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Abstract  

Children and adolescents with neurodevelopmental disorders (NDDs) demonstrate extensive 

cognitive heterogeneity that is not adequately captured by traditional diagnostic systems. Using a 

transdiagnostic approach, a retrospective cohort study of cognitive functioning was conducted 

with a large heterogenous sample (n = 1529) of children and adolescents 7 to 18 years of age 

with NDDs. Measures of short-term memory, verbal ability, and reasoning were administered to 

participants with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder 

(ASD), comorbid ADHD/ASD, and typically developing (TD) participants using a 12-item web-

based neurocognitive testing battery. Unsupervised machine learning techniques were 

implemented to create a self-organizing map (SOM), an artificial neural network, in conjunction 

with k-means clustering algorithms to identify data-driven subgroups. Six clusters representing 

different cognitive profiles were identified, including participants with varying degrees of 

cognitive impairment. Diagnostic status did not correspond with cluster-membership, providing 

evidence for the application of transdiagnostic approaches to understanding cognitive 

heterogeneity in children and adolescents with NDDs. Additionally, the findings suggest that 

many TD participants may have undiagnosed learning difficulties, emphasizing the need for 

accessible cognitive assessment tools in school-based settings. 

 

Keywords: transdiagnostic, machine learning, cognition, neurodevelopmental disorders, 

autism spectrum disorder, attention-deficit/hyperactivity disorder, learning difficulties 
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A Transdiagnostic Examination of Cognitive Heterogeneity in Children and Adolescents 

with Neurodevelopmental Disorders 

The acquisition and refinement of advanced cognitive processes throughout childhood 

and adolescence represents a critical aspect of development, ultimately shaping how individuals 

understand and interact with the environment around them. Broadly defined as the ability to 

perform higher-level mental processes associated with learning, memory, attention, and 

reasoning, cognitive functioning demonstrates considerable heterogeneity amongst those with 

neurodevelopmental disorders (NDDs), thus confounding research and clinical practice (Larsen 

& Luna, 2018; Márquez-Caraveo et al., 2021).  

Characterized by an onset in the developmental period, NDDs comprise a diverse group 

of psychological conditions associated with developmental deficits that produce impairments of 

personal, social, academic, or occupational functioning (American Psychiatric Association, 

2013). Among the most frequently diagnosed NDDs are attention-deficit/hyperactivity disorder 

(ADHD), and autism spectrum disorder (ASD), impacting approximately 5–11% and 1–3% of 

the global population under 18 years old, respectively (Francés et al., 2022). Both ADHD and 

ASD are highly heritable and frequently co-occurring NDDs (Ames & White, 2011; Coghill & 

Sonuga-Barke, 2012; Willcutt & Pennington, 2002) with estimated comorbidity rates of 30–70% 

(Brookman-Frazee et al., 2018; Joshi et al., 2017; Lyall et al., 2017).  

The distinguishing features of ADHD, including inattention and hyperactivity are 

commonly observed in children with ASD (Arnett et al., 2018; Sokolova et al., 2017; van Steijn 

et al., 2012), and interestingly, many individuals with these conditions demonstrate similar 

impairments in executive functioning (Barkley, 1997; Bloemen et al., 2018; Castellanos-Ryan et 

al., 2016; Pennington & Ozonoff, 1996). In this population, learning difficulties are highly 
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prevalent and often attributed to deficits in executive functioning, with approximately 44% of 

children with ADHD and 65–85% of children with ASD exhibiting concurrent learning 

difficulties (Gillberg & Coleman, 2000; Pastor & Reuben, 2008). Current research indicates that 

both independent and co-occurring diagnoses of ADHD and ASD are linked to impairments in 

several domains of cognitive functioning, such as working memory and attention (Follmer, 2018; 

Holmes et al., 2021a; Landerl & Kölle, 2009; Peng & Fuchs, 2016; Peng et al., 2018; Yeniad et 

al., 2013), leading many children to experience significant challenges at school (Booth & Happé, 

2010; Corbett et al., 2009; Karalunas et al., 2018; Rosello et al., 2022).  

Considering the well-documented relationship between cognitive development and future 

academic performance (Peng & Kievit, 2020; Nesayan et al., 2019), the early identification and 

treatment of cognitive deficits in this population remains a fundamental concern to researchers 

and clinicians alike (e.g., Craig et al., 2016; Young et al., 2020; Zhang et al., 2020). Although 

best addressed through high-quality education, cognitive therapies, and nutrition during the 

formative years of development (Burger, 2010; Jirout et al., 2019), there are numerous obstacles 

impeding proactive approaches. Namely, the extent to which traditional diagnostic systems are 

not conducive to variations in symptomology within diagnostic groups, and the inaccessibility of 

cognitive assessments (Finlay-Jones et al., 2019; MacDonald & Deacon, 2019; Mandell et al., 

2009). The present study seeks to overcome these limitations by utilizing Creyos, an accessible 

web-based neurocognitive testing battery to identify the cognitive profiles of children and 

adolescents with NDDs, including those with ADHD, ASD, and comorbid ADHD/ASD on 

assessments of short-term memory, verbal ability, and reasoning. Transdiagnostic approaches 

will be implemented to examine the extensive cognitive heterogeneity that exists within this 

population, with emphasis on informing the provision of appropriate school-based interventions. 
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Limitations of Traditional Diagnostic Nosologies: 

The dominant categorical approach to classification in the DSM-5 and the ICD-11 has  

widely-recognized limitations in neurodevelopmental research, particularly as it pertains to 

investigations into abnormal cognitive processing (American Psychiatric Association, 2013; 

Aoki et al., 2017; Baribeau et al., 2019; Krakowski et al., 2020; Kushki et al., 2019; World 

Health Organization, 2019). These challenges arise because traditional diagnostic systems tend 

to endorse a core-deficit model of psychopathology, thus warranting the categorization of 

psychological disorders according to a single neurocognitive deficit (Astle & Fletcher-Watson, 

2020). This model posits that core deficits (i.e., impairments derived from a common etiological 

origin) give rise to specific clusters of cognitive, behavioural, and neurobiological attributes 

(Astle & Fletcher-Watson, 2020), however, growing evidence would suggest otherwise.  

Research conducted on the diverse symptom presentation of NDDs within and across 

diagnostic categories has consistently provided support for the phenomenon of equifinality 

(Bishop, 1997), arguing that similar developmental profiles may emerge from the complex 

interaction of different causal factors, rather than a single core deficit (de la Torre-Ubieta et al., 

2016; Gizer et al., 2009; Happé et al., 2006; Hawi et al., 2015; Li et al., 2014; Neale et al., 2010; 

Pennington, 2006; Vorstman et al., 2017). For example, the theory-of-mind hypothesis of ASD, 

which refers to the impaired capacity of individuals with ASD to understand the mental states of 

others, has been contradicted by findings that suggest these impairments may be limited to 

interactions with non-autistic people rather than similar others, thus representing a source of 

miscommunication across sociocultural groups instead of a core deficit (Crompton et al., 2020; 

Edey et al., 2016). Correspondingly, evidence for multifinality (Cicchetti & Rogosch, 1996), 

which proposes that specific neurobiological abnormalities may give rise to different patterns of 
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impairment rather than highly selective deficits (Ameis et al., 2016; Anagnostou & Taylor, 2011; 

Lenet, 2017; Lichtenstein et al., 2010; Lionel et al., 2014; Ronald et al., 2008; Rommelse et al., 

2010; Wang et al., 2017) has been supported by research linking heterogenous cognitive profiles 

to particular neural substrates (Siugzdaite et al., 2020). Therefore, even voxel-wise neuroimaging 

techniques may not be appropriate for examining cognitive deficits associated with conventional 

NDD diagnoses, because these approaches do not capture the dynamic interaction that occurs 

between brain regions throughout development (Johnson, 2011; Karmiloff-Smith, 2009).  

Additionally, strict adherence to traditional diagnostic nosologies has particularly harmful 

consequences for children and adolescents with co-occurring NDDs, heterogenous cognitive 

profiles, and symptomology that fails to reach prescribed diagnostic thresholds (Coghill & 

Sonuga-Barke, 2012). Considering the high rates of comorbidity (Faraone et al., 1998; Willcutt 

& Pennington, 2000; Coghill & Sonuga-Barke, 2012) and heterogeneity that exist within and 

across NDD diagnoses (Ameis et al., 2017; Willcutt & Pennington, 2000; Rommelse et al., 2010; 

van der Meer et al., 2017), categorical classification systems may not adequately capture the full 

population of children that require supports at school, and may not effectively inform the 

provision of school-based interventions according to students’ specific learning challenges.  

