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Abstract 

 

Miconazole and clotrimazole are environmentally-persistent drugs that are entrained into crop soils 

through the application of biosolids. There is concern that environmental exposure to such azole 

antifungals, which inhibit fungal growth by disrupting the production of the fungal cell membrane 

component ergosterol, promotes resistance in clinically or agriculturally relevant fungi. Thus, 

either environmentally-relevant or excessive levels of these drugs were applied to microplots over 

ten years and compared with drug-free plots. Overall, ergosterol quantification, plates counts, and 

identification of >250 fungal isolates showed lower fungal counts and species richness in plots 

receiving excessive drug amounts. In addition, fungi from treated plots did not show increased 

resistance to a panel of medical and agricultural azole drugs in disk diffusion assays. Altogether, 

while the highly contaminated soils showed lower fungal counts, lower species richness, and fewer 

isolates highly-susceptible to miconazole, increased resistance to azoles was not evident at 

environmentally relevant concentrations. 

 

Keywords: Antifungal resistance, mycology, fungal community diversity, fungal infections, 

biosolids, wastewater contaminants 
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Summary for Lay Audience 

 

Products sold to treat fungal infections –such as those of the hair, skin, nails, and urogenital tract– 

include drugs that specifically kill or slow the growth of fungi. These products tend to be washed 

down the shower, sink, or toilet and make their way into the sewage system. Following sewage 

treatment, some traces of drugs remain, and two medical antifungal drugs that particularly 

accumulate and persist in the environment, possibly due to their use in over-the-counter products, 

are clotrimazole and miconazole. Although not used to treat systemic infections, these drugs, 

which are chemically defined as azoles, are chemically related to azoles used to treat life-

threatening, systemic fungal infections and agricultural azoles used to control crop diseases in 

agriculture. This reliance on azole products has raised concerns over azole contamination of the 

environment, resulting from the application of biosolid fertilizer derived from sewage treatment 

products onto soils. More specifically, there is concern that azole contamination of soils can shift 

the soil fungal community's population structure and lead to the selection of azole-resistant 

phenotypes. 

 

To address these concerns, from 2010 to 2020, amounts of clotrimazole and miconazole typical to 

those found in biosolid fertilizer were annually added to 2 m2 plots of soil grown with soybeans. 

Soil from these microplots, in addition to identical microplots receiving no drugs, were sampled, 

starting in 2018, for fungal isolation. The resulting fungal libraries were analyzed for changes in 

composition between the control and treated microplots. In addition, fungal libraries from the 

treated plots were compared to libraries from the control plots for their susceptibility to 

clotrimazole, miconazole, medical azoles used for systemic infections, and agricultural azoles used 

for crop protection. 

 

Overall, it was found that the azole-treated soils showed lower fungal counts compared to the 

untreated soils and the soils treated with excess clotrimazole and miconazole showed lower species 

richness. On the other hand, there was no clear evidence that the fungal community recovered from 

the azole-contaminated soils were less susceptible to azoles than fungi recovered from the control 

plots. Nonetheless, several species with medical and agricultural significance were recovered from 
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the contaminated soils, highlighting the importance of monitoring soil fungi for increased azole 

resistance. 
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1 Introduction and Literature review 

 

1.1 History and use of antifungal agents 

 

Although the practice of treating microbial infections with biological preparations dates back to 

ancient cultures, German physician Paul Ehrlich kickstarted research into the synthesis of 

antimicrobial compounds derived from dyes in the early 1900s. However, possibly due to the 

relative rarity of fungal infections prior to the HIV/AIDS epidemic and lack of fungal targets that 

are not shared with humans, the development of antifungals lagged behind the development of  

antibacterials (Larkin et al., 2019). Nonetheless, ergosterol, an essential fungal cell wall 

component not found in human cells, was found to be a suitable molecular target for the polyene 

and azole classes of antifungal drugs (Dixon & Walsh, 1996). Thus, during the 1940’s to 1950’s, 

treatment for fungal infections transitioned from relying on physical interventions, such as 

radiation therapy, and repurposed medications, such as potassium iodide and sulfonamide 

antibiotics, to pharmaceuticals designed for a fungal-specific mode of action (Larkin et al., 2019).  

 

The polyene drugs are defined by macrocyclic rings containing polyene structures, which consist 

of multiple alternating single carbon-carbon and double carbon-carbon bonds, and are 

amphiphilic, meaning that they have hydrophilic and hydrophobic regions. These drugs primarily 

work by binding to ergosterol on the fungal cell surface, which results in the formation of pores 

through which cytoplasmic contents can leak through (Dixon & Walsh, 1996). Nystatin and 

amphotericin B, both isolated from Streptomyces species in 1950 and 1955, respectively, entered 

clinical use in the late 1950’s (Larkin et al., 2019).  

 

Subsequently, the azole drugs clotrimazole, miconazole, and econazole were developed and 

entered the market from the late 1960’s to the early 1970’s (Larkin et al., 2019). Azole drugs bind 

to and inhibit the enzyme lanosterol 14 α-demethylase (CYP51A1), which catalyzes the 

demethylation of lanosterol to ergosterol (Dixon & Walsh, 1996). Effects of this disruption include 

reduced membrane fluidity due to the absence of ergosterol, the build-up of toxic 14α-methylsterol 

by-products, and, possibly, an increase in saturated fatty acid content in the membrane leading to 



2 
 

further reduced membrane fluidity (Dixon & Walsh, 1996; Larkin et al., 2019). In addition, at 

higher concentrations than those that produce effects via CYP51A disruption, azole drugs have an 

immediately lethal effect through direct membrane damage to both eukaryotic and prokaryotic 

cells (Van den Bossche et al., 1983). Chemically, azoles are compounds defined by a five-

membered ring containing two nitrogen atoms for imidazoles, or three nitrogen atoms for triazoles 

(Dixon & Walsh, 1996).  

 

It has been estimated that while infectious diseases were the cause of one death per thousand deaths 

in the pre-antibiotic era of the 1940’s, the age-standardized rate dropped to 0.1 per thousand in the 

1970’s due to widespread adoption of antibiotics (Griffiths & Brock, 2003). While the societal 

benefit of antifungal drugs has been less quantified than those of antibacterial drugs, the 

development of antifungal drugs has undoubtedly reduced the mortality rate associated with 

immunodeficiency and reduced the burden of dermatological fungal infections. For example, in a 

model of 40-year old patients with acute myeloid leukemia, it was estimated that prophylactic 

fluconazole administration approximately halved the probability of developing a fungal infection, 

from 0.157 to 0.076, and also slightly reduced the probability of dying from the infection, from 

0.285 to 0.238, for an overall increased life expectancy of 0.9 years (Nomura et al., 2006). 

 

 

1.2 Clinical, community, and agricultural use of antifungals 

 

As of 2019, the World Health Organization List of Essential Medicines includes the imidazoles 

clotrimazole and miconazole (Figure 1), which are suitable for oral and topical use, and the second-

generation triazoles fluconazole, itraconazole, and voriconazole (Figure 2), which are suitable for 

intravenous use (World Health Organization, 2019). In addition, the polyenes, nystatin and 

amphotericin B, and squalene monooxygenase inhibitors, such as terbinafine, are included  (World 

Health Organization, 2019). Other effective antimycotic agents on the list include inorganic 

compounds, such as selenium sulfide and sodium thiosulfate, and small molecules that inhibit 

intracellular fungal targets, such as griseofulvin and flucytosine, which inhibit tubulin and 

thymidylate synthase, respectively (World Health Organization, 2019). 
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Figure 1 – Structures of select medical imidazoles 

Clotrimazole (A) and miconazole (B) are medical imidazoles. Each is found as the active 

ingredient in around 300 over-the-counter products in Canada to treat athlete’s foot (tinea pedis), 

jock itch (tinea cruris), ringworm (tinea corporis), superficial yeast growth on skin (tinea 

versicolor), a well as vaginal yeast infections and diaper rash (Wishart et al., 2018). Clotrimazole 

can be prescribed or found in over-the-counter medications in forms such as topical creams 

(typically 10 mg/g) and 10 mg lozenges. Miconazole is found in slightly higher concentrations for 

creams (20 mg/g) and tablets (50 mg) (Wishart et al., 2018). Neither medication is approved for 

systemic use. 

 

   

Figure 2 – Structures of select medical triazoles 

Fluconazole (A) is a medical triazole used for the treatment of cryptococcal meningitis, Candida 

infections of various types, such as vaginal, systemic, and esophageal, as well as prevention of 

fungal lung disease in susceptible populations. It is available by prescription for intravenous use 

(2 mg/mL) and by prescription or over-the-counter in the form of 50-200 mg tablets. Voriconazole 

(B) is prescribed for intravenous use (10 mg/mL), and in tablet form (50-200 mg); however, it is 

not available over the counter (Wishart et al., 2018). It is approved for use for esophageal 

candidiasis in addition to invasive aspergillosis, which is intrinsically resistant to fluconazole 

(Leonardelli et al., 2016), and Fusarium infections, which are resistant to fluconazole and 

itraconazole (Stanzani et al., 2007). Itraconazole (C) is not available over-the-counter or for 

intravenous use but can be prescribed for tablet/capsules (65-200 mg) and as an oral solution (10 

mg/mL). Itraconazole is approved for a wider variety of fungal infections, including 

blastomycosis, histoplasmosis, aspergillosis, and onychomycosis, as well as preventing fungal 

infections in cystic fibrosis patients (Wishart et al., 2018). 

C B A 

B A 
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According to the Medical Expenditure Panel Survey compiled by the U.S. Department of Health 

and Human Services, Agency for Healthcare Research and Quality, fluconazole was the most 

widely prescribed antifungal drug with 3.5 million annual prescriptions in the U.S. in 2017, 

followed by nystatin and ketoconazole, another medical imidazole, with 2.5 million prescriptions 

each (Agency for Healthcare Research and Quality, 2018). Less commonly prescribed antifungal 

drugs include clotrimazole, alone or in a mixture with the anti-inflammatory drug metamethasone, 

at 1 million and 850,000 annual prescriptions respectively, terbinafine at 1 million prescriptions, 

and miconazole with 225,000 prescriptions (Agency for Healthcare Research and Quality, 2018).  

 

1.3 Fate of antifungals in the environment 

 

Due to previous studies implying that soil environments can act as a reservoir of azole-resistant 

fungi that can cause mycosis in humans, it is essential to determine what concentration of azole 

drugs in the soil can promote antifungal resistance. Pathways leading to azole contamination of 

soils include applying agricultural antifungals to product crops against plant-pathogenic fungi, 

such as difenoconazole, tebuconazole, and propiconazole (Figure 3), as well as the application of 

antifungal-contaminated biosolids to agricultural lands.  

     

Figure 3 – Structures of select agricultural triazoles 

Difenoconazole (A), tebuconazole (B), and propiconazole (C) are broad-spectrum fungicides 

approved for use in Canada to control fungal growth on turfgrass, wood, and crops such as cereals. 

To control plant pathogens, these agricultural triazoles can be applied via foliar application or seed 

treatment (Pest Management Regulatory Agency, 2016c, 2016b, 2016a). 

 

During primary treatment of wastewater, solids are allowed to settle, and these solids are then 

biologically digested to create biosolids. Biosolids are then applied to agricultural fields as sources 

         

        

        

        

         

 

 
 

 

 

  

  

A B C 
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of nutrients, such as nitrogen and phosphate, and micronutrients, such as copper, iron, 

molybdenum, and zinc. In Ontario, the application of biosolids to agricultural fields is governed 

by stringent regulations that consider parameters such as field slope, distance to residential areas, 

and amounts of plant-available nitrogen and phosphate (Government of Ontario, 2002). 

 

A 2007 survey of Swedish sewage treatment plants estimated that 41% of purchased miconazole 

and all purchased clotrimazole could be accounted for in sewage sludge (Lindberg et al., 2010). 

Furthermore, miconazole has previously been detected at concentrations of 477 μg/kg and 341 

μg/kg in biosolids originating from Niagara Region sewage treatment facilities (Sabourin et al., 

2012) and the Robert O. Pickard Environmental Centre in Ottawa (Gottschall et al., 2012), 

respectively. Clotrimazole was detected at a concentration of 492 μg/kg in biosolids originating 

from a Beijing sewage treatment plant (Chen et al., 2013).  

 

Following the application of biosolids, miconazole and clotrimazole persist in soils. A 

concentration of 127 μg miconazole/kg soil was detected 400 days following application of the 

Ottawa biosolids to a field at a rate of 22 Mg dry weight per ha (Gottschall et al., 2012). Likewise, 

plots receiving three annual applications of the Beijing biosolids at a rate of 60 Mg/ha contained 

up to 65 and 41 μg miconazole and clotrimazole, respectively, per kg of soil (Chen et al., 2013). 

Microcosm studies have shown that the half-life of clotrimazole decreases with temperature, with 

a half-life in loam soil of 275 days at 4°C and 68 days at 30°C (Sabourin et al., 2011). In addition, 

in sludge-amended sandy-loam soil, the half-life of clotrimazole decreased from 126 to 29 days, 

as moisture content increased from 4.5 to 11% (García-Valcárcel & Tadeo, 2012) 

 

1.4 Emergence of resistance to antimicrobial agents 

 

The Centers for Disease Control and Prevention published in its Antibiotic Resistance Threats in 

the United States, 2019 report that over 2.8 million cases of antibiotic-resistant infections—mostly 

caused by bacteria—in the U.S. were causing over 35,000 deaths per year  (CDC, 2019). Multiple 

factors lead to the evolution, selection, and spread of antibiotic and antifungal resistance. These 

include the ability of the microorganisms to develop resistance due to over-use or inappropriate 

use of antibiotic or antifungal drugs, the spread of drug-resistant strains in environments such as 
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hospitals, and, in bacteria, the spread of genes conferring drug-resistance to drug-susceptible 

bacteria via plasmids, bacteriophages, or uptake of naked DNA (Levy, 2002). More specifically, 

fungi can develop resistance to azole drugs via upregulation of drug and toxin-removing efflux 

pumps, upregulation of CYP51A1-encoding genes, and modifications of the CYP51A1-azole 

binding sites (Fisher et al., 2018).  

 

The development of resistance to fluconazole, the most commonly prescribed azole drug, is 

exacerbated by the fact that fluconazole is fungistatic and not fungicidal, thus allowing for 

directional selection of the resistant phenotype among exposed isolates, and the fact that 

fluconazole resistance can occur by multiple mechanisms (Anderson, 2005). It follows that the 

international ARTEMIS Antifungal Surveillance Program detected that fluconazole resistance in 

the yeast Candida glabrata increased from 9% to 14% from 1992–2001 to 2001–2007 (Pfaller, 

Messer et al., 2009). In addition, from 2005 to 2007, increases in voriconazole resistance in 

multiple clinical species of Candida have been found, including in C. famata (from 1% to 6%), C. 

norvegensis (0% to 7%), C. lipolytica (0% to 11%), and C. pelliculosa (14% to 17%) (Pfaller et 

al., 2010). In addition, Candida auris is a multi-azole resistant pathogen first isolated in 2009; 

however, it has been argued that the recent spread of the species may be due to climate change as 

opposed to azole overuse (Casadevall, 2019). 

 

1.5 Evidence of cross-resistance between azoles 

 

Several in vitro studies have shown that the evolution of resistance to one azole, whether used for 

agricultural or clinical purposes, leads to increased resistance to other azoles. For example, 

following gradual adaptation of up to 30 μg/mL tebuconazole over eight weeks, the maize 

filamentous fungal pathogen Colletotrichum graminicola showed increased resistance to 

clotrimazole and miconazole in a skin infection assay (Serfling et al., 2007). Likewise, isolates of 

the plant pathogen Ustilago avenae selected for resistance to the agricultural azole tetraconazole 

were also more resistant to clotrimazole, miconazole, and itraconazole than unadapted isolates 

(Köller & Wubben, 1989). Another study showed that a Candida parapsilosis strain selected for 

lower sensitivity to tetraconazole was also less sensitive to fluconazole, voriconazole, and 

itraconazole (Rocha et al., 2016). Simultaneous incubation with promethazine, an efflux pump 



7 
 

inhibitor, did not lower the minimum inhibitory concentration (MIC) values to fluconazole, 

leading to the suggestion that increases in efflux pump activity could not solely be responsible for 

the increased resistance to fluconazole after tetraconazole adaptation (Rocha et al., 2016).  

 

A recent study applied spores of triazole-susceptible A. fumigatus containing an antibiotic-

resistance marker and tebuconazole to open fields and greenhouse soil planted with tomatoes (Cao 

et al., 2020). After four fungicide applications ov40 

r fourteen days, the open fields contained up to 0.72 mg tebuconazole/kg soil, and the greenhouse 

soil contained up to 1.24 mg/kg soil. When A. fumigatus strains containing the antibiotic-resistance 

marker were isolated and tested for sensitivity against azoles, a higher number of triazole-resistant 

isolates were recovered from the greenhouse soils, and this was hypothesized to be due to the 

higher tebuconazole concentration. It was concluded that the tebuconazole exposure could induce 

resistance to the medical triazoles, itraconazole and voriconazole (Cao et al., 2020).  

 

It follows that isolates that show reduced sensitivities to clotrimazole and miconazole following 

long-term exposure will likely show reduced sensitivities to other azole drugs regardless of 

whether they are meant for clinical or agricultural use. 

 

1.6 Antifungal resistance between the environment and the 

clinic 

 

Recent studies have noted genetic similarities between environmental and clinical fungal isolates 

and, thus, have implicated transmission of opportunistic pathogens residing in the environment to 

humans. For example, Candida tropicalis with identical identifying genomic sequences have 

been isolated from soil, fruits, and the bloodstream of azole-naïve candidiasis patients without 

correlation to time and treatment location within the hospital (Chen et al., 2019; Lo et al., 2017). 

In addition, because genetically similar isolates of C. krusei have been observed both in clinical 

settings and various environmental settings, these isolates were likely transmitted from the 

environment to humans (Douglass et al., 2018). These findings have important implications for 

clinical azole resistance as the mentioned C. tropicalis strain identified in environmental and 
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clinical samples had reduced sensitivity to clinical azoles, and C. krusei is intrinsically resistant 

to fluconazole.  

 

Together, these findings beg the question: Is azole-resistance being selected for in the 

environment and then causing azole-resistant mycotic infections in humans? Evidence for such a 

phenomenon comes from clinical isolates of the filamentous fungi species Aspergillus fumigatus 

containing a TR34/L98H or TR46/Y121F/T289A mutation in the Cyp51A-encoding gene. The 

TR34/L98H mutation consists of a 34-bp tandem repeat in the promoter region and a leucine to 

histidine substitution in codon position 98 in the coding region. Meanwhile the 

TR46/Y121F/T289A mutation includes a 46-bp tandem repeat in the promoter region and a 

tyrosine to phenylalanine in position 121 and threonine to alanine in position 289 of the coding 

region. Computer modelling has suggested that the resistant phenotype of the TR34/L98H 

mutant is due to altered binding conformations between azole drugs and the modified Cyp51A 

enzymes (Bowyer & Denning, 2014; Snelders et al., 2012). Strains of A. fumigatus with this 

mutation can outcross with azole-sensitive strains and, thus, spread geographically (Camps et al., 

2012). In addition, microsatellite genotyping studies have dated the origin of the TR34/L98H 

mutation to 1997, shortly after the approval of agricultural azoles such as propiconazole and 

tebuconazole in the early to mid 1990’s (Snelders et al., 2012). As well, the tandem repeats of 

both the TR34/L98H and TR46/Y121F/T289A mutations are typical of azole-resistance 

mutations found in fungal plant pathogens (Chowdhary et al., 2013; Snelders et al., 2009). Given 

these points, it is possible that the two mutations originated in the environment before showing 

up in clinical settings. 

