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ABSTRACT

Intraventricular hemorrhage (IVH) or bleed within the brain is a common condition among pre-term infants
that occurs in very low birth weight preterm neonates. The prognosis is further worsened by the development of
progressive ventricular dilatation, i.e., post-hemorrhagic ventricle dilation (PHVD), which occurs in 10-30% of
IVH patients. In practice, predicting PHVD accurately and determining if that specific patient with ventricular
dilatation requires the ability to measure accurately ventricular volume. While monitoring of PHVD in infants
is typically done by repeated US and not MRI, once the patient has been treated, the follow-up over the lifetime
of the patient is done by MRI. While manual segmentation is still seen as a gold standard, it is extremely time
consuming, and therefore not feasible in a clinical context, and it also has a large inter- and intra-observer
variability. This paper proposes an segmentation algorithm to extract the cerebral ventricles from 3D T1-
weighted MR images of pre-term infants with PHVD. The proposed segmentation algorithm makes use of the
convex optimization technique combined with the learned priors of image intensities and label probabilistic map,
which is built from a multi-atlas registration scheme. The leave-one-out cross validation using 7 PHVD patient
T1 weighted MR images showed that the proposed method yielded a mean DSC of 89.7% ± 4.2%, a MAD of
2.6± 1.1 mm, a MAXD of 17.8± 6.2 mm, and a VD of 11.6%± 5.9%, suggesting a good agreement with manual
segmentations.

Keywords: Ventricle Segmentation, Pre-term Neonate with PHVD, Convex Optimization, Multi-Atlas Initial-
ization, 3D MR Imaging.

1. INTRODUCTION

Ventriculomegaly is a common condition in neonates born prematurely with the highest risk population being
those born at < 32 weeks gestation or with very low birth weight (< 1500 g). Intraventricular hemorrhage (IVH)
is one of the primary non-congenital causes of ventriculomegaly, which is brain bleeding that occurs in 15 to 30%
of very low birth weight preterm neonates.1 Infants with IVH are at risk of developing progressive dilatation of
the ventricles, a pathology called hydrocephalus. Ultrasound (US) or MR images of their brains are typically
used to monitor the ventricular size.2–6 The treatment is surgical, involving, for example, the placement of a
shunt, where a tube is surgically inserted to divert cerebral spinal fluid (CSF) from the ventricles to abdomen in
order to decrease pressure on the surrounding brain. Once the patient is treated, the efficiency of the treatment is
evaluated by MRI, and the patients are typically followed with regular MRI over their lifetime to assess the good
functioning of the shunt. Should a shunt become blocked, the ventricles would increase in size, necessitating a
surgical revision to replace the shunt. Currently the ventricular volume is estimated by measureing the width and
shape of the ventricles on orthogonal planes; however access to an accurate volume would simplify the decision
algorithm of the clinician. While clinicians have a good sense of what ventriculomegaly looks like compared to
normal ventricles, it is difficult to determine small changes in ventricle size, as can happen in patient treated with
a shunt. As discussed below, neonatal imaging, especially in IVH patients imposes some technical challenges; and
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manual segmentation is too labour intensive to be used in a clinical context. This paper proposes a segmentation
algorithm to extract the cerebral ventricles from 3D T1-weighted MR images of pre-term infants with PHVD.
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Previous brain segmentation algorithms have been extensively investigated in adult brain MR images.7 How-
ever, there is limited publicly available software for neonatal brain MR image segmentation, and none have been
developed to account for the extensive deformation of the ventricles caused by hydrocephalus. Neonatal brain
MR images tend to suffer from high image noise (the patients are not sedated and therefore the images have some
additional motion artefacts), low tissue contrast, and considerable inter-subject anatomical variability, making
most of the methods used in adult population not applicable to these images.8 Although some automatic neona-
tal MR segmentation methods were developed,9–11 most of works segmented neonatal brain in MR images into
white matter (WM), gray matter (GM), and CSF, and did not focus on the ventricular system. Moreover, their
methods were only validated on healthy neonate images. A population of IVH patients adds another challenge,
as the hemorrhage leads to an heterogeneous cerebrospinal fluid (CSF) as well as sometimes the development
of periventricular cysts. Therefore, a large inter-subject anatomical variability is possible, and overtime, as the
brain develops, an intra-individual variability is also possible. Because most clinical images are performed in a
1.5T, trying to minimize the time needed to acquire an image, the resolution of the images is relatively poor.