Under the categorical one-size-fits-all approach to classification, individuals with 

symptoms that deviate from strict diagnostic criteria run the risk of remaining undiagnosed and 

underserved, regardless of how debilitating their NDD-related learning or cognitive disabilities 

may be (Bathelt et al., 2018; Holmes et al., 2019; Siugzdaite et al., 2020). Among the smaller 

portion of children with learning difficulties who meet the criteria for a clinically-recognized 

NDD, barriers to accessing appropriate interventions are also pervasive (Ono et al., 2019). As 

there is rarely consideration for variability in cognitive performance within diagnostic groups in 
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experimental research, subsequent treatment recommendations are unlikely to address the needs 

of all individuals within a single diagnostic category (Antshel & Russo, 2019; Karalunas et al., 

2018). Furthermore, the generalizability of categorical-based research is further called into 

question when considering that individuals with co-occurring diagnoses are often excluded from 

participant samples, thus alienating a significant portion of the population, and causing the 

literature to overstate the purity of NDDs (Arnett et al., 2018; Sokolova et al., 2017; van Steijn et 

al., 2012). The tendency to use stringent exclusionary criteria also overemphasizes within-group 

homogeneity and individual differences in the sample, which may constitute a barrier to 

understanding neurodiversity in children with cognitive impairments (Fletcher-Watson, 2022).  

The Inaccessibility of Cognitive Assessments: 

 

Concerns regarding the accessibility of diagnostic instruments, specialized personnel, and 

appropriate interventions represent an additional limitation of current diagnostic techniques. 

Many studies suggest that the inaccessibility of cognitive assessments is amplified by systematic 

barriers related to racial, ethnic, gender, and socioeconomic factors (Constantino et al., 2020; 

Tek & Landa, 2012; Williams et al., 2022; Zuckerman et al., 2017). This is evidenced by the 

finding that non-white children from low-income households are less likely to be identified and 

to receive a timely diagnosis of ASD compared to their historically-advantaged counterparts (i.e., 

white children from high-income households), despite the prevalence of ASD remaining 

relatively consistent across demographic groups. (Aylward et al., 2021; Mandell et al., 2007; 

Wiggins et al., 2020). Furthermore, a comprehensive meta-analysis examining prospective and 

longitudinal research on the disparities in accessing ADHD diagnoses found that girls were less 

likely receive an ADHD diagnosis in childhood compared to boys (Hinshaw et al., 2022). It is 

postulated that because girls with ADHD tend to demonstrate more inattentive than hyperactive 
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symptoms, the disorder goes undetected for longer, as clinicians may be more accustomed to the 

classic symptom presentation in boys (Hinshaw et al., 2022; Mowlem et al., 2019; Quinn & 

Madhoo, 2014; Young et al., 2020). Consequently, young girls may experience more challenges 

at school because the delayed diagnosis and treatment of ADHD has been found to predict low 

educational attainment, especially for those with predominantly inattentive symptoms 

(Polderman et al., 2010; deZeeuw et al., 2017). Similar insights were obtained from research 

examining minority-status groups, finding that delays in accessing appropriate interventions 

predicted greater learning difficulties (Marlow et al., 2019), thus emphasizing the need for better 

approaches to the identification and treatment of cognitive impairments that characterize NDDs.  

A Promising Alternative – Transdiagnostic Approaches: 

To address the limitations of traditional diagnostic systems, there has been growing 

interest in using transdiagnostic approaches to capture the large heterogenous population of 

children and adolescents with NDDs (Cuthbert & Insel, 2013; Owen, 2014). Transdiagnostic 

approaches use multivariate data reduction techniques to generate simple mixed-sample models 

of multidimensional data, which contrasts with the univariate approaches often used to analyze 

categorical frameworks with singular discrete constructs (Astle et al., 2022; Bathelt et al., 2018). 

This theoretical model capitalizes on multiple overlapping dimensions that correspond with 

broad latent constructs, along which individuals can be located (Astle et al., 2022; Bathelt et al., 

2018). In using a quantitative classification system, the relationship observed between 

dimensions may be used to determine the mechanisms responsible for shared or unique variance, 

and how extensive variability translates into observable behaviour (Holmes et al., 2021a; Parkes 

et al., 2020). Complementary clustering techniques may also be implemented to identify discrete 

subpopulations of individuals within broad multidimensional space, which may provide insight 
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into the underlying organizational properties of the data, thereby eliminating the need for 

traditional diagnostic boundaries (Astle et al., 2022; Siugzdaite et al., 2020).   

According to this model, NDDs may be best conceptualized in terms of multiple 

continuous dimensions related to cognition, with levels ranging from typical to atypical 

functioning, allowing for a continuity of clinical features rather than strict binarization (Bathelt et 

al., 2018; Holmes et al., 2019).  Therefore, individuals may demonstrate atypical functioning 

across multiple cognitive dimensions, such that their concurrent combination indicates the 

presence of more severe learning difficulties (Astle et al., 2022). In this context, the focus is 

directed towards identifying underlying cognitive symptoms that are responsible for the 

emergence of learning difficulties, under the notion that endophenotype (i.e., quantifiable 

measures on a continuous scale, not directly accessible to observation without standardized 

testing) influences phenotype (i.e., observable features of the disorder) such as academic 

achievement (Casey et al., 2014; Zhao & Castellanos, 2016; Peng & Fuchs, 2016).  

The Transdiagnostic Revolution: 

Aptly denoted the “Transdiagnostic Revolution” by Astle and colleagues (2022), 

dimensional approaches are increasingly being used to promote applications of the 

neurodiversity paradigm in the developmental sciences (Fletcher-Watson, 2022; Sonuga-Barke et 

al., 2016). As strong advocates at the forefront of this movement, the Centre for Attention, 

Learning and Memory (CALM) team at the University of Cambridge has made impressive 

strides towards elucidating the dynamic nature of neurodevelopmental disorders across neural 

(Akarca et al., 2021; Astle et al., 2019; Bathelt et al., 2019; Jones et al., 2022), intellectual 

(Simpson-Kent et al., 2021), behavioural (Bathelt et al., 2018; Bathelt et al., 2021; Jones et al., 

2021), communicational (Mareva et al., 2019), socioemotional (Mareva et al., 2023), 
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psychopathological (Bryant et al., 2020; Guy et al., 2022; Holmes et al., 2021b) and cognitive 

domains of functioning (Holmes et al., 2019; Holmes et al., 2021a; Mareva et al., 2022; 

Suigzdaite et al., 2020; Williams et al., 2022). Furthermore, many non-affiliated researchers have 

made significant contributions, implementing transdiagnostic approaches towards understanding 

the heterogeneity of learning difficulties among children and adolescents (e.g., Archibald et al., 

2013; Child et al., 2019; Doi et al., 2022; Grzadzinski et al., 2013; Martel et al., 2010; Leung & 

Chan, 2016; Poletti et al., 2018; Ramus et al., 2013; Roberts et al., 2017).  

The strengths associated with implementing a transdiagnostic approach in investigating 

neurodevelopmental disorders has been emphasized by many researchers (e.g., Alexander et al., 

2017; Astle et al., 2022; Casey et al., 2014; Coghill & Sonuga-Barke, 2012; Fletcher-Watson, 

2022; Zheo & Castellanos, 2016) and most prominently, by the National Institute for Mental 

Health (NIMH) via the Research Domain Criteria (RDoC) framework for investigating mental 

disorders (Cuthbert & Insel, 2013), and the Hierarchical Taxonomy of Psychopathology 

(HiTOP) model, which serves as a dimensional alternative to traditional diagnostic nosologies 

(Kotov et al., 2017). A notable advantage associated with dimensional constructs is the ability to 

challenge conventional boundaries between diagnostic categories. For instance, many 

researchers theorize that ADHD and ASD are unique manifestations of one NDD along a single 

continuum, given that they share many pathophysiological similarities (Rommelse et al., 2011; 

van der Meer et al., 2012), therefore, a transdiagnostic framework allows for parsing between 

these conventional boundaries. Furthermore, embracing dimensionality provides an opportunity 

to tease apart different cognitive subtypes that may be embedded within clinically-recognized 

NDDs, as evidenced by researchers who have used clustering algorithms to identify distinct 

learning (Archibald et al., 2013) and behavioral profiles (Bathelt et al., 2018) that cut across 
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diagnostic boundaries. These findings have practical applications as well, such that it may 

facilitate the stratification of individuals to appropriate intervention services that address the 

specific cognitive impairments that are contributing to one’s learning difficulties.  

These approaches are beginning to be implemented with cognitive data, but remain in 

their relative infancy (Boulton et al., 2021). Astle and colleagues (2019), for example, were the 

first researchers to apply machine learning to investigate heterogeneity in a large sample of 

struggling learners using cognitive, behavioural, and neuroimaging data. From their analysis 

using a self-organizing map with data from over 500 participants, they identified four distinct 

cognitive profiles that were not significantly predicted by diagnostic status or referral reason 

(Astle et al., 2019). A self-organizing map is a type of artificial neural network whose algorithm 

attempts to learn about the underlying structure of data itself, rather than which data corresponds 

to predefined groups, therefore, these findings suggest there is extensive heterogeneity across the 

cognitive profiles of children and adolescents with learning difficulties (Astle et al., 2019). 

