
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

12-17-2020 10:00 AM 

The Effect of the Initial Structure on the System Relaxation Time The Effect of the Initial Structure on the System Relaxation Time 

in Langevin Dynamics in Langevin Dynamics 

Omid Mozafar, The University of Western Ontario 

Supervisor: Denniston, Colin, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Applied Mathematics 

© Omid Mozafar 2020 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Other Applied Mathematics Commons 

Recommended Citation Recommended Citation 
Mozafar, Omid, "The Effect of the Initial Structure on the System Relaxation Time in Langevin Dynamics" 
(2020). Electronic Thesis and Dissertation Repository. 7560. 
https://ir.lib.uwo.ca/etd/7560 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F7560&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/122?utm_source=ir.lib.uwo.ca%2Fetd%2F7560&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/7560?utm_source=ir.lib.uwo.ca%2Fetd%2F7560&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

In recent decades, computer experiments have allowed an accurate and fundamental under-

standing of molecular mechanisms at the microscopic level, such as the process of relaxation at

a stable physical state1. However, computer simulations may sometimes produce non-physical

results or relations due to the incompleteness of mathematical models describing physical sys-

tems. In this thesis, we have investigated whether the initial structure in a computer simulation

affects the system relaxation time, which is denoted by τsys, in the Langevin NVTP2 ensemble.

We found that for an initial structure, which is inhomogeneous in the number density of atoms,

the system relaxation time, τsys, is longer, often by more than an order of magnitude, compared

to that for the homogeneous initial structure. Moreover, we realized that the system relaxation

time for the inhomogeneous initial structure is an increasing function of the Langevin coupling

constant γ.

Keywords: Relaxation time, The system relaxation time, Inhomogeneous structure, Ho-

mogeneous structure, Initial structure, Molecular dynamics simulation, MD, LAMMPS, Com-

puter simulation, Radial distribution function, RDF, Pair distribution function, PDF, Total cor-

relation function, Langevin dynamics, Langevin thermostat, Under-damped Langevin dynam-

ics, Brownian dynamics, Lennard-Jones potential.

1A stable physical state is a state for which physical properties are finite and time-independent.

2P is the system’s total linear momentum.
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Summary for Lay Audience

One of the fundamental physical processes in nature is the relaxation process of many-body

systems towards a stable physical state. Once a system equilibrates, it becomes measurable, and

thus, we can define reliable physical quantities, such as temperature. That is why conventional

physics is mostly defined in steady-state conditions. In this thesis, we are going to measure the

time that it takes for a system to reach a steady state under specified conditions using computer

simulations. The original objective of doing so is to examine the effects of the initial structural

conditions on this period of time, commonly called the system relaxation time and denoted by

τsys. We found that the initial structural conditions have an effect on the system relaxation time.

In particular, we have a shorter system relaxation time for homogeneous initial structures than

for inhomogeneous initial structures.
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Chapter 1

Introduction

The liquid state of matter is intuitively perceived as the state that is intermediate between a gas

and a solid. The concept of liquid structure (or precisely liquid microstructure) is relatively new

in physical chemistry (∼ 100 years or more). It has appeared as a convenient way to explain the

differences in liquids’ properties by differences in their microstructure, just as in other states of

matter. It should be noted that how liquid structure is defined plays a crucial role in determining

the accuracy of the predicted liquids’ properties. In the following paragraphs, we would like to

discuss the notion of the liquid structure from the classical statistical mechanics’ point of view.

In liquids, atoms and molecules are in a state of permanent thermal motion. This motion is

described by classical mechanics (Newtonian or Hamiltonian equations of motion) if the mean

nearest-neighbour separation, i.e., a ≡ ρ−1/3, where ρ is the number density, is much larger than

the thermal average de Broglie wavelength, i.e., Λ, which is a length scale and is defined for a

particle of mass m as [1, 2]

Λ = h/(2πmkBT )1/2, (1.1)

where kB = 1.381 × 10−23 JK−1 is the Boltzmann’s constant, and h = 6.626 × 10−34 JS is the

Planck’s constant. Some examples of the thermal average de Broglie wavelength at temperature

T = 50K are shown in Table 1.1.

In the absence of an unbalanced external influence, the motion is unceasing since particles

1



2 Chapter 1. Introduction

Molecule m* (×10−27 Kg) Λ (Å)

H2 3.3471 1.7390

O2 43.157 0.4365

N2 46.505 0.4665

F2 63.095 0.4005

Table 1.1: The thermal average de Broglie wavelength for some different molecular fluids at T = 50K.

* Retrieved from the US National Institute of standards and Technology (NIST), public domain, URL: https:

//www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses.

move with no friction, and disordered as there is no preferred direction. In classical mechanics,

the coupled equations of motion used to describe a many-body system like a liquid are unstable

with respect to the initial condition; This is because an infinitesimal error in the determination

of initial conditions at t = 0 causes an arbitrary large error in the coordinates at all times t > 0.

The impossibility of determining the particle trajectories is the main property of many-particle

systems. Thus, for an extensive collection of particles, we are practically unable to identify the

particular point in the phase space 1 correctly representing the system. This is where statistical

mechanics comes into play.

In classical statistical mechanics, many-body systems in the state of chaos2 are described by

the methods of classical probability theory. For example, for a system consisting of exactly N

particles, we introduce an N-particle positional distribution function, g(N)
N (r1, ω1, ..., rN , ωN; t),

determining the joint probability of finding the first particle with the orientation ω1 in the point

r1, ..., and the last particle with the orientation ωN in the point rN at time t. The evolution of this

function is governed by the BBGKY hierarchy of coupled equations attributed to Bogoliubov,

Born, Green, Kirkwood, and Yvon [3–6]. For a system of finitely many particles, although the

1For mechanical systems, the phase space consists of all possible values of particle positions and momentums.

2Being in the state of chaos means that determining the exact mechanical microstate of the system at each time

is practically impossible.
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BBGKY hierarchy is a consequence of the so-called N-particle Liouville equation, it contains

the N-particle Liouville equation (it is the last equation in the hierarchy) [7]. In thermodynamic

equilibrium, g(N)
N becomes proportional to the canonical distribution of Gibbs [7]:

g(N)
N ∝ exp{−UN/kBT }, (1.2)

where UN is the total interaction potential energy.

In equilibrium statistical mechanics, we are interested in the steady-state structure of fluids

only. By definition, a steady-state structure must be, on average, time-independent. Hence, in

thermodynamic equilibrium, which is a particular class of steady states, the distribution of the

relative position of particles is, on average, time-independent. The equilibrium microstructure

(or, simply, structure) can thus be defined based on the mean particles’ relative positions. It has

turned out that defining the equilibrium microstructure in such a way is useful as each state of

matter exhibits a special pattern of relative particle positions. The patterns are distinct because

they are closely related to structural characteristics. In classical statistical mechanics, the dis-

tribution of the relative position of particles is typically described by the two-body distribution

function, i.e., g(2)
N (r1, ω1, r2, ω2), where [7, 8]

g(2)
N ∝

∫
dr3dω3...drNdωNg(N)

N . (1.3)

The two-body distribution function for a translationally-invariant system is conveniently writ-

ten as g(r, ω1, ω2), where r = r2 − r1, and called the pair distribution function. This function is

of great importance in physics as it contains invaluable information on topological symmetries

in each state of matter.

In this chapter, we first study the pair distribution function for molecular and atomic fluids.

The mathematics supporting each theory is shown and derived wherever it is necessary. Then,

in the next two sections, i.e., Sections 1.2 and 1.3, we will focus solely on the radial distribution

function and how the equilibrium physical properties could be expressed in terms of it.
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1.1 The Pair Distribution Function

In a molecular fluid with an inter-molecular potential u(r, ω1, ω2) at equilibrium, the pair distri-

bution function, i.e., g(12) ≡ g(r, ω1, ω2), is defined as a quantity proportional to the probability

of the presence of a molecule with an orientation ofω2 ≡ {φ2, θ2, χ2} (Euler angles) at a position

of r = (r, θ, φ) relative to a central fixed molecule with a general orientation of ω1 ≡ {φ1, θ1, χ1}

(Euler angles). We should note that the pair distribution function is of fundamental importance

to the theory of equilibrium statistical mechanics because almost all of the equilibrium physical

properties can be computed once g(r, ω1, ω2) is known. Since all the properties of the spherical

harmonic functions are so well known and established, it is useful to have a spherical harmonic

expansion for g(r, ω1, ω2). In a molecular fluid, the harmonic expansion relative to an arbitrary

space-fixed reference frame such as the system’s center of mass reference frame can generally

be written as follows [8–10]:

g(r, ω1, ω2) =
∑
l1l2l

∑
m1m2m

∑
n1n2

g(r; l1, l2, l; n1, n2)C(l1, l2, l; m1,m2,m)

×Dl1
m1n1

(ω1)∗Dl2
m2n2

(ω2)∗Ylm(θ, φ)∗,

(1.4)

where g(r; l1, l2, l; n1, n2) are the space-fixed harmonic coefficients, C(l1, l2, l; m1,m2,m) are the

Clebsch-Gordan (CG) coefficients in the convention of Rose (see ref. [11]), Dl
mn(ω) are the gen-

eralized spherical harmonics, Ylm(θ, φ) are the spherical harmonics, and ∗ indicates a complex

conjugate. The Dl
mn(ω) is defined as [12]

Dl
mn(ω) ≡ Dl

mn(φ, θ, χ) = exp{−i(mφ + nχ)}dl
mn(θ), (1.5)

where the function dl
mn(θ), which represents a rotation of θ about the spherical harmonic Y , can

be thought of as a generalized associated Legendre function and written as

dl
mn(θ) ≡ [(l + m)!(l − m)!(l + n)!(l − n)!]1/2

∑
k

(−1)k(cos θ/2)2l+m−n−2k(sin θ/2)2k−m+n

(l + m − k)!(l − n − k)!k!(k − m + n)!
. (1.6)

For the case of linear molecules, which are axially symmetric, the coefficients g(r; l1, l2, l; n1, n2)

vanish, unless n1 = n2 = 0; This is because the pair distribution function should be independent
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of the third Euler angle, i.e., χ. For linear molecules, Equation 1.4 reduces then to [8]

g(r, ω1, ω2) =
∑
l1l2l

∑
m1m2m

g(r; l1, l2, l)C(l1, l2, l; m1,m2,m)

×Yl1m1(ω1)Yl2m2(ω2)Y∗lm(θ, φ),

(1.7)

where

g(r; l1, l2, l) ≡
(

(4π)2

(2l1 + 1)(2l2 + 1)

)1/2

g(r; l1, l2, l; 0, 0). (1.8)

For the particular case of monatomic fluids, the coefficients g(r; l1, l2, l) vanish, unless l1 = l2 =