 

It has also been shown that due to high levels of fungicides, such as tebuconazole, 

epoxiconazole, and prothioconazole, waste from flower bulbs, compost waste, and wood 

chippings were identified as being particularly conducive to the development of azole-resistant 

Aspergillus fumigatus (Schoustra et al., 2019). In addition, a case study of an azole-naïve patient 

who developed fatal aspergillosis found genetically identical A. fumigatus strains containing the 

TR46/Y121F/T289A mutation throughout the patient’s house months after death (Lavergne et 

al., 2017). Altogether, these studies are evidence that A. fumigatus can develop azole resistance 
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in the environment and fungi residing in the environment can cause mycotic infections in 

humans. 

 

1.7 Fungal ecology 

 

The largest and best-studied subdivisions of the Dikarya kingdom are the Ascomycota and 

Basidiomycota. Common fungal pathogens include the candidiasis-causing Ascomycete yeasts 

Candida albicans and Candida glabrata, the cryptococcosis-causing Basidiomycete yeasts 

Cryptococcus neoformans and Cryptococcus gattii, and the aspergillosis-causing filamentous 

fungus Aspergillus fumigatus. Collectively these five species accounted for ~80% of fungal 

infections following organ transplants monitored by the American-based Transplant-Associated 

Infection Surveillance Network (Pappas et al., 2010).  

 

With the exception of Candida krusei, detection of other common clinically relevant Candida 

species in environmental samples has been rare and, in the case of C. albicans, not uncommonly 

interpreted as sample contamination (Opulente et al., 2019). Likewise, clinically relevant yeasts 

have been described as ‘not common or abundant’ in soils (Yurkov, 2018). However, Opulente et 

al. succeeded in obtaining 28 isolates, including major Candida pathogens –C. albicans, C. krusei, 

C. parapsilosis, and C. tropicalis—from 931 samples of soil, plant matter, and fruits. Although 

the study could not determine if the Candida isolates could actively grow in soil, their isolation 

from soils proved that they persist outside of endothermic environmefnts and could possibly be 

transferred between endothermic organisms via soil (Opulente et al., 2019). Another study from 

2019 questioned the long-held assumption that views C. albicans as an obligate commensal of 

endothermic animals (Bensasson et al., 2019). In this work, the authors isolated three strains of C. 

albicans from oak trees and suggested that the organisms were long-term inhabitants of the trees 

based on their high genetic diversity (Bensasson et al., 2019). On the other hand, the filamentous 

fungus A. fumigatus is readily isolated from environmental samples (for example, see Snelders et 

al., 2009). 

 

Soil bacterial communities are typically more diverse and contain 2-3× the species richness 

compared to soil fungal communities (Peay et al., 2016). In addition, yeasts tend to be less 
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abundant than filamentous fungi in soils with counts of yeasts typically being in the range of 

hundreds to thousands of cells per gram (Yurkov, 2018). Nonetheless, soil fungi play important 

ecological roles, such as organic matter decomposition and nutrient mineralization. Globally, 

proximity to the equator and available nitrogen correlates with pathogen richness, moisture-related 

parameters correlate with saprotroph richness, and soil alkalinity and the presence of host plants 

correlates with ectomycorrhizal richness (Tedersoo et al., 2014). In addition, fungal biomass and 

diversity were shown to be associated with increases in nitrogen and nitrate concentration in 

grassland and forest soils in Germany (Birkhofer et al., 2012). Below topsoil, species richness 

broadly decreases with decreasing carbon availability, leaving mycorrhizal fungi and species able 

to break down lignin and tannin predominating lower depths of soils (Peay et al., 2016). Fungal 

communities in agricultural soil samples can also be influenced by factors such as tillage practice, 

fertilization intensity, and crop growth. For example, Fusarium spp. was found to be positively 

associated with conservation tillage while Rhodotorula spp. was positively associated with 

conventional tillage (Sommermann et al., 2018). 

 

1.8 Review of Methods 

 

1.8.1  Culture-based surveys of soil fungi 

 

Culture-based surveys of soil fungal communities using a small number of isolation methods tend 

to produce collections dominated by a few species. For example, Aljohani et al. isolated 110 yeasts 

from 443 Cameroonian agricultural soil samples by inoculating 1 mL of chloramphenicol 

containing SD (Sabouraud dextrose) broth with 200 mg soil for 2-7 days at 30°C and then streaking 

the liquid enrichments onto yeast extract-peptone-dextrose agar for 48 hours of incubation 

(Aljohani et al., 2018). The resulting collection was dominated by Cyberlindnera subsufficiens 

(25% of isolates), Cyberlindnera saturnus (14%), Torulaspora globose (19%), and Candida 

tropicalis (18%) (Aljohani et al., 2018). Cyberlindnera and Rhodotorula species were also found 

to dominate in a study of endophytic yeast of the elm and oak trees, Ulmus parvifolia and Quercus 

salicina (Kim & Kim, 2017). Yeasts from the genera Cyberlindnera were also the dominant 

endophytic yeast isolated from the roots of the critically endangered fern Mankyua chejuense (Kim 
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et al., 2017). Enrichment-free protocols can also produce collections dominated by a few species. 

For example, of over 100 yeasts isolated by Slavikova & Vadkertiová from direct plating of a 1% 

soil slurry onto two agars at 7°C and 25°C, 80% belonged to four species (Sláviková & 

Vadkertiová, 2003). 

 

1.8.2  Ergosterol quantification for estimating biomass 

 

Quantification of ergosterol is a useful biomarker of fungal load in environmental samples, 

including soils (reviewed in Djajakirana et al., 1996; Montgomery et al., 2000). As caveats, 

however, ergosterol quantification underestimates counts of yeasts relative to filamentous fungi 

with a single yeast cell showing ergosterol amounts on the magnitude of 1×10-4 pg and a single 

filamentous fungi spore containing 1×10 levels (Pasanen et al., 1999). Also, ergosterol shows 

relatively slow degradation over two months in soils unexposed to sunlight (Mille-Lindblom, 

Wachenfeldt, & Tranvik, 2004) and soils briefly exposed to fungicides (Zhao, Lin, & Brookes, 

2005), complicating the utility of ergosterol for quantifying living biomass. 

 

1.8.3  Antifungal susceptibility testing 

 

The European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical and 

Laboratory Standards Institute (CLSI, previously NCCLS) developed recommendations for testing 

the sensitivity of isolates to clinical antifungal drugs. Both institutions have developed methods 

for antifungal susceptibility testing using broth dilutions. In this method, isolates are grown in 

broths containing various concentrations of a drug and the lowest drug concentration that leads to 

growth inhibition is noted as the minimum inhibitory concentration (MIC). For reference, some 

broths are left uninoculated and some isolates are grown in broths containing no drug. 

 

The EUCAST method for testing yeasts isolates was optimized for testing Candida and 

Cryptococcus species and tests fluconazole from a range of 0.125 to 64 mg/L and itraconazole and 

voriconazole from a range of 0.008 to 4 mg/L. (EUCAST, 2020). In addition, a protocol for 

filamentous fungi was optimized for testing Aspergillus spp. and tests itraconazole from 0.0156 to 
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8 mg/L and voriconazole from 0.0312 to 16 mg/L (EUCAST, 2015). Both protocols are based on 

a 200 μL microbroth dilution assay using RPMI-glucose broth containing 2% glucose. Likewise, 

CLSI recommends similar microbroth dilution tests in its M27-A3 (CLSI, 2008a) and M38-A2 

(CLSI, 2008b) protocols for testing yeasts and filamentous fungi, respectively.  

 

A second method for testing the susceptibility of isolates to drugs involves streaking an agar plate 

with a suspension of an isolate and immediately placing a material containing the drug, such as a 

paper disk, onto the agar. The drug then diffuses outward from the material onto the surrounding 

agar such that the concentration of the drug steadily decreases in the agar with increasing distance 

from the drug-containing material. Following incubation, the distance from the disk at which the 

isolate can no longer grow is used as a measure of the isolates' sensitivity. Agar-based 

susceptibility tests can be quicker to perform than broth-based tests while still providing reliable 

results. Intra- and interlaboratory variation using an E-test strip, which is a plastic strip containing 

a gradient of a drug, on RPMI-glucose agar is relatively low making testing relatively reliable. 

One review where four laboratories performed 20 replicates of E-tests with C. krusei and C. 

parapsilosis isolates tested against ketoconazole and fluconazole showed agreement within a 3 

log2dilution range 98-100% of the time (Pfaller et al., 1996). 

 

Based on disk diffusion methods, CLSI produced the M44-A2 protocol (CLSI, 2009) for testing 

yeasts, which was optimized for testing Candida species against fluconazole and voriconazole, 

and the M51-A method (CLSI, 2010) for testing filamentous fungi. For both protocols, CLSI chose 

to use Mueller-Hinton agar—a complex medium—over RPMI (Roswell Park Memorial Institute) 

agar—a synthetic medium— due to its greater availability and lower cost at the expense of more 

significant batch-to-batch variability (CLSI, 2009). However, the activity of the imidazoles 

clotrimazole and miconazole have been shown to be antagonized by complex media such as SD 

agar and brain-heart infusion agar, but not present in synthetic media (Ester & Hoeprich, 1976).  

 

To ensure reproducibility, the microbroth-based EUCAST 7.3.1 protocol for testing of yeasts 

(EUCAST, 2020) stipulates that the inoculum used for testing must be standardized to 0.5 x 105 to 

2.5 x 105 CFU/mL of distilled water while the microbroth-based EUCAST 9.3.1 protocol for 

testing filamentous fungi (EUCAST, 2015) stipulates an inoculum size of 2 x 105 to 5 x 105 
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conidia/mL. Yeasts are to be grown between 34-37°C on SD or PD agar for 18-48 hours before 

adjusted to a set turbidity using a spectrophotometer. Meanwhile, filamentous fungi can be grown 

for 2-5 days at 35°C, or longer if sporulation does not occur, on any media that encourages 

sporulation. Then, a damp cotton swab is rubbed against filamentous fungi colonies and deposited 

into 5 mL distilled water with Tween 20, a surfactant. Next, to standardize the inoculum size, the 

suspension is either directly adjusted with distilled water after counting conidia using a 

haemocytometer, or the suspension is filtered through an 11 μM filter to filter out hyphae before 

using a spectrophotometer to adjust the density of conidia. 

 

1.9 Objectives and hypothesis 

 

Although numerous studies have raised concerns over residual antibiotics in the environment 

promoting the development of antibiotic resistance in soil bacteria, less is known about the effects 

of residual antifungal drugs on soil fungi. Given that miconazole and clotrimazole persist in the 

environment, microplots at Agriculture and Agrifood Canada London Research and Development 

Centre (AAFC) have been annually amended with environmentally relevant and excessive 

concentrations of miconazole and clotrimazole since 2010. This study aimed to elucidate the 

effects that the miconazole and clotrimazole in these plots have had on fungal community 

composition and antifungal resistance. My predictions were: 

1) Fungal isolates belonging to the same species would show decreased sensitivities to 

clotrimazole and miconazole when isolated from the treated versus the control plots 

2) The fungal community in the soils containing clotrimazole and miconazole would be 

enriched in wildtype strains with intrinsically low sensitivities to the drugs as, over the 

years, the drugs inhibited the growth of sensitive strains  

3) Long-term exposure to clinical azoles would select for isolates resistant to agricultural 

azoles 
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2 Methods 

 

2.1 Field experiment 

In 2010, a field experiment was initiated at the AAFC-London to evaluate the long-term impact of 

biosolid-typical levels of clotrimazole and miconazole exposure on soil fungi. Annually, in June, 

solutions of 365 mg/mL miconazole nitrate in dimethyl sulfoxide (DMSO) and 500 mg/mL 

clotrimazole in methanol were mixed into four 1 kg portions of soil. These 1-kg portions of soil 

were then mixed into 2 m2 microplots to a depth of 15 cm using a rototiller to produce four replicate 

microplots containing 1 mg/kg soil and four replicate plots containing 10 mg/kg soil of both 

miconazole and clotrimazole. Four replicate plots were left untreated. The plots were randomly 

distributed by treatment type across the field and were physically separated by fibreglass frames. 

The gray-brown Luvisol soil had previously been classified as having the following properties: a 

sand/silt/clay ratio of 18/67/15%, pH of 7.5, cation exchange capacity of 7.5, and organic matter 

content of 3.4%. The soil had no known prior treatment with manure or biosolids, and no known 

treatment with pesticides or fertilizers since 1986. The microplots were cropped annually with 

soybeans (Glycine max var. Harrosoy) and manually weeded. Each spring, eight 20 cm-long soil 

cores totalling 1 kg were collected from each plot. These soil samples were sieved and stored at -

20°C for long-term storage. On the other hand, soil samples were sampled in August and October 

2018, April 2019, and March 2020 and stored at 4°C or 15°C for up to six months prior to being 

used for fungal isolation (Figures 4-6). 

 

2.2 Isolation of yeasts and filamentous fungi 

 

To isolate yeasts and filamentous fungi colonies from the soils, first, soil slurries were prepared. 

To create soil slurries, five grams of each soil sample were measured out using a metal spatula that 

was sterilized with 70% ethanol between samples. The five gram soil aliquots were suspended in 

45 mL of 0.002% sodium metaphosphate buffer (Fisher Scientific, Ottawa, ON) in 50 mL conical 

tubes (Corning Life Sciences, Corning, NY; or Sarstedt AG, Numbrecht, Germany). Soil slurries 

were stored for up to a week at 4°C before being used for fungal isolation. Soil slurries were mixed 

using a wrist action shaker (Burrell, Pittsburgh, PA) before being spiked into various broths or 
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plated onto multiple types of solid agar (Table 1; Figures 4-6). Soil slurries spiked into broths in 

50 mL conical tubes were either rotated on a Roto-Torque (Cole-Palmer, Chicago, IL) or shaken 

at ~250 rpm on a shaker (New Brunswick Scientific, Edison, NJ) to encourage yeast-like growth 

in the supernatant and filamentous fungi to sink down into the pellet. After a brief incubation, 100 

μL of the supernatant was then plated onto solid agar to selectively isolate yeasts. Alternatively, 

100 μL of a 1:10 dilution of slurry or 50 or 100 μL of undiluted slurry was directly plated onto 

various antibiotic-containing agar plates to give 1, 5, or 10 mg of soil plated per agar plate. To 

plate broth supernatants or soil slurries, a metal or glass plate spreader was sterilized in 97% 

ethanol and passed over a flame between spreads. For each plating event, soils from all twelve 

plots were used, and a negative control of either sodium metaphosphate or MilliQ water was used. 

To increase the diversity of isolates and to minimize clonality in the fungal collection, new soil 

slurries were routinely prepared between plating events and in general, only one morphologically 

identical colony per plate was retained for the collection. 

 

Commercially prepared agars used for isolation of yeasts and filamentous fungi from soils included 

dichloran-glycerol 18 agar (DG18) (Fluka, Steinheim, Germany), rose bengal (RB) and yeast-

mold-11 (YM-11) agar (both from Hardy Diagnostics, Santa Maria, CA), and Sabouraud dextrose 

(SD), Mueller-Hinton (MH), malt extract (ME), Czapek-Dox (CZ), and potato-dextrose (PD) agars 

(all from Becton, Dickinson and Company, Sparks, MD). Agars made in-house included 

Dekkera/Brettanomyces differential medium (DBDM) and glucose-yeast-peptone (GYP) agars. 

The PD, MH, and GYP agars were used to support the growth of a wide range of organisms due 

to a nutrient-rich composition and a neutral pH. As for selective media, CZ uses nitrate as a sole 

nitrogen source, DBDM uses ethanol as sole carbon source, ME and SD both have an acidic pH, 

DG selects for osmophilic and xerophilic organisms due to low water activity, and RB agar 

contains rose bengal to inhibit the radial growth of certain filamentous fungi. 

 

All agars and broths were amended with antibiotics to inhibit the growth of bacteria and select 

agars and broth were amended with selective fungicides to increase the diversity of fungi isolated 

overall. Antibiotic stocks of 100 mg/mL chloramphenicol in 97% EtOH, 500 mg/mL streptomycin 

in ddH2O, 5 mg/mL chlortetracycline HCl in 0.5 N NaOH and a stock of 100 mg/mL 

cycloheximide in ddH2O, were prepared in 15 mL or 50 mL conical tubes, filtered using a 0.22 
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μm filter, and stored in conical tubes at 4°C prior to use. All three antibiotics and cycloheximide 

were sourced from Sigma-Aldrich (St. Louis, MO). Antibiotics were added to the agar as noted  

Following initial isolation, in most cases, yeasts and filamentous fungi were sub-cultured to purity 

on the agar used for initial isolation after which axenic yeasts cultures were maintained on 

Sabouraud dextrose (SD) agar and axenic fungal cultures were maintained on Mueller-Hinton 

(MH) agar at room temperature. Yeasts isolated at 4°C were maintained at 4°C, 15°C or room 

temperature, depending on the observed maximum growth temperature. Likewise, filamentous 

fungi that were isolated at temperatures over 37°C were either maintained at 37°C or room 

temperature, depending on the observed growth rate. Preparation of glycerol stocks for yeasts 

varied by the period of isolation (Figures 4-6). On the other hand, filamentous fungal cultures were 

swabbed with sterile cotton swabs from growth on MH agar at room temperature and the resulting 

fungal fragments were suspended in Milli-Q water. The fungal suspensions were then used to 

create 25% v/v glycerol stocks to be frozen at -80°C. 
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Table 1 – Composition of Agars and Broths used for Fungal Isolation 

With the exception of commercially-prepared RB and YM-11 agars, agars were either prepared in-house or made with the addition of 

agar base (Biobasic, Toronto, ON) to commercially-prepared broths. All agars contained 15 g/L of agar with the exception of 

commercially-prepared YM-11 agar, which used 13.5 g/L. For enrichment of yeasts, broths identical to YM-11 and RB agar were 

prepared in-house with the exception that trypan blue was not added to the YM-11 broth. An additional medium, termed yeast-extract 

peptone dextrose (YEPD), was prepared identically to GYP media with double the amounts of peptone and L-glucose. pH values of 

media were brought within the ranges shown using 1N NaOH or HCl. 

