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Abstract 

Aging can be defined as the natural and progressive decline in physiological 

functioning leading to increased risk for disease and death. Although the effects of age 

are well characterised, much less work has been done to study whether these detrimental 

changes can be transmitted to offspring. Advanced parental age has been correlated with 

higher incidence of neuropsychiatric disorders such as autism in children. As average 

maternal age increases in North America, it is becoming increasingly relevant to study 

the effects of maternal and paternal age on offspring social behaviour. We hypothesize 

that advanced maternal age in Drosophila melanogaster will affect offspring social 

behaviour as measured in the social space assay. This assay measures the distance to the 

nearest neighbour (cm) after stable social group formation as an index of social behaviour 

in the fruit fly. To test the effect of maternal age, we aged Canton-S females to 7, 30, and 

50 days corresponding to 100%, 90%, and 50% population survival respectively, and 

mated them with 7-day old young Canton-S males. Their eggs were collected and allowed 

to develop into first generation (G1) offspring between the ages of 7–9-days old, which 

were then separated by sex and tested in the social space assay. We found that female G1 

from 50-day old mothers were significantly less social (p<0.0001, n = 7) compared to 

controls from 7-day old mothers (n = 18). Males demonstrated a similar trend of increased 

social space when mothers were 50-days old. In conclusion, there is a sex-specific effect 

of maternal age on offspring social behaviour in D. melanogaster. 

 

Keywords: maternal age effect, social behaviour, aging, drosophila, parental age 
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Introduction   

Aging can be defined as the natural and progressive decline in physiological 

functioning leading to increased risk for disease and death (Grotewiel et al., 2005; López-

Otín et al., 2013). Examples of age-related deteriorations in function include reduced 

fertility, less efficient replacement of old tissue due to cellular senescence, and stem cell 

exhaustion (Kirkendall & Garrett, 1998; López-Otín et al., 2013). Overall, the elderly 

constitute the fastest growing age demographic in Canada, and are expected to become 

the largest proportion of the population within the next few decades (Statistics Canada, 

2011). Accordingly, there has been increased research exploring the mechanisms and 

effects of age on individuals.  

There are several proposed mechanisms for aging. Increased genome instability due 

to an accumulation of mutations throughout an organism’s lifespan may contribute to 

increased cell cycle arrest, otherwise known as cellular senescence (López-Otín et al., 

2013). These mutations may be caused by exogenous sources of DNA damage, such as 

radiation or chemical exposure. DNA integrity may also be challenged by endogenous 

threats such as reactive oxygen species generated by mitochondria, or imperfect DNA 

replication that causes errors in DNA sequence (Turrens, 2003; Hoeijmakers, 2015). 

Epigenetic modifications have also been shown to occur throughout the lifespan; changes 

to DNA methylation or chromatin organisation can contribute to altered gene regulation 

and affect cell and tissue function (Fraga & Esteller, 2007; Talens et al., 2012). In 

summary, aging is a multi-factorial process caused by the combined effects of various 

genetic and molecular changes occurring over time. 



 5 

 Although the effects of aging are well-characterised, it is less clear whether these 

effects can be trans-generational. In other words, can parents conceiving at older ages 

transmit some of these detrimental age-associated changes onto their children? In 

humans, there are several studies that show a correlation between parental age and risk 

for neuropsychiatric disorders (Risch et al., 1987; Eichenlaub-Ritter, 1996). For example, 

both maternal and paternal age are risk factors for autism spectrum disorder, and 

increased paternal age is associated with risk for schizophrenia development (Malaspina 

et al., 2001; Croen et al., 2007; Sandin et al., 2012). Furthermore, advanced maternal age 

is associated with increased risk for chromosomal abnormalities like Down’s syndrome, 

while paternal age has been implicated as a major cause for de novo genome mutations 

through constant DNA replication in spermatogenesis (Risch et al., 1987; Eichenlaub-

Ritter, 1996; Kong et al., 2012). Animal studies have also shown a parental age effect; 

for example, in mouse studies, male offspring from middle-aged mothers had 

significantly lower body weight and smaller gonads compared to male offspring 

produced by younger mothers (Wang & vom Saal, 2000). In fruit flies, both maternal and 

grand-maternal age impact offspring reproductive fitness and progeny viability (Hercus 

& Hoffmann, 2000). Overall, there seems to be an effect of parental age on both the 

physical and behavioural characteristics of offspring; however, the behavioural effects 

have not been well-studied. 