0; This is because atoms do not possess a well-defined orientation and thus, the pair distribution

function should be independent of the orientations ω1 and ω2. The pair distribution function of

a monatomic (or simply, atomic) fluid can thus be simplified and written as [8]

g(r) = 4π
∑

l

∑
m

g(r; 0, 0, l; 0, 0)Y∗lm(θ, φ). (1.9)

For isotropic atomic fluids, the pair distribution function must also be independent of the angles

θ and φ. As a result, only the coefficient g(r; 0, 0, 0; 0, 0) could be nonzero. The pair distribution

function for isotropic atomic fluids can consequently be shown merely as

g(r) =
√

4πg(r; 0, 0, 0; 0, 0). (1.10)

The full g(r, ω1, ω2) is not yet accessible experimentally, although the projections of g(12)

can be measured indirectly. For instance, a series of neutron diffraction experiments on isotrop-

ically substituted forms of molecules can yield the so-called centers’ pair correlation function,

which is denoted by g(r) and mathematically defined as [8]

g(r) :=
1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ 〈g(r, ω1, ω2)〉ω1ω2 , (1.11)

where 〈...〉ω1ω2 is an unweighted average over all the possible molecular orientations and given

by

〈...〉ω1ω2...ωh ≡ (Ωω1Ωω2 ...Ωωh)
−1

∫
... dω1dω2...dωh (1.12)
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Figure 1.1: The radial distribution functions of solid at T = 50K (the blue curve), liquid at T = 80K (the black

curve), and gaseous Argon at T = 300K (the red curve). The radii are given in the LJ reduced units of the effective

atomic radius σAr = 3.405Å. From Wikibooks Commons, public domain, URL: https://en.wikibooks.org/

w/index.php?title=Molecular_Simulation/Radial_Distribution_Functions&oldid=3710016

with

Ωωi =

∫
dωi = 8π2 for nonlinear molecules

= 4π for linear molecules/atoms.
(1.13)

The centers’ pair correlation function, g(r), is a measure of the probability of finding a par-

ticle of any shape and orientation at a distance of r from the center of mass of a given reference

particle. In the special case of linear molecules/atoms, g(r) is equal to the pair distribution func-

tion, given explicitly in Equation 1.10, and is commonly called the radial distribution function.

The radial distribution function (or, briefly, RDF) is of particular significance in the physics of

fluids. There exist numerous reasons for that; First, g(r) is directly related to the structure factor

of the system, denoted by S (k), and can thus be determined experimentally from the radiation

scattering experiments such as X-ray diffraction and neutron diffraction [13]. The RDF and the

structure factor are related to each other in a uniform fluid via the following expression [14,15]:

S (k) = 1 + 4πρ
∫ ∞

0
dr(g(r) − 1)r2 sin kr

kr
(for k , 0). (1.14)

Second, the form of g(r) provides useful information on the short- and long-range isotropic
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FIGURE 4.11 Asymptotic behaviour of the function ln rh(r) predicted by the pole analysis
described in the text for the truncated Lennard-Jones fluid at T ∗ = 1.2 and two densities. From
R.J.F. Leote de Carvalho et al., ‘The decay of the pair correlation function in simple fluids: long-
versus short-ranged potentials’, J. Phys. Condens. Matter 6, 9275–9294 (1994).© IOP Publishing
1994. Reproduced by permission of IOP Publishing. All rights reserved.

Calculations that use as input the direct correlation functions derived from
integral equation approximations show that the relative positions of the lowest-
lying imaginary and complex conjugate poles change as the density increases
along an isotherm.48 At low densities, the purely imaginary pole lies below the
conjugate pair and h(r) is found to decay monotonically; at high densities the
situation is reversed, leading to an oscillatory decay. The cross-over in relative
positions of the poles defines a point on the Fisher–Widom line. The curves of
the function ln rh(r) plotted in Figure 4.11 illustrate the striking difference in
asymptotic behaviour at densities on different sides of the Fisher–Widom line
in the case of the Lennard-Jones potential truncated49 at r = 2.5σ . The results
shown are the contributions to the expansion (4.8.6) from the poles pictured
in Figure 4.10, calculated from input provided by numerical solution of the
HMSA equation of Section 4.9, which is known to be very accurate. Beyond
r ≈ 2σ they are indistinguishable on the scale of the figure from the results
derived directly from the HMSA values of h(r). Some oscillations are seen at
intermediate values of r even at low density, but these rapidly merge into an
exponential decay; at high density the oscillations are exponentially damped
but persisting. By repeating the calculations for a large number of points in the
density–temperature plane it possible to map out the Fisher–Widom line for the
potential, with the results shown in Figure 4.12. The line intersects the liquid–
vapour coexistence curve on the liquid side at T /Tc ≈ 0.9 and ρ/ρc ≈ 1.8,
numbers that are very close to those obtained in similar calculations for the
square-well fluid.

Figure 1.2: Asymptotic behaviour of the function ln rh(r) for a Lennard-Jones potential, truncated and shifted

at r/σ = 2.5, for T ∗ = 1.2 and two densities ρ∗ = 0.455 and 0.715. the asterisk sign ∗ means the quantities are in

the LJ reduced units. Adopted from [16] by permission of IOP Publishing with the license ID.: 1075295-1.

structure of fluids and thus, helps us distinguish between different states of matter based on just

the topological symmetries [7]. In Figure 1.1, the RDF for different states of matter are shown.

As it is evident, the RDF for the solid exhibits a pattern of discrete peaks to indicate the orderly

nature of solids. On the contrary, the RDF for fluids has one single distinguished peak at r ∼ σ,

so that fluids, unlike solids, only have local orderly structure. The RDF can also be used to link

the microscopic structural details to macroscopic properties using the Kirkwood-Buff solution

theory [17]. For example, the RDF defines the potential of mean force (PMF) between any pair

of particles as [18]

PMF(r) ≡ −kBT ln g(r). (1.15)

For dilute fluids, if the total potential is approximated by a sum of pair potentials u(r), PMF(r) '

u(r). The radial distribution function in the limit of zero density can thus be written as

lim
ρ→ 0

g(r) = exp
{
−

u(r)
kBT

}
. (1.16)

There is a multitude of papers in the literature attempting to determine the short- and long-

range behaviours of the RDF to understand inter-facial phenomena, such as wetting phenomena

in liquids [19,20]. It has rigorously been shown for a fluid at equilibrium with an inter-particle
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potential which decays faster than a power law or is truncated at a finite distance, the RDF can,

in general, be written as [21–25]

rh(r) ≡ r(g(r) − 1) =
∑

n

An exp{iknr}, (1.17)

where h(r) is called the total correlation function, and An is an amplitude which is proportional

to the residue of the Fourier transform of h(r) for the n-th pole, i.e., kn = βn+iαn with βn, αn ∈ R

and αn ≥ 0. It should be noted that the pole or poles with the smallest imaginary part, i.e., αn,

has the slowest exponential rate of decay and dominates the asymptotic behaviour of the scaled

total correlation function, i.e., rh(r). Three possible scenarios could happen:

(i) rh(r) decays asymptotically to zero in a pure exponential manner if the leading pole, denoted

by kl and defined as the pole with the smallest αn, is purely imaginary, namely kexp
l = iαexp

l . For

such a case, we will have

lim
r→∞

rh(r) = Al exp{−αexp
l r} → 0. (1.18)

(ii) rh(r) decays asymptotically to zero in an exponentially-damped oscillatory manner if there

is a conjugate pair of leading poles, instead of one single imaginary pole, namely kosc
l = ±βosc

l +

iαosc
l with βosc

l ≈ 2π/σ, where σ is the effective atomic radius. For such a case, we will have

lim
r→∞

rh(r) = 2Al exp{−αosc
l r} cos βosc

l r → 0. (1.19)

(iii) For real leading poles with αl = 0 and βl > 0, rh(r) is purely oscillatory and never decays to

zero. Such an asymptotic behaviour is non-physical and corresponds to instability with respect

to density modulations in uniform fluids [26, 27]. In a stable equilibrium state, rh(r) decays to

zero at r → ∞.

The cross-over line in the density-temperature plane3 where αexp
l = αosc

l defines the Fisher-

Widom line [24]. The curves of the function ln (rh(r)), where ln (...) is the natural logarithm, for

two distinct densities in Figure 1.2 illustrate the striking difference in the asymptotic behaviour

3It is a 2D space defined by all the eligible temperatures and densities of a system in thermal equilibrium.
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of g(r) at densities on different sides of the Fisher–Widom line for the special case of a truncated

and shifted Lennard-Jones potential. The mathematical form of Equations 1.18 and 1.19 makes

it natural to identify αl with the inverse range of h(r), i.e., the inverse correlation length ξ:

ξ = (αl)−1. (1.20)

The asymptotic analysis of the RDF is much more complicated for a potential energy which

includes power-law contributions. For the common case of the London dispersion forces4, the

dominant interaction at large r is u(r) ∝ −1/r6 (or precisely, u(r) ∝ −1/r7 due to screening at

intermediate and large distances [30]). In such a case, there will be no imaginary leading poles,

and thus, the asymptotic behaviour of rh(r) will only have the following form:

lim
r→∞

rh(r) = −
C
r5 + 2Al exp{−αlr} cos βlr → −

C
r5 → 0, (1.21)

where the first term on the right-hand side accounts for the effect of the dispersion forces, and C

is some constant proportional to the long-wavelength limit of the structure factor, i.e., S (0). An

important point to make is that in the presence of the dispersion forces, one might still define a

line similar to the Fisher–Widom line defined above. This line is called a pseudo-Fisher-Widom

to emphasize that the actual asymptotic decay of rh(r) is power-law [22].

The so-called pseudo-Fisher-Widom line is defined as a boundary in the density-temperature

diagram on which the imaginary part of the pseudo-exponential leading pole, which is defined

as the closest pole to the real axis and denoted by kpexp
l ≡ β

pexp
l + iαpexp

l with βpexp
l . 0, is equal

to the imaginary part of the high-density pure oscillatory leading poles, i.e., kosc
l ≡ ±βosc

l + iαosc
l

with βosc
l ≈ 2π/σ. On the high-density side of this line, the intermediate-range decay of rh(r) is

exponentially-damped oscillatory, and the ultimate long-range decay is proportional to r−5. In

contrast, on low-density side of the line, this damped-oscillatory decay is sub-dominant to both

4The London dispersion force is a type of temporary attractive force that results when the electron distributions

in adjacent atoms fluctuate in time and form temporary dipoles in random directions. This force was named after

the German physicist Fritz London [28, 29]
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r

dr

Figure 1.3: Calculation of the radial distribution function g(r). The blue particles have a center that lies within a

distance between r and r + dr from the red particle and are counted for the RDF. From Wikipedia Commons, pub-

lic domain, URL: https://en.wikipedia.org/w/index.php?title=Radial_distribution_function&

oldid=978199475

monotonic-exponential and power-law [22]. In the following section, we will focus on the rela-

tion of the radial distribution function with the macroscopic structural quantities at equilibrium

to see what an important role the RDF plays in understanding fluids.

