
Western University
Scholarship@Western

Psychology Psychology

2013

A reduction theorem for the Kripke-Joyal
semantics: Forcing over an arbitrary category can
always be replaced by forcing over a complete
Heyting algebra
Imants Barušs
King's University College, baruss@uwo.ca

Robert Woodrow

Follow this and additional works at: https://ir.lib.uwo.ca/kingspsychologypub

Part of the Logic and Foundations Commons

Citation of this paper:
Barušs, Imants and Woodrow, Robert, "A reduction theorem for the Kripke-Joyal semantics: Forcing over an arbitrary category can
always be replaced by forcing over a complete Heyting algebra" (2013). Psychology. 3.
https://ir.lib.uwo.ca/kingspsychologypub/3

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fkingspsychologypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/kingspsychologypub?utm_source=ir.lib.uwo.ca%2Fkingspsychologypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/kings_psychology?utm_source=ir.lib.uwo.ca%2Fkingspsychologypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/kingspsychologypub?utm_source=ir.lib.uwo.ca%2Fkingspsychologypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=ir.lib.uwo.ca%2Fkingspsychologypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/kingspsychologypub/3?utm_source=ir.lib.uwo.ca%2Fkingspsychologypub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages


A Reduction Theorem for the Kripke-Joyal
Semantics: Forcing over an arbitrary category can always

be replaced by forcing over a complete Heyting algebra

Imants Barušs and Robert Woodrow

Abstract. It is assumed that a Kripke-Joyal semantics A = 〈C,Cov,F,〉
has been defined for a first-order language L. To transform C into a
Heyting algebra C on which the forcing relation is preserved, a standard
construction is used to obtain a complete Heyting algebra made up of
cribles of C. A pretopology Cov is defined on C using the pretopology
on C. A sheaf F is made up of sections of F that obey functoriality. A
forcing relation  is defined and it is shown that A =

〈
C,Cov,F,

〉
is

a Kripke-Joyal semantics that faithfully preserves the notion of forcing
of A. That is to say, an object a of COb forces a sentence with respect
to A if and only if the maximal a-crible forces it with respect to A. This
reduces a Kripke-Joyal semantics defined over an arbitrary site to a
Kripke-Joyal semantics defined over a site which is based on a complete
Heyting algebra.

We will begin by recapitulating the definition of the Kripke-Joyal seman-
tics since the details of the definition will be needed to prove the reduction
theorem in the second part of this paper.

1. The Kripke-Joyal Semantics

Robert Goldblatt’s version of a site from [1] and A. Kock and G.E. Reyes
notion of forcing over a site [2] are used to establish the definition of the
Kripke-Joyal semantics used in this paper. Alternative expositions of forcing
in categorical contexts can be found in [3], [4], [5], and [6].

In this paper, except for set membership and inclusion, all compositions
of arrows are written in the order of composition. Also, a category is consid-
ered to be small if its collection of arrows is a set. This allows us to form the
first definition.

Definition 1.1. A stack or presheaf of sets over a small category C is a con-

travariant functor C F−→ S where S is the category of sets. The functor
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2 Imants Barušs and Robert Woodrow

category SCop

is the category of all stacks over C. For a ∈ COb, s ∈ aF is
called a germ. �

If A is a set then AP is its power set. The capital letters, I, X, Y , and
so on, represent index sets.

Definition 1.2. A pretopology on a small category C is an assignment

COb Cov−→ ((CAr)P)P which takes a ∈ COb to a collection of sets of arrows
in C with codomain a satisfying the following conditions:

(i) the empty set φ 6∈aCov.

(ii) the singleton
{
a

1a−→
}
∈ aCov.

(iii) if
{
ax

fx−→ a|x ∈ X
}
∈ aCov and for each x ∈ X

{
axy

fx
y−→ ax|y ∈ Yx

}
∈

axCov,then

{
axy

fx
y fx−→ a|y ∈ Yx and x ∈ X

}
∈ aCov.