Similar findings were also obtained by Suigzdaite and colleagues (2020), who took a 

dimensional approach to establishing how brain structure relates to cognitive challenges in 

childhood. The researchers submitted cortical morphology, learning, and cognitive data from 

approximately 500 participants to a self-organizing map, and similarly identified four profiles 

that did not correspond with the formal diagnostic status of participants (Suigzdaite et al., 2020). 

These studies, however, are not without limitations. Firstly, because the continuous mapping 

process is not confined by clear boundaries, developing a strong rationale regarding the 

formation of transdiagnostic groups becomes quite difficult. Additionally, both aforementioned 

studies used relatively low sample sizes, meaning their analyses may have lacked sufficient 

power to detect more nuanced group differences, with only the largest and most consistent 
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differences between groups being identified. They also exclusively relied on data obtained from 

formal psychoeducational testing, thus presenting concerns regarding the generalizability of 

these findings, considering that in-person cognitive assessments are largely inaccessible and thus 

excludes a significant proportion of the target population.  

The Present Study: 

 

A retrospective cohort study of cognitive functioning was conducted using a large 

heterogenous sample (n = 1529) of children and adolescents 7 to 18 years of age. Measures of 

short-term memory, verbal ability, and reasoning were administered to participants with ADHD, 

ASD, comorbid ADHD/ASD, as well as TD participants using a 12-item neurocognitive testing 

battery. The objectives of the present study were to identify cognitive profiles in the sample and 

to determine their correspondence with traditional diagnostic status. 

Given that there is rich neurodiversity among children and adolescents with learning 

difficulties, it was hypothesized that an unspecified number of cognitive profiles would emerge 

from the dataset that cut across diagnostic boundaries, based on participants’ relative strengths 

and weaknesses in different domains of cognitive functioning. It was also hypothesized that the 

cognitive profiles identified would not correspond with participants’ formal diagnostic status 

because the transdiagnostic approach will capture the extensive variability in symptomology that 

exists within and across conventional NDD diagnoses. Unlike previous research, the present 

study examined a substantially larger heterogenous sample, and analyzed cognitive assessments 

administered on Creyos, a web-based neurocognitive battery, rather than relying on in-person 

cognitive assessments which are largely inaccessible. The cognitive profiles that emerged from 

the sample may be used to inform the provision of school-based interventions by accounting for 

children’s strengths and weakness across different domains of cognitive functioning. 
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Method 

Participants 

No recruitment or compensation procedures were implemented in the present study. The 

dataset consisting of both cognitive and demographic information was previously collected by 

researchers at Brain Balance Achievement Centers between March 2019 and October 2020 from 

various sites across North America. Data was initially collected to assess the efficacy of the 

Brain Balance Program, an integrative and multimodal training initiative that aims to improve 

cognitive performance among children and adolescents with learning difficulties.  

A sample of 1529 participants (1024 boys and 505 girls) between the ages of 7 and 18 

years old (M = 10.60 years, SD = 2.69 years) was obtained from a larger dataset of over 10000 

participants, with inclusion criteria that extended to capture residents of North America and 

fluent English speakers. Additionally, it was determined that participants in the typically 

developing group had not been diagnosed with any psychological disorder(s) or motor 

difficulties (i.e., significant gross motor difficulties and/or motor skill disorders, as diagnosed by 

a physician). Participants in the experimental group were required to have a diagnosed 

neurodevelopmental disorder (i.e., Attention-Deficit/Hyperactivity Disorder, Autism Spectrum 

Disorder) and no comorbid condition(s) that would impact cognitive functioning (e.g., 

Intellectual Disability, Global Developmental Delay).  

Subsequently, four groups were identified, including 510 participants with ADHD (360 

boys and 150 girls, Mage = 11.39 years) 42 participants with ASD (36 boys and 6 girls, Mage = 

12.40 years), 42 participants with comorbid ADHD/ASD (35 boys and 7 girls, Mage = 13.03 

years), and 935 Typically Developing (TD) participants (593 boys and 342 girls, Mage = 10.50 

years). A consort diagram can be found in Appendix A.  

13
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Materials 

Online Cognitive Tests  

The online cognitive tests administered through the research platform Creyos (see 

Appendix B) consist of an extensively-validated 12-item battery that measures short-term 

memory, reasoning, and verbal ability (Hampshire et al. 2012; Owen et al., 2010). The 

assessment takes approximately 40 minutes to complete, and each task has been “gamified” to 

maintain participant interest. Before each task, written instructions are displayed to participants 

in paragraph form. No other instructional material is provided, and the tasks are designed to be 

self-administered. Cognitive performance is reflected in participants’ scores across 66 relevant 

performance measures, including final score, maximum score, average score, number of 

attempts, number of correct responses, number of errors, and reaction time for each task. 

The Creyos platform is routinely used to administer online cognitive tests to children, 

adolescents, and adults – including children as young as 4 years old and children with 

neurodevelopmental disorders. Since its inception, Creyos has accumulated a database of 

roughly 4.5 million scores from over 400,000 users, with 75,000 of these scores being used to 

establish associations between task performance and IQ (Hampshire et al., 2012). The cognitive 

tasks have been validated in several large-scale studies examining healthy controls and patient 

populations. For example, researchers have observed that results from the Creyos battery were 

comparable that of the Wechsler Adult Intelligence Scale Revised (WAIS-R), a standard 2–3-

hour neuropsychological battery (Levine et al., 2013), and that the Creyos battery outperformed 

the Montreal Cognitive Assessment (MoCA), a standard task of cognitive abilities in assessing 

capacity in the elderly (Brenkel et al., 2017). Test-retest reliability calculated from a population 

sample (N = 12,463) collected on the Creyos website revealed an average Pearson’s correlation 
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of r = 0.69 across the 12 cognitive tasks and learning effects of 3.16 (% improvement) between 

session one and session two, indicating high levels of reliability (Creyos, n.d.). Descriptions of 

each cognitive task used in the assessment can be found below (Wild et al., 2018): 

Paired Associates (PA). A puzzle-based assessment routinely used to detect impairments 

of memory in aging clinical populations (Gould et al., 2005). At the beginning of the task, 

several boxes appear on the screen in a randomly distributed manner, and one-by-one, each box 

opens to reveal a different icon (e.g., cube, windmill, envelope, etc.). Users are instructed to 

remember which icons correspond with each box, and upon being presented with each icon 

sequentially, they must indicate which box the icon initially appeared in. If participants correctly 

identify all the icon-location pairs, the difficulty level of the task increases, such that one 

additional box appears in the next trial. However, if an identification error is made, subsequent 

trials will contain one less box. The task continues until three errors are made, and the user’s 

final score is calculated based on the number of paired associates successfully remembered. A 

population sample (N = 1131) collected from the Creyos website provides evidence for high test-

retest reliability, revealing a Pearson’s correlation of r = 0.45 and learning effects of -0.38 (% 

improvement) between session one and session two (Creyos, n.d.).  

Digit Span (DS). An adaptation of the verbal working memory component of the 

Weschler Adult Intelligence Scale Revised (WAIS-R; Weschler, 1981). After observing a 

sequence of digits that appear on the screen in green-coloured ink, users are instructed to 

reproduce the sequence in the correct order using an on-screen keyboard. The difficulty level of 

the task progressively increases with each successful trial, such that the digit sequence increases 

in length. Otherwise, unsuccessful attempts cause the sequence to decrease in length. The task 

continues until three mistakes are made (i.e., the digit sequence is recalled incorrectly on three 
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separate occasions), and the longest digit sequence successfully reproduced reflects final scores. 

Evidence for high test-retest reliability was obtained from a population sample (N = 1022) 

collected on the Creyos website, which revealed a Pearson’s correlation of r = 0.64 and learning 

effects of 1.33 (% improvement) between session one and session two (Creyos, n.d.). 

Feature Match (FM). An assessment used to measure attentional processing, based on 

classical feature search tasks (Treisman & Gelade, 1980). In this task, two boxes are displayed 

side-by-side on the screen, with each containing an assortment of shapes. Users are instructed to 

determine whether the contents of the two boxes are identical or different (i.e., whether each 

shape and their relative positions match, or differ by just one item) by selecting the ‘match’ or 

‘mismatch’ options. Over the course of 90 seconds, participants must complete as many trials as 

possible. Following each correct response, an additional shape is added to the next trial, whereas 

incorrect responses result in the removal of one shape from subsequent trials. Final scores are 

calculated based on how many correct responses are provided, minus the incorrect responses. 

Test-retest reliability calculated from a population sample (N = 1132) collected on the Creyos 

website revealed a Pearson’s correlation of r = 0.57 and learning effects of 4.09 (% 

improvement) between session one and session two, indicating high reliability (Creyos, n.d.). 