There are several potential mechanisms by which the effects of age may be 

transmitted from parents to offspring through germline cells. In older human females, less 

effective cellular machinery or damaged proteins involved in meiosis may contribute to 

increased rates of chromosomal nondisjunction in offspring (Dailey et al., 1996). 
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Maternal germline cells are also the source of mitochondria for offspring in humans; 

therefore, the effects of mitochondrial dysfunction with increased age may be passed 

down by mothers conceiving at older ages (Cummins, 2002; Shokolenko et al., 2014). In 

males constantly undergoing spermatogenesis, intrinsic errors in DNA replication are the 

major source for de novo mutations in gametes (Risch et al., 1987; Kong et al., 2012). 

This accumulation of mutations in germline cells may be a mechanism for the paternal 

age effect. Furthermore, both maternal and paternal genomes undergo epigenetic changes 

that could be passed down to offspring and impact gene regulation. Specifically, 

epigenetic changes occur throughout life in a fairly predictable manner in a variety of 

organisms; epigenetics has been proposed as a “time-keeping mechanism” for age-related 

changes in cellular function (Fraga & Esteller, 2007; Calvanese et al., 2009). Because 

epigenetic changes might be transmissible onto offspring, this is also a potential 

mechanism for altered gene expression in offspring from older parents. 

Simple animal models such as Drosophila melanogaster are powerful tools for 

studying effects of age because of their short generation time, abundant offspring, and 

genetic homology with humans (Grotewiel et al., 2005; Hales et al., 2015). Furthermore, 

flies demonstrate well-characterised simple and complex social behaviours that are robust 

measures for normal and aberrant social behaviour. There are several experimental 

paradigms established to measure various aspects of fly behaviour, such as learning and 

memory, aggression, and courtship assays (Grotewiel et al., 2005). One such measure for 

behaviour is the social space assay; this experimental paradigm measures the mean 

distance between individuals within a stable social group as a metric for social behaviour 

(Simon et al., 2012; McNeil et al., 2015). Specifically, proper social space is the balance 
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of attractive and repulsive cues between flies, and is a foundational precursor to more 

complex behaviours (Simon et al., 2012). Overall, social space is demonstrated to be a 

consistent and robust metric for social group formation and interaction between flies. 

This project aims to isolate for Drosophila maternal age effect on behaviour, as a 

parallel study in our lab is exploring potential paternal age effect. Furthermore, we have 

previously established a parental age effect on offspring social behaviour when both 

parents are old (Figure 2, Appendix). In female fruit flies, oogenesis occurs similarly to 

spermatogenesis; in contrast with human oogenesis, female fly eggs are constantly 

replicating and maturing at different stages throughout the reproductive tract similarly to 

sperm (Bratu, 2015). Furthermore, female fruit flies pack mitochondria, histones, 

proteins, and various coding and non-coding mRNAs into large eggs prior to fertilization 

(Bratu, 2015). Thus, maternal age effects in the fruit fly would likely be transmitted 

through potential mechanisms such as de novo mutations or through changes in maternal 

germline egg cell packaging.  

To study the effect of maternal age on offspring social behaviour, we will test the 

offspring of old and young mothers mated with young fathers in the social space assay. 

However, controlling for sperm age produces a unique challenge. After mating a single 

time, female flies can store sperm within their reproductive tract spermathecae for up to 

two weeks to facilitate continuous fertilisation (Lefevre & Jonsson, 1962). During this 

time, she may reject other males (Lefevre & Jonsson, 1962; Manning, 1967). 

Furthermore, female flies cannot be kept virgin until they reach desired mating age, 

because older virgin females demonstrate lowered sexual receptivity compared to older 

non-virgin females (Manning, 1967). As such, before we age the females, we will mate 
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them once to genetically modified males whose sperm have been tagged with green 

fluorescence protein (GFP). This will be done to confirm that old sperm have been 

ejected from the female’s reproductive tract prior to re-mating at older ages. A parallel 

fertility and fecundity curve of females mated a single time will also show when stored 

sperm have been ejected from the female reproductive tract. 

