Western University

Scholarship@Western

Computer Science Publications Computer Science Department

2003

Policy Driven Licensing Model for Component
Software

Zhao Qian
University of Western Ontario

Zhou Yu
University of Western Ontario

Mark Perry

University of Western Ontario, mperry@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/csdpub

b Part of the Computer Sciences Commons

Citation of this paper:

Qian, Zhao; Yu, Zhou; and Perry, Mark, "Policy Driven Licensing Model for Component Software" (2003). Computer Science
Publications. 7.
https://irlib.uwo.ca/csdpub/7

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csd?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub/7?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages

Policy-Driven Licensing Model for Component Software

Qian Zhao, Yu Zhou, Mark Perry
Department of Computer Science
University of Western Ontario
London ON N6A 5B7 Canada
{ gianzhao | yuzhou | markp } @csd.uwo.ca

Abstract

Today, it is almost inevitable that software is
licensed, rather than sold outright. As a part of the
licensing policy, some protection mechanisms, whether
hardware, legal or code-based, are invariably built into
the license. The application of such mechanisms has
primarily been in the realm of off-the-shelf, packaged,
consumer software. However, as component-based
software gradually becomes mainstream in software
development, new component-oriented licensing
systems are required. This paper proposes an
enterprise component licensing model for the
management of software component licenses. The
model provides a comprehensive license management
framework allowing for extensibility and flexibility.
Furthermore, we identify differences between stand-
alone software and component software, describe a
high level model for policy-driven component licensing,
and discuss both the benefits and drawbacks of the
enterprise component licensing model for the
management of software component licenses.

1. Introduction

The unauthorised copying, use and distribution
of software, often labelled Software Piracy, is a
continuing source of concern. Reports by the
Software and Information Industry Association
(SIHA) and Business Software Alliance (BSA) {1]
indicate that annual losses for the business software
application market due to software piracy were well
over $12 billion for the year 2000, while SIIA
calculated business software applications accounted
for worldwide revenues of $21.6 billion in the same
year. In addition to the lure of getting something for
nothing, reasons for the illegal use of software
include [1, 2]: no quality loss in the unauthorised
digital copies; and widespread disregard of the fact
that software is valuable intellectual property by
users, despite their awareness that unauthorised use
and duplication of software is illegal. There are
further dimensions to illicit use of software that are

often overlooked. Firstly, if licensing compliance is a
difficult process to implement, it is likely to be
ignored. This effect can be seen with shareware that
does not offer easy means of payment. Secondly,
there may be mistaken infringement. In complex
systems there can be a large number of components
in use, and in such circumstances where there are
multiple vendors, awareness and proper management
of the many multi-faceted licensing agreements could
be lacking even when users wish to comply.

There is considerable demand for methods that
control access to, copying, and use of software
products. Software vendors have long realised that
they need to try to minimise software piracy. Some
aspects of piracy can be mitigated by careful
licensing arrangements, rather than improved
security, especially if the licensing system has little
or no overhead for the user. For lower value
products, a complex licensing scheme may mean that
the overheads of administering the licensing for the
user will exceed the cost of the license for the
product.

We describe here a model for comprehensive
license management, specifically aimed at
components and distributed systems. This model
provides a module-loadable and policy-based
mechanism that promotes adaptability and flexibility
of any implementation. There have been some
discussions of policy and frameworks in prior
publications [10, 11, 12}, which are extended in this
paper. Section 2 of this paper covers related work
since technical licensing first emerged, and sections 3
and 4 identify the challenges that are engendered by
software license management and the differences
between stand-alone packages and component
software. The high level model is described together
with discussion of its extensibility and flexibility in
sections 5, 6 and 7, and the last section summarizes
the benefits and potential drawbacks of this model.
This paper does not address security and
authentication issues that are necessary for any such
system; the focus here is on a model for policies that
will determine the licensing for components within

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

any such system. It is assumed throughout that details
of authentication and security will be addressed in
the future with a model at a larger scale of
granularity than proposed here.

2. Related works

2.1. Activation keys and dongles

A number of technical licensing schemes have
been developed over the years. They may be
categorized as being based cither on hardware or on
software, although in practice a combination is often
employed. The most common protection devices are
hardware dongles and software activation keys,
which are primarily used with shrink-wrapped, off-
the-shelf software running on a single machine, or on
smaller local area networks.

