
Western University
Scholarship@Western

Computer Science Publications Computer Science Department

2007

Open Source Software Licensing Patterns
Halina Kaminski
University of Western Ontario, hkaminsk@csd.uwo.ca

Mark Perry
University of Western Ontario, mperry@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/csdpub

Part of the Computer Sciences Commons, and the Contracts Commons

Citation of this paper:
Kaminski, Halina and Perry, Mark, "Open Source Software Licensing Patterns" (2007). Computer Science Publications. 10.
https://ir.lib.uwo.ca/csdpub/10

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csd?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/591?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub/10?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages

Open Source Software Licensing Patterns

Halina Kaminski, Mark Perry
University of Western Ontario

{hkaminsk, markp} @csd.uwo.ca

Introduction
Over the last two decades there have been thousands of software releases with ever
increasing complexity. One division between software types is whether it is proprietary
type software, such as Windows and DB2, or Free/Libre and Open Source Software
(FLOSS), such as Linux and MySQL. Both types have associated licenses that define the
terms and conditions of use, reuse and adaptation. The FLOSS term is convenient
shorthand to encapsulate the various flavours of open source. In previous work, we have
identified a number of patterns that can be used in developing a license for proprietary
software. Here we show licensing patterns for FLOSS, and will provide a set of patterns
that can be added to the existing software licensing pattern language [1].

To be categorized as FLOSS, the software license must grant certain rights to the user.
These rights range from the basic access to the software’s source code to the rights to
make copies and distribution of the program. There has been much debate in the FLOSS
community as to the extent of the rights, duties and privileges that are required to fall
within various categories of FLOSS.

Background
Free/Libre and Open Source Software has raised much interest and been gaining
widespread acceptance over the last two decades. This can be seen through the work of
millions of programmers around the world who dedicate significant amounts of their time
developing FLOSS. Although FLOSS has a lot benefits, there is a number of risks that
are associated with this kind of software. One of the greatest risks is potential liability
for intellectual property infringement. Almost every open source project is a collection of
contributions from many people. Contributors do not guarantee the cleanliness of the
code they contribute to the project. The standard open source license is designed to be
protective of the contributor. Most often FLOSS license does not include any intellectual
property representations or warranties in favor of the licensee. It usually contains a broad
disclaimer of all warranties that benefits the licensor/contributors. It is very important to
remember that there is a difference between the software that has a source code available
to anyone and the software that is freely distributed, but still has its code closed to others.
This paper concerns only the product that has a source code open to the public.

In the United States there are over 45 FLOSS licenses in common use. Sometimes the
type of license can be crucial to its end use, and whether one type can co-exist with
software of another type. The main division in FLOSS is between Copyleft and Non-
Copyleft Licenses. The simpler forms of these licenses, for example the revised BSD and

MIT/X11 licenses, allow redistribution and use in both source and binary forms, with or
without modification, on the condition that the copyright notice is retained, and that
applicable warranties are disclaimed. The original BSD license had an ‘obnoxious advertising
clause’ that required attribution to be displayed on all materials for the software, such as
advertising. However, when there were many contributors to a project the attribution
material quickly became large and unwieldy. Current versions of this license do not include
the clause, but there are still many examples of software products released under the original
license or modified versions of the original license.

There is no requirement that derivatives of the free software be free themselves. On the
other hand, the copyleft licenses, like the GNU General Public License (GPL), attempt to
create a contributory commons by requiring that any re-distribution of the software or its
derivatives is released under the free license. The deciding factor in that segregation is the
right to re-distribute the software. In a Copyleft type, any redistribution of a code or its
derivatives must be released under the same free license.

Non-Copyleft licenses allow redistribution and use with or without modification, on the
conditions that the copyright notice is retained and that any applicable warranties are
disclaimed. In this type the derivatives of such software does not have to be free. In order
to make a program free, a programmer should attach “License.txt” file to the source code
containing the text of the license. Most programmers will not try to write an original
license. Not only is it very difficult to come up with a well written document that covers
all legal issues, but also the use of an established license has many advantages: people are
familiar with it and know the implications; the license will have been tested; and common
licenses make it easier to share code between FLOSS software projects.