Spatial Planning (SP). A measure of executive functioning based on the Tower of 

London Task (Shallice, 1982). Participants are presented with a tree-shaped diagram that is lined 

with circles numbered one through nine and must rearrange the diagram so that the circles are 

placed in ascending numerical order. The green-coloured circles are used to identify numbers 

placed in the correct location, whereas the red-coloured circles represent numbers that are placed 

in the incorrect location. To reorganize their positions, users must select a circle to take it off the 

end of a branch, and then select the spot where they would like it placed. The trials progressively 
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increase in difficulty, and a successfully completed puzzle boosts their final score by the 

following metric: ((2 x minimum number of moves required to solve the puzzle) – the number of 

moves made). Participants are allocated three minutes to solve as many puzzles as possible. A 

Pearson’s correlation of r = 0.87 and learning effects of 3.75 (% improvement) between session 

one session two indicates high test-retest reliability, as evidenced from a population sample (N = 

1150) collected on the Creyos website (Creyos, n.d.). 

Polygons (PO). A variation of the Interlocking Pentagons Task, which is commonly used 

to assess visuospatial processing and detect age-related disorders (Folstein et al., 1975). Users 

are presented with two overlapping polygons on the left side of the screen, and a single polygon 

positioned on the right. They must indicate whether the single polygon is identical to either of 

the two overlapping polygons by selecting ‘match’ or ‘mismatch.’ Each correct response 

increases their score by an amount equal to the difficulty level of the trial, and vice versa occurs 

with each incorrect response. Throughout the task, the trials progressively increase in difficulty, 

such that the differences between polygons become more subtle, thus making them more difficult 

to distinguish. Final scores reflect the number of correct identifications made in 90 seconds. A 

population sample (N = 905) collected from the Creyos website provides evidence for high test-

retest reliability, revealing a Pearson’s correlation of r = 0.60 and learning effects of 7.91 (% 

improvement) between session one and session two (Creyos, n.d.). 

Monkey Ladder (ML). A visuospatial working memory task derived from non-human 

primate literature (Inoue & Matsuzawa. 2007). In this task, numbered boxes are simultaneously 

displayed across random locations on the screen for a limited amount of time (i.e., number of 

boxes x 90 milliseconds), after which the numbers disappear and only the boxes remain. Users 

are instructed to select the boxes in ascending numerical order and obtain a final score based on 
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the length of the longest sequence remembered. The difficulty of each trial varies dynamically, 

such that correct responses are followed by trials with an additional digit, and incorrect responses 

are followed by trials that have one less digit. There is no time limit for answering, however, the 

assessment ends after three mistakes are made. Evidence for high test-retest reliability was 

obtained from a population sample (N = 804) collected on the Creyos website, which revealed a 

Pearson’s correlation of r = 0.57 and learning effects of 1.62 (% improvement) between session 

one and session two (Creyos, n.d.). 

Rotations (RT). A measure of spatial manipulation ability adapted from the Spatial 

Rotation Task (Silverman et al., 2000). Two grids appear on the screen during the task, and each 

of which contains a varying number of coloured squares. One of the grids may be rotated by a 

multiple of 90 degrees, and participants must determine whether the grids are identical when 

unrotated or if they differ based on the positioning of one item. They are given 90 seconds to 

successfully complete as many trials as possible. Correct identifications boost the user’s score by 

the number of squares present and adds an additional square to subsequent trials. Incorrect 

identifications cause the user’s score to decrease by the number of squares present during that 

trial and removes a square from the next trial, thus making it easier to solve. Test-retest 

reliability calculated from a population sample (N = 1122) collected on the Creyos website 

revealed a Pearson’s correlation of r = 0.70 and learning effects of 5.43 (% improvement) 

between session one and session two, indicating high reliability (Creyos, n.d.). 

Odd One Out (OOO). A deductive reasoning task based on a subset of problems from 

the Cattell Culture Fair Intelligence Test (Cattell, 1949). Nine patterns appear on the screen, and 

users are instructed to identify which patterns differ from the rest. In each trial, the patterns are 

related to each other according to their common features, including colour, shape, and number of 
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items, however, there is always one group that does not conform to these rules. Rather, 

participants must deduce what set of rules unify the group and select the pattern that does not 

match. The objective of this task is to solve as many puzzles as possible within three minutes, all 

while they progressively become more complex. With each correct response, the user’s score 

increases by one, and each incorrect response causes their score to decrease by one. A Pearson’s 

correlation of r = 0.73 and learning effects of 1.55 (% improvement) between session one session 

two indicates high test-retest reliability, as evidenced from a population sample (N = 1138) 

collected on the Creyos website (Creyos, n.d.). 

Grammatical Reasoning (GR). An adaptation of Alan Baddeley’s Three-Minute 

Grammatical Reasoning Task (Baddeley, 1967). This assessment of verbal memory ability 

features a brief written statement alongside two different shapes on the screen. For each trial, the 

user must indicate whether the statement reflects the characteristics of the shapes pictured below 

(e.g., circle is not bigger than square, square does not contain circle, etc.) by selecting either 

‘true’ or ‘false.’ Each correct response increases the participant’s score by one, and each 

incorrect response decreases their score by one. Participants are given 90 seconds to complete as 

many trials as possible to maximize their score. A population sample (N = 1148) collected from 

the Creyos website provides evidence for high test-retest reliability, revealing a Pearson’s 

correlation of r = 0.89 and learning effects of 2.24 (% improvement) between session one and 

session two (Creyos, n.d.). 

Double Trouble (DT). A modified version of the Stroop Task (Stroop, 1935) that 

measures cognitive inhibition. In this adaptation, a target word (either ‘RED’ or ‘BLUE’) 

appears at the top of the screen in red-coloured or blue-coloured ink, and the participant must 

select one of two probe words from the bottom of the screen that accurately describes the ink 
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colour of the target word. The task cycles through many word-colour combinations, such that the 

mappings can be congruent (i.e., the description and ink colour match for all words), incongruent 

(i.e., either the target word or the probe words are written in the opposite colour of what they 

describe), or doubly incongruent (i.e., both the target word and the probe words are written in the 

opposite colour of what they describe). Scores are calculated based on the number of correct 

responses produced in 90 seconds, and incorrect answers deduct one point. Test-retest reliability 

calculated from a population sample (N = 1151) collected on the Creyos website revealed a 

Pearson’s correlation of r = 0.92 and learning effects of 4.90 (% improvement) between session 

one and session two, indicating high reliability (Creyos, n.d.). 

Spatial Span (SS). A spatial short-term memory tool derived from the Corsi Block 

Tapping Task (Corsi, 1972). This task begins with 16 purple blocks on the screen, and one-by-

one, a randomly selected sequence of the blocks become green. After observing this sequence, 

participants are instructed to select the boxes that previously turned green in the correct order. 

The difficulty of the task varies dynamically, such that correct responses increase the length of 

the subsequent trials by one box, and incorrect responses decrease the length of the following 

sequence by one box. The length of the longest sequence successfully remembered during the 

three-minute task reflects the user’s final score. Evidence for high test-retest reliability was 

obtained from a population sample (N = 647) collected on the Creyos website, which revealed a 

Pearson’s correlation of r = 0.62 and learning effects of 0.46 (% improvement) between session 

one and session two (Creyos, n.d.). 

Token Search (TS). Based on an assessment commonly used to measure working 

memory and strategy during search behaviour (Collins et al., 1998). In this task, boxes are 

randomly distributed around the screen, and users must click on them one-by-one to find a 
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hidden green token. If the token is successfully located, another trial begins with an additional 

box on the grid, and a new token is hidden within one of the boxes. Participants are instructed to 

remember where previous tokens were discovered, because the new tokens are never hidden in 

the same location twice. If they select a box that has already been clicked or a box that 

previously contained the token, an error has been made and a new trial begins with one less box. 

This task continues until three errors are made, and the maximum level completed reflects the 

user’s final score. A Pearson’s correlation of r = 0.66 and learning effects of 4.99 (% 

improvement) between session one session two indicates high test-retest reliability, as evidenced 

from a population sample (N = 1113) collected on the Creyos website (Creyos, n.d.). 

Demographic Questionnaire 

A 29-item demographic questionnaire was completed by the child’s parent(s) on 

Qualtrics survey software, which included questions about participants’ biological sex, age, 

birthdate, ethnicity, medical diagnoses, or medications, social, sleep, and physical activity 

patterns, concentration and motivation tendencies, family income, languages spoken at home, 

and parents’ level of education (Appendix C). 