The hardware dongle is a hardware device that
contains a key and must be connected to the
computer in order for the application to execute, thus
it may be seen as a licensing enforcement device -
without the dongle the application will not execute.
This kind of licensing control requires users to
expend extra money on the hardware device, it has
the inconvenience of requiring the user to attach
extra hardware, it is difficult to upgrade when
changes are essential, and it cannot be distributed
electronically. There are also reports of compatibility
problems in some configurations, particularly
following operating system upgrades. Nevertheless,
such padlock solutions often provide more protection
than simple software locks. Hardware-based
licensing management is still used in some places
where flexibility is less important than security,
though improvements with software protection
devices, and perceived problems with peripherals
when dongles are used, has led the vendors of some
software, such as Autodesk’s AutoCAD, to move
away from dongle devices [13]. HASP of Aladdin
Knowledge Systems [1], and the Sentinel of Rainbow
Technologies [3] are typical in this kind of product.
In contrast to dongles, software activation keys,
where a special sequence of characters must be
supplied during installation, exemplify simple
methods that are widely used. Nowadays, most
shrink-wrapped software products use activation key
protection as a form of licensing enforcement.
Though they may be cheaper and simpler to
implement, software activation keys often provide
less protection for the product than protection based
on hardware, as the key with simple systems can be
widely promulgated.

2.2. Traditional Technical License
Management Service

As network technologies proliferate, licensc
management scrvices (LMS) [2] have emerged to
adapt to the new environment. Most license
management services implemented follow the client-
server model. For the LMS, licensing information is
encrypted, and the license server can only execute on
an authorized host. Such a system is able to deal with
several kinds of licenses, including concurrent, node-
lock, demo, reserved, and shared licenses. Two
typical LMS that provide these services are
Macrovision’s FLEXIm [4] and IBM’s License Use
Management (LUM) [5].

2.3. X-Open software
management (XSLM)

The Open Group proposes an open standard called
Software License Use Management (XSLM). The
technical standard document specifies that the key
factors driving the need for comprehensive license
use management are the escalating software costs,
the high administrative burden of license compliance
control, the lack of effective customer control of
software usage, and the lack of adequate protection
for software publishers [6].

In today’s computational environment, customers
must deal with multiple products that are sourced
from multiple software publishers, that can run on
multiple platforms, and come with multiple licensing
models. Given this exponential growth in
complexity, the Open Group gives a list of
requirements for an overall framework for license use
management [6]:

* Extensible, flexible and comprehensive

* Independent of software publisher, platform,
stand-alone or connected operations, and
implementation

* Adaptable to future technologies

= Meet the needs of both customers and
software publishers

* Cost effective for both customers and
software publishers.

The Open Group also notes that license use
management tools, processes, products, and systems
must [6]:

e Provide facilities to encode license terms
and conditions

* Record and report use lcvel data

¢ Determine, report on, and verify compliance
to license terms

e Allow customers to control and optimize the
use of licenses within the terms and
conditions of the license policy

license use

nfr,r

COMPUTER
SOCIETY

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

« Allow software publishers to ensure their
assets are protected.

IBM contributes to XSLM and developed the IBM
Licensc Manager (ILM) [7], which is based on the
XSLM specification, as its licensing tool for zSeries
Central Processor Complex (CPC). ILM is a
combination of license management tools used to
manage software licenses, check compliance with the
software license, and manage the inventory of
software licenses. It provides the technology that
effectively enables implementing Workload License
Charge (WLQ) [7].

None of these license management tools provide
answers for the movement in software development
to component-based devclopment in distributed
environments, which is the focus of our license
management model.

3. Software licensing challenges

To design a comprehensive license management
model, we need to survey a variety of issues
regarding software license management, including
possible licensing methods, the license type, and the
execution environment.

3.1. Technological License Management
(TLM) and licensing contracts

Licensing services can be divided broadly into
two types, those based on technology, and on
contractual mecthods [8]. In practice, usually there is a
combination of both. The license contract is a legal
means of license management. It may not be as
effective as technology-based license management
(TLM). The TEM can provide evidence of the license
contract and be a complement of the license contract.
A good TLM is essential in today’s fast-paced and
complicated computational environment.

