pair of risky assets: USO and GLD. Based on the findings and results in section
5.3, we realize that our model is not supported by VIX and VSTOXX data as a number of
negative principal component values are observed, which should not be possible. Even though
a negligible number of negative principal component values are observed using SLV and GLD
data, the estimation result does not agree with our assumption on the eigenvalues of B. These
findings are indications that the data (VIX and VSTOXX; SLV and GLD) does not support
our model, thus it is logically unreasonable to consider these data in the application as the
portfolio which we will be constructing to calculate VaR0.95 is based on our model described
in section 5.3. In the following we study VaR0.95 under two different investment strategies:
equally weighted risky assets only (π1 = π2 = 0.5) and equally weighted assets (π1 = π2 = 1

3 ).
These have been proved to be robust and reliable strategies in the seminal work of DeMiguel
et.al [43]. In Tables 5.11 and 5.13, we report the VaR0.95 values and their standard errors (s.e).
We consider a well-known asymptotic result for quantiles to calculate the standard errors for
VaRαq as derived in [124]:

s.e(VaRαq) =

√
αq(1 − αq)
n f (VaRαq)2 ,

where αq is the quantile of the portfolio distribution, in this case it is 95%; n is the sample size
and f (VaRαq) is the probability distribution function (density function) evaluated at VaRαq .

Case 1: π1 = π2 = 0.5

In this case, we use the information from Tables 5.1b, 5.3 and 5.6 to obtain parameters that
generate M̃∗

2(T ) or M̃∗
1(T ). Since only drift group parameters are transformed, we show the
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new drift group parameters in the following table:

Table 5.10: Estimated Drift Group Parameters (USO and GLD)

Data L∗i c∗i β∗i a∗i a∗∗i ρ̂

M̃∗
1(t)&V1(t) 0.4532 0.5933 0.1198 0.5598 0.5 0

M̃∗
2(t)&V2(t) 1.1413 0.6567 0.2463 0.432 0.5 0

As in chapter 3, we show Figures 5.8 to 5.9 to justify that density functions from theory are in
line with simulations. We compute and compare VaR0.95 values from four sources: simulation

(a) Density and Histogram for M̃∗1(t) (b) Density and Histogram for M̃∗2(t)

Figure 5.8: Case 1: Density and Histogram for M̃∗
1(t) and M̃∗

2(t)

of the portfolio (Simulation), density function without approximation (Density w/o Approxi-
mation) and approximated density function using midpoint approach (Approx. Density (M))
and average approach (Approx. Density (A)) respectively:

Table 5.11: VaR0.05 for ln(Π(t)) From Four Sources

Simulation Density w/o Approximation Approx. Density (M) Approx. Density (A)
VaR0.05 2.7833 (0.004006) 2.783 (0.00401) 2.7832 (0.003988) 2.783 (0.004008)

We use linear interpolation here to calculate the quantile if αq falls in between of two critical
levels calculated from histogram and density functions. Standard errors are reported in brack-
ets.

Case 2: π1 = π2 = 1
3

In this case, we consider the strategy “1/N” as supported by [43]. Similarly as in Case 1,
we show the new drift group parameters in Table 5.12.
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Figure 5.9: Case 1: Density and Histogram for ln(Π(T ))

Table 5.12: Estimated Drift Group Parameters (USO and GLD)

Data L∗i c∗i β∗i a∗i a∗∗i ρ̂

M̃∗
1(t)&V1(t) 0.3088 0.5970 0.0799 0.3732 0.3333 0

M̃∗
2(t)&V2(t) 0.7608 0.6252 0.1642 0.2880 0.3333 0

Similarly, Figures 5.10 to 5.11 demonstrate that density functions from theory are in line with
simulations. Here we also consider four approaches: simulation of the portfolio (Simulation),
density function without approximation (Density w/o Approximation) and approximated den-
sity function using midpoint approach (Approx. Density (M)) and average approach (Approx.
Density (A)) respectively to compute and compare VaR0.95 values. Linear interpolation is used

Table 5.13: VaR0.05 for ln(Π(t)) From Four Sources

Simulation Density w/o Approximation Approx. Density (M) Approx. Density (A)
VaR0.05 1.9801 (0.004454) 1.9802 (0.004294) 1.9803 (0.004282) 1.9802 (0.004293)

to calculate the quantile if αq falls in between of two critical levels calculated from histogram
and density functions. Standard errors are reported in brackets.

We can see from both cases that our approximation methods perform well given the estimated
parameters. The VaR0.95 results further prove the effectiveness of our approximation methods.
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(a) Density and Histogram for M̃∗1(t) (b) Density and Histogram for M̃∗2(t)

Figure 5.10: Case 2: Density and Histogram for M̃∗
1(t) and M̃∗

2(t)

Figure 5.11: Case 2: Density and Histogram for ln(Π(T ))

Another finding from VaR0.95 results is that the VaR0.95 values produced by Case 2 investment
strategy is smaller than those produced by Case 1 strategy. This is not surprise because in Case
1 we only invest in risky assets whereas in Case 2 we also invest in a risk-free cash account,
hence we should have less exposure to risk in Case 2, and therefore smaller VaR0.95 values.
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5.5 Conclusion

In this chapter, we study the properties of a generalized mean-reverting 4/2 model in more de-
tails than chapter 4. We study c.f. approximations in the first two sections. In section 5.3, we
applied our estimation methodology developed in chapter 3 to the generalized model. During
the study, we confirm the role of the scaling parameters between instantaneous variance and
VIX plays in a multidimensional setting. Another issue we find is the flaw of constant eigen-
vector matrix assumption imposed on principal component stochastic volatility framework.
This can be seen from the estimation exercise on VIX (VVIX) and VSTOXX (VVSTOXX)
where we find negative eigenvalues in the analysis of principal components.

