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Abstract 

Metal-loss corrosion is one of the major threats to the integrity of oil and natural gas pipelines.  

The Fitness-For-Service (FFS) assessment is commonly carried out to demonstrate the 

integrity of the corroded pipelines.  Due to the geometric complexity of the natural corrosions, 

the research of FFS assessment in the previous studies always employed the pipe segments 

containing artificially induced corrosion features.  However, since artificial features are in 

general regular-shaped, they do not capture geometric characteristics of naturally occurring 

corrosions.  The thesis develops a finite element model and a random field based corrosion 

model to deal with five issues regarding the FFS assessment of pipe segments containing 

naturally occurring corrosion features.  

 

The first study develops a three-dimensional finite element model to simulate the full-scale 

burst tests of pipe segments containing real corrosion features.  The finite element model, as 

well as the RSTRENG model, is used to study the impact of the depth threshold and five 

commonly used interaction rules on the burst capacity predictions of naturally corroded pipe 

segments.   

 

The second study investigates the impact of corrosion anomaly classes on the predictive 

accuracy of the B31G, B31G-M, Shell92, PCORRC, PCORRC-M, CSA and RSTRENG 

models for pin hole, axial slotting, axial grooving, circumferential slotting, circumferential 

grooving, pitting and general corrosion anomalies. The finite element analyses (FEA) results 

are used as the benchmark to evaluate the accuracies of the 7 burst capacity models for different 

classes of anomalies.   

 

The third study proposed a modified RSTRENG (RSTRENG-M) model to evaluate the burst 

capacity of corroded pipelines by employing the riverbed profile of corrosion features.  Based 

on 60 full-scale burst tests results, RSTRENG-M is shown to be more accurate than the 

RSTRENG model and comparable to the Psqr model in terms of accuracy but more 

advantageous in terms of computational efficiency.  

 



 

iii 

 

The fourth study proposes a random field model to characterize the corrosion depth on the 

external surface of buried oil and gas pipelines.  The model addresses the intermingling of 

corroded and corrosion-free areas on the pipe surface by using a latent homogeneous Gaussian 

random field and a spatial position-dependent threshold associated with the latent Gaussian 

field.  A comparison of simulated and measured corrosion fields suggests that the proposed 

model is able to capture the characteristics of naturally-occurring corrosion field on the pipe 

surface. 

 

The fifth study combines the FEA model developed in the second study with the random field-

based corrosion model presented in the fourth study to analyze the simulated naturally 

occurring corrosion features (i.e. synthetic corrosion features) in large quantity to further 

validate the RSTRENG-M model.   
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Summary for Lay Audience 

Pipeline is the most common mode for the natural gas and oil transportation.  The external 

corrosion is one of the leading causes of the pipeline incidents.  The safe operation of corroded 

pipelines is assured by the Fitness-for-service (FFS) assessment.  To assist with the research 

of the FFS assessment of corroded pipelines, this thesis develops a random field-based model 

to simulate and a finite element analysis (FEA) model to analyze the naturally corroded 

pipelines. 

 

The pipeline companies usually run inline inspection (ILI) tools to detect and size the corrosion 

anomalies on underground pipelines.  The ILI tools report the corrosion anomalies deeper than 

the reporting threshold and classify the anomalies into different classes based on the geometries 

of anomalies, followed by grouping the corrosion anomalies into corrosion clusters using 

interaction rules.  The burst capacities of corrosion clusters are predicted using the semi-

empirical burst models, such as the ASME B31G and RSTRENG, for the subsequent 

mitigation decisions.  This thesis investigates the impact of reporting depth thresholds and 

interaction rules on the burst capacity evaluation with the developed FEA model and the 

RSTRENG model.  Besides, the effects of the corrosion anomaly class on the predictive 

accuracies of several commonly used semi empirical models are also investigated to facilitate 

the pipeline engineers to select the most suitable models for the burst capacity evaluation of 

corrosion anomalies.   

 

Since all the existing semi-empirical models are associated with considerable errors, this study 

proposes a modified RSTRENG model (RSTRENG-M) to improve the predictive accuracy of 

the semi-empirical models. However, due to the high cost of obtaining the naturally corroded 

pipe segments, the number of pipe segments used to validate the RSTRENG-M model is 

limited.  Hence, this study develops a random field-based corrosion model to simulate the 

external corrosion surfaces of the naturally corroded pipelines, which is capable of capturing 

the main characteristics of naturally corroded pipeline surfaces.  By combining FEA with the 

random field-based corrosion model, the full scale burst tests of naturally occurring corrosion 

features are analyzed in large quantity to further validate the RSTRENG-M model.   
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1 Introduction 

1.1 Background  

Canada has a vast network of interprovincial and international pipelines that serve a vital 

role in transporting oil and natural gas.  Although historical statistics show that pipelines 

are safe, efficient and reliable, failures can still occur for a variety of reasons such as 

corrosion, third-party interference, material defects and ground movement.  The metal loss 

corrosion is one of the main reasons for the damages and failures in pipelines (Cosham et 

al. 2007).  According to the Pipeline and Hazardous Material Safety Administration 

(PHMSA) in the United States, corrosion caused 32% of reported incidents on the gas 

transmission pipelines in the US between 2002 and 2013 (Lam and Zhou 2016).  

 

Pipelines are usually protected by coatings and cathodic protection systems.  However, the 

effectiveness of the protective systems diminishes over time, resulting in the development 

of metal loss corrosions on the external surfaces of pipelines.  The Fitness-For-Service 

(FFS) assessment is commonly carried out by pipeline engineers to demonstrate the 

integrity of a pipeline that whether a corroded pipe joint is fit for continued service 

(Anderson 2007).  The FFS assessment of a corroded pipeline involves corrosion anomaly 

detection and identification, obtaining anomaly information through inspection, combing 

anomalies into clusters based on interaction rules and applying practical assessment models 

to evaluate the remaining strengths of the pipeline at the corrosion clusters (ASME 2018; 

Xie and Tian 2018).   

 

The in-line inspection (ILI) tool is the most common practice throughout the pipe industry 

to detect the metal loss anomalies on the pipelines.  The ILI tools identify and size the 

metal loss anomalies through a data analysis process.  A metal loss reporting threshold 

(depth threshold) is determined that only metal losses with the maximum corrosion depth 

above the threshold will be identified (POF 2016).  As shown in Fig. 1.1, when a metal 

loss anomaly is detected by the ILI tools, the anomaly is identified by the ILI tool as a box 

with ILI-measured length and width.  As mentioned by Pipeline Operators Forum (POF 

2016), the measurement capabilities of ILI inspection tool depend on the geometry of the 
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metal loss anomalies.  The POF system categorizes a given corrosion anomaly into one of 

seven classes depending on the length and width of corrosion anomaly, namely general 

(GEN), pitting (PITT), axial grooving (AXGR), circumferential grooving (CIGR), pin hole 

(PINH), axial slotting (AXSL) and circumferential slotting (CISL).   

 

The burst capacity of a colony of corrosion anomalies is lower than the burst capacities of 

the individual anomalies in the colony, which is known as the interacting behavior of 

corrosion anomalies.  The closely spaced metal loss anomalies will be combined into 

corrosion clusters based on the interaction rules (Lamontagne 2002).  The commonly used 

interaction rules are DNV (DNV 2017), B31.4 (ASME 2019), B31G (ASME 2018), CSA 

(CSA 2019) and CW (Coulson and Worthingham 1990). After the data analysis, the ILI 

inspection results are reported in a spreadsheet format, which includes the maximum 

depths, lengths, widths, identifications, longitudinal locations and circumferential 

orientations for both corrosion clusters and the corrosion anomalies contained in the 

corrosion clusters (Fig. 1.2).   

 

Figure 1.1 Corrosion anomaly identification by ILI tools 
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Figure 1.2 Illustration of typical ILI results 

A multi-level FFS assessment philosophy is widely used by the pipeline industry to 

evaluate the burst capacity of corroded pipelines according to the data available to pipeline 

operators (Chouchaoui 1993; Cronin 2000; ASME 2016; ASME 2018).  Each successive 

level (e.g. Levels 1, 2 and 3 of the ASME B31G standard (ASME 2018)) requires the 

greater amount of data and more computational effort to achieve more accurate 

outcomes.  The Level 1 and Level 2 models employ the semi-empirical burst capacity 

models to evaluate the burst capacity of a corroded pipeline (ASME 2018).  The Level 1 

semi empirical models require only the maximum corrosion depth and length of a corrosion 

cluster to calculate the burst capacity, while the Level 2 models include greater details of 

the corrosion profile than Level 1 models to account for the actual geometry of the metal 

loss.   

 

This thesis includes four existing Level 1 models, i.e. ASME B31G (ASME 2018), B31G 

Modified (B31G-M) (Kiefner and Vieth 1989), Shell92 (Ritchie and Last 1995) and 

PCORRC (Leis and Stephens 1997; Stephens and Leis 2000) models, and six existing 

Level 2 semi-empirical burst capacity models, i.e. RSTRENG (Kiefner and Vieth 1989), 

CSA (CSA 2019), DNV (DNV 2017), CPS (Cronin and Pick 2002), PCORRC Modified 

(PCORRC-M) (Mokhtari and Melchers (2019)) and Psqr (Zhang et al. 2018) models.  The 
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B31G, B31G-M, Shell92, RSTRENG, CSA, DNV and Psqr are derived from the NG-18 

equation (Maxey et al. 1972), in which the burst capacity Pb is calculated by:  

𝑃𝑏 =
2𝜎𝑓𝑡

𝐷
×
1−𝑆𝐹×

𝑑𝑚𝑎𝑥
𝑡

𝑆𝐹×
𝑑𝑚𝑎𝑥
𝑡

/𝑀
  (1.1) 

where f denotes the flow stress and is differently defined by different models; SF denotes 

the shape factor characterizing the shape idealization and equals the ratio of the metal-loss 

area to the rectangular area with length and width equal to the length and maximum depth 

of corrosion cluster, respectively (Zhang et al. 2018), and dmax denotes the maximum depth. 

t and D are the pipe wall thickness and the outside diameter of the pipe.  M is the bulging 

factor.  In general, three bulging factors are developed.  

𝑀1 = √1 + 0.8
𝑙2

𝐷𝑡
  (1.2) 

𝑀2 = {
√1 + 0.6275

𝑙2

𝐷𝑡
− 0.003375(

𝑙2

𝐷𝑡
)
2

         
𝑙2

𝐷𝑡
≤ 50

3.3 + 0.032
𝑙2

𝐷𝑡
                                                  

𝑙2

𝐷𝑡
> 50 

  (1.3) 

𝑀3 = √1 + 0.31
𝑙2

𝐷𝑡
  (1.4) 

 

Table 1.1 summarizes the shape idealizations, definitions of SF, flow stress and the bulging 

factors for different models.  In Table 1.1, le denotes the length of the effective area used 

in the RSTRENG and Psqr model.  dave is the average corrosion depth of the river bottom 

profile.  dave-RST-eff and dave-Psqr-eff are the average depth of the effective areas in the 

RSTRENG and Psqr model, respective. deff-DNV is the effective depth defined in the DNV 

model. Since Psqr model considers multiple plausible corrosion profiles, e.g. the corrosion 

profiles with maximum corrosion depth dmax,1 and dmax,2, to evaluate the burst capacity, 

multiple effective areas are figured out in the Psqr model as shown in Table 1.1.   
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Table 1.1 Definitions of the shape idealizations, SF, flow stress and the bulging 

factors for different models 

Model Shape idealization Shape factor Flow stress 
Bulging 

factor 

B31G 

 

2/3 1.1y M 1 

B31G-M 

 

0.85 y + 10ksi M 2 

Shell92 

 

1 0.9u M 1 

RSTRENG 

 

dave-RST-

eff/dmax 
y + 10ksi M2 

CSA 

 

dave/dmax 0.9u M2 

DNV 

 

deff-DNV/dmax u M3 

Psqr 

 

dave-Psqr-eff 

/dmax 
y + 10ksi M2 

 

The PCORRC, PCORRC-M model and CPS models were not developed from NG-18 

equation.  The PCORRC and PCORRC-M were based on results of parametric FEA. The 

prediction equations of PCORRC and PCORRC-M models are listed as follows. 

PCORRC 
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𝑃𝑏−𝑃𝐶𝑂 =
2𝑡𝜎𝑢

𝐷
[1 − 

𝑑𝑚𝑎𝑥

𝑡
(1 − 𝑒𝑥𝑝(

−0.157𝑙

√
𝐷(1−𝑑𝑚𝑎𝑥/𝑡)

2

))]           𝑙 ≤ 2𝐷 𝑎𝑛𝑑
𝑑𝑚𝑎𝑥

𝑡
≤ 0.8      

 (1.5) 

PCORRC-M 

𝑃𝑏−𝑃𝐶𝑂𝑀 =
2𝑡𝜎𝑢

𝐷
[1 − 

𝑑𝑒𝑞𝑣

𝑡
(1 − 𝑒𝑥𝑝(

−0.157𝑙

√
𝐷(1−𝑑𝑒𝑞𝑣/𝑡)

2

))]           𝑙 ≤ 2𝐷 𝑎𝑛𝑑
𝑑𝑚𝑎𝑥

𝑡
≤ 0.8 

 (1.6) 

where 

𝑑𝑒𝑞𝑣 = (
𝑉

𝑙𝑤
+ 𝑑𝑚𝑎𝑥) /2  (1.7) 

The CPS model considers the burst capacity of a pipe segment containing a corrosion 

feature, Pb-CPS, to be bounded by the burst capacity of a plain (corrosion free) pipe, PPP, as 

the upper limit and the burst capacity of a pipe containing an axially-oriented infinitely-

long groove having the same depth as the maximum depth of the corrosion feature, PLG, as 

the lower limit.  The burst capacity of the feature is then calculated from PPP and PLG with 

an interpolation parameter g (0  g  1) depending on the pipe geometry and corrosion 

morphology.   

𝑃𝑏−𝐶𝑃𝑆 = 𝑃𝐿𝐺 + 𝑔(𝑃𝑃𝑃 − 𝑃𝐿𝐺) (1.8) 

The detailed description of CPS model will be presented in Section 6.2.2.  

 

The Level 3 evaluation method usually refers to a numerical analysis, e.g. finite element 

analysis (FEA), associated with full justification for loading, boundary conditions, material 

properties and failure criteria (ASME 2018).  Hence, the corrosion anomaly identification, 

interaction rules and the predictive accuracies of the semi empirical models are of great 

importance to the FFS assessment and the subsequent mitigation decisions.  

 

Naturally occurring corrosion anomalies are three-dimensional metal loss flaws of irregular 

shapes developed on the external (internal or both) surface of pipe segments (see Fig. 1.3).  

However, due to the complex morphology of real corrosion anomalies, almost all the 

researches simplify the naturally occurring corrosion anomaly as the semi-ellipsoidal or 



7 

 

cubic corrosion metal loss such that full scale burst tests of the pipe segments containing 

artificially induced corrosion anomalies are commonly used to investigate the interaction 

behaviors of closely spaced corrosion anomalies and the predictive accuracies of the burst 

capacity models (Chouchaoui 1993; Kiefner et al. 1993; Kiefner et al. 1996; Benjamin et 

al. 2005; Benjamin et al. 2016; Al-Owaisi et al. 2018).  Compared to the semi-empirical 

burst capacity models, FEA is recognized as the most accurate assessment method to 

determine the burst capacities of corroded pipe segments.  The FEA has been widely used 

to improve the existing semi empirical models (Leis and Stephens 1997; Chen et al. 2015; 

Wang and Zarghamee 2013), as well as investigating the interaction behaviors of corrosion 

anomalies (Mondal and Dhar 2017; Sun and Cheng 2018), based on simulations of pipe 

segments containing the artificially induced corrosion anomalies. 

 Corrosion Anomaly

Wall

Thickness

Length

Width

Maximum 

Depth

 

Figure 1.3 Illustration of a naturally occurring corrosion anomaly on the pipe 

segment 

Since artificially-induced corrosion anomalies are in general regular-shaped, e.g. cubic or 

semi-ellipsoidal, they do not capture geometric characteristics of naturally occurring 

corrosions.  It follows that the specimens containing artificially-induced anomalies may 

not be suitable for the studies of FFS assessment methodologies.  Pipe segments containing 
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naturally occurring corrosion anomalies are ideal to investigate the interaction behaviors 

of corrosion anomalies and the predictive accuracies of the burst capacity models (Kiefner 

et al. 1996; Zhang et al. 2018).  In particular, Zhou and Huang (2012) investigated the 

model accuracies of several well-known Level 1 and Level 2 semi empirical models and 

reported that all the existing models are associated with considerable model errors.  

However, the high cost of obtaining naturally corroded pipe segments from the in-service 

pipelines and executing the full-scale burst tests greatly limit the number of pipe segments 

that are available to the research.   

1.2 Objective  

The research reported in this thesis is supported by the Natural Sciences and Engineering 

Research Council (NSERC) of Canada and TC Energy Ltd. The objectives of this research 

are summarized as follows.  