Procedure 

Upon enrollment in the Brain Balance program, participants were provided with Creyos’ 

Terms of Use and Privacy Policy, located on the Creyos website (https://creyos.com) and the 

Brain Balance Privacy Policy, which can be found on the Brain Balance Achievement Centre 

website (https://www.brainbalancecenters.com). Consent from parents and verbal assent from 

youths were obtained. Participants were instructed to complete a randomized 12-item web-based 

cognitive assessment on Creyos, and the child’s parent/guardian(s) were asked to complete a 

brief demographic questionnaire on Qualtrics.  
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Analysis 

Participant responses from the cognitive assessment and demographic questionnaire were 

merged into a single dataset using R (Version 4.2.0) to allow for data cleaning. Incomplete 

responses as well as responses from participants that did not meet the prescribed inclusionary 

criteria were removed from the dataset. Several variables including participant age, sex, and 

socioeconomic status were statistically controlled for by including them as covariates in a linear 

regression model and extracting the residuals associated with each variable. Data visualization 

was performed using box plots, and rows containing outliers were removed from the dataset. 

Unsupervised machine learning techniques were used to create a self-organizing map 

(SOM; Kohonen, 1989), an artificial neural network that yields data-driven subgroups 

independent of formal diagnostic status. Within the model, each node (or neuron) represents a 

unique cognitive profile, and spatially nearby nodes represent similar cognitive profiles. 

Therefore, the nodes should group together categorically if diagnoses are predictive of cognitive 

profiles learned by the network, while also demonstrating heterogeneity within groups. 

The SOM of size 10x10 with a hexagonal topology and bubble neighbourhood function 

was trained using 1529 observations, such that each node was randomly assigned a weight vector 

with the same dimensionality as the input data. A 10x10 grid of nodes was used to replicate the 

statistical parameters outlined by Astle and colleagues (2020) in previous research, which 

follows the guideline of having the number of nodes equal to approximately five times the square 

root of the number of observations (Tian et al., 2014). A hexagonal topology was used to 

preserve topographical distances between the nodes and to reduce distortion from mapping, thus 

allowing for accurate interpretations of the relationships between the input data and the nodes. 
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The input data was submitted to the SOM to allow for similarity calculations between the 

input data and each node using sum of squares. Then, the node with the closest weight vector to 

the input data was selected by the SOM as the best-matching unit (BMU), while the weights 

associated with the neighbourhood of nodes were adjusted to be closer to the value of the input 

data. This step was accomplished using a learning rate of α = 0.05, a standard SOM parameter, 

that progressively decreases over time, which allows the weights to gradually converge toward 

the input data. The bubble neighbourhood function ensures that nodes closer to the BMU are 

given higher weights, whereas nodes further away are assigned lesser weights.  

To identify data-driven clusters, node weight values from the SOM were submitted to the 

k-means clustering algorithm, such that each node had 66 weights associated with it, 

corresponding to relevant performance measures from the 12 cognitive tasks. The number of 

clusters identified was informed by visual examinations of the data with scree plots (i.e., 

eigenvalues plotted as a function of the number of clusters) and the elbow method (i.e., explained 

variance plotted as a function of the number of clusters). 

Assumption testing revealed a violation of Levene’s homogeneity of variances test, 

therefore, Welch’s One-Way ANOVAs were conducted on participants’ z-scores to compare 

cluster-level performance across the 66 relevant performance measures, and Games-Howell post-

hoc comparisons were used to tease apart statistically significant relationships. Quantization 

error (i.e., how accurately the output data represents the input data), topographic error (i.e., how 

accurately the model preserves the topology of the input data), and Kaski-Lagus error (i.e., how 

accurately the model to preserves the underlying structure of the input data) were calculated to 

assess the accuracy of the SOM model, and individual cognitive profiles assigned by the 

clustering algorithm were compared with the formal diagnostic status of participants. 
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Results 

Comparison of the Weight Matrices: 

The similar node weight topographies for each weight vector (i.e., the weights 

corresponding to each cognitive task across the grid of nodes) shown in Figure 1 indicate that the 

cognitive tasks discriminate between participants in similar way. For example, high weights tend 

to cluster along the left side of the topographical maps for Digit Span, Token Search, and Double 

Trouble, whereas low weights tend to cluster along the left side of the topographical maps for 

Grammatical Reasoning, Feature Match, Polygons, and Rotations.  

This observation is further substantiated by the weight correlation matrix, which 

demonstrates an average inter-item correlation of r = 0.38, ranging from r = -0.21 to r = 0.80. In 

accordance with previous research, the cognitive tasks appear to group together according to the 

higher-order cognitive domain being measured, such that Grammatical Reasoning, Feature 

Match, Polygons, and Rotations are highly inter-correlated (r = 0.64), Monkey Ladder, Spatial 

Span, Paired Associates, Spatial Planning, and Odd One Out are highly intercorrelated (r = 0.50), 

and Digit Span, Token Search, and Double Trouble are moderately intercorrelated (r = 0.28). 

These findings correspond with Hampshire and colleagues’ (2012) proposed factor structure of 

the testing battery, derived from a principal component analysis with orthogonal rotation that 

identified three overarching cognitive domains, including reasoning, short-term memory, and 

verbal ability. For example, there are high factor loadings for Grammatical Reasoning (0.33), 

Feature Match (0.57), Polygons (0.54), and Rotations (0.66) onto the reasoning domain. Similar 

observations were noted for Monkey Ladder (0.69), Spatial Span (0.69), Paired Associates 

(0.58), Spatial Planning (0.41), and Odd One Out (0.19) onto the short-term memory domain, 

and for Digit Span (0.71), Token Search (0.16), and Double Trouble (0.51) onto the verbal 
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ability domain. These findings suggest that the SOM represents the cognitive data well, 

accounting for 64% of total variance, which corresponds with expected results based on the 

literature. Quality measures associated with the SOM indicate that the model is highly robust, 

with a quantization error of 10.35, topographic error of 0.65, and Kaski-Lagus error of 7.95.  

 

Figure 1 

Pearson Correlation Matrix and Weight Distributions from Self-Organizing Map, Split by Task  

 

Note. The map depicts high weights (i.e., good performance) as yellow squares and low weights 

(i.e., poor performance) as red squares for each task. Pearson correlations between the weight 

distributions of tasks (i.e., inter-item correlations) are pictured in the bottom-right matrix.  

 

Exploring Distributions of Different Categories of Children and Adolescents: 

To determine whether participants’ NDD diagnoses were reflected in the map, the 

distributions of children’s best matching unit (BMU) were plotted for all children and then for 
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children categorized by diagnosis in Figure 2. The topographical mappings demonstrate that 

category membership did not significantly predict cognitive profile, because participants from 

the same diagnostic groups did not collate together on the map. Rather, the best matching nodes 

were evenly scattered across the map, indicating that diagnostic status did not provide valuable 

insight into the cognitive profiles associated with different groups of children and adolescents.  

 

Figure 2 

The Distributions of Children and Adolescents’ Best Matching Unit (BMU) Within the Map  

 

 Note. The top panel shows the distributions of children’s best matching unit (BMU) for all 

children and then for children categorized by diagnosis. The bottom panels show the 

distributions of children assigned to each of the six clusters.  
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Identifying Cognitive Profiles: 

Figure 3 depicts the six cognitive profiles that emerged from the analysis, including: 

cluster one, which consisted of disengaged performers; cluster two, which comprised highly 

accurate performers in measures of selective attention and deductive reasoning; cluster three, 

which consisted of highly accurate performers across all measures; cluster four which included 

average performers with delays in episodic memory; cluster five which consisted of average 

performers with strengths in spatial manipulation and working memory, and cluster six, which 

contained impulsive performers (see Table 1). Means, standard deviations, and one-way analyses 

of variance can be found on Table 2, an overview of the cognitive profiles on Table 3. Figure 4 

demonstrates that diagnostic status did not correspond with cluster membership.  

 

Figure 3 

Self-Organizing Map Topography 

 

Note. The SOM of size 10x10 with a hexagonal topology and a bubble neighbourhood function 

was trained using 1529 observations, 200 iterations, and learning rate of α = 0.05. The distance 

measure used is sum of squares, and mean distance to the closest unit in the map is 4.007.  
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Table 1 

 

Demographic Characteristics of Participants, Split by Cluster Membership 

 
Characteristic Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

n % n % n % n % n % n % 

N 

Gender 

103 6.7 434 28.4 377 24.7 291 19 231 15.1 93 6.1 

    Male 67 65.0 293 67.5 245 65.0 204 70.1 151 65.4 64 68.8 

    Female 36 35.0 141 32.4 132 35.0 87 29.9 80 34.6 29 31.2 

Diagnosis             

    ADHD 36 35.0 132 30.4 113 30.0 116 39.9 81 35.1 32 34.4 

    ASD 3 2.9 10 2.3 7 1.9 8 2.7 6 2.46 8 8.6 

    ADHD/ASD 3 2.9 9 2.1 4 1.1 11 3.7 7 3.0 8 8.6 

    N/A 61 59.2 283 65.2 253 67.1 156 53.6 137 59.3 45 52.7 

 

Note. N = 1529. Participants were on average 10.60 years old, (SD = 2.69), and participant age 

did not differ significantly by diagnosis. 