 

  CZ DBDM DG18 GYP ME MH PD RB SD YM-11 

pH at 25°C 
7.3 ± 

0.2 

5.4 ± 

0.2 

5.6 ± 

0.2 

7.0 ± 

0.2 

4.7 ± 

0.2 

7.3 ± 

0.1 

7.2 ± 

0.2 

7.2 ± 

0.2 

5.7 ± 

0.2 

7.5 ± 

0.5 

Extracts (g/L) 

Beef extract      2     

Malt extract     6      

Potato extract       4    

Yeast extract    5 1.2      

Nitrogen Source (g/L) 

Caesin, acid digested      17.5     

Peptone, animal sources   5 10     10 20 

Peptone, soy        5  20 

Sodium nitrate 3          

Yeast nitrogenous base  6.7         
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Carbon Source 

Ethanol (mL/L)  60         

L-Glucose (g/L)   10 20 6  20 10 20 5 

Maltose (g/L)     1.8      

Soluble starch (g/L)      1.5     

Sucrose (g/L) 30          

Inorganic Constituents (g/L) 

Dipotassium phosphate 1         5 

Ferrous sulfate 0.01          

Magnesium sulfate 0.5  0.5     0.5   

Monopotassium phosphate   1     1   

Potassium chloride 0.5          

Sodium chloride          5 

Additives (mg/L) 

Chloramphenicol 80 80 100 80 80 80 80 80 80  

Chlortetracycline HCl          200 

Cycloheximide  100         

Dichloran   2        

Rose bengal        5   

Streptomycin 400 400  400 400 400 400 400 400  

Trypan blue  30         
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Figure 4 – Isolation Procedure of Yeasts from August 2018 Soils  

Sixteen yeasts were obtained by AAFC technician Andrew Scott (not shown on flowchart) where 

all but one isolate was obtained by direct plating of 10 mg of soil onto 0.2-fold strength (0.2×) SD 

agar with miconazole and clotrimazole, 0.2× SD agar containing cetrimonium bromide (noted by 

the ‘-C’ affix to media names), 0.2× PD, and 0.2× YEPD agars. An additional isolate was obtained 

by performing an enrichment for yeasts with 0.2× SD-C broth and streaking the supernatant onto 

0.2× SD-C agar using a 10 μL loop. For long-term storage, single colonies were amplified in 5 mL 

test tubes at 30℃ with shaking at 250 RPM for 3-7 days using 2 mL of yeast extract-peptone-

dextrose (YEPD) broth. Glycerol stocks were created using 800 μL of the liquid cultures and 800 

μL of 50% glycerol. RT = room temperature. 
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Figure 5 – Isolation of Yeasts and Filamentous Fungi from October 2018 Soils 

For long-term storage of yeasts, stocks were created by sub-culturing isolates onto solid agar at least twice using single colonies, and 

then dispensing colonies from the agar into a 50:50 mix of broth and 50% glycerol using a 10 μL plastic loop.
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Figure 6 – Isolation of Yeasts and Filamentous Fungi from April 2019 Soils 

To create long-term stocks, yeasts were sub-cultured on MH agar at the initial isolation 

temperature, and colonies were scrapped using a 10 μL loop and deposited in 800 μL of 0.9% NaCl 

and 800 μL of 50% glycerol. In addition to the fungi isolated from the above procedures, in 

February 2020, soils stored for three months at 15℃ and then 8 additional months at 4℃ were 

used to isolate 26 yeasts using a two-day enrichment of 30 mg soil in 0.2× Luria-Bertani broth and 

subsequent two-week incubation on 0.2× SD-C agar at room temperature. Seven of these yeasts 

were used for antifungal susceptibility testing. However, these yeasts were were not used for 

species richness calculations as these yeasts were specifically isolated to increase sample size for 

susceptibility testing of yeasts from the treated plots. Six sequenced filamentous fungi were also 

isolated by plating 10 mg of soil on 0.2× SD-C agar at 50℃ for one week). 
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2.3 DNA extraction from fungal isolates 

 

For isolating genomic DNA from yeasts, a protocol modified from Lõoke et al. (2011) was used. 

Briefly, yeast cells were grown for up to one week on SD agar at room temperature or 15℃ and a 

sterile 10 μL plastic loop was used to deposit cells into a lysis solution containing 180 μL of 0.22 

μm filter-sterilized 200 mM lithium acetate (Sigma, St. Louis, MO) and 20 μL of 10% sodium 

dodecyl sulfate in a 1.5 mL microcentrifuge tube. The mixtures were briefly vortexed, incubated 

at 70℃ for up to 10 minutes and then centrifuged at 15,000 × g for three minutes. The resulting 

supernatant was then used as a starting material for use with the Wizard Genomic DNA 

Purification Kit (Promega, Madison, WI). The Isolating Genomic DNA from Yeast protocol 

included in the kit was followed starting from the protein purification step except that all 

centrifugation steps resulting in nucleic acid pellets were performed at 15,000 × g for 10 minutes. 

 

For isolating DNA from filamentous fungi, bead beating tubes from PowerSoil kits (Qiagen, 

Hilden, Germany) were amended with lysis buffer from the kits and half-filled with 50 x 10 mm 

blocks of fungal mass growing on MH agar for at least one week. The tube contents were then 

processed as per manufacturer’s instructions for soil samples. Alternatively, following 

homogenization, bead beating tubes were centrifuged at 15,000 × g for 5 minutes and the 

supernatant was used directly as a template for PCR amplification. 

 

2.4 Identification of isolates 

 

Initially, yeasts were grown on SD agar for up to a week and filamentous fungi were grown on 

MH agar for up to three weeks, both at room temperature, to group isolates by morphology. To 

further group the isolates, DNA was extracted from 88 yeasts representing 15 species and Random 

Amplified Polymorphic DNA (RAPD) PCR was performed based on the methods of Aljohani et 

al. (2018). In this method, PCR is performed using a single primer that amplifies repetitive 

sequences in the genomic DNA and the resulting amplicons are run on an agarose gel to group 

closely related strains. Briefly, in 25 μL PCR strip tubes, 10 μL reactions were composed of 

0.4×buffer, 0.02 U/mL Taq polymerase, 2.4 mM MgCl2 (all from Promega, Madison, WI), 320 
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μM dNTP mix (BBI Biotech, Berlin, Germany), and 1 μM of either the (GACA)4 (5’-

GACAGACAGACAGACA-3’) or M13 primer (5’- GTAAAACGACGGCCAG-3’) (Sigma 

Aldrich, St. Louis, MO), 2 ng/mL DNA, and autoclaved MilliQ water. The reactions were cycled 

using a protocol of denaturation at 98°C for two minutes, amplification for 45 cycles of 93°C for 

20 sec, 50°C for 45 sec, and 72°C for 20 sec, followed by a hold at 72°C for six minutes and a cool 

down to 4°C. The (GACA)4 and M13 PCR products were combined and run on a 1% agarose gel 

at 80V for 1.5-2.5 hours and bands were manually scored. PCR fingerprinting failed for 

filamentous fungi, possibly due to the DNA extraction technique. 

 

Representatives of each fingerprint, as well as each morphologically unique isolate, were identified 

by sequencing ~250 bp of the ITS1 region. The ITS1-F forward (5'- 

CTTGGTCATTTAGAGGAAGTAA-3') (Gardes & Bruns, 1993) and ITS2 reverse primer (5'- 

GCTGCGTTCTTCATCGATGC-3') (White et al., 1990) were used. The template used for the 

PCR was either yeast colonies grown for less than one-week and suspended in MilliQ water 

(ABS600 ~0.2), yeast DNA diluted to 10 ng/mL, or undiluted filamentous fungi DNA. The PCR 

mix for one reaction included 1x GoTaq Flexi buffer, 0.006 units/mL Taq polymerase, and 1.5 

mM MgCl2 (all from Promega Corporation, Madison, WI), 200 μM dNTP mix (BBI Biotech, 

Berlin, Germany) and 0.2 μM of the forward and reverse primers (MilliporeSigma, St. Louis, MO), 

10 μL of template, with MilliQ water up to 25 μL. The PCR protocol was denaturation at 95°C for 

5 min, amplification for 35 cycles of 94°C for 30 sec, 52°C for 30 sec, and 68°C for 30 sec, 

followed by a cooling down to 4°C. Four reactions per sample were performed. After reactions 

were pooled, the reactions were checked for purity on a 1% agarose gels for an amplicon size of 

250-600 bp and cleaned up using the Wizard SV Gel and PCR clean-up kit (Promega, Madison, 

WI). Purified DNA template was adjusted to 3-10 ng/μL using a NanoDrop ND1000 (NanoDrop 

Technologies, Wilmington, DE) for quantification and MilliQ water for dilutions. Reactions of 10 

μL DNA and 5 μL of 2 μM forward or primer were submitted to Robarts Research Institute 

(London, ON) for Sanger sequencing.  

 

Sequences were trimmed on both ends to exclude regions with significant no call bases, queried 

against the GenBank non-redundant nucleotide database using the National Center for 

Biotechnology Information’s Basic Local Alignment Search Tool (NCBI BLAST) (Altschul, Gish, 
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Miller, Myers, & Lipman, 1990), and then species given the highest scoring matches were 

recorded. Partial ITS sequences returning the same highest-scoring species match were aligned 

using MUSCLE to look for sub-groups within the species. Higher-order taxonomic classification 

corresponding to subkingdom, phylum, subphylum, class, order, family were resolved using 

RStudio 3.6.2 and the taxize 0.9.92 package (Chamberlain & Szöcs, 2013) using genus names as 

queries and the taxonomy database from NCBI as a reference. 

 

2.5 Viable plate counts 

 

To estimate changes in viable soil fungal counts due to clotrimazole and miconazole exposure, 

soils were cultured on agar-solidified RB and DG18 media and the resulting number of colonies 

were counted (Table 1). The soil used for the plate counts was stored at 4℃ for less than 2.5 weeks 

after being sampled in November 2018 (Figure 5). For each plate, 100 μL of a 100 mg/mL soil 

slurry, corresponding to 10 mg of soil, was spread using a sterile plate spreader and incubated at 

4℃. Colonies were counted 1.5 weeks and 6 weeks post-incubation for the RB and DG18 plates, 

respectively. For a second plating set, soil slurries were prepared in duplicate for each plot from 

soils stored at 15℃ for three months after being sampled in April 2019 (Figure 6). As before, 10 

mg of each soil slurry was plated onto RB agar, but this time, incubated at 15℃ for four days. 

Plates that were overgrown or had large filamentous fungal colonies taking over half of a plate, 

which totalled two out of 24 plates, were excluded from plate counts. For plates containing large 

filamentous fungal colonies on one end of the plate, or for plates containing too many colonies 

overall, half-sections of the plates were counted. 

 

2.6 Ergosterol quantification for estimating biomass 

 

The soil samples used for ergosterol quantification were sampled in August 2018 and stored at 4℃ 

in the dark in tied, clear plastic bags. The samples were briefly removed from storage twice for 

fungal cultivation before being used for ergosterol quantification in March 2020.  
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Ergosterol quantification was performed by the AAFC technologist Lou Ann Verellen. Briefly, 5 

grams of soil, 3.5 grams of Ottawa Sand (Fisher Chemical, Ottawa ON), and 6 mL of methanol 

were combined in a 20 mL polyethylene scintillation vial, vortexed for 10 seconds and mixed using 

a wrist action shaker at room temperature for an hour. The mixture was then centrifuged for 10 

minutes at 3000 rpm in the Labofuge 6000 (Heraeus Christ, Osterode, Germany) and 1 mL of 

supernatant was filtered through a 0.2 mm polytetrafluoroethylene syringe filter and stored in a 

1.5 mL microcentrifuge tube. 

 

Following filtration, 20 μL of the supernatant was used for injection and ergosterol was measured 

using an Agilent 1260 Infinity high performance liquid chromatography system with a C-18 

reverse-phase column (Agilent Eclipse XDB-C18, 4.6mm x 100mm, 3.5μ). Parameters for the 

chromatography included a mobile phase of Acetonitrile:Methanol (70:30 v/v), a flow rate of 1.2 

mL/min, and temperature of 25 °C. Ergosterol was detected using an Agilent Diode Array detector 

at a wavelength of 282 nm.  

 

The retention time was 8.6 min as determined with an ergosterol standard (Sigma-Aldrich, St. 

Louis, MO). To produce the ergosterol standard curve, the ergosterol standard (10 mg/mL in 

chloroform) was measured at concentrations of 0.125, 0.25, 0.50, 0.75, 1.0, and 2.5 μg/mL. 

 

2.7 Assessing species richness within treatment groups 

 

To assess differences in species richness between control, low treatment, and high treatment plots, 

fungal isolates were identified and tallied by treatment type. For yeasts, isolates were clustered at 

the species level by sequencing while RAPD PCR and morphology were used to identify isolates 

without sequencing data. Seventeen out of 173 yeasts in the collection could not be classified at 

the time of writing. For filamentous fungi, only ITS sequencing was used to enumerate species as 

sequenced isolates with identical morphologies were shown to belong to different species and 

RAPD fingerprinting assays failed to produce discernible banding patterns.  
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2.8 Antifungal susceptibility testing 

 

Drug stocks were prepared in 15 mL polypropylene conical tubes (Corning Inc., Corning, NY), by 

preparing stock solutions of 12.8 mg/mL clotrimazole (Sigma, St. Louis, MO), miconazole nitrate, 

fluconazole, itraconazole, difenoconazole, propiconazole and tebuconazole (all from AK 

Scientific, Union City, CA), and 6.4 mg/mL voriconazole (AK Scientific, Union City, CA). DMSO 

(Sigma, St. Louis, MO) was used a solvent for all drugs except for clotrimazole and tebuconazole, 

which were prepared in 95% ethanol (Commercial Alcohols, Toronto, ON). After allowing the 

drugs to dissolve in solution for at least two hours, the solutions were aliquoted into autoclaved 

1.5 mL Eppendorf tubes and either used immediately or stored at -80°C. Disks of Qualitative Type 

2 Whatman filter paper (Whatman, Maidstone, UK) were cut into disks 7 mm in diameter using a 

hole puncher and laid out onto sterile glass Pyrex petri dishes using sterile forceps. The Petri plates 

were then wrapped in aluminum foil, autoclaved on a dry setting of 121°C, 15 p.s.i. for 15 minutes 

and cooled to room temperature in a laminar flow hood before use. 

 

To prepare azole-containing filter paper disks, fluconazole stocks were diluted to 5 μg/μL, 

voriconazole stocks were diluted to 0.2 μg/μL, and all other drug stocks were diluted to 2 μg/μL 

in their appropriate solvent. Then, 5 μL of each drug were aliquoted onto the paper disks, while on 

the glass Pyrex Petri dishes, in a laminar flow hood, to produce 10 μg disks of clotrimazole, 

miconazole, itraconazole, tebuconazole, difenoconazole, and propiconazole, 20 μg disks of 

fluconazole, and 1 μg disks of voriconazole. The concentration of each medical azole disk was 

equal to the concentration of commercially prepared disks from Rosco Diagnostica (Rosco, 

Taastrup, Denmark), with the exception that the commercially prepared fluconazole disks are 25 

μg/disk.  Disks were dried in a laminar flow hood for a minimum of two hours after drug 

application to a maximum of overnight prior to use or storage. For storage, the Pyrex petri dishes 

containing the disks were placed in a metal canister with a desiccator, both previously dried and 

sterilized at 120°C in an oven but brought to room temperature in the flow hood, and then the 

canister was stored at -80°C. 

 

RPMI-glucose agar was prepared by combining 10.4 g RPMI powder (formulation 31800-089; 

Thermo Fisher Scientific, Waltham, MA), 18 g dextrose (Sigma, St. Louis, MO), and 15 g agarose 
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(Biobasic Canada, Toronto, ON) with 800 mL ddH2O, microwaving until constituents were fully 

dissolved, and then autoclaving at 121°C, 15 p.s.i. for 15 minutes. Separately, 34.53 g of MOPS 

(Sigma, St. Louis, MO) and 0.15 g L-glutamine (Thermo Fisher Scientific, Waltham, MA) were 

combined in 200 mL ddH2O, sterilized through a 0.22 μm filter, and then added to the agarose 

mixture. After adjusting the pH of the agar to 7.0 using 6N NaOH, the agar was poured into plates 

5 mm thick. Mueller-Hinton agar (Becton, Dickinson and Company, Franklin Lakes, NJ), 

formulated to contain 20–25 mg/L calcium and 10–12.5 mg/L magnesium, was prepared per 

manufacturer’s direction and poured into agar plates with 5 mm of thickness. 

 

For testing yeasts, single colonies growing on SD agar at room temperature were suspended in 

Milli-Q water and adjusted to a turbidity of 0.07-0.11 absorbance at 590 nm in UVette® 

spectrophotometry tubes (Eppendorf AG, Hamburg, Germany). In most cases, colonies were 

grown for 48-60 hours, however, slow-growing colonies of Mrakia spp., Solicoccozyma terrea, 

and Filobasidium oeirense were grown on SD agar for up to one week. Susceptibility testing was 

performed by streaking the suspensions on RPMI–glucose agar using a sterile cotton swab and 

briefly drying the suspensions prior to disk application. For most isolates, clotrimazole, 

miconazole, itraconazole, voriconazole, and fluconazole disks were applied to one agar plate and 

difenoconazole, propiconazole, and tebuconazole were applied to a second agar plate. Plates were 

incubated at 30°C, or at 15°C if the maximum growth temperature was determined to be below 

30°C, typically, for 48 hours, and the zones of inhibition were measured from edge to edge using 

a ruler. Sensitivity assays of the slow-growing colonies of Solicoccozyma terrea and Filobasidium 

oeirense were incubated for 120 hours. Assays using Mrakia spp. were incubated for 96 hours, 

and assays including Vishniacozyma victoriae, Solicoccozyma aeria, Hannaella coprosmae and 

select isolates of Bullera alba and Sampaiozyma ingeniosa were incubated for 72 hours. Plates 

were also imaged on a flat surface using a levelled gel imager camera alongside an adjacent ruler 

for documentation purposes. 

 

For filamentous fungi, 10-100 μL of cryopreserved stock were pipetted onto three spots of a 0.2× 

PD agar plate and plates were incubated upright at room temperature for one to three weeks. Fungal 

biomass was obtained by gently swabbing colonies with a sterile cotton swab and suspending the 

biomass into approximately 500 μL of Milli-Q water in a 1.5 mL microcentrifuge tube. While the 
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biomass was not filtered to exclude all but conidia, large hyphal fragments were prevented from 

being introduced to the suspension by discarding fragments stuck to the end of the pipette tip. 

When possible, suspensions were adjusted to a turbidity of ABS590 = 0.07-0.11. Otherwise, initial 

fungal suspensions showing a turbidity below ABS590 = 0.07 were used as-is. Suspensions were 

spread with sterile cotton swabs onto MH agar, and Rosco Neo-Sensitabs™ (Rosco, Taastrup, 

Denmark) containing 10 μg clotrimazole or miconazole were placed onto the agar, and the plates 

were incubated at 25°C for 48-60 hours. Again, plates were imaged using the gel imager; however, 

unlike with the yeasts, measurements for zones of inhibition were measured from the images using 

the ruler as a guide. 