 

1) Investigate the impact of removing the corrosions shallower than the depth threshold 

and applying different interaction rules on the corrosion cluster identification and burst 

capacity predictions of naturally corroded pipelines by using the FEA and RSTRENG 

models.  

 

2) Investigate the predictive accuracies of several widely used burst capacity models to 

help pipeline engineers select the most suitable models for different POF corrosion 

anomaly classes.    

 

3) Develop a new burst capacity prediction model to improve the predictive accuracy of 

the existing semi-empirical models. 

 

4) Develop a random field model to simulate the naturally corroded pipe surfaces, which 

can greatly facilitate the numerical (as opposed to physical) full-scale burst tests of 

naturally corroded pipe specimens to improve existing semi-empirical burst capacity 

models and develop new burst capacity models. 
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5) Combine the random field-based corrosion model and FEA to create a large database to 

validate the new burst capacity prediction model.  

 

This research will improve the current FFS assessments by introducing the naturally 

occurring corrosion anomalies to the investigation of interaction rules and the predictive 

accuracies of the burst capacity evaluation models.  

1.3 Scope of the study 

This thesis consists of five main topics, which are presented in Chapters 2 to 6, respectively.  

Chapter 2 develops three-dimensional finite element models to simulate the full-scale burst 

tests of pipe segments containing naturally occurring corrosion anomalies.  The finite 

element models are validated by comparing the burst capacities observed in the tests and 

the values evaluated by FEA.  The FEA, as well as the RSTRENG model, is used to study 

the impact of different depth thresholds and five commonly used interaction rules, namely 

DNV, B31.4, 3WT, 6WT and CW, on the burst capacity predictions of naturally corroded 

pipe segments.   

 

Chapter 3 investigates the impact of corrosion anomaly classes on the prediction accuracies 

of seven existing burst capacity models for corroded pipelines based on a large amount of 

corrosion anomalies on naturally corroded pipe specimens.  The corrosion anomalies are 

classified into pin hole, axial slotting, axial grooving, circumferential slotting, 

circumferential grooving, pitting and general corrosion, based on the Pipeline Operators 

Forum (POF) anomaly classification system.  The seven burst capacity models and finite 

element analyses (FEA) are employed to evaluate the burst capacities of the corrosion 

anomalies.  The accuracies of the burst capacity models are assessed and compared based 

on the FEA-to-model predicted burst capacity ratios for different classes of anomalies.  

  

Chapter 4 proposes a modified RSTRENG model, named RSTRENG-M, to evaluate the 

burst capacity of corroded pipelines by employing the riverbed profile (as opposed to the 

river-bottom profile in RSTRENG) of the corrosion feature.  The predictive accuracy of 

the RSTRENG-M model is investigated based on full-scale burst tests of 16 naturally 
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corroded pipe specimens and 44 specimens containing artificially induced corrosion 

features.  An empirical equation is also developed to estimate the representative depth for 

a given circumferential profile directly from the corresponding maximum depth to facilitate 

the application of RSTRENG-M in the context of the inline inspection data.   

 

Chapter 5 proposes a random field model to characterize the corrosion depth on the external 

surface of buried oil and gas pipelines.  The model addresses the intermingling nature of 

corroded and corrosion-free areas on the pipe surface by using a latent homogeneous 

Gaussian random field and a spatial position-dependent threshold associated with the latent 

Gaussian field.  High-resolution corrosion measurement data obtained from corroded pipe 

segments removed from in-service pipelines are used to estimate parameters of the 

proposed model, including the probability of corrosion at a given point, marginal 

distribution of the nonzero corrosion depth and correlation structure of the latent Gaussian 

field.   

 

In Chapter 6, the naturally corroded external surfaces of underground pipelines are 

simulated by the random field-based corrosion model.  The B31.4 interaction rule is 

employed to group the corrosion anomalies on the simulated corrosion surfaces into 

corrosion clusters.  The burst capacities of 120 synthetic corrosion clusters with maximum 

corrosion depths between 30 and 70%t are evaluated by using both six existing Level 2 

semi empirical models and FEA.  The predictive accuracies of the six models are assessed 

and compared based on the FEA-to-model predicted ratios.   

1.4 Thesis format 

This thesis is prepared in an Integrated-Article Format as specified by the School of 

Graduate and Postdoctoral Studies at Western University, London, Ontario, Canada. Seven 

chapters are included in the thesis. Chapter 1 presents the introduction of the thesis which 

includes the research background, objective and research significance, scope of the study 

and thesis format. Chapters 2 through 6 are the main body of the thesis, of which each 

chapter solves an individual topic. The main conclusions and recommendations for future 

research regarding the topics in the thesis are provided in Chapter 7. 



11 

 

References 

Al-Owaisi. S., Becker. A. A., Sun. W., Al-Shabibi. A., Al-Maharbi. M., Pervez. T. and Al-

Salmi. H. 2018. An experimental investigation of the effect of defect shape and 

orientation on the burst pressure of pressurized pipes. Engineering Failure Analysis. 

93: 200 - 213. 

 

Anderson. T. L. 2007. Recent advances in fitness-for-service assessment. In: Proceedings 

of the 4th Middle East Non-destructive Testing Conference and Exhibition. Dec. 2 - 

5. Kingdom of Bahrain. 

 

ASME. 2016. Fitness-For-Service. API 579-1/ASME FFS-1. June, 2016. The American 

Society of Mechanical Engineers, New York. 

 

ASME. 2018. Manual for determining the remaining strength of corroded pipelines.  

Supplement to ASME B31 Code for Pressure Piping. ASME B31G - 2018. New 

York, USA. 

 

ASME. 2019. Pipeline transportation systems for liquids and slurries, ASME code for 

pressure piping, B31. The American Society of Mechanical Engineers, New York, 

USA. 

 

Benjamin. A. C., Freire, J. L. F., Vieira. R. D., Diniz. J. L. C. and Andrade, E. Q. 2005. 

Burst tests on pipeline containing interacting corrosion defects. In: Proceedings of 

OMAE2005 24th International Conference on Offshore Mechanics and Arctic 

Engineering. Jun. 12 - 17, 2005, Halkidiki, Greece. 

 

Benjamin. A. C., Freire. J. L. F., Vieira. R. D. and Cunha. D. J. S. 2016. Interaction of 

corrosion defects in pipelines - Part 2: MTI JIP database of corroded pipe tests. 

International Journal of Pressure Vessels and Piping.  145: 41 - 59. 

 

Chen. Y., Zhang. H., Zhang. J., Li. X. and Zhou. J. 2015. Failure analysis of high strength 

pipeline with single and multiple corrosions. Materials and Design. 67: 552 - 557. 

 

Chouchaoui. B. 1993. Evaluating the Remaining Strength of Corroded Pipelines. Ph.D. 

thesis. Waterloo, Canada: Department of Mechanical Engineering, University of 

Waterloo. 

 

Cosham. A., Hopkins. P. and Macdonald. K. A. 2007. Best practice for the assessment of 

defects in pipelines - Corrosion.  Engineering Failure Analysis. 14(7): 1245 - 1265. 

 

Coulson K. E. W. and Worthingham. R. G. 1990. Pipe corrosion-1: standard damage 

assessment approach is overly conservative. Oil and Gas Journal. 88(15): 54 - 59. 

 

Coulson K. E. W. and Worthingham. R. G. 1990. Pipe corrosion conclusion: new 

guidelines promise more accurate damage assessment. Oil and Gas Journal. 88(16): 

41 - 44. 



12 

 

Cronin. D. S. 2000. Assessment of corrosion damage in pipelines. Ph.D. thesis. Waterloo, 

Canada: Department of Mechanical Engineering, University of Waterloo. 

 

Cronin. D. S and Pick. R. J. 2002. Prediction of the failure pressure for complex corrosion 

defects. International Journal of Pressure Vessels and Piping. 79: 279 - 287.   

 

CSA. 2019. Oil and gas pipeline systems, CSA Standard Z662 - 19. Mississauga, Canada. 

 

DNV. 2017. Corroded Pipelines. DNV-RP-F101 code. Det Norske Veritas. Oslo, Norway. 

 

Kiefner. J. F. and Vieth. P. H. 1989. A modified criterion for evaluating the remaining 

strength of corroded pipe. Report prepared for American gas association. PR3 - 805. 

Columbus, OH, USA.   

 

Vieth. P. H. and Kiefner. J. F. 1993. Database of corroded pipe tests. Report prepared for 

the pipeline corrosion supervisory committee, Pipeline Research Committee of 

Pipeline Research Council International, Inc. PRCI Catalog No. L51689. 

Columbus, OH, USA.   

 

Kiefner J. F., Vieth P. H. and Roytman. I. 1996. Continued validation of RSTRENG. 

Report prepared for the line pipe research supervisory committee, Pipeline Research 

Committee of Pipeline Research Council International, Inc. PRCI. Catalog No. 

L51749e. Columbus, OH, USA.   

 

Lam. C. and Zhou. W. 2016. Statistical analyses of incidents on onshore gas transmission 

pipelines based on PHMSA database. International Journal of Pressure Vessels and 

Piping. 145: 29 - 40. 

 

Lamontagne. M. 2002. Interaction rules - an integral factor. In: Proceedings of the NACE 

International Conference Corrosion.  Apr. 7 - 11. Denver, USA. 

 

Leis. B. N. and Stephens. D. R. 1997. An alternative approach to assess the integrity of 

corroded line pipe part I: current status; part II: alternative criterion. In: Proceedings 

of the 7th International Offshore and Polar Engineering Conference. May 25 - 30.  

Honolulu, USA. 

 

Maxey. W. A., Kiefner. J. F., Eiber. R. J. and Duffy. A. R. 1972. Ductile fracture initiation, 

propagation, and arrest in cylindrical vessels. Fracture toughness. In: Proceedings of 

the 1971 National Symposium on Fracture Mechanics, Part II, ASTM STP 514. 

American Society of Testing and Materials: 70 - 81. 

 

Mokhtari. M. and Melchers. R. E. 2019. Next generation fracture prediction models for 

pipes with localized corrosion defects. Engineering Failure Analysis. 105: 610 - 626. 

 

Mondal. B. C. and Dhar. A. S. 2017. Interaction of multiple corrosion defects on burst 

pressure of pipelines. Canadian Journal of Civil Engineering. 44(8): 589 - 597.  



13 

 

Pipeline Operators Forum. 2016. Specifications and requirements for in-line inspection of 

pipelines. Version 2016. 

 

Ritchie. D. and Last. S. 1995. Burst criteria of corroded pipelines - defect acceptance 

criteria. In: Proceedings of the EPRG/RPC Biennial Joint Technical Meeting on Line 

Pipe Research. Apr. 18 - 21. Cambridge, UK.  

 

Stephens. D. R. and Leis. B. N. 2000. Development of an alternative failure criterion for 

residual strength of corrosion defects in moderate-to high-toughness pipe. In: 

Proceedings of the 2000 International Pipeline Conference. IPC2000. Oct. 1 - 5. 

Calgary, Canada.  

 

Sun. J. and Cheng. Y. F. 2018. Assessment by finite element modeling of the interaction 

of multiple corrosion defects and the effect on failure pressure of corroded pipelines. 

Engineering Structure. 165: 278 - 286. 

 

Wang. N. and Zarghamee. M. S. 2013.  Evaluating Fitness-for-service of corroded metal 

pipelines: structural reliability bases.  Journal of Pipeline System Engineering and 

Practice. 04013012: 1 - 9. 

 

Xie. M. and Tian. Z. 2018. A review on pipeline integrity management utilizing in-line 

inspection data. Engineering Failure Analysis. 92: 222 - 239. 

 

Zhou. W. and Huang. G. 2012. Model error assessments of burst capacity models for 

corroded pipelines. International Journal of Pressure Vessels and Piping. 99 - 100: 1 

- 8. 

 

Zhang. S., Yan. J., Kariyawasam. S., Huang. T. and Al-Amin. M. 2018. A more accurate 

and precise method for large metal loss corrosion assessment. In: Proceedings of the 

2018 International Pipeline Conference. IPC2018. Sept. 24 - 28. Calgary, Canada. 

  



14 

 

2 Influence of Depth Thresholds and Interaction Rules on 
the Burst Capacity Evaluation of Naturally Corroded 
Pipelines  

2.1 Introduction  

Metal-loss corrosion compromises the pressure containment capacity, i.e. burst capacity, 

of oil and gas pipelines and poses a direct threat to the integrity and safety of pipelines.  

While corrosion may occur on both the external and internal surfaces of the pipeline, the 

focus of the present study is the external corrosion.  The fitness-for-service (FFS) 

assessment is commonly carried out to demonstrate the integrity of pipelines containing 

corrosion anomalies.  The FFS assessment typically involves employing inline inspection 

(ILI) tools to identify and size corrosion anomalies, combining anomalies into clusters 

based on the so-called interaction rules and applying engineering critical assessment 

models to evaluate the burst capacities of the pipeline at the corrosion clusters (ASME 

2016; ASME 2018). 

 

A significant portion of the naturally corroded external surface of a pipe segment typically 

contains shallow corrosions, i.e. corrosion shallower than 10% of the pipe wall thickness 

(Bao and Zhou 2020).  The shallow corrosion may not be detected or reported by ILI tools 

as such tools often have a minimum detectable or reportable limit for the corrosion depth 

(POF 2016).  Even if shallow corrosions are reported by ILI, they are often ignored by 

pipeline integrity engineers during the process of identifying individual corrosion 

anomalies to simplify and facilitate the process.  Implicit in this practical treatment is the 

assumption that ignoring shallow corrosions below a certain threshold value (dth) has a 

negligibly small (non-conservative) effect on the burst capacity evaluation.  Such an 

assumption, however, has not been quantitatively validated in the literature.   

 

A naturally corroded pipe segment usually contains multiple corrosion anomalies.  The 

burst capacity of a colony of closely spaced corrosion anomalies is generally lower than 

the burst capacities of individual anomalies in the colony.  This is known as the interaction 

effect.  The so-called interaction rules (Lamontagne 2002) are used in practice to determine 

if multiple anomalies in proximity should be treated as a cluster to take into account the 
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interaction effect.  In the past two decades, the FEA has proven to be a viable tool to study 

the interaction behaviors of closely-spaced corrosion anomalies.  Mondal and Dhar 

(2016,2017) suggested that the maximum spacing (i.e. interaction limits) between two 

interacting anomalies depends on the pipe wall thickness, corrosion depth (i.e. in the pipe 

through-wall thickness direction) and orientation of anomalies (e.g. longitudinally or 

circumferentially aligned anomalies) based on the parametric FEA of pipe segments 

containing two idealized box-shaped corrosion anomalies.  Al-Owaisi et al. (2018) carried 

out FEA to investigate the interactions between two corrosion anomalies on the external 

surface of the pipeline idealized as box- or semi-ellipsoidal-shaped.  They concluded the 

shape of the corrosion anomaly has little influence on the interaction limits, while the 

orientation of anomalies has an important effect on the interaction behavior.  Sun and 

Cheng (2018) developed FEA models to analyze the interaction behavior of multiple 

corrosion anomalies with varied geometries and reported that the longitudinally aligned 

corrosion anomalies are associated with more significant interaction effects than the 

circumferentially aligned anomalies.  As Cronin (2000) pointed out, a key challenge of 

evaluating the interaction of naturally-occurring corrosion anomalies is that the number of 

possible permutations of geometric characteristics of adjacent anomalies is infinite.  Hence, 

almost all the relevant literature focuses on the interaction between two idealized corrosion 

anomalies (Mondal and Dhar 2016; Mondal and Dhar 2018; Al-Owaisi et al. 2018; Sun 

and Cheng 2018) (e.g. the box-shaped and semi-ellipsoidal anomalies), whereas no work 

has been reported in the literature to investigate the interaction behavior of naturally-

occurring, complex-shaped corrosion anomalies.  Moreover, there is no study investigating 

the effectiveness of various commonly-used interaction rules for naturally-occurring 

corrosion anomalies.   

 

Full-scale burst tests of 14 naturally corroded pipe segments were recently completed and 

reported by Zhang et al. (2018).  The detailed digital profiles of corroded external surfaces 

of the pipe specimens were obtained by using high-resolution laser scanners and provided 

to the present study.  This provides an opportunity to investigate the impact of the corrosion 

depth threshold and interaction rule on the burst capacity evaluation of naturally corroded 

pipelines.  In this study, the burst capacities of the 14 pipe segments are evaluated using 
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FEA and the RSTRENG model (Kiefner and Vieth 1989), which is widely used in FFS 

assessment in practice, by considering different corrosion depth thresholds to filter out 

shallow corrosions on the pipe specimen.  Five interaction rules are employed to generate 

54 groups of significant corrosion clusters on the 14 pipe specimens.  The corrosion clusters 

generated by different interaction rules are further compared in terms of the size and burst 

capacities determined by FEA and RSTRENG.  The interaction rules considered in the 

present study include those recommended by DNV (DNV 2017), B31.4 (ASME 2019), 

CSA (CSA 2019), Coulson and Worthingham (1990a,b) and B31G (ASME 2018).   

