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ABSTRACT 

 As anthropogenic activity increases the concentration of atmospheric carbon dioxide 

([CO2]) and global temperatures, Canada’s boreal tree species are at risk of reduced growth. The 

exchange of CO2 and water between plants and the atmosphere is important for plant growth, as 

well as climate regulation. Leaves are the site of these exchanges, and therefore any structural 

changes in leaves due to environmental factors will impact these fluxes. Currently, there is little 

information available on the combined effects of elevated temperature and [CO2] on leaf 

anatomy. This study examined changes in stomatal size and density, palisade layer length, overall 

leaf thickness, and length of spongy mesophyll exposed to intracellular air space in Betula 

papyrifera (white birch) under elevated temperature and [CO2] as compared to ambient 

conditions. Plasticity among stomatal traits was observed in response to both temperature and 

[CO2], with an overall increase in stomatal capacity at elevated temperatures to increase 

transpiration and facilitate evaporative cooling. Combined with reduced spongy mesophyll 

length, this suggests that there is a trade-off between leaf cooling and water retention via 

adjustment of internal and external leaf traits. Based on the results obtained in this study, 

temperature may be more a more important environmental factors in determining leaf anatomy 

than [CO2]. Warming reduced palisade length at ambient [CO2], but unexpectedly this effect 

disappeared with elevated [CO2]. This is likely due to decreased efficiency in CO2 uptake at 

ambient [CO2] exacerbated by decreased spongy mesophyll cell length at elevated temperatures. 

Alternatively, there may be other factors at play, such as tradeoffs in leaf number, size and 

thickness based on carbon availability and temperature. 
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INTRODUCTION 

Global Climate Change 

 For the past 10000 years, Earth’s environment has been in a stable geological state known 

as the Holocene [1, 2]. However, since the dawn of the Industrial Revolution in 1790, Earth has 

undergone significant environmental transition. Human activity is a significant driver of global 

change, and has already pushed our planet away from the stable Holocene state, to the point 

where many researchers now recognize that we have entered a new geological period, the 

Anthropocene [1, 2]. A multitude of planetary boundaries have been proposed, beyond which 

Earth can no longer support our way of living. In 2009, it was suggested that [CO2] not surpass 

350 ppm, as the risk of irreversible climate change, including loss of major ice sheets, rapid 

shifts in forest systems, and accelerated rising sea levels, would drastically increase [1]. 

Unfortunately, we have already passed this boundary, as our current [CO2] sits at 415.61 ppm [3]. 

 Measurements of [CO2] have been made continuously since 1957 [4], documenting 

increases in tropospheric [CO2], as well as seasonal cycles due to terrestrial ecosystem activity in 

the Northern Hemisphere [3, 4]. These measurements, in conjunction with ice-core records, have 

allowed us to determine that the aforementioned increase in [CO2] is unprecedented when 

compared with previous natural fluctuations [3, 4]. According to the National Oceanic and 

Atmospheric Administration, global [CO2] has risen by 80 ppm since 1980 [3]. This has led to an 

increase of global surface temperatures by 0.18℃ per decade [3], a rate far greater than any 

preceding decade [1, 2, 4]. Without the implementation of mitigation strategies and climate 

policies, this trend will continue. Based on the RCP 8.5 climate scenario proposed by the 

Intergovernmental Panel on Climate Change [Fig. 1], by the year 2100, Earth could see [CO2] of 
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1200 ppm [5]. This would cause mean global temperature increases of 4.3℃, which would 

increase mean boreal temperatures by ~8℃ [5, 6]. 

Leaf Anatomy and Elevated [CO2] and Temperature 

 Stomata are small pores on the leaf surface that regulate the exchange of CO2 and water 

between plants and the atmosphere. The size of the stomatal pore determines the rate of gas 

diffusion through the pore, with the opening and closing of the stomata controlled by guard cells, 

which form the pore [7, 8]. When the stomata are open, CO2 diffuses into the leaf while O2 and 

water diffuse out, such that plants must balance the intake of CO2 for photosynthesis with water 

loss to the atmosphere [7]. Thus, changes in the environment that affect photosynthesis and/or 

water availability, such as humidity, light intensity, and [CO2], trigger signalling cascades that 

cause stomata to open and close [8], or change their size and density during leaf development. 