(iv) if
{
ax

fx−→ a|x ∈ X
}
∈ aCov and b

g−→ a ∈ CAr then for each x ∈ X

the pullback b×a ax
f ′
x−→ b of fx along g

b×a ax

Pbf ′
x

��

g′
// ax

fx

��
b g

// a

exists and{
b×a ax

f ′
x−→ b|x ∈ x

}
∈ bCov. �

Both Goldblatt and Kock and Reyes leave condition (i) out of their
definitions of pretopologies. However, it is necessary for the development of
a semantics for a formal language.

A collection
{
ax

fx−→ a|x ∈ X
}
∈ aCov is called a cover of a. If C is

the category of open sets of a topological space (with a (unique) arrow from
U to V if and only if U ⊆ V for U and V open sets) then the assignment
UCov = {open covers of U} satisfies the above conditions.

The function Cov can be extended to a contravariant functor by assign-

ing to b
g→ a the function that takes a cover of a to its corresponding cover

on b by (iv) of the above definition. Thus Cov ∈ (SCop

)Ob.

Definition 1.3. A site 〈C,Cov〉 is a small category C with a pretopology Cov.
�

Let 〈C,Cov〉 be a site and
{
ax

fx−→ a : x ∈ X
}
∈ aCov. Then the pull-

back of fx along fy is called ax ×a ay
f ′
x−→ ay and the pullback of fy along fx
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is called ax ×a ay
f ′
y−→ ax for each x, y ∈ X as shown in the diagram:

ax ×a ay

Pbf ′
y

��

f ′
x // ay

fy

��
ax

fx

// a

If F is a stack over C then the image of ax ×a ay
f ′
y−→ ax is called

axF
Fx

y−→ (ax ×a ay)F and the image of ax
x→ a is called aF

Fx−→ axF , for all
x, y ∈ X.

Definition 1.4. A stack F is a sheaf over the site 〈C,Cov〉 if it satisfies the
compatibility condition:

Given any cover
{
ax

fx−→ a|x ∈ X
}
∈ aCov for a ∈ COb and any

collection of elements {sx ∈ axF |x ∈ X} that are pairwise compatible, i.e.,
sxF

x
y = syF

y
x for all x, y ∈ X, there is exactly one s ∈ aF so that sFx = sx

for all x ∈ X. �
The full subcategory of SC0p

generated by those objects that are sheaves
over the site 〈C,Cov〉 is called CSh. A Grothendieck topos is a category that
is equivalent to one of the form CSh for a site 〈C,Cov〉.

Let L be a first order formal language defined in the usual way [7]. We
let v, v1, v2, and so on represent the variables of the language, w, w1, w2,
and so on represent the constants of the language and u, u1, u2, and so on
be metavariables for variables and constants. For an integer m, the set mWt
is the collection of all constants and variables that are contained in the list
u1, . . . , um. An integer m is appropriate to a well-formed formula Ξ if all of
the variables and constants of Ξ appear in the list u1, . . . , um.

In the following definition, an A-valuation at a for a well-formed formula
of L with m appropriate and a ∈ COb, is a function

mWt
t−→ aF

that has action vi 7−→ ti ∈ aF for variables vi with i ≤ m and

w 7−→ wa ∈ aF for constants.

The notation t(i/s) indicates the valuation obtained from t by replacing ti
by the element s ∈ aF . An element in the image of t is also written as “t”.

The A-valuations satisfy the following closure condition: Let t be an
A-valuation at a ∈ COb for a well-formed formula Φ with m appropriate to

Φ and (b
f−→ a) ∈ CAr with codomain a. Then wa(fF ) is the image of w for

any constant w of L and any A-valuation at b for any well-formed formula Ψ
with k ≥ m appropriate to Ψ.