 

The rest of the chapter is organized as follows. Section 2.2 describes the 14 naturally 

corroded pipe specimens on which the analyses are based; Section 2.3 describes the 

corrosion anomaly identification based on the depth threshold and cluster identification 

based on the five interaction rules; Section 2.4 describes the FEA and RSTRENG model 

used to evaluate the burst capacity of the pipe specimens; Section 2.5 discusses the impact 

of the depth threshold and interaction rules on the burst capacity evaluation using the 

analysis results obtained from FEA and the RSTRENG model, followed by the conclusion 

in Section 2.6.   

2.2 Naturally corroded pipe specimens 

Table 2.1 summarizes geometric and material properties of the 14 naturally corroded pipe 

specimens mentioned in the previous section, as well as the burst capacities observed in 

the tests.  The yield strength (y), ultimate tensile strength (u) and Young’s modulus (E) 

are determined from the tensile tests of coupons extracted from the pipe bodies in the 

circumferential direction.   
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Table 2.1 Summary of 14 naturally corroded test specimens (Zhang et al. 2018) 

No. 
Specimen 

ID 

D 

(mm) 

t 

(mm) 

L 

(mm) 

W 

(mm) 

dmax 

(%t) 

Steel 

grade 
y 

(MPa) 

u 

(MPa) 

E 

(GPa) 

Ptest 

(MPa) 

1 16-1 408.2 6.2 2880 520 42 X52 369 540 167 14.60 

2 16-2 407.7 6.2 2720 563 47 X52 369 540 167 13.31 

3 16-3 407.7 6.2 2400 623 43 X52 369 540 167 13.52 

4 16-5 407.7 5.9 2080 556 97 X52 393 557 189 11.86 

5 16-6 407.4 5.9 2080 623 87 X52 408 576 191 12.72 

6 16-7 407.4 6.0 2400 616 87 X52 408 576 191 12.84 

7 24-1 610.5 6.8 6387 408 32 X70 553 680 145 14.21 

8 24-2 610.5 6.7 8080 497 39 X70 553 680 145 14.37 

9 30-1 763.2 8.4 6147 500 68 X70 536 655 187 12.31 

10 30-2 763.4 8.5 3127 461 48 X70 535 652 170 14.10 

11 30-3 763.2 8.4 2467 606 73 X70 568 691 171 14.78 

12 30-4 763.7 8.5 3401 456 78 X70 562 604 174 12.48 

13 30-5 762.9 8.4 3520 728 87 X70 546 659 154 12.26 

14 30-6 764.1 8.4 4544 630 75 X70 515 628 161 12.96 

Note: D = outside diameter of the pipe segment; L = length of the scanned area; W = width 

of the scanned area; dmax = maximum corrosion depth within the scanned area; Ptest = burst 

capacity observed in the tests.  

 

The corrosion anomalies on external surfaces of the 14 specimens were measured by using 

a high-resolution laser scanning device.  Figure 2.1 depicts the two-dimensional (2D) and 

three-dimensional (3D) images of the scanned external surface of specimen 16-1.  The x 

and y coordinates are the longitudinal and circumferential positions (arclength) of a grid 

point on a regular scan grid of 2 (longitudinal)  1 (circumferential) mm with respect to a 

reference point (i.e. the origin).  The z coordinate represents the corrosion depth, expressed 

as a percentage of the pipe wall thickness t, measured at the grid point.  The lengths and 

widths of the 14 scanned areas are also included in Table 2.1.  

 

a) 2D image 
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b) 3D image 

Figure 2.1 2D and 3D images of the scanned surface of specimen 16-1 

2.3 Corrosion anomaly and cluster identification 

2.3.1 Anomaly identification with different depth thresholds 

Figure 2.2 shows the corrosion anomalies identified on the external surface of specimen 

16-1 after different depth thresholds (dth) are used to remove the shallow corrosions, i.e. 

the corrosion depths are set to zero if they are less than the threshold value.  The original 

scan results (i.e. without imposing dth) is also shown in Fig. 2.2 as a reference. It is observed 

from Fig. 2.2 that, a higher depth threshold leads to fewer corrosion anomalies identified 

on the external surface: a total of 8016, 4613, 1069, 352 and 127 corrosion anomalies are 

identified within the scanned area, corresponding to dth = 2%t, 5%t, 10%t, 15%t and 20%t, 

respectively.  Figure 2.2 also indicates that a higher value of dth leads to smaller corrosion 

anomalies.  For example, the longest corrosion anomaly on specimen 16-1 is 2880, 334, 

124, 32 and 24 mm long corresponding to dth = 2%t, 5%t, 10%t, 15%t and 20%t, 

respectively.   

 

a) Original scan result (i.e. without imposing dth)           b) dth = 2%t 
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c) dth = 5%t                                                           d) dth = 10%t 

 

e) dth = 15%t                                                           f) dth = 20% 

Figure 2.2 Corrosion anomalies on specimen 16-1 after applying the different depth 

thresholds 

2.3.2 Interaction rules 

Currently, most interaction rules are expressed in the following form (Benjamin et al 

2016a,b):   

𝑠𝑙 ≤ (𝑠𝑙)𝑙𝑖𝑚 and 𝑠𝑐 ≤ (𝑠𝑐)𝑙𝑖𝑚  (2.1) 

As illustrated in Fig. 2.3, two anomalies are combined into one corrosion cluster if their 

longitudinal separation distance sl is less than or equal to the longitudinal interaction limit 

(sl)lim and their circumferential separation distance sc is less than or equal to the 

circumferential limit value (sc)lim.  A corrosion cluster is defined as an area on the pipe 

surface with the sides parallel to the longitudinal and circumferential directions of the pipe, 

respectively (see Fig. 2.3).  In this paper, five commonly used interaction rules are 

considered; the definitions of interaction limits in the five rules are summarized in Table 

2.2.  The (sl)lim and (sc)lim in DNV rule depend on the pipe diameter and wall thickness, 

whereas the Coulson and Worthingham (CW) rule assumes that the interaction limits are 

related to the lengths and widths of the two neighbouring anomalies.  The CSA and B31G 
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rules are commonly known as the 6WT (i.e. six wall thicknesses) and 3WT rules, 

respectively, as their interaction limits in both directions are equal to 6t and 3t, respectively.  

The B31.4 rule assumes that the longitudinal interaction limit is equal to a fixed value of 

25.4 mm (1 in), and the circumferential limit equals 6t; therefore the B31.4 rule is also 

known as the 1 in  6t rule.   

 

Figure 2.3 Illustration of the interaction rule and interaction limits 

Table 2.2 Interaction limits for five commonly used interaction rules 

Interaction limit DNV CW CSA (6WT) B31G (3WT) B31.4 

(sl)lim  2√𝐷𝑡 min (l1, l2) 6t 3t 25.4 mm 

(sc)lim 𝜋√𝐷𝑡 min (w1, w2) 6t 3t 6t 

Note: l1 and l2 = lengths of two anomalies in close proximity; w1 and w2 = widths of two 

anomalies. 

 

2.4 Methodologies 

2.4.1 General 

Although FEA predicts the burst capacity of corroded pipe segments with a high accuracy 

(see section 2.4.3), RSTRENG is a widely-used FFS assessment model in the pipeline 

industry.  Therefore, we employ both FEA and RSTRENG to investigate the impacts of 

different depth thresholds and interaction rules on the predicted burst capacities.  Five 

values of the depth threshold are considered: dth = 2%t, 5%t, 10%t, 15%t and 20%t, 

respectively.  For a given value of dth, the corrosion data within the scanned area are 

modified such that the measured corrosion depths smaller than dth are ignored and set to 

zero.  The burst capacities corresponding to the modified corrosion data are then evaluated 

by FEA and RSTRENG, and compared with the capacities corresponding to the original 
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corrosion data.  The results of the comparison quantify the impact of dth and provide the 

basis for selecting a suitable dth for identifying individual corrosion anomalies and clusters.  

To study the effectiveness of interaction rules, the significant corrosion areas on the 14 

pipe specimens described in Section 2.2 are identified.  A suitable dth as identified in the 

analysis described in the previous paragraph is then applied to the corrosion areas to 

facilitate the identification of corrosion anomalies.  The interaction rules listed in Table 2.2 

are subsequently applied to the identified individual corrosion anomalies to generate the 

corrosion clusters.  For each of the significant corrosion areas on the pipe specimens, FEA 

and RSTRENG are employed to evaluate the burst capacities of the entire area as well as 

the corrosion clusters within the areas identified based on different interaction rules.  The 

effectiveness of interaction rules is then investigated by comparing the burst capacity of 

the clusters with that of the corresponding corrosion area. 

2.4.2 FEA model 

The FEA models are generated and analyzed in the commercial software ANSYS (version 

16.1).  The finite-strain, elasto-plastic formulation is employed to address the geometric 

and material nonlinearity in the burst capacity evaluation, and the von Mises yield criterion 

with the associated flow rule and isotropic hardening assumption are adopted in the 

material model.   

 

The true stress () - strain () curve of the pipe specimen is fitted by the power-law 

relationship based on coupon tensile test results as follows: 

{
𝜎 = 𝐸𝜀         𝜎 < 𝜎𝑦
𝜎 = 𝐾𝜀𝑛        𝜎 ≥ 𝜎𝑦

    (2.2) 

The values of n and K in Eq. (2.2) are evaluated by (Zhu and Leis 2005). 

𝑛 = 0.224 (
𝜎𝑢

𝜎𝑦
− 1)

0.604

 (2.3) 

𝐾 =
𝜎𝑢𝑒

𝑛

𝑛𝑛
 (2.4) 

where e is the base of natural logarithm with y and u presented in Table 2.1.  Figure 2.4 

compares the actual  -  curves (converted from the engineering stress- strain curve) of 

two representative specimens, 16-1 and 24-1, with those fitted using Eq. (2.2), which shows 

that Eq. (2.2) describes the true stress-strain relationship very well.  
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Figure 2.4 Comparison between the actual true stress - strain curves with the fitted 

ones for specimens 16-1 and 24-1 

Because the scanned surfaces (see Table 2.1) and significant corrosion areas (see Fig. 2.8) 

on the 14 pipe specimens are large, it will be extremely time-consuming to carry out FEA 

of the pipe specimens with the resolution of the mesh the same as the scan resolution, i.e. 

one grid point corresponding to one node in FEA.  The strategy of generating simplified 

FEA models proposed by Bao et al. (2018) is employed to develop FEA meshes that strike 

a balance between accuracy and computational efficiency.  More specifically, the geometry 

of the corrosion regionis input in the FEA model based on a 10 × 10 mm grid.  In other 

words, the mesh density of the corrosion region in the FEA model is 10 × 10 mm.  Figure 

2.5 illustrates how the corrosion geometry obtained from the LPIT laser scan with a 2 × 1 

mm grid is input into the FEA model.  In Fig. 2.5, the dashed lines are the grid lines of the 

laser scan, whereas the solid lines represent the FEA mesh.  The corrosion depths at FEA 

mesh points 1, 2, 3 and 4 are taken as the maximum corrosion depths of the shaded areas 

centered by these four points, respectively.    
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Figure 2.5 Finite element generation strategy in the corrosion region 

As an illustration, the configuration of the FEA model containing the scanned corroded 

surface of specimen 16-1 is depicted in Fig. 2.6(a).  The FEA model consists mainly of 8-

node brick (C3D8) elements, and the prismatic (C3D6) element is used as the transitional 

element (see Fig. 2.6(b)).  A half pipe model is built, which assumes that the two identical 

circumferentially aligned corrosion areas contained in the corresponding full-scale model 

do not interact with each other.  This assumption is justified because their circumferential 

separation distance is large, which eliminates the potential for interaction.  Accordingly, 

the half pipe model has the same burst capacity as the corresponding full pipe model but 

can be analyzed more efficiently (Bao et al. 2018).  The FEA model is extended 3.5D 

longitudinally from each boundary of the corrosion region to eliminate the end effect.  As 

explained in the above, the element size in the corrosion region is 10 × 10 mm, and a 

relatively coarser mesh (i.e. 20 × 20 mm) is used for the corrosion free areas outside the 

corrosion region.  The FEA model in Fig. 2.6 consists of around 100,000 nodes and 80,000 

elements.  The mesh convergence studies regarding the possible shear locking along the 

thickness direction and the high stress gradient within the corrosion region have been 

performed to ensure the accuracy of the numerical results.  Based on the convergence study, 
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four layers of elements along the thickness direction are used in both the corrosion region 

and the areas outside the corrosion region.  

 

a) Configuration of the FEA model 

 

 
b) Transitional element  

Figure 2.6 FEA model of pipe segment containing the scan surface of specimen 16-1 

 

The burst of a pipe segment involves the fracture of the remaining ligament, which cannot 

be simulated due to the continuum constitutive model employed in FEA.  The failure 

criterion adopted in this study is that burst failure occurs when the von Mises stress of any 

node in the corrosion region reaches the true stress corresponding to the ultimate tensile 

strength.   

2.4.3 FEA validation 

In Fig. 2.7, the burst capacities of the 14 pipe specimens are determined by FEA and 

compared with those observed in the tests.  Let Ptest and PFEA denote the burst capacities 

observed in the tests and determined by FEA, respectively. The mean and coefficient of 

variation (COV) of the test-to-FEA predicted ratios (Ptest/PFEA) are 0.97 and 6.5%, 

respectively.  It should be mentioned that large discrepancies between Ptest and PFEA are 

observed for specimens 16-2 and 16-3.  These two tests were paused due to the equipment 

malfunction when the internal pressures nearly reached the final burst levels.  The internal 
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pressures were maintained during the pause while the malfunctioning equipment was 

replaced, and the tests were resumed after the pause.  The short suspension at a high stress 

level may cause the growth of micro cracks in the corroded region, which reduces the burst 

capacities of the specimens and results in relatively large discrepancies between the FEA-

predicted and tested capacities.  By excluding these two tests, the mean and COV of test-

to-predicted ratios are 0.99 and 4.4%, respectively.  The comparisons demonstrate the 

accuracy of FEA in the burst capacity prediction of pipe segments containing naturally-

occurring corrosion anomalies.   

    

Figure 2.7 Comparison between the test-based and FEA-predicted burst capacities 

of the 14 specimens 

2.4.4 RSTRENG model  

As shown in Fig. 2.8, the RSTRENG model characterizes the 3D corrosion features by the 

river-bottom path, which passes through the deepest corroded points on different 

circumferential planes.  The river bottom path is then projected onto a longitudinal plane 

that is perpendicular to the wall thickness to generate the river bottom profile.  The 

corrosion feature is divided into n sub-features with each sub feature occupying a 

contiguous portion of the river bottom profile.  The burst pressure of the ith sub-feature, 

PRST,i, can be calculated with the following equation:  

𝑃𝑅𝑆𝑇,𝑖 = (𝜎𝑦 + 68.95)
1−

𝐴𝑖
𝑙𝑖𝑡

1−
𝐴𝑖

𝑀𝑖𝑙𝑖𝑡

   
𝑑𝑚𝑎𝑥

𝑡
≤ 0.8 (2.5) 
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where Ai and li are, respectively, the corroded area and the length of the ith sub-feature on 

the river bottom profile. The bulging factor Mi is given by 

𝑀𝑖 = {
√1 + 0.6275

𝑙𝑖
2

𝐷𝑡
− 0.003375

𝑙𝑖
4

(𝐷𝑡)2
                        

𝑙𝑖
2

𝐷𝑡
≤ 50

3.3 + 0.032
𝑙𝑖
2

𝐷𝑡
                                                            

𝑙𝑖
2

𝐷𝑡
> 50

 (2.6) 

 

Figure 2.8 Illustration of the river bottom path and river bottom profile of a 

naturally occurring corrosion feature 

The burst capacity (PRST) of the corrosion feature is then determined as the minimum value 

of the burst capacities of all the sub-features, i.e. 

𝑃𝑅𝑆𝑇 = 𝑚𝑖𝑛{𝑃𝑅𝑆𝑇,𝑖}                   𝑖 = 1,2, … , 𝑛  (2.7) 

2.5 Results and Discussions 

2.5.1 Impact of depth threshold  

Tables 2.3 and 2.4 list the burst pressures predicted by using FEA, PFEA(dth), and 

RSTRENG model, PRST(dth), after applying different depth thresholds.  As expected, the 

increase in the threshold value leads to a higher predicted burst capacity.  Let PFEA and PRST 

denote the FEA-predicted and RSTRENG-predicted burst capacities without imposing dth. 