Initial models of dealing with software
distribution relied on leasing or outright purchase of
the package beforc use. Today, there are many means
to facilitate software usc whereby clients may try,
lease, or buy the software. When clients choose to try
the software before purchase, often it is provided as
a demonstration, where clients can use a version of
the software that offers limited functionality, or as an
evaluation package that allows clients to make full
use of the software for a limited period or for a
limited number of times.

Clients, where the option is available, may choose
the license arrangement, typically allocative or
consumptive based. The main issues that face both
the vendor and the client are the initial payment, the
leasing period, and any monthly payments. Therc are
many options for licensing. For example, a
concurrent license defines a maximum number of

usages at any one time; the site-locked license is only
available for a single site; the floating license is
available in a certain range of IP address; the usage-
based license charges the client for every usc; and the
payment of the workload-based license depends on
the workload of every access, such as how many
CPU units are consumed. Clearly, given the complex
usage environment, more and more sophisticated
technical licensing tools are required.

3.2. Distributed Systems

Clients may use the software in a local or
network-based environment. As improvements in
network technologies proliferate, more and more
software is run over a network rather than on a stand-
alone, single machine. The networked and distributed
systems environment provides licensing models with
new challenges, often requiring multi-user and
concurrent usage controls.

3.3. Software component licensing

Software reuse is much more than a populist
mantra, offering major benefits for corporate and
other large system users. There has been a rapid rise
in component-based development over the last
decade. The particular characteristics of component-
based environments may require new licensing tools
than those used in either traditional, stand-alone or
simple networked environments.

Software components are undoubtedly different
from shrink-wrapped or complete off-the-shelf
packages. There are some questions that need to be
answered when dealing with component systems.
Does the licensing of a component differ from that of
traditional software? If it does, what are the
differences and how are they to be dealt with? The
answer to thesc questions will help remove layers of
obfuscation for system developers when facing
licensing issues.

In [9] it is suggested that licensing models for
software components are different from thosec for the
traditional scenario, particularly with regard to the
purpose, size, quality and flexibility. Indeed, in
contrast to stand-alone software, the purpose of the
software component is not to function independently.
Software components need to be seamlessly
integrated together to construct an application.

* High quality is assumed as a necessary
requirement for a software component.
Components are used to save timc and
money, and that is why they need to be
protected with little overhead.

» The software component should afford
adaptability to multiple platforms and future
upgrades. At this time, detailed and

]FFF“U‘@

COMPUTER
SOCIETY

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

completc application programming interface
(AP or source code is needed.

The legal terms in the software component
agreements have a different slant as compared to
terms used with earlier software, and may be more
confusing.

» License Grant: The License Grant is the
most critical provision in the license
agreement, stipulating the rights the licensor
grants to the licensee regarding the software
component.

* Licensor or Licensee: Typically, the creator
of a component will be a licensor when
licensing the component to another, the
licensee. However, these roles are often not
clearcut (sce below Transferring Roles).

e Target Objects/Components: The licensed
target will not be a stand-alone or shrink-
wrapped package, but rather a part of a
software system.

e Grant: There arc many kinds of grant
(authorizations of types of use). Some of
them are common, such as leasing,
concurrent, floating, etc. There are also
emerging types, such as workload-based.
Others may be devised in the future.

* Transferring roles: As software components
need to be integrated together to function
correctly and usefully, therc is often a
change of status from licensee to that of
both licensee and licensor (such as where
the licensee creates a sublicense when the
component is integrated into a system that is
on-sold). This requires the transfer of some
rights.

* Pricing and Payment. Based on different
grant types, there are different pricing and
payment options.

There arec other terms and issues that specify
aspects of the interaction and relationship between
the licensor and the licensee after the purchase, such
as:

e Liability: The liability of licensor may be
limited to the direct damage caused by flaws
or malfunction of licensed components.
Misuse by the licensee may mitigate
damages. This requires a mechanism to
determine the cxtent of liability.

e Support and warranty: The licensor may
provide support to legal users. Whether a
particular use is authorized neceds to be
confirmed.

* Confidentiality: Sometimes the licensee
needs to know the working mechanism or
even hold the source code of the licensed

component. Non-disclosure agreements are
common.

In short, for each component licensing questions
involve various options, including payments,
warranties and so forth, and lcad to a complicated
relationship between the licensor and licensee.