1.2 The Radial Distribution Function

Let us go back to the definition of the radial distribution function g(r). The radial distribution

function represents the probability of finding a (point) particle within a spherical shell of thick-

ness dr at a distance of r from the tagged (point) particle (see Figure 1.3). If the tagged particle

(the red particle in Figure 1.3) is taken to be at the origin of coordinates, and if ρ = N/V is the

average number density of particles, then the local averaged density at a distance of r from the

observer sitting on the tagged particle is simply ρg(r) [31]:

ρ(r) ≡ ρg(r) =
dn(r)
dV

, (1.22)
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where dn(r) is a function which computes the mean number of (point) particles within the shell

illustrated in Figure 1.3, and dV = 4πr2dr is the volume of the shell. The RDF can be evaluated

using Equation 1.22 as follows:

g(r) =
ρ(r)
ρ

=
V

4πNr2

dn(r)
dr

, (1.23)

where dn(r)/dr represents the rate of change in the number of particles surrounding the central

particle at a distance r. In computer simulations, dn(r)/dr can simply be measured. Neverthe-

less, it is difficult to directly compare structural characteristics found in numerical experiments

with natural experiments’ results because exactly equivalent methods of measuring geometrical

parameters in natural experiments are not available [32]. This is why we need to investigate the

relation between the RDF, which represents the structure, and other properties of the system at

equilibrium that depend on this structure.

For a uniform, pure atomic fluid, if the total potential energy, UN , is approximated by a sum

of spherically symmetric pair potentials as

UN(r1, r2, ..., rN) =
1
2

N∑
i=1

N∑
j>i

u(|r j − ri|), (1.24)

then the mean potential energy per particle, i.e.,U, can be obtained by [33]

U =
1
2

∫
d3rρ(r)u(r) = 2πρ

∫
g(r)u(r)r2dr, (1.25)

where ρ(r) = ρg(r) denotes the average density at a distance r from a given particle. The factor

1/2 has been included to correct for the double-counting of inter-molecular interactions. In the

next paragraph, we will study the relation between the pressure and the RDF at equilibrium.

For a uniform atomic fluid under hydrostatic conditions, i.e., at equilibrium, the relationship

between the external pressure and internal stress is remarkably simple [34]:

Pext = Pint = P (1.26)

where Pint is the internal stress. There are very many different, but equivalent, ways to calculate

the pressure of a classical many-body system. The most common one among those is based on
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the virial theorem [35]. At equilibrium, the pressure P for pairwise additive interactions can be

written as follows:

P = Pid +
the virial

V
, (1.27)

where Pid = ρkBT is the ideal-gas pressure, and the virial is defined as

the virial := −
1
3

〈 N∑
i=1

N∑
j>i

du(ri j)
dri j

ri j

〉
≡ −

2π
3

Nρ
∫

drr3g(r)
du(r)

dr
. (1.28)

By substituting Equation 1.28 back into Equation 1.27, the following expression for the mean

pressure P is obtained:

P = ρkBT −
2
3
πρ2

∫
r3g(r)du(r) (1.29)

In the following section, we will discuss the relation between the (mean) entropy and the radial

distribution function at some length.

1.3 Entropy

Entropy is a fundamental physical quantity in thermodynamics and statistical mechanics. It was

first introduced by Clausius [36] in thermodynamics. Entropy is a function of the macroscopic

state of the system. L. Boltzmann in 1872 proposed a microscopic definition for the entropy of

an isolated system as follows:

S := kB ln Ω(N,N, E) (Boltzmann entropy), (1.30)

where Ω is the number of microscopic states which share the same values of physical quantities

of the macroscopic state of the system. Equation 1.30 shows that the more states available to an

isolated system, the higher entropy. Later in 1878, J. Willard Gibbs suggested a more general

definition for the mean entropy via probabilities of microscopic states of the system as follows:

S := −kB

Ω∑
i=1

pi ln pi (Gibbs entropy), (1.31)
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where pi is the probability of the occurrence of the ith microstate with an energy Ei during the

system’s energy fluctuations. In [37], it was shown that the mean Boltzmann entropy is equal to

the Gibbs entropy minus a term indicating the fluctuations of macroscopic physical quantities.

In statistical mechanics, the entropy S of a system at a temperature T with N indistinguish-

able atoms, described by the canonical coordinates rN = {r1, r2, ..., rN} and pN = {p1,p2, ...,pN},

can be evaluated formally via the generalized Gibbs entropy formula as follows [38, 39]:

S (N,V,T ) = −
kB

N!

∫
V

drN
∫ ∞

−∞

dpN fc(rN ,pN) ln [h3N fc(rN ,pN)] (1.32)

in the canonical ensemble. In this expression, the factor of 1/N! corrects for the redundancy of

configurations of identical particles, and the factors of Planck’s constant h are derived from the

quantum mechanical expression. Also, fc(rN ,pN) is the canonical ensemble probability density

that the phase point (rN ,pN) is occupied, and is given by

fc(rN ,pN) = N!
exp{−H(rN ,pN)/kBT }∫

V
drN

∫ ∞
−∞

dpN exp{−H(rN ,pN)}
, (1.33)

whose normalization is

N! =

∫
V

drN
∫ ∞

−∞

dpN fc(rN ,pN). (1.34)

If the Hamiltonian H separates into additive terms for the configurational and kinetic energies,

the probability density can be factorized into a product as follows:

fc(rN ,pN) = g(N)
N (rN)

N∏
i=1

f (1)
N (pi), (1.35)

where f (1)
N (pi) is called the one-particle probability density and defined as

f (1)
N (pi) = ρ(2πmkBT )−3/2 exp{−|pi|

2/2mkBT }. (1.36)

Equation 1.35 serves as a definition for the N-particle positional distribution function, g(N)
N (rN),

introduced earlier in the Introduction; g(N)
N (r1, ..., rN) is the joint probability of finding particle

1 at position r1, ..., and particle N at position rN . Let us next introduce a factorization of the N-

particle positional distribution in a certain way using the Generalized Kirkwood Superposition
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Approximation (GKSA) as follows [40, 41]:

g(N)
N (r1, ..., rN) = g(2)

N (r1, r2) × ... × g(2)
N (rN−1, rN)

×δg(3)
N (r1, r2, r3) × ... × δg(3)

N (rN−2, rN−1, rN)

×... × δg(N)
N (r1, ..., rN),

(1.37)

where

δg(3)
N (r1, r2.r3) ≡

g(3)
N (r1, r2, r3)

g(2)
N (r1, r2)g(2)

N (r1, r2)g(2)
N (r2, r3)

, (1.38)

δg(4)
N (r1, r2.r3, r4) ≡

g(4)
N (r1, r2, r3, r4)

g(2)
N (r1, r2) ... g(2)

N (r2, r3)δg(3)
N (r1, r3, r4) ... δg(3)

N (r2, r3, r4)
, (1.39)

and so forth. By substituting Equation 1.35 back into Equation 1.32 and using Equations 1.36

and 1.37, we find an expansion for the entropy s ≡ S/N which is expected to be well-convergent

at high and low densities [42–44]:

s =
∑

n

sn = s1 + s2 + ... , (1.40)

where sn is called the n-body entropy,

s1 = kB[
3
2
− ln ρΛ3] (1.41)

with Λ = h/(2πmkBT )1/2 being the thermal average de Broglie wavelength, and

s2 = kB[−2πρ
∫

[g(r) ln g(r)]r2dr] =
2πρ
T

∫
g(r)PMF(r)r2dr, (1.42)

with PMF(r) being the potential of mean force between any two particles. We can separate the

PMF(r) approximately into two additive terms for a dilute system whose total potential energy

is given by a sum of independent pair potentials:

PMF(r) = u(r) + δu(r), (1.43)

where u(r) is the pair potential, and δu(r) is the energy contribution because of the presence of

other particles in the system. Strictly speaking, δu(r) indicates the change in the free Helmholtz
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energy of the solvent caused by moving any two particles i and j from |r j−ri| = ∞ to |r j−ri| = r.

Clearly, in the limit of zero number density, we should have [18]

lim
ρ→ 0

δu(r) = 0 (1.44)

for a uniform system in thermodynamic equilibrium5. By replacing PMF in Equation 1.42 with

the expression given in Equation 1.43, the following expression for dilute systems is obtained:

s2 =
2πρ
T

∫
g(r)u(r)r2dr +

2πρ
T

∫
g(r)δu(r)r2dr =

U

T
+ δs2, (1.45)

whereU is the mean potential per particle, and δs2 is the entropy contribution due to surround-

ing particles. Strictly speaking, δs2 is associated with the intermediate and long-range order in

a system. Hence, it should be zero for a system in which the intermediate and long-range order

is absent.

For dilute systems, the entropy s can approximately be written as

s = s1 + s2 +
kB

2
(for dilute systems), (1.46)

where the third term on the right-hand side, i.e., kB/2, is the approximate contribution of higher-

order terms to the entropy s [45]. Studies of this approximation, for the Lennard-Jones systems

by Baranyai and Evans [45] and the hard-sphere systems by Mountain and Raveché [46], have

shown that this approximation is also valid for a dense system whose mass density is near the

freezing point. It has been proven that this apparent agreement at high densities is principally

because of a fortuitous cancellation of relatively large, higher-order terms [47].

1.4 Outline

In this thesis, we are going to investigate the effect of initial structure on the relaxation time of a

computer-simulated system, where the time-averaged kinetic energy per particle is maintained

5A system is said to be in thermodynamic equilibrium if there exists no net change in its macroscopic properties

with time. Strictly speaking, thermodynamic equilibrium is a combination of thermal, mechanical, chemical, and

radioactive equilibria.
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by the Langevin thermostat6. In the next chapter, we will derive an original expression which

connects the system relaxation time, τsys, to the RDF. This expression is the cornerstone of this

thesis as we use it to interpret the results. In chapter 3, we will provide the details on simulation

methods and system features. Then, in chapter 4, we will present the results obtained from our

computer simulations. Finally, we summarize the thesis with some conclusions and suggestions

in chapter 5.

6Langevin thermostat is a local stochastic thermostat and maintains the temperature through a modification of

Newton’s equations of motion named Langevin equation. The Langevin equation was named after Paul Langevin

and is a stochastic differential equation describing the time evolution of the system [48].



Chapter 2

Theory

In statistical mechanics, one can show that any non-equilibrium distribution decays eventually

(not necessarily monotonically) to a steady-state distribution1. Moreover, under general condi-

tions, any deviation from a steady-state distribution breaks the temporal translational symmetry

(TTS)2 in the system. As indicated, the characteristic time of the process which determines how

fast the system retrieves the time translational symmetry is called the system relaxation time3

and denoted by τsys. In this chapter, we will derive an original expression relating the system

relaxation time to g(r) to determine the effects of the initial structure on the system relaxation

by examining the behaviour of the RDF during the system’s equilibration. For this purpose, we

need first to study the Helmholtz free energy since its equilibration is equivalent to the system’s

equilibration for a closed NVT system4.