By an a-evaluated well-formed formula is meant a well-formed formula
Ξ of L, m appropriate to Ξ and an A-valuation at a for Ξ. An a-evaluated
well-formed formula Ξ with A-valuation t is written as Ξ[t]. Now:



4 Imants Barušs and Robert Woodrow

Definition 1.5. Let L be a first-order language as before and letA = 〈C,Cov,F,〉
be an ordered quadruple where 〈C,Cov〉 is a site, F is a sheaf and  is a bi-
nary relation between objects a of C and a-evaluated well-formed formulae.
Then A is a Kripke-Joyal model if any well-formed formula Ξ with m ap-
propriate to Ξ, a ∈ COb and t an A-valuation at a, satisfies the appropriate
condition below:

for Π atomic, if a  Π[t] and b
f−→ a is an arrow of C, then b  Π[t(fF )];

if
{
ax

fx−→ a|x ∈ X
}
∈ aCov so that ∀x ∈ X, ax  Π[t(fxF )] then a  Π[t];

a  (∃vi)Σ[t] iff there is a cover
{
ax

fx−→ a|x ∈ X
}
∈ aCov and a collection

{sx ∈ axF |x ∈ X} so that ax  Π[t(fxF )(i/sx)], ∀x ∈ X;

a  (Φ ∨ Ψ)[t] iff there is a cover
{
ax

fx−→ a|x ∈ X
}
∈ aCov so that

ax  Φ[t(fxF )] or ax  Ψ[t(fxF )], ∀x ∈ X;

a  ¬Φ[t] iff ∀(b g−→ a), not b  Φ[t(gF )];

a  (Φ ⊃ Ψ)[t] iff ∀(b g−→ a), if b  Φ[t(gF )] then b  Ψ[t(gF )];

a  (Φ ∧Ψ)[t] iff for every b
g−→ a, b  Φ[t(gF )] and b  Ψ[t(gF )];

a  (∀vi)Σ[t] iff ∀(b g−→ a) and any s ∈ bF , b  Σ[t(gF )(i/s)]. �

If Ξ has index n, let a  Ξ[s1, . . . , sn] if a ‖− Ξ[t] for some A-valuation t
for Ξ with m appropriate to Ξ, where ti1 = s1, . . . , tin = sn. Then a ‖− Ξ
if a  Ξ[s1, . . . , sn] for all [s1, . . . , sn] ∈ (aF )n. Finally, A is a model of Ξ,
written A |= Ξ if for all a ∈ COb, a ‖− Ξ.

We will need the property that truth persists in time. More specifically:

Lemma 1.6. Let A = 〈C,Cov,F,〉 be a Kripke-Joyal model for L and Ξ a
well-formed formula of L. If a ∈ COb, m is appropriate to Ξ and t is an

A-valuation of Ξ at a so that a  Ξ[t], then b  Ξ[t(gF )] for all b
g−→ a.

Proof. The proposition is true by definition if Ξ is an atomic formula. The re-
maining cases are proved by induction on the complexity or Ξ. The technique
of the proof is illustrated here by establishing the cases where Ξ is (∃vi)Σ(vi)
and where Ξ is (Φ ∧Ψ).

Let a  (∃vi)Σ[t]. Then there is a cover
{
ax

fx−→ a|x ∈ X
}
∈ aCov and

a collection {sx ∈ axF |x ∈ X} so that ax  Σ[t(fxF )(i/sn)]. Let bx
f ′
x−→ b be

the pullback of fx along g for each x ∈ X, as shown in the diagram:

b

Pb

g //
OO

f ′
x

aOO

fx

bx gx
// ax

Note that (fxF )(gxF ) = (gxfx)F = (f ′xg)F = (gF )(f ′xF ) for each x ∈ X
because F is a contravariant functor. By the induction hypothesis,
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bx  Σ[t(gF )(f ′xF )(i/sx(gxF ))] for each x ∈ X. Since

{
bx

f ′
x−→ b|x ∈ X

}
∈ bCov

by condition (iv) of Definition 1.2, from Definition 1.5 it can be seen that
b  (∃vi)Σ[t(gF )].

Let a  (Φ ∧ Ψ)[t]. Then for every arrow c
h−→ a, c  Φ[t(hF )] and

c  Ψ[t(hF )]. In particular, if c
h−→ a factors through b

g−→ a, i.e. if h is

the composition c
f−→ b

g−→ a for some c
f−→ b, then c  Φ[t((fg)F )] and c 

Ψ[t((fg)F )]. And since F is a contravariant functor,
t((fg)F ) = (t(gF ))(fF ). But then c  Φ[(t(gF ))(fF )] and c  Ψ[(t(gF ))(fF )].