 Under elevated [CO2], the CO2 concentration gradient between the atmosphere and leaf 

interior is steeper, meaning CO2 diffuses more easily into the leaf [8]. As such, trees grown at 

high [CO2] typically have reduced stomatal conductance and transpiration, and increased water-

use efficiency [7, 9]. With increased [CO2], most leaves develop smaller stomata and fewer 

stomata per leaf unit area (stomatal density) [7, 8, 9]. Reduced stomatal density in plants grown 

under elevated [CO2] has also been attributed to a notable increase in leaf area [7] and down-

regulation of genes associated with stomatal development [7, 8].  

 Stomatal traits (size and density) also decrease with increasing temperature [9], as a 

means to prevent excess water loss due to the higher vapour pressure deficit (the difference 

between the amount of moisture in the air and the maximum potential moisture at saturation) 
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associated with warmer air [10, 11, 12]. Transpiration is lower in leaves with reduced stomatal 

traits, which restricts the diffusion of water out of leaves [10, 11]. However, reduced stomatal 

traits also limit latent cooling [13], which implies that plants prioritize water retention may be 

more susceptible to heat stress.  

 Mesophyll tissues are found within dicotyledonous leaves are composed of two types od 

cells: palisade mesophyll cells and spongy mesophyll cells [14]. Palisade cells are the primary 

location of photosynthesis. They contain 70% of all chloroplasts in the leaf [14] and are tightly 

packed near the upper leaf (adaxial) surface to maximize light absorption [Fig. 2]. Spongy 

mesophyll cells are located below the palisade cells, closer the the lower (abaxial) leas surface, 

and are round and loosely packed [Fig. 2]. Although spongy mesophyll cells contain some 

chloroplasts, these cells are located far below the leaf surface, limiting light absorption to high 

intensities [14]. Instead, spongy mesophyll cells function to facilitate the gas and water exchange 

necessary for photosynthesis. 

 Though there has been extensive research conducted regarding response of leaf traits to 

elevated temperature and [CO2] individually, there has been limited investigation into the 

combined effects of these environmental stimuli.  

  

Boreal Forests 

 Global warming is not uniform across the planet [6]; high latitude regions, which include 

boreal forests, are predicted to warm by more than 8℃ throughout the next 80 years [5] — a 

faster rate of warming than expected for most regions. Boreal regions account for 30% of the 

world’s forests, making them an important ecosystem for CO2 exchange with the atmosphere. 
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Further, boreal forests engage in many complex feedback loops with climate systems, including 

precipitation and fires, such that tree responses to elevated temperatures and [CO2] can either 

accelerate or slow global change [15]. Therefore, it is critical to understand the anatomical and 

physiological responses of boreal trees to climate change so that their future CO2 exchange can 

be accurately modelled. Determining the mechanisms underlying tree responses to elevated 

temperature and [CO2] will provide insight into ecosystem changes with respect to climate [15].  

 Betula papyrifera (Marshall), or white birch, is a broad-leaf deciduous tree known for its 

striking white, paper-like bark. This tree has a wide range across North America [Fig. 3]. White 

birch is a pioneer species, colonizing communities in disturbed areas, which makes it a dominant 

member of boreal ecosystems where fire return intervals are frequent [16]. Understanding leaf 

anatomical responses of white birch to elevated [CO2] and temperature is important in 

determining how plant CO2 and water fluxes will change with the climate. Given its range and 

abundance, studying white birch leaf anatomy could provide insights into the CO2 storage 

capacity of the North American region as a whole [15]. 

OBJECTIVE, HYPOTHESES, AND PREDICTIONS 

 The objective of my research project was to examine the impacts of elevated 

temperatures and [CO2] on the internal and external leaf anatomy of B. papyrifera.  I hypothesize 

that white birch will adjust its stomatal traits and mesophyll tissue morphology to maximize 

carbon gain and minimize water loss and heat stress when grown under high [CO2] and warming 

conditions. I predict that plants grown under elevated [CO2] will produce thicker leaves with 

longer palisade mesophyll cells [17] and reduced stomatal traits (size and density). At increased 
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temperatures, I expect to see a thinner leaves [18] due to cellular heat stress, and a further 

reduction of stomatal traits. Under combined elevated temperatures and [CO2], I predict that 

stomatal traits will be lower than in either high [CO2] or warm-grown plants independently, but 

that leaves will not differ in thickness compared to those grown under ambient [CO2] and 

temperatures. As for spongy mesophyll cells, I predict that cell length exposed to intracellular air 

space will increase under future climate change conditions due to an increased demand for gas 

exchange and water-use efficiency [19]. 