 

2.9 Quality control for antifungal susceptibility testing 

 

Selected yeasts were tested in duplicate to assess the impact of variation between sets of tests 

caused by variation in disk and plate properties, such as composition and dryness, inoculum 

preparation, such as density and colony freshness, and testing parameters, such as zone of 

inhibition measurements and incubation time. The largest variation was noted for an isolate of 

Schwanniomyces occidentalis showing a zone of inhibition to clotrimazole of 36 mm in one test 

and 44 mm in another test. Reproducibility also suffered in tests where isolates produced small 

zones of inhibition with extensive trailing growth towards a disk. For example, Rhodotorula 

isolates initially retested due to showing no zone of inhibitions when tested against miconazole 

and itraconazole, later showed zones of inhibition around 10 mm (Table 2). When multiple 

measurements of isolates were taken, the average zone of inhibition between trials was used in 

subsequent calculations. Filamentous fungi were tested using commercially prepared azole disks 

and yeasts tested against agricultural azoles were tested using limited batches of media, limiting 

batch variation. 

 

To test for reproducibility using different agars and disk preparation methods, two isolates of 

Rhodotorula mucilaginosa were tested in duplicate using paper disks on Mueller-Hinton agar and 

two isolates each of Cyberlindnera saturnus and R. mucilaginosa were tested on the standard 

RPMI-glucose agar with commercially-prepared 10 μg clotrimazole or miconazole Rosco 

Neosensitab disks as opposed to in-house filter paper disks. Mueller-Hinton agar provided less 
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definition around the miconazole and itraconazole disks than RPMI-glucose agar, possibly due to 

the lack of a dye in the former. Still, the zones of inhibition to clotrimazole were within error range 

to those on RPMI-glucose agar. In addition, although the Neosensitab disks were significantly 

larger at 10 mm in diameter versus 7 mm in diameter for the filter paper disks, the susceptibility 

and resistance phenotypes were identical using the different disks for the C. saturnus and R. 

mucilaginosa isolates. 

 

To confirm that zones of inhibition were caused by the drug impregnated into the disk and not the 

solvent carrier, preliminary experiments were undertaken with disks containing only the ethanol 

or DMSO solvents. In no instances did either solvent inhibit the growth of 25 yeasts (18 C. 

saturnus, three R. mucilaginosa, two Debaryomyces hansenii, and two Bullera alba) or 25 

filamentous fungi of various species tested. 

 

Table 2 – Average ZOI (mm ± Standard Deviation) of Yeasts Tested using Different Batches 

of Media 

To check for variation in zones of inhibition measurements with sensitivity testing of yeasts, select 

yeasts were tested using different batches of media. Isolate A was identified as Schwanniomyces 

occidentalis and tested against three batches of media while other isolates were tested against two 

different batches and isolates B and C were identified as Rhodotorula mucilaginosa, isolates D 

and E were Cyberlindnera saturnus, isolate F was Bullera alba, and isolate G was 

Cutaneotrichosporon terricola. R = resistant phenotype, n.d. = not tested in duplicate. 

 Clotrimazole Miconazole Fluconazole Voriconazole Itraconazole 

Isolate A 40.0 ± 3.3 26.7 ± 2.1 29.0 ± 1.0 35.3 ± 3.3 25.3 ± 0.9 

Isolate B 27.5 ± 0.5 10.0/R R/R R/R 11.0/R 

Isolate C 29.0 ± 0 R/R R/R R/R 11.1/R 

Isolate D 24.0 ± 0 19.5 ± 0.5 R/R 18.5 ± 1.5 14.0 ± 0 

Isolate E 22.5 ± 1.5 20.0 ± 0 R/R 19.0 ± 1.0 14.0 ± 0 

Isolate F 35.5 ± 0.5 R/R R/R R/R 23.0 ± 2 

Isolate G 35.0 ± 1.0 32.0 ± 2.0 n.d. n.d. n.d. 
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2.10 Determining levels of susceptibility or resistance to 

drugs 

 

For tested yeasts, the majority of susceptibility tests to the eight azole drugs either produced large, 

clearly-defined zones of inhibition, indicating that an isolate was susceptible to the drug, or no 

zone of inhibition surrounding the drug disks, indicating resistance. However, several isolates 

tested against particular drug disks showed extensive ‘trailing growth’ indicative of a fungistatic 

drug effect. These isolates produced microcolonies directly surrounding the drug disk with colony 

size increasing in size with increasing distance to the disk. In these cases, zones of inhibition were 

measured from edge-to-edge using normal-sized colonies, as determined by colonies growing in 

the absence of drug, as endpoints. Examples of tests returning results and their classification can 

be found in the Appendix (Supplementary Figure 1). 

 

 

2.11 Statistical analysis  

 

To determine if resistance to one azole drug was associated with resistance to another azole drug, 

pair-wise comparisons were performed. Contingency tables comparing the number of isolates 

determined to be resistant or susceptible to each drug were constructed as shown in the Appendix 

(Tables 3 and 4). Fisher Exact tests were performed using an on-line calculator (Stangroom, 2020) 

with a significance level of 0.05.  

 

In addition, to estimate the relationship between susceptibility to one drug versus another drug, 

linear regression analysis across all isolates was performed using the zones of inhibition to the two 

drugs to the same isolate as variables. 

 

Any potential treatment effect on the sensitivity of recovered fungi to the azole drugs by soil 

treatment origin was determined using a two-tailed T-test for two independent means and 

calculated using an online calculator and a significance level of 0.05 (Stangroom, 2020b). Data 

was compiled such that tests that produced no zone of inhibition in the disk diffusion assay, which 
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indicated that the tested isolate was resistant to the tested drug, were represented in the dataset 

with a zone of inhibition value of zero millimeters. 
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3 Results 

 

3.1 Impact of azole exposure on culturable fungal propagules 

 

The azole concentrations in the treated soils steadily increased with annual azole application to an 

average, with noted standard deviation between the four treatment plots, of 0.22 ± 0.09 mg/kg of 

miconazole and 0.13 ± 0.04 mg/kg of clotrimazole in the low treatment soils and 19.58 ± 3.77 

mg/kg of miconazole and 24.95 ± 6.52 mg/kg of clotrimazole in the high treatment soils (Figure 

7). 

 

 

Figure 7 – Concentration of Azoles in the Low and High Treatment Plots Over Time  

Average concentration of the drugs in the four low and four high treatment plots collected prior 

to annual drug application is shown with the error bars showing standard deviation in azole 

concentrations between the plots. 
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The impact of long term fungicide exposure on viable populations of filamentous fungi and yeasts 

was evaluated by viable plate counts on RB and DG agar using soils sampled in 2018 following 

nine annual drug applications. Statistical tests performed using a two-tailed T-test for two 

independent means (Stangroom, 2020b) using the plate count data found higher colony numbers 

on plates plotted with control soil than plates plotted with high treatment soil on RB agar (p≤0.01 

for incubations at both 4℃ and 15℃) but this difference was not seen on the DG agar incubated 

at 4℃ (p=0.32) (Figure 8).  

 

 

Figure 8 – Plate Counts from Soils Receiving No, Low, or High Azole Treatments 

Plate counts show reduced fungal load in high treatment plots compared to control plots on RB 

agar bur not DG agar. An outlier plate from the control plot #26 soil with 260 CFU/g soil and an 

outlier plate from the high treatment soil with 1,800 CFU/g soil were excluded from the RB agar 

incubated at 15℃ bar chart; however, even with these outliers p=0.01 between the control and 

high treatment plots. Significant differences between treated plots versus controls are marked with 

an asterisk. 
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In addition, to estimate fungal biomass, ergosterol in extracts of soil in August of 2018 was 

quantified by high performance liquid chromatography (Figure 9). The ergosterol concentration in 

the high treatment versus control soils was significantly lower in the soils. 

 

Figure 9 – Ergosterol Content in Control versus Azole-treated Soils 

Ergosterol decreased in the high treatment plots receiving annual applications of azoles versus 

untreated control plots after eight years of annual azole application.  

 

3.2 Fungal cultivation and isolation 

 

Soil from each of the 12 plots were plated onto 0.2× strength SD and 0.2× PD agar amended with 

1 mg/L miconazole and 1 mg/L clotrimazole in DMSO (Figure 4). For the 0.2× SD agar plates, 

one of four plates inoculated with control soil yielded bacterial growth, and of the four plates 

inoculated with high treatment soil, one showed bacterial growth, and another showed filamentous 

fungi growth. No growth was observed on any other plate after eight days. On 0.2× PD agar, 

microbial growth was noted on all four plates containing high treatment soil, two of four plates 
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containing low treatment soils, and none of the four plates containing control soils (Figure 10). 

Organisms from these plates were not retained in the collection. 

 

  

Figure 10 – Observations from Azole-treated Soils Plated on Antifungal-containing Media 

Growth was observed on 0.2-strength potato dextrose plates containing clotrimazole and 

miconazole when plated with the high treatment soils but not the control soils. None of the plates 

plated with the four control soils produced growth (A), but all of the plates plotted with high 

treatment soil produced growth (B). 

 

Overall, 42 yeasts were obtained from soils sampled in August 2018. All obtained isolates from 

the plating on DBDM agar matched to Cyberlindnera saturnus and all but two of thirty isolates 

obtained on the 0.2× strength media containing C-TAB corresponded to C. saturnus, Rhodotorula 

mucilaginosa, or Bullera alba.  

 

Seventy-three yeasts were isolated from the October 2018 soils. C. saturnus was the only species 

isolated on the CZ agar, and was the predominant species isolated from the YM-11 agar, along 

with R. mucilaginosa, and the ME agar, along with R. mucilaginosa and Debaryomyces spp. The 

yeasts from the 4℃ incubations were more diverse with, among 15 isolates from each set, 11 

species from the RB agar and more than eight species from the DG agar. Anaerobic incubation 

yielded few yeasts, five among two sets of SD and RB agar plates, with isolates belonging to 

Sampaiozyma ingeniosa (n=2), Hannaella coprosmae, D. hansenii, and R. mucilaginosa. In 

addition, fifty-five filamentous fungi that were used for sensitivity testing were isolated from the 

October 2018 soils. Mucor and Clonostachys species were the predominant isolates from the RB 

agar and Cladosporium and Mortierella species were the predominant isolates from the 0.2× PD-

C agar. 

 

B A 
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From the soils sampled in April 2019, forty-two yeasts from more than nine species were obtained 

from the enrichment in MH broth and incubation on MH agar. The high efficiency of this isolation 

may be attributed to the fact that the soils were put into enrichment within days of being sampled 

from the field with a 15℃ storage in the interim. In addition, forty-five filamentous fungi used for 

sensitivity testing were obtained from the soils. Of note, the isolates from the incubation on GYP 

at 15℃ were dominated by Mucor and Mortierella species while the MH incubation at 50℃ 

showed growth of the pathogen Aspergillus fumigatus. 

 

3.3 Identification of fungal isolates 

 

Of the 173 yeasts isolated prior to February 2020, 81 were identified by ITS sequencing, 43 were 

identified by a combination of RAPD PCR and morphology and 46 were preliminarily identified 

by morphology only. Paired-end sequencing of 26 amplicons produced an identical overlapping 

sequence that could be used for identification so single-end sequencing was used 

thereafter.  Sequenced isolates from the yeast collection yielded 31 unique ITS sequences 

representing 28 species (Table 3). Four isolates gave less than 99% ID to any isolate given by 

NCBI BLAST and one isolate did not have any close matches to any other classified organism in 

the database.  

 

For initial identification, all yeasts were streaked onto 1× SDA and checked after at least one week 

of growth at room temperature. C. saturnus was distinguished by white colonies showing a raised 

centre surrounded by web-like growth while D. hansenii was distinguished by flat, white colonies 

and B. alba showed small, beige colonies. Meanwhile, Rhodotorula showed pink-red, smooth, 

sometimes mucoid, colonies and Wang et al. (2015) was used as a guide to distinguish 

Rhodotorula from similarly pigmented yeasts.  

 

Following grouping by morphology, RAPD PCR using genomic DNA from 88 yeasts was used to 

further group together isolates with identical morphologies (Figure 11). 
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Figure 11 – Representative RAPD PCR Gel for Identification of Cyberlindnera saturnus 

PCR fingerprints highlighted in green were identified by ITS sequencing as Cyberlindnera 

saturnus and all other isolates were assumed to be Cyberlindnera saturnus due to similar 

fingerprints and morphology. 

 

Yeasts showing unique morphologies or RAPD PCR fingerprints in addition to representative 

isolates from yeasts with identical morphologies and RAPD PCR fingerprints were sequenced. 

Overall, by morphology only, 11 isolates were assigned to Cyberlindnera saturnus, 12 isolates to 

Rhodotorula, three isolates to Debaryomyces, and one isolate to Bullera alba. An additional 30 

isolates were identified as C. saturnus, 10 isolates were identified as R. mucilaginosa, and three 

isolates were identified as D. hansenii using a combination of morphology and by sequencing a 

representative of a PCR fingerprint. 

For filamentous fungi, suspensions of filamentous fungal colonies were aliquoted onto 0.2× PDA 

and 1× MH agar in triplicate. Colonies were imaged following adequate growth. By morphology, 

four isolates were identified as Mucor spp., three isolates each as Cladosporium spp., Clonostachys 

spp., and Mortierella spp., and two isolates as Aspergillus species. 

In addition, partial ITS sequencing was performed on 73 filamentous fungal isolates from the 

collection, yielding 27 unique ITS sequences representing 22 species (Table 4). 

 

While species-level resolution was obtained for most isolates, the sequencing could not distinguish 

between the members of certain species-complexes, such as the Fusarium incarnatum-equiseti and 

Cladosporium cladosporioides species complexes, as well as Aspergillus wentii and closely related 

species and D. hansenii and closely related species (Supplementary Tables 1 and 2).



38 
 

 
 

Table 3 – Community Composition of Yeasts Isolated from the Soils.  

Isolate counts were primarily identified by ITS sequencing, with sequences provided in Supplementary Table 1.0., with counts of isolates 

preliminarily identified by morphology or RAPD PCR noted by parentheses. A single yeast isolate from the high treatment plot, noted 

as ‘Isolate FK01_169’, showed no significant match in the NCBI database even when using pair-ended sequencing.  

 

Phylogenetic Data of Isolate Count by Plot Origin 

Phylum Class Order Family Genus Species Control Low High 

Basidiomycota Tremellomycetes Tremellales Bulleraceae Bullera alba 2 (1) 3 3 

Basidiomycota Tremellomycetes Trichosporonales Trichosporonaceae Cutaneotrichosporon terricola 1    

Ascomycota Saccharomycetes Saccharomycetales Phaffomycetaceae Cyberlindnera saturnus 2 (12) 4 (22) 5 (7) 

Basidiomycota Tremellomycetes Cystofilobasidiales Cystofilobasidiaceae Cystofilobasidium infirmominiatum 2 2   

Basidiomycota Tremellomycetes Cystofilobasidiales Cystofilobasidiaceae Cystofilobasidium capitatum  1   

Ascomycota Saccharomycetes Saccharomycetales Debaryomycetaceae Debaryomyces 

nepalensis, 

hansenii, 

vietnamensis (A) 

1 (2) 1 (1) 2 (3) 

Ascomycota Saccharomycetes Saccharomycetales Debaryomycetaceae Debaryomyces 

nepalensis, 

hansenii, 

vietnamensis (B) 

1    

Ascomycota Saccharomycetes Saccharomycetales Saccharomycetales Diutina catenulata 1    

Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae Filobasidium oeirense  1   

Basidiomycota Tremellomycetes Filobasidiales Filobasidiaceae Goffeauzyma gastrica 1    

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Hannaella coprosmae 1    

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Hannaella oryzae (A) 1    

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Hannaella oryzae (B) 1    

Basidiomycota Microbotryomycetes Leucosporidiales Leucosporidiaceae Leucosporidium 
creatinivorum, 

yakuticum, scottii 
1 1   

Basidiomycota Tremellomycetes Cystofilobasidiales Mrakiaceae Mrakia arctica, gelida  3   

Basidiomycota Tremellomycetes Cystofilobasidiales Mrakiaceae Mrakia blollopis 2    

Basidiomycota Tremellomycetes Cystofilobasidiales Mrakiaceae Mrakia arctica 1    



39 
 

 
 

 

 

 

 

 

 

 

NA NA NA NA NA FK01_169   1 

Basidiomycota Tremellomycetes Tremellales Rhynchogastremataceae Papiliotrema flavescens  1   

Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Rhodotorula mucilaginosa 8 (5) 4 (7) 8 (11) 

Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Rhodotorula graminis 3 1   

Basidiomycota Microbotryomycetes Sporidiobolales Sporidiobolaceae Rhodotorula babjevae 1    

Basidiomycota Microbotryomycetes Microbotryomycetes Chrysozymaceae Sampaiozyma ingeniosa 2 2 3 

Ascomycota Saccharomycetes Saccharomycetales Debaryomycetaceae Schwanniomyces occidentalis  1   

Basidiomycota Tremellomycetes Filobasidiales Piskurozymaceae Solicoccozyma terrea   1 

Basidiomycota Tremellomycetes Filobasidiales Piskurozymaceae Solicoccozyma aeria  1   

Basidiomycota Tremellomycetes Cystofilobasidiales Mrakiaceae Tausonia pullulans (A) 1 1 1 

Basidiomycota Tremellomycetes Cystofilobasidiales Mrakiaceae Tausonia pullulans (B)   1 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma sp. isolate C220   1 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma 
heimaeyensis, 

foliicola 
  1 

Basidiomycota Tremellomycetes Tremellales Bulleribasidiaceae Vishniacozyma victoriae 1    
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Table 4 – Community Composition of Filamentous Fungi Isolated from Soils. Sequences are provided in Supplementary Table 2. 