In summary, age-related changes in physiology have been well described in aging 

adults. However, less work has been done to characterise whether these detrimental 

changes can be transmitted to offspring by old parents. Although research has been done 

in Drosophila to study the maternal age effect on progeny reproductive fitness, no studies 

look at parental age-associated behavioural changes. Hence, our aim was to characterize 

the effect of advanced maternal age on progeny social behaviour using D. melanogaster 

in the social space behavioural assay. We hypothesized that advanced maternal age in D. 

melanogaster will affect offspring social behaviour in the social space assay.  

 

Materials and Methods 

Fly stocks: We investigated the effect of advanced maternal age on offspring social 

behaviour using wild-type laboratory Canton-S D. melanogaster. Genetically modified 

male flies whose sperm protamines were labelled with green fluorescence protein (GFP) 

were also used; they were prepared according to the transformation protocol as described 

by Manier et al., 2006. All flies were maintained in large mixed sex groups within 

standard bottles containing “Jazz mix” fly food from Fischer Scientific (water, brown 

sugar, agar, yeast, corn meal, benzoic acid and methyl paraben). Environmental 
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conditions were kept constant in an incubator at 25C, 50% humidity, and a 12 hour 

light:dark cycle.  

Aging mothers, mating, and collecting progeny: We collected virgin females from 

Canton-S laboratory stocks under cold anaesthesia using ice, and mated them for three 

days at 25C to males with GFP-tagged sperm. This was done to allow for sperm imaging 

within the female reproductive tract, and to prevent the lowered sexual receptivity seen in 

older females that have never mated. After the initial three-day mating, we removed the 

males. All females were aged in groups of 10-20 in standard vials with “Jazz mix” fly 

food, and transferred every other day. At 30 or 50 days, we re-mated females to 5–7-day 

old Canton-S males for three days. These time points were chosen because they correlate 

to 90% and 50% population survival respectively according to our lab’s survival curves; 

these time points approximate middle and advanced age in the fruit fly (Figure 1, 

Appendix). Control parents were young 5–7-day old Canton-S females mated once with 

5–7-day old Canton-S males. Post-mating, we collected eggs and allowed them to 

develop into first generation adults (G1) between the ages of 5–7-days old, and tested 

them in the behavioural assay.  

Behavioural testing: Progeny behaviour was assessed using the social space assay. This 

assay assesses social behaviour by allowing us to measure the average distance to the 

nearest neighbour once the flies have settled into stable social groups within pre-

constructed glass arenas (Simon et al., 2012; McNeil et al., 2015). We collected G1 

adults between the ages of 5–7-days old under cold anaesthesia and sorted them by sex 

into groups of 15 flies 1–2 days prior to testing. On testing day, flies were transferred into 

fresh vials and allowed to acclimatise to the testing room (25C, 50% humidity) for two 
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hours. Subsequently, we placed the flies into social space assay chambers between 4–7 

hours after lights-on, and allowed them to settle into stable social groups. Pictures were 

taken at 20, 30, and 40 minutes after entry into the chamber. Using ImageJ software and 

GraphPad Prism 6, pictures were analysed to determine the distance to the nearest 

neighbour as a measure for social space distribution.  

Statistics: Outliers were removed using ROUT analysis (Q = 1%). A one-way ANOVA 

and Holm-Sidak post-hoc test were used to compare the mean distances to the nearest 

neighbour between treatment groups. 

Fertility and fecundity curve: Virgin Canton-S females were collected in groups of five 

and allowed to mate with two Canton-S males for three days. After removing males, 

females were transferred at the same time daily and eggs per vial were counted. The 

number of adults that emerged from each vial was also recorded. This was done to assess 

fertility and fecundity across the lifetime for females that were mated once and then 

isolated from males. Plateaued fecundity indicates that no fertilization is occurring, and is 

a control for ensuring that old sperm are removed from the female reproductive tract. 

Microscopy: A sample of Canton-S females were used for visually confirming the 

ejection of sperm from the reproductive tract prior to 30 and 50 days. The reproductive 

tracts of females mated with males expressing GFP-tagged sperm were dissected on 

testes buffer (water, sodium chloride, potassium phosphate, tris buffer) at 0, 1, 2, 3, and 4 

weeks post-mating to visualise the female reproductive tract. The spermathecae and 

seminal tubules were imaged using a standard fluorescence microscope within an hour 

after dissection as a qualitative control to ensure sperm ejection from female flies. 
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Results 

Sperm are present in the female fly reproductive tract after three days of mating, 

as visualised by standard light and fluorescence microscopy (Figure 1A). The majority of 

sperm are no longer visible in the female fly reproductive tract after three weeks’ 

separation from male flies (Figure 1B). After being mated for three days and 

subsequently isolated from males, female flies lay eggs continuously throughout their 

lives as shown by a steadily increasing cumulative number of eggs per day per female 

(Figure 2C). The majority of these eggs yield adults until approximately 25 days, at 

which point the eggs stop yielding adults and the cumulative mean number of adults 

eclosing per day per female plateaus (Figure 2C). 