The difference between open source and free software is at a philosophical level of
abstraction. Because the definition of ‘open source’ is somewhat broader than the
definition of ‘free software’, it is clear that all free software is open source, but not all
open source software is free. In practice, however, most licenses that satisfy the OSI
definition will also be considered ‘free’. It should also be noted, as Stallman pointed out
that “free software does not mean that the software is free, as in requiring no payment.
When I speak of free software, I’m referring to freedom, not price. So think of free
speech, not free beer.” [2]

There are many kinds of FLOSS licenses, but most common are four major types: the
GNU General Public License (GPL), the GNU Lesser (or Library) General Public
License (LGPL), the MIT license, and the BSD license. The Open Source Initiative refers
to these four types of licenses as the classic open source licenses [3]. The GPL and LGPL
are copy-left licenses, which means that the software cannot become proprietary
(although the LGPL, for libraries, can allow linking to proprietary code). The MIT and
BSD licenses let anyone do almost anything with the code except sue the authors.
Recently, GNU (GPL) text has been revised and a draft of new version (v3) of that
license has been released for public review in January 2006. The new version outlaws the
use of the license in restrictive technologies such as Digital Rights Management. The
draft also includes a clause that any software licensed under the GPL must offer free and
unrestricted use of any patented technology that it may contain.

Patterns in language
Over the years programming experts have developed and selected many ways to solve the
licensing problems, although these have typically been static they have addressed the
main requirements for FLOSS. Here we concentrate on illustrating the open licensing
practices that have proved to be useful over the last decade. It is recommended that any
time you are thinking of editing the licensing text you should consult your legal advisor
to make sure that the changes will still comply with the legal requirements of your
jurisdiction or product environment.
Although there is a growing trend to move beyond traditional technologies, the stand-
alone licensing methods still provide the basis for most license managers. In this paper,
we present four open source software licensing patterns that are the basic types of open
source license, and form an extension to an existing software licensing pattern language
presented in [1]. Our previous work identified fifteen basic software licensing patterns
that can be used by novice programmers to select the licensing model that would provide
the best solution for their proprietary software under a non-open license. Figure 1
provides a high level overview of the existing language and the FLOSS licensing patterns
added to the diagram.

 Software License Module

Identity Component Time-Based
 Node-lock

Suite/Bundle Peak Named User Multiple Users
 Shrinkwrap

Feature-based

 Open
Source

Capacity Consumptive Evaluation Cumulative Concurrent

 Disaster/Recovery

Pattern Reference table

GNU GPL BSD GNU
LGPL

MIT

Copy-Left Non Copy-Left

Figure 1: Software licensing patterns

Pattern Name Problem Solution
Software License
Module

(Top level pattern)

There is a need in software
development to ensure the rights of
creators, intellectual property owners.

To meet the needs of software protection a
separate licensing module should be
provided to manage (legally) the use of
software.

GNU GPL
(General Public
License)

To ensure maximum contributions with
the greatest feedback without
proprietary lockup: an open paradigm.

Use the GNU GPL license. It is the best
possible way to achieve a permanently
open source code base, involve open
collaborative development.

GNU LGPL
(Lesser General
Public Software
License)

 To ensure maximum contributions for
a subroutine library with the greatest
feedback without proprietary lockup
but with flexibility: a flexible open
paradigm.

Use the Lesser General Public License
(LGPL), which has been derived from the
GPL and has been designed for software
libraries. Unlike the GPL, an LGPL-ed
program can become a part of a proprietary
program.

Berkley Software
Distribution
(BSD) license

How to acknowledge the original
authors of the software with no
restrictions on how the source code is
used or distributed. How to prevent the
user from including an original author’s
name in the product promotions.