The percentage increase of the FEA prediction, FEA(dth) = |PFEA(dth) - PFEA|/PFEA, and 

RSTRENG prediction, RST(dth) = |PRST(dth) - PRST|/PRST,  corresponding to different dth 

values are also calculated.  Tables 2.3 and 2.4 show that imposing dth = 10%t has a 
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negligible impact on the burst capacities predicted by both FEA and RSTRENG: the 

increase in the burst capacities of the 14 specimens after imposing dth = 10%t is generally 

less than 2%.  On the other hand, a depth threshold of 15%t (20%t) can result in the 

predicted burst capacities about 5% (10%) higher than that without imposing dth.  Thus, dth 

= 10%t is recommended based on the above results.  A comparison between Tables 2.3 and 

2.4 indicate that the FEA-predicted burst capacity is more sensitive to the application of dth 

than the RSTRENG-predicted burst capacity.  This can be attributed to that FEA takes into 

account the three-dimensional corrosion geometry, while the river-bottom profile 

considered in RSTRENG is two-dimensional.  

Table 2.3 Impact of the depth threshold on the predicted burst capacity based on 

FEA 

Specimen 

ID 

PFEA 

(MPa) 

PFEA(dth) (MPa) FEA(dth) (%) 

2 5 10 15 20 2 5 10 15 20 

16-1 15.24 15.25 15.29 15.50 15.84 16.24 0.0 0.3 1.7 3.9 6.5 

16-2 15.34 15.34 15.40 15.77 16.03 16.28 0.0 0.4 2.8 4.5 6.1 

16-3 16.07 16.08 16.17 16.48 16.87 17.03 0.1 0.6 2.5 5.0 6.0 

16-5 12.33 12.33 12.42 12.55 12.59 12.64 0.0 0.8 1.8 2.1 2.5 

16-6 13.79 13.80 13.91 13.99 14.07 14.27 0.1 0.9 1.4 2.0 3.4 

16-7 13.25 13.28 13.46 13.58 13.67 13.70 0.2 1.5 2.5 3.1 3.4 

24-1 14.81 14.81 14.83 14.94 15.26 15.96 0.0 0.2 0.9 3.0 7.8 

24-2 14.76 14.76 14.79 15.03 15.45 15.95 0.0 0.2 1.9 4.7 8.1 

30-1 11.65 11.65 11.67 11.73 11.85 12.16 0.0 0.2 0.7 1.7 4.4 

30-2 14.02 14.02 14.05 14.12 14.37 14.76 0.0 0.2 0.7 2.5 5.3 

30-3 14.95 14.95 14.99 15.29 15.43 15.59 0.0 0.3 2.3 3.2 4.3 

30-4 11.83 11.83 11.83 12.05 12.32 12.59 0.0 0.0 1.8 4.1 6.4 

30-5 12.63 12.63 12.66 12.83 13.17 13.69 0.0 0.3 1.6 4.3 8.4 

30-6 12.35 12.36 12.39 12.61 12.85 13.25 0.0 0.3 2.1 4.0 7.3 

Mean 0.0 0.4 1.8 3.4 5.7 
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Table 2.4 Impact of the depth threshold on the predicted burst capacity based on 

the RSTRENG 

Specimen 

ID 
PRST (MPa) 

PRST(dth) (MPa) RST(dth) (%) 

2 5 10 15 20 2 5 10 15 20 

16-1 10.72 10.72 10.72 10.75 10.82 11.10 0.0 0.0 0.3 1.0 3.6 

16-2 10.77 10.77 10.77 10.78 11.00 11.31 0.0 0.0 0.1 2.1 5.0 

16-3 11.22 11.22 11.22 11.32 11.72 12.11 0.0 0.0 0.9 4.4 7.9 

16-5 8.02 8.02 8.02 8.02 8.02 8.02 0.0 0.0 0.0 0.0 0.0 

16-6 9.00 9.00 9.00 9.00 9.00 9.00 0.0 0.0 0.0 0.0 0.0 

16-7 9.39 9.39 9.39 9.42 9.57 9.60 0.0 0.0 0.2 1.9 2.2 

24-1 11.50 11.50 11.50 11.50 11.66 12.33 0.0 0.0 0.0 1.4 7.2 

24-2 11.49 11.49 11.49 11.52 11.95 12.61 0.0 0.0 0.3 4.1 9.7 

30-1 8.64 8.64 8.64 8.64 8.64 8.64 0.0 0.0 0.0 0.0 0.0 

30-2 11.09 11.09 11.09 11.14 11.42 12.14 0.0 0.0 0.4 3.0 9.5 

30-3 11.66 11.66 11.66 11.69 12.00 12.29 0.0 0.0 0.3 2.9 5.4 

30-4 10.57 10.57 10.57 10.58 10.63 10.85 0.0 0.0 0.1 0.6 2.6 

30-5 10.58 10.58 10.58 10.66 10.77 10.83 0.0 0.0 0.7 1.8 2.3 

30-6 10.07 10.07 10.07 10.13 10.42 10.83 0.0 0.0 0.5 3.4 7.5 

Mean 0.0 0.0 0.3 1.9 4.5 

 

2.5.2 Impact of interaction rules  

Based on the depth threshold analysis described in the previous section, dth = 10%t is 

employed in this study to remove the background corrosions on the external surfaces of the 

14 specimens.  Individual corrosion anomalies on the specimens are subsequently 

extracted.  A total of 54 significant corrosion areas (designated as CA# in Fig. 2.9 and Fig. 

A.1 of Appendix A) are identified from the 14 specimens.  The five interaction rules listed 

in Table 2.2 are used to combine the closely spaced corrosion anomalies within each of 

these areas into corrosion clusters.  Since a given corrosion area usually contains multiple 

clusters, the cluster with the lowest burst capacity evaluated using a given approach (i.e. 

either FEA or RSTRENG) within the area is defined as the critical cluster corresponding 

to the area.  As an illustration, the critical corrosion clusters generated according to the 5 

interaction rules within the 6 corroded areas on specimen 16-1 are depicted in different 

colors in Fig. 2.9.  The critical clusters on the other 13 specimens are depicted in Fig. A.1 

of Appendix A.  Given the corrosion area and interaction rule, the critical cluster identified 

based on FEA is the same as that identified based on RSTRENG for all 54 corrosion areas 

and five interaction rules, although the burst capacity of the critical cluster evaluated using 

FEA differs from that evaluated using RSTRENG.  
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Figure 2.9 Corroded areas on specimen 16-1 and critical corrosion clusters 

identified based on different interaction rules 

 

The critical corrosion cluster generated by using the DNV rule within CA1 as shown in 

Fig. 2.9 is 898 mm long and 386 mm wide, and contains 368 corrosion anomalies.  

According to the interaction limits of DNV rule listed in Table 2.2, these 368 corrosion 

anomalies result in 6289 pairs of interacting corrosion anomalies.  Figures 2.10(a) and 

2.10(b) summarize the longitudinal, sl, and circumferential spacing, sc, of each of the 6289 

interacting anomaly pairs.  Similarly, the distribution of sl and sc in the critical corrosion 

clusters generated according to the other four interaction rules are also shown in Fig. 2.10.  

Figure 2.10 indicates that the values of sl and sc between pairs of interacting corrosion 

anomalies within a given cluster cover the ranges of possible values of sl and sc, i.e. 0 ≤ sl 

≤ (sl)lim and 0 ≤ sc ≤ (sc)lim.  Similar results are also observed for CA2 through CA54, 

although for brevity these results are not shown.  This suggests that the dataset used in the 

present study is suitable and balanced to investigate the effectiveness of the interaction 

rules for naturally-occurring corrosion anomalies.   
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a) sl for DNV rule                                  b) sc for DNV rule 

  
c) sl for CSA (6WT) rule                            d) sc for CSA (6WT) rule 

 
e) sl for B31.4 (1 in × 6t) rule                          f) sc for B31.4 (1 in × 6t) rule 

 
g) sl for B31G (3WT) rule                              h) sc for B31G (3WT) rule 
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i) sl for CW rule                           j) sc for CW rule 

Figure 2.10 Distribution of longitudinal and circumferential separation distances 

between interacting corrosion anomalies in CA1 in terms of different interaction 

rules 

 

Figure 2.9 and Appendix A compare the sizes of the critical corrosion clusters on the 54 

significant corrosion areas resulting from different interaction rules.  Among them, the 

DNV rule is the most stringent interaction rule and results in the largest critical clusters, 

often as large as the corrosion area, whereas the CW rule is usually the least stringent rule 

and results in the smallest critical corrosion clusters.  

 

The burst capacities of the critical corrosion clusters within the 54 significant corrosion 

areas are predicted by FEA.  Let PFEA-b denote the burst capacity of the corrosion area 

predicted by FEA, and let PFEA-• denote the FEA-predicted burst capacities of the critical 

corrosion clusters within the area generated according to interaction rule •.  Define eFEA-• 

=|PFEA-• – PFEA-b|/PFEA-b.  Table 2.5 summarizes the values of PFEA-b, PFEA-• and eFEA-• for 

the 54 corroded areas.  Similarly, the burst capacities of the corrosion area and critical 

corrosion cluster within the area are also evaluated using RSTRENG, denoted by PRST-b 

and PRST-•, respectively.  Table 2.6 summarizes the values of PRST-b, PRST-• and eRST-• =|PRST-

• – PRST-b|/PRST-b. 

 

Tables 2.5 and 2.6 reveal that the burst capacities of the critical corrosion clusters based on 

the CW and B31G (3WT) rules can be 5% higher than the burst capacity of the 
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corresponding corrosion area, while the burst capacities of the critical clusters based on the 

DNV and CSA (6WT) rules differ by less than 2% from burst capacities of the 

corresponding corrosion areas.  The burst capacity of the critical cluster based on the B31.4 

rule is on average also close to the burst capacity of the corroded area, although in a few 

cases the difference can be as large as 3-4%.  Tables 2.5 and 2.6 suggest that the CSA 

(6WT) rule results in critical clusters that accurately capture the most critical regions of the 

corrosion area.  The use of the B31G (3WT) and CW rules may lead to non-conservative 

critical clusters as their burst capacities can be 5% higher than the burst capacity of the 

corrosion areas.  Although the DNV rule results in similar burst capacities of critical 

clusters as the CSA (6WT) rule, the large (sl)lim and (sc)lim values associated with the DNV 

rule generally result in large corrosion clusters that are time-consuming to identify and 

analyze.  Therefore, the DNV rule is considered unamenable for practical application.   

Table 2.5 Impact of the interaction rule on the FEA-predicted burst capacities 

Corroded 

Area 

PFEA-b 

(MPa) 

Burst capacity of critical cluster (MPa) Relative difference (%) 

PFEA-

DNV 

PFEA-

CSA 

PFEA-

B31.4 

PFEA-

B31G 

PFEA-

CW 

eFEA

-DNV 

eFEA

-CSA 

eFEA- 

B31.4 

eFEA-

B31G 

eFEA- 

CW 

CA1 16.2 16.2 16.2 16.2 16.4 16.6 0.00 0.00 0.00 1.11 2.64 

CA2 16.9 16.9 16.9 17.3 17.4 17.6 0.00 0.00 2.21 2.80 3.68 

CA3 17.5 17.5 17.5 17.5 17.5 17.5 0.00 0.00 0.00 0.00 0.00 

CA4 15.7 15.7 15.7 15.7 15.7 15.8 0.00 0.00 0.00 0.00 0.67 

CA5 17.4 17.4 17.4 17.5 17.5 17.8 0.10 0.10 0.95 0.95 2.68 

CA6 16.5 16.5 16.5 16.5 16.6 16.7 0.00 0.00 0.29 0.89 1.38 

CA7 15.7 15.7 15.7 15.9 15.9 16.3 0.00 0.00 1.04 1.35 4.04 

CA8 16.9 17.0 17.0 17.3 17.3 17.1 0.24 0.24 2.01 2.48 1.07 

CA9 17.4 17.4 17.4 17.4 17.5 17.5 0.05 0.19 0.19 0.35 0.35 

CA10 17.5 17.6 17.6 17.6 17.6 17.6 0.52 0.53 0.53 0.53 0.53 

CA11 16.5 16.6 16.7 16.7 16.8 17.1 0.34 0.94 1.17 1.78 3.87 

CA12 17.3 17.4 17.4 17.5 17.5 17.6 1.04 1.04 1.23 1.29 1.76 

CA13 17.0 17.0 17.0 17.1 17.1 17.3 0.06 0.06 0.14 0.18 1.41 

CA14 17.0 17.1 17.2 17.2 17.4 17.4 0.43 0.87 0.87 2.23 2.23 

CA15 15.2 15.3 15.3 15.3 15.4 15.4 0.20 0.20 0.33 1.25 1.25 

CA16 17.1 17.3 17.3 17.3 17.4 17.4 1.14 1.14 1.14 1.81 2.08 

CA17 12.9 12.9 12.9 12.9 12.9 12.9 0.00 0.33 0.41 0.41 0.00 

CA18 17.3 17.4 17.4 17.4 17.4 17.4 0.32 0.49 0.49 0.49 0.49 

CA19 16.5 16.6 16.6 16.6 16.6 16.6 0.61 0.61 0.61 0.61 0.61 

CA20 16.9 16.9 16.9 16.9 17.1 17.2 0.13 0.13 0.14 1.36 2.03 

CA21 16.6 16.6 16.6 16.6 16.6 16.7 0.22 0.22 0.22 0.22 0.32 

CA22 14.4 14.7 14.7 14.7 14.9 14.9 1.80 1.80 1.80 3.19 3.19 

CA23 18.0 18.1 18.1 18.1 18.1 18.3 0.13 0.13 0.46 0.48 1.58 

CA24 17.9 18.0 18.0 18.1 18.1 18.1 0.73 0.73 1.16 1.16 1.56 

CA25 15.5 15.5 15.5 15.5 15.7 15.7 0.00 0.00 0.00 1.29 1.29 

CA26 18.1 18.1 18.1 18.1 18.1 18.3 0.05 0.05 0.05 0.05 1.15 

(continued on next page) 
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Table 2.5 (Continued) 
Corroded 

Area 
PFEA-b 

(MPa) 
Burst capacity of critical cluster (MPa) Relative difference (%) 

PFEA-

DNV 
PFEA-

CSA 
PFEA-

B31.4 
PFEA-

B31G 
PFEA-

CW 
eFEA

-DNV 
eFEA

-CSA 
eFEA- 

B31.4 
eFEA-

B31G 
eFEA- 

CW 
CA27 14.1 14.1 14.1 14.1 14.1 14.1 0.58 0.58 0.58 0.58 0.58 
CA28 18.1 18.1 18.1 18.1 18.1 18.1 0.00 0.00 0.00 0.00 0.01 
CA29 17.9 17.9 17.9 17.9 18.0 18.1 0.00 0.00 0.25 0.50 1.44 

CA30 17.9 18.0 18.0 18.0 18.1 18.1 0.53 0.53 0.53 1.10 1.10 

CA31 17.7 17.7 17.7 17.8 17.8 18.3 0.00 0.00 0.48 0.76 3.25 

CA32 13.8 13.8 14.0 14.4 14.5 14.0 0.00 1.30 4.61 5.12 1.32 

CA33 15.7 15.8 15.8 15.8 15.8 15.8 0.54 0.54 0.54 0.66 0.94 

CA34 16.5 16.6 16.7 16.7 16.8 16.8 0.16 0.73 0.73 1.33 1.33 

CA35 16.5 16.5 16.5 16.5 16.5 16.7 0.02 0.09 0.27 0.27 1.50 

CA36 14.9 14.9 14.9 14.9 14.9 14.9 0.05 0.11 0.13 0.14 0.21 

CA37 16.4 16.4 16.4 16.4 16.4 16.4 0.03 0.09 0.15 0.18 0.24 

CA38 16.4 16.4 16.4 16.4 16.4 16.4 0.29 0.33 0.34 0.34 0.40 

CA39 15.8 15.8 15.9 15.9 16.0 16.1 0.10 0.75 1.11 1.30 2.52 

CA40 15.0 15.0 15.0 15.1 15.2 15.7 0.06 0.22 0.47 1.48 4.84 

CA41 14.9 15.0 15.1 15.2 15.2 15.2 0.88 1.54 2.19 2.34 2.34 

CA42 14.7 14.7 14.7 14.7 14.8 14.8 0.10 0.13 0.17 0.26 0.27 

CA43 14.9 14.9 14.9 15.3 15.3 15.5 0.00 0.01 2.96 2.99 4.19 

CA44 11.6 11.7 11.7 11.7 11.8 11.8 0.66 0.66 0.77 1.46 1.59 

CA45 14.3 14.3 14.3 14.3 14.3 14.3 0.16 0.16 0.17 0.23 0.25 

CA46 15.6 15.7 15.8 15.8 16.0 16.1 0.49 1.11 1.23 2.63 3.30 

CA47 15.2 15.3 15.3 15.3 15.3 15.3 0.26 0.26 0.29 0.29 0.54 

CA48 15.8 15.9 15.9 15.9 15.9 16.3 0.81 0.81 0.90 0.90 3.04 

CA49 12.1 12.1 12.1 12.2 12.2 12.5 0.01 0.06 0.68 0.83 2.83 

CA50 14.3 14.3 14.3 14.3 14.3 14.4 0.20 0.24 0.32 0.32 1.26 

CA51 12.9 12.9 13.0 13.0 13.0 13.6 0.13 0.80 0.81 0.89 5.77 

CA52 13.0 13.1 13.2 13.3 13.3 13.7 0.39 1.04 2.36 2.36 5.04 

CA53 13.4 13.4 13.4 13.6 13.7 13.5 0.04 0.04 1.71 2.21 0.66 

CA54 12.6 12.7 12.7 12.7 13.0 13.1 0.52 0.52 0.81 3.07 4.20 

Mean 0.28 0.42 0.80 1.16 1.79 

Maximum 1.80 1.80 4.61 5.12 5.77 

Table 2.6 Impact of the interaction rule on the RSTRENG-predicted burst 

capacities 

Corroded 

Area 

PRST-b 

(MPa) 