In the social space assay, female offspring from 50-day old mothers were 

significantly further apart (n=7, p<0.0001) compared to female offspring from 7 or 30-

day old mothers (n=18, n=13 respectively). In males, offspring from 50-day old mothers 

showed a trend of increased social space (n=8, p=0.11) compared to offspring from 7 or 

30-day old mothers (Figure 2).  
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Figure 1. Representative images taken of the female fly spermatheca and reproductive 

tract using standard light (left) and fluorescent microscope (right) corresponding to 3d of 

mating (A), at which time the males are removed, or 21d post-mating (B). These time 

points are shown on a fertility and fecundity curve (C) plotting the cumulative mean 

number of eggs or adults eclosing per day per female +/- SEM (n=9). Arrows at 30 and 

50 days correspond to when females are re-mated with 7 day old males. 
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Figure 2. Distance to the nearest neighbour (cm) after 30 minutes as measured in the 

social space assay. Flies tested were all 7–9-day old Canton-S female or male D. 

melanogaster offspring. Mothers were either 7, 30, or 50 days old (n=18, n=13, n=7 for 

females respectively; n=20, n=15, n=8 for males respectively) when mated to 7 day old 

males. *p<0.0001 as measured using one-way ANOVA and Holm-Sidak post-hoc test. 

Data are presented as means  SEM.  
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Discussion 

 Female D. melanogaster lay eggs continuously throughout their lives after mating 

once for three days. Our results show that although the number of eggs laid per day stays 

fairly consistent over time, the number of flies able to eclose from these eggs declined 

and eventually plateaued around 25 days. This suggests that after approximately three to 

four weeks, sperm are either no longer viable within the female to fertilise eggs, or are 

completely removed from the female’s reproductive tract. Images of the female 

reproductive tract under the fluorescent microscope suggest that it is the latter, as sperm 

can no longer be visualised within the female after three weeks. Other studies looking at 

sperm storage within the female fly corroborate this observation, as researchers have 

shown that sperm are only kept within the female for up to two weeks (Lefevre & 

Jonsson, 1962). Furthermore, if exposed to new males after a certain period of time, 

female flies preferentially re-mate to ensure the viability of the sperm for fertilization 

(Lefevre & Jonsson, 1962). Overall, these findings allow us to be confident that when 

female flies are re-mated at 30 or 50 days to young 7-day old males, females are using 

young sperm to fertilise their eggs.  

Overall, there is an effect of maternal age on offspring social behaviour as shown 

in the social space assay. Previous work in our lab exploring the effect of parental age on 

offspring social behaviour when both parents were either 7, 30, or 50-days old showed 

similar results. Specifically, we show that when both parents are either 30 or 50-days old, 

both female and male progeny are significantly further apart compared to offspring from 

7-day old parents (Figure 2, Appendix). The current study, which isolates for fly maternal 

age, shows no effect of maternal age on offspring social behaviour at 30 days. This 
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suggests that the parental age effect at 30 days is primarily mediated by the father, while 

the mother contributes more at advanced ages. This may in part be explained by the 

fecundity decline over time in female D. melanogaster; Millery et al. show that fecundity 

declines steadily up to 35d, at which point there is an exponential decline in fecundity 

until death (2014). The observed difference in behaviour between offspring from 30 and 

50-day old mothers may be influenced by this dramatic decline in egg viability post 35 

days, although the exact mechanisms for this decline are not yet elucidated.  

There are several mechanisms by which the maternal age effect may be mediated. 