Use the BSD license. It carries very liberal
clauses with it. If you want to spread your
ideas and you do not mind someone else to
accumulate the financial gains for your
contribution you should use BSD license.

MIT license You would like to allow that your name
and software be used for the product
promotion.

Use MIT license. Under MIT license the
source code of your program can be used
(integrated) in another computer program.

The following proprietary patters can be found in H Kaminski & Mark Perry “The Pattern Language of
Software Licensing”, Proc. 10th European Conf. Pattern Languages of Programming EuroPLoP 2005,
(Konstanz: UKV Konstanz GmBH, 2006)
Identity Software
License

There is a need to restrict the
authorized use of software to a
specified user or to a specific machine.
Sometimes a vendor needs to specify
the hardware component that can be
used to run an application.

Assign the license to the specific individual
or to the identified machine or its hardware

Multiple Users
Software License

A company needs a predefined number
of software licenses to be available at
all times. It provides an opportunity for
the vendor to gather single licenses into
one group and put the restriction on the
whole group.

Assign a number of the licenses allowed
for the concurrent use. Every time a user
requests a license one should be issued to
him/her if and only if the number of the
licenses in use does not exceed the number
of licenses allowed.

Time- Based
Software License

Sometimes there is a need to have an
application that should be used only for
a specified period. It is important to
prevent the customer from running the
software after the agreed period.

When the application is first installed, it
should make an entry in the system’s
registry providing the necessary
information about the time restrictions on
the operation of the software. The user
should not be able to run the software after
the expiry date

Pattern Name Problem Solution
Named User
Software License

It is useful to have a mechanism that
restricts the use of software to one
person especially in a setting where
software is Identity based (e.g. e-mail
applications or business transaction
applications).

Include the exclusive user name in the
licensing module.

Node-lock (named
host) Software
License

There is a need to restrict the use of
software to a specific piece of
hardware.

Provide a set of parameters that uniquely
identifies that computer into the software
license module. On installation, identifiers
from the hardware are written into the
executable object file, which can then only
be run on that particular hardware.

Capacity Software
License

To restrict the use of software to the
characteristics of the machine where
that software is executed.

The predefined number of allowed
capacity units should be written into the
license application.

Concurrent
Software License

It is beneficial for a company to have a
predefined number of software licenses
available at all times. There is a need to
restrict the use of software to a defined
number of concurrent users.

The number of the licenses allowed for the
concurrent use should be indicated in the
License Manager data table. Every time a
user requests a license one should be
issued to him/her if and only if the number
of the licenses in use does not exceed the
number of licenses allowed.

Consumptive
Software License

To provide a number of software
licenses to specified number of users.

A license used once cannot be retrieved or
used again. The licensed software cannot
be further used once the number of allowed
uses is exceeded.

Cumulative
Software License

Let the customer to use the software
and calculate the payments based on
the actual usage. You need to provide a
software license that will allow you to
know how many times the users run the
application.

Where a vendor uses the number of
executions as the billing system basis then
the counter has to be implemented such
that it counts the number of executions and
records them into the database where the
information about the total usage is kept. If
the vendor specifies the time units to be
used as the base for the payment then the
database file will hold the number of total
time units used since the last billing.

Feature- based
Software License

To restrict the software use to the pre-
defined set of functions.

The licensing module developer has to
specify a list of features (functions) of the
application that can be locked and
unlocked for the user. This licensing model
has to contain a detailed description about
the availability of the features. The
function locking mechanism has to be
implemented for each function from the list
in the License Manager.

Shrinkwrap
Software License

To restrict the software use to one
computer system the vendor places the
license in the package along with the
software and documentation.

When the application is first installed, it
should write an application key (also
known as License key or Serial Number)
into the system’s registry. Every time the
user requests an operation of the software
the license manager should call upon the
system registry database and check if the
serial number for that application is
correct.

Evaluation
Software License

Many software vendors let their
customers try software before they
enter into some other kind of license.
There is the need to provide ‘try-
before-you-buy’ software license.