Burst capacity of critical cluster (MPa) Relative difference (%) 

PRST-

DNV 

PRST- 

CSA 

PRST-

B31.4 

PRST-

B31G 

PRST-

CW 

eRST-

DNV 

eRST-

CSA 

eRST- 

B31.4 

eRST-

B31G 

eRST- 

CW 

CA1 11.3 11.3 11.3 11.3 11.3 11.4 0.00 0.00 0.08 0.12 0.41 

CA2 12.4 12.5 12.5 12.5 12.5 12.7 0.03 0.03 0.33 0.33 1.65 

CA3 12.9 13.0 13.0 13.0 13.0 13.2 0.17 0.17 0.17 0.17 1.79 

CA4 10.7 10.7 10.7 10.7 10.7 10.7 0.00 0.00 0.00 0.00 0.00 

CA5 12.6 12.6 12.6 12.6 12.6 13.1 0.05 0.05 0.09 0.09 3.99 

CA6 11.4 11.4 11.4 11.4 11.6 11.6 0.00 0.00 0.00 1.53 2.12 

CA7 10.8 10.8 10.8 10.8 10.8 11.1 0.00 0.00 0.33 0.33 2.65 

CA8 11.9 11.9 11.9 12.2 12.3 12.4 0.00 0.00 2.66 2.69 3.56 

CA9 12.2 12.2 12.2 12.2 12.3 12.3 0.00 0.00 0.00 0.24 0.24 

CA10 12.7 12.7 12.8 12.8 13.0 13.2 0.03 0.27 0.27 2.25 3.55 

CA11 11.3 11.3 11.4 11.7 11.7 11.8 0.00 0.59 3.19 3.66 3.98 

CA12 12.5 12.5 12.5 12.5 12.7 12.9 0.00 0.00 0.00 1.15 3.33 

(continued on next page) 
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Table 2.6 (Continued) 
Corroded 

Area 
PRST-b 

(MPa) 
Burst capacity of critical cluster (MPa) Relative difference (%) 

PRST-

DNV 
PRST- 

CSA 
PRST-

B31.4 
PRST-

B31G 
PRST-

CW 
eRST-

DNV 
eRST-

CSA 
eRST- 

B31.4 
eRST-

B31G 
eRST- 

CW 
CA13 12.3 12.3 12.3 12.3 12.3 12.6 0.00 0.00 0.00 0.23 2.74 

CA14 12.6 12.6 12.6 12.6 12.8 12.8 0.09 0.19 0.19 1.30 1.30 

CA15 10.3 10.3 10.3 10.3 10.6 10.6 0.00 0.04 0.04 2.48 2.48 

CA16 12.7 12.7 12.7 12.7 12.7 12.8 0.06 0.06 0.06 0.28 0.73 

CA17 8.0 8.0 8.0 8.0 8.0 8.0 0.00 0.00 0.00 0.00 0.00 

CA18 12.7 12.7 12.7 12.7 12.7 12.7 0.14 0.48 0.48 0.48 0.48 

CA19 11.8 11.8 11.8 11.8 11.8 11.8 0.01 0.01 0.01 0.01 0.17 

CA20 12.1 12.1 12.1 12.1 12.2 12.5 0.00 0.00 0.00 0.43 3.42 

CA21 11.6 11.6 11.6 11.6 11.6 11.6 0.00 0.00 0.00 0.00 0.00 

CA22 9.0 9.0 9.0 9.0 9.0 9.0 0.00 0.00 0.00 0.00 0.00 

CA23 13.4 13.4 13.4 13.4 13.5 13.8 0.07 0.07 0.19 1.29 2.93 

CA24 13.0 13.0 13.0 13.0 13.0 13.5 0.04 0.04 0.04 0.04 3.46 

CA25 10.5 10.5 10.5 10.5 10.5 10.5 0.00 0.00 0.00 0.02 0.02 

CA26 13.5 13.6 13.6 13.6 13.6 13.7 0.09 0.28 0.28 0.28 1.32 

CA27 10.1 10.1 10.1 10.1 10.1 10.1 0.00 0.00 0.00 0.00 0.00 

CA28 13.4 13.4 13.4 13.4 13.4 13.4 0.12 0.12 0.12 0.12 0.12 

CA29 13.1 13.1 13.1 13.1 13.1 13.3 0.00 0.00 0.00 0.03 0.88 

CA30 12.9 12.9 12.9 12.9 13.0 13.0 0.05 0.05 0.05 0.86 0.86 

CA31 12.6 12.6 12.6 12.7 12.7 12.9 0.00 0.00 0.62 0.88 2.04 

CA32 9.4 9.4 9.4 9.6 9.6 9.5 0.00 0.00 1.65 1.65 0.99 

CA33 12.1 12.1 12.1 12.1 12.1 12.1 0.00 0.00 0.00 0.20 0.26 

CA34 13.3 13.3 13.3 13.3 13.4 13.4 0.01 0.34 0.34 1.13 1.13 

CA35 13.3 13.3 13.3 13.3 13.3 13.6 0.03 0.03 0.05 0.05 2.41 

CA36 11.5 11.5 11.5 11.5 11.5 11.5 0.00 0.00 0.00 0.00 0.00 

CA37 13.1 13.1 13.2 13.4 13.4 13.6 0.00 0.55 2.47 2.28 3.46 

CA38 13.0 13.0 13.1 13.1 13.1 13.5 0.02 0.18 0.21 0.21 3.64 

CA39 12.1 12.1 12.1 12.2 12.3 13.0 0.00 0.00 0.02 1.49 7.27 

CA40 11.5 11.5 11.5 11.5 11.6 12.1 0.00 0.00 0.00 0.87 4.90 

CA41 11.6 11.6 11.6 11.6 11.6 11.7 0.00 0.02 0.18 0.18 0.30 

CA42 11.9 11.9 11.9 11.9 11.9 11.9 0.00 0.00 0.00 0.00 0.09 

CA43 12.3 12.3 12.3 12.5 12.5 12.6 0.00 0.55 2.18 2.18 2.51 

CA44 8.6 8.6 8.6 8.6 8.6 8.6 0.00 0.00 0.00 0.00 0.00 

CA45 11.1 11.1 11.1 11.1 11.2 11.2 0.00 0.00 0.00 0.94 0.94 

CA46 12.6 12.6 12.6 12.6 13.0 13.2 0.00 0.00 0.01 2.91 4.48 

CA47 11.7 11.7 11.7 11.7 11.7 12.3 0.00 0.00 0.00 0.00 5.50 

CA48 13.4 13.4 13.4 13.4 13.4 13.6 0.02 0.02 0.04 0.04 1.28 

CA49 10.6 10.6 10.6 10.6 10.6 10.6 0.00 0.00 0.00 0.00 0.00 

CA50 12.4 12.4 12.4 12.4 12.4 12.4 0.00 0.00 0.00 0.00 0.00 

CA51 10.7 10.7 10.7 10.7 10.7 11.1 0.00 0.00 0.00 0.00 4.03 

CA52 10.7 10.7 10.7 10.7 10.7 10.8 0.00 0.00 0.00 0.00 0.99 

CA53 11.5 11.5 11.5 11.5 11.5 11.5 0.00 0.00 0.23 0.23 0.00 

CA54 11.0 11.0 11.0 11.0 11.3 11.2 0.00 0.00 0.04 2.26 1.15 

Mean 0.02 0.08 0.31 0.70 1.77 

Maximum 0.17 0.59 3.19 3.66 7.27 
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2.6 Conclusion 

This chapter investigates the impact of the depth threshold and five commonly used 

interaction rules on the evaluation of burst capacities of naturally corroded pipelines based 

on 14 pipe specimens containing naturally occurring corrosion anomalies.  The RSTRENG 

model and FEA are employed to evaluate the burst capacities of 14 pipe specimens 

containing naturally occurring corrosions. It is observed that applying a corrosion depth 

threshold of 10%t to corroded pipe surface has a negligible (generally less than 2%) impact 

on the burst capacities predicted using FEA and RSTRENG, but can greatly facilitate the 

identification of individual corrosion anomalies and corrosion clusters.  

 

The effectiveness of the DNV, CSA (i.e. 6WT), B31G (i.e. 3WT), B31.4 (i.e. 1 in  6t) and 

CW interaction rules is investigated based on the burst capacities of 54 groups of corrosion 

clusters identified from the 14 pipe specimens evaluated using the RSTRENG model and 

FEA.  The burst capacities of the critical corrosion clusters identified using the DNV and 

CSA (6WT) rules differ from the burst capacity of the corresponding corroded areas by 

less than 2%, while the burst capacities of the critical clusters identified using the B31G 

(3WT) and CW interaction rules can be 5% higher than the burst capacity of the 

corresponding corrosion area.  The DNV rule is considered unamenable for practice as it 

leads to large corrosion clusters, which are highly time-consuming to be analyzed. On the 

other hand, the critical corrosion cluster identified using the CSA (6WT) rule is smaller 

than the critical cluster identified using the DNV rule but still captures the critical corrosion 

region.  Thus, the CSA (6WT) interaction rule is recommended for combining naturally 

occurring corrosion anomalies into corrosion clusters for practical fitness-for-service 

assessments of corroded pipelines.  

 

References 

Al-Owaisi. S., Becker. A. A., Sun. W., Al-Shabibi. A., Al-Maharbi. M., Pervez. T. and Al-

Salmi. H. 2018. An experimental investigation of the effect of defect shape and 

orientation on the burst pressure of pressurized pipes. Engineering Failure Analysis. 

93: 200 - 213. 

 



36 

 

ASME. 2016. Fitness-For-Service. API 579-1/ASME FFS-1. The American Society of 

Mechanical Engineers. New York, USA. 

 

ASME. 2018. Manual for determining the remaining strength of corroded pipelines.  

Supplement to ASME B31 code for pressure piping. ASME B31G - 2018. New York, 

USA. 

 

ASME. 2019. Pipeline transportation systems for liquids and slurries, ASME code for 

pressure piping, B31. The American Society of Mechanical Engineers, New York, 

USA. 

 

Bao. J. and Zhou. W. 2020. Influence of the corrosion anomaly class on predictive accuracy 

of burst capacity models for corroded pipelines. International Journal of 

Geosynthetics and Ground Engineering. 45.  

 

Bao. J., Zhang. S., Zhou. W. and Zhang. S. 2018. Evaluation of burst pressure of corroded 

pipe segments using three-dimensional finite element analysis. In: Proceedings of the 

2018 International Pipeline Conference. IPC2018. Sept. 24 - 28. Calgary, Canada. 

 

Benjamin. A. C., Freire. J. L. F., Vieira. R. D. and Cunha. D. J. S. 2016a. Interaction of 

corrosion defects in pipelines - Part 1: Fundamentals. International Journal of 

Pressure Vessels and Piping. 144: 56 - 62. 

 

Benjamin. A. C., Freire. J. L. F., Vieira. R. D. and Cunha. D. J. S. 2016b. Interaction of 

corrosion defects in pipelines - Part 2: MTI JIP database of corroded pipe tests. 

International Journal of Pressure Vessels and Piping.  145: 41 - 59. 

 

Coulson K. E. W. and Worthingham. R. G. 1990. Pipe corrosion 1: standard damage 

assessment approach is overly conservative. Oil and Gas Journal. 88(15): 54 - 59. 

 

Coulson K. E. W. and Worthingham. R. G. 1990. Pipe corrosion conclusion: new 

guidelines promise more accurate damage assessment. Oil and Gas Journal. 88(16): 

41 - 44. 

 

CSA. 2019. Oil and gas pipeline systems, CSA standard Z662-19. Mississauga, Canada. 

 

DNV. 2017. Corroded pipelines. DNV-RP-F101 code. Det Norske Veritas. Oslo, Norway. 

 

Kiefner. J. F. and Vieth. P. H. 1989. A modified criterion for evaluating the remaining 

strength of corroded pipe. Report prepared for American gas association. PR3 - 805. 

Columbus, OH, USA.  

  

Lamontagne. M. 2002. Interaction rules - an integral factor. In: Proceedings of the NACE 

International Conference Corrosion.  April 7 - 11. Denver, USA. 

 



37 

 

Mondal. B. C. and Dhar. A. S. 2016. Burst pressure assessment for pipelines with multiple 

corrosion defects. In: Proceedings of the 5th International Structural Specialty 

Conference. Canadian Society for Civil Engineering. Jun. 1 - 4. London, Canada. 

 

Mondal. B. C. and Dhar. A. S. 2017. Interaction of multiple corrosion defects on burst 

pressure of pipelines. Canadian Journal of Civil Engineering. 44(8): 589 - 597. 

 

Pipeline Operators Forum. 2016. Specifications and requirements for in-line inspection of 

pipelines. Version 2016. 

 

Sun. J. and Cheng. Y. 2018. Assessment by finite element modeling of the interaction of 

multiple corrosion defects and the effect on failure pressure of corroded pipelines. 

Engineering Structure. 165: 278 - 286. 

 

Cronin. D. S. 2000. Assessment of corrosion defects in pipelines. Ph.D. thesis. Waterloo, 

Canada: Department of Mechanical Engineering, University of Waterloo. 

 

Zhang. S., Yan. J., Kariyawasam. S., Huang. T. and Al-Amin. M. 2018. A more accurate 

and precise method for large metal loss corrosion assessment. In: Proceedings of the 

2018 International Pipeline Conference. IPC2018. Sept. 24 - 28. Calgary, Canada. 

 

Zhu. X. K. and Leis B. N. 2005. Influence of yield-to-tensile strength ratio on failure 

assessment of corroded pipelines. Journal of Pressure Vessel Technology. 127: 436 

- 442. 

 

 

  



38 

 

3 Influence of the Corrosion Anomaly Class on Predictive 
Accuracy of Burst Capacity Models for Corroded 
Pipelines 

3.1 Introduction  

Metal-loss corrosion is one of the major threats to the integrity of buried oil and gas 

pipelines (Lam and Zhou 2016).  Corrosion on buried pipelines is largely influenced by 

properties of the surrounding soils such as the pH value, soil resistivity, water content and 

dissolved chloride.  Extensive research has been reported in the literature to predict the 

severity of corrosion on pipeline using soil parameters as predictors (Alamilla et al. 2009; 

Velázquez 2010; Xiang and Zhou 2020). In practice, pipeline engineers carry out the 

fitness-for-service (FFS) assessment to evaluate the structural integrity of corroded 

pipelines and then determine necessary, if any, mitigation actions.  The FFS assessment of 

a corroded pipeline generally involves evaluating the pressure containment capacity, i.e. 

burst capacity, of the pipeline by using one of several widely accepted semi-empirical burst 

capacity models such as ASME B31G (ASME 2018), B31G Modified (Kiefner and Vieth 

1989) and RSTRENG (Kiefner and Vieth 1989) models.  It follows that the predictive 

accuracy of the burst capacity model is critically important for the FFS assessment and 

subsequent decision-making for corrosion mitigations (Zhang et al. 2018; Zhang et al. 

2020).   