Since c
f−→ b is any arrow with codomain b, from the definition of conjunc-

tion, b  (Φ ∧Ψ)[t(gF )]. �

2. A Reduction Theorem for the Kripke-Joyal Semantics

It is not clear at first what should be done to successfully turn the domain C of
the model A = 〈C,Cov,F,〉 into a Heyting algebra. If the future state of an
object a in C is defined to be the domain of an arrow with codomain a, then
it may seem that ideals of objects closed with respect to the future should
generate an appropriate Heyting algebra. That strategy works successfully
where C is a preorder IP , so that for p, q ∈ IPOb there is at most a single
arrow p ≤ q. In the case of a, b ∈ COb, however, there may be parallel arrows

a
f

⇒
g
b. Now, the topology generated by principal ideals made up of objects

of C is too coarse. Given a well-formed formula Ξ and a valuation t ∈ bF of
its free variables for which b  Ξ[t] there is no way of distinguishing between
a  Ξ[t(fF )] and a  Ξ[t(gF )]. This becomes a problem when trying to
define forcing over the resulting Heyting algebra.

To enable these distinctions to be made, it turns out to be more fruitful
to take collections of arrows closed under preextension. That is to say, C is
defined to be the collection of all the cribles of C.

Definition 2.1. A collection p of arrows of C is a crible if and only if
(∀f ∈ p)(∀g ∈ CAr)(g∂ = ∂f ⊃ gf ∈ p). A crible p is a b-crible if ev-
ery arrow of p has codomain b. A crible p is an f -crible if every arrow of p
factors through f . �

The maximal f -crible is denoted by f and is said to be the crible gen-
erated by f . These constitute the basis of a topology which is fine enough to
keep individual cases of forcing distinct.

Definition 2.2. Let C be a category. Then C is the topology generated by the
choice of

{
f |f ∈ CAr

}
for a basis. �

Notice in the above definition that only arbitrary unions are needed,
and that the resulting topology is the collection of all the cribles of C. We
know that every topological space is a Heyting algebra closed under arbitrary
joins. In this case C is a complete Heyting algebra since it is closed under
arbitrary meets as well.
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The problem arises of defining a pretopology for C. The passage from
C to C determines to a large extent the definition of Cov. In particular, for
p ∈ COb, a cover of p will be a collection of inclusions {pi ≤ p |i ∈ I } whose
domains are themselves cribles. So that the resultant semantics matches the
original, only those collections are accepted that have the property, that for

any arrow a
f−→ b ∈ p there is a cover

{
ax

fx−→ a|x ∈ X
}
∈ aCov in the

original pretopology so that for each x ∈ X, fxf ∈ pi for some i ∈ I. More
formally:

Definition 2.3. Given a site 〈C,Cov〉, let Cov be the assignment

COb −→ (CAr)P2

p 7−→
{
{pi ≤ p|i ∈ I} |(∀(a

f−→ b) ∈ p)(
∃
{
ax

fx−→ a|x ∈ X
}
∈ aCov

)
(∀x ∈ X)(∃i ∈ I)(fxf ∈ pi)

}
. �

Lemma 2.4. Cov is a pretopology for C.

Proof. Definition 1.2 needs to be checked:

(i) φ 6∈ pCov since φ 6∈ aCov for any a ∈ COb.
(ii) Let p ∈ COb. Then {1p} ∈ pCov since, for a

f−→ b ∈ p, the cover{
a

1a−→ a
}
∈ aCov gives 1af ∈ p.

For (iii) assume that D = {pi ≤ p|i ∈ I} ∈ pCov and that for each pi, Di is a
cover Di =

{
pij ≤ pi|j ∈ Ji

}
∈ pi Cov. It must be shown that

D′ =
{
pij ≤ p|j ∈ Ji ∧ i ∈ I

}
∈ pCov. Let a

f−→ b ∈ p. Then there is a

cover
{
ax

fx−→ a|x ∈ X
}
∈ aCov so that ∀x ∈ X there is an i ∈ I so

that fxf ∈ pi. Because Di is a cover of pi, for fxf ∈ pi there is a cover{
axy

fx
y−→ ax|y ∈ Yx

}
∈ ax Cov so that ∀y ∈ Yx there is j ∈ Ji so that

fxy fxf ∈ pij . Because Cov is a pretopology for C it satisfies condition (ii)

and so

{
axy

fx
y fx−→ a|y ∈ Yx

}
∈ aCov which, by the preceding argument has

the property that for each y ∈ Yx and x ∈ X there is i ∈ I and j ∈ Ji so that
fxy fxf ∈ pij . But then D′ is a cover of p.