METHODS AND MATERIALS 

Plant Material and Experimental Growth Conditions  

 Betula papyrifera (Marshall) was grown from seed at Western University’s Biotron 

Experimental Climate Change Research Centre (43.0096ºN, 81.2737ºW) in early May 2021 by 

the Way lab. Seeds were sourced from between 45-46ºN in Ontario (near the southern range of 

the species) and sown in 11.6 L pots filled with Pro-Mix BX Mycorrhizal growth medium 

(Premier Tech Home and Garden, QC, Canada) and slow-release fertilizer (Slow-Release Plant 

Food, 12-4-8, Miracle Gro®, The Scotts Company, Mississauga, ON, Canada). 

 Six glasshouses were set to six factorial climate treatments: ambient (AC, 410 ppm) or 

elevated [CO2] (EC, 750 ppm) with either ambient temperature (T0), or +4℃ (T4) or +8℃ (T8) 

warming to simulate moderate and extreme climate scenarios [Table 1]. The ambient 

temperatures follow a five-year day/night average for Algonquin Park, ON (45º58’N, 78º48’W) 

to align with the climate at the seed source. Pure CO2 was added to the air as needed to maintain 

EC levels. Relative humidity was kept above 60%. 
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 There were 6 pots per treatment (total N=36). Watering was provided as needed to 

prevent water stress, and soil moisture was checked for consistency among treatments using a 

soil moisture probe (HH2 Moisture Meter, Delta-T Devices, Cambridge, UK). Seedlings were 

grown for 6 months (October 2021) before leaves were harvested for measuring stomatal traits 

and internal anatomy. 

Stomatal Traits 

 For each climatic condition, six mature leaves per treatment were collected and used to 

obtain a negative mould of the leaf surface following Duarte et al. [20]. Dental resin (President 

SEM High Resolution Replication Kit, TED Pella Inc.) was spread on a 3 cm × 1 cm area on the 

abaxial surface of each leaf. A positive mould was then obtained by applying a layer of wet clear 

nail varnish to the negative mould. Once dry, the layer of nail polish was then carefully removed 

and fixed to a microscope slide. Using the positive mould, stomatal traits were assessed and 

imaged at a magnification of 20× magnification using a Zeiss Lumar.V12 Stereoscope. 

Leaf Thickness and Mesophyll Characteristics 

 A subsample of leaves was harvested for microscope analysis of mesophyll traits from six 

seedlings per climate condition. Strips of tissue were taken from fresh leaves from a uniform 

location across the full width of the leaf and washed with de-ionized water. Leaf tissues were 

stored in buffered 2% paraformaldehyde with 0.1% Triton X-100 and placed in a vacuum 

chamber overnight to force the solution into the leaf air spaces. Excess solution was drawn off 

the next day, and samples were rinsed in Microtubule-Stabilizing Buffer under vacuum three 
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times over 24 hours. Following this, samples were rolled up and placed into tissue cassettes in 

70% ethanol. Leaf tissues were then transferred to an external lab for processing and 

paraffinization.  

 Semi-thin sections (1.0 µm) were cut using a razor blade, and fixed on a microscope 

slide. The slides were then deparaffinized in decreasing concentrations of xylene and ethanol, 

and stained with 0.02% Calcofluor White to visualize the internal leaf structures. Photographs of 

stained sections were taken with a Zeiss Lumar.V12 Stereoscope. 

Data Collection and Statistical Analyses 

 When assessing both internal and external leaf anatomy, ImageJ software was used to 

define areas, and count and measure various traits. 

 For stomatal density, an area of 2500 µm2 was randomly selected for each leaf, and the 

number of stomata in this area was counted [Table 2]. Stomatal density was then calculated as:  

 Stomatal density = number of stomata/unit area 

 In each of the six conditions, for each of which there were six leaves, 10 stomata were 

selected from the same area, and their length was measured, totalling 60 measurements for each 

condition [Table 3]. The mean value for each leaf was used for data analysis. 

 The cross-sectional palisade layer length [Table 4] and leaf thickness [Table 5] were 

measured at randomly selected locations along the leaf with 10 measurements taken for each 

leaf, totalling 60 measurements for each condition. The mean value for each leaf was used for 

data analysis. 
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 An 100 µm wide area was randomly selected for each leaf cross-section. The length of 

spongy mesophyll exposed to intracellular air space was then measured. Each leaf was measured 

10 times at randomly selected locations, resulting in a total of 60 measurements for each 

condition [Table 6]. The mean value for each leaf was used for data analysis. 