 

The accuracy of burst capacity models is commonly evaluated by comparing the burst 

capacities observed from a series of full-scale burst tests (Ptest) of corroded pipe segments 

with the corresponding capacities predicted by the models.  Benjamin et al. (2000) and 

Benjamin et al. (2016) investigated the accuracy of the B31G, B31G Modified, RSTRENG 

and DNV (DNV 2017) models based on full-scale burst tests of pipe specimens containing 

artificially-induced corrosion anomalies.  The accuracy of several burst capacity models 

was evaluated by Cronin and Pick (2000) and Zhou and Huang (2012) based on full-scale 

burst tests of naturally corroded pipe specimens.  Unlike artificially-induced corrosion 

anomalies, which are typically regular-shaped (e.g. cubic or semi-ellipsoidal), naturally-

occurring corrosion anomalies are irregular-shaped and have complex geometries (Kiefner 
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and Vieth 1989; Cronin and Pick 2000; Zhang et al. 2018; Zhang et al. 2020).  A given 

naturally-occurring corrosion anomaly is often characterized by its maximum depth (da), 

length (la) and width (wa) (Fig. 3.1).  High-resolution ILI tools are regularly employed to 

detect and size corrosion anomalies on the pipeline (Siraj and Zhou 2019).  The sizing 

capabilities of ILI tools, in particular the tools based on the MFL technique, depend on the 

geometry of the corrosion anomaly (POF 2016).  To facilitate the proper specification of 

sizing capabilities of ILI tools, a corrosion anomaly classification system is suggested by 

the Pipeline Operators Forum (POF) (POF 2016) and has been widely recognized in the 

pipeline industry.  The POF system categorizes a given corrosion anomaly into one of 

seven classes depending on the length and width of the anomaly, namely general (GEN), 

pitting (PITT), axial grooving (AXGR), circumferential grooving (CIGR), pin hole 

(PINH), axial slotting (AXSL) and circumferential slotting (CISL).  The specific 

classification criteria are summarized in Table 3.1.  It is therefore valuable to investigate 

to what extent the accuracy of commonly used burst capacity models is dependent on the 

anomaly classification as the finding will help pipeline engineers select the most suitable 

models for anomalies in different classes and thus improve the accuracy of the FFS 

assessment.  To our best knowledge, such a study has not been reported in the literature.  
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Figure 3.1 Illustration of a naturally occurring corrosion anomaly on a corroded 

pipeline 

Table 3.1 POF classification criteria for corrosion anomalies 

Anomaly Class Definition 

GEN wa  3A and la  3A 

PITT (A  la < 3A and 0.5 < la/wa < 2 and wa  A) or  

 (3A  la < 6A and la/wa < 2 and wa < 3A) 

AXGR A  wa < 3A and la/wa  2 

CIGR A  la < 3A and la/wa  0.5 

PINH la < A and wa < A 

AXSL la  A and wa < A 

CISL la < A and wa  A 

A = 10 mm if pipe wall thickness (t) < 10 mm; A = t if t  10 mm. 

 

Ideally, full-scale burst tests of naturally corroded pipe specimens should be used to 

evaluate the accuracy of the burst capacity model in terms of the anomaly classification.  

There are however significant practical obstacles to this approach.  First, the number of 

full-scale burst tests of naturally corroded pipe specimens available in the literature is 
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limited due mainly to the high cost of obtaining suitable specimens (from corroded in-

service pipelines) and carrying out the test.  Second, the earlier literature on burst test, e.g. 

the well-known Battelle studies (Kiefner and Vieth 1989; Vieth and Kiefner and 1993; 

Kiefner et al. 1996), did not report widths of the corrosion anomalies on the test specimens, 

which further reduces the number of usable test data.  Many studies (e.g. Chouchaoui 1993; 

Cronin 2000; Yoshida and Yamaguchi 2013; Zhang and Zhou 2020) over the last three 

decades have demonstrated the high accuracy of three-dimensional (3D) elasto-plastic 

finite element analyses (FEA) for evaluating the burst capacity of corroded pipelines.  In 

particular, Bao et al. (2018) have demonstrated the accuracy of FEA for evaluating the 

burst capacity of full-scale naturally-corroded pipe specimens.  A recently completed full-

scale burst test program (Zhang et al. 2018; Zhang et al. 2020) includes 16 naturally 

corroded pipe specimens extracted from in-service pipelines.  These specimens contain a 

large number of corrosion anomalies on their external surfaces.  Furthermore, detailed 3D 

geometric profiles of the anomalies have been captured by high-resolution laser scanners 

and provided to the present study.   

 

The objective of the present study is to investigate the influence of the corrosion anomaly 

classification on the accuracy of seven existing burst capacity models by comparing model- 

and FEA-predicted burst capacities for the corrosion anomalies identified on the above-

mentioned pipe specimens.  The seven burst capacity models are the B31G, B31G 

Modified (B31G-M), RSTRENG, PCORRC, PCORRC Modified (PCORRC-M) 

(Mokhtari and Melchers 2019), CSA (CSA 2019) and Shell92 models (Ritchie and Last 

1995).  The POF classification is employed to categorize the corrosion anomalies into 

seven classes.  For the anomalies in each class, the basic statistics, i.e. mean and COV of 

the FEA-to-model predicted burst capacities are evaluated to quantify the accuracy of the 

burst capacity model.  The rest of the chapter is organized as follows.  Section 3.2 briefly 

describes the seven burst capacity models considered in the study.  Section 3.3 describes 

the 16 test specimens reported by Zhang et al. (2018, 2020) and POF classification of the 

corrosion anomalies on the specimens.  Section 3.4 presents details of the finite element 

model for the burst capacity evaluation and model validation.  Section 3.5 presents the 
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accuracy of the seven burst capacity models in terms of the anomaly classification, 

followed by conclusions in Section 3.6.   

3.2 Burst capacity models 

The B31G, B31G-M, RSTRENG, CSA and Shell92 models are all based on the so-called 

NG-18 equation (Maxey et al. 1972).  The CSA model is suggested in Annex O of the 

Canadian oil and gas pipeline standard, CSA Z662-19 (CSA 2019), whereas the Shell92 

model was proposed by Ritchie and Last (1995) in the 1990s.  The PCORRC model was 

developed by Leis and Stephens (Leis and Stephens 1997; Stephens and Leis 2000) based 

on results of parametric FEA.  The PCORRC-M model is recently proposed by Mokhtari 

and Melchers (2019).  The prediction equations of the seven models are listed as follows. 

B31G 

𝑃𝑏−31𝐺 =

{
 

 
2𝑡𝜎𝑓

𝐷

1−
2𝑑𝑎
3𝑡

1−
2𝑑𝑎
3𝑡𝑀1

                   𝑑𝑎/𝑡 ≤ 0.8 𝑎𝑛𝑑 
𝑙2

𝐷𝑡
≤ 20 

2𝑡𝜎𝑓

𝐷
(1 −

𝑑𝑎

𝑡
)             𝑑𝑎/𝑡 ≤ 0.8 𝑎𝑛𝑑 

𝑙2

𝐷𝑡
> 20

 (3.1a) 

𝜎𝑓 = 1.1𝜎𝑦 (3.1b) 

B31G-M 

𝑃𝑏−31𝐺𝑀 =
2𝑡𝜎𝑓

𝐷

1−
0.85𝑑𝑎

𝑡

1−
0.85𝑑𝑎
𝑡𝑀2

                 𝑑𝑎/𝑡 ≤ 0.8 (3.2a) 

𝜎𝑓 = 𝜎𝑦 + 68.95 (3.2b) 

CSA 

𝑃𝑏−𝐶𝑆𝐴 =
2𝑡𝜎𝑓

𝐷

1−
𝑑𝑎𝑣𝑒
𝑡

1−
𝑑𝑎𝑣𝑒
𝑡𝑀2

 (3.3a) 

𝜎𝑓 = {
1.15𝜎𝑢   𝑆𝑀𝑌𝑆 ≤ 241 𝑀𝑃𝑎
0.9𝜎𝑢      𝑆𝑀𝑌𝑆 > 241 𝑀𝑃𝑎

 (3.3b) 

PCORRC 

𝑃𝑏−𝑃𝐶𝑂 =
2𝑡𝜎𝑢

𝐷
[1 − 

𝑑𝑎

𝑡
(1 − 𝑒𝑥𝑝(

−0.157𝑙

√
𝐷(1−𝑑𝑎/𝑡)

2

))]           𝑙 ≤ 2𝐷 𝑎𝑛𝑑
𝑑𝑎

𝑡
≤ 0.8       (3.4) 

Shell 92 
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𝑃𝑏−𝑆92 =
2𝑡𝜎𝑓

𝐷

1−
𝑑𝑎
𝑡

1−
𝑑𝑎
𝑡𝑀1

                      𝑑𝑎/𝑡 ≤ 0.85 (3.5a) 

𝜎𝑓 = 0.9𝜎𝑢 (3.5b) 

RSTRENG 

𝑃𝑏−𝑅𝑆𝑇 =
2𝑡𝜎𝑓

𝐷

1−
𝐴𝑒
𝑙𝑒𝑡

1−
𝐴𝑒

𝑀2𝑒𝑙𝑒𝑡

                  𝑑𝑎/𝑡 ≤ 0.8                                   (3.6a) 

𝜎𝑓 = 𝜎𝑦 + 68.95 (3.6b) 

PCORRC-M 

𝑃𝑏−𝑃𝐶𝑂𝑀 =
2𝑡𝜎𝑢

𝐷
[1 − 

𝑑𝑒𝑞𝑣

𝑡
(1 − 𝑒𝑥𝑝(

−0.157𝑙𝑎

√
𝐷(1−𝑑𝑒𝑞𝑣/𝑡)

2

))]           𝑙𝑎 ≤ 2𝐷 𝑎𝑛𝑑
𝑑𝑎

𝑡
≤ 0.8 

 (3.7a) 

𝑑𝑒𝑞𝑣 = (
𝑉

𝑙𝑎𝑤𝑎
+ 𝑑𝑎) /2  (3.7b) 

𝑀1 = √1 +
0.8𝑙𝑎

2

𝐷𝑡
                                   (3.8) 

𝑀2 = {
√1 + 0.6275

𝑙𝑎
2

𝐷𝑡
− 0.003375

𝑙𝑎
4

(𝐷𝑡)2
                               

𝑙𝑎
2

𝐷𝑡
≤ 50

3.3 + 0.032
𝑙𝑎
2

𝐷𝑡
                                                                 

𝑙𝑎
2

𝐷𝑡
> 50

 (3.9) 

In Eqs. (3.1)-(3.9), Pb-31G denotes the burst capacity predicted by the B31G model (the 

subscripts after the hyphen identify the particular burst capacity model); the meanings of 

Pb-31GM, Pb-CSA, Pb-PCO, etc. are self-explanatory; D is the pipe outside diameter; dave denotes 

the average depth of the river-bottom profile of the corrosion anomaly (Fig. 3.1); y and u 

denote the yield and tensile strengths of the pipe steel, respectively (the unit of y in Eqs. 

(3.2) and (3.6) must be MPa); f is known as the flow stress, and M1 and M2 denote the 

Folias factor, albeit calculated using different expressions.  The RSTRENG model 

calculates the burst capacity by identifying the effective portion (i.e. effective area) of the 

river-bottom profile of the corrosion anomaly (Fig. 3.1), with the corresponding area and 

length denoted by Ae and le, respectively, and M2e in Eq. (3.6) is obtained by substituting le 

in Eq. (3.9).  The procedure to identify the effective area of the river-bottom profile can be 

found in many references (e.g. Kiefner and Vieth 1989; Zhou and Huang 2012).  The 

PCORRC-M model replaces the maximum corrosion depth da in the original PCORRC 



44 

 

model by the equivalent depth deqv, which is a function of the metal loss volume V, length, 

width and maximum depth of a corrosion anomaly.  In the FFS assessment in practice, y 

and u are typically set to equal the SMYS and SMTS, respectively, of the pipe steel.  Note 

that all of the models except the CSA model have explicit applicability limits, e.g. da/t ≤ 

0.8 for B31G-M and RSTRENG.  Note further that PCORRC-M is the only model that 

explicitly takes into account the defect width. Since PCORRC is developed by fitting 

results of parametric 3D FEA of corroded pipelines, the defect width is implicitly 

accounted for through the fitting constant and functional form of PCORCC. 

3.3 Corroded pipe specimens 

Zhang et al. (2018, 2020) reported a burst test program involving 16 pipe specimens 

removed from in-service pipelines with corrosions on the external surface.  The key 

geometric and material properties of the specimens are summarized in Table 3.2.  The yield 

and tensile strengths, and Young’s modulus (E) of each specimen are determined by the 

tensile coupon test.  The external surface of each specimen is scanned by a high-resolution 

laser scanning device before the burst test.  Figure 3.2(a) depicts the scanned external 

surface of specimen 16-1, as an example.  The longitudinal coordinate is with respect to 

the upstream girth weld of the pipe joint from which the specimen is removed, and the 

circumferential coordinate is the arc length with respect to the top of the pipe circumference 

(i.e. the 12 o’clock position).  The corrosion depths (%t) at grid positions within the 

scanned area are displayed in grayscale.  The laser scan data for each specimen are 

processed to identify the individual corrosion anomalies contained within the scanned area.  

To this end, any corrosion depths within the scanned area that are less than or equal to 5%t 

are ignored; in other words, the corrosion depths at the corresponding grid points are 

assumed to be zero.  This facilitates the identification of individual anomalies.  Since 

corrosion depths less than or equal to 10%t are generally considered to have a negligible 

effect on the burst capacity (CSA 2019), this process does not influence the assessment of 

burst capacity models.  

 

As an illustration, the individual corrosion anomalies identified within a small portion of 

the scanned surface of specimen 16-1 are depicted in Fig. 3.2(b).  In total, 897 individual 
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corrosion anomalies are obtained from the 16 specimens listed in Table 3.2.  A few 

anomalies on the specimens are not considered because the maximum depths of these 

anomalies exceed 80%t, which is beyond the applicability range for the B31G, B31G-M, 

PCORRC, PCORRC-M and RSTRENG models.  The POF classifications of these 

anomalies are summarized in Table 3.3.  Most (601) of the 897 corrosion anomalies are 

pitting corrosions.  The X52-grade specimens contain 288 anomalies, whereas the X70-

grade specimens contain 609 anomalies.   

 

a) Scanned surface of specimen 16-1 

 

 

b) Representative corrosion anomalies  

Figure 3.2 Scanned surface and representative corrosion anomalies on specimen 16-

1 
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Table 3.2 Summary of the 16 test specimens in Zhang et al. (2018, 2020) 

No. Specimen ID D 

(mm) 

t (mm) Steel 

grade 
y 

(MPa) 

u 

(MPa) 

E 

(GPa) 

1 16-1 408.2 6.2 X52 369 540 167 

2 16-2 407.7 6.2 X52 369 540 167 

3 16-3 407.7 6.2 X52 369 540 167 

4 16-5 407.7 5.9 X52 393 557 189 

5 16-6 407.4 5.9 X52 408 576 191 

6 16-7 407.4 6.0 X52 408 576 191 

7 20-3 508.0 6.5 X52 392 549 190 

8 24-1 610.5 6.8 X70 553 680 145 

9 24-2 610.5 6.7 X70 553 680 145 

10 30-1 763.2 8.4 X70 536 655 187 

11 30-2 763.4 8.5 X70 535 652 170 

12 30-3 763.2 8.4 X70 568 691 171 

13 30-4 763.7 8.5 X70 562 604 174 

14 30-5 762.9 8.4 X70 546 659 154 

15 30-6 764.1 8.4 X70 515 628 161 

16 30-7 762.0 9.9 X70 370 535 214 

 

Table 3.3 Number of individual anomalies in different POF classes identified on the 

16 pipe specimens 

Specimen PINH  CISL CIGR AXSL AXGR PITT GEN 

16-1 4 0 2 5 1 43 3 

16-2 3 5 2 4 1 50 11 

16-3 0 2 0 5 0 36 1 

16-5 3 1 2 3 6 20 6 

16-6 0 1 0 1 5 3 4 

16-7 1 1 2 1 0 11 2 

20-3 5 1 0 4 4 22 1 

24-1 4 2 1 7 11 27 0 

24-2 3 2 1 2 6 95 3 

30-1 4 3 3 3 3 56 29 

30-2 3 5 3 6 0 35 5 

30-3 1 3 0 0 0 17 1 

30-4 8 6 0 4 4 54 6 

30-5 5 4 0 2 0 81 8 

30-6 0 0 0 0 0 0 14 

30-7 2 3 0 5 1 51 7 

All 46 39 16 52 42 601 101 

 

The lengths and widths of the 897 corrosion anomalies are depicted in Fig. 3.3.  The lengths 

of the corrosion anomalies range from 7 to 368 mm; the widths are between 5 and 213 mm, 

and the maximum depths of the anomalies are between 20 and 79%t, respectively.   
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Figure 3.3 Lengths and widths of the 897 corrosion anomalies collected in the 

present study 

3.4 Finite element analysis  

3.4.1 FEA model  

The commercial FEA software ANSYS (version 16.1) is used to perform the FEA of the 

897 corrosion anomalies involved in the present study.  The 8-node brick elements (C3D8) 

with full integration points are primarily used in the finite element model, with the 6-node 

prismatic (C3D6) linear elements with full integration points used to transition the fine 

mesh within the corroded region to the relatively coarse mesh within the corrosion-free 

region on the pipe model.  The von Mises yield criterion, associated plastic flow rule and 

isotropic hardening model are adopted.  The commonly used power-law true stress ()-

strain () relationship is employed in the analysis.  

{
𝜎 = 𝐸𝜀         𝜎 < 𝜎𝑦
𝜎 = 𝐾𝜀𝑛        𝜎 ≥ 𝜎𝑦

 (3.10) 

where K is the strength coefficient, and n is the strain hardening exponent.  The values of 

n and K values are evaluated from Zhu and Leis (2005). 

𝑛 = 0.224 (
𝜎𝑢

𝜎𝑦
− 1)

0.604

 (3.11) 
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𝐾 =
𝜎𝑢𝑒

𝑛

𝑛𝑛
 (3.12) 

where e is the base of natural logarithm. Figure 3.4 depicts the  -  relationships for two 

representative specimens, 16-1 and 30-1. 