To see that (iv) is satisfied, let r ≤ p and D = {pi ∈ p|i ∈ I} ∈ pCov.
The pullback of r ≤ p with pi ≤ p is the lattice meet r∧pi,∀i ∈ I. It must be

shown that Dr = {r ∧ pi|i ∈ I} is a cover of r. Let a
f−→ b ∈ r. Then there is

a cover
{
ax

fx−→ a|x ∈ X
}
∈ aCov so that, for each x ∈ X there is an i ∈ I

with the property that fxf ∈ pi. But fxf ∈ r and so fxf ∈ r ∧ pi. This is
true for every x ∈ X. Hence D′ is a cover of r and property (iv) is satisfied.
Hence Cov is a pretopology for C. �

Next comes the question of what the right translation for a sheaf F is
over

〈
C,Cov

〉
. Here one is guided by tradition. That is to say, one looks for
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a sheaf whose image of p ∈ COb is a collection of sections of F and whose

arrows are restrictions. By a section s of F is meant a function p
s−→ S that

chooses for each (a
f−→ b) ∈ p a germ from the stalk aF over a. That is

to say, fs ∈ aF . Now, these sections are used to evaluate variables in well-
formed formulae and in order to obtain a semantics that is compatible with
the original, the image pF is defined to be the collection of all the sections
over p that satisfy functoriality. More formally:

Definition 2.5. Let F be a sheaf over the site 〈C,Cov〉, then F is the assign-
ment

COb F−→ S

p 7−→
{
p

s−→ ∪f∈p( ∂f)F |(∀f ∈ p)(fs ∈ ( ∂f)F )

∧(∀f ∈ p)(∀(c g−→ ∂f)(gf)s = (fs)(gF )
}

q ≤ p −→ (pF −→ qF )

s −→ sdq �

Lemma 2.6. F is a sheaf over
〈
C,Cov

〉
.

Proof. Clearly F is a contravariant functor. To check Definition 1.4 let
D = {pi ≤ p|i ∈ I} ∈ pCov and S =

{
si ∈ piF |i ∈ I

}
be a collection of

sections that agree on the intersections of the pi. Then it must be shown that
there is a unique section over p whose restriction to each pi is just si. First,
a candidate s is defined.

Let a
f−→ b ∈ p. Then choose a cover

{
ax

fx−→ a|x ∈ X
}
∈ aCov and for

each x ∈ X choose i ∈ I with the property that fxf ∈ pi. Let sx = (fxf)si.
Now fxf ∈ pi and fyf ∈ pj . Let sx = (fxf)si and sy = (fyf)sj . By forming
the pullback of fx with fy it can be seen that sx and sy are compatible. For
suppose that f ′x is the pullback of fx along fy and f ′y is the pullback of fy
along fx. Then, because the pullback square commutes, and because of the
defining property for si and sj and the fact that they agree on the intersection
of pi and pj : sx(f ′yF ) = (f ′yfxf)si = (f ′xfyf)sj = sy(f ′xF ). This is true for
any x ∈ X, y ∈ X and appropriate i ∈ I, j ∈ I, and so, because F is a sheaf
over 〈C,Cov〉 there is a unique s ∈ aF so that sx = s(fxF ), ∀x ∈ X.