4. Policy-Driven Licensing Model

A flexible model is required because the licensing
issues surrounding components are more complicated
and diverse than those of stand-alone software, as
discussed in the last section. A component may run
in different situations under different licensing
controls. We use policies to specify related licensing
information, and interpret these policies at run time.
A component may bc associated with several
licensing policies and may need to switch among
these policies frequently. With a flexible policy
driven mechanism, regardless of the complexity and
mutability of the licensing issucs, licensors can write
or modify suitable policies for a component in a
certain situation. The model also nceds to be
extensible, as the licensing system should be able to
accommodate new requirements as they arise. A
plug-in mechanism is a good solution to this
requirement. By defining and publishing common
interfaces, third party modules complying with these
interfaces can be used. An out-of-date module can be
replaced by a new one with little or no interruption to
the system.

We have developed a policy-driven license
management mode! that is both flexible and
extensible for software components within an
enterprise environment. The model is specifically
oriented to component and distributed systems and to
fit the software reuse paradigm. Based on this model,
we can build a distributed software component that
will provide the service of license management to
other components. The model is illustrated in Figure
1. Three typical kinds of policies that are important
to the system arc shown: the Access Control (AC)
Policy, the Billing (BL) Policy, and the Interface
Filter (IF) Policy. When requested by a clicnt, a
licensed component automatically sends a license
rcquest to the license management component. This
license request (LR) is a three-tuple:

LR=(S, T, P)
¢ S is the subject, the client who requests
usage of the licensed component.
e T is the target/object, the licensed
component being requested by S.
e P is the password or other identification of
the end user S to use the licensed
component.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Target
ﬂ\ResuIt
License Licensing System
Requesty
. Authentication
License | ¢ »| Authenticator IMP Policy
License Manager . -
Request IMP Policy
Policy Register Register
yRequest
Policy Retrieved Policy Policy/IMP
Manager Retrieve
Repository
A
Register
Y Y AC Policy IF Policy v BL Policy VRetr1'eve
Factory Factory Factory »| Registrar
Policy
vCreate R Create VCreate Check
AC IF BL
Pool Pool Pool Checker
Audit Count BL Mapping
v!nfo Fee vinfo Check
A
gtédit Client gLB Mapping Table :
Component Mapping Table
Jnvoke Update

AC: Access Control
IF: Interface Filter
BL: Billing

DB: Database

IMP:

Figure 1. The Conceptual Model

Implementation Module / Building Block

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)

0-7695-1933-4/03 $17.00 © 2003 IEEE

TEEE ':a

COMPUTER

SOCIETY

The license request is first sent to the License
Manager. Thc License Manager scparates the
target, also called the object or the licensed
component, from the licensing component, and
works as a communication bridge between them. It
cooperates with the Authenticator and the Policy
Manager. The License Manager requests the
Authenticator to authcnticate this request (based on
the information contained in the request). If the
subject is not a legal user, the Authenticator sends
negative feedback to the License Manager and the
request is denied. Otherwise, the Authenticator
identifies the requesting subject and associates it with
a “role,, that indicates a group of subjects with the
same license type, that is, what they are able or
unable to do when the licensing scheme is the same.
Once a license request is authenticated, all the
corresponding information regarding this license can
be automatically retricved from the repository by the
licensing componcnt based on the role and the
license request. Normally no further identification of
this subject or request is needed during the current
session. The License Manager then sends this role
along with its requested target to the Policy
Manager. The Policy Manager is the core of this
model, being responsible for most of the message
handling and transmissions. Once the request 1s
received, the Policy Manager first checks the
Mapping Table that presents the mapping which is
dependant on the role, and then targets a certain
policy group. The structure of this mapping table is
shown in Figure 2.

According to the target and role of the reccived
request, corresponding policy group identity (ID) is
acquired from the Mapping Table. Depending on
this ID, the Policy Manager rctrieves necessary
license policies, including the access control policy,
the interface filter policy and the billing policy,
through thc Registrar.

Target | Role ! Policy Group 1.1
Target 1 Role 2 Policy Group 1.2
Target n Role m Policy Group n.m

Figure 2. Structure of Mapping Table

The license Policy is a set of rules widely used in
our model to improve flexibility. There arc several
types of policies, including access control, billing,
and interface filter policies. The details will be
discussed in sections 6 and 7.