 

Figure 3.4 True stress  - true strain  curves for specimens 16-1 and 30-1 

Various failure criteria have been suggested in the literature to define the burst capacity of 

corroded pipelines in FEA.  For example, Choi et al. (2003) suggested that the burst 

capacity corresponds to the point where the von Mises stress throughout the remaining 

ligament in the corroded region reaches 90% of the true stress corresponding to u.  The 

failure criterion adopted in the present study states that the burst capacity is reached when 

the maximum von Mises stress anywhere in the corroded region reaches the true stress 

corresponding to u.  The adequacy of this criterion has been demonstrated by Cronin 

(2000), Bao et al. (2018) and Zhang and Zhou (2020).   

3.4.2 Validation of FEA model  

Sixteen (16) full-scale burst tests of naturally corroded pipe specimens reported by Zhang 

et al. (2018, 2020) and fourteen (14) full-scale burst tests of pipe specimens containing 

artificially-induced corrosion anomalies reported by Chouchaoui (1993) are used to 

validate the finite element model and failure criterion described in Section 3.4.1.  The 

attributes of the 16 naturally corroded specimens in Zhang et al. (2018, 2020) are described 

in Section 3.3.  For each of the specimens, Zhang et al. (2018, 2020) identified the critical 

corrosion cluster at which burst was observed to initiate during the test.  Note that a cluster 
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includes a series of closely-spaced corrosion anomalies grouped using the so-called 

interaction rule to account for the potential interaction between the anomalies; that is, the 

burst capacity corresponding to interacting anomalies is lower than the burst capacities 

corresponding to respective individual anomalies.  The commonly used B31.4 rule (ASME 

2019) was employed by Zhang et al. (2018, 2020) to identify the clusters.  According to 

this rule, two anomalies are considered to form a cluster (i.e. interacting with each other) 

if both of the following two conditions are met: the longitudinal separation distance is less 

than or equal to 1 inch (25.4 mm), and the circumferential separation distance is less than 

or equal to 6t (Fig. 3.5).  The key geometric characteristics of the critical corrosion clusters 

on the 16 specimens in Zhang et al. (2018, 2020) are summarized in Table 3.4.  Table 3.5 

summarizes the attributes of the 14 specimens as well as key geometric characteristics of 

the artificially-induced corrosion clusters reported by Chouchaoui (1993).    

 

Figure 3.5 Illustration of the 1 in  6t interaction rule 
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Table 3.4 Geometric characteristics of the critical corrosion clusters on 16 

specimens in Zhang et al. (2018, 2020) 

No. Specimen Cluster geometry 

Length (mm) Width (mm) Maximum depth (%t) 

1 16-1 844 296 33 

2 16-2 1160 391 47 

3 16-3 330 212 43 

4 16-5 356 223 97 

5 16-6 344 121 57 

6 16-7 542 375 87 

7 20-3 362 142 28 

8 24-1 1504 248 30 

9 24-2 428 191 39 

10 30-1 4326 407 68 

11 30-2 430 262 48 

12 30-3 610 386 73 

13 30-4 710 192 78 

14 30-5 782 271 59 

15 30-6 1450 244 75 

16 30-7 1110 104 32 
 

Table 3.5 Geometric characteristics of 14 specimens and the critical corrosion 

clusters on the 14 specimens in Chouchaoui (1993) 

Specimen 

Specimen 

geometry 
Cluster geometry Material property 

D 

(mm) 
t (mm) 

Length 

(mm) 

Width 

(mm) 

Maximum 

depth 

(%t) 

Steel 

grade 
y 

(MPa) 

u 

(MPa) 

E 

(GPa) 

S1CC 324 6.16 20.12 19.99 61 

X46 

356 514 

207 

S3CC 324 6.25 19.93 72.83 61 356 514 

S4CC 324 6.18 19.92 174.21 61 412 520 

S1CO 324 6.40 20.07 19.30 50 382 569 

S2CO 324 6.01 19.35 37.98 60 382 569 

S3CO 324 6.30 19.80 51.22 57 373 522 

S1LC 322 6.27 77.38 20.88 60 381 542 

S2LC 324 6.29 72.31 20.81 60 378 502 

S3LC 324 6.24 72.12 20.81 61 381 542 

S4LC 324 6.16 173.97 19.99 60 378 502 

S1LO 325 6.45 20.82 21.51 47 373 522 

S2LO 324 6.40 39.38 20.22 58 373 522 

S3LO 325 6.45 97.92 20.86 59 356 463 

S4LO 324 6.35 123.23 21.41 59 356 463 

 

Figure 3.6 depicts the finite element models for two representative specimens from Zhang 

et al. (2018) and Zhang et al. (2020) (specimen 16-1) and Chouchaoui (1993) (specimen 

S1CC), respectively.  Based on the mesh convergence study, the element size is selected 
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to be 2 (longitudinal) × 1 (circumferential) mm in the corrosion region, and 32  16 mm in 

the corrosion-free region, with the C3D6 elements used as transition elements between the 

fine and coarse meshes.  Four layers of elements are used along the thickness direction to 

avoid the shear locking effect.  To eliminate the influence of the end condition, the model 

is extended 3.5D longitudinally from each side of the corrosion region (Fig. 3.6a).  To 

improve the computational efficiency, only a half pipe model as opposed to the full pipe 

model is generated.  Although this implies that the full pipe model contains two identical 

corrosion clusters, it has no impact on the burst capacity evaluated because the two 

corrosion clusters are kept well separated circumferentially to eliminate any interaction 

effects.  The model for specimen 16-1 contains approximately 500,000 nodes and 560,000 

elements, whereas the model for specimen S1CC contains approximately 42,000 nodes and 

33,000 elements.  

  
a) Configuration of a corroded pipe in the FEA simulation 

 
b) A corrosion cluster from specimen 16-1           c) A corrosion cluster from S1CC 

Figure 3.6 Two representative FEA models of corrosion clusters on specimens 16-1 

and S1CC 
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The FEA-predicted burst capacities (PFEA) as well as burst capacities observed in the test 

for the 30 specimens are depicted in Figure 3.7.  The mean and COV of test-to-predicted 

ratio for the 16 specimens reported by Zhang et al. (2018) and Zhang et al. (2020) are 0.95 

and 7.4%, respectively.  FEA over-predicts the burst capacities of specimens 16-2, 16-3 

and 20-3 by 16.9%, 19.6% and 18.4%, respectively.  The significant over-predictions of 

specimen 16-2 and 16-3 can be explained by the equipment malfunction that occurred 

during the testing of these two specimens.  The tests were paused at high internal pressure 

levels (i.e. close to the burst pressure) because of the malfunctioning of a certain test 

equipment.  The high internal pressure levels were maintained until the replacement of the 

malfunctioning equipment, after which the tests were resumed.  The sustaining of a high 

internal pressure level may lead to the development of micro cracks in the corrosion region 

and reduce the burst capacity of the test specimen.  The specimen 20-3 is known to be a 

poorly manufactured pipe with significant non-uniformity in the mechanical properties 

along the pipe body.  If specimens 16-2, 16-3 and 20-3 are excluded, the mean and COV 

of the test-to-predicted ratio for the remaining 13 specimens are 0.98, 5.1%, respectively.  

The mean and COV of the test-to-predicted ratios for the 14 specimens in Chouchaoui 

(1993) are 1.00 and 5.4%, respectively.  These results demonstrate the accuracy of the finite 

element model and failure criterion.   

 

Figure 3.7 Comparison between the test-based and FEA-based burst capacities 
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3.5 Influence of anomaly classification on the accuracy of 
burst capacity models 

As shown in Table 3.3 and Fig. 3.3, a total of 897 individual corrosion anomalies are 

identified on the 16 specimens reported by Zhang et al. (2018) and Zhang et al. (2020).  

For each of the specimens, FEA and the semi-empirical models are employed to evaluate 

its burst capacities by considering all of the identified corrosion anomalies on the specimen 

individually.  For example, a total of 58 burst capacities of specimen 16-1 are obtained 

from FEA, each corresponding to one of the 58 corrosion anomalies identified on the 

specimen.  The values of y and u employed in FEA and burst capacity models for a given 

specimen are the same as those provided in Table 3.2.  The stress-strain relationship 

adopted in FEA is given by Eqs. (3.10) - (3.12), with the value of E given in Table 3.2.  

 

The comparisons between the burst capacities predicted by the semi-empirical models and 

FEA are depicted in Fig. 3.8, with the mean and COV of the FEA-to-model predicted ratios 

summarized in Table 3.6.  The results in Table 3.6 indicate that all seven burst capacity 

models are on average more conservative than FEA, regardless of the class of corrosion 

anomalies.  For a given burst capacity model, its predictive accuracy is similar for the six 

non-general classes of anomalies, i.e. PINH, PITT, AXSL, AXGR, CISL and CIGR.  The 

model in general becomes less accurate for anomalies in the general corrosion class (GEN), 

although the extent of the decrease in accuracy varies among different models.  This is 

expected given that anomalies in the GEN class are larger and likely have more complex 

geometry than anomalies in the other classes. The B31G model is more conservative and 

has higher predictive variability than the other models for all classes of anomalies (the 

mean and COV of PFEA/Pb-31G are the highest among all the models).  Figure 3.8(a) reveals 

that the B31G model is more conservative for X52-grade specimens than for X70-grade 

specimens, due primarily to the inadequacy of the flow stress definition in the model.  The 

B31G-M model is consistently more accurate than the B31G model for the six non-general 

classes of anomalies.  For the GEN anomalies, the accuracies of these two models are 

however practically the same and lower than those of the other five models.  The Shell92 

and CSA models are of very similar accuracy for the six non-general classes of anomalies.  

This is somewhat unexpected because the former model requires only the maximum depth 
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and length of an anomaly while the latter requires the entire river-bottom profile to compute 

the average depth of the anomaly.  This observation implies that the river-bottom profile 

of non-general classes of anomalies is near rectangular, i.e. dave  da.  For the GEN 

anomalies, the CSA model is markedly more accurate than the Shell92 model, which 

implies that a rectangular idealization of the river-bottom profile with the depth of the 

rectangle equal to the maximum corrosion depth d for the GEN anomalies is likely to be 

unsatisfactory. It is worth noting that the COV of PFEA/Pb-CSA for the GEN anomalies is 

lower than those of all the other models.  The accuracy of RSTRENG model is similar to 

that of B31G-M for the non-general classes of anomalies.  For the GEN anomalies, the 

accuracy of RSTRENG is comparable to that of CSA, with the COV of PFEA/Pb-RST 

somewhat higher than that of PFEA/Pb-CSA.   

 

The PCORRC model is the most accurate among all the models that do not require the 

river-bottom profile.  A comparison between the statistics for PCORRC and PCORRC-M 

suggests that the latter does not offer improved predictive accuracy over the former for the 

non-general classes of anomalies.  Nevertheless, PCORRC-M is more accurate than 

PCORRC when applied to the GEN anomalies: the mean (1.03) and COV (5.3%) of 

PFEA/Pb-PCOM are less than those of original PCORRC.  This can be attributed to that 

PCORRC-M takes into account the total volume loss of the corrosion anomaly in the 

prediction equation as opposed to the maximum depth and length only in PCORRC.  Note 

that the predictions by PCORRC and PCORRC-M are the least biased, i.e. means of 

PFEA/Pb-PCO and PFEA/Pb-PCOM closest to unity, compared with the other models.  Note also 

that predictions by PCORRC and PCORRC-M are lower than the corresponding FEA 

predictions for some anomalies contained in the X52-grade specimens (Fig. 3.8(c)), 

whereas the predictions by the other five models are consistently lower than the 

corresponding FEA predictions for all the anomalies considered.   

 

Based on the above discussions, the PCORRC model is recommended for non-general 

classes of anomalies as it achieves a good balance between accuracy and ease of application 

in practice.  For anomalies in the GEN class, the CSA model is recommended based 

primarily on the COV of PFEA/Pb-CSA being lower than those of the other models.  Although 
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predictions by the CSA model tend to be more biased than those by PCORRC and 

PCORRC-M for the GEN anomalies, it is believed that such a bias can be addressed 

relatively easily in practice by applying, for example, a simple multiplicative correction 

factor to the model predictions.  Finally, it must be emphasized that the present study 

focuses on burst capacity predictions for individual corrosion anomalies as opposed to 

clusters that contain a series of closely-spaced individual anomalies.  Given that corrosion 

clusters generally have more complex geometric characteristics than individual anomalies, 

the finding of the present study suggests that the burst capacity models requiring detailed 

corrosion geometric information (such as the CSA, RSTRENG and PCORRC-M models) 

will have markedly higher predictive accuracies than the models requiring only simple 

corrosion geometry and therefore should be employed in practice whenever feasible. 

 

a) B31G                                                   b) B31G-M 

 
c) PCORRC                                              d) Shell92 
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e) CSA                                                  f) RSTRENG 

 
g) PCORRC-M 

Figure 3.8 Comparison between the FEA and predicted burst capacities in terms of 

different semi-empirical models and corrosion anomaly classes 

 

Table 3.6 Statistics of the FEA-to-model predicted burst capacity ratios for different 

classes of corrosion anomalies 

Model PINH  CISL CIGR AXSL AXGR PITT GEN 

PFEA/Pb-31G 
Mean 1.24 1.24 1.27 1.26 1.23 1.23 1.25 

COV (%) 5.6 6.3 5.6 5.4 4.9 6.1 9.1 

PFEA/Pb-31GM 
Mean 1.19 1.19 1.22 1.20 1.19 1.18 1.22 

COV (%) 3.5 4.3 3.9 3.0 3.5 4.0 9.0 

PFEA/Pb-PCO 
Mean 1.08 1.07 1.07 1.05 1.06 1.06 1.10 

COV (%) 3.2 3.9 4.3 3.8 3.4 3.8 6.7 

PFEA/Pb-S92 
Mean 1.19 1.18 1.17 1.16 1.16 1.16 1.20 

COV (%) 3.3 4.0 4.7 4.0 3.4 4.0 9.0 

PFEA/Pb-CSA 
Mean 1.19 1.19 1.17 1.16 1.16 1.16 1.15 

COV (%) 3.3 4.0 4.7 3.9 3.8 4.0 4.1 

PFEA/Pb-RST 
Mean 1.19 1.19 1.21 1.20 1.17 1.18 1.16 

COV (%) 3.5 4.3 3.5 3.0 3.1 4.1 5.2 

PFEA/Pb-PCOM 
Mean 1.07 1.07 1.06 1.05 1.04 1.05 1.03 

COV (%) 3.2 3.9 4.8 3.9 4.6 4.0 5.3 
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3.6 Conclusions 

This chapter investigates the predictive accuracy of semi-empirical burst capacity models 

for corroded pipelines in terms of the classification of corrosion anomalies.  Seven burst 

capacity models are considered, namely the B31G, B31G-M, PCORRC, PCORRC-M, 

Shell92, CSA and RSTRENG models.  A total of 897 individual corrosion anomalies are 

identified on the external surfaces of 16 naturally corroded pipe specimens removed from 

in-service pipelines.  According to the POF anomaly classification system, these anomalies 

are grouped into 46 pin holes, 39 circumferential slotting, 16 circumferential grooving, 52 

axial slotting, 42 axial grooving, 601 pitting and 101 general corrosion anomalies.  The 

burst capacities of the pipe specimens corresponding to each of these anomalies are 

evaluated using the seven burst capacity models, as well as three-dimensional elasto-plastic 

FEA validated by full-scale burst tests reported in the literature.  With the FEA-predicted 

burst capacity considered as the benchmark, the accuracy of the semi-empirical burst 

capacity model is evaluated based on the mean and COV of the FEA-to-model predicted 

burst capacity ratios calculated corresponding to the different classes of anomalies.   

 

It is observed that the accuracy of a given burst capacity model is similar for non-general 

classes of anomalies.  The accuracy of the model decreases when applied to the general 

class of anomalies, although the degree of the accuracy deterioration varies among the 

models.  The PCORRC model is recommended for non-general classes of anomalies with 

the mean of FEA-to-predicted burst capacity ratios ranging from 1.05 to 1.08 and 

corresponding COV ranging from 3.2 to 4.3%.  The CSA model is recommended for 

anomalies in the general class with the mean and COV of the FEA-to-model predicted burst 

capacity ratios equal to 1.16 and 4.1%, respectively.  
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4 A Modified RSTRENG Model for Evaluating the Burst 
Capacity of Corroded Pipelines  

4.1 Introduction 

Corrosion poses a significant threat to the structural integrity of buried oil and gas steel 

pipelines as they age (Lam and Zhou 2016), and generally manifests as irregularly-shaped 

three-dimensional (3D) features of metal loss, i.e. pipe wall thinning, on the external or 

internal surface (or both) of the pipeline (Fig. 4.1).  A corrosion feature can be a single 

isolated anomaly or a group of closely-spaced anomalies, commonly known as a cluster 

(Fig. 4.1).  The so-called interaction rules (Lamontagne 2002) are used in practice to 

determine if multiple anomalies in proximity should be treated as a cluster.  To carry out 

the fitness-for-service (FFS) assessment of a pipeline containing a corrosion feature, 

pipeline engineers typically employ semi-empirical models to predict the pressure 

containment capacity, i.e. burst capacity of the pipeline, for example, the ASME B31G 

(ASME 2018), B31G Modified (Kiefner and Vieth 1989), RSTRENG (Kiefner and Vieth 

1989), DNV-S (DNV-RP-F101 2017), DNV-I (DNV-RP-F101 2017), and PCORRC 

models (Leis and Stephens 1997; Stephens and Leis 2000).  Note that DNV-S and DNV-I 

refer to the two models applicable to single and interacting corrosion anomalies, 

respectively, as recommended in DNV-RP-F101 (2017). 