Let fs = s. Now observe that the definition of fs is independent of

the choice of
{
ax

fx−→ a|x ∈ X
}
∈ aCov and pi with fxf ∈ pi. To this

end, let
{
ax

fx−→ a|x ∈ X
}
∈ aCov and ix with fxf ∈ pix ∈ pCov and

{sx ∈ axF |x ∈ X} give the value s at f and B =
{
cy

gy−→ a|y ∈ Y
}
∈ aCov

and jy with gyf ∈ pjy ∈ pCov and {ty ∈ ayF |y ∈ Y } give the value t at
f , where sx and ty are defined above. Now pull back B along each fx for

x ∈ X. This gives a new cover

{
ax ∧ cy

gx
yfx−→ a|y ∈ Y and x ∈ X

}
∈ aCov
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where ax∧cy
gx
y−→ ax is the pullback of gy along fx for each y ∈ Y and x ∈ X.

Then s((gxyfx)F ) = (gxyfxf)six for each y ∈ Y and x ∈ X. By a similar
argument t((fyxgy)F ) = (fyxgyf)sjy , ∀y ∈ Y and x ∈ X. But then

s((gxyfx)F ) = (gxyfxf)six = (fyxgyf)sjy = t((fyxgy)F ) = t((gxyfx)F )

for all x ∈ X and y ∈ Y . Because F is a sheaf, s = t.

Now let s be the choice function over p that gives fs = s where s is
defined above for f ∈ p. Does s satisfy the conditions of Definition 2.5? To

see that it does, let (a
f−→ b) ∈ p and c

g−→ a be an arrow with codomain
a. Then gf ∈ p. Let s = fs and t = (gf)s where s and t are defined by the
construction given above. It must be shown that t = s(gF ).

To see that, let A =
{
ax

fx−→ a|x ∈ X
}
∈ aCov and for x ∈ X let

ix ∈ I be such that fxf ∈ pix . Because covers are stable under pullbacks
(that is to say, because of property (iv) of a pretopology), A can be pulled

back along g to give C =

{
cx

f ′
x−→ c|x ∈ X

}
∈ cCov. Because of the way

that t is defined, (f ′xgf)six = t(f ′xF ) for all x ∈ X since f ′xgf = gxfxf and
gxfxf ∈ pix for all x ∈ X. But then, because each si satisfies the defining
property, (gxfxf)six = s(gxfx)F , ∀x ∈ X, where gx is the pullback of g
along fx, ∀x ∈ X. But s((gxfx)F ) = s((f ′xg)F ) = s(gF )(f ′xF ),∀x ∈ X
and so s(gF )(f ′xF ) = s((gxfx)F ) = (gxfxf)six = (f ′xgf)six = t(f ′xF ) for all
x ∈ X. But C is a cover of c and the t(f ′xF ) are clearly compatible. Therefore
there is only one t ∈ cF so that t(f ′xF ) = (f ′xgf)six , for all x ∈ X. Hence
t = sqF .

Next, to see that sdpi = si, ∀i ∈ I, let (a
f−→ b) ∈ pi and choose

a
1a−→ a ∈ aCov. Then by definition fs = fsi.

To see that s is unique, assume that there is a section t on p that
obeys the functoriality condition with the property that tdpi = ti,∀i ∈ I. Let

(a
f−→ b) ∈ p. It must be shown that fs = ft. There is a cover

{
ax

fx−→ a|x ∈ X
}
∈

aCov so that ∀x ∈ X there is i ∈ I with the property that fxf ∈ pi. But
then (fxf)s = (fxf)si = (fxf)t, ∀x ∈ X and appropriate i ∈ I. As shown
before, the (fxf)si are compatible. Hence, because F is a sheaf, there is a
unique s ∈ aF so that s(fxF ) = sx, ∀x ∈ X. And so fs = s = ft. �

Finally, it remains to define a forcing relation over the site
〈
C,Cov

〉
,

with respect to the sheaf F , so that a Kripke-Joyal model can be obtained
that is compatible with the original. There is a natural candidate:

Definition 2.7. Let A = 〈C,Cov,F,〉 be a Kripke-Joyal model for the first-
order language L. Let Ξ be a well-formed formula of L. Then for p ∈ COb
and t a valuation for Ξ at p, consisting of sections of F , define

p ̄ Ξ[t] iff ∀(a f−→ b) ∈ p, a  Ξ[ft ].
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Given Ξ with m appropriate and p ∈ COb, the valuation t is a choice function

mWt
t−→ pF

that has action vj −→ tj ∈ pF for variables vj with j ≤ m

and w −→ w ∈ pF for constants w

where fw = w
∂f
∈ ( ∂f)F for all f ∈ p, and where w

∂f
is the A-valuation

of w at ∂f . To see that w obeys functoriality, recall that for c
g−→ ∂f ,

gw = w
∂f

(gF ) interprets w at c. As a result, there is no problem with the

treatment of constants of L in the transition from A to A. �

Theorem 2.8. Given A = 〈C,Cov,F,〉, the derived quadruple A =
〈
C,Cov, F , ̄

〉
is a Kripke-Joyal semantics.