In section 5.4, we further test our approximation methods in a risk management setting by
computing one of the most popular risk measures VaR. Since VaR is a distribution based risk
measure, it is ideal to assess the effectiveness of our approximation in a multidimensional set-
ting. From Figures 5.8 to 5.11, we can see that the approximated density based on the average
approach still out performs the one based on mid point in overall fitting. Using average approx-
imation can greatly saves time in calculating distribution based risk measures. VaR0.95 results
in Tables 5.11 and 5.13 further prove that our theoretical and approximated density functions
are consistent with simulation. Therefore, our approximation methods are proved to be effec-
tive in multidimension.

5.6 Summary and Future Research

In this thesis, we study a novel mean-reverting model with the state-of-the-art 4/2 stochastic
volatility. We first study the theoretical properties of the model in one-dimensional setting in
chapter 3. Even though the c.f. we find has quasi-closed form representation, it helps reduces
computational cost for simulation purpose, especially in a multivariate model setting as we see
in chapter 4 and 5, as we only need to simulate one process instead of the complete model
that has two processes. To further improve computational efficiency, we propose two approx-
imation approaches. Numerical results show that the approximation approaches have good
performance in a certain parametric region. With approximated c.f., we can price options with
FFT methods, completely avoiding Monte Carlo methods. Later in chapters 4 and 5, we extend
the one-dimensional mean-reverting 4/2 stochastic volatility model to a multivariate case, also
considering risk factors from different sources. We assume a convenient principal component
stochastic volatility framework for the models studied in chapters 4 and 5. The benefit of this
framework is that the original models can eventually be interpreted as linear combinations of
independent processes after the decomposition of the stochastic covariance, which reduces the
dimension of the model. However, the one of the drawback as we see in chapter 5 is that prin-
cipal component stochastic volatility framework is not flexible with constant eigenvectors, thus
it is not flexible to capture varying correlations.

Since our models are highly parametric, they embed interesting theoretical research topics
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as well as numerical research topics. In chapter 3, the structure of the c.f. brings theoretical
challenge, which is hard to solve given evidence from current literature, one can start with
a simpler case by considering models in section 2.3.2 or a Grasselli’s 4/2 model [76] with
time-dependent coefficients. The parametric region is also worth exploring theoretically. For
estimation, we currently claim ν(t) + b2

ν(t) satisfies weak stationary and ergodic properties, a rig-
orous proof is helpful to support this claim and also a useful fact about 4/2 process. Another
interesting topic emerges from both theory and numerical application is regarding the choice
of the stochastic covariance matrix in the context of chapter 5. As we have seen, the current
choice or the decomposition of the stochastic covariance matrix is not consistent with some
of the applications, which means the empirical data does not support our assumption. So a
more robust principal component stochastic volatility framework is worth exploring due to the
theoretical convenience of principal component decomposition. This way principal component
stochastic volatility framework can be considered for a wide range of applications.
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Appendix A

Proofs for Theoretical Results in Chapter
3

Proof Proof of Proposition 3.2.1: Let ν̃(t) = eβtν(t) and ν̂(t) = eβtln(ν(t)), we have following:

dν̃(t) = αθeβtdt + (β − α)eβtν(t)dt + eβtξ
√
ν(t)dB(t), (A.1)

and

dν̂(t) = βν̂(t)dt +
∂ν̂(t)
∂ν(t)

dν(t) +
1
2
∂2ν̂(t)
∂ν(t)2 < dν(t) >

= βν̂(t)dt +
eβtξ
√
ν(t)

dB(t) + eβt(
αθ

ν(t)
− α)dt − eβt ξ2

2ν(t)
dt.

(A.2)

From B.9 and B.10, we solve for
∫ T

t
eβs√ν(s)dB(s) and

∫ T

t
eβs
√
ν(s)

dB(s):

∫ T

t
eβs

√
ν(s)dB(s) =

eβTν(T ) − eβtν(t)
ξ

−
αθ(eβT − eβt)

βξ
−
β − α

ξ
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t
eβsν(s)ds, (A.3)
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t

eβs

√
ν(s)

dB(s) =
1
ξ

ln
ν(T )eβT

ν(t)eβt +
α(eβT − eβt)
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1
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(
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2
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β

ξ
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eβsln(ν(s))ds.

(A.4)
Split W(t) into B(t) and its orthogonal part B(t)⊥:

Z(T ) = Z(t) +
L
β

(eβT − eβt) +
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t
eβs(c −

1
2

)(a
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then substitute B.11 and B.12 to get rid of dB(t). Z(t) can be rewritten as:

Z(T ) = Z(t) +

(
L −

aραθ
ξ

+
bρα
ξ
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(A.5)

Let (Gt)t≥0 denote the filtration generated by ν(t), t ≥ 0. Using a property of iterated expecta-
tion, we can write the conditional moment generating function of Z(t) as:
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By independence of random variables, we have:
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} ∣∣∣∣∣Ft

⋃
Gt

]∣∣∣∣∣Ft

]
(A.6)
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The inner double expectation of A.6 involves

E
[
exp

{
u
√

1 − ρ2

∫ T

t
eβs(a

√
ν(s) +

b
√
ν(s)

)dB(s)⊥
}∣∣∣∣∣Ft

⋃
Gt

]
.

Conditioning on Ft
⋃
Gt implies that

√
1 − ρ2

∫ T

t
eβs(a

√
ν(s) + b

√
ν(s)

)dB(s)⊥ is a normal ran-
dom variable with mean 0. By Ito’s Isometry, the variance can be easily found to be (1 −
ρ2)

∫ T

t
e2βs(a2ν(s) + b2

ν(s) + 2ab)ds. So

E
[
eu
√

1−ρ2
∫ T

t eβs(a
√
ν(s)+ b√

ν(s)
)dB(s)⊥ ∣∣∣Ft

⋃
Gt

]
= e

1
2 u2(1−ρ2)

∫ T
t e2βs(a2ν(s)+ b2

ν(s) +2ab)ds.