The interpretation of access control policies,
intcrface filter policies and billing policies is
implemented through the Policy Enforcement Pattern
[14], although for better clarity they are addressed in
three parts here. Other policy types that are necessary
for licensors can be specified and interpreted using
the same pattern. Applying the pattern it can be seen
that the factory is responsible for invoking policy
enforcement, creating the nccessary component
implementations, and putting them into the pool.
Inside the pool, corresponding policy enforcement
runs to enforce the respective policy.

After policy retricval, the Policy Manager sends
the access control policy to the Access Control (AC)
Factory, which parses the access control policy,
invokes the access control policy enforcement,
creatcs instances of appropriate access control
components (module implementation) and puts them
into the Access Control Pool. For each role and
target combination, there is a default access control
policy in case the license management component
has not defined any specific access rule. For
cxample, onc licensor requires that, for cach target,
there cxists one “starter,, role as default that only has
partial read privilege to the target and is denied to all
other privileges; or another licensor defincs the
“starter,, role as no privilegec at all. The License
Manager ncxt sends the license request to the
Access Control Pool where the access control is
realized, and if conditions of special events are
satisfied, as determined by the licensors or the
system, the request is audited based on the policy.

The Access Control Pool contains an aggregation
of access control components that arc running, access
control policy decision parts, and a variety of policy
enforcement parts. When a licensc request arrives,
the policy decision checks the privilege of the subject
on the target in the corresponding access control
policy to determine whether or not to allow the
request. If the subject has privilege on the target, the
policy enforcement executcs the access control
policy. Depending on the different conditions of
policies, different access control module
implementations will be activated to carry out the
policy. After this process has completed, an
acknowledgement is sent back to the Pelicy
Manager. Based on the returncd acknowledgement,
the Policy Manager dccides whether or not to
continue its ensuing work. Clearly, a ncgative
acknowledgement of authorization will lead to
denying the request and sending warning to the
client. The request will also be audited.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

If the request is authorized, the Policy Manager
sends both the interface filter policy and the billing
policy to their factorics respectively.

There may be an interface filter policy for a
certain request if the corresponding role is not
granted full access to the target; that means some
interfaces of the target will be filtered and their
access will be prohibited while the target is invoked
and running. The access control policy is analogous
to the manager who only indicates what a role can
and cannot do. Then the interface filter policy 1s like
the worker who ts responsible for how to prcvent
these unauthorized actions in practice. Both kinds of
policy cooperate to realize the access control in this
model. Similar to the process of the access control
policy, the Policy Manager also sends the interface
filter policy to the Interface Filter (IF) Factory,
which builds up required filter enforcements and puts
them into the Interface Filter Pool.

The Interface Filter Pool includes the active
interface filter components, interface filter policies
and the interface filter policy enforcements. The idea
of dclegation, first introduced by Lieberman [15] in
the framework of a prototype-based object model, is
used here.

Depending on the filter policy, there may be the
need to dynamically prohibit a client’s access to
some dcclared interfaces of the target component, but
normally we cannot touch the source code of the
target. Here, delegation helps to achieve dynamic
component adaptation. When necessary, a new
component, which can understand and enforce filter
policy results, is created at run-timec. Allowed
functionalities of the original target componcnt arc
“re-wired,, into the new component and non-allowed
ones arc suppressed. The client interacts with the
newly created component instead of the original onc.
If the client is accessing the legal interface, the
request will be forwarded to thec original target
component; otherwise, appropriate process inside the
new component will take action. The Billing (BL)
Factory builds the billing policy enforcement and the
corresponding billing components, depending on the
policy, and puts them into the Billing Pool. The
Billing Pool contains a variety of active billing
components, as well as policy enforcement parts. We
can provide a billing module (which can also be a
component) to the target component that can use this
module to gather useful license-related information
and send it to the Billing Pool. The policy
enforcement in this pool then analyzes the collected
information and invokes in-pool components
according to the billing policy to measure the licensc
usage. The usage information is stored into the
billing database for later reference.

If a technical solution for a licensing issue exists,
it can be developed into a policy enforcement by
utilizing the plug-in mechanism and by calling
appropriate building blocks (components) once they
have been specified in the configuration policy as
discussed in section 5. This makes the license
management component cxtensible so as to be able to
satisfy future changes. If a ncw technical solution
becomes available after the development of the
licensing component, and the current policy
enforcement is not compatible with it, a new solution
can be implemented using policy rules, which gives
great flexibility to the licensing component. The
introduction of policy rules is addressed in section 6.