 Data exploration and statistical analyses were performed using GraphPad software by 

Prism. Two-way ANOVAs were used to analyze the effects of growth temperature, growth [CO2] 

and their interaction on leaf traits (stomatal size, stomatal density, leaf thickness, palisade 

mesophyll cell layer length, and spongy mesophyll cell length exposed to intracellular air space). 

A post-hoc Tukey test was used when signifiant treatment effects were found. All data are 

reported as means ± standard errors.   

RESULTS 

Stomatal Size and Density 

 Both temperature, [CO2], and the interaction between the two variables influenced 

stomatal density [Fig. 4]. Warming increased stomatal density (F=158.7, P<0.0001), with a 20% 

increase from T0 to T8 in AC leaves and a 30% increase from T0 to T8 in EC leaves [Fig. 4]. 

However, elevated [CO2] reduced (F=83.24, P<0.0001) stomatal density [Fig. 4]. When 

comparing AC to EC, stomatal density decreased by 25% in T0, 5% in T4, and 3% in T8 [Fig. 4]. 

The significant interaction between temperature and [CO2] (F=29.42, P<0.0001) [Fig. 4] 

describes this reduced [CO2] effect with warming. When comparing current (ACT0) to future 

(ECT8) climate conditions, there was an overall 8% increase in stomatal density [Fig. 4]. 
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 Though there was no significant [CO2] or interaction effects, warming reduced stomatal 

size (F=32.95, P<0.0001) [Fig. 5]. Stomata were 15% smaller in ACT8 leaves compared to 

ACT0 leaves, and 10% smaller in ECT8 leaves compared to ECT0 leaves [Fig. 5]. When 

comparing current (ACT0) to future (ECT8) climate conditions, there was an overall 13% 

decrease in stomatal size [Fig. 5]. 

Palisade Layer Length and Leaf Thickness 

 Neither temperature nor [CO2] had an impact on palisade layer length independently, but 

there was a significant interaction effect (F=5.908, P=0.0069) [Fig. 6]. At T0, elevated [CO2] 

decreased palisade layer length, but at T4 and T8, elevated [CO2] increased palisade layer length 

[Fig. 6]. In AC leaves, palisade layer length decreased by 14% from T0 to T8, whereas in EC 

leaves, palisade layer length increased by 19% from T0 to T8 [Fig. 6]. 

 There were no significant differences in leaf thickness among the different climate 

treatments [Fig. 7]. 

  

Length of Spongy Mesophyll Exposed to Intracellular Air Space 

 No significant differences were observed for the length of spongy mesophyll exposed to 

intracellular air space for [CO2] independently or in combination with warming [Fig. 8]. As an 

independent factor, warming significantly decreased (F=8.506, P=0.0012) spongy mesophyll 

length exposed to intracellular air space, with a 17% decrease from T0 to T8 in AC leaves and 

14% decrease from T0 to T8 in EC leaves [Fig. 8] 
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DISCUSSION 

Plasticity Among Stomatal Traits for Evaporative Cooling 

 Both stomatal size and stomatal density influence CO2 uptake, water loss, and leaf 

cooling. Stomatal density represents the number of sites available for gas and water exchange, 

whereas stomatal size represents the available area for this exchange at each site. Thus, it is 

important that these traits be examined together. In AC, warming increased stomatal density by 

20%, but reduced stomatal size by 15% [Fig. 4, Fig. 5]. Taken together, the stomatal capacity, or 

the ability for the stomata to carry out exchange of water and gases, increased by 5% at elevated 

temperatures [Fig. 4, Fig. 5]. In EC, warming increased stomatal density by 30% and decreased 

stomatal size by 10%, resulting in an overall 20% increase in stomatal capacity [Fig.4, Fig. 5]. 

These results suggest that with increasing temperature, leaves are increasing transpiration rates in 

effort to decrease leaf temperature through evaporative cooling [22, 23]. However, increased 

rates of transpiration can lead to water loss, especially when warming increased the vapour 

pressure deficit (drying) of the air, so leaves most conserve water in other ways. 

 Interestingly, warming generally increases stomatal capacity. However, EC leaves 

increase stomatal capacity (20%) more than their AC counterparts (5%). A decrease in stomatal 

density at elevated [CO2] is considered to be a common response [7]. Therefore, as reflected in 

the results, ECT0 leaves have a lower stomatal density than ACT0 leaves, by 22% [Fig. 4]. 