Consequently, the conditional moment generating function of
√

1 − ρ2
∫ t

0
eβs(a

√
ν(s)+ b

√
ν(s)

)dB(s)⊥

is found to be:

E
[
E
[
eu
√

1−ρ2
∫ T

t eβs(a
√
ν(s)+ b√

ν(s)
)dB(s)⊥

∣∣∣∣∣Ft

⋃
Gt

]∣∣∣∣∣Ft

]
= E

[
e

1
2 u2(1−ρ2)

∫ T
t e2βs(a2ν(s)+ b2

ν(s) +2ab)ds
∣∣∣Ft

]
(A.7)

After reorganizing E(euZ(T )|Ft), we have:

E(euZ(T )|Ft) =exp
{
uZ(t) + u

(
L −

aραθ
ξ

+
bρα
ξ

+ 2ab(c −
1
2

)
) (eβT − eβt)

β
+ u2(1 − ρ2)

×
(e2βT − e2βt)ab

2β

}
× exp

{
−

uaρ
ξ

eβtν(t) −
ubρeβt

ξ
ln(ν(t))

}
× E

[
exp

{
−

ubρβ
ξ

∫ T

t
eβsln(ν(s))ds + u

[bρ
ξ

(
ξ2

2
− αθ

)
+ b2(c −

1
2

)
] ∫ T

t

eβs

ν(s)
ds

+
1
2

u2(1 − ρ2)a2
∫ T

t
e2βsν(s)ds − u

[aρ(β − α)
ξ

− a2(c −
1
2

)
] ∫ T

t
eβsν(s)ds

+
1
2

u2(1 − ρ2)b2
∫ T

t

e2βs

ν(s)
ds +

uaρ
ξ

eβTν(T ) +
ubρ
ξ

eβT lnν(T )
}∣∣∣∣∣Ft

]
.

(A.8)

Hence,

E(euZ(t)|Ft) =exp
{
uZ(t) + u

(
L −

aραθ
ξ

+
bρα
ξ

+ 2ab(c −
1
2

)
) (eβT − eβt)

β
+ u2(1 − ρ2)

(e2βT − e2βt)ab
2β

}
× exp

{
−

uaρeβt

ξ
ν(t) −

ubρeβt

ξ
ln(ν(t))

}
× E

[
ν(T )−Aexp

{
− Bν(T ) −C

∫ T

t
eβsln(ν(s))ds

−

∫ T

t

(
Deβs + Ee2βs) 1

ν(s)
ds −

∫ T

t

(
Feβs + Ge2βs)ν(s)ds

}∣∣∣∣∣Ft

]
.

where,

A = −
ubρ
ξ

eβT , B = −
uaρ
ξ

eβT ,C =
ubρβ
ξ

,D = −
ubρ
ξ

(
ξ2

2
− αθ

)
− ub2(c −

1
2

),

E = −
1
2

u2(1 − ρ2)b2, F =
uaρ(β − α)

ξ
− ua2(c −

1
2

),G = −
1
2

u2(1 − ρ2)a2.

(A.9)
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Proof Proof of the results in the example of Section 3.2.1.1: First:

ln
(
α(e

√
A(T−t) − 1) +

√
A(e

√
A(T−t) + 1)

2
√

Ae
√

A+α
2 (T−t)

)− 2αθ
ξ2

=
2αθ
ξ2 ln

( 2
√

Ae
√

A+α
2 (T−t)

α(e
√

A(T−t) − 1) +
√

A(e
√

A(T−t) + 1)

)
=

2αθ
ξ2

{ √A + α

2
(T − t) + ln

( 2
√

A

α(e
√

A(T−t) − 1) +
√

A(e
√

A(T−t) + 1)

)}
=
αθ

ξ2

{
(
√

A + α)(T − t) − 2ln
( √A − α + (α +

√
A)e

√
A(T−t)

2
√

A

)}
=
αθ

ξ2

{
(
√

A + α)(T − t) − 2ln
(
α −
√

A − (α +
√

A)e
√

A(T−t)

−2
√

A

)}
=
αθ

ξ2

(α +
√
α2 + ξ2(u2 + iu))(T − t) − 2ln

(1 − ge−(T−t)
√
α2+ξ2(u2+iu)

1 − g

) = C(T − t, u)

Next:

−(u2 + iu)(e
√

A(T−t) − 1)

α(e
√

A(T−t) − 1) +
√

A(e
√

A(T−t) + 1)
=

α2−A
ξ2 (e

√
A(T−t) − 1)

α(e
√

A(T−t) − 1) +
√

A(e
√

A(T−t) + 1)

=
1
ξ2

(α +
√

A)(α −
√

A)(e
√

A(T−t) − 1)

α(e
√

A(T−t) − 1) +
√

A(e
√

A(T−t) + 1)
=
α +
√

A
ξ2 ×

e
√

A(T−t) − 1
α

(α−
√

A)
(e
√

A(T−t) − 1) +
√

A
(α−
√

A)
(e
√

A(T−t) + 1)

=
α +
√

A
ξ2 ×

1 − e
√

A(T−t)

1 − ge
√

A(T−t)
= D(T − t, u)

Proof Proof of Proposition 3.3.1:
Option 1
Now we define γ(t) = λ

√
ν(t) as in [80] for some constant λ such that ν(t) remains in the

family of CIR processes under the risk-neutral measure. The process for volatility becomes:

dν(t) = (αθ − (α + λξ)ν(t))dt + ξ
√
ν(t)dBQ(t).