Phylogenetic Data of Isolate Count by Plot Origin 

Phylum Class Order Family Genus Species Control Low High 

Ascomycota Leotiomycetes Leotiomycetes Leotiomycetes Acremonium sp. MJ35   1 

Ascomycota Sordariomycetes Sordariales Chaetomiaceae Acrophialophora levis 1 2  

 Mucoromycetes Mucorales Mucoraceae Actinomucor elegans (A) 3 1  

 Mucoromycetes Mucorales Mucoraceae Actinomucor elegans (B) 1   

Ascomycota Sordariomycetes Hypocreales Stachybotryaceae Albifimbria 
verrucaria, 

viridis 
1   

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Aspergillus 
fumigatus, 

fumigatiaffinis 
1 1 1 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Aspergillus [multiple] 1   

Ascomycota Dothideomycetes Capnodiales Cladosporiaceae Cladosporium [multiple]  2  

Ascomycota Sordariomycetes Hypocreales Bionectriaceae Clonostachys rosea (A) 4 8 5 

Ascomycota Sordariomycetes Hypocreales Bionectriaceae Clonostachys rosea (B)  1 1 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium oxysporium 3 1 1 

Ascomycota Sordariomycetes Hypocreales Nectriaceae Fusarium 
incarnatum-

equiseti 
1 1  

Ascomycota Sordariomycetes Hypocreales Clavicipitaceae Metarhizium robertsii 1 1  

Ascomycota Sordariomycetes Hypocreales Clavicipitaceae Metarhizium marquandii 1 1  

 Mucoromycetes Mucorales Mucoraceae Mortierella alpina (A)  2 1 

 Mucoromycetes Mucorales Mucoraceae Mortierella alpina (B)   1 

 Mucoromycetes Mucorales Mucoraceae Mortierella alpina (C)  1  

 Mucoromycetes Mucorales Mucoraceae Mortierella gamsii  1  

 Mucoromycetes Mucorales Mucoraceae Mortierella hyalina  1  
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 Mucoromycetes Mucorales Mucoraceae Mucor circinelloides 1  1 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Neosartorya udagawae 1   

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium oxalicum (A) 1  2 

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium oxalicum (B) 1   

Ascomycota Eurotiomycetes Eurotiales Aspergillaceae Penicillium 
novae-

zeelandiae 
1   

Ascomycota Sordariomycetes Glomerellales Plectosphaerellaceae Plectosphaerella cucumerina  1  

Ascomycota Sordariomycetes Hypocreales Ophiocordycipitaceae Purpureocillium lilacinum  2  

 Mucoromycetes Mucorales Lichtheimiaceae Rhizomucor variabilis 3 4 3 
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3.4 Fungal population structure analysis 

 

When looking at yeasts, the collection from the control plots have notably more species than those 

from the high treatment plots. Of 34 sequenced yeasts isolates from the control plots and 27 isolates 

each from the low treatment and high treatment plots, 18 (52% of identified isolates), 15 (55%), 

and 10 unique species (37%) were observed (Table 3), respectively. On the other hand, for 

filamentous fungi, 17 species of 26 identified isolates (65%), 17 species of 31 isolates (55%), and 

10 species of 17 (59%) isolates were observed from the control, low, and high treatment plots, 

respectively (Table 4). Although the yeast collection from the high treatment plots has a notably 

lower species richness than the yeast collection from the control plots, a similar effect was not seen 

with filamentous fungi, possibly due to under-sampling of the filamentous fungi community. 

 

3.5 Sensitivity of isolates to drugs 

 

With respect to the medical imidazoles, clotrimazole and miconazole, of 138 tested yeasts to each 

drug, 93.5% and 86.2% of isolates were determined to be sensitive to clotrimazole and miconazole, 

respectively.  Of the sensitive isolates, 3.9%, were determined to be only weakly susceptible to 

clotrimazole but notably more, 16.8%, were weakly susceptible to miconazole (Figure 12). 

 

In contrast to the medical imidazoles and agricultural triazoles, the percentage of sensitive isolates 

to the medical triazoles fluconazole and voriconazole was significantly lower. Of 119 tested 

isolates, only 14.3% and 58.9% of isolates showed sensitivity to fluconazole and voriconazole, 

respectively. On the other hand, most isolates, 94.1% of 119 isolates, were sensitive to 

itraconazole. The percent of weakly susceptible isolates was relatively high with 17.6%, 11.4%, 

and 12.5% of susceptible isolates to fluconazole, voriconazole, and itraconazole, respectively, 

being defined as weakly susceptible (Figure 12). 

 

With respect to the agricultural triazoles, 100% of 104 and 98 isolates tested against 

difenoconazole and tebuconazole, respectively, showed a sensitive phenotype by the end of the 
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standard assay. Meanwhile, 93.3% of 104 isolates tested against propiconazole showed a sensitive 

phenotype (Figure 12). 
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Figure 12 – Distribution of Susceptibilities of Yeasts Tested against Various Azoles 

Sensitivity of yeasts isolated from all soils tested against eight azole drugs show that the tested yeasts were most susceptible to the tested 

agricultural triazoles difenoconazole, propiconazole, and tebuconazole, followed by the medical imidazoles clotrimazole, miconazole, 

and then the medical triazoles voriconazole, itraconazole, and fluconazole. Susceptibility of isolates to the drugs were ranked by diameter 

of the zones of inhibition that the drug disks produced by a disk diffusion assay.
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3.6 Cross-resistance between drugs against yeasts 

 

Overall, resistance to voriconazole was associated with resistance to all other medical drugs and 

propiconazole (p<0.001 for each pair-wise comparison) (Supplementary Table 3.1-3.5). Also, 

resistance to itraconazole was correlated with resistance to fluconazole (p=0.002; Supplementary 

Table 3.6) and resistance to either was significantly correlated with resistance to miconazole 

(Supplementary Table 3.7- 3.8). However, resistance to clotrimazole was not associated with 

resistance to miconazole (p=0.107; Supplementary Table 3.9), fluconazole (p=0.050; 

Supplementary Table 3.10), or itraconazole (p=0.123; Supplementary Table 3.11). As for the 

agricultural triazoles, resistance to propiconazole was associated with resistance to the medical 

imidazoles, clotrimazole (p<0.001; Supplementary Table 3.12) and miconazole (p<0.001; 

Supplementary Table 3.13), in addition to voriconazole, but not to itraconazole (p=0.479; 

Supplementary Table 3.14) or fluconazole (p=1; Supplementary Table 3.15). Analyses of cross-

resistance could not be made for difenoconazole and tebuconazole toward the other drugs as all 

isolates tested against these two drugs were susceptible. 

 

Cross-resistance to multiple drugs was often associated with particular species. Strains of Bullera 

alba were frequently multi-drug resistant with two out of nine tested strains being resistant to 

clotrimazole, miconazole, voriconazole, fluconazole, and propiconazole and an additional strain 

being sensitive to all of the above drugs except clotrimazole. In addition, all tested Rhodotorula 

mucilaginosa isolates were resistant to fluconazole, with the majority of isolates also being 

resistant to voriconazole, and four out of 41 strains showing complete resistance to miconazole 

and itraconazole as well. In addition, five out of six Sampaiozyma ingeniosa strains were resistant 

to miconazole, voriconazole and fluconazole.  

 

Regression analysis did not indicate that the extent of sensitivity, as measured by the size of the 

zone of inhibition, for a given isolate to any azole was directly correlated with the sensitivity to 

any other azole (Table 5). 
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Table 5 – Regression Analysis using ZOI (mm) of the Same Isolate Tested Against Two Drugs as Variables. R2 values shown. 

 

 

Clotrimazole Miconazole Voriconazole Itraconazole Fluconazole Difenoconazole Propiconazole 

Miconazole 0.00       

Voriconazole 0.01 0.46      

Itraconazole 0.01 0.37 0.35     

Fluconazole 0.01 0.19 0.51 0.16    

Difenoconazole 0.41 0.06 0.22 0.03 0.38   

Propiconazole 0.05 0.45 0.35 0.12 0.21 0.01  
Tebuconazole 0.22 0.10 0.15 0.02 0.20 0.50 0.09 

 

 

Table 6 – Mean ZOI (mm ± standard deviation) of Isolates Tested Against Azoles by Plot Type Origin. 

 

 Clotrimazole Miconazole Voriconazole Itraconazole Fluconazole Difenoconazole Propiconazole Tebuconazole 

Yeasts         

Control 23.5 ± 10.7 14.3 ± 7.3 8.5 ± 12.4 14.8 ± 7.1 66.0 ± 10.8 42.4 ± 9.9 27.3 ± 10.9 31.6 ± 6.3 

Low treatment 22.8 ± 7.8 14.4 ± 6.3 12.7 ± 10.2 14.4 ± 5.5 81.0 ± 8.3 34.3 ± 9.5 28.5 ± 9.1 30.2 ± 7.4 

High treatment 21.9 ± 11.8 11.7 ± 8.0 90.0 ± 11.3 12.0 ± 6.3 44.0 ± 7.1 38.7 ± 9.1 25.9 ± 11.5 32.6 ± 2.6 

 

Filamentous fungi         

Control 22.2 ± 8.8 17.5 ± 11.6       

Low treatment 25.2 ± 11.6 17.2 ± 11.9       

High treatment 21.9 ± 2.2 13.1 ± 11.8       
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3.7 Susceptibility patterns of isolates to medical imidazoles 

 

The susceptibility of isolates obtained from control and treated soils toward clotrimazole and 

miconazole were not found to be different. The average zone of inhibition (ZOI), with sample-

based standard deviation to clotrimazole was 23.5 ± 10.7 mm, 22.8 ± 7.8 mm, and 21.9 ± 11.8 mm 

when testing yeasts from the control (n=50), low (n=53), and high treatment (n=43) plots, 

respectively (Table 6). The average ZOI when testing 33 filamentous fungi from the control plots, 

31 isolates from the low treatment plots, and 24 isolates from the high treatment plots was 22.2 ± 

8.8 mm, 25.2 ± 11.6 mm, and 21.9 ± 2.9 mm, respectively (Table 6). In both cases, As shown by 

a two-tailed T-test for two independent means, there was no significant difference in average zone 

of inhibition between tests using isolates from the control versus low treatment plots (p=0.68 for 

yeasts, p=0.23 for filamentous fungi) or between the control versus high treatment plots (p=0.43 

for yeasts, p=0.88 for filamentous fungi). Likewise, the average ZOI using miconazole disks and 

yeasts from the control, low, and high treatment plots showed no difference in susceptibilities 

between yeasts from the control plot versus the low treatment plots (p=0.92), or versus the high 

treatment plots (p=0.12) (Table 6). Similarly, with respect to all tested filamentous fungi, the 

average ZOI using control versus low treatment-origin isolates was not statistically significant 

(p=0.19), nor was the difference when testing control versus high treatment-origin yeasts (p=0.17) 

(Table 6). 

 

The sensitivities of isolates from within a given species were tested to clotrimazole and miconazole 

to compare the degree of variation from isolates originating from the control plots with isolates 

originating from the treated plots. On a species-level, zones of inhibition were very similar when 

testing 53 Cyberlindnera saturnus isolates against clotrimazole and miconazole, with average ZOI 

not being statistically significantly different when testing isolates from the control versus low 

treatments (p=0.90) and control and high treatments (p=0.63) (Figure 13). A similar lack of 

treatment effect was seen with 17 Clonostachys rosea isolates and 10 Rhizomucor variabilis 

isolates tested against the medical imidazoles (Figure 13). 

 

Although Rhodotorula isolates from the control treatment appeared to be more resistant to 

clotrimazole than the isolates from the high treatment, with an average zone of inhibition of 34.2 
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± 2.7 mm when testing the control-origin isolates versus 37.2 ± 2.6 mm when testing the high 

treatment-origin isolates (p=0.006), there was no statistically significant difference in average ZOI 

when testing control versus low-treatment origin isolates (p=0.11) at 34.2 ± 2.7 mm versus 36.1 ± 

3.1 mm (Figure 13).  

 

To further test Rhodotorula isolates against clotrimazole, two additional tests were performed. 

Isolates were grown on SD agar plates at room temperature and then sub-cultured on MH agar and 

incubated for approximately 12 hours at 30℃. Following growth, a 10 μL loop of cells was used 

for susceptibility testing using RPMI-glucose agar and Neosensitab disks. Susceptibility tests were 

then performed except seven isolates each from the control and high treatment plots were incubated 

with reduced oxygen by incubation in a large BD GasPak EZ container (Becton, Dickinson and 

Company, Franklin Lakes, NJ) containing one Mitsubishi AnaeroPouch-MicroAero pouch 

(Mitsubishi Chemical Holdings, Tokyo, Japan), and 17 isolates from the control plots and 11 

isolate from the high treatment plots were incubated under standard conditions for seven days. 

Although two MicroAero pouches are needed to create the standard microaerophilic environment 

in a large GasPak EZ container, a Mitsubishi Anaero-Indicator indicated reduced oxygen 

concentration within the container throughout the incubation period of 48 hours. In both cases, 

Rhodotorula isolates from the high treatment plots were not any more or less susceptible to 

clotrimazole then those from the control plots (p=0.18 for the reduced oxygen incubation, and 

p=0.37 for the seven-day incubation). Interestingly, in both cases this time, isolates from the 

control plots appeared to be more susceptible to the clotrimazole than those from the high treatment 

plots with average zones of inhibition of 37.0 ± 2.1 mm versus 34.7 ± 3.6 for the reduced oxygen 

trial and 34.2 ± 2.4 versus 33.1 ± 4.6 mm for the seven-day incubation. Overall, given the increased 

testing, it appears that the initial results of Rhodotorula isolates from the high treatment being 

more susceptible to clotrimazole than isolates from the control was due to a sampling error. 

 

3.8 Isolates highly susceptible to medical imidazoles 

 

Eleven yeasts, representing 7.6% of the collection, were considered to be highly susceptible to 

miconazole due to ZOI measurements being greater than or equal to 25.0 mm (Figure 12). These 

isolates were also susceptible to clotrimazole and were largely isolated from the plots receiving no 
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azole fungicides. The isolates represented 17% of tested isolates from the control plots (n=8 of 47) 

and were identified as Bullera alba, Cutaneotrichosporon terricola, Diutina catenulata, 

Hannaella oryzae (n=2), Mrakia arctica, Sampaiozyma ingeniosa, and Vishniacozyma victoriae, 

3.8% of isolates from the low treatment plots (n=2 of 53) and included Schwanniomyces 

occidentalis and Solicoccozyma aeria, and 4.5% of tested isolates from the high treatment plots 

(n=2 of 44) which included a Bullera alba isolate and an unidentified psychrophilic isolate. As 

calculated by a Fisher exact T-test, the proportion of isolates highly susceptible to miconazole was 

statistically significant between the control and low treatment plots (p=0.04; Supplementary Table 

4.1) but not between the control and high treatment plots (p=0.09; Supplementary Table 4.2). 

 

On the other hand, when defining yeasts highly sensitive to clotrimazole as having a ZOI ≥ 300 

mm in diameter (n=51) in the disk diffusion assays, 46%, 26%, and 32% of control, low treatment, 

and high treatment-origin isolates were defined as highly susceptible. Increasing the threshold for 

high susceptibility to a ZOI ≥ 350 mm included 30 isolates from all plots and led to 24%, 17%, 

and 20% of the control, low treatment, and high treatment collections falling under the definition. 

Given the lack of a treatment effect, isolates highly sensitive to clotrimazole were not analyzed 

further. 
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Figure 13 – Sensitivities of Selected Species to Clotrimazole and Miconazole 

Sensitivity assays with select yeasts and filamentous fungi species against 10 μg clotrimazole disks 

shows a significant difference in zones of inhibition when testing R. mucilaginosa isolates from 

the control versus high treatment plots. No other statistically significant pair-wise difference was 

detected. Likewise, sensitivity assays with selected yeasts and filamentous fungi species against 

10 μg miconazole disks showed no differences in average zones of inhibition based on soil type 

origin of the isolates. Isolates of Rhizo. variabilis were resistant to miconazole. 
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3.9 Susceptibility patterns of isolates to medical triazoles 

 

Of 146 yeasts tested against itraconazole, the average ZOI using isolates from the control plots 

versus the high treatment plots was slightly higher at 14.8 ± 7.1 versus 12.0 ± 6.3 mm (p=0.06). 

Nonetheless, C. saturnus, R. mucilaginosa, and D. hansenii isolates from the control versus high 

treatment plots were not significantly more or less sensitive to itraconazole (p=0.35, p=0.46, and 

p=0.44, respectively) (Figure 14). Similarly, among 96 tested yeasts against voriconazole, there 

was no significant difference in average ZOI when testing isolates from the control versus low 

treatment plots (p=0.37) or high treatment plots (p=0.13) to the disks. Likewise, no difference in 

average ZOI to voriconazole was found when testing C. saturnus isolates from the control versus 

the low treatment plots (p=0.88) or versus the high treatment plot (p=0.17) (Figure 14). Only 25 

of 158 tested yeasts were susceptible to fluconazole but, overall, no significant difference was 

found in average ZOI when testing isolates from the control versus treated plots.  

 

3.10 Susceptibility patterns of isolates to agricultural triazoles 

 

Similar to the medical imidazoles and medical triazoles, for the agricultural triazoles, in general, 

no statistically significant differences were found between the average zones of inhibition for 

isolates from the control plots (n=38 to 39 for each drug) versus the low treatment plots (n=38 for 

difenoconazole and propiconazole, n=30 for tebuconazole), or for the control versus the high 

treatment plots (n=34 for difenoconazole and propiconazole, n=30 for tebuconazole). For isolates 

tested against the propiconazole disks, the average zones of inhibition was 27.3 ± 109 mm, 28.5 ± 

91 mm, 25.9 ± 11.5 mm for control, low treatment, and high treatment-origin isolates, respectively 

and for isolates tested against tebuconazole, the averages were 31.6 ± 6.3 mm, 30.2 ± 7.4 mm, and 

32.6 ± 6.2 mm, respectively (Table 6). However, isolates from the low treatment plot appeared to 

be significantly more resistant to difenoconazole than those from the control treatment plots 

(p=0.0004) with an average zone of inhibition of 34.3 ± 9.5 mm for isolates from the low treatment 

plot versus 42.4 ± 9.9 mm for the isolates from the control plots (Table 6). When the average zone 

of inhibition from the control plot isolates was compared to that of the high treatment isolates, 38.7 

± 9.1 mm, the difference was not significant (p=0.11) (Table 6). While the average zones of 
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inhibition toward the three agricultural azoles for the yeast Cyberlindnera saturnus, Rhodotorula 

mucilaginosa, and Debaryomyces spp. showed little variation per species per drug, as typical for 

the clinical azoles, large variation in particular was seen within Bullera alba isolates toward 

difenoconazole. Isolates of B. alba from the control (n=3), low treatment (n=3), and high treatment 

(n=3) plots produced average zones of inhibition to difenoconazole at 43.0 ± 4.6 mm, 33.7 ± 15.5 

mm, and 29.3 ± 6.0 mm, respectively. 

 

 

Figure 14 – Sensitivity of Cyberlindnera saturnus Isolates to Triazoles 

No significant difference in average ZOI was noted in tests using yeasts from the control versus 

treated plots. 
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4 Discussion 

 

4.1 Impact of fungicide exposure on population dynamics 

 

As shown by the plate counts on RB agar, the lower number of recovered colonies per gram of soil 

plated between the soils from the control versus the high treatment suggests that the clotrimazole 

and miconazole in the high treatment plots led to lower viable fungal propagules (Figure 8). The 

fact that the high treatment soils sampled in 2018 had lower ergosterol content per gram of soil 

than the samples from the control plots further shows that the high treatment soils have reduced 

fungal load due to the long-term effects of the antifungal drugs in the soil (Figure 9). The increase 

in ergosterol content seen in the control soils versus the high treatment soils sampled in 2018 may 

have been due to increased fungal growth in the rhizosphere of the cropped soybeans over eight 

years (Figure 9). 