Proof. It remains only to show that ̄ satisfies the properties of the Kripke-
Joyal semantics in Definition 1.5. The proof proceeds by induction on the
complexity of a well-formed formula Ξ. Let p ∈ COb and t ∈ (pF )m where m
is appropriate to Ξ. The atomic case is an easy consequence of functoriality.
Let Ξ be the well-formed formula (∃vi)Σ(vi) where Σ contains at least the
free variable vi, and assume that the hypothesis holds for Σ. It must be shown
that p ̄(∃vi)Σ[ t ] if and only if there is a cover {pi ≤ p|i ∈ I} ∈ pCov and a
collection

{
si ∈ piF |i ∈ I

}
so that pī[Σ(tdpi)(i/si)], ∀i ∈ I.

To show this last equivalence, assume first that p ̄(∃vi)Σ[t ]. It is nec-
essary to construct an appropriate cover of p. To do this, first observe that

∀(a f−→ b) ∈ p, a  (∃vi)Σ[ft ]. There is a cover
{
ax

fx−→ a|x ∈ Xf

}
∈ aCov

and a collection {sx ∈ axF |x ∈ Xf} so that ax  Σ((ft )(fxF ))(i/sx)F ,

∀x ∈ Xf . But then fxf ≤ p, ∀x ∈ Xf . Let the cover of p be the collec-

tion
{
fxf |x ∈ Xf ∧ f ∈ p

}
. Clearly this belongs to pCov. For each fxf let

the section sx associated with it be the section generated by sx. By that

is meant that if c
g−→ ax is any arrow then (gfxf)sx = sx(gF ). Then sx

satisfies the defining property of a germ in the stalk (fxf)F . But now, since

ax  Σ((ft )(fxF ))(i/sx), by Lemma 1.6 if c
g−→ ax is an arrow of C then

c  Σ[((ft)(fxF )(gF ))(i/sx(gF ))]. Since (ft)(fxF )(gF ) = (gfxf)t for all
x ∈ Xf then c  Σ[(gfxf)t(i/(gfxf)sx)]. But then fxf̄Σ[tdfxf(i/sx)]. This
is true for every x ∈ Xf and f ∈ p. Hence there is a cover{
fxf |x ∈ Xf ∧ f ∈ p

}
∈ pCov and a collection {sx|x ∈ Xf ∧ f ∈ p} so that

fxf̄Σ[ td fxf(i/sx)] for all x ∈ Xf and f ∈ p.
To show the converse, assume that there is a cover {pi ≤ p|i ∈ I} ∈ p Cov

and a collection
{
si ∈ piF |i ∈ I

}
so that pīΣ[ tdpi(i/si)], ∀i ∈ I. Let

(a
f−→ b) ∈ p. Then there is a cover

{
ax

fx−→ a|x ∈ X
}
∈ aCov ∀x ∈ X

there is an i ∈ I with the property that fxf ∈ pi. But
ax  Σ[(fxf)t(i/(fxf)si)] for every x ∈ X and appropriate i ∈ I. Since
(fxf)t = (ft)(fxF ), ∀x ∈ X then a  (∃vi)Σ[ft ]. But then p ̄(∃vi)Σ[ t].
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The case for disjunction is similar to that for the existential quantifier.
Negation, implication and conjunction are similar to the case for the universal
quantifier which is demonstrated below:

It must be shown that p̄(∀vi)Σ[ t ] iff for every q ≤ p and for every
si ∈ qF , q ̄Σ[ t dq(i/si)]. Assume that p̄(∀vi)Σ[ t ], q ≤ p, si ∈ qF and let

(a
f−→ b) ∈ q. Then f ∈ p and a  (∀vi)Σ[ft]. But then a  Σ[(ft)(i/fsi)].