Since ν(t) is unbounded from above, we need the conditions under which γ(t) is well defined
i.e E[exp( 1

2

∫ T

0
γ2(s)ds)] < ∞. Proposition 5.1 of [92] provides a sufficient condition on λ that

for −α
ξ
≤ λ < ∞, Novikov’s condition is satisfied and hence,

E
[
exp

(
−

∫ t

0
γ(s)dBQ(s) −

1
2

∫ t

0
γ2(s)ds

)]
= 1,

which means γ(t) = λ
√
ν(t) is well defined for −α

ξ
≤ λ < ∞. When λ , −α

ξ
, Feller condition

for volatility process after the change of measure is now 2(α + λξ) αθ
α+λξ

= 2αθ ≥ ξ2, which is
the same as we have under measure P.
Next we need to find γ(t)⊥. Under measure Q, we have:

dX(t)
X(t)

= (L + c
(
a
√
ν(t) +

b
√
ν(t)

)2
− g(ν(t)) − βln(X(t)))dt + (a

√
ν(t) +

b
√
ν(t)

)dWQ(t)
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where g(ν(t)) = (a
√
ν(t) + b

√
ν(t)

)γ(t)′ and γ(t)′ = ργ(t) +
√

1 − ρ2γ(t)⊥. Since the drift term
contains (a

√
ν(t) + b

√
ν(t)

)2, a natural choice of g(ν(t) is g(ν(t)) = Λ(a
√
ν(t) + b

√
ν(t)

)2. Substitute
γ(t) for λ

√
ν(t) and solve for γ(t)⊥:

γ(t)⊥ =
1√

1 − ρ2

[
(Λa − ρλ)

√
ν(t) +

Λb
√
ν(t)

]
.

γ(t)⊥ is a linear combination of
√
ν(t) and 1

√
ν(t)

, we then write γ(t)⊥ = Λ1
√
ν(t) + Λ2√

ν(t)
,

E
[
exp

(1
2

∫ T

0
γ2(s)⊥ds

)]
= E

{
exp

[1
2

∫ T

0
(Λ2

1ν(t) + 2Λ1Λ2 +
Λ2

2

ν(t)
)ds

]}
= eΛ1Λ2TE

[
exp

(Λ2
1

2

∫ T

0
ν(s)ds +

Λ2
2

2

∫ T

0

1
ν(s)

ds
)]
.

Theorem A.1 of [76] gives a closed form solution for

E
[
ν(T )−qe−lν(T )−m

∫ T
0 ν(s)ds−n

∫ T
0

1
ν(s) ds

]
.

With q = 0 and l = 0, the above expectation exists as long as m, n ∈ R, m > − α2

2ξ2 , n ≥

−
(2αθ−ξ2)2

8ξ2 . In our case m = −
Λ2

1
2 and n = −

Λ2
2

2 . From the range of m and n we have for

|Λ1| <
α
ξ

and |Λ2| ≤
2αθ−ξ2

2ξ , E
[
exp

(
Λ2

1
2

∫ T

0
ν(s)ds +

Λ2
2

2

∫ T

0
1
ν(s)ds

)]
is finite and thus defined.

We combine the range of Λ1 and Λ2 to get the constrain on Λ: Λ ∈ {Λ3 < Λ < Λ4} where

Λ3 = max
[

1
a

(
− α

ξ
+ ρλ

)
,− 1
|b|

(αθ
ξ
−

ξ

2

)]
and Λ4 = min

[
1
a

(α
ξ

+ ρλ
)
, 1
|b|

(αθ
ξ
−

ξ

2

)]
for a and b non-zero.

Option 2
We define γ(t) = λ′

√
ν(t)

for some constant λ′. This change will also keep ν(t) within CIR
process family under risk-neutral measure by subtracting a constant to mean-reverting level:

dν(t) = (αθ − λ′ξ − αν(t))dt + ξ
√
ν(t)dBQ(t).

The corresponding Feller condition will be 2ααθ−λ′ξ

α
= 2(αθ − λ′ξ) ≥ ξ2 when λ′ ≤ 0. Let’s

check if Novikov’s condition E[exp(λ
′2

2

∫ T

0
1
ν(t)ds)] < ∞ is satisfied. Note that 1

ν(t) = ν(t)′ is a
3/2 process with

dν(t)′ = ν(t)′
(
α − (αθ − ξ2)ν(t)′

)
dt − ξν(t)′

3
2 dBP(t).

[30] showed that the conditional Fourier-Laplace transformation of joint log return, R(T ), and
integrated variance, E

[
eiuR(T )−s

∫ T
t ν(z)′dz|Ft

]
have a closed-form solution for stochastic volatility

model with volatility process being 3/2 process. In our case, setting u = 0 and substituting s =

−λ
′2

2 , we get E
[
exp

(
λ′2

2

∫ T

0
1
ν(s)ds

)]
and the expectation is finite as long as 1F1

(
x; w;− 2

ξ2y(0,ν(0))

)
exists, in another word w is positive. The problem simplifies to solve the inequality

(
1
2 +

αθ−ξ2

ξ2

)2

−

λ′2

ξ2 ≥ 0 for the range of λ′: |λ′| ≤ αθ
ξ
−

ξ

2 . So when −(αθ
ξ
−

ξ

2 ) ≤ λ′ ≤ 0, γ(t) = λ′
√
ν(t)

is well
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defined.
Let g(ν(t)) = Λ′(a

√
ν(t) + b

√
ν(t)

)2. We repeat the procedures in Option 1 for solving γ(t)⊥:

γ(t)⊥ =
1√

1 − ρ2

[
(Λ′a

√
ν(t) +

Λ′b − ρλ′
√
ν(t)

]
.

In this case, Λ1 = Λ′a and Λ2 = Λ′b − ρλ′, the constrain on Λ is Λ ∈
{
Λ3 < Λ

′

< Λ4

}
where

Λ3 = max
[
− 1

b

(αθ
ξ
−

ξ

2 − ρλ
′
)
,− α
|a|ξ

]
and Λ4 = min

[
1
b

(αθ
ξ
−

ξ

2 + ρλ′
)
, α
|a|ξ

]
for a and b non-zero.