 

The RB and DG agars contain rose bengal and dichloran, respectively, which inhibit the radial 

growth of fungi that can spread over large portions of the plate in a species-dependent manner 

(King et al., 1979). This leads to higher colony counts and the effective isolation of slower-

growing species (Henson, 1981; Hocking & Pitt, 1980; King et al., 1979). In addition, incubation 

at 4℃ selects for yeasts, especially psychrophilic yeasts, over filamentous fungi, and the addition 

of 220 g/L glycerol in the DG agar selects for xerophilic species. One possible reason why the 

colony counts on DG agar did not show a significant difference between treated and untreated soils 

is due to the sporulation of filamentous fungi after the six week incubation period. Nonetheless, 

the RB plates incubated at 15℃ for four days were almost exclusively dominated by filamentous 

fungi growth while still showing significant differences in colony counts between the control 

versus high treatment soils. 

 

The observation that both the yeasts and filamentous fungi collections from the control plots 

showed lower diversity in the control plots versus the treated plots can be attributed to the fact that 

several species were isolated only from the control plots but not the treated plots. Several yeasts, 

amounting to 13.7% of the collection, were identified as belonging to species isolated only once 
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(Table 2). Half of these unique isolates were isolated from the control plots while the remaining 

half were isolated evenly between the low treatment and high treatment plots. In addition, 

five Mrakia spp., and four isolates each of Cystofilobasidium infirmominiatum and Rhodotorula 

graminis were isolated from the control and low treatment plots, but not the high treatment plots. 

Likewise, for the filamentous fungi collection, 16.4% of identified isolates (12 of 73 isolates) 

belonged to species represented only once in the dataset with half of these species being isolated 

from the control plots (Table 3). 

 

For the yeast collections from the control plots and high treatment plots, 

respectively, Cyberlindnera saturnus comprised 20% and 27% of the collections 

while Rhodotorula mucilaginosa comprised 32% and 25%. However, it should be noted that the 

fungal collections were constructed with the goals of maximizing diversity in the collections and 

minimizing clonality. In particular, when broths enriched for yeasts were plated onto agar, if 

colonies with identical morphologies were observed on the same agar plate, only one isolate was 

retained for the collection. In addition, if more than one identical colony of a filamentous fungi 

were growing on the same agar plate plated with soil, only one colony was retained for the 

collection. Thus, it is not possible to easily determine from the fungal libraries if species that were 

readily culturable are more or less represented in the control or treated soils as the enrichment 

process would distort counts of yeasts. Nonetheless, although yeasts were not tallied by 

morphology noted per agar plate, in certain instances, when each soil was directly plated onto agar, 

it was clear that colonies of certain morphologies were less prevalent on plates containing high 

treatment soils compared to control soils. For example, red pigmented colonies were observed on 

all four DG agar plates plated with control soil on but were not observed on any of the four plates 

plated with high treatment soil. A sampling of these red pigmented colonies identified two as 

Rhodotorula. 

 

 

 

 

 



55 
 

 
 

4.2 No evidence of increased azole resistance in isolates 

from azole-containing soil  

 

As shown by the disk diffusion assays, in general, yeasts and filamentous fungi isolated from the 

soils receiving clotrimazole and miconazole were not detected to be any more or less sensitive to 

the tested azoles when compared to isolates from the control plots. This pattern held when looking 

at all isolated yeasts or filamentous fungi from a soil treatment type and when looking at specific 

species, such as the yeast Cyberlindnera saturnus and Rhodotorula mucilaginosa and the 

filamentous fungi Clonostachys rosea and Rhizomucor variabilis. However, some statistical tests 

did show significant differences in sensitivities between sensitive isolates from different 

treatments, as determined by smaller average zones of inhibition. For example, in the case of 

difenoconazole, isolates from the low treatment appear to be more resistant to those from the 

control with an average zone of inhibition nearly 10 mm smaller (p=0.0004) while the isolates 

from the high treatment were not any more resistant (p=0.11). It could be argued that these p-

values are affected by low statistical power of the tests, as the average zone of inhibition from the 

low treatment isolates was 34.3 ± 9.5 mm versus 42.4 ± 9.9 mm for the isolates from the control, 

which puts the two averages within the 20% error range for ZOI measurements (Table 4.0; Table 

6). 

 

4.3 Susceptibilities of tested species versus literature values 

 

Similar to the results from this study showing all R. mucilaginosa isolates being sensitive to 

clotrimazole, an analysis of 72 strains of Rhodotorula–including five strains of R. mucilaginosa–

from hospitals in Iran (Seifi et al., 2013) in addition to five R. mucilaginosa strains from pigeon 

feces in Saudi Arabia (Abulreesh et al., 2019) showed all R. mucilaginosa strains being sensitive 

to clotrimazole. In this study, 80.5% of Rhodotorula isolates were considered to be weakly 

susceptible to the miconazole disks, with an additional 17% being considered resistant and a single 

isolate being classified as sensitive. Likewise, a study of 30 clinical Rhodotorula strains–21 of 

them being R. mucilaginosa—from French hospitals found that miconazole was the only drug of 

eight tested drugs showing a range of sensitivities, with most isolates being marked as 
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‘intermediate’ (Preney et al., 2003). The clinical strains from Iran also showed a range of 

sensitivities to miconazole, especially with R. mucilaginosa (Seifi et al., 2013). 

 

In comparison to the relatively few Rhodotorula isolates tested to the medical imidazoles in the 

literature, much more information exists on the sensitivity of clinical Rhodotorula isolates to the 

medical triazoles. A review of 131 Rhodotorula isolates tested using the established NCCLS and 

EUCAST methods, in addition to the commercially-available agar-based Etest and the microbroth 

dilution-based Sensititre YeastOne tests, concluded that fluconazole, voriconazole, and 

itraconazole were inactive against the majority of tested isolates (Gomez-Lopez et al., 2005). The 

MIC90 values for 29 isolates tested by the reviewers were found to be >64, 8, and 8 mg/L to 

fluconazole, itraconazole, and voriconazole, respectively. This is in accordance with this study, 

which ultimately classified all Rhodotorula isolates as resistant to fluconazole, 85.4% of isolates 

being resistant to voriconazole with the remaining being weakly susceptible, and 78% of isolates 

being resistant to itraconazole with 14.6% being weakly susceptible and 7.3% being susceptible.  

 

Nonetheless, previous studies have noted several differences between clinical and non-

clinical Rhodotorula strains. For example, while clinical Rhodotorula strains are frequently noted 

as fluconazole-resistant (Tuon & Costa, 2008), the Rhodotorula strains from pigeon feces in Saudi 

Arabia were noted for their susceptibility to fluconazole (Abulreesh et al., 2019), a result shared 

with five Rhodotorula strains isolated from bird feces in Malaysia (Lord et al., 2010). In addition, 

a sample of clinical isolates was shown to have greater biofilm capacity compared to 

environmental isolates (Nunes et al., 2013). As for sensitivity to agricultural azoles, a 

metagenomic study of pear fruit fields treated with various fungicides, including azoles such as 

difenoconazole and tebuconazole, found that the proportion of Rhodotorula isolates, primarily 

represented by R. glutinis, increased in the fungicide-treated fields compared to control fields, 

which suggests relative resistance to these drugs (Zambounis et al., 2020).   

 

As for isolated filamentous fungi, Actinomucor elegans, Mortierella alpina, Mucor circinelloides, 

and Rhizomucor variabilis were isolated from the soils and were expected to be resistant to the 

azole drugs. These species belong to the Mucoromycotina order, which causes the highly-lethal 

disease Mucormycosis (Jeong et al., 2019). A single amino acid change in residue 129 of CYP51 
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F5 confers resistance to certain azoles, such as voriconazole and fluconazole, but not others, such 

as itraconazole (Caramalho et al., 2017). The mechanism of resistance to the former drugs and 

sensitivity to itraconazole has been elucidated to involve a tertiary hydroxyl group that interferes 

with hydrogen bonding between the azole drug and the lanosterol 14a-demethylase enzyme 

(Sagatova et al., 2016). Sun et al. reported that MIC values, as determined by CLSI microbroth 

dilutions, for seven clinical Mucor sp. were all above 64 μg/mL for fluconazole and ranged 

between 32-64 μg/mL for voriconazole (Sun et al., 2002). Meanwhile, the MIC values toward 

itraconazole ranged from 0.25-8 μg/mL (Sun et al., 2002). 

 

As expected, given the data from the literature, isolated Mucor circinelloides (n=2) 

and Rhizomucor variabilis (n=9) were resistant to fluconazole and voriconazole and weakly 

susceptible to miconazole and itraconazole. Interestingly, however, the isolates were clearly 

susceptible to clotrimazole. In a preliminary test, a single tested M. circinelloides isolate from the 

high treatment plots showed sensitivity to difenoconazole and tebuconazole and resistance to 

propiconazole. This finding could be useful as Mucor rot has been described as an emerging 

postharvest disease caused by Mucor spp. affecting multiple crops, such as mandarin oranges in 

California (Saito et al., 2014). Resistance of the species Mucor rouxii to propiconazole has 

previously been described (Weete & Wise, 1987). 

 

4.4 Spectrums of activity and co-resistance between azoles  

 

A previous study analyzed the antifungal susceptibility of 1,698 yeasts from various sources 

(Desnos-Ollivier et al., 2012). The study defined isolates with a high MIC as being able to grow 

in ≥8 ug/mL fluconazole, ≥0.25 ug/mL voriconazole, and ≥0.5 ug/mL of itraconazole. 

Fluconazole was effective against the smallest proportion of environmental isolates, with 45% 

having a high MIC toward the drug, while only 18-21% of environmental isolates had a high 

MIC against voriconazole or itraconazole. The study also made the surprise finding that, when 

considering isolates from all origins, which included isolation from human, food, and industrial 

sources, Basidiomycetes were more likely to yield a high MIC to the three drugs than 

Ascomycetes with high MIC rates of 75-76% compared to 16-34% (Desnos-Ollivier et al., 

2012). 
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In agreement with the study, as shown in Figure 12.0, a higher proportion of isolates were 

resistant to fluconazole than the other two tested medical triazoles. In addition, of the tested 

medical imidazoles, clotrimazole was effective against a larger proportion of isolates compared 

to miconazole, which agrees with a previous study of yeasts with medical significance 

(Yamaguchi et al., 1983). When broken down by phylogeny, 82 Basidiomycete yeasts strains 

were tested against the medical azoles with 8.5% and 26.8% being resistant to the imidazoles 

clotrimazole and miconazole, respectively, and 15.8%, 69.5%, and 95.1% being resistant to the 

triazoles itraconazole, voriconazole, and fluconazole, respectively. On the other hand, of 63 

Ascomycete yeasts, all were susceptible to the medical azoles with the exception of two isolates 

of Debaryomyces to fluconazole. All isolated filamentous fungi, except for the Mucormycetes, 

belonged to the Ascomycota. 

 

One unexpected finding from the azole sensitivity tests was that co-resistance to clotrimazole and 

miconazole was not widely noted either in isolates obtained from the control plots or from the 

plots receiving annual applications of clotrimazole and miconazole (Table 5.0; Supplementary 

Table 3.9). Of the seven clotrimazole-resistant yeasts, one isolate identified as Filobasidium 

oeirense and four isolates identified as Tausonia pullulans were sensitive to miconazole while two 

isolates identified as Bullera alba were resistant to both drugs. On the other hand, most isolates 

of Sampaiozyma ingeniosa were miconazole-resistant and only weakly susceptible to clotrimazole 

while Rhodotorula mucilaginosa isolates were commonly miconazole-resistant while being 

clearly susceptible to clotrimazole. With respect to filamentous fungi, the fact that the tested 

Mucormycetes were sensitive to clotrimazole but not the other tested azole drugs lends further 

evidence that the spectrum of activity of clotrimazole is significantly different from that of the 

other clinical azoles. Overall, it was clear that, miconazole-resistant isolates were not likely to be 

clotrimazole-resistant and clotrimazole-resistant isolates were not likely to be miconazole-

resistant. 
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4.5 Isolates with little prior azole documentation 

 

As for the identified isolates determined to be very susceptible to miconazole, the azole-

susceptibilities of the corresponding species have not been well-described in the literature. There 

were no previous reports of the susceptibility of Sampaiozyma ingeniosa to the tested azoles 

and Cutaneotrichosporon terricola, Schwanniomyces occidentalis, Solicoccozyma aeria, 

and Mrakia spp. to any azole in the literature. Of note, the disk diffusion assays were performed 

at either 15°C or 30°C, while previous studies of environmental antifungal resistance tend to focus 

on yeasts with medical or agricultural significance or those that can grow readily during testing. 

For example, Maciel et al. did not test the azole susceptibility of Cutaneotrichosporon 

terricola due to its inability to grow at 37°C (Maciel et al., 2019), and the disk diffusion assay 

performed by Perini et al. where Mrakia spp. isolates were grown on SD agar for four days and 

then tested on RPMI-glucose agar at 15°C for 2-7 days failed due to a lack of growth on test plates 

(Perini et al., 2019). However, in this study, growing Mrakia isolates for seven days on SD agar 

and then performing a four-day disk diffusion assay on RPMI-glucose agar plates, both at 15°C, 

successfully allowed for azole susceptibility testing of 4 out of 6 Mrakia isolates. 

 

On the other hand, a previous mycobiome sequencing study of the wheat phyllosphere mycobiome 

after application of Viverda, an agricultural fungicide containing epoxiconazole in addition to 

fungicides from other classes, identified V. victoriae as being the most susceptible species to the 

effects of the fungicide (Knorr et al., 2019). Disk diffusion assays using the difenoconazole, 

propiconazole, and tebuconazole disks on the same plate failed twice with indications of large 

zones of inhibition only appearing after six-days of incubation. The findings from this study, as 

well as the findings from the disk diffusion assay, indicate that this species may be hyper 

susceptible to azoles. 

 

A literature review yielded few results on the antifungal susceptibility of several other species 

isolated and tested in this study. For example, the sole reference for the antifungal susceptibility 

of C. saturnus comes from a single isolate obtained from Piracicaba River, Brazil that was tested 

against a panel of drugs, including fluconazole and itraconazole, using a broth microdilution test 

at 37℃ for 48 hours. The test yielded MIC80 values for fluconazole (>64 µg/mL) and itraconazole 
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(0.25 µg/mL) marking relative resistance and susceptibility to the drugs, respectively, similar to 

the results obtained in this study (Medeiros et al., 2008). However, when tested by disk diffusion 

assays, C. saturnus isolates showed trailing endpoints toward all tested azole drugs and continued 

growth within the zones of inhibition following the standard disk diffusion assay. Thus, C. 

saturnus may be more resistant to azole drugs than suggested by both studies. The azole 

susceptibility of C. saturnus may be of future interest due to its previously described abundance 

in soils and ability to promote plant growth. 

 

4.6 Isolates with human pathogenic potential 

 

A previous analysis of 5,000 yeasts from 1,000 environmental samples yielded 54 strains of 

budding yeasts with human pathogenic potential and found that pathogenic yeasts were associated 

with soils compared to other sampling locations such as fruit, leaves, and wood (Opulente et al., 

2019). This study, on the other hand, yielded relatively more isolates classified as opportunistic 

human pathogens including yeasts, such as Rhodotorula mucilaginosa, that are not classified as 

‘budding yeast'. 

 

Debaryomyces hansenii and Rhodotorula mucilaginosa are two opportunistic human pathogens 

that are commonly isolated from environmental sources. D. hansenii (syn. Candida famata) is 

particularly associated with dairy products as well as being a cause of infections of the 

bloodstream, peritoneum, retina, and tissue of the mid-chest (reviewed in Beyda et al., 2013). The 

ARTEMIS global antifungal surveillance program found that of over 250,000 

clinical Candida isolates collected globally between 1997 and 2007, 0.3% were identified 

as Candida famata (Pfaller et al., 2010). In addition, C. famata was isolated from 2.1% of 642 

blood samples producing fungal isolates at Teikyo University Hospital, Japan between 1979 and 

1995 (Kawakami et al. 1980). Although being a rare cause of infections, at least one case of 

invasive infection has been detected in a patient with no underlying conditions or risk factors 

(Wong et al., 1982). On the other hand, clinical infection of D. hansenii may be subject to 

overestimation due to misidentification of Pichia guilliermondii (syn. Candida guilliermondii) as 

D. hansenii (Desnos-Ollivier et al., 2008).  
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Another candidiasis-causing yeast, Diutina catenulata (syn. Candida catenulata) was isolated 

from a control plot. The species is commonly isolated from environmental samples, particularly 

dairy products, and is a rare cause of invasive infections in immunocompromised hosts 

(Radosavljevic et al., 1999). 

 

Rhodoturla mucilaginosa has been described as an emerging opportunistic pathogen (Pfaller & 

Diekema, 2004; Wirth & Goldani, 2012). As reviewed by Wirth & Goldani 

(2012), Rhodotorula species are ubiquitous in the environment, having been isolated from 

environmental samples, such as air, soil, and food products, as well as being detected as the most 

common microorganism from the hands of hospital workers. R. mucilaginosa is also a common 

contaminant of catheters due to its strong affinity for plastic. It follows that most cases of infections 

involve central venous catheter (CVC) use and, most likely due to the increase in CVC use, reports 

of infections have increased in haematological patients since 1985. Infections can also, especially 

in HIV-positive patients, lead to serious complications such as meningitis and endophthalmitis 

(Wirth & Goldani, 2012). Overall, Rhodotorula was found in 4.2% of clinical isolates (n=8821) in 

the ARTEMIS project, being the 4th-most common non-Candida yeast (Pfaller, Diekema, et al., 

2009). 

 

No other yeasts of clinical relevance was identified in the collection. Although some case studies 

note Tausonia pullulans (syn. Trichosporon pullulans) as a cause of trichosporonosis in 

immunocompromised hosts, reports of T. pullulans infections may be due to misidentification 

(Holland et al., 2004). 

 

For filamentous fungi, the most clinically relevant group isolated from the soils 

was Aspergillus spp., which cause a group of diseases called aspergillosis. Aspergillosis can 

present as respiratory infections as spores of the fungi are introduced into the lungs. Patients with 

asthma or cystic fibrosis can suffer from allergic bronchopulmonary aspergillosis, which is an 

allergic reaction to the fungi that can damage lung tissue (Latgé, 1999). In addition, those with 

pre-existing lung conditions can suffer from aspergilloma, balls of the fungi in the lungs, which 

are commonly asymptomatic but can also lead to fatal internal bleeding due to disrupted blood 

vessels (Latgé, 1999). In addition, aspergillosis can present as an invasive infection in 
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immunocompromised patients with severity and symptoms depending on the organ infected and 

the underlying condition (Latgé, 1999). 

 

In addition, Purpureocillium lilacinum has been noted for causing invasive infections in 

immunocompromised patients. The fungus can spread quite readily, for example, in contaminated 

lotion in a hospital (Orth, 1996). Spores of the species are used in the agricultural setting as a 

biocontrol agent where it has been suggested that they pose a risk to immunocompromised people 

(Luangsa-Ard et al., 2011). The species can cause serious eye infections, such as keratitis and 

endophthalmitis, in those who wear soft contact lenses or have trauma to the eyes (Todokoro et al. 

2014) and can also cause dermatological infections without predisposing conditions (Saghrouni et 

al., 2013). 