2. NEW OR BREAKTHROUGH WORK TO BE PRESENTED

In this study, we propose an atlas initialized multi-region segmentation method for extracting the cerebral
ventricles from 3D T1 weighted (T1w) MR images of pre-term PHVD neonate patients. The proposed algorithm
makes use of convex optimization technique combined with multi-atlas registration framework and multi-region
constraints. The major components of the whole segmentation pipeline are implemented using general-purpose
programming on graphics processing units (GPGPU) to obtain a high computational efficiency. Note that this
work has not been submitted for any publication or presentation elsewhere.

3. METHODS

3.1 Segmentation overview

All images are bias corrected using the N3 algorithm,12 and subsequently head masked via the BET algorithm.13

The head mask is only used to locate the position of the head, and the segmentation is carried out without skull-
stripping to avoid potential over-stripping of the head. Each training image of (Ii(x), i = 1, 2, ..., n) is registered

by uaffinei (x) to the subject image Is(x) using an affine block-matching approach with default parameters,
which is implemented in the Nifty Reg package.14 Following the affine registration, a recently developed novel
deformable registration algorithm (TV-Reg)15,16 is used to efficiently and accurately extract the non-linear
registration unon−lineari (x), i = 1, 2, ..., n, from each pre-segmented image Ii to the subject image Is. Specially, it
makes use of a coarse-to-fine strategy to capture the large deformations and employs an efficient multiplier-based
algorithm to compute the updated incremental deformation field at each image scale.

The multiple registered labels are combined via a weighting strategy to acquire the probabilistic labeling
map, which is used as the shape prior for the subsequent segmentation step. A thresholding procedure follows
to generate the initial guess for the ventricles and to approximate the intensity appearance priors, i.e. the
probability density functions (PDFs), for the background and foreground ventricle regions respectively.

3.2 Deformable registration algorithm (TV-Reg)

we use a multi-scale dual optimization-based method15,16 to estimate the non-linear deformation field u(x) =
[u1(x),u2(x),u3(x)]T , between two given images I1(x) and I2(x), which minimizes a variational optical-flow
energy function, i.e.

min
u

P (I1, I2; u) + R(u) (1)

where P (I1, I2;u) represents a dissimilarity measure of the two input images I1(x) and I2(x) under deformation
by u, and R(u) is the regularization function to match a deformation field with the required smoothness. In this
paper, we employ the sum of absolute intensity differences (SAD):

min
u

P (I1, I2; u) :=

∫
Ω

|I1(x+ u)− I2(x)| dx , (2)
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as an effective and robust similarity measurement to the two input images from the same imaging modalities.

The Lp-norm convex function as the regularization term is used in this work, such that:

R(u) := α

3∑
i=1

∫
Ω

|∇ui|p dx (3)

where p ≥ 1. In this study, p = 1, which gives rise to a non-smooth function, specifically the sum of three convex
total-variation functions: R(u) = α

∫
Ω

(|∇u1|+ |∇u2|+ |∇u3|)dx.

Because of the expected non-linearity and non-convexity of the image functions I1(x) and I2(x), it is chal-
lenging to directly optimize the energy function (1), even if its regularization term R(u) is convex. To address
this issue, we introduce an incremental linearization and convexification approach to solving the studied opti-
mization problem (1), which lends itself to a standard coarse-to-fine optimization framework. This approach
allows for a global-optimization perspective, properly avoiding local optima through the ability to capture large
deformations.15,16

3.3 Segmentation problem formulation

A convex optimization-based method is finally used to obtain the globally optimal segmentation of the given 3D
image I(x) into the foreground ventricle region R and background Ω\R, which encodes the prior information
obtained in the multi-atlas initialization procedure and minimizes the total labeling cost joint with the total area
of R, i.e., the continuous min-cut problem,17 such that

min
R

∫
R
DF (x) dx +

∫
Ω\R

DB(x) dx +

∫
∂R

ds (4)

Typically, the minimization of total area of the segmented regions consists of finding a smooth bounded surface
of the ventricle region R. In this study, the two cost functions DF (x) and DB(x) in (4) measure the fidelity of
each pixel fitting the respective prior models, i.e.:

DF (x) = −α logF (I(x)) − (1− α) log
(
PL(x) ∗Gσ(x)

)
(5)

and
DB(x) = −α logB(I(x)) − (1− α) log

(
1− PL(x) ∗Gσ(x)

)
, (6)

where the first term measures the intensity similarity of each voxel compared with the sampled voxels in the
ventricle region and the background region by the log-likelihood of the respective intensity PDFs;18 the second
term measures the similarity extent of each voxel to the shape prior model by the log-likelihood of the probabilistic
shape prior map PL(x); α ∈ (0, 1) weights the contributions from the intensity and shape priors for each voxel.
In Eq. 5 and 6, Gσ(x) is the Gaussian smoothing function.