Data Descriptions:
VVIX Data Description: Data is obtained from Cboe website. Dataset consists of daily data
starting from January 3, 2007 to March 13, 2018, 2817 entries in total excluding November 11,
2010 data that is not available.
V-VSTOXX Data Description: Euro STOXX 50 Volatility of volatility (V-VSTOXX) historical
daily data is available on STOXX. The data is recorded from March 23, 2010 to March 13,
2018 with 15 missing data entries. The missing data entries are not evenly distributed through-
out the time frame. Majority of the missing data are in 2017. Almost half month data of August
2017 are not available. The size of data is 2017 after excluding missing data.
Volatility Index of Crude Oil ETF Data Description: According to Cboe website, “the Cboe
Crude Oil ETF Volatility index (USO) measures the market’s expectation of 30-day volatility
of crude oil prices by applying the VIX methodology to United States Oil Fund, LP options
spanning a wide range of strike prices.” We obtain daily data from May 10, 2007 to March 13,
2018 with 2730 entries in total.
Volatility Index of Gold ETF Data Description: Similar to USO, the Cboe Gold ETF Volatility
index (GVZ) measures the market’s expectation of 30-day volatility of gold prices by applying
the VIX methodology Gold ETF options spanning a wide range of strike prices. We obtain
daily data from June 3, 2008 to May 15, 2019 with 2757 entries in total.



Appendix B

Proofs and Helpful Results for Chapter 4

B.1 Proofs
Proof Proof of Proposition 4.2.1.
The first step is to ensure the change of measure is well-defined and for this we use Novikov’s
condition, i.e., generically

E

exp

1
2

∫ T

0
λ2

(√
ν(t) +

b
√
ν(t)

)2

ds

 = eλ
2bTE

[
exp

(
λ2

2

∫ T

0
ν(s)ds +

λ2b2

2

∫ T

0

1
ν(s)

ds
)]
< ∞.

From Grasselli, in order for this expectation to exist, we need two conditions:

−
λ2

2
> −

α2

2ξ2 =⇒ |λ| <
α

ξ
(B.1)

and

−
λ2b2

2
≥ −

(2αθ − ξ2)2

8ξ2 =⇒ |λ| ≤
2αθ − ξ2

2|b|ξ
=⇒ ξ2 ≤ 2αθ − 2|λ||b|ξ (B.2)

The latter condition in Equation (B.2) implies, in particular, that our volatility processes satisfy
Feller’s condition under P and Q; in other words, it ensures all our CIR processes stay away
from zero under both measures.

Applying Equation (B.2) to our setting leads to (i, j = 1, .., n):

ξ2
j ≤ 2α jθ j − 2ξ j max

{∣∣∣λ jb j

∣∣∣ , ∣∣∣λ⊥j b j

∣∣∣} (B.3)

ξ̃2
i ≤ 2α̃ĩθi − 2ξ̃i max

{∣∣∣∣̃λĩbi

∣∣∣∣ , ∣∣∣∣̃λ⊥i b̃i

∣∣∣∣} (B.4)

Now, we apply Equation (B.1) producing two extra set of conditions (i, j = 1, .., n):

max
{∣∣∣λ j

∣∣∣ , ∣∣∣λ⊥j ∣∣∣} <
α j

ξ j
(B.5)

max
{∣∣∣̃λi

∣∣∣ , ∣∣∣̃λ⊥i ∣∣∣} <
α̃i

ξ̃i

(B.6)
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The second step applies to the case βi j = 0 for i, j = 1, .., n and it is to ensure the drift of the
asset price equal the short rate:

Li = r, ci =

n∑
j=1

ai j

(
ρ jλ j +

√
1 − ρ2

jλ
⊥
j

)
, c̃i = ρ̃iλ̃i +

√
1 − ρ̃2

i λ̃
⊥
i

For the most general case (βi j , 0 for some i or j), the second step should be adapted to any
particular prescribed drift structure under the Q-measure.

The third step is to ensure the drift-less asset price process is a true Q-martingale and not
just a local Q-martingale:

dXi(t)
Xi(t)

= (.) dt +

n∑
j=1

ai j

√v j(t) +
b j√
v j(t)

 dWQ
j (t) +

(√
ṽi(t) +

b̃i
√

ṽi(t)

)
dW̃Q

i (t)

Here, we test the martingale property using the Feller nonexplosion test for volatilities, hence
considering the following n2 + n changes of Brownian motion for the volatility processes and
checking the processes do not reach zero under the various measures:

dBQ
i j(t) = ai jρ j

√v j(t) +
b j√
v j(t)

 dt + dBP
j (t), dB̃Q

i (t) = ρ̃i

(√
ṽi(t) +

b̃i
√

ṽi(t)

)
dt + dB̃P

i (t)

This leads to the following conditions:

ξ2
j ≤ 2α jθ j − 2

∣∣∣ai jρ jb j

∣∣∣ ξ j, i, j = 1, ..., n (B.7)

ξ̃2
i ≤ 2α̃ĩθi − 2

∣∣∣∣̃λiρ̃ĩbi

∣∣∣∣ ξ̃i, i = 1, ..., n (B.8)

We can combine the first and third steps in Equations (B.3), (B.7), (B.4) and (4.4) into the final
conditions.
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Proof Proof of Proposition 4.2.2.
We start by defining new processes dS ik,t and dS i j

t with i, j, k = 1, 2, . . . , n and t ≥ 0.

dZi(t) =

n∑
j=1

(
eβt

)
i j

(̃c j −
1
2

) √ṽ j(t) +
b̃ j√
ṽ j(t)

 dt +

√ṽ j(t) +
b̃ j√
ṽ j(t)

 dW̃ j(t)


+

n∑
k=1


 n∑

j=1

(
eβt

)
i j

L j

n

 dt +

 n∑
j=1

(
eβt

)
i j

(
ck −

1
2

)
a2

jk

 (√vk(t) +
bk
√

vk(t)

)2

dt


+

n∑
k=1

 n∑
j=1

(
eβt

)
i j

a jk

 (√vk(t) +
bk
√

vk(t)

)
dWk(t)

=

n∑
j=1

dS i j
t +

n∑
k=1

dS ik,t

By the dependence structure implied by the model, it follows that all S are independent for a
fix i, hence we can transform the characteristic function using the processes S as follows:

ΦZ(t),v(t)(T, ω) =

n∏
k=1

E
[
exp{iω′

(
S ·k,T − S ·k,t

)
} | S t, v(t)

] n∏
j=1

E
[
exp{iωi

(
S . j

T − S . j
t

)
} | S t, v(t)

]

For each factor j = 1, 2, . . . , n we define S ∗k,t = ω′S ·k,t =
∑n

i=1 ωiS ik,t; the dynamics of S ∗k,t can
be expressed as

dS ∗k,t = ω′dS ·k,t

=

L(ω, t) + hk(ω, t)
(√

vk(t) +
bk
√

vk(t)

)2 dt + gk (ω, t)
(√

vk(t) +
bk
√

vk(t)

)
dWk,t

where,

hk(ω, t) =

n∑
j=1

(
ck −

1
2

)
a2

jk f j(ω, t), L(ω, t) =

n∑
j=1

L j

n
f j(ω, t), gk (ω, t) =

n∑
j=1

a jk f j(ω, t), f j(ω, t) =

n∑
i=1

ωi

(
eβt

)
i j
.