 

Table 2 

 

Means, Standard Deviations, and One-Way Analyses of Variance in Cognitive Assessments 

 
Measure Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 F 

M SD M SD M SD M SD M SD M SD 

Spatial Span                           

   Max score -0.55 0.88 0.26 0.76 0.49 0.83 -0.53 0.91 0.15 0.76 -1.33 1.36 80.1*** 

   Avg score -0.49  0.88 0.26 0.70 0.48 0.76 -0.50 1.00 0.14 0.67 -1.42 1.53 71.5*** 

   Avg ms/item 0.10 0.29 -0.03 0.10 -0.07 0.11 -0.01 0.13 -0.06 0.09 0.49 4.01 16.1*** 

   Num correct -0.63 0.83 0.27 0.87 0.46 0.91 -0.54 0.83 0.11 0.90 -1.03 1.00 84.1*** 

   Num attempt -0.63 0.83 0.27 0.87 0.46 0.91 -0.54 0.83 0.11 0.90 -1.03 1.00 84.1*** 

Grammatical Reasoning            

   Final score -0.32 0.71 0.12 0.82 0.68 0.98 -0.56 0.84 -0.21 0.91 -0.72 0.98 80.0*** 

   Num errors -0.41 0.54 -0.37 0.63 -0.33 0.70 0.16 0.94 0.57 1.10 1.62 1.33 78.0*** 

   Num correct -0.79 0.79 -0.20 0.74 0.53 0.92 -0.53 0.77 0.28 0.99 0.65 1.40 82.7*** 

   Num attempt -0.78 0.65 -0.37 0.60 0.14 0.71 -0.25 0.86 0.54 1.12 1.45 1.57 80.2*** 

Double Trouble              

   Final Score -0.25 0.58 0.32 0.86 0.39 1.25 -0.39 0.70 -0.34 0.85 -0.73 0.76 60.3*** 
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   PCT_CC 0.10 1.15 0.34 0.73 0.12 0.86 -0.14 1.04 -0.32 1.06 -0.94 1.24 33.4*** 

   PCT_CI 0.11 0.97 0.23 0.97 0.07 1.06 -0.27 1.02 -0.13 0.90 -0.29 0.78 12.9*** 

   PCT_IC -0.14 1.10 0.23 1.02 0.21 0.97 -0.20 0.96 -0.26 0.89 -0.45 0.82 20.0*** 

   PCT_II 0.03 1.06 0.31 0.93 0.22 1.07 -0.34 0.89 -0.37 0.88 -0.38 0.83 32.9*** 

   RT_CC 1.63 2.46 0.20 0.62 -0.20 0.58 -0.08 0.71 -0.43 0.49 -0.59 0.59 65.0*** 

   RT_CI 1.66 1.63 0.34 0.82 -0.29 0.64 -0.11 0.76 -0.50 0.74 -0.68 0.77 78.7*** 

   RT_IC 1.27 1.51 0.33 0.86 -0.23 0.75 -0.05 0.84 -0.46 0.85 -0.69 0.84 57.7*** 

   RT_II 1.67 1.96 0.32 0.80 -0.28 0.57 -0.15 0.65 -0.46 0.65 -0.69 0,78 69.6*** 

   Num errors -0.70 0.36 -0.52 0.51 -0.05 0.95 -0.46 0.69 -0.46 1.16 -0.65 1.45 125.9*** 

   Num correct -1.10 0.53 -0.22 0.67 0.40 0.92 -0.27 0.73 0.34 1.11 0.60 1.69 108.0*** 

   Num attempt -1.06 0.36 -0.46 0.41 0.20 0.76 -0.04 0.71 0.60 1.25 1.14 1.80 174.2*** 

Odd One Out              

   Final score 0.30 0.64 0.32 0.63 0.31 0.57 0.02 0.70 -0.29 0.83 -2.42 1.60 75.3*** 

   Max score -0.76 1.19 0.07 0.84 0.51 0.80 -0.27 0.87 0.20 0.81 -1.20 1.25 60.9*** 

   Num errors -0.62 0.48 0.33 0.62 -0.17 0.55 -0.12 0.68 0.40 0.87 2.30 1.76 79.5*** 

   Num correct -0.71 1.18 0.07 0.82 0.51 0.82 -0.27 0.85 0.18 0.83 -1.24 1.26 60.4*** 

   Num attempt -0.90 0.59 -0.31 0.68 0.03 0.62 -0.22 0.70 0.47 0.90 1.85 1.82 89.4*** 

Monkey Ladder              

   Max score -0.51 0.65 0.17 0.72 0.72 0.82 -0.61 0.96 -0.08 0.85 -1.05 1.19 75.3*** 

   Avg. score -0.56 0.68 0.18 0.69 0.72 0.79 -0.61 0.96 -0.08 0.84 -1.06 1.27 60.9*** 

   Avg. ms/item 0.84 1.19 0.03 0.95 -0.38 0.75 0.22 1.06 -0.26 0.80 0.41 1.24 79.5*** 

   Num correct -0.48 0.68 0.19 0.72 0.69 0.80 -0.57 1.00 -0.13 0.85 -1.03 1.26 60.4*** 

   Num attempts -0.48 0.68 0.19 0.72 0.69 0.80 -0.57 1.00 -0.13 0.85 -1.03 1.26 89.4*** 

Rotations              

   Final score -0.36 0.65 0.04 0.74 0.60 0.95 -0.45 0.82 0.12 1.22 -1.08 0.76 89.6*** 

   Max score -0.53 0.79 0.04 0.76 0.56 0.91 -0.48 0.92 0.32 1.12 -0.79 0.88 71.3*** 

   Correct score -0.70 0.66 -0.29 0.66 0.39 0.96 -0.44 0.80 0.80 1.11 -0.05 1.18 83.0*** 

   Num errors -0.39 0.55 -0.44 0.58 -0.39 0.63 0.11 0.84 0.77 1.12 1.79 1.13 123.2*** 

   Num correct -0.81 0.68 -0.40 0.66 0.16 0.83 -0.36 0.83 1.02 0.92 0.72 1.30 129.8*** 

   Num attempts -0.67 0.56 -0.49 0.57 -0.16 0.69 -0.12 0.81 1.02 1.01 1.50 1.23 140.5*** 

Feature Match              

   Final score -0.60 0.77 0.16 0.82 0.70 0.86 -0.43 0.80 -0.11 0.84 -1.29 1.06 110.1*** 

   Max score -0.74 0.93 0.16 0.75 0.68 0.71 -0.42 0.86 -0.01 0.87 -1.32 1.34 108.8*** 

   Correct score -0.89 0.85 0.03 0.79 0.71 0.81 -0.55 0.82 0.18 0.92 -0.74 1.18 114.3*** 

   Num errors -0.24 0.62 -0.29 0.55 -0.22 0.59 -0.10 0.68 0.41 1.05 1.85 2.12 36.2*** 

   Num correct -1.00 1.02 -0.04 0.75 0.61 0.72 -0.56 0.88 0.30 0.91 -0.19 1.51 99.2*** 

   Num attempts -0.82 0.84 -0.22 0.64 0.25 0.76 -0.44 1.07 0.47 1.07 1.10 1.98 70.6*** 

Digit Span              

   Max score -0.27 0.91 0.15 0.75 0.53 0.67 -0.56 1.13 0.15 0.84 -1.15 1.37 72.2*** 

   Avg. score -0.24 0.95 0.16 0.67 0.49 0.59 -0.55 1.22 0.17 0.82 -1.20 1.39 63.5*** 

   Avg. ms/item 1.02 1.77 0.07 0.88 -0.45 0.61 0.22 0.88 -0.33 0.68 0.49 1.31 49.7*** 

   Num correct -0.29 0.94 0.05 0.90 0.89 0.78 -0.53 0.96 0.13 0.93 -0.94 0.97 78.9*** 

   Num attempts -0.29 0.94 0.05 0.90 0.89 0.78 -0.53 0.96 0.13 0.93 -0.94 0.97 78.9*** 

Spatial Planning              
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   Final score -0.23 0.71 0.13 0.80 0.61 1.07 -0.44 0.79 -0.27 0.93 -0.82 1.04 61.8*** 

   Num errors -0.70 0.76 -0.01 0.91 0.22 0.96 -0.13 0.96 0.19 1.09 -0.12 1.24 23.7*** 

   Num correct -0.18 0.76 0.12 0.79 0.60 0.93 -0.39 0.86 -0.25 1.03 -0.94 1.16 60.7*** 

   Num attempts -0.59 0.72 0.11 0.74 0.72 0.81 -0.47 0.86 -0.13 1.01 -1.00 1.22 104.1*** 

Paired Associates              

   Max score -0.54 0.69 -0.05 0.85 0.66 0.89 -0.37 1.02 0.08 0.86 -0.95 0.94 80.4*** 

   Avg. score -0.57 0.71 -0.02 0.85 0.65 0.88 -0.38 1.05 0.10 0.79 -0.98 0.98 81.2*** 