3.4 Convex optimization and continuous max-flow algorithm

We denote u(x) as the indicator function of the estimated region R such that

u(x) :=

{
1 , where x is inside R
0 , otherwise

, i = f : foreground, b : background . (7)

The indicator functions u(x) ∈ {0, 1}, for ∀x ∈ Ω, are also called the labeling functions.

Therefore, the proposed optimization model (4) can be equally reformulated as the continuous min-cut model :

min
u(x)∈[0,1]

〈1− u,DF (x)〉+ 〈u,DB(x)〉+

∫
Ω

g(x) |∇u| dx , (8)

where the binary constraints u(x) ∈ {0, 1} are substituted instead of its convex relaxation u(x) ∈ [0, 1]. The
minimization of eq. 8 can be solved globally and exactly by an efficient continuous max-flow algorithm.17
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Table 1. Segmentation results of 7 PHVD patients’ T1w MR images regarding DSC, MAD, MAXD, and VD, represented
as Mean ± SD.

DSC (%) MAD (mm) MAXD (mm) VD (%)
89.75± 4.2 2.6± 1.1 17.8± 6.2 11.6± 5.9

More specifically, we use a continuous max-flow configuration17,19–21 in this study. Let ps(x) and pt(x) be
source and sink flows to and from pixel x to the source and sink terminals. The spatial flow p(x) exists around
the neighborhood of pixel x. Then, the continuous max-flow model that maximizes the flow can be formulated
as follows:

max
ps,pt,p

∫
Ω

ps(x) dx (9)

subject to the flow capacity and conservation conditions. ps(x) ≤ Cs(x), ∀ ∈ Ω
pt(x) ≤ Ct(x), ∀ ∈ Ω
|p(x)| ≤ g(x), ∀ ∈ Ω

(10)

and the flow conservation condition:

div (p(x)− ps(x) + pt(x)) = 0, ∀ ∈ Ω (11)

It has been proven that the continuous max-flow model (9) is equivalent to the convex relaxation problem (8).17

The continuous max-flow model (9) is then formulated and solved using the classical augmented Lagrangian
method.22 The readers are referred to 17,23 for more details about the continuous min-cut/max-flow method.

4. RESULTS

Seven preterm-born patients with PHVD were imaged upon reaching term-equivalent age with a 1.5T Signa HDxt
MRI scanner (General Electric Health Care, Milwaukee, WI) without sedation. A 3D T1-weighted (T1w) MR
image of each brain was acquired while the patient was bundled inside a MedVac blanket (CFI Medical Solutions
Inc, Fenton, MI). The leave-one-out cross validation strategy was used to evaluate the proposed approach. A
manual segmentation of each image used as the ground truth was compared to the algorithm segmented result,
using volume-based metrics: Dice similarity coefficient (DSC); distance-based metrics: the mean absolute surface
distance (MAD) and maximum absolute surface distance (MAXD); and volume measurement metrics:absolute
volume difference (VD), |(VManual − Valgorithm)/VManual|.

Figure 1 shows an example of the algorithm segmented ventricle of one PHVD patient, visually demonstrating
a good agreement. Table 1 shows the mean quantitative segmentation results for 7 patient images using the
proposed method.Computations were carried out on a Tesla C2070 GPU (NVIDIA, St. Clara, CA) with an
Ubuntu 12.04 machine and 144 GB RAM, where each computation of convex optimization required approximately
35 seconds. Each pairwise registration from one training image to the target subject was made up of an affine
registration (no GPU acceleration: 3 minutes) and deformable registration (GPU: 50 seconds). Thus, leave-one-
out cross validation using 7 images required an average of 24 miniutes for each subject image using 6 training
atlas images.

5. CONCLUSIONS

PHVD is a common condition among pre-term IVH infants. Predicting PHVD accurately and determining if
that specific patient with ventricular dilatation requires the ability to measure accurately ventricular volume.
This paper proposes an approach to extract the brain ventricles of 3D T1 weighted (T1w) MR images of pre-
term PHVD neonatal patients. The proposed segmentation algorithm makes use of the convex optimization
technique combined with a label probabilistic shape prior, built via a multi-atlas non-linear registration scheme.
The leave-one-out cross validation show that the proposed method is accurate and efficient, capable of capturing
the large inter-subject shape variability. The generated DSCs along with MAD, MAXD, and VD are favourable
in clinical practice, suggesting the proposed method could be potentially used to measure the ventricle system
volume of the PHVD neonatal brain.
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Figure 1. Segmented ventricles colored in red compared to manual segmentation colored in green, DSC: 92.3%. (a)-(b):
segmented surface, sagittal view, coronal view, and transverse view.
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