These three functions are deterministic, linear combinations of f j(ω, t).

Next, we find the characteristic function for the increments of S ∗k,t:

E
[
exp{iφ

(
S ∗k,T − S ∗k,t

)
} | S ∗k,t, vk(t) = vk,t

]
= ΦGG

(
T, φ; L(ω), hk(ω), gk(ω), κk, θk, ξk, ρk, bk, ck, vk,t, S ∗k,t

)
.

The generic function ΦGG is provided in Lemma B.1.1. It follows similarly for idiosyncratic
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factors:

dS ∗ j
t = ω′dS · jt

=

 n∑
i=1

ωi

 n∑
j=1

(
eβt

)
i j

(̃
c j −

1
2

)

√ṽ j(t) +

b̃ j√
ṽ j(t)

 dt

+

 n∑
i=1

ωi

n∑
j=1

(
eβt

)
i j


√ṽ j(t) +

b̃ j√
ṽ j(t)

 dW̃ j,t

= h j(ω, t)

√ṽ j(t) +
b̃ j√
ṽ j(t)

2

dt + g j (ω, t)

√ṽ j(t) +
b̃ j√
ṽ j(t)

 dW̃ j,t

where h j(ω, t) =
∑n

i=1 ωi

(∑n
j=1

(
eβt

)
i j

(̃
c j −

1
2

))
and g j (ω, t) =

∑n
i=1 ωi

∑n
j=1

(
eβt

)
i j

.

Combining all pieces together, we obtain:

ΦZ(t),v(t)(T, ω) =

n∏
k=1

E
[
exp{iω′

(
S ·k,T − S ·k,t

)
} | S t, v(t)

] n∏
j=1

E
[
exp{iω′

(
S · jT − S · jt

)
} | S t, v(t)

]
=

n∏
k=1

ΦGG

(
T, 1; Lk(ω), hk(ω), gk(ω), κk, θk, ξk, ρk, bk, ck, vk,t, S ∗k,t

)
×

n∏
j=1

ΦGG

(
T, 1; 0, h j(ω), g j(ω), κ̃ j, θ̃ j, ξ̃ j, ρ̃ j, b̃ j, c̃ j, ṽ j,t, S

∗ j
t

)
Lemma B.1.1 Let the generic process be:

dZ(t) =

L(t) + h(t)
(√

v(t) +
b
√

v(t)

)2 dt + g (t)
(√

v(t) +
b
√

v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)
〈dB(t), dW(t)〉 = ρdt

with g (t) differentiable, then

ΦGG (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vt,Zt) = exp
{

u
∫ T

t
A (s) ds

}
ν(t)u bρ

ξ g(t) exp
{
−uρ

g (t) ν(t)
ξ

}
×E

[
ν(T )u bρ

ξ g(T ) exp
{

u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +

∫ T

t
D(s) ln(ν(s))ds + ρ

g (T ) ν(T )
ξ

)}
| Ft

]
where A, B, C and D are provided in the proof.

Proof Proof of Lemma B.1.1.
Let the generic process be:

dZ(t) =

L(t) + h(t)
(√

v(t) +
b
√

v(t)

)2 dt + g (t)
(√

v(t) +
b
√

v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)
〈dB(t), dW(t)〉 = ρdt
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We want to find

E
[
euZ(T )|Ft

]
= euZ(t)ΦGG (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vt,Zt)

Letting ν̃(t) = g (t) ν(t) and ν̂(t) = g (t) ln(ν(t)), we have following:

dν̃(t) = αθg (t) dt +
(
g′ (t) − αg (t)

)
ν(t)dt + g (t) ξ

√
ν(t)dB(t), (B.9)

and

dν̂(t) =
g′ (t)
g (t)

ν̂(t)dt +
∂ν̂(t)

∂ ln(ν(t))
d ln(ν(t)) +

1
2

∂2ν̂(t)
∂ ln(ν(t))2 < d ln(ν(t)) > (B.10)

=
g′ (t)
g (t)

ν̂(t)dt +
g (t) ξ
√
ν(t)

dB(t) + g (t) (
αθ

ν(t)
− α)dt − g (t)

ξ2

2ν(t)
dt

From Equations (B.9) and (B.10), we solve for
∫ T

t
g (s)

√
ν(s)dB(s) and

∫ T

t
g(s)
√
ν(s)

dB(s):∫ T

t
g (s)

√
ν(s)dB(s) =

g(T )ν(T )−g(t)ν(t)
ξ

− αθ
ξ

∫ T

t
g (s) ds − 1

ξ

∫ T

t
(g′ (s) − αg (s)) ν(s)ds, (B.11)∫ T

t
g(s)
√
ν(s)

dB(s) = 1
ξ

ln ν(T )g(T )

ν(t)g(t) + α
ξ

∫ T

t
g (s) ds + 1

ξ

(
ξ2

2 − αθ
) ∫ T

t
g(s)
ν(s) ds − 1

ξ

∫ T

t
g′ (s) ln(ν(s))ds. (B.12)

Split W(t) into B(t) and its orthogonal part B(t)⊥:

Z(T ) = Z(t) +

∫ T

t
L (s) ds +

∫ T

t
h(s)

(√
ν(s) +

b
√
ν(s)

)2

ds

+

∫ T

t
g (s)

(√
ν(s) +

b
√
ν(s)