 

Fusarium species are found in environmental samples, such as soil and air, and are opportunistic 

human pathogens. For immunocompetent people, Fusarium infections can cause onychomycosis 

in those that walk outdoors with exposed toenails, cutaneous infections for burn victims, and 

keratitis for contact lens users. On the other hand, in cancer patients, those with severe burns, or 

organ transplant patients, skin, lung, and sinus infections can develop (Dignani & Anaissie, 2004). 

In institutions monitoring severely immunocompromised patients, such as cancer patients and 

marrow transplants, Fusarium infections were documented at incidences of around 0.2-1.2% of 

patients (Dignani & Anaissie, 2004). 

 

Other isolated filamentous fungi have been identified as the causative agent of an infection only 

recently. For the first time, in 2017, Chowdhary et al. reported Penicillium oxalicum as the cause 

of invasive infections in three cases involving immunocompromised patients (Chowdhary et al., 

2017). In addition, for the first time, in 2020, Masetti et al. reported Albifimbria verrucaria as the 

causative agent of an invasive infection in human, a child with neuroblastoma (Masetti et al., 

2020). 
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4.7 Isolates with notable agricultural relevance 

 

The two most commonly isolated yeasts from the soils, Cyberlindnera saturnus and Rhodotorula 

mucilaginosa, have previously been studied for their association with crops, especially with 

respect to their ability to promote plant growth. The first report of an auxin-producing endophytic 

yeasts was for an isolate of Cyberlindnera saturnus (syn. Williopsis saturnus). This endophyte of 

maize roots was found to produce the plant growth promoting hormones indole-3-acetic acid and 

indole-3-pyruvic acid in vitro and increase root and shoot growth of maize following seedling 

inoculation (Nassar et al., 2005). Isolates of R. mucilaginosa have been found to be endophytes of 

cottonwood and produce indole-3-acetic acid (Xin et al., 2009). 

 

Compared to the isolated yeasts, the isolated filamentous fungi strains have been documented more 

thoroughly for agricultural relevance, where they range from pathogenic to growth-promoting. For 

example, species in the Fusarium solani complex are a cause of sudden death syndrome of 

soybeans in North America (Aoki et al., 2003), while those in the F. oxysporum complex can cause 

root rot and seedling blight (Lanubile et al., 2015). On the other hand, it has been shown that 

inoculation of seeds and subsequent colonization of maize plants with Metarhizium robertsii leads 

to higher above-ground biomass, suppression of growth of black cutworm larvae on leaves, and 

alteration expression of plant defense genes (Ahmad et al., 2020). Strains of Clonostachys 

rosea have been reported to cause root rot in soybeans (Bienapfl et al., 2012) while strains have 

also been positively associated with suppression of Sclerotinia sclerotiorum, the fungal pathogen 

causing white mould, and increased shoot length upon inoculation (Rodríguez et al., 2015). 

 

4.8 Future experiments and closing remarks 

 

Given the number of filamentous fungi recovered with medical and agricultural significance, 

future experiments can test the recovered filamentous fungi to medical triazoles and agricultural 

triazoles. In addition, while initial colony counts were performed on agar containing 1 mg/L 

clotrimazole and 1 mg/L miconazole, little growth was observed on plates (Figure 10). Thus, future 

experiments can plate the treated and untreated soils on agars containing various lower 
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concentrations of the drugs to obtain suitable plate counts. These plate counts can be used to see 

if the treated soils contain more azole-resistant isolates than the untreated soils. In addition, replica 

plating from agar containing no azole drugs to agar containing miconazole can be used to further 

test the hypothesis that the control soils contain more isolates that are highly susceptible to 

miconazole. Finally, in order to see if any particular species shows differential abundance between 

the control and treated soils, targeted plate counts could be used. For example, Debaryomyces 

hansenii isolates can be selectively grown in conditions of 5% glucose and 10% NaCl (Breuer & 

Harms, 2006) and Rhodotorula species can be readily identified by pink-red colonies on SD agar. 

In addition, qPCR assays can also be used. Assays have already been published for 

quantifying Cystofilobasidium infirmominiatum (Spotts et al., 2009), a yeast isolated from the 

control and low treatment plots but not the high treatment plots, and Vishniacozyma 

victoriae (Rush et al., 2020), a yeast found to be highly susceptible to miconazole and the 

agricultural fungicide Vividera. In addition, assays for quantifying the medically and agriculturally 

important filamentous fungi Mucor circinelloides and Clonostachys rosea also exist (Bernal-

Martinez et al.; Gimeno et al., 2019). Microbial community profiling using next-generation 

sequencing techniques can also further elucidate changes in community composition between the 

treated and untreated soils. 

 

Overall, it was found that soils amended with environmentally-relevant concentrations of 

miconazole and clotrimazole showed reduced fungal load and diversity compared to control soils. 

While notable changes in azole susceptibility were not detected among the fungal isolates from 

the treated versus control soils, there was some indication that the treated soils contained fewer 

isolates highly susceptible to miconazole. Given the isolation of medically and agriculturally 

important fungi, future studies on the impact of azole contamination of soils is justified.   
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6 Appendix A 

Supplementary Table 1 – Partial ITS Sequences of Yeasts  

Top match Consensus Sequences 
Query 

length, nt 

% query 

cover 
% ID 

Bullera alba 

CATTAGTGATTGACCTCCGGGTCTTAATAACTATAATCTTCTACCTCTGT

GAACCGTTGGTCTTCGGACCGATTCTTATAACAAACATCTGTGTAATGAA

CGTAACCTATATTAATCATATAAAACTTTTAACAACGGATCTCTTGGCTC

TCGCATCGATGAAGAACGC 

169 100 100 

Cutaneotricho-

sporon terricola 

CATTAGTGAATTGCTCTCTGAGCGTTAACTATATCCATCTACACCTGTGA

ACTGTTGATTGACTTCGGTCAGTTACTTTTACAAACATTGTGTAATGAAC

GTCATGTTATTATAACAAAAATAACTTTCAACAACGGATCTCTTGGCTCT

CGCATCGATGAAGAACGC 

168 100 100 

Cyberlindnera 

saturnus 

CATTAAAGTATTCTTCGGTGCAGCCAGCGCTTCCACAGCGCGGCAGCCCA

AACCTTACACACTGTGATTAGTTTTTTTACTATTTACTTTGGCTGCGCAA

GTGGCCAAAGGTCTTAAACACAAAGATTTATATCTTTTTTTACAAAATTT

AGTCAATGAAGTTTTAATACTATAATCTTCAAAACTTTCAACAACGGATC

TCTTGGTTCTCGCATCGATGAAGAACGCAGC 

231 100 100 

Cystofilobasidium 

capitatum 

CTGCGGAAGGATCACTAAAGAATTCGCCCTTCGGGGCTCTCTTTATTCAC

ACACCCCTGTGCACTTTGGCCACCTCTTTGTTGAGGTGTGTCTTTTTAAT

TACCATACCCTATAAACACAAGTTATTGAATGTAAAATCGTTATAAACTA

ATATAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGC

A 

189 100 97.9 

Cystofilobasidium 

infirmominiatum 

CACTAGAGATTTCGCCCTCCGGGGCTCTCTTTCTTCACACACCCCTGTGC

ACTTTGGCTGCCGCTTCATTGCGGTGGTCTTTTTAATAATTACCATACCC

ATATACACAAGTCATTGAATGTAAAATCGTTATAAACTAATATAACTTTC

AACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCA 

201 100 100 

Debaryomyces 

nepalensis, D. 

hansenii, D. 

vietnamensis 

CATTACAGTATTCTTTTTGCCAGCGCTTAATTGCGCGGCGAAAAAACCTT

ACACACAGTGTTTTTTGTTATTACAAGAACTCTTGCTTTGGTCTGGACTA

GAAATAGTTTGGGCCAGAGGTTTACTGAACTAAACTTCAATATTTATATT

GAATTGTTATTTATTTTAATTGTCAATTTGTTGATTAAATTCAAAAAATC

TTCAAAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATGAA 

245 100 100 
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Debaryomyces 

nepalensis, D. 

hansenii, D. 

vietnamensis 

CATTACAGTATTCTTTTTGCCAGCGCTTAATTGCGCGGCGAAAAAACCTT

ACACACAGTGTTTTTTGTTATTACAAGAACTCTTGCTTTGGTCTGGACTA

GAAATAGTTTGGGCCAGAGGTTTACTAAACTAAACTTCAATATTTATATT

GAATTGTTATTTATTTTAATTGTCAATTTGTTGATTAAATTCAAAAAATC

TTCAAAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATGAA 

245 100 100 

Diutina 

catenulata 

CTGCGGAAGGATCATAAAAAACTAATTTACACGCGATTTAAAATTGCTTA

CTTCAATAACCTATTAAACAATCAACCAACTAATACCAAAAACTTCCAAC

AACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCA 

137 100 100 

Filobasidium 

oeirense 

CATTAATGAATATAAATCGTACTGTTCACGCAGTATGTGGGGTGGTGACT

TCGGTCCCGCTCATTCATATCCATAACACCTGTGCACTGTTGGATGCTTG

CATCCACTTTTAAACTAAACATTATTGTAACAAATGTAGTCTTATTATAA

CATAATAAAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGAT 

195 100 100 

Goffeauzyma 

gastrica 

CATTAATGAATTCTGAGTAGGCTCTGCCTCTCACCCTTCATATCCATAAA

CACCTGTGCACAGTCGGACCCTTGAGTCTTTCGGGACTCCCGGTGTCTTG

ACGATCTTATCAAACAACAATGTAACCAATGTAATCATTATTATAACATA

ATAAAACTTTTAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGC 

200 100 100 

Hannaella 

coprosmae 

CATTATTAAATGCGAAGCCATCACTGGCCTAGCTTTATAATCCCTTATTA

CACCTGTGCACCTTATTGTCTTTGGACAATTTTAACAAACATCAGTGTAA

AGAATGTAAACTATTATAATAAATACAACTTTTAACAACGGATCTCTTGG

CTCTCGCATCGATGAAGAACGC 

172 100 100 

Hannaella oryzae 

CATTATTAAACGCGAAGCCATCACAGGCCTAGCTTTATAATCCTTATTAC

ACCTGTGCACCTTATTGTCTTCGGACAATCTTTAAAAACAACAGTGTAAC

GAATGTAAACTATTATAAAATAATACAACTTTTAACAACGGATCTCTTGG

CTCTCGCATCGATGAAGAACGC 

172 100 98.84 

Hannaella oryzae 

CTAGCTTTATAATCCTTATTACACCTGTGCACCTTATTGTCTTCGGACAA

TCTTTACAAACAACAGTGTAACGAATGTAAACTATTATAAAATAATACAA

CTTTTAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCA 

145 100 100 

Leucosporidium 

scottii 

CATTAGTGAATATTAGCGCATCTACTTGTAGAGCGTGACCTCCACTTTCT

AACTCTGTGCATTTATTGGCGGAAGGACTTGAGCAATCGAGTTTCCTTCT

GCGGCTCATTTTAAAACACTAGTTAAAGTATGTAACGAAATATCGAAACA

AAAAAAACTTTCAACAACGGATCTCTTGGCTTGCGCATCGATGAAGAACG

CAGCAA 

202 100 99.5 

Mrakia arctica, 

M. gelida 

CACTAGTGATTAAATCGAGAGCGTCTTCATTGACCTCTCACCCTTCACAT

CCACATACACCTGTGCACCGTTTGACTCTTTTAAAAGACGCAAGTCTGCA
212 100 99.06 
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AAGAGAGTCATCAATTTTATACATACCCCAGTCTTATGAATGTAACAGTT

TTAATAAACAAAATAAAACTTTTAACAACGGATCTCTTGGTTCTCGCATC

GATGAAGAACGC 

Mrakia blollopis 

CACTAGTGATTAAATCGAGAGCGTCTTCATTGACCTCTCACCCTTCACAT

CCACATACACCTGTGCACCGTTTGGCTCTTATAAAAGACGCAAGTCTGCA

ATGAGAGTCATCAATTTTATACATACCCCAGTCTTATGAATGTAACAGTT

TTAATAAACATAATAAAACTTTTAACAACGGATCTCTTGGTTCTCGCATC

GATGAAGAACGC 

212 100 100 

Mrakia arctica 

CACTAGTGATTAAATCGAGAGCGTCTTCATTGACCTCTCACCCTTCACAT

CCACATACACCTGTGCACCGTTTGGCTCTTTTAAAAGACGTAAGTCTGCA

AAGAGAGTCATCAATTTTATACATACCCCAGTCTTATGAATGTAACAGTT

TTAATAAACAAAATAAAACTTTTAACAACGGATCTCTTGGTTCTCGCATC

GATGAAGAACGC 

212 100 100 

FK01_169 

CATTAGTGAATCTAGCGTGTCTTGCCCTCGAGCAGAGCGCGACCTCTCAC

TCTATACACTGTGCACTTAATAATCGTGGACGAAACTGAAGCCTCTTGGC

CGACGTGACATCTACGTCTTATTTTATACATGAGTAAACGTATGTCATTA

TATTTAAAAAAGAAAAACTTTCAACAACGGATCTCTTGGCTCTCGCATCG

ATGAAGAACGC 

211 NA NA 

Papiliotrema 

flavescens 

CATTATTGATTGGTCGAAAGACCTTATCAGATTCTACCACCTCTGTGAAC

CGTTGACCTCCGGGTTAATAATCAAACATCAGTGTAACGAACGTAAGAGT

ATCTTAATTAAACAAAACTTTTAACAACGGATCTCTTGGCTCTCGCATCG

ATGAAGAACGCA 

162 100 100 

Rhodotorula 

babjevae 

CATTAGTGAATCTAGGACGTCCAACTTAACTTGGAGTCCGAACTCTCACT

TTCTAACCCTGTGCATCTGTTAATTGGAATAGTAGCTCTTCGGAGTGAAC

CACCATTCACTTATAAAACACAAAGTCTATGAATGTATACAAATTTATAA

CAAAACAAAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGA

ACGC 

204 100 100 

Rhodotorula 

graminis 

CATTAGTGAATCTAGGACGTCCAACTTAACTTGGAGTCCGAACTCTCACT

TTCTAACCCTGTGCATCTGTTAAATTGGACTAGTAGCTCTTCGGAGTGAA

CCGCCATTCACTTATAAACACAAAGTCTATGAATGTATACAAATTTATAA

CAAAACAAAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGA

ACG 

203 100 100 

Rhodotorula 

mucilaginosa 

CATTAGTGAACATAGGACGTCCAACTTAACTTGGAGTCCGAACTCTCACT

TTCTAACCCTGTGCACTTGTTTGGGATAGTAACTCTCGCAAGAGGGCGAA
204 100 100 
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CTCCTATTCACTTATAAACACAAAGTCTATGAATGTATTAAATTTTATAA

CAAAATAAAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGA

ACGC 

Sampaiozyma 

ingeniosa 

CATTAGTGAATTTAGCGCATCTGCTTTGCAGAGCGTGACCTCCACTTTCT

AACTCTGTGCACTTAATGGCGGAAGAGATGAAATATGCTCTTCTGCGGCT

CATTTTATAACACTAGTTAAAGAATGTAACGAAATATCGAAACAAAAAAA

AACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGC 

196 100 100 

Schwanniomyces 

occidentalis 

CATTACAGTATTCTTTTTGCCAGCGCTTAATTGCGCGGCGAAAAAACCTT

ACACACAGTGTTTTTTGTTATTACAAGAACTTTTGCTTTGGTCTGTCTCT

AGAAATAGAGTTGGGCCAGAGGTTTAACTAAACTTCAATTTTATATTGAA

TTGTTTTTTAATTAATTGTCAATTTGTTGATTAAATTCAAAAAATCTTCA

AAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAACGCA 

248 100 100 

Solicoccozyma 

aeria 

CATTAGTGAATTAAACATGCTTGGTGTCTTCGCTTCGGCAAGGCCCTTGC

TTAACTCACATCCCAACACCTGTGAACTGTAAGGCGCATGACTAGGTTCG

CCCAAGTCATCGTCTGCCCTTTTTAACAAACAATTAATGTAACAAACGTA

GTCTTATTATAACCTAATAAAACTTTCAACAACGGATCTCTTGGCTCTCG

CATCGATGAAGAACGC 

220 100 100 

Solicoccozyma 

terrea 

CATTAGTGAATTAAACATGCTTGGTGTCTTCGCTTCGGCAAGGCCCTTGC

TTAAATCACATCCTAACACCTGTGAACTGTAAGACGTATGATGAGGTCTT

TGGCCAAGTCATCGTCTGCCCATTTTTAACAAACAATTAATGTAACAAAC

GTAGTCTTATTATAACCTAATAAAACTTTCAACAACGGATCTCTTGGCTC

TCGCATCGATGAAGAACGCA 

220 100 100 

Tausonia 

pullulans 

CACTAGTGATTAAATCGAGCGTGTCTTCATTGACCGCTCACCCTTCTCAC

CATCCACATACACCTGTGCACTGTTTAGCCTGAGCCGGTTTTCCGGTCCA

GGTTATCATTTCATACAAACTCTAGTCTTATGAATGTAAACGTTTTAATA

ACATAATAAAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATGAAG

AACGC 

205 100 100 

Tausonia 

pullulans 

CACTAGTGATTAAATCGAGCGTGTCTTCATTGACCGCTCACCCTTCTCAC

CATCCACATACACCTGTGCACTGTTTAGCCTGAGCCGTTTCGGTTCAGGT

TATCATTTCATACAAACTCTAGTCTTATGAATGTAAACGTTTTAATAACA

TAATAAAACTTTCAACAACGGATCTCTTGGTTCTCGCATCGATGAAGAAC

GCA 

203 100 100 

Vishniacozyma 

foliicola 

GATCATTAATGATGCCCTCGAAGTCCTTGGACTGGTAGGGTTTGTGTCGG

TCTCTTCGGAGTCGACCTTATCTCACACACCGTGAACTGTGGCTTCGGCC
189 100 100 



82 
 

 
 

ATTTACACAAACTGTTAGTAATGAATGTAATATCATAACAAACATAAAAC

TTTTAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCA 

Vishniacozyma 

sp. isolate C220 

CATTAATAATGCCCTCTGACTTCGGTCAGCTGGGTTCAAATGAGTGCCTT

CTCTTCGGAGTTGGCCATCCTCACACACCGTGAACTGTGGCTTCGGCCAT

CACAAACTGTTAGTAATGAATGTAATATCATAACAAAAACAAAACTTTTA

ACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCA 

194 100 99.48 

Vishniacozyma 

victoriae 

CATTAATAGTGCTCATTGACGCAAGTCAGTGAGTTAGATCTGCTCTCTTC

GCAAGAAGAGGGTTTCCATACACACCGTGAACTGTGGCTTCGGCCATCAC

AAACTGTTAGTAATGAATGTAATATCATAACAAAAACAAAACTTTTAACA

ACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCA 

186 100 97.31 
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Supplementary Table 2 – Partial ITS Sequences of Filamentous Fungi 

Top match Consensus sequence 
Query 

length, nt 

% query 

cover 
% ID 

Acremonium sp. 