 

Figure 4.1 Illustration of a corrosion cluster, river-bottom path and river-bottom 

profile 
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The semi-empirical burst capacity models can be grouped into two categories, namely 

Level 1 and Level 2 models (ASME 2018).  Level 1 models, such as the ASME B31G, 

B31G Modified, DNV-S, and PCORRC models, employ the length (l) and maximum depth 

(dmax) of the corrosion feature (Fig. 4.1) to evaluate the burst capacity, whereas Level 2 

models, such as the RSTRENG and DNV-I models, employ the river-bottom profile of the 

corrosion feature in the evaluation.  The river-bottom profile is generated by projecting the 

path that connects the deepest points along different circumferential planes intersecting the 

corrosion feature onto a longitudinal plane perpendicular to the pipe wall thickness (Fig. 

4.1).  Zhou and Huang (2012) investigated the predictive accuracy of several well-known 

Level 1 and 2 models by comparing model-predicted burst capacities with the 

corresponding observed burst capacities for a series of full-scale tests of pipe specimens 

containing naturally-occurring corrosion features.  They reported that the RSTRENG 

model is the most accurate among the models considered; however, it is still associated 

with considerable model uncertainty.   

 

The length and maximum depth employed in Level 1 models are rather crude 

characterizations of the geometry of a 3D corrosion feature.  While the river-bottom profile 

captures the most severe path in the corrosion feature, the two-dimensional nature of the 

profile means that it misses other potentially important characteristics of the feature such 

as its width and metal loss volume.  This suggests that the accuracy of semi-empirical 

models can be improved by better capturing the 3D characteristics of the corrosion feature.  

Research in this regard has been reported in the recent literature.  Mokhtari and Melchers 

(2018, 2019) developed a modified PCORRC model, referred to as 3D PCORRC, by 

replacing the maximum depth in the original PCORRC model with the equivalent depth, 

which is a function of the volume, width, length and maximum depth of the corrosion 

feature.  The 3D PCORRC model is shown to have an excellent accuracy for single isolated 

corrosion anomalies based on FEA and experimental results (Mokhtari and Melchers 2018; 

Mokhtari and Melchers 2019).  Based on parametric FEA results, Chen et al. (2015) 

proposed a new burst capacity model that is similar to the DNV-I model but incorporates 

the corrosion width.  Chen et al.’s model is validated by a limited number (6) of full-scale 

burst tests of specimens containing artificially-induced cubic corrosion features.   
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Zhang et al. (2018) proposed the so-called plausible profiles model, also called the Psqr 

model, for the FFS assessment of large corrosion features.  Instead of employing the river-

bottom profile, the Psqr model identifies a series of plausible profiles to characterize the 

corrosion morphology.  The burst capacity corresponding to each plausible profile is then 

evaluated using the RSTRENG method, i.e. the effective area method as described in 

Section 4.2.  Finally, the burst capacity of the corrosion feature is defined as a low 

percentile (e.g. 5th-percentile) value of the burst capacities corresponding to all the 

plausible profiles.  The Psqr model has been shown to be highly accurate based on full-

scale burst tests of 59 pipe specimens containing naturally-occurring or artificially-induced 

corrosion features (Zhang et al. 2018).  

 

There are certain drawbacks associated with the above-described models.  The 3D 

PCORRC is targeted at single isolated corrosion anomalies; its applicability and accuracy 

for large corrosion clusters are unclear.  Although Chen et al.’s model is developed by 

considering corrosion clusters, the fact that it is validated based on a limited number of 

tests involving artificially-induced anomalies casts doubts on the application of the model 

to naturally-occurring corrosion features.  The Psqr model is computationally intensive as 

the recommended number of plausible profiles to be generated for a given corrosion feature 

is nontrivial (i.e. about 500) (Zhang et al. 2018).  Furthermore, a Monte Carlo simulation 

process is involved in the generation of a given plausible profile.  The application of the 

Psqr model to a relatively large corrosion feature is therefore a time-consuming 

undertaking.   

 

In the present study, we propose a modification of the RSTRENG model, referred to as the 

RSTRENG-M model, by replacing the river-bottom profile of the corrosion feature with 

an alternative, so-called “riverbed” profile.  The riverbed profile consists of representative 

depths at various points along the corrosion feature whereby the representative depth at a 

given point is defined as the average of the maximum and average depths of the 

circumferential profile of the corrosion feature at this point.  Based on 60 full-scale burst 

tests of pipe specimens containing naturally-occurring or artificially-induced corrosion 

features reported by Benjamin et al. (2016), Al-Owaisi et al. (2018), Zhang et al. (2018) 
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and Zhang et al. (2020), RSTRENG-M is shown to be more accurate than RSTRENG with 

marginal additional computational cost.  Furthermore, RSTRENG-M is practically as 

accurate as but computationally more efficient than the Psqr model.  To facilitate the 

application of RSTRENG-M to corrosion features detected and sized by inline inspection 

(ILI) tools, an empirical relationship between the representative and maximum depths at a 

given point in the profile is established based on detailed 3D profiles of a large number of 

naturally-occurring corrosion features on pipe specimens removed from in-service 

pipelines.  The remaining part of the chapter is organized as follows.  Section 4.2 briefly 

describes the RSTRENG model and effective area concept.  Because the burst test data for 

full-scale corroded pipe specimens play an important role in the development of 

RSTRENG-M, the test data collected in the present study are presented in Section 4.3 

before the development and validation of RSTRENG-M described in Section 4.4. Section 

4.5 describes the application of RSTRENG-M in the context of ILI data, followed by 

concluding remarks in Section 4.6.   

4.2 RSTRENG and effective area 

Given the river-bottom profile of a corrosion feature as illustrated in Fig. 4.2, the 

RSTRENG model considers n sub-features, each feature occupying a contiguous portion 

of the profile.  The burst capacity for the ith sub-feature (i = 1, 2, …, n), Pb,i, is then 

evaluated as follows:  

𝑃𝑏,𝑖 =
2𝑡(SMYS+68.95)
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where D and t are the pipe diameter and wall thickness, respectively; SMYS is the specified 

minimum yield strength of the pipe steel; SMYS + 68.95 MPa is the empirically defined 

flow stress; Ai and li are the area and length, respectively, of the portion of the river-bottom 

profile occupied by the ith sub-feature, and Mi is the corresponding Folias factor.  The burst 

capacity of the corrosion feature, Pb-RST, is then defined as the smallest value of the burst 

capacities of all n sub-features: 
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𝑃𝑏−𝑅𝑆𝑇 = 𝑚𝑖𝑛{𝑃𝑏,𝑖}   (i = 1, 2, …, n) (4.3) 

 

Figure 4.2 Illustration of the river-bottom profile and sub-features in the 

RSTRENG model 

Consider Pb-RST = Pb,r (r = 1, 2, …, or n).  Then Ar and lr are the so-called effective area 

and length, respectively, of the corrosion feature.  It follows that RSTRENG is also known 

as the effective area method.   

4.3 Full scale burst tests 

Sixty (60) full-scale burst tests of corroded pipe specimens reported in the literature 

(Benjamin et al. 2016; Al-Owaisi et al. 2018; Zhang et al. 2018; Zhang et al. 2020) are 

collected in this study.  Sixteen of the 60 specimens were removed from in-service 

pipelines and contain naturally-occurring corrosion features on the external surfaces of the 

specimens (Zhang et al. 2018; Zhang et al. 2020), whereas the other 44 specimens contain 

artificially-induced corrosion features of cubic or semi-ellipsoidal shape.  The 3D profiles 

of corrosion features on the 16 naturally corroded pipe specimens are obtained from high-

resolution laser-scanning devices.  Each of the 16 specimens contains many individual 

corrosion anomalies, which are grouped into clusters by the widely used 1 inch × 6t 

interaction rule (ASME 2019).  This interaction rule states that two adjacent corrosion 

anomalies are considered to interact with each other and therefore belong to the same 

cluster if their longitudinal and circumferential separation distances are less than or equal 
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to 25.4 mm (i.e. 1 inch) and 6t, respectively.  The 16 specimens contain 667 corrosion 

clusters in total.  For each specimen, the corrosion cluster at which failure initiated during 

the burst test is identified because the burst capacity of the specimen observed in the test 

is considered the burst capacity of the cluster.  Figure 4.3 shows a portion of the corroded 

external surface of one of the 16 specimens with the corrosion depth (in the unit of %t) 

displayed by the grayscale.  The longitudinal coordinate represents the relative distance of 

a measurement point with respect to the upstream girth weld, and the circumferential 

coordinate is the circumferential position (arclength) of the measurement point in terms of 

the 12:00 o’clock position (Fig. 4.2).  The dash-lined box in Fig. 4.3 indicates a specific 

cluster, which consists of 262 single corrosion anomalies.  

 

Figure 4.3 A portion of the naturally corroded external surface of a pipe specimen 

in Zhang et al. (2018) and Zhang et al. (2020) 

The reference (Zhang et al. 2020) also includes 14 specimens that contain artificially-

induced corrosion clusters.  Each of the 14 specimens contains one corrosion cluster that 

consists of a series of (between 18 and 345) cubic individual anomalies with different 

widths, depths and lengths.  Sixteen specimens are reported by Benjamin et al. (2016), with 

each of them containing an artificially-induced corrosion cluster consisting of cubic 

individual anomalies in different geometries ranging in number between 2 and 10.  Finally, 

14 specimens are reported by Al-Owaisi et al. (2018) with each of them including an 

artificially-induced cluster consisting of two identical semi-ellipsoidal-shaped anomalies.  

The corrosion clusters on three representative specimens reported in Zhang et al. (2020), 
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Benjamin et al. (2016) and Al-Owaisi et al. (2018), respectively, are shown in Fig. 4.4.  

The geometric and material properties of the 60 pipe specimens, as well as the 

corresponding defect information are summarized in Table 4.1.  The burst capacities of the 

specimens observed in the test (Ptest) are also included in Table 4.1.  

 

a) Specimen 8-1 in Zhang et al. (2020)  

 
b) Specimen IDTS 15 in Benjamin et al. (2016)  c) Specimen 3 in Al-Owaisi et al. (2018) 

Figure 4.4 Corrosion clusters on representative pipe specimens reported in 

Benjamin et al.(2016), Al-Owaisi et al. (2018) and Zhang et al. (2020) 
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Table 4.1 Summary of full-scale burst test data collected in the present study 

No. Source 
Specimen 

ID  

D 

(mm) 

t 

(mm) 

Steel 

grade 

Ptest 

(MPa) 

Cluster at which 

burst initiates y 

(MPa) 
l (mm) dmax (%t) 

1 

Zhang et 

al. 

(2018); 

Zhang et 

al. 

(2020) 

 

16-1 408.2 6.2 X52 14.60 844 33 371 

2 16-2 407.7 6.2 X52 13.31 1160 47 371 

3 16-3 407.7 6.2 X52 13.52 330 43 371 

4 16-5 407.7 5.9 X52 11.86 356 97 397 

5 16-6 407.4 5.9 X52 12.72 344 57 412 

6 16-7 407.4 6.0 X52 12.84 542 87 412 

7 20-3 508.0 6.5 X52 10.22 362 39 395 

8 24-1 610.5 6.8 X70 14.21 1504 30 555 

9 24-2 610.5 6.7 X70 14.37 428 39 555 

10 30-1 763.2 8.4 X70 12.31 4326 68 534 

11 30-2 763.4 8.5 X70 14.10 430 48 530 

12 30-3 763.2 8.4 X70 14.78 610 73 560 

13 30-4 763.7 8.5 X70 12.48 710 78 511 

14 30-5 762.9 8.4 X70 12.26 782 59 549 

15 30-6 764.1 8.4 X70 12.96 1450 75 510 

16 30-7 762.0 9.9 X52 11.11 1110 51 378 

17 8-1 219.1 5.7 X52 19.98 848 52 410 

18 8-2 219.1 5.7 X52 20.18 1052 48 410 

19 12-1 323.9 6.2 X52 17.51 431 44 401 

20 12-2 323.9 6.2 X52 17.03 433 46 401 

21 20-1 508.0 9.5 X70 21.37 932 72 546 

22 20-2 508.0 9.5 X70 22.08 552 75 546 

23 24-3 609.6 9.0 X70 20.68 942 53 562 

24 24-4 609.6 9.0 X70 19.85 421 53 562 

25 34-1 863.6 11.7 X70 18.49 572 78 559 

26 36-1 914.4 11.8 X70 17.60 580 49 569 

27 42-1 1066.8 14.3 X70 18.61 303 64 572 

28 42-2 1066.8 14.4 X70 17.49 816 58 548 

29 48-1 1219.2 11.5 X70 11.97 546 67 542 

30 48-2 1219.2 11.6 X70 13.42 550 69 619 

31 

Benjami

n et al. 

(2016) 

IDTS 15 458.6 7.9 X70 24.00 130 60 639 

32 IDTS 16 458.6 7.9 X70 23.40 190 60 662 

33 IDTS 17 458.6 7.9 X70 21.20 320 60 662 

34 IDTS 18 458.6 7.9 X70 22.70 170 60 662 

35 IDTS 19 458.6 7.9 X70 23.30 210 60 662 

36 IDTS 20 458.6 7.9 X70 20.80 430 60 654 

37 IDTS 21 458.6 7.9 X70 22.60 240 60 654 

38 IDTS 22 458.6 7.9 X70 20.30 210 60 654 

39 IDTS 23 458.6 7.9 X70 21.50 270 60 654 

40 IDTS 24 458.6 8.0 X70 20.50 260 60 652 

41 IDTS 25 458.6 8.0 X70 19.90 340 60 652 

42 IDTS 26 458.6 8.0 X70 19.80 340 60 652 

43 IDTS 27 458.6 8.0 X70 21.30 320 60 652 

44 IDTS 28 458.6 7.9 X70 23.20 130 60 580 

45 IDTS 29 458.6 7.9 X70 23.40 130 60 580 

46 IDTS 30 458.6 7.9 X70 21.10 320 60 580 

 (continued on next page) 
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Table 4.1 (Continued) 

No. Source Specimen 

ID  
D 

(mm) 
t 

(mm) 
Steel 

grade 
Ptest 

(MPa) 
Cluster at which 

burst initiates 
y 

(MPa) 
l (mm) dmax (%t) 

47  3 508 9.7 X60 19.05 81 49 456 

48 4 508 9.6 X60 19.35 90 49 456 

49 9 508 9.6 X60 19.62 80 50 456 

50 10 508 9.5 X60 19.38 89 50 456 

51 12 508 10.7 X60 24.17 107 49 506 

52 

Al-

Owaisi et 

al. 

(2018) 

13 508 10.7 X60 25.00 117 49 506 

53 14 508 10.7 X60 24.32 128 49 506 

54 19 508 9.9 X52 19.11 80 48 372 

55 20 508 9.7 X52 19.59 110 49 372 

56 21 508 9.7 X52 19.65 120 49 372 

57 22 508 9.8 X52 20.08 130 49 372 

58 23 508 9.8 X52 20.27 139 48 372 

59 30 508 9.7 X52 20.68 76 49 372 

60 31 508 9.7 X52 19.67 76 49 372 

Note: Specimens #1 to #16 contain naturally occurring corrosion clusters; specimens #17 

to #60 contain artificially induced corrosion clusters.  

 

4.4 RSTRENG-M model 

4.4.1 Model description 

The riverbed profile as employed in RSTRENG-M is illustrated in Fig. 4.5.  A total of m 

circumferential planes are employed to intersect the corrosion feature shown in Fig. 4.5.  

The intersection between the jth (j = 1, 2, …, m) circumferential plane and corrosion feature 

results in a circumferential profile Sj (Fig. 4.5) for the feature.  It is assumed in RSTRENG-

M that the part of the corrosion feature no deeper than 0.1t has a negligible impact on the 

burst capacity (CSA 2019) and is therefore ignored in the model.  Let dmax,j and davg,j denote 

the maximum and average depths, respectively, of the portion of Sj that is deeper than 0.1t.  

It follows that dmax,j and davg,j will vanish if the entire Sj is no deeper than 