1Not necessarily to an equilibrium steady-state distribution.

2Temporal translational symmetry (TTS) states that the laws of physics are the same throughout history. In

other words, we can move the origin of time coordinate without violating any conservation law. The interested

reader is referred to Ref. [49] to read about the new and astonishing discovery of time crystals.

3The word “relaxation” was first used by James Clerk Maxwell in his paper named “On the Dynamical Theory

of Gases” in 1867 [50].

4A closed NVT system refers to a system which has a constant total number of particles N, total volume V ,

and is in thermal contact with a heat bath at temperature T .

17
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2.1 Derivation of the Relation between τsys and g(r)

The Helmholtz free energy for a closed NVT system is defined as [51]

F := E − TS , (2.1)

where E = 3/2NkBT + NU is the time-averaged total energy of a monatomic fluid, S = Ns =

N(s1 + s2 + ...) is the mean entropy of the system, and T is the absolute equilibrium temperature

of surroundings, modelled as a thermal bath. The Helmholtz free energy F is a thermodynamic

potential which determines the “useful” work retrievable from a closed NVT system. In other

words, the negative of the difference in the Helmholtz energy is equal to the maximum amount

of work extractable from a thermodynamic process in which both temperature T and volume V

are kept constant. Under these conditions, F is minimized and held constant at thermodynamic

equilibrium [52]. Helmholtz free energy F has the dimensions of energy and is a state quantity;

namely, its value is determined by the physical state, not by its history.

Let us interpret the Helmholtz free energy F more concretely as follows:

Imagine creating a system with a mean net entropy S and a mean total energy E in contact with

an environment at temperature T . How much energy must be provided? Some of the energy E

can be obtained as heat from the environment – this heat is TS , where S is the mean entropy of

the created system. The rest of the energy E must be provided somehow as mechanical work –

this work is F [53].

By replacing E and S with their equivalent expressions in Equation 2.1 and also, by using

Equations 1.41, 1.45, and 1.46, we can write the low-density limit of the Helmholtz free energy

per particle, i.e., f ≡ F/N, for an isotropic and homogeneous monatomic closed system with a

short-range potential energy as

f = kBT [ln ρΛ3 −
1
2

] − Tδs2 = f id(T ) + f exc(δs2) (for dilute systems), (2.2)

where f id = kBT [ln ρΛ3 − 1
2 ] is the ideal-gas Helmholtz free energy per particle, and f exc is the
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excess Helmholtz free energy per particle with this feature

lim
ρ→ 0

f exc = − lim
ρ→ 0

Tδs2 = 0 (2.3)

for a uniform closed NVT system in thermodynamic equilibrium. Before studying the system

relaxation time, denoted by τsys, we should introduce a particular kind of mathematical systems

called exponentially ergodic systems.

The exponentially ergodic system is a mathematical system for which any dynamical quan-

tity, say A, is expected to relax thermally from its initial equilibrium value Ai at the temperature

T i to the equilibrium value A f at the temperature T f (, T i) according to the following approxi-

mate formula [54]:

〈A(t)〉 = A f + (Ai − A f ) exp{−t/τA}, (2.4)

where τA > 0 is the characteristic relaxation time for the quantity A(t) and is defined as the time

required for A(t) to come to equilibrium with its surrounding medium. The temperature switch

occurs at time t = 0, and the angle brackets denote an average over an ensemble of independent

experiments. The subscript on τA indicates that different dynamical quantities might equilibrate

with different rates. Thus, the system’s relaxation rate should be estimated from the maximum

value of τA in a system, i.e.,

τsys = τmax
A . (2.5)

For the canonical ensemble, the system relaxation time, τsys, is equal to the relaxation time

for the Helmholtz free energy, F (or equivalently, f ≡ F/N). Based on Equation 2.2, once the

temperature T and δs2 equilibrate, so will f . Hence, we could write the system relaxation time

for this limiting case, i.e., dilute systems, as follows:

τsys = τ f = MAX{τT , τr}, (2.6)

where τT and τr are the relaxation times for temperature T and residual entropy δs2, respec-

tively. Equation 2.6 also implies that τsys does not depend on the relaxation time of the mean
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potential energy, i.e., τU. Hence, in a closed NVT system, the equilibration of the mean poten-

tial energy is not necessarily equivalent to the equilibration of the system. This point has been

overlooked in some previous works, such as [54]. In equilibrium statistical mechanics, temper-

ature can be defined via the equipartition theorem [55] as the time-averaged kinetic energy of

each particle. So, it is a local quantity and should generally equilibrate faster than the residual

entropy, whose equilibration depends on the equilibration of the position of so many particles.

In other words, we always have τr ≥ τT and as a consequence,

τsys = τr. (2.7)

In the next paragraph, we would like to investigate the relation between τr and g(r) as the RDF

can be measured directly in a computer experiment.

In an exponentially ergodic system, it is not always possible to approximate the evolution of

dynamical quantities to equilibrium with Equation 2.4, especially when the system undergoes

a first-order phase transition. For example, entropy changes abruptly during a first-order phase

transition. However, we expect that the effects of a first-order transition on dynamical quantities

vanish long after the equilibration of temperature T . Therefore, the evolution of Tδs2 in a dilute

system during a spontaneous structural process5, following Equation 1.45, could be written for

t >> τT as

〈Tδs2(t)〉 = 2πρ
∫
〈g(r, t)δu(r, t)〉r2dr

= 2πρ
∫
〈exp{−PMF(r, t)/kBT }δu(r, t)〉r2dr,

(2.8)

where g(r, t) ≡ exp{−PMF(r, t)/kBT } is called instantaneous RDF and the same as the so-called

van Hove distribution function, denoted by G(r, t) [56]. This equation can be further simplified

by using the generalized version of Equation 1.436:

〈Tδs2(t)〉 = 2πρ
∫

exp{−u(r)/kBT }〈exp{−δu(r, t)/kBT }δu(r, t)〉r2dr. (2.9)

5In thermodynamics, a spontaneous process is a self-driven irreversible process towards an equilibrium state

that minimizes the system’s Helmholtz free energy F.

6Note that Equation 1.43 is time-independent. However, one could generalize it for dilute systems to include
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By expanding exp{−δu(r, t)/kBT } into a power series in u(r, t) and also, approximating 〈δu(r, t)〉

with ∆u(r) exp{−t/τδu} for an exponentially ergodic system, where ∆u(r) ≡ δu(r, tm) − δu(r, t f )

is called residual potential energy with tm >> τT being an intermediate time during the system’s

equilibration and t f as the final time, we find the following series for t >> τT :

〈Tδs2(t)〉 =

∞∑
n=0

Tδsn
2 exp{−t/τn

δu}, (2.10)

where δsn
2 is the nth-moment of the residual two-body entropy and is defined as

δsn
2 ≡

2πρ
T

∫
e−u(r)/kBT (−1)n∆u(r)n+1

n!(kBT )n r2dr, (2.11)

and the corresponding relaxation time is given by

τn
δu ≡

τδu
n + 1

for n = 0, 1, ..., (2.12)

which is a maximum for n = 0. Hence, τδu, the relaxation time of the residual potential energy,

is equal to τr since, by definition, τr = MAX{τn
δu}.

In the low-density limit, we can write the RDF during the system’s equilibration as follows

for τT << t < τr:

〈g(r, t)〉 = 〈exp{−PMF(r, t)/kBT }〉 = exp{−u(r)/kBT }〈exp{−δu(r, t)/kBT }〉

= exp{−u(r)/kBT }

 ∞∑
n=0

(−1)n〈δu(r, t)〉n

n!(kBT )n

 , (2.13)

where the Taylor series expansion in the parentheses can be approximated by the first two terms

as 〈δu(r, t)〉 ≈ 0 for dilute systems. If the pair potential u(r) is considered short-range, then for

r >> rc, where rc is the effective range of the pair potential, we could write the total correlation

function, h ≡ g − 1, as

〈h(r, t)〉 ≡ 〈g(r, t)〉 − 1 = −
〈δu(r, t)〉

kBT
. (2.14)

time as well. The simplest generalization can be written as follows:

PMF(r, t) = u(r) + δu(r, t),

where δu(r, t) is the correction to the pair potential at time t due to the mean-field effect of surrounding particles

during the system’s equilibration.
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If we replace 〈δu(r, t)〉 again with the expression ∆u(r) exp{−t/τδu} for an exponentially ergodic

system and employ the fact that τδu = τr (and τr = τsys), we will attain the following expression

for r >> rc and τT << t < τsys:

〈h(r, t)〉 = −
∆u(r)
kBT

exp{−t/τsys} (for dilute systems). (2.15)

Equation 2.15 is of great importance as it relates the equilibration of the total correlation func-

tion h(r) ≡ g(r)− 1 to both the residual potential energy, ∆u(r), and the system relaxation time,

τsys, in dilute systems. If a system’s initial structure is more compacted than the final structure,

∆u(r) = δu(r, tm) − δu(r, t f ) < 0. As a result, from Equation 2.15, h approaches its equilibrium

value at large distances r, i.e., zero, from positive values. On the other hand, if the initial struc-

ture is more expanded than the final structure, h approaches zero from negative values because

∆u(r) = δu(r, tm) − δu(r, t f ) > 0. Equation 2.15 is one the primary results of this thesis.



Chapter 3

Methodology

The radial distribution function g(r) is an observable that characterizes the time-averaged struc-

ture of different states of matter. As a consequence, it is of great significance in physics. In the

previous chapters, we showed how the RDF could be related to thermodynamic quantities, such

as the mean pressure P and entropy S . Furthermore, we showed that the RDF equilibrates with

the same rate as a dilute system does. The only drawback of the radial distribution function is

that it is difficult to measure it directly in a natural experiment1. However, the invention of new

methods of conducting experiments with the advancement of computers solves this drawback

of g(r). Arguably, the best-known methods are that of “Monte Carlo” and “Molecular Dynam-

ics” simulations. Both of theses methods aim to provide information about physical properties

of samples.

The Monte Carlo simulation method is a computer simulation experimental method, which

uses random numbers to provide a stochastic model for physical phenomena. Metropolis and

Ulam coined the name “Monte Carlo” (see, for example, Ref. [57]). A Monte Carlo simulation

generates an ensemble of representative configurations under specific thermodynamics condi-

tions for a many-particle system [58]. Monte Carlo simulations do not provide any information

on the evolution of systems in time. Instead, they provide an ensemble of independent configu-

1A natural experiment is one done in a real laboratory with real substances and equipment.

23
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rations and consequently, conformations from which probabilities and relevant thermodynamic

observables such as the free Helmholtz energy may be calculated [59].