   Avg. ms/item 0.09 0.19 -0.03 0.12 -0.08 0.10 0.15 2.27 -0.06 0.10 0.05 0.18 27.2*** 

   Num correct -0.46 0.76 -0.06 0.88 0.63 0.86 -0.30 1.04 0.06 0.81 -1.00 1.03 71.7*** 

   Num attempts -0.46 0.76 -0.06 0.88 0.63 0.86 -0.30 1.04 0.06 0.81 -1.00 1.03 71.7*** 

Polygons              

   Final score -0.32 0.67 0.11 0.88 0.50 1.12 -0.39 0.78 -0.13 0.96 -0.64 0.98 41.6*** 

   Num errors -0.54 0.58 -0.38 0.62 -0.08 0.82 -0.07 0.78 0.42 0.91 1.84 1.67 65.2*** 

   Num correct -0.86 0.80 -0.17 0.78 0.50 0.85 -0.53 0.80 0.29 0.87 0.66 1.65 86.4*** 

   Num attempts -0.89 0.66 -0.34 0.65 0.27 0.76 -0.38 0.70 0.45 0.83 1.55 1.86 101.2*** 

Token Search              

   Max score -0.39 0.76 0.19 0.79 0.72 0.77 -0.41 0.87 -0.21 0.79 -1.52 1.07 128.1*** 

   Avg. score -0.30 0.78 0.21 0.77 0.68 0.67 -0.40 0.89 -0.22 0.81 -1.59 1.28 116.9*** 

   Avg. ms/item 1.13 1.48 0.16 1.01 -0.32 0.62 0.10 0.89 -0.46 0.59 0.11 1.36 46.6*** 

   Num correct -0.42 0.83 0.18 0.81 0.73 0.79 -0.46 0.91 -0.19 0.78 -1.41 0.88 136.7*** 

   Num attempts -0.42 0.83 0.19 0.81 0.72 0.80 -0.47 0.91 -0.19 0.78 -1.40 0.86 138.7*** 

 

Note. Bold mean scores indicate relevant performance measures that distinguished between the 

clusters. RT_CC = reaction time (congruent-congruent trial), RT_CI = reaction time (congruent-

incongruent trial), RT_IC = reaction time (incongruent-congruent trial), RT_II = reaction time 

(incongruent-incongruent trial). PCT_CC = percent correct (congruent-congruent trial), PCT_CI 

= percent correct (congruent-incongruent trial), PCT_IC = percent correct (incongruent-

congruent trial), PCT_II = percent correct (incongruent-incongruent trial). *** p < .001 
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Figure 4 

Relative Frequency of Cluster Membership 

 

Note. Absolute frequency has been statistically adjusted (100% of cases divided by six clusters) 

to show the relative proportion of each diagnostic group across the clusters.  

 

Table 3 

Overview of Cognitive Profiles 

Cluster Description 

1 • Least number of attempts: 

o Verbal memory ability F(5, 427) = 80.2, p < .001, M = -0.78, SD = 0.65 

o Selective attention and processing speed F(5, 436) = 174.2, p < .001, M = -1.06, SD = 0.36 

o Spatial manipulation F(5, 433) = 140.5, p < .001, M =  -0.67, SD = 0.56 

o Attentional processing F(5, 421) = 70.6, p < .001, M = -0.82, SD = 0.84 

o Visuospatial processing F(5, 432) = 101.2, p < .001, M = -0.88, SD = 0.66 

o Deductive reasoning F(5, 433) = 89.4, p < .001, M = -0.90 , SD = 0.59. 

• Longest response times: 

o Visuospatial working memory F(5, 430) = 34.5, p < .001, M = 0.84, SD = 1.19 

o Verbal working memory (F(5, 422) = 49.7, p < .001, M = 1.02, SD = 1.77 

o Working memory and strategy F(5, 426) = 46.6, p < .001, M = 1.13, SD = 1.48 

31

Al-Saoud et al.: A Transdiagnostic Examination of Cognitive Heterogeneity in Child

Published by Scholarship@Western, 2023



 32 

2 • Highest percent of correct responses: 

o Selective attention and processing speed F(5, 425) = 33.4, p < .001, M = 0.35, SD = 0.73 

• Highest final score: 

o Deductive reasoning F(5, 428) = 75.3, p < .001, M = 0.31, SD = 0.57 

3 • Highest final score: 

o Verbal memory ability F(5, 448) = 80.0, p < .001, M = 0.68, SD = 0.97 

o Selective attention and processing speed F(5, 466) = 60.3, p < .001, M = 0.39, SD =  1.25 

o Visuospatial working memory F(5, 441) = 110.4, p < .001, M = 0.72, SD = 0.82 

o Spatial manipulation F(5, 453) = 89.6, p < .001, M = 0.56, SD = 0.91 

o Attentional processing F(5, 442) = 110.1, p < .001, M = 0.70, SD = 0.86 

o Verbal working memory F(5, 427) = 72.2, p < .001, M = 0.53, SD = 0.67 

o Executive functioning F(5, 447) = 61.8, p < .001, M = 0.62, SD = 1.07 

o Episodic memory F(5, 451) = 80.4, p < .001, M = 0.66, SD = 0.89 

o Visuospatial processing F(5, 454) = 41.6, p < .001, M = 0.50, SD = 1.12 

o Working memory and strategy F(5, 440) = 128.1, p < .001, M = 0.72, SD = 0.77 

4 • Slowest response time: 

o Episodic memory F(5, 424) = 27.2, p < .001, M = 0.14, SD = 2.27 

5 • Highest number of correct responses: 

o Spatial manipulation F(5, 434) = 129.8, p < .001, M = 1.02, SD = 0.92 

• Fastest response time: 

o Working memory and strategy F(5, 426) = 46.6, p < .001, M = -0.46, SD = 0.59 

6 • Highest number of attempts: 

o Verbal memory ability F(5, 427) = 80.2, p < .001, M = 1.45 , SD = 1.57 

o Deductive reasoning F(5, 433) = 89.4, p < .001, M = 1.85, SD = 1.82 

o Spatial manipulation F(5, 422) = 140.5, p < .001, M = 1.50, SD = 1.23 

o Visuospatial processing F(5, 432) = 101.2, p < .001, M = 1.55, SD = 1.86 

• Lowest final scores: 

o Short-term memory F(5, 433) = 80.1, p < .001, M = -1.33, SD = 1.36 

o Verbal memory ability F(5, 448) = 80.0, p < .001, M = -0.72, SD = 0.98 

o Deductive reasoning F(5, 428) = 75.3, p < .001, M = -2.43, SD = 1.60 

o Spatial manipulation F(5, 453) = 89.6, p < .001, M = -0.63, SD = 0.98 

o Attentional processing F(5, 442) = 110.1, p < .001, M = -1.29, SD = 10.6 

o Verbal working memory F(5, 427) = 72.2, p < .001, M = -1.15, SD = 1.27 

o Executive functioning F(5, 447) = 61.8, p < .001, M = -0.82, SD = 1.04 

o Episodic memory F(5, 451) = 80.4, p < .001, M = -0.95, SD = 0.94 

o Visuospatial processing F(5, 454) = 41.6, p < .001, M = -0.64, SD = 0.98 

o Working memory and strategy F(5, 440) = 128.1, p < .001, M = -1.53, SD = 1.07 

 

Note. Assumption testing revealed a violation of Levene’s homogeneity of variance test, 

warranting the use of Welch’s ANOVAs and Games-Howell post-hoc comparisons. 
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Discussion 

The present study identified six cognitive profiles from a large heterogenous sample of 

children and adolescents with NDDs, including disengaged performers, highly accurate 

performers in measures of selective attention and deductive reasoning, highly accurate 

performers across all cognitive measures, average performers with weaknesses in episodic 

memory, average performers with strengths in spatial manipulation and working memory, and 

impulsive performers. The variability observed in cognitive performance across participants in 

the sample reflects the extent to which heterogeneity characterizes disorders of childhood. 

Additionally, diagnostic status of participants did not correspond with cluster membership, 

providing evidence for the application of transdiagnostic approaches toward understanding 

neurodiversity in developmental populations. 

  These results correspond with findings previously established in the literature by Astle 

and colleagues (2019), and Suigzdaite and colleagues (2020), whose research did not identify a 

relationship between participants’ initial diagnoses and transdiagnostic cognitive profile. 

Furthermore, evidence of cognitive heterogeneity may account for inconsistent findings in the 

literature regarding the cognitive performance of children and adolescents with NDDs. Several 

meta-analytic studies such as those conducted by East-Richard and colleagues (2020) and Craig 

and colleagues (2016) have revealed contradictory findings in cognitive performance for 

individuals with ADHD, ASD, and comorbid ADHD/ASD in nearly every domain of cognitive 

functioning. For example, East-Richard and colleagues conducted a comprehensive review of 11 

meta-analyses that incorporated 445 studies and reported large deficits in visuospatial working 

memory among individuals with ADHD (g = 1.14), whereas only moderate impairments were 

observed among those with ASD (g = 0.58). However, Craig and colleagues (2016) observed no 
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significant differences in working memory performance between ADHD, ASD, and TD groups 

in their meta-analysis of a similar magnitude. Across both studies, cognitive heterogeneity in the 

participant sample may be responsible for these inconsistent findings.  