The Evaluation Licensing Model is usually
implemented as Time_based,
Feature_based or Consumptive License.

Suite/Bundle
Software License

To provide a license for a set of
software application. To restrict the use
of two or more products which are
licensed individually to the limited
number of concurrent uses?

The license module should link the
products in the bundle by a common
license key and the password. It is possible
to represent all the products in the system
by a single bundle license. The number of
the available licenses should be indicated
in the License Manager’s module.

Peak Software
License

To manage software use based on the
different time of the day.

The time checker has to be included in the
licensing module. Since the usage price
depends on the time of the day the time
checker has to be able to recognize and
return the exact time meaning hour and
minutes values. The time checker has to
communicate with the system’s clock
when it requests the current time and then
it sends that information to be recorded in
the usage log file.

Component
Software License

To restrict the use of software to pre-
defined components.

The licensing software developer should
create several licenses that each carry
unique license key. Each module should
carry a separate license that can be
combined with other product’s license.

Disaster-
Recovery
Software License

To manage software use in the disaster-
recovery scenario.

It can be implemented as a Time_based,
Cumulative or Consumption based.

Category A. Copyleft

Pattern 1: GNU GPL (General Public License) Software License (version 2)

Problem: Ensuring maximum contributions with the greatest feedback

without proprietary lockup: an open paradigm.

Context: The code must be ‘free’: freely available source code, useable by

anyone, adaptable by anyone and redistributable on the same terms
by anyone. Adapted code for distribution requires the same
licensing. The free terms are inseparable from the code.

Forces:

• The GPL is a straightforward yet powerful licence. When code is released under
GPL, there is an obligation that the source code is accessible and any software
deriving from that code. A developer who takes code under a GPL licence and
incorporates it into their own code is obliged to make the source code of the entire
product available to its recipients upon distribution under the GPL. The license
cannot be separated, or split from the code, nor can it be revoked if its terms are
met. The copyright in the code is held by the authors of this code, but this
copyright is limited by the terms of the license, i.e. no rights other than those
under the license can be enforced.

• Code forking is not a problem with FLOSS, but license forking can be [4]; the
GPL prevents code licence ‘forking’, where there is more than one kind of licence
for the same code, by locking the license to the code, unlike some other types of
license. However, some licences offer a choice of GPL or other licence type for
the user.

• This licence choice of GPL for developers means that their source code will
always be available freely and never tied into closed proprietary code. Other
license types can give more ‘downstream’ flexibility for inclusion.

• The GPL allows for the code package to be sold, but not licensed under other
terms, so that a charge could be made for supplying the GPL code by download or
on CD but no further charges (such as an ongoing licence fee). To prevent even
this charge a different licence would need to be used.

• The GPL prevents the monitoring or auditing of the distribution of the code under
the license; other license types allow this.

• Under the GPL, terms anyone can redistribute and change/or modify the source
code, and then distribute the new version, so long as it is under the GPL. There
are some within the community that look to enforce the license terms to prevent
‘free riding’ on code development without giving back any changes to the
community. [5]

• The GPL ensures that you are recognised through attribution as the contributor of
the code, and you want to keep copyright in your code. Copyright is the legal

force that supports GPL, as copyright means that the code can only be replicated
under a license from the copyright owner, so it is the underlying backbone to the
license and enables its enforcement. Without having copyright, simply placing the
code in the public domain, would allow for appropriation of the code [6].

Figure 2 Whatever the input, the GPL remains

Solution:

Use the GNU GPL license. This is the best possible way to achieve a permanently open
source code base, involve open collaborative development, and satisfy the forces. The
full text of a GNU GPL license is available at [7]. Although having a full text of GPL
license available is seen as a good programming documentation practice, it is not
necessary to attach it to the software. It is enough to inform a potential user that this
license type applies to your program.