MJ35 

ATTACTGAGTGTAAAAACTCCCAACCCTTTGTGAACATACCTCTGTTGCT

TCGGCGGATGCGCCCCGGGCGCGCCTTCTAGGAGGCGTGCCCCGGAACCA

GGCGCCCGCCGGGGGACCTACAAACTCTTGTATTCCTAGCGGATCTCTGA

GTGTGATTTAAACAAATCAAATCAAAACTTTCAACAACGGATCTCTTGGC

TCTAGCATCGATGAAGAACGC 

221 100 100 

Acrophialophora 

levis 

ATTACAGAGTTGCAAAACTCCCCAAACCATTGTGAACCTTACCTTCAACC

GTTGCTTCGGCGGGCGGGCCACAGCGCCCCCCGGGCCCCCCCAGCGGGGC

GCCCGCCGGAGGATACCCAAACTCTTGATACTTTATGGCCTCTCTGAGTC

TTCTGTACTGAATAAGTCAAAACTTTCAACAACGGATCTCTTGGTTCTGG

CATCGATGAAGAACGCA 

217 100 100 

Actinomucor 

elegan 

CATTAAATAAAACTTGAGGGGAAACTGGGCTTACGGGCTTGGTTTTTCTC

TTATTTTTTACCGTGAACTGTCTTATAGCATGGCGCTAGTAGAGATGCCT

GAGCCGCCATACGGGGTAGGCGGCACAGGATGATTTTAATCGAAGCCATG

GTCAAGCCGACTTTTTTTCAGCTTGGTACCCCAAAAATTAATTATTCTAC

CAAATGAATTCAGTATTAATATTGTAACATGGGCTCGCTGAAAGGTGGCC

TATAAAACAACTTTTAACAACGGATCTCTTGGTTCTCGCATCGATGAAGA

ACGCA 

305 99 100 

Actinomucor 

elegans 

CATTAAATAAAACTTGAGGGGAAACTGGGCCTACGGGTTTGGTTTTTCCC

TTATTTTTTACCGTGAACTGTCTTATAGCATGGCGCTAGTAGAGATGCCT

GAGCCACCATACGGGGTAGGCGGCACAGGATGATTTTAATCGAAGCCATG

GTCAAGCCGACTTTTTTTCAGCTTGGTACCCCAAAAATTAATTATTCTAC

CAAATGAATTCAGTATTAATATTGTAACATGGGCTCGCTGAAAGGTGGCC

TATAAAACAACTTTTAACAACGGATCTCTTGGTTCTCGCATCGATGAAGA

ACGCA 

305 99 100 

Albifimbria 

verrucaria, viridis 

TACCGAGTTTACAAACTCCCAAACCCTTTGTGAACCTTACCATATTGTTG

CTTCGGCGGGACCGCCCCGGCGCCTTCGGGCCCGGAACCAGGCGCCCGCC

GGAGGCCCCAAACTCTTATGTCTTTAGTGGTTTTCTCCTCTGAGTGACAC

ATAAACAAATAAATAAAAACTTTCAACAACGGATCTCTTGGTTCTGGCAT

CGATGAAGAACGCA 

214 100 100 
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Aspergillus 

fumigatus, 

fumigatiaffinis 

CATTACCGAGTGAGGGCCCTCTGGGTCCAACCTCCCACCCGTGTCTATCG

TACCTTGTTGCTTCGGCGGGCCCGCCGTTTCGACGGCCGCCGGGGAGGCC

CTGCGCCCCCGGGCCCGCGCCCGCCGAAGACCCCAACATGAACGCTGTTC

TGAAAGTATGCAGTCTGAGTTGATTATCGTAATCAGTTAAAACTTTCAAC

AACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCA 

237 100 100 

Aspergillus 

[multiple] 

TACCGAGTGAGGACCTAACCGGTCCAACCTCCCACCCGTGTCTATCGTAC

CTTGTTGCTTCGGCGGGCCCGCCATTCGTGGCCGCCGGGGGGCATCTCGC

CCCCGGGCCCGCGCCCGCCGGAGACACCAACACGAACACTGTCTGAAGGT

TGCAGTCTGAGTCGATTTATTTAATCGTTAAAACTTTCAACAACGGATCT

CTTGGTTCCGGCATCGATGAAGAACGCAGCA 

231 99 100 

Cladosporium 

[multiple] 

CATTACAAGTGACCCCGGTCTAACCACCgggatgTTcATAACCCTTTGTT

GTCCGACTCTGTTGCCTCCGGGGCGACCCTGCCTTCGGGCGGGGGCTCCG

GGTGGACACTTCAAACTCTTGCGTAACTTTGCAGTCTGAGTAAACTTAAT

TAATAAATTAAAACTTTTAACAACGGATCTCTTGGTTCTGGCATCGATGA

A 

201 100 100 

Clonostachys 

rosea (A) 

CATTACCGAGTTTACAACTCCCAAACCCATGTGAACATACCTACTGTTGC

TTCGGCGGGATTGCCCCGGGCGCCTCGTGTGCCCCGGATCAGGCGCCCGC

CTAGGAAACTCAACTCTTGTTTTATTTTGGAATCTTCTGAGTAGTTTTTA

CAAATAAATAAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATG

AAGAACGCA 

209 100 100 

Clonostachys 

rosea (B) 

CATTACCGAGTTTACAACTCCCAAACCCATGTGAACATACCTACTGTTGC

TTCGGCGGGATTGCCCCGGGCGCCTCGTGTGCCCCGGATCAGGCGCCCGC

CTAGGAAACTTAATTCTTGTTTTATTTTGGAATCTTCTGAGTAGTTTTTA

CAAATAAATAAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATG

AAGAACGCA 

209 100 100 

Fusarium 

oxysporium 

CATTACCGAGTTTACAACTCCCAAACCCCTGTGAACATACCACTTGTTGC

CTCGGCGGATCAGCCCGCTCCCGGTAAAACGGGACGGCCCGCCAGAGGAC

CCCTAAACTCTGTTTCTATATGTAACTTCTGAGTAAAACCATAAATAAAT

CAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCA 

200 100 100 

Fusarium 

incarnatum-

equiseti 

CATTACCGAGTTTACAACTCCCAAACCCCTGTGAACATACCTATACGTTG

CCTCGGCGGATCAGCCCGCGCCCTGTAAAAAGGGACGGCCCGCCCGAGGA

CCCTAAACTCTGTTTTTAGTGGAACTTCTGANTAAAACAAACAAATAAAT

CAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATC 

187 100 100 
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Metarhizium 

robertsii 

TACCGAGTTATCCAACTCCCAACCCCTGTGAATTATACCTTTAATTGTTG

CTTCGGCGGGACTTCGCGCCCGCCGGGGACCCAAACCTTCTGAATTTTTT

AATAAGTATCTTCTGAGTGGTTAAAAAAATGAATCAAAACTTTCAACAAC

GGATCTCTTGGTTCTGGCATCGATGA 

176 100 100 

Metarhizium 

marquandii 

TACCGAGTTTTCAACTCCCAAACCCACTGTGAACATATACCATTTGTTTA

TTCGTTGCCTCGGCGGGTTCTACTCCCTGGAGACAGGGGGCCAGCCCCCG

CCGGTGTAACACCCAAAACCCTGAATGTGTACCCGTTACACGGCAGTATT

ACTCTGAGTCACATCATTTTAAATGAATCAAAACTTTCAACAACGGATCT

CTTGGTTCTGGCATCGATGAAGAACGCAGCA 

231 100 100 

Mortierella 

alpina (A) 

CATTCATAATCAAGTGTTTTTATGGCACTTTCAAAAATCCATATCCCCTT

GTGTGCAATGTCATCTCTCTGGGGGCTGCCGGCTGTCAAAAGCCGTGTGG

TCACCTTTGGGATTTATATCTACTCAGAACTTTAGTGATTTTGTCTGAAA

CATATTATGAATACTTAATTCAAAATACAACTTTCAACAACGGATCTCTT

GGCTCTCGCATCGATGAAGAACGCA 

225 100 100 

Mortierella 

alpina (B) 

CATTCATAATCAAGTGTTTTTATGGCACTTTCAAAAATCCATATCCACCT

TGTGTGCAATGTCATCTCACTGGGGGCCACCGGCTGTCAAAAGCCGTCTG

GTCACCTTTGGGATTTATATCTACTCAGAACTTTAGTGATTTTGTCTGAA

ACATATTATGAATACTTAATTCAAAATACAACTTTCAACAACGGATCTCT

TGGCTCTCGCATCGATGAAGAACGCA 

226 100 100 

Mortierella 

alpina (C) 

CATTCATAATCAAGTGTTTTTATGGCACTTTCAAAAATCCATATCCACCT

TGTGTGCAATGTCATCTCTCTGGGGGCTGCCGGCTGTCAAAAGCCGTGTG

GTCACCTTTGGGATTTATATCTACTCAGAACTTTAGTGATTTTGTCTGAA

ACATATTATGAATACTTAATTCAAAATACAACTTTCAACAACGGATCTCT

TGGCTCTCGCATCGATGA 

218 100 100 

Mortierella 

gamsii 

CATTCATAATAAGTGTTTTATGGCACTTTTTAAATCCATATCCACCTTGT

GTGCAATGTCAGTTGTTCTCTTTTTTGAGAATGACCAAACATCAACTTAT

TCTTTAACTCTTTGTCTGAAAAATATTATGAATAAAATAATTCAAAATAC

AACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCA 

197 100 100 

Mortierella 

hyalina 

CATTCATAATAAGTGTTTTATGGCACTTTTTTAAATCCATATCCACCTTG

TGTGCAATGTCAGGGTTGGTTTCTCTCTTTTGAGAGATCAACCCCAAACA

TCAACTCTATCTTAACTCTTTGTCTGAAAAATATTATGAATAAAACAATT

CAAAATACAACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGA

ACGCA 

205 100 100 
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Mucor 

circinelloides 

CATTAAATAATCAATAATTTTGGCTTGTCCATTATTATCTATTTACTGTG

AACTGTATTATTACTTGACGCTTGAGGGATGCTCCACTGCTATAAGGATA

GGCGATGGAGATGCTAACCGAGTCATAATCAAGCTTAGGCTTGGTATCCT

ATTATTATTTACCAAAAGAATTCAGAATTAATATTGTAACATAGACCTAA

AAAATCTATAAAACAACTTTTAACAACGGATCTCTTGGTTCTCGCATCGA

TGAA 

254 100 100 

Neosartorya 

udagawae 

CATTACCGAGTGAGGGCCCTCTGGGTCCAACCTCCCACCCGTGTCTATCG

TACCTTGTTGCTTCGGCGGGCCCGCCGTTTCGACGGCCGCCGGGGAGGCC

TCGCGCCCCCGGGCCCGCGCCCGCCGAAGACCCCAACATGAACTCTGTTC

TGGAAGTATGCAGTCTGAGTTGATTATCATAATCAGTTAAAACTTTCAAC

AACGGATCTCTTGGTTCCGGCATCGATGAAGAACGCA 

237 100 100 

Penicillium 

oxalicum (A) 

TTACCGAGTGAGGGCCCTCTGGGTCCAACCTCCCACCCGTGTTTATCGTA

CCTTGTTGCTTCGGCGGGCCCGCCTCACGGCCGCCGGGGGGCATCTGCCC

CCGGGCCCGCGCCCGCCGAAGACACACAAACGAACTCTTGTCTGAAGATT

GCAGTCTGAGTACTTGACTAAATCAGTTAAAACTTTCAACAACGGATCTC

TTGGTTCCGGCATCGATGANGAACGCAGC 

229 99 100 

Penicillium 

oxalicum (B) 

CATTACCGAGTGAGGGCCCTCTGGGTCCAACCTCCCACCCGTGTTTATCG

TACCTTGTTGCTTCGGCGGGCCCGCCTCACGGCCGCCGGGGGGCATCCGC

CCCCGGGCCCGCGCCCGCCGAAGACACACAAACGAACTCTTGTCTGAAGA

TTGCAGTCTGAGTACTTGACTAAATCAGTTAAAACTTTCAACAACGGATC

TCTTGGTTCCGGCATCGATGAAGAACGCA 

229 100 100 

Penicillium 

novae-zeelandiae 

CATTACCGAGCGAGGATTCTCTGAATCCAACCTCCCACCCGTGTTTATTG

TACCTTGTTGCTTCGGCGGGCCCGCCTCACGGCCGCCGGGGGGCATCTGC

CCCCGGGCCCGCGCCCGCCGAAGACACCTTGAACTCTGTATGAAAATTGC

AGTCTGAGTCTAAATATAAATTATTTAAAACTTTCAACAACGGATCTCTT

GGTTCCGGCATCGATGAAGAACGCA 

225 100 100 

Plectosphaerella 

cucumerina 

CATTACTGAGTACTACACTCTCTACCCTTTGTGAACTATTATACCTGTTG

CTTCGGCGGCGCCCGCGAGGGTGCCCGCCGGTCTCATCAGAATCTCTGTT

TTCGAACCCGACGATACTTCTGAGTGTTCTTAGCGAACTGTCAAAACTTT

TAACAACGGATCTCTTGGCTCCAGCATCGATGAAGAACGCA 

191 100 100 

Purpureocillium 

lilacinum 

CATTACCGAGTTATACAACTCCCAAACCCACTGTGAACCTTACCTCAGTT

GCCTCGGCGGGAACGCCCCGGCCGCCTGCCCCCGCGCCGGCGCCGGACCC

AGGCGCCCGCCGCAGGGACCCCAAACTCTCTTGCATTACGCCCAGCGGGC

241 100 100 
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GGAATTTCTTCTCTGAGTTGCACAAGCAAAAACAAATGAATCAAAACTTT

CAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCA 

Rhizomucor 

variabilis 

CATTAAATAATCAATAATTTTGGCTTGTCCATTATTATCTATTTACTGTG

AACTGTATTATTACTTGACGCTTGAGGGATGCTCCACTGCTATAAGGATA

GGCGGTGGGGATGTTAACCGAGTCATAGTCAAGCTTAGGCTTGGTATCCT

ATTATTATTTACCAAAAGAATTCAGAATTAATATTGTAACATAGACCTAA

AAAATCTATAAAACAACTTTTAACAACGGATCTCTTGGTTCTCGCATCGA

TGAAGAACGCA 

261 100 100 
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Supplementary Figure 1 – Examples of Disk Diffusion Assay Interpretations 

The shown Cyberlindnera saturnus isolate (left) was determined to be sensitive to clotrimazole 

and miconazole (top rows), as well as itraconazole (bottom right), but resistant to fluconazole 

(bottom left), and weakly susceptible to voriconazole (bottom centre). The zone of inhibition 

measurement for voriconazole, which showed trailing growth, was determined by measuring from 

the edges of the apparent start of the trailing growth and is illustrated here by the red bar.  Likewise, 

the shown Debaryomyces hansenii isolate (middle) was determined to be resistant to fluconazole 

(bottom left) due to the normal-sized colonies within a zone of 70 mm from the disk. Also, the 

ZOI against clotrimazole and itraconazole for the shown Sampaiozyma ingeniosa isolate (right) 

was determined to be between 70 and 150 mm due to small zones of inhibition reaching just below 

150 mm to each disk. 

 

Supplementary Table 3 – Contingency Tables used for Fisher Exact Tests, Analysis of 

Drug Cross-resistance 

 

3.1 - Number of sensitive 

and resistant isolates to 

clotrimazole, voriconazole, 

or both drugs* 
 

3.2 - Number of sensitive and 

resistant isolates to 

miconazole, voriconazole, or 

both drugs* 
 

3.3 - Number of sensitive 

and resistant isolates to 

fluconazole, voriconazole, or 

both drugs* 

  VRCS VRCR 
 

  VRCS VRCR 
 

  VRCS VRCR 

CTZS 81 46 
 

MCZS 81 30 
 

FCZS 46 0 

CTZR 1 7  MCZR 1 22  FCZR 36 52 

           

3.4 - Number of sensitive 

and resistant isolates to 

voriconazole, itraconazole, 

or both drugs* 
 

3.5 - Number of sensitive and 

resistant isolates to 

propiconazole, itraconazole, or 

both drugs* 
 

3.6 - Number of sensitive 

and resistant isolates to 

itraconazole, fluconazole, or 

both drugs 

  ITRS ITRR 
 

  PROS PROR 
 

  ITRS ITRR 

VRCS 52 1 
 

VRCS 73 0 
 

FCZS 46 0 

VRCR 39 14  VRCR 26 7  FCZR 74 14 
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3.7 - Number of sensitive 

and resistant isolates to 

miconazole, fluconazole, 

or both drugs  

3.8 Number of sensitive and 

resistant isolates to 

miconazole, itraconazole, or 

both drugs  

3.9 - Number of sensitive 

and resistant isolates to 

clotrimazole, miconazole, or 

both drugs 

  FCZS FCZR    ITRS ITRR    MCZS MCZR 

MCZS 41 72  MCZS 110 5  CTZS 121 20 

MCZR 0 47  MCZR 13 10  CTZR 5 3 
   

 
   

   
  

3.10 - Number of sensitive 

and resistant isolates to 

clotrimazole, fluconazole, 

or both drugs*  

3.11 - Number of sensitive and 

resistant isolates to 

clotrimazole, itraconazole, or 

both drugs*  

3.12 - Number of sensitive 

and resistant isolates to 

propiconazole, clotrimazole, 

or both drugs* 

  FCZS FCZR 
 

  ITRS ITRR 
 

  PROS PROR 

CTZS 46 80  CTZS 158 12  CTZS 97 3 

CTZR 0 8  CTZR 6 2  CTZR 1 4 

   

 

   

 

 

 

 

  

 

 

 

 

 

  
3.13 - Number of sensitive 

and resistant isolates to 

propiconazole, miconazole, 

or both drugs*  

3.14 - Number of sensitive and 

resistant isolates to 

propiconazole, voriconazole, 

or both drugs  

3.15 - Number of sensitive 

and resistant isolates to 

propiconazole, fluconazole, 

or both drugs 

  PROS PROR 
 

  PROS PROR 
 

  PROS PROR 

MCZS 88 1  ITRS 79 6  FCZS 9 0 

MCZR 8 6  ITRR 7 1  FCZR 77 7 
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Supplementary Table 4 – Contingency Tables used for Fisher Exact Tests, Analysis of 

Isolates Highly Susceptible to Miconazole 

 

4.1 - Number of highly 

susceptible isolates to 

miconazole isolated from 

the control versus the low 

treatment plots  

4.2 - Number of highly 

susceptible isolates to 

miconazole isolated from 

the control versus the high 

treatment plots 

  

ZOI < 

250 

mm 

ZOI >= 

250 

mm  

  

ZOI < 

250 

mm 

ZOI >= 

250 

mm 

From 

control 

plots 

39 8 

 

From 

control 

plots 

39 8 

From 

low 

plots 

51 2 

 

From 

high 

plots 

42 2 
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