The Molecular Dynamics method is a deterministic computer experimental method, which

is a powerful tool in studying the temporal and spatial evolution of a system’s properties. By

studying the numerical integration algorithms in Molecular Dynamics simulations, we not only

can analyze the local and global structure, the motion of particles, and the image of the macro-

scopic relation between them and the substance, but can also investigate the relation between

the interaction and the macroscopic properties much more conveniently than in the Monte Carlo

method. In this method, the particle trajectories are typically determined by numerically solv-

ing Newton’s equations of motion. Alder and Wainwright reported the first proper Molecular

Dynamics simulations in 1956 at Livermore, California, focusing on the hard-sphere systems’

dynamics (see Ref. [60]).

Unlike the Molecular Dynamics (MD) method, the Monte Carlo (MC) method is of stochas-

tic nature. This means that with the same initial conditions, the MD method will always gener-

ate identical trajectories in the phase space, but not the MC method. Another significant differ-

ence between these two simulating methods is that physical quantities are sampled sequentially

over time in the Molecular Dynamics simulations. However, in Monte Carlo simulations, the

sampling does not follow the direction of time, and as a consequence, none of the data is tem-

porally related (see Figure 3.1). Since we are interested only in how a system equilibrates here,

we will use Molecular Dynamics simulations in this thesis.

3.1 Molecular Dynamics

The idea behind Molecular Dynamics is relatively simple:

A number of fictitious particles representing molecules/atoms with initial positions and veloci-

ties and interacting via certain interaction potentials are created. Then, the computer calculates

the net force on every particle. Let particle i be subject to a net force Fi at instant t. Molecular



3.1. Molecular Dynamics 25

Figure 3.1: Schematic comparison of the Molecular Dynamics method (in red) and the Monte Carlo method (in

blue) sampling the system’s potential energy surface. From Wikipedia Commons, public domain, URL:

https://en.wikipedia.org/w/index.php?title=Molecular_dynamics&oldid=989719669.

Dynamics should then solve the following coupled equations of motion:

mi
d2ri

dt2 = Fi(r1, r2, ..., v1, v2, ...) for i = 1, 2, ..., (3.1)

where the force generally depends on the position and velocity of all particles, to calculate new

velocities and positions. A computer solves the coupled equations numerically, so that time is

broken down into small time steps ∆t. Every time step, the forces are calculated, and positions

are updated. These discrete time steps will cause a severe issue as the events that happen over a

time step are ignored. This severe issue, which is usually referred to as the discretization error,

can be reduced by reducing the timestep size or using a more accurate algorithm for integrating

the forces. Following [61], we can expect that for a system whose potential energy is bounded

from below, the resulting equilibrium distribution is different from the true theoretical one, as

shown below [62]:

Psim = Ptrue

∞∑
n=1

exp{∆tnCn/kBT }, (3.2)

where is Psim the equilibrium distribution generated in computer simulations, Ptrue is the true

theoretical equilibrium distribution, and Cn is some algorithm-dependent coefficient. The first

nonzero Cn yields the correction to the true equilibrium distribution generated by the numerical

scheme. To avoid the discretization error, the MD time step ∆t, for instance, should be smaller
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than the fastest vibrational frequency of the system.

Overall, a typical Molecular Dynamics program follows this scheme:

1. Initializing the system at time t by choosing all particles’ positions and velocities as well as

a value for the time step ∆t.

2. Computing the net force on each particle.

3. Integrating Newton’s equations to find the particles’ positions and velocities at the next step,

i.e., time t + ∆t.

4. Going back to step 2.

In MD2 simulations physical quantities are calculated from time averages along the trajectories.

Let A(t) = A(r1(t), ..., rN(t); v1(t), ..., vN(t)) be a dynamical quantity depending on positions and

velocities. Its mean value is defined as

A(t) =
1
N

N−1∑
n=0

A(t0 + n∆t), (3.3)

where t0 is an initial time. Physical quantities are conveniently characterized by a single relax-

ation time defined as the minimum time to reach equilibrium. If one is interested in equilibrium

quantities, they should take averages starting from a given time t0 >> τA. For systems that obey

the ergodic hypothesis3, the evolution of a single MD simulation may be used to determine the

macroscopic thermodynamic properties of all similar systems.

Based on how the differential equation 3.1 is discretized, one can find a different integration

algorithm. One such algorithm is the Velocity-Verlet algorithm, which calculates new positions

ri(t + ∆t) according to the following recipe [63]:

ri(t + ∆t) = ri(t) + vi(t)∆t +
Fi(t)
2m

∆t2 (3.4)

which is a Taylor series expansion. The new on-site velocities vi(t + ∆t) are then calculated as

vi(t + ∆t) = vi(t) +
Fi(t) + Fi(t + ∆t)

2m
∆t, (3.5)

2MD stands for Molecular Dynamics.

3In physics and thermodynamics, the ergodic hypothesis means that all accessible microstates are equiprobable

over a long time.
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where Fi(t+∆t) is the future force which first needs to be calculated from the future positions in

Equation 3.4. Although it may not be clear form Equations 3.4 and 3.5, it could be shown that

in the Velocity-Verlet algorithm, the positions are calculated accurately up to the fourth-order in

time [64]. This method is popular because of its simplicity, efficiency, stability properties, and

time reversibility4. Note that time reversibility means that Equation 3.4 must remain invariant

under the change of ∆t → −∆t. It should also be noted that the discrete-time velocity variables

vi(t) are fundamentally inconsistent with the discrete-time positions ri(t), namely the discrete-

time velocities are not precisely the conjugated variables of the simulated trajectory [65, 66].

Another essential feature of the Velocity Verlet algorithm is that it is a symplectic integrator.

Symplectic integration algorithms have the property that their trajectories do conserve exactly a

pseudo-energy, which differs from the actual energy by a small amount (vanishing as ∆t → 0).

This avoids long-time drifts of the trajectories from the true ones owing to the accumulation of

numerical errors during the time evolution. The Velocity-Explicit Verlet (VV) algorithm allows

then for a constant-energy simulation, whereas we are looking for a numerical algorithm suited

for a constant-temperature simulation. A variety of methods for conducting Molecular Dynam-

ics simulations in the canonical ensemble have been proposed over the years. A very appealing

class of such methods includes integrators for Langevin dynamics simulations, which we study

in the following paragraphs.

To control the temperature in a Molecular Dynamics simulation, a Langevin thermostat can

be used [67,68]. In a closed NVT system, which is thermally coupled to a Langevin thermostat,

Hamilton’s equations of motion for the ith particle relative to an arbitrary fixed-space reference

frame is written as

miṙi(t) = ṗi(t) for i = 1, 2, ...,N, (3.6)

ṗi(t) = −∇iUN(r1(t), ..., ri(t), ..., rN(t)) + gi(t) for i = 1, 2, ...,N, (3.7)

4time reversibility implies attractive conservation properties for the system’s trajectory in the phase space for

closed systems.
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where UN is the total particle interaction potential, ∇ is the gradient operator such that −∇iUN

is the net force calculated from the particle interaction potentials on the ith particle, and gi(t) is

a fictitious correction force which modifies the dynamics of the system. Since the total energy

is conserved in Hamiltonian dynamics, gi(t) becomes responsible for the variations that lead to

the system thermalization. In standard Langevin dynamics, the correction force for a system in

thermal equilibrium with its surrounding medium, i.e., the heat bath, is given by

gi(t)dt = −γpi(t)dt +
√

2miγkBTdWi(t) for i = 1, 2, ...,N, (3.8)

where T is the absolute temperature of the thermal bath, γ ≥ 0 is the collision rate or precisely,

the Langevin thermal coupling constant between the system and the Langevin thermostat, and

dWi is a vector of independent Wiener noises5, normalized as

〈dWi(t)dW j(t − t′)〉 = δ(t′)δi jdt for i, j = 1, 2, ...,N (3.9)

with δ(t′) and δi j being the Dirac delta distribution and the Kronecker delta, respectively. The

friction coefficient, i.e., Γ ≡ mγ, is related to the viscosity of the fluid through the viscous drag

force formula in macroscopic hydrostatics:

mγ = 6πηd, (3.10)

where η is the viscosity, and d is the effective diameter of the particle, assumed spherical. Thus,

the first term on the right side of Equation 3.8 is a fictitious viscous-like force. The second term

is a fluctuating force representing the incessant impacts of the molecules of a fictitious solvent

on the particles.

The thermalization speed of a closed system coupled to a Langevin thermostat can be quan-

tified by calculating the temporal evolution of the total kinetic energy, K(t), of the system from

Equations 3.7 and 3.8. By employing the Itô’s lemma chain rule [69] along with Equation 3.9,

the following expression is attained [70]:

dK(t) = −
K(t) − 〈K〉

τk
dt + 2

√
K(t)〈K〉

Nτk
dW(t), (3.11)

5A Wiener process is a zero-mean Gaussian random process. Thus, Wiener noise is the Gaussian white noise.
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where τk ≡ (2γ)−1 is the relaxation time for the total kinetic energy, K(t), and 〈K〉 = NkBT/2 is

the system’s mean kinetic energy. Note that dW(t) in Equation 3.11 is just a single noise term.

The difficulty in developing accurate numerical methods for Langevin dynamics stems from

the non-analytic nature of the Wiener noise term, which also invalidates the technique of Taylor

expansion used for the derivation of the Verlet schemes. Algorithms which solve the Langevin

equation can only be exact in the limit of ∆t → 0 because of the presence of position-dependent

forces. In the following subsection, we review a newly-developed kind of stochastic Verlet-type

integration schemes, which was proven to provide a correct statistical measure for both the con-

figurational and kinetic sampling in discrete-time Langevin systems. It was also demonstrated

that the new algorithm is capable of providing exact thermodynamic responses for constant and

harmonic potentials for any time step size within the Verlet stability criteria [71]. This numer-

ical algorithm, which is called GJF, was first derived by N. Grønbech-Jensen and O. Farago in

2013 [66]. Five years later, a new numerical method based on the GJF method called GJF-2GJ

was introduced by L. F. Grønbech Jensen and N. Grønbech-Jensen, which has turned out to be

quite accurate, especially when it comes to the kinetic sampling of the phase space [71].

3.1.1 A Brief Review of the GJF and GJF-2GJ Methods

The GJF method was first derived in the well-known Velocity Verlet form. Then, it re-expressed

in other popular forms such as the Störmer-Verlet, and Leap-Frog form [72]. The discrete-time,

finite-difference GJF equations that address the Langevin equation in the Velocity-Explicit Ver-

let form are given by

ri(t + ∆t) = ri(t) + b[vi(t)∆t +
Fi(t)
2m

∆t2 +
∆t
2m

dWi(t)] (3.12)

vi(t + ∆t) = avi(t) +
aFi(t) + Fi(t + ∆t)

2m
∆t +

b
m

dWi(t), (3.13)
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where, to ensure the method is semi-symplectic6,

a =
1 − γ∆t

2

1 +
γ∆t
2

(3.14)

and

b =
1

1 +
γ∆t
2

(3.15)

with including the linear collision rate γ in Langevin dynamics. These equations can be written

in other forms as well. For instance, the on-site position in the Störmer-Verlet GJF form is given

by

ri(t + ∆t) = 2bri(t) − ari(t − ∆t) +
b∆t2

m
Fi(t) +

b∆t
2m

[dWi(t − ∆t) + dWi(t)] (3.16)

with the associated on-site velocity

vi(t) =
ri(t + ∆t) − (b − a)ri(t) − ari(t − ∆t)

2b∆t
+

1
4m

[dWi(t − ∆t) − dWi(t)], (3.17)

where a and b are the same as in the Velocity-Verlet (VV) GJF method discussed earlier.