)
(ρdB(s) +

√
1 − ρ2dB(s)⊥),

then substitute Equation (B.11) and (B.12) to eliminate dB(t). Z(t) can be rewritten now as:

Z(T ) = Z(t) +

∫ T

t
L (s) ds +

∫ T

t
h(s)

(
ν(s) + 2b +

b2

ν(s)

)
ds +

√
1 − ρ2

∫ T

t
g(s)

(
a
√
ν(s) +

b
√
ν(s)

)
dB(s)⊥

+ ρ
g (T ) ν(T ) − g (t) ν(t)

ξ
−
αθρ

ξ

∫ T

t
g (s) ds −

ρ

ξ

∫ T

t
(g′ (s) − αg (s)) ν(s)ds

+
bρ
ξ

ln
ν(T )g(T )

ν(t)g(t) +
αbρ
ξ

∫ T

t
g (s) ds +

bρ
ξ

(
ξ2

2
− αθ

) ∫ T

t

g (s)
ν(s)

ds −
bρ
ξ

∫ T

t
g′ (s) ln(ν(s))ds

Grouping conveniently, we obtain:

Z(T ) = Z(t) +

∫ T

t
A (s) ds +

∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +

∫ T

t
D(s) ln(ν(s))ds

+
bρ
ξ

ln
ν(T )g(T )

ν(t)g(t) + ρ
g (T ) ν(T ) − g (t) ν(t)

ξ
+

√
1 − ρ2

∫ T

t
g(s)

(
a
√
ν(s) +

b
√
ν(s)

)
dB(s)⊥

where

A (s) = L (s) + 2bh(s) +

(
αbρ
ξ
−
αθρ

ξ

)
g (s)

B(s) = h(s) −
ρ

ξ

(
g′ (s) − αg (s)

)
C(s) = b2h(s) +

bρ
ξ

(
ξ2

2
− αθ

)
g(s)

D(s) = −
bρ
ξ

g′ (s)
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Let (Gt)t≥0 denote the filtration generated by ν(t), t ≥ 0. Using iterated expectation and inde-
pendence, we can write the conditional moment generating function of Z(T ) as:

E
[
euZ(T )|Ft

]
= E

[
E

[
euZ(T ) | Ft

⋃
Gt

]
| Ft

]
= exp

{
u
(
Z(t) +

∫ T

t
A (s) ds

)}
ν(t)u bρ

ξ g(t) exp
{
−uρ

g (t) ν(t)
ξ

}
×E[ exp

{
u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +

∫ T

t
D(s) ln(ν(s))ds +

bρ
ξ

ln ν(T )g(T ) + ρ
g (T ) ν(T )

ξ

)}
×E

[
exp

{
u
√

1 − ρ2

∫ T

t
g(s)

(√
ν(s) +

b
√
ν(s)

)
dB(s)⊥

}
| Ft

⋃
Gt

]
| Ft]

The inner expectation, conditioned on Ft
⋃
Gt, leads to a normal random variable with mean 0

and variance (Ito’s Isometry) u2(1 − ρ2)
∫ T

t
g2(s)(ν(s) + b2

ν(s) + 2b)ds. Putting all together:

E
[
euZ(T )|Ft

]
= exp

{
u
(
Z(t) +

∫ T

t
A (s) ds

)}
ν(t)u bρ

ξ g(t) exp
{
−uρ

g (t) ν(t)
ξ

}
×E

[
ν(T )u bρ

ξ g(T ) exp
{

u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +

∫ T

t
D(s) ln(ν(s))ds + ρ

g (T ) ν(T )
ξ

)}
| Ft

]
where

A(s) = A(s) + u(1 − ρ2)bg2(s)

B(s) = B(s) +
1
2

u2(1 − ρ2)g2(s)

C(s) = C(s) +
1
2

u2(1 − ρ2)b2g2(s)

Proof Proof of Corollary 4.2.3.
The proof starts similarly to Proposition 4.2.2. We start by defining new processes dS i j,t and
dS i

t with i, j = 1, 2, . . . , n and t ≥ 0.

dZi(t) =

[(̃
ci −

1
2

) (√
ṽi(t) +

b̃i
√

ṽi(t)

)
dt +

(√
ṽi(t) +

b̃i
√

ṽi(t)

)
dW̃i

]
+

n∑
j=1

Li

n
dt +

(
c j −

1
2

)
a2

i j

√v j(t) +
b j√
v j(t)

2

dt + ai j

√v j(t) +
b j√
v j(t)

 dW j


= dS i

t +

n∑
j=1

dS i j,t

By the dependence structure implied by the model, it follows that all S are independent for a
fix i, hence we can transform the characteristic function using the processes S as follows:

ΦZ(t),v(t)(T, ω) =

n∏
j=1

E
[
exp{iω′

(
S · j,T − S · j,t

)
} | S t, v(t)

] n∏
i=1

E
[
exp{iωi

(
S i

T − S i
t

)
} | S t, v(t)

]
For each factor j = 1, 2, . . . , n we define S ∗j,t = ω′S · j,t =

∑n
i=1 ωiS i j,t, the dynamics of S ∗j,t can

be expressed as

dS ∗j,t = ω′dS · j,t

=

L(ω) + h j(ω)

√v j(t) +
b j√
v j(t)

2 dt + g j (ω)

√v j(t) +
bk√
v j(t)

 dW j,t
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where h j(ω) =
∑n

i=1 ωi

(
ci −

1
2

)
a2

i j, L(ω) =
∑n

i=1 ωi
Li
n and g j (ω) =

∑n
i=1 ωiai j. Next, we find the

characteristic function for the increments of S ∗j,t:

E
[
exp{iφ

(
S ∗j,T − S ∗j,t

)
} | S ∗j,t, v j(t) = v j,t

]
= ΦG

(
T, φ; L, h j, g j, κ j, θ j, ξ j, ρ j, b j, c j, v j,t, S ∗j,t

)
.

The generic function ΦG is provided in the Appendix B.2.