To license your software with a GNU General Public License you should also attach the
following notices to the start of each source file of your program:

1. Author’s name
2. Notice saying that this program is free software
3. That the program can be redistributed it and modified under the terms of the GNU

General Public License as published by the Free Software Foundation
4. Note saying that you do not offer any warranty for this software
5. The information that a full copy of the GNU General Public License can be

obtained by writing to the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA. [4]

If you are employed and the code is part of your work or you are working on a research
project, you should also get your employer or your supervisor, to sign a "copyright
disclaimer" for the program, if necessary.
The GNU GPL does not permit incorporating your program into proprietary programs.

[note: GPL version 3 is still under development]

Pattern 2: GNU LGPL (Lesser General Public Software License)

Problem: Ensuring maximum contributions for a subroutine library with the

greatest feedback without proprietary lockup but with flexibility: a
flexible open paradigm.

Context: The code must be ‘free’: freely available source code, useable by

anyone, adaptable by anyone and redistributable on the same terms
by anyone, but it can be used with proprietary code. Adapted code
of that library for distribution requires the same licensing. The free
terms are inseparable from the library.

Forces:

• Sometimes there is a need to allow use of a particular library in non-free
programs, which enables a greater number of users to benefit from the open
source software paradigm. For example, many proprietary programs use the GNU
C Library which in turn enables many people to use software with the whole
GNU operating system, as well the variant GNU/Linux operating system. Another
licence, such as GPL, could be used to prevent use with proprietary programs.

• The LGPL requires that there is no requirement to charge for redistribution, if a
charge for the library is required, then another license should be used.

• The determination of intellectual property rights in a library may be uncertain, the
LGPL disclaims any warranty, although you can choose to give a warranty if you
wish to.

• You want other people to incorporate your library software into proprietary
programs, but the LGPL maintains the openness of the library.

Solution:
Use the Lesser General Public License (LGPL) that has been derived from the GPL and
has been designed for software libraries. Unlike the GPL, a LGPL-ed program can
become a part of a proprietary program.
As in a GNU GPL license it is enough to inform a user that such license applies to your
program. To license your software libraries with a LPGL you attach the following notices
to the start of each source file of your program:

1. Author’s name
2. Notice saying that these libraries are free.
3. That the program can be redistributed it and modified under the terms of the GNU

Lesser General Public License (LGPL) as published by the Free Software
Foundation

4. Note saying that these software libraries can be incorporated into proprietary
software.

5. Note saying that you do not offer any warranty for these libraries.

6. The information that a full copy of the GNU Lesser General Public License can
be obtained by writing to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA. [4]

Like in a general GNU GPL license pattern, in this license type, if you are employed and
the code is part of your work or you are working on a research project, you should also
get your employer or your supervisor to sign a "copyright disclaimer" for the program, if
necessary.

Category B: Non Copyleft

Pattern 3: Berkley Software Distribution (BSD) license

Problem: How to acknowledge the original authors of the software with no

restrictions on how the source code is used or distributed. How to prevent
the user from including an original author’s name in the product
promotions.

Context: You have created some software that you want others to use as widely

as possible, but with no restrictions on the downstream use of the
software.

Forces:
• You do not want the software to be used in any advertising.
• License forbids the use of software to promote the product on a market.
• You do not want your name to be used by anyone to promote their program.
• You do not want someone else to incorporate your program into their software

and claim that they wrote it.
• You do not mind if others making money out of some combination of programs

that include yours.

Solution:
Use the BSD license. The Berkeley Software Distribution license, known as BSD
license, gives the most freedom to the software user. It carries very liberal clauses with it.
If you want to spread your ideas and you don’t mind someone else to accumulate the
financial gains for your contribution you should use BSD license. All users are free to
integrate your code into their own software without giving you a credit for your work.
This license forbids the user to use the developer’s name in public to promote the
product. The license also carries a denial of any warranty clause. This protects the author
from any damage caused by the software. [8] Any BSD code can be sold or included in
proprietary products without any restrictions on the availability of your code.
To include BSD license with the program the software developer needs to fulfill three
requirements that claim, that the license has to be retained.
It has to contain:

1. A note, that a redistribution of source code must retain the copyright notice, the
list of conditions and the license disclaimer.