Hence q ̄Σ[ tdq(i/si)]. Now, to show the converse, assume for every q ≤ p

and si ∈ qF that q ̄Σ[ tdq(i/si)]. Let (a
f−→ b) ∈ p, let c

g−→ a be an arrow
with codomain a and let s ∈ cF . Let si ∈ (gf)F be the section generated
by s. Since gf ≤ p then gf̄Σ[ tdq(i/si)]. But then c  Σ[(gf)t(i/s)] and so
a  (∀vi)Σ[ft]. �

Now, with any a ∈ COb is associated the maximal crible 1a, and with
any t ∈ aF can be associated the section t generated by the germ t. This
leads immediately to:

Corollary 2.9. Given a Kripke-Joyal model A = 〈C,Cov,F,〉 and derived
Kripke-Joyal model A =

〈
C,Cov, F , ̄

〉
then, for well-formed formulae Ξ of

the first-order language L, for any a ∈ COb and any valuation t for Ξ at a,

a  Ξ[t] if and only if 1āΞ[ t].

3. Conclusion

This paper began by considering a Kripke-Joyal model A = 〈C,Cov,F,〉
defined over an arbitrary category C. By taking the collection of cribles on
C, a complete Heyting algebra C was obtained. A pretopology Cov was de-
fined for C that preserved the essential features of Cov. Furthermore, in the
transition from 〈C,Cov, 〉 to

〈
C,Cov

〉
, the pretopology Cov has acquired the

property that any collection {pi ≤ p|i ∈ I} with ∨
i∈I

pi = p is a cover of p. By

taking sections of F that obey functoriality, a sheaf F was obtained whose
germs are used to interpret the constants and free variables of well-formed
formulae of L in a manner that is compatible with the original A-valuation.
Finally, a forcing relation ̄ was defined over

〈
C,Cov

〉
in terms of the original

relation . It was shown that A =
〈
C,Cov, F , ̄

〉
is a Kripke-Joyal model and

that it forces precisely the same well-formed formulae as the original model
A. As a result, without loss of generality, forcing over an arbitrary category
can always be replaced by forcing over a complete Heyting algebra.

On the face of it, this result seems impossible. How is it that the gener-
ality of a category can be replaced by the specificity of a complete Heyting
algebra as a domain of forcing? The answer lies in the construction of the de-
rived category. What we see is that, in the derived category, each object of the
original category indexes all future states of that object, so that any pathway
from the past to the future in the original category can be traced along any
of a number of pathways in the derived category. This also reveals that the
original category is not really “embedded” in the derived category or, more
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accurately perhaps, that it is “embedded” in multiple distorted variations. In
that sense this is an “embedding theorem” whereby a general construction is
multiply enfolded in a construction with more structure.

What is the significance of this result? This work arose in the course
of attempting to internalize Cohen’s forcing in a topos. Given that Cohen’s
forcing is an instance of a Kripke-Joyal semantics, it remained only to in-
ternalize a Kripke-Joyal semantics. The idea was to try to force along the
lattice of subobjects of 1 of a topos and then to go from there. That could
only be done if the domain of forcing of a Kripke-Joyal semantics had more
structure to it than it appeared to have, namely, that the domain of forcing
could always be replaced by a complete Heyting algebra. That is how we set
about looking for a proof, which we found, as detailed in this paper. The
remainder of our project was less successful in that we could only internalize
a generalized version of forcing for very restricted languages [8].

There is also a philosophical point that could be of significance. Given
that a complete Heyting algebra is isomorphic to the lattice of subobjects
of 1 of the category of sheaves over it, the domain of forcing can always be
thought of as a collection of possible truth values. And not just arbitrary
truth values, but truth values that are situated between true and false. Thus,
this theorem not only provides a reduction of the generality of the domain of
forcing of a Kripke-Joyal semantics, but also reduces the generality of truth
values so that they can always be said to lie between true and false for any
semantics that are instances of a Kripke-Joyal semantics.
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