5. Extensible licensing framework

Plug-in Module Mechanism: Many license
services in our component licensing model can be
provided as predefined modules or components. They
can be loaded at run-time. To fully take advantage of
this mechanism, it is neccessary to publish the
specifications of common component interfaces,
which enables a third party to join the
implementation of licensing systems based on our
policy-driven licensing model. By using this loadable
module mechanism, our model is highly extensible
and robust for future evolution. The loadable module
mechanism can be applied to thesc specified parts:

e Policy Enforcement, including cnforcement
of access control policies, billing policies,
interface filter policics, and other policies, if
any

¢ Access Control Components

* Billing Components

* Interface Filter Components

Pool

Policy
Enforcement #2

Policy
Enforcement #1

bulding block

building block
group #1

Figure 3. Loadable module mechanism

There are two kinds of loadable component. One
is the policy enforcement; the other is the

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

implementation component, also called the building
block. Their interactions are illustrated in Figure 3.
The building blocks are many independently
devecloped and delivered modules or components,
which provide relatively independent and singular
licensing functions. The policy enforcements arc a
varicty of pre-defined procedures used to enforce
routines that are well-known and regularly used in a
licensing system. Each policy enforcement involves a
series of actions, and cach action may have scveral
implementations. Those implementations can be
indcpendently built as building blocks and be
integrated into the license management system as
nceded. During cxecution, policy cnforcement necds
to choose a suitable implementation from a group of
available building blocks, as shown in Figure 3.

Normally the license management system will
supply the policy enforcements and building blocks,
however, based on a published specification, a third
party can devclop and complement these loadable
components as well. As we may utilize many license
modules and components in this component licensing
model, two requirements emerge: First, how to select
from the candidate components of a licensing
functionality”? Sccond, how to feed input to a sclected
component? Hecre we proposc the configuration
policy to solve these two problems.

Configuration Policy: This is a type of structural
text file containing two types of license information.
Onec is general license information, including the
vendor identity, the product key, the license type and
its properties. The other is the action selection that
helps the policy enforcement decide how to choose a
certain implementation from a building block group
for its actions and provide input data for thc
implementation. It spccifies which loadable licensc
module or component should be loaded at run time,
and what the parameters of this liccnse component
arc. Figurc 4 shows how the configuration policy
works. The configuration policy is parsed and
enforced by the appropriate policy enforcement part.
Depending on the result of the policy parsing, the
correct choice of action is made and corresponding
modules are invoked to carry out the policy.

It is our policy-driven licensing model that
provides the basis for the configuration policy. The
configuration policy, in turn, is the key to licensing in
component-based development software.

Pool

lzforﬂiglnmi;n Configuration
Policy #1 Policy #3

Configuration Confignration
Policy Policy
Enforcement #1 Erforcement #2

) o)
Building Block uilding Block
Group #2

Figure 4. Configuration Policy Enforcement

A simple example of License Configuration
Policy:
License (companyA, {1D6CDCA0-6916-11D2-A1C5-
0060081C43D9})
{
//General license information
product = Banking_PayBill;
product_version = 2.0;
product_key = {FD57D29A-4FD9-11D1-
854E-00C04FC31FD3};
//License type information and
properties
license_key = {9AC04F56-957A-44EF-
BC87-00732D67FFC8};
license_type = evaluation
concurrent | float;
expiration_date 12/31/2002;
concurrent_user 5;
allowed_ IP_range =
192.168.0.1-192.168.0.255;

//Action selection for policy
enforcement
/ /xeceypineon the
encryption algorithm
encryption_key group = 71;//Supply
the parameter for RSA

6. Licensing policy rule framework

If the pre-defined policy enforcements cannot
satisfy a particular situation, we can usc the policy
rules to fulfill the rcquirement. The use of policy
rules makes the license management scrvices in the
component licensing model very flexible. Similar to
the configuration policy, the policy rules can be
written by the licensors or developers and be
registered into the policy repository for later use.
Furthermore, the policy rule is able to combine
several policy cnforcements along with building
blocks to form a new complex license management
service. Figure 5 shows how it differs from the
working mechanism of configuration policies.