2. A note that a redistribution in binary form must reproduce the above copyright
notice,

3. The list of conditions and the disclaimer in the documentation and/or other
materials provided with the distribution. [9]

The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission. You need to include a full text of the
license with your software. See: (Appendix 1)

Pattern 4: MIT license

Problem: You allow that your name and software will be used for the product

promotion.

Context: You need to preserve the license with no restrictions on the

downstream use of it.
Forces: License allows the use of software for promotion. You might benefit
 from the product being used in advertisement.
Solution:
Use MIT license. Under MIT license the source code of your program can be used
(integrated) in another computer program. If you don’t mind the software creators to use
your name in their products’ promotion you should use MIT license. MIT open source
software license originated at Massachusetts Institute of Technology. It is very similar to
the BSD license except it contains no restrictions as to the use of the original author’s
name in product promotions. The text of the MIT license includes the permission to any
person obtaining a copy of software to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the product. To license your product with MIT license
you should include its text with the software (Appendix 2)

Conclusion
The FLOSS model offers some exciting opportunities for the software market. For
computer scientists and developers, open source licenses offer the opportunity to get their
ideas out to the world, with the opportunity for collaborative feedback.
With a careful choice of license types, it is possible to select the most appropriate
environment for development, and often the greatest benefit is to be had from using open
source software. Naturally, choice of license should be primarily determined by the
intentions of the software developer and the desired outcomes. Although FLOSS is seen
by some as a “long-term developer mindshare threat”, it does offer an alternative means
of software licensing over the proprietary system, and can offer a beneficial and even
profitable environment for many players.

References:

[0] Thanks to Natural Science and Engineering Research Council for funding and shepherds

Eugine Wallingford and Robert Hanmer.
[1] Kaminski, H. Perry, M. “Software Licensing Pattern Language”, EuroPLoP ‘05 Conference,

Irsee, Germany, 2005
[2] Richard M Stallman, “Free Software: Freedom and Cooperation”, Speech at New York

University, New York, 29 May 2001, http://www.gnu.org/events/rms-nyu-2001-transcript.txt
(27 August 2001).

[3] http://www.opensource.org/licenses/
[4] FLOSS encourages forking of the code base, and although code forking is seen as undesirable

in many proprietary development situations (as it is wasteful of resources), with FLOSS it
enables a number of ‘bake-off’ versions to be developed, with the best surviving. Although
initial license forking is possible (for example MySQL AB offers their software under GPL
or under an OEM Commercial License), once GPL is chosen then downstream versions
remain under GPL.

[5] Most GPL enforcement involves persuading companies to put code that embodies GPL code
under GPL. See < http://www.gnu.org/philosophy/enforcing-gpl.html >.

[6] There have been few cases taken as far as court action, but the threat of court action is usually
enough to get the parties to comply with the license. See < http://gpl-violations.org/ >

[7] GNU General Public License v.2 at http://www.gnu.org/copyleft/gpl.html
[8]Weissmann, Marcus, “Open Source Software Licensing”, 2005, http://www.-

mweissmann.de/downloads/OSS-Licensing-Paper.pdf
[9] http://www.opensource.org/licenses/bsd-license.php

http://www.gnu.org/philosophy/enforcing-gpl.html
http://gpl-violations.org/
http://www.opensource.org/licenses/bsd-license.php

Appendix 1 (BSD License)
Copyright (c) <YEAR>, <OWNER>All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

• Neither the name of the <ORGANIZATION> nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.[2]

Appendix 2 (MIT License)

Copyright (c) <year> <copyright holders>

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.[2]

	Western University
	Scholarship@Western
	2007

	Open Source Software Licensing Patterns
	Halina Kaminski
	Mark Perry
	Citation of this paper:

	Introduction
	Background
	Patterns in language
	Pattern Reference table
	Category A. Copyleft
	Category B: Non Copyleft
	Conclusion