Consequently, there is a greater increase of stomatal density from ECT0 leaves to ECT8 leaves 

compared to ACT0 leaves to ACT8 leaves [Fig. 4] to compensate for heat stress.  

Internal Management of Water Loss 
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 The increase stomatal capacity as a means for evaporative cooling under warm conditions 

increases the risk of water loss. However, trees grown under elevated temperatures also 

decreased the length of spongy mesophyll cells exposed to intracellular air space [Fig. 8]. This 

provides a possible explanation for why warmed trees increased their stomatal capacity at the 

risk of becoming water stressed. Before water is transpired by the leaf through its stomata, it 

must first evaporate from the leaf tissues into the intracellular air space. By reducing spongy 

mesophyll cell length, leaves limit the cell surface area exposed to the intracellular air space and 

thereby minimize water evaporation from these surface. Therefore, although there was an 

increase in stomatal capacity and potential transpiration in warm-grown leaves [Fig. 4, Fig. 5], 

water stress can be mitigated internally [Fig. 8]. This allows for a balance to be maintained 

between leaf temperature and the rate of water loss. 

 The increase in stomatal capacity is greater than the reduction in the length of spongy 

mesophyll exposed to intracellular air space [Fig. 4, Fig. 5, Fig. 8], which suggests that leaf 

cooling is more important than reducing water loss under warming. However, it is important to 

note that seedlings were grown in well-watered pots, and therefore may not have experienced the 

degree of water stress that might occur in their natural environment. With warming expected to 

continue in the future, boreal will face increased atmospheric drying and water loss. This could 

have large-scale impact on tree growth, possibly even leading to tree mortality [25] which will in 

turn increase the frequency and scale of fire disturbances [26]. White birch is known to be a 

pioneer species, particularly after fire intervals [16], so it is possible that it may become a 

dominant species in the North American boreal forest as climate change progresses. 
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 Importantly, by reducing the cell surface area available for water exchange, the rate of 

CO2 uptake is also limited. This implies that photosynthesis is reduced. Thus, at elevated 

temperatures, the leaf thickness and length of palisade layer should decrease as a result of 

reduced CO2 availability.  

Suppression of Palisade Layer Thickness at Ambient CO2 Conditions 

 At ambient [CO2] conditions, warming suppressed the palisade layer length [Fig. 6], but 

at elevated [CO2], this effect disappeared and the length was approximately constant across all 

temperature treatments [Fig. 6].  

 Increasing temperature can have negative effects on leaf structure and function [24], 

resulting in thinner leaves and lower rates of photosynthesis. Therefore, the reduction of palisade 

layer length with warming at ambient [CO2] is not surprising. However, this same effect is not 

observed at elevated [CO2]. The observed reduction in length of spongy mesophyll with warming 

could explain these results. The warming-induced reduction in surface area for gas exchanged 

reduced the ability of trees to facilitate CO2 uptake. Under ambient [CO2], carbon is less readily 

available in the atmosphere. This limits CO2 uptake efficiency, causing decreased rates of 

photosynthesis [24]. However, elevated [CO2] increases the availability of carbon in leaf tissues 

allowing for greater photosynthetic rates. Therefore, the reduction of spongy mesophyll cell 

length exposed to intracellular air space can limit CO2 uptake, but only when atmospheric CO2 is 

not readily available.  

 Overall, there is little difference in palisade layer length between ACT0 and ECT8, as 

predicted. Elevated temperatures place stress on leaf physiology resulting in reduced CO2 uptake 
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and shorter palisade layers, but this effect disappears when [CO2] is high. As a result, there was 

no significant difference between current and future climate conditions with respect to palisade 

layer length. These results suggest that climate change may not directly impact the growth of 

white birch and other boreal trees. However, this study only used seedlings, not mature trees, and 

these changes in leaf anatomy could be highly-dependent on the conditions under which the 

leaves develop. Therefore, we might see variation in leaf anatomy from year to year as new 

leaves grow in the spring, which could have a cumulative effect on overall tree growth and 

performance. Coniferous tree growth is likely less dependent on annual conditions than 

deciduous trees, such as white birch, so it is possible that there will be a shift in species 

dominance. 

 Alternatively, it is possible that the observed reduction in palisade layer length is not the 

result of reduced CO2 uptake, but instead simply due to a variation in carbon investment at 

ambient temperatures. For instance, warming may pressure trees to produce fewer thicker leaves, 

whereas at ambient temperatures trees might yield more thinner leaves. 