A Policy Rule is an executable script file. It is an
extension of the configuration policy, becausc,

RSA;

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

besides containing the same kind of information as
described in a configuration policy, it also contains
some simple data processes and it can invoke certain
license components depending on the results of these
processcs.

_Pool] E 7&][f:ﬂ | Policy Rule
olicy Rule Interpreter
- —_—
Conﬁg;r;jon Conﬁ-gxrlion
1 Policy Policy
| Enforcement #1 | | Enforcement #2
o O C 0
Building Block Building Block
O Group #1 Group #2
O
—

Figure 5. Policy Rule Interpretation

The policy rule is interpreted by the interpreter.
Bascd on the interpretation result, the interpreter may
invoke suitable configuration policy enforcement
parts to parse the configuration information inside the
policy rule. Meanwhile, as specified above, the
policy rule contains its own action choice part that
may be somewhat different from that in the
configuration policy. The interpreter also calls the
nccessary modules directly. Thus, from the
description above, we can sec that the policy rule 18
more powerful and flexible than the configuration
policy.

As mentioned earlier, not only can developers of
the license system write policies according to the
licensor’s requirement, but licensors themselves can
also write policies and register them into the policy
repository. As the licensors are more familiar with
their component products, they could take full
advantage of this flexible tool, developing policy
rules that best fit their licensing requirements. To use
the script-based policy rule, our licensing model must
fulfill several requirements:

Basis of scripting:

* The license management system that
interacts with the scripted policy rule must
be bascd on a good design, both component-
based and object-oriented.

e The script-based interaction requires a stable
architecture for extensible components.

* The license management system should
embed an object-oriented script language.

To interpret the license policy at run-time:

* The Policy Manager retrieves corresponding
access control policies, billing policies and

interface filter policies from the license
policy repository and sends them to the
respective factory.

* The factory parses the related policies. The
license components required are extracted
and the invocation information is used to
create the instance in the pool.

s A pool contains policy enforcement parts
that are responsible for the interpretation of
respective policies.

An example of License Policy Rule:
License_Grant (companya, {1D6CDCAO0-6916-
11D2-A1C5-0060081C43D9})

{

//General license information
product = Banking PayBill;
product_version = 2.0;
product_key = {FD57D29A-4FD9-11D1-854E-
00CO4FC31FD3};
//License type information and properties
license_key = {9ACO4F56-957A-44EF-BC87-
00732D67FFC8};

license_type = evaluation | concurrent
| float;

expiration_date = 12/31/2002;

concurrent_user = 5;

allowed_ IP_range =
192.168.0.1-192.168.0.255;

//Policy rules

RSA_encryption_key_group = 71; //Supply
the parameter for RSA algorithm

tripleDES_encryption_key_group = 53;
//Supply the parameter for tripleDES

if (is_licensetype(evaluation))
set_encryption(RSA,
RSA_encryption_key_group); //while handling
evaluation, use RSA

else {
set_encryption(tripleDES,
tripleDES encryption_key_group); //to all
other types, use tripleDES

7. Discussion

We arc currently implementing this model using
both C++ and Java. Many aspects of the
implementation are still under cxploration. Even
though policy-driven control has been widely used in
Quality of Service (QoS) and proved practical, usc of
such a modecl in a component licensing environment
1s novel.

7.1. Benefits

* Flexibility: Our component licensing model
allows licensors to define their own policics
to meet specific requircments.

* Adaptability: The predefined license
components in the repository can be
independcntly devcloped and delivered.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

This ensurcs that new functions and more
optimized elements can be integrated into
the system.

e Scalability: Our conceptual model fits
different requircments, ranging from a small
license system to an enterprise-scale license
management system. For small and simple
systems, thc license components arc
relatively simple. For enterprise system, the
simple license¢ components may be
combined to provide complex services, and
more complicated license components may
be integrated into the system when needed.

7.2. Drawbacks

e Performance: This component licensing
model uses plain text as the policy
description, which nceds to be interpreted at
run-time. This will slow down the policy
execution. However, incorporation of more
features for flexibility will mean more
overhead.

* Comprechensibility: To implement this
component licensing model is not a trivial
task. It requires a sound systcm design,
which in turn depends on detailed and
thorough studies of the domain.

7.3. Performance issues and the solution

The use of the pools and pre-built license
components provide partial solutions to the
performance problem. Well-planned distribution and
deployment also helps improve the response time.