Similarly for the idiosyncratic factors dS i
t with i = 1, 2, . . . , n:

dS ∗it = ωidS i
t = hi(ω)

(√
ṽi(t) +

b̃i
√

ṽi(t)

)2

dt + gi (ω)
(√

ṽi(t) +
b̃i
√

ṽi(t)

)
dW̃i,t

where hi(ω) = ωi

(̃
ci −

1
2

)
and gi (ω) = ωi.

Combining all pieces together, we obtain:

ΦZ(t),v(t)(T, ω) =

n∏
j=1

E
[
exp{iω′

(
S · j,T − S · j,t

)
} | S t, v(t)

] n∏
i=1

E
[
exp{iωi

(
S i

T − S i
t

)
} | S t, v(t)

]
=

n∏
j=1

ΦG

(
T, φ; L, h j, g j, κ j, θ j, ξ j, ρ j, b j, c j, v j,t, S ∗j,t

)
×

n∏
i=1

ΦG

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,t, S ∗it

)
Proof Proof of Corollary 4.2.4.
The proof uses Corollary 4.2.3, where we express the joint c.f. as the product of one dimen-
sional c.f.s of 4/2 type.

ΦZ(t),v(t)(T, ω) =

n∏
j=1

E
[
exp{iω′

(
S · j,T − S · j,t

)
} | S t, v(t)

] n∏
i=1

E
[
exp{iωi

(
S i

T − S i
t

)
} | S t, v(t)

]
=

n∏
j=1

ΦG

(
T, φ; L, h j, g j, κ j, θ j, ξ j, ρ j, b j, c j, v j,t, S ∗j,t

)
×

n∏
i=1

ΦG

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,t, S ∗it

)
Hence, every one of these functions (ΦG (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vt,Zt) = E

[
euZ(T ) | Ft

]
) cap-

ture the c.f. of a process of the type:

dZ(t) =

L + h
(√

v(t) +
b
√

v(t)

)2 dt + g
(√

v(t) +
b
√

v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)
〈dB(t), dW(t)〉 = ρdt

It is not difficult to realize therefore that the c.f. given v(T ) can be similarly computed for every
one of those processes, hence one can infer:

ΦZ(t),v(T )(T, ω) =

n∏
j=1

ΦG,T

(
T, φ; L, h j, g j, κ j, θ j, ξ j, ρ j, b j, c j, v j,T , S ∗j,t

)
×

n∏
i=1

ΦG,T

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,T , S ∗it

)
where ΦG,T (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vT ,Zt) = E

[
euZ(T ) | Ft ∪ v(T )

]
is provided next in Ap-

pendix B.2.
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B.2 Helpful Results
Given the 4/2 process, the following c.f. are used in this paper:

dZ(t) =

L + h
(√

v(t) +
b
√

v(t)

)2 dt + g
(√

v(t) +
b
√

v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)
〈dB(t), dW(t)〉 = ρdt

•

ΦG (T, u; L, h, g, α, θ, ξ, ρ, b, c, vt,Zt) = E
[
euZ(T )|Ft

]
= exp

{
uZ(t) +

α2θ

ξ2 (T − t) + u
(
r + 2(h −

1
2

)g2b −
gραθ
ξ

+
gbρα
ξ

)
(T − t) + u2(1 − ρ2)g2b(T − t)

}

×

 √
Au

ξ2 sinh
( √Au

2 t
)


mu+1

ν(t)
1
2 +

mu
2 −

αθ

ξ2
−

ugbρ
ξ

(
Ku(T ) −

ugρ
ξ

)−( 1
2 +

mu
2 + αθ

ξ2
+

ugbρ
ξ

)

× exp
{
ν(t)
ξ2

(
−

√
Au coth

( √
Au(T − t)

2

)
+ α − ugρξ

)} Γ
(

1
2 + mu

2 + αθ
ξ2 +

ugbρ
ξ

)
Γ(mu + 1)

×1 F1

1
2

+
mu

2
+
αθ

ξ2 +
ugbρ
ξ

,mu + 1,
Auν(t)

ξ4(Ku(T ) − ugρ
ξ

) sinh2
( √

Au(T−t)
2

)
 ,

with

Au = α2 − 2ξ2
(
u
(

gρα
ξ

+ (h −
1
2

)g2
)

+
1
2

u2(1 − ρ2)g2
)
,

mu =
2
ξ2

√(
αθ −

ξ2

2

)2

− 2ξ2

(
u
(

gbρ
ξ

(
ξ2

2
− αθ

)
+ (h −

1
2

)g2b2

)
+

1
2

u2(1 − ρ2)g2b2

)
,

Ku(T ) =
1
ξ2

(√
Au coth

( √
Au(T − t)

2

)
+ α

)

•

ΦG,T (T, u; L, h, g, κ, θ, ξ, ρ, b, c, vt,Zt) = E
[
euZ(T )|Ft ∪ v(T )

]
= exp

{
uZ(t) + u

(
r + 2(h −

1
2

)g2b −
aραθ
ξ

+
bρα
ξ

)
(T − t) + u2(1 − ρ2)g2b(T − t)

}
× exp

{
ugρ
ξ

(ν(T ) − ν(t)) +
ugbρ
ξ

log
ν(T )
ν(t)

}

×

√
Au sinh

(
α(T−t)

2

)
α sinh

( √
Au(T−t)

2

) exp
(
ν(T ) + ν(t)

ξ2

(
α coth

(
α(T − t)

2

)
−

√
Au coth

( √
Au(T − t)

2

)))

×

I
2
ξ2

√(
αθ−

ξ2
2

)2
+2ξ2 Bu

(
2
√

Auν(T )ν(t)

ξ2 sinh
( √

Au (T−t)
2

) )
I 2αθ
ξ2
−1

(
2α
√
ν(T )ν(t)

ξ2 sinh
(
α(T−t)

2

) ) ,

with
Bu = u

(
gbρ
ξ

(
ξ2

2
− αθ

)
+ (h −

1
2

)g2b2
)

+
1
2

u2(1 − ρ2)g2b2,
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