The GJF-2GJ method comes with some flexibility in how it can be expressed. This method

combines the Velocity-Explicit Verlet (VV) and Leap-Frog (LF) GJF forms into a single form.

We can take the starting point by introducing the half-step velocity as [71]

ui(t +
∆t
2

) =
ri(t + ∆t) − ri(t)

√
b∆t

=
√

b[vi(t) +
Fi(t)
2m

∆t +
dWi(t)

2m
], (3.18)

where on-site ri and vi are given by Equations 3.12 and 3.13. Equation 3.18 is the definition of

the GJF-2GJ method. One may express this method in different convenient ways. However, the

result is always the same. It has been shown that the combination of the 2GJ half-step velocity

with the GJF trajectory yields very robust statistical results for both kinetic and configurational

properties for any time step size ∆t within the stability range, even for highly nonlinear systems

[73].

6A semi-symplectic integrator conserves a pseudo-Hamiltonian, instead of the system’s Hamiltonian.
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Figure 3.2: Schematic presentation of periodic boundary conditions (PBCs) in 2D. The original simulation

box in the middle has eight images around it. From Wikipedia Commons, public domain, URL: https://en.

wikipedia.org/w/index.php?title=Periodic_boundary_conditions&oldid=988336659$

3.1.2 Periodic Boundary Conditions

In Molecular Dynamics simulations, the new position of a particle can be outside the range of

the simulated box7. In such a case, one may introduce rigid walls for the simulation box so that

the particle bounces back to the box, but then the simulation results will be influenced by these

boundaries. To handle such a situation, the periodic boundary conditions, also known as cyclic

boundary conditions, will be implemented. The cyclic boundary conditions treat the opposing

boundary regions in every direction as if they are physically connected. Hence, if, for example,

a particle passes through one side of the simulation box, it then reappears on the other side with

the same velocity (see Figure 3.2 for a 2D simulation in the minimum-image convention8).

7A MD simulation box is often a parallelopiped of shape and size determined by the three vectors a, b, and c

which need not be equal in magnitude nor mutually orthogonal.

8The minimum-image convention is the most common form of the PBCs. In this approximation, particles only

interact with the closest image of other particles.
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3.1.3 Initialization

A Molecular Dynamics simulation begins with giving a set of initial positions and velocities to

the particles, i.e. (r1(0), ..., rN(0); v1(0), ..., vN(0)). The positions can be initialized by creating

particles on a lattice or randomly throughout the simulation box. The velocities can be selected

from some distribution. For example, every velocity could be taken from a uniform distribution

from a minimum to some maximum value, scaled to produce the desired temperature. Alterna-

tively, it could be taken from a zero-mean Gaussian distribution with a sigma scaled to produce

the requested temperature. One may impose the total linear momentum conservation condition

to the simulation. So, if the initial selection yields

Ptot(0) =

N∑
i=1

mivi(0) , 0, (3.19)

we need to subtract from all velocities a a value:

vi(0)→ vi(0) −
Ptot(0)
Nmi

. (3.20)

to make the total linear momentum conserved. In the absence of external forces, it will remain

constant at all times t > 0.

In Langevin dynamics, the random forces on different particles are completely independent.

Thus, they do not necessarily sum to zero at each instant t, which may cause the central mass of

the system to start wandering around over time. As a consequence, the total linear momentum

is not conserved. For such a case, to impose the momentum conservation condition at all times

t > 0, we must eliminate the CM9 displacement caused by the Langevin thermostat. In order to

do so, the total random force is set precisely to zero by subtracting off an equal part of it from

each particle in the system. Hence, the center-of-mass of a system with zero initial momentum

will no longer drift over time.

Under periodic boundary conditions, the system’s total linear momentum can be conserved,

but not its total angular momentum. The conventional explanation of this situation is based on

9CM stands for Center of Mass
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Noether’s theorem [74], which states that the conservation of an isolated system’s total angular

momentum results from the rotational invariance of the Lagrangian L. It is often emphasized

(without providing any rigorous proof) that the absence of conservation of angular momentum

in many-body systems under periodic boundary conditions is caused by breaking the rotational

symmetries in the system [75]. Nonetheless, this approach fails to explain the simplest possible

example: a periodic cell containing a single atom, whose Lagrangian is rotationally symmetric.

For a detailed explanation of the situation, the interested reader is referred to [76].

3.1.4 Finite-Size Effects

Beyond the usual random statistical errors associated with averaging over a limited sample of

particles in a computer simulation, systematic errors may also arise due to the finite size of the

model system. In the conventional canonical MD simulations, two general types of finite-size

effects are usually present [77, 78]:

1) Explicit (or ensemble) finite-size effects, caused by the suppression of density fluctuations

upon fixing the number of particles in the canonical ensemble. In particular, the explicit finite-

size effects alter the long-range tail of the total correlation function h ≡ g − 1 for an N-particle

system. Suppose, for example, that h(r) has power-law asymptotic behaviour [79] of the form

h(r) → 1/rn as r → ∞ in an open system. Then, it will have the following asymptotic form in

a closed NVT system due to the explicit finite-size effects:

lim
r→∞

h(r; N)→
1
rn + O

( 1
N

)n/d→ O ( 1
N

)n/d , 0, (3.21)

where d is the dimension of the system, and O((1/N)n/d) is the correction term of the order of

(1/N)n/d added to account for the effect of the canonical ensemble. For example, for long-range

dispersion forces (n = 6) in a finite 3D space (d = 3), we will have

lim
r→∞

h(r; N)→
1
r6 + O

( 1
N

)2 . (3.22)

2) Implicit (or anomalous) finite-size effects, resulting from considering specific boundary con-

ditions for the simulated system (e.g., periodic boundary conditions give rise to an infinite set
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of periodically replicating system cells so that correlations between adjacent cells can be signif-

icant). This kind of finite-size effect introduces anisotropy in the pair correlation functions, as

reflected in the angular dependence of them. Hence, in a closed system with periodic boundary

condition, the total correlation function is angular dependent, i.e.,

h(r)→ h(r, θ, φ). (3.23)

In a finite system, both first- and second-order transitions also get smeared and shifted because

of the explicit finite-size effects. Arguably, a distinguished first-order phase transition can only

happen either in the thermodynamic limit or in an open system. If the transition is, for example,

driven by the temperature T and occurs at a particular temperature Tp(∞) in the infinite system,

then in a finite system, the transition may be smeared over a temperature region, where [80]

∆Tsmeared ∝ N−θ/d, (3.24)

where θ is called rounding exponent, and d is the space dimensionality. This temperature region

smoothly shrinks to zero as N → ∞. For a more thorough discussion, the interested reader is re-

ferred to [80]. The finite-size effects vanish in the thermodynamic limit (or, macroscopic limit),

which is defined as the limit of a system with V → ∞, N → ∞, ρ = N/V is finite and constant

[81].

3.1.5 Inter-Particle Interaction Potentials

For a system of N interacting identical particles, the interaction potential energy of the system,

UN(r1, ..., rN), can conveniently be expanded as a sum of n-body potentials [82, 83]:

UN(r1, ..., rN) =

N∑
i< j

u2(ri, r j) +

N∑
i< j<k

u3(ri, r j, rk) + ... +

N∑
i< j<k<...<s

un(ri, r j, rk, ..., rs) + ...,

(3.25)

where un is the n-body potential. It should be noted that this series expansion should converge

rapidly in most systems since the pairwise additive approximation, i.e., truncation of the above
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series after the first term, is valid for many measurable properties. For example, pairwise addi-

tivity reveals that the hydrophobic effect is, indeed, a local phenomenon, and the hydrophobic

interaction could be represented by a semiempirical force field [84]. It should be noted that this

approximation is essentially suitable for the study of local phenomena. Despite this limitation,

pairwise potentials are still widely used to study the effects of all ranges; This is mainly because

of its simplicity as well as an incomplete understanding of the role of many-body effects.

Lennard-Jones Systems

A widely studied system is the Lennard-Jones system, which is defined as the one characterized

by the following total interaction potential energy:

UN(r1, ..., rN) =
1
2

N∑
i

N∑
j

u2(ri j), (3.26)

where ri j = |ri − r j| is the radial distance between the CM of particles i and j, and

u2(ri j) ≡ VLJ = 4ε [(
σ

ri j
)12 − (

σ

ri j
)6] (3.27)

is the Lennard-Jones potential, where ε is the depth of the potential well (usually referred to as

dispersion energy), and σ is the radius at which the LJ potential energy is zero (often referred

to as the effective radius of atoms). The LJ potential has a repulsive short-range term ∝ r−12 and

an attractive long-range term ∝ −r−6. The origin of the attractive force is quantum-mechanical

and is owing to fluctuating induced-dipoles. The repulsive term describes the Pauli repulsion at

short distances of the interacting particles owing to overlapping electron orbitals. The exponent

12 was chosen exclusively because of ease of computation and had no theoretical justification.

The LJ potential approximates very well the interactions in the noble massive gases, such as Ar,

whose interactions are dominated by van der Waals forces and electrons are in closed shells.

The Lennard-Jones potential exhibits a pole at r → 0, i.e. the potential energy diverges to

VLJ → ∞, which can cause instabilities in MD simulations, for example, in which the particles

are created with random coordinates; This is because the randomly generated coordinates may
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Figure 3.3: The reduced Lennard-Jones potential as a function of the reduced distance between a pair of parti-

cles. The potential minimum occurs at r = rm = 21/6σ. From Wikipedia Commons, public domain, URL:

https://en.wikipedia.org/w/index.php?title=Lennard-Jones_potential&oldid=989336384

overlap. On the contrary, the Lennard-Jones potential VLJ converges to zero as r → ∞, which

may cause a serious problem from a numerical analysis standpoint. Infinitely-ranged potentials,

such as the Lennard-Jones potential, are then truncated to a finite range r ∈ (0, rc], so that one

may approximate the LJ potential with:

V ts
LJ(r) =


VLJ(r) − VLJ(rc), for 0 < r ≤ rc

0, for r > rc

, (3.28)

where V ts
LJ(r) is the truncated and shifted Lennard-Jones potential. The term VLJ(rc) is usually a

small constant shift and added to avoid jumps in the potential which would lead to an impulsive

contribution to the pressure equal to [33]

∆Pimp =
8π
3
ρ2g(rc)εσ3[(

σ

rc
)9 − (

σ

rc
)3], (3.29)

where g(rc) ≈ 1 is the radial distribution function at the radial cut-off distance rc. Furthermore,

the other advantage of using such a truncated and shifted potential is that the inter-atomic forces

are always finite. Truncation of the inter-atomic interactions at rc will, on the other hand, result
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in a systematic shift in the coexistence lines. In particular, potential truncations and shifts have

important consequences at low temperatures, especially in the vicinity of the triple point [85].