In the female fly, oogenesis is similar to spermatogenesis in that oocytes are continuously 

maturing at various stages within the ovary (Bratu, 2015). This is in contrast to human 

oogenesis, where a single oocyte is selected to mature per cycle. Because of this, both fly 

sexes may be susceptible to increased mutation accumulation in germline cells with 

advanced age, as the number of de novo mutations is correlated with greater number of 

DNA replication cycles (Risch et al., 1987; Kong et al., 2012). With increased age, there 

is a higher likelihood that mutations in germline cells may affect genes that play a role in 

social behaviour modulation. 

Epigenetic changes, which are defined as heritable changes to gene regulation, 

may also contribute to the maternal age effect. Examples of epigenetic mechanisms 

include DNA methylation, histone and chromatin modifications, and microRNA (Fraga 

& Esteller, 2007; Calvanese et al., 2009). Epigenetic changes with age are shown to 

occur in a variety of organisms; for example, mammals demonstrate an overall global 

decrease in DNA methylation with increasing age (Calvanese et al., 2009). These 

predictable epigenetic changes are proposed to be part of an “epigenetic clock” for aging 
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(Calvanese et al., 2009). Research in this emerging field of “aging epigenetics” aims to 

characterize the epigenetic profiles of “old” versus “new” cells, and study how these 

changes contribute to aging (Fraga & Esteller, 2007; Calvanese et al., 2009). When the 

epigenomes of germline cells are affected by parents at advanced ages, these changes to 

gene regulation may be transmissible to offspring.  

In D. melanogaster, there are specific epigenetic alterations that have been 

studied in detail. For example, chromatin-mediated alterations to gene transcription are 

heritable through both mitosis and meiosis (Cavalli & Paro, 1998; Sollars et al., 2003; 

Chong & Whitelaw, 2004). Gene expression is also regulated through the structural 

reorganisation of histones; for example, histones H3K9me3 and HP1 are found to be 

enriched within certain areas of the fly chromosome with advanced age (Wood et al., 

2010; Boros, 2012). Because fly mothers pass on their histones to offspring, these 

changes to histone composition may in part mediate changes in gene expression within 

offspring (Li et al., 2012).  Another epigenetically transmissible element in fruit flies is 

the packaging of non-coding RNAs into eggs by mothers. Non-coding microRNAs are 

involved in post-transcriptional regulation of gene expression through RNA silencing, 

and are distributed throughout the egg to regulate embryo development (Leaman et al., 

2005). MicroRNA expression changes within flies in an age-associated manner; for 

example, microRNA miR-34 regulates long-term brain integrity in fruit flies and has 

emerged as a molecular link between aging and neurodegeneration (Liu et al., 2012). As 

maternal microRNA profiles change with increasing age, these lasting alterations to gene 

expression may be transmitted to progeny through the maternal packaging of RNA into 

eggs. Overall, inheriting these altered histones and non-coding RNAs from mothers of 
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advanced age may in part mediate the behavioural changes observed from progeny of old 

mothers. 

The effect of maternal age on offspring social behaviour is more pronounced in 

females, which are further apart than males. This suggests that maternal age differentially 

affects the two sexes. This is not entirely surprising, as male and female flies demonstrate 

sex-specific behaviours mediated by genes such as doublesex and fruitless (Hales et al., 

2015). For example, a single pheromone cis-vaccenyl acetate (cVA) elicits different 

courtship behaviours in the male and female fruit fly because of sexually dimorphic 

neural circuits established by the gene fruitless (Datta et al., 2008). The sexually 

dimorphic nature of fruit fly neuronal development and social behaviour may explain 

why social space differs between males and females when mothers are old.  

Overall, D. melanogaster maternal age affects offspring social behaviour in a sex-

specific manner. Although further investigation is warranted to elucidate the mechanisms 

for parental and maternal age effects, our research strongly suggests that parental age is 

emerging as an important factor in progeny social behaviour. 
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Appendix 

 

Figure 1. Survival curve for Drosophila melanogaster at 25C (N=9). Arrows indicate 

90%, 50%, and 10% survival of population corresponding to 30, 50, and 70 days 

respectively. 

 

 

Figure 2. Social behaviour of Drosophila melanogaster flies as measured in the social 

space assay. The assay measured distance to the nearest neighbour (cm) after 30 minutes 

for males and females (n=9) at various ages (A), and distance to the nearest neighbour for 

7–9-day old males and females (n=9) whose parents were either 7, 30, or 50 days old (B). 

Data are represented as means  SEM and data analysis was done using one-way 

ANOVA and Holm-Sidak post-hoc test. 
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