¢ Load Balancing: The pool reduces overload
of license component instantiation.

* Pcrformance improvement by using prc-
built modules: Pre-built license modules and
components provide time-optimized
modules that can accclerate the cxccution
and improve performance dramatically.

* Distribution and deployment: Kcep the
licensing component at the samc
geographical location of the protected
component. This will speed up the
intcraction between the components.

7.4. Future work

As a framework, our policy-driven licensing
model is component platform neutral. To interact
with different components, some adaptation to fit
with popular component standards, such as CORBA,
J2EE/EJB, and DCOM/COM+/.NET, is needed.

8. References

[1]: Aladdin Knowledge Systems, Inc., “Hardware against
Software Piracy (I1ASP),,, 2002, http://www aks.com/hasp,
See also: htip://www.siia.net/piracy/ and
http://www.bsa.org/

[2]: Francisco Vilar Brasileiro, Trcio Rodrigues Bezerra,
Walfredo Costa Cirne Filho, and J. Antao Beltrao Moura,
“Bouncer: A Robust and Flexible License Management
Service for Avoiding Hlegal Use of Software.,, Proceedings
of the XI Brazilian Symposium on Software Engincering,
1997

[3]: Rainbow Technologies, “Software Licensing and
Protecction: Sentincl™ Wcebpage,,, 2002
http://www.rainbow.com/sentinel

[4]: Macrovision & Globetrotter Software, “FLEXIm
Overview Webpage,, 2002
http://www.globetrotter.com/flexIm/lmover shtml

[5]: International Business Machines Corporation, “IBM
License Use Management White Paper,,. 1998
ftp:/ftp software.ibm.com/software/luny/misc/lumwhtp.pdf

[6] The Open Group, “Systems Management: Software
License Use Management (XSLM),, 1999
http://www.opengroup.org/onlinepubs/009619399/toc.htm

[7): International Business Machines Corporation,
“Planning for Workload License Charges,,, 2001
http://publibz.boulder.ibm.com/epubs/pdfie0z2w 1 02.pdf

[8]: Object Management Group, “CORBA Licensing
Service Specification V1.0,,, 2000, http://www.omg.org

[9]: Andrea Chavez, Catherine Tornabene, and Gio
Wiederhold, “Software Component Licensing: A Primer.,.
IEEE Software, v.15 n.5, 1998

[10]: Ali Arsanjani, “Rule Object Pattern Language,,,
Proccedings of PLoP2000, Technical Report #wucs-00-29,
Dept. of Computer Science, Washington University
Department of Computer Science, 2000

[11]: N. Damianou, N. Dulay, E. Lupu and M. Sloman,
“The Ponder Policy Specification Language,,, Proccedings
of the Policy Workshop 2001, HP Labs, Bristol, UK,
Springer-Verlag, P.29-31, 2001

{12]: Benoit Dupire and Eduardo B Fernandez, “The
Command Dispatcher Pattern.,, Proceedings of the 8"
Pattern Language of Programs, Monticcllo, Illinois, 2001
http://jerry.cs.utuc.edu/~plop/plop2001/

[13]: Autodesk AutoCAD 2002 “Questions and Answers,,
http://usa.autodesk.com/adsk/files/

669687 AutoCAD2002_QA Standalone_Lic Mgt! pdf

{14]: Y. Zhou, Q. Zhao and M. Perry, “Policy Enforcement
Pattern,,, Proceedings of the 9™ Conference on Pattern
Language of Programs 2002, Monticello, Illinois, 2002
http://jerry.cs.uiuc.cdu/~plop/plop2002/final/ZZPerry PLOP.pdf
[15]: Henry Lieberman, “Using Prototypical Objects to
Implement Shared Behavior in Object

Oriented Systems,,, Proceedings OOPSLA 86, ACM
SIGPLAN Notices, 21(11):214-223. 1986
http://web.media.mit.edu/~licber/Licberary/OOP/Del
egation/Delegation.html

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

	Western University
	Scholarship@Western
	2003

	Policy Driven Licensing Model for Component Software
	Zhao Qian
	Zhou Yu
	Mark Perry
	Citation of this paper:

	Policy-driven licensing model for component software - Policies for Distributed Systems and Networks, 2003. Proceedings. POLICY 2003. IEEE 4th Internatio