3.1.6 Reduced Units

In computer simulations, it is often convenient to express quantities such as temperature, den-

sity, and pressure in units other than the SI units10. As an example, expressing the quantities in

reduced units allows us to benefit from the corresponding-states principle [86]. This law states

that different states with different units can be compared to each other. However, this law only

applies to systems consisting of one single particle type. In addition to the corresponding-states

principle, there are two other important reasons for using reduced units:

1) In reduced units, since most numeric values are of the order of one, detecting errors is much

easier now in computer simulations.

2) Moreover, using numbers of the order of one in computer algorithms minimizes the floating-

point errors caused by the limited precision of processors [33].

Quantity Reduced unit Argon*

Time σ
√

m/ε 2.1586 ps

Temperature ε/kB 119.55 K

Pressure ε/σ3 418.10 × 105 Pa

Mass Density m/σ3 1680.3 Kg/m3

Table 3.1: An example of the LJ reduced units for Argon. * The values for ε, σ, and m were retrieved from [87].

Dimensionless reduced units could be defined in a vast number of different ways. The most

common one is based on the LJ potential parameters. For an LJ system, we can choose ε as the

unit of energy, σ as the unit of length, and atomic mass m as the unit of mass, then express all

other quantities in these basic units. See Table 3.1 for some examples.

10The International System of Units.
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3.2 Simulation Details

In this thesis, our primary goal is to determine whether the initial structure’s characteristics can

affect the value of the system’s relaxation time in a computer simulation. For this purpose, we

have performed a number of Molecular Dynamics simulations using the LAMMPS11 software

package [88] and then measured the time-averaged RDF at thermal equilibrium for two differ-

ent initial structural conditions, namely

1) initial macroscopically inhomogeneous structure in the number density of atoms, and

2) initial macroscopically homogeneous structure in the number density of atoms.

All the quantities quoted here are in the LJ reduced units. A pure Lennard-Jones atomic fluid at

a density of ρ0 = 0.0395 was simulated in a Langevin NVTP ensemble, where P is the system’s

total linear momentum, with periodic boundaries [89]. We have also truncated the LJ potential

at rc = 2.5 and shifted it up to make it continuous at the cut-off radius. The equations of motion

were integrated using the GJF-2GJ algorithm with a timestep of dt = 0.0007 to ensure that the

discretization errors are negligible [90].

We first created 329252 particles at a temperature of T = 0 in the form of an FCC crystal,

which consists of a total number of 433 cubic unit cells with a lattice constant of x(ρ0) = 4/ρ0 =

4.661. The resulting crystal is also located at the center of a cubic simulation box with a volume

of V = (45x)3. We used the series of commands shown in Table 3.2. Note that such a structure

is macroscopically inhomogeneous in number density since there exist a considerable amount

of empty spaces in the simulation box (see Figure 3.4a).

We then created 364500 particles at a temperature of T = 0 in the form of an FCC crystal,

which consists of a total number of 453 cubic unit cells with a lattice constant of x(ρ0) = 4/ρ0 =

4.661 and fills the entire simulation box. We used the series of commands shown in Table 3.3.

Note that such a structure is macroscopically uniform in number density (see Figure 3.4b).

11LAMMPS is a classical Molecular Dynamics C++-based code aiming at material modelling. It is an acronym

for Large-scale Atomic/Molecular Massively Parallel Simulator.
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𝟒𝟑𝒙

𝟒𝟓𝒙

(a) Initial inhomogeneous structure

𝟒𝟓𝒙

(b) Initial homogeneous structure

Figure 3.4: Initial crystalline structures (2D representation)

For both initial structures, the phase-space trajectories were first run for a duration of ∆t =

te = 175 in order to equilibrate the system thermally at a supercritical temperature of T = 3.936

for some multiples of a base Langevin thermal coupling constant γ = γ0 = 5/7. As we will see

in Chapter 4, ∆t = te = 175 is more than enough time to equilibrate the system’s temperature

for all the γ values used. The trajectories were then run again for a duration of ∆t = tpro = 525

to calculate the mean RDF, g(r), up to a maximum radius of rm = 25. Finally, to ensure that the

results are not limited only to the systems with crystalline initial structures, we have performed

some extra MD simulations with amorphous initial structure (randomly-distributed particles),
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Number Command Argument

1 lattice fcc 0.0395

2 region cube block 0 45 0 45 0 45

3 create box 1 cube

4 region sub block 1 44 1 44 1 44

5 create atoms 1 region sub

Table 3.2: A series of commands in LAMMPS to create a macroscopically inhomogeneous crystalline structure

in number density.

which fills the entire simulation box (see Figure 3.5). This is the only difference between the

second and third batches of simulations. It should be stressed that this kind of initial structure

is energetically unstable because randomly-generated particles are typically highly overlapped,

and we already know VLJ → ∞ at r → 0. Thus, it is necessary to locally minimize the system’s

potential energy UN before running any normal dynamics. For this purpose, we performed a

pre-energy minimization using the Conjugate Gradient algorithm for a duration of ∆t ' 2.1.

We used the series of commands shown in Table 3.4.

Number Command Argument

1 lattice fcc 0.0395

2 region cube block 0 45 0 45 0 45

3 create box 1 cube

4 create atoms 1 box

Table 3.3: A series of commands in LAMMPS to create a macroscopically homogeneous crystalline structure

in number density.
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Figure 3.5: A stabilized amorphous structure (2D representation)

Number Command Argument

1 lattice fcc 0.0395

2 region cube block 0 45 0 45 0 45

3 create box 1 cube

4 create atoms 1 random 364500 564674 NULL

5 minimize 1.0E − 5 1.0E − 5 1000 100000

Table 3.4: A series of commands in LAMMPS to create a macroscopically homogeneous and stable amorphous

structure in the number density of atoms.

3.2.1 Measuring the Mean RDF

To measure the mean RDF, i.e., g(r), in a Molecular Dynamics simulation, a random particle

should be selected (if all of the particles are equal). Then, the algorithm should look for other

particles that have their center of mass within a distance r to r + δr from the chosen particle.

The algorithm does the same for a spherical shell extending from r + δr to r + 2δr and so forth

for increasing radii of the spherical shell. The total number of particle pairs within a distance

between r and r + δr from a random particle i at time t is related to the instantaneous RDF, i.e.,
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gi(r, t), as follows [91]:

gi(r, t) = lim
δr→0

dni(r, t)
4π(Npairs/V)r2δr

, (3.30)

where r is the radial distance between a pair of particles, dni(r, t) is the instantaneous number

of particle pairs within a distance between r and r +δr from the random particle i, V is the total

volume of the simulation box, Npairs the total number of particle pairs, and δr (' 0.0977 here)

is the bin size. For calculating the mean RDF, we need to first take an average over all particles

and then, use Equation 3.3 to compute its time average as

g(r) =

N∑
i=1

gi(r, t) =
1
N

N∑
n=1

N∑
i=1

gi(r, te + n∆t), (3.31)

where te is the equilibration time. So, we imply average over all times and particles within the

simulation box by the word “mean” in the mean RDF. In the following chapter, we will present

the results of our Molecular Dynamics simulations followed by some discussion regarding the

results.



Chapter 4

Results and Discussion

In this chapter, we will first show that the system under both kinds of initial conditions (homo-

geneous and inhomogeneous) is in thermal equilibrium, i.e., the temperature is equilibrated, at

all times t > te, where te = 175 is the equilibration time. Then, we present the results regarding

the RDF measurements, followed by a section discussing and interpreting the results. Finally,

we end this chapter with a short summary in Section 4.4.

4.1 Temperature Relaxation Time

4.1.1 Initial Inhomogeneous Crystalline Structure

In Figure 4.1, we have plotted the time evolution of the kinetic temperature1 of the inhomoge-

neous crystalline structure shown in Figure 3.4a for several multiples of the Langevin coupling

constant γ0 = 5/7 to confirm that the system is in thermal equilibrium at all times t > 175. This

figure shows that te = ∆t = 175 is enough time for the system to come to thermal equilibrium

with its surroundings, i.e., the thermal bath. Furthermore, it demonstrates that the stronger the

thermal coupling between the system and the thermostat, the faster the system reaches thermal

equilibrium. As mentioned earlier, in exponentially ergodic systems, the temporal evolution of

1Kinetic temperature, T , is defined as the system’s total kinetic energy per particle.
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Figure 4.1: This figure illustrates the evolution of the kinetic temperature T with time during the equilibration

phase for an initial inhomogeneous crystalline structure and some multiples of γ = γ0 = 5/7. As it is evident, the

higher the value of the Langevin coupling constant γ, the faster the system reaches thermal equilibrium. The inset

depicts that the kinetic temperature relaxation time τT varies linearly with 1/γ. To be precise, τT ' 1/2γ. All the

values are in the LJ reduced units.

quantities such as the temperature can be well approximated and fitted by an exponential func-

tion2 [93]. The temperature relaxation time, which is denoted by τT , is then the time constant

of the fitted exponential function. We have calculated the temperature relaxation time for each

value of γ and plotted them versus 1/γ in the inset. As can be observed, the kinetic temperature

relaxation time, τT , changes with the thermostat coupling constant γ via τT ' (2γ)−1, which is

in agreement with what we expected from the theory (see Equation 3.11).

4.1.2 Initial Homogeneous Crystalline Structure

In Figure 4.2, similar to the inhomogeneous case, we have plotted the evolution of the kinetic

temperature over time for the same values of the Langevin coupling constant, but for the initial

homogeneous crystalline structure shown in Figure 3.4b. The graph also confirms that te = 175

is enough time for the system to reach thermal equilibrium with the surroundings. We have then

2The under-damped mean-field Langevin dynamics is exponentially ergodic [92].
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calculated the temperature relaxation time τT for each value of γ and plotted them versus 1/γ in

the inset. As can be seen, the kinetic temperature relaxation time, τT , varies with the Langevin

coupling constant γ as τT (γ) ' 1/2γ, which is again in agreement with the theory (see Equation

3.11). Comparing Figures 4.1 and 4.2, we realize the kinetic temperature relaxation time is, as

expected, independent of the kind of initial structure used in a computer simulation.
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Figure 4.2: This figure illustrates the time evolution of the kinetic temperature T during the equilibration phase

for an initial homogeneous crystalline structure and some multiples of γ = γ0 = 5/7. As it is obvious, the higher

the value of the Langevin coupling constant, the faster the system reaches thermal equilibrium. Besides, the inset

shows that the kinetic temperature relaxation time, τT , varies with γ as 1/2γ. All the values are in the LJ reduced

units.