CONCLUSION 

 In investigating the plasticity of leaf traits in response to rising [CO2] and temperatures, 

assumptions about the physiological responses of boreal tree species to climate change can be 

made. While temperature and [CO2] have significant impacts on stomatal density, resulting in an 

overall increase, temperature simultaneously reduces stomatal size. The combined effect of these 

changes in leaf traits resulted in an overall increase in stomatal capacity, suggesting B. papyrifera 

prioritizes evaporative cooling at elevated temperatures. However, increased transpiration poses 
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the risk of severe water loss, especially as warming dries the air and soil. Betula papyrifera may 

manage this by reducing the length of spongy mesophyll exposed to intracellular air space, 

which is the site of water evaporation. Thus, it is possible that there is an elegant tradeoff 

between leaf cooling and water retention via changes in internal and external leaf anatomy. 

Warming suppresses palisade layer thickness at ambient [CO2], but this effect is not observed at 

elevated [CO2]. It is possible that there is a tradeoff in investment of carbon between leaf 

thickness and number based on temperature. Overall, we can expect boreal tree species that 

experience heat stress with future climate change to adjust their internal and external leaf 

anatomy to promote leaf cooling while preventing excess water loss, although likely at the 

expense of CO2 uptake.  
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FIGURES AND TABLES 

Figure 1. Predicted future climatic outcomes as denoted by [CO2], varying by mitigation  
strategy. Obtained from Stocker et al., 2013 [5]. 

 

Figure 2. Cross-sectional internal leaf anatomy.Demonstrates differences in shape and 
distribution of palisade mesophyll and spongy mesophyll. Obtained from: https://
www.microscopemaster.com/mesophyll-cells.html#gallery[pagegallery]/1/
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Figure 3. Range map of Betula papyrifera, or white birch tree. Areas highlighted in green 
represent the locations where the species grows naturally. Obtained from USDA, 2021 [16]. 
 

Figure 4. Mean (± SE) stomatal density of Betula papyrifera at various climate conditions, 
where AC represents ambient atmospheric [CO2] at 410 ppm, EC represents elevated 
atmospheric [CO2] at 750 ppm, T0 represents ambient temperature, T4 represents +4℃ warming, 
and T8 represents +8℃ warming. 
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Figure 5. Mean (± SE) stomatal size of Betula papyrifera at various climate conditions, where 
AC represents ambient atmospheric [CO2] at 410 ppm, EC represents elevated atmospheric 
[CO2] at 750 ppm, T0 represents ambient temperature, T4 represents +4℃ warming, and T8 
represents +8℃ warming. 

Figure 6. Mean (± SE) palisade layer length of Betula papyrifera at various climate conditions, 
where AC represents ambient atmospheric [CO2] at 410 ppm, EC represents elevated 
atmospheric [CO2] at 750 ppm, T0 represents ambient temperature, T4 represents +4℃ warming, 
and T8 represents +8℃ warming. 
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Figure 7. Mean (± SE) leaf thickness of Betula papyrifera at various climate conditions, where 
AC represents ambient atmospheric [CO2] at 410 ppm, EC represents elevated atmospheric 
[CO2] at 750 ppm, T0 represents ambient temperature, T4 represents +4℃ warming, and T8 
represents +8℃ warming. 
 

Figure 8. Mean (± SE) length of spongy mesophyll exposed to intracellular airspace of Betula 
papyrifera at various climate conditions, where AC represents ambient atmospheric [CO2] at 410 
ppm, EC represents elevated atmospheric [CO2] at 750 ppm, T0 represents ambient temperature, 
T4 represents +4℃ warming, and T8 represents +8℃ warming. 
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Table 1. Summary of climatic conditions used to simulate current, moderate, and extreme 
climatic scenarios.

Table 2. Raw data for stomatal density measurements, where stomatal density = number of 
stomata/unit area, and area = 2500 µm2. 

[CO2] conditions Temperature Conditions

Ambient [CO2] 
(AC): 410 ppm

Ambient Temperature (T0) +4℃ (T4) +8℃ (T8)

Elevated [CO2] 
(EC): 750 ppm

Ambient Temperature (T0) +4℃ (T4) +8℃ (T8)
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Table 3. Raw data for stomatal size. Stomata were randomly sampled from a 2500 µm2 which 
was previously defined to measure stomatal density. 


Table 4. Raw data for palisade layer length. 
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Table 5. Raw data for leaf thickness. 

Table 6. Raw data for spongy mesophyll cell length exposed to intracellular air space. 
Measurements were taken within a defined 100 µm wide section of the leaf.
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