Additionally, contrary to the executive dysfunction hypothesis of ADHD and ASD, 

which argues that ADHD is distinguished by deficits in response inhibition and working memory 

(Corbett et al., 2009: Willcutt et al., 2005), whereas ASD is distinguished by deficits in planning 

and flexibility (Hill, 2004; Sinzig et al., 2008), the present study did not find evidence to support 

the proposed double dissociation. Deficits in response inhibition and working memory, as 

measured by the Double Trouble and Token Search tasks, were identified in cluster one and 

cluster six, which both contained members with various diagnoses. Likewise, impairments in 

planning and flexibility, as measured by the Spatial Planning task, were observed in cluster six, 

which consisted of members with various diagnoses.  

Given the significant gap in the literature with respect to the identification of cognitive 

profiles among individuals with comorbid ADHD/ASD, the present study helps to further 

elucidate the nature of the diagnosis. Although many researchers argue in favour of the 

Additivity Hypothesis (e.g., Colombi & Ghaazuiddin, 2017; Cooper et al., 2014; Craig et al., 

2016; Goldstein et al., 2004; Lukito et al., 2017; Shepard et al., 2018; Sinzig et al., 2008; Tye et 

al., 2014; Yerys et al., 2009), which posits that separate but correlated risk factors lead to the co-

occurrence of ADHD and ASD, producing an additive combination of deficits from two separate 

nosologies, the present study did not find evidence to support this theory. Rather, implementing a 

transdiagnostic approach revealed many discrepancies between participants’ formal diagnostic 

status and actual cognitive performance, such that members from different diagnostic groups 

were observed in each of the cognitive profiles identified. This finding suggests that NDDs are 
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best conceptualized in terms of multiple continuous dimensions along which individuals may be 

located. Traditional binarization between diagnostic groups does not adequately capture the 

cognitive heterogeneity observed within and across groups, as demonstrated by the absence of an 

additivity effect in comorbid ADHD/ASD.  

Importantly, the cognitive deficits observed in TD participants may reflect the presence 

of undiagnosed learning difficulties, emphasizing the need for more accessible cognitive 

assessment tools in school-based settings. Considering that many school districts require students 

to obtain formal documentation before administering special education services, many children 

and adolescents may consequently be denied access to appropriate supports. Given that the 

inaccessibility of cognitive assessments is often amplified by systematic barriers (Constantino et 

al., 2020; Tek & Landa, 2012; Williams et al., 2022; Zuckerman et al., 2017), an absence of 

accessible assessment tools further contributes to systemic inequality perpetuated by race, 

ethnicity, gender, and socioeconomic status. To counteract these effects, school districts may 

consider introducing online cognitive assessments to help detect learning impairments. 

Limitations of the Present Study: 

There are several limitations associated with the present study. Firstly, although the 

participants included in the sample demonstrated extensive neurodiversity, they may not 

accurately represent the wider population of children and adolescents with NDDs because they 

were enrolled in the Brain Balance Program, a multimodal cognitive training program. As these 

individuals were seeking out services to help improve their cognitive performance, the sample 

may have only extended to capture those with the most severe learning difficulties that warrant 

intervention. Additionally, there are financial barriers to accessing the Brain Balance Program 

because of enrollment fees, meaning the sample may have been largely skewed towards families 
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with higher socioeconomic statuses, thus presenting challenges for generalizability. However, 

variables such as age, biological sex, and socioeconomic status were statistically controlled for in 

preliminary analyses, thus reducing these effects as much as possible.  

As with previous research, the continuous mapping process is not confined by clear 

boundaries, which makes the identification of unique clusters highly dependent on the 

parameters specified by investigators. Although the machine learning parameters were informed 

by visual examinations of the data with scree plots and the elbow method, the model only 

accounted for 64% of the total variance, yet caution was exercised to prevent over-fitting and the 

introduction of noise into the analysis. 

Future Directions: 

 Given the robustness of the current unsupervised machine learning model, future 

investigations should explore whether converting it into a supervised machine learning model is 

appropriate for determining the cluster-membership of participants from additional data sets. 

Furthermore, a meta-analytic review of the literature may be used to inform the procurement of 

appropriate school-based supports to children and adolescents with NDDs according to their 

cognitive profiles. A strengths-based approach to intervention may be introduced by leveraging 

the cognitive strengths associated with each cluster profile to accommodate individual needs.  

Practical Implications: 

The findings from the present study indicate that Creyos cognitive assessments, although not 

established as a formal diagnostic tool, may provide valuable information about students’ 

cognitive performance to practitioners by allowing for efficient, large-group administration. Such 

an approach may allow for the stratification of more comprehensive psychoeducational 

assessments towards students who demonstrated cognitive deficits. This may help to ensure that 

36

Western Libraries Undergraduate Research Awards (WLURAs), Vol. 2023, Iss. 1 [2023], Art. 1

https://ir.lib.uwo.ca/wlura/vol2023/iss1/1



 37 

individuals who require special education services obtain appropriate documentation in a timely 

manner, thus enabling them to access appropriate interventions and perform at their best ability 

at school. Furthermore, the information obtained about students’ cognitive performance may 

help address barriers in accessing educational interventions among those without a formal 

diagnosis by identifying their specific areas of weakness. These deficits may then be addressed 

by introducing informal educational interventions that are supported by research. For example, 

peer-tutoring and contingency management techniques may be used to promote engaged learning 

among those identified as ‘disengaged performers’ by the machine learning algorithm (DuPaul et 

al., 2014; Staff et al., 2021). Regardless of whether formal psychoeducational testing is pursued, 

the identification of children and adolescents’ cognitive profiles may also provide helpful 

information to guide teachers when tailoring their support to students in the classroom.  

Conclusion: 

In summary, machine learning techniques were used to identify six cognitive profiles from a 

large heterogenous sample of children and adolescents with neurodevelopmental disorders using 

a 12-item web-based neurocognitive testing battery. Diagnostic status did not correspond with 

cluster-membership, providing evidence for the application of transdiagnostic approaches toward 

understanding cognitive heterogeneity in developmental populations. The cognitive deficits 

observed in typically-developing children also highlights the need for more assessable cognitive 

assessment tools in school-based settings to help detect undiagnosed learning difficulties. 

Ultimately, the transdiagnostic revolution represents substantial progress towards neurodiversity-

informed developmental science that advocates for the depathologization of difference, and 

evidence bolstered by the present study may help to encourage a paradigm shift from traditional 

diagnostic nosologies to transdiagnostic approaches in research and clinical practice.  
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Appendix A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Brain Balance Data Set 

N = 8145 

Missing Responses 

N = 5743 

Brain Balance Subset 1 

N = 2402 

Over 18 Years Old 

N = 208 

Brain Balance Subset 2 

N = 2194 

Comorbidities/Unrelated Diagnoses 

N = 397 

Brain Balance Subset 3 

N = 949 

Healthy Controls 

N = 1245 

Relevant Diagnoses 

N = 594 

Subjects w/ ADHD 

N = 510 
Subjects w/ ASD 

N = 42 

Comorbid ADHD & ASD 

N = 42 
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Appendix B 
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Appendix C 

 

Questionnaire for Parents/Legal Guardians of Brain Balance Students 

 

1. What is your child’s biological sex? 

2. What is your child's age (in years)? 

3. What grade is your child in? 

4. What is your child’s ethnicity? 

5. What is your family income? 

6. How many languages does your child speak? 

7. What language(s) do you primarily speak at home? 

8. Highest level of Mother’s education 

9. Highest level of Father's education 

10. How many hours of sleep does your child normally get per day? 

11. What time does your child normally go to bed? 

12. Your child sleeps about the same amount each day? 

13. Your child struggles to get to sleep at bedtime? 

14. How many times does your child normally wake up during the night? 

15. Your child has difficulty getting out of bed in the morning? 

16. On average, how often does your child participate in physical activity outside of school 

(e.g., sports, running, jumping rope, etc.) lasting more than 30 minutes per week? 

17. Please list any sports your child participates in: 

18. How often does your child play video games? 

19. How often does your child play with their friends? 

20. How often does your child have trouble concentrating? 

21. How often does your child have trouble getting motivated? 

22. How often does your child have trouble completing tasks? 

23. How often does your child need redirection to complete a task? 

24. How often does your child worry about things? 

25. How often does your child feel sad? 

26. How often do your child’s worries keep them from engaging in activities they enjoy? 

27. Does your child have a medical diagnosis? 

28. Please list any of your child's diagnoses: 

29. Please list any medication your child is currently prescribed: 
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