4.2 The Mean RDF

In this section, we have presented and plotted r(g(r) − 1) instead of g(r) for two main reasons:

1. We are interested only in examining the long-range deviation of g(r) from for the ideal-

gas RDF, i.e., gid(r) = 1.

2. Also, because the deviation of g(r) from one at large r can be negligible, we have scaled

g(r) − 1 by r and plotted the scaled difference, i.e., r(g(r) − 1).
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4.2.1 Initial Inhomogeneous Crystalline Structure

In Figure 4.3, we have plotted the scaled total correlation function, r(g(r)−1), for the case of the

initial inhomogeneous crystalline structure of Figure 3.4a, the equilibration time te = ∆t = 175,

and several multiples of γ = γ0 = 5/7. This figure shows clearly that the scaled total correlation

function, as predicted in Equation 2.15, is not still relaxed to its final equilibrium value and, as a

consequence, is γ-dependent at thermal equilibrium. In particular, for r > 2.5, r(g(r)−1) varies

linearly with a γ-dependent slope, which increases with γ, in the under-damped Langevin dy-

namics, i.e., weak thermal couplings, and non-linearly in the over-damped Langevin dynamics,

i.e., strong thermal couplings. Such deviations from the expected behaviour could be possibly

due to the two-body entropy s2 is not being maximal yet. We can conclude that the condition of

the equilibration of the kinetic temperature for the equilibration of the structure is necessary but

not sufficient, especially when the system starts from an initial structure that is macroscopically

inhomogeneous in the number density of atoms.
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Figure 4.3: This figure illustrates r(g(r) − 1) for the case of the inhomogeneous crystalline structure shown in

Figure 3.4a, te = 175, and some multiples of the Langevin coupling constant γ = γ0 = 5/7. This figure reveals that

for an initial heterogeneous structure, the higher the value of the Langevin coupling constant, the more behaviour

of the scaled total correlation function deviates from the expected one at thermal equilibrium, i.e., r(g(r) − 1) = 0

for r > rc (= 2.5). The inset shows a zoomed-in version of the figure. All the values are in the LJ reduced units.
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4.2.2 Initial Homogeneous Structure

Crystalline Structure

In Figure 4.4, we have plotted the scaled total correlation function, i.e., r(g(r)− 1), for the case

of homogeneous crystalline structure of Figure 3.4b, the equilibration time te = ∆t = 175, and

several multiples of γ = γ0 = 5/7. This figure reveals that the scaled total correlation function,

unlike the inhomogeneous case, is completely independent of γ at thermal equilibrium. Hence,

the RDF is well-equilibrated at thermal equilibrium for this case. This could be because, in this

case, the structure is already homogeneous and, thus, does not need to expand to fill the entire

simulation box and recover a homogeneous state. It is apparent that the system’s equilibration

process with an initial homogeneous structure usually takes less time compared to that with an

initial inhomogeneous structure in the under-damped mean-field Langevin dynamics.
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Figure 4.4: This figure presents r(g(r)− 1) for the case of the homogeneous crystalline structure of Figure 3.4b,

te = 175, and few multiples of the Langevin coupling constant γ = γ0 = 5/7. This figure reveals that for an initial

homogeneous structure, the scaled total correlation function is independent of γ at thermal equilibrium. The inset

shows a zoomed-in version of the figure. All the values are in the LJ reduced units.
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Amorphous Structure

We repeated the above computer experiment with an initial structure that was homogeneous and

amorphous, as described at the end of Section 3.2 (see Figure 3.5 and Table 3.4). As expected,

we found the same behaviour for the scaled total correlation function at thermal equilibrium as

in the homogeneous crystalline case (see Figure 4.4). This suggests that no matter what pattern

the particles originally formed from (random or orderly), as long as they are evenly distributed

throughout the simulation box on average, we have

τg & τT (γ) (4.1)

in dilute systems, where τg is the long-time relaxation time for the RDF. From Equation 2.15,

we know also that τg = τsys. Thus, for dilute systems with initial homogeneous structure in the

under-damped mean-field Langevin dynamics,

τhom
sys & τT (γ). (4.2)

4.3 Discussion

In Figure 4.5, we have plotted the scaled total correlation function, rh(r) = r(g(r) − 1), for the

inhomogeneous case for γ = 2γ0 = 10/7 and several multiples of te = 175. This figure reveals

that the slope decreases with increasing the duration of the equilibration time te. Therefore, the

non-zero slope is because the value of the equilibration time has not been enough to equilibrate

the system’s structure. In Figure 4.6, we have plotted the evolution of the slope of the scaled

total correlation function for r > rc (= 2.5) with te for γ = γ0 = 5/7 and γ = 2γ0 = 10/7. This

figure demonstrates that the slope in the under-damped mean-field Langevin dynamics varies

with the equilibration time te in an exponential manner at thermal equilibrium for r > rc(= 2.5):

The slope ≡ lim
r→∞

h(r) = A(γ) exp{−te/τ(γ)}, (4.3)

where A(γ) was found to be some positive γ-dependent quantity for the initial inhomogeneous

structure in Figure 3.4a. Equation 4.3 is simply the time average of Equation 2.15 for r > 2.5
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during the production phase,

lim
r→∞

h(r) ≡ 〈 lim
r→∞

h(r, t)〉 = −
1

tpro

∫ te+tpro

te

[limr→∞ ∆u(r)]
kBT

exp{−t/τsys}dt

= −
[limr→∞ ∆u(r)]τsys

tpro
exp{−te/τsys}

(4.4)

for te + tpro >> τsys. Comparing Equations 4.3 and 4.4, it is obvious to see that τ(γ) is τsys and

A(γ) is −[limr→∞ ∆u(r)]τsys(γ)/tpro, which implies that limr→∞ ∆u(r) for the inhomogeneous

structure in Figure 3.4a is a negative constant, as we expected. The numerical results of τ(γ),

obtained from Figure 4.6, i.e., τ(γ0) = (0.013)−1 and τ(2γ0) = (0.006)−1 ' 2τ(γ0), suggests an

increasing behaviour for τ(γ) with increasing γ. Besides, by comparing these values with those

values obtained from Figures 4.1 and 4.2 for τT (γ0) and τT (2γ0), we find that

τ(γ) >> τT (γ) (4.5)

for an initial inhomogeneous structure, which is an essential result of this thesis. Thus, we can

conclude that for a dilute inhomogeneous system in contact with the Langevin thermostat:
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Figure 4.5: This figure presents r(g(r) − 1) of the homogeneous crystalline structure of Figure 3.4b for the case

of the Langevin coupling constant γ = 2γ0 = 10/7 and few multiples of te = 175. This figure demonstrates that

the slope of the scaled total correlation function, i.e., g(r)−1, decreases continuously with increasing te. The inset

shows a zoomed-in version of the figure. All the values are in the LJ reduced units.
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Figure 4.6: This figure illustrates how the slope of the scaled total correlation function for r > rc (= 2.5) changes

with the equilibration time te. As it is evident, the slope decays exponentially with a γ-dependent time constant,

which increases apparently with increasing γ. Based on Equation 2.15, this time constant is the system relaxation

time. All the values are in the LJ reduced units.

1) ↑ τinhom
sys (γ) ∼ γ ↑

2) τinhom
sys (γ) >> τT (γ)

The first result is in contrast to what is found for the equilibration of the kinetic temperature in

Section 4.1, where τT (γ) ' (2γ)−1 and ↓ τT (γ) ∼ γ ↑.

4.4 Summary

In this section, we summarise the main results found in this thesis:

1) The long-time equilibration of the RDF for a dilute system in the under-damped mean-field

Langevin dynamics can be written at each time t as follows:

〈g(r, t; γ)〉 = 1 −
∆u(r)
kBT

exp{−t/τsys(γ)}, (4.6)

where ∆u(r) is called residual potential and depends on the system’s averaged configuration, T

is the equilibrium temperature between the system and the thermal bath, and τsys is the system



4.4. Summary 51

relaxation time.

2) The system relaxation time, τsys, is much longer than the kinetic temperature relaxation time

if the initial structure is macroscopically inhomogeneous in number density and in contact with

the Langevin thermostat. In addition, τsys(γ) was found to be an increasing function of γ in the

under-damped Langevin dynamics, which was quite predictable due to the disruptive influence

of the stochastic force in the Langevin equation on structural relaxation times.

3) The system relaxation time, τsys, is almost γ-independent and of the order of the temperature

relaxation time for dilute systems with initial homogeneous structure (random or orderly).

4) Comparing the system relaxation time for the both kinds of initial structures, we realize that

τinhom
sys >> τhom

sys . (4.7)

5) The kinetic temperature relaxation time, τT , is completely independent of the system’s initial

structure and decreases with increasing γ, i.e.,

↓ τT (γ) ∼ γ ↑ . (4.8)



Chapter 5

Conclusion

We found out that the system’s structural relaxation time is not completely independent of the

initial structure in a Molecular Dynamics simulation. In particular, we showed that if the initial

structure is macroscopically inhomogeneous in the number density ρ, it takes more time for the

system’s structure to equilibrate fully. We also found out a not-well-equilibrated structure in the

under-damped Langevin dynamics manifests itself by an almost uniform shift in the RDF for

r >> rc, where rc is the cut-off radius. To avoid such an artifact, we recommend using either a

small value for the coupling constant γ or other commands to create the initial structure such as

“create atoms box” in LAMMPS, which fills the entire simulation box with particles and

treats the system’s periodic boundaries carefully, or “create atoms random NULL”, which

creates particles at random positions all over the simulation box.

The other important message of this thesis is that the system relaxation time is not always

of the order of the kinetic temperature relaxation time. So, thermal equilibrium does not mean

thermodynamic equilibrium. The structural relaxation time should also be taken into account.

To check if the structure is in equilibrium (thermally and structurally), we recommend plotting

ln r(g(r) − 1). If it exhibits a pure logarithmic behaviour for r >> ξ, where ξ is the correlation

length, it means that the structure has not reached equilibrium yet. Note that in thermodynamic

equilibrium, ln r(g(r) − 1) for r >> ξ exhibits a fluctuating behaviour owing to the presence of
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Figure 5.1: This figure compares the equilibrium and non-equilibrium ln r(g(r) − 1) for a system which has had

an initial inhomogeneous structure in the number density. As ln (x) of a negative x is not mathematically defined,

we plotted ln r|g(r) − 1|. All the values are in the LJ reduced units.

statistical errors around the numerical accuracy of the algorithm. In Figure 5.1, we have plotted

ln r(g(r) − 1) for both equilibrium and non-equilibrium systems which have started from initial

inhomogeneous structures in the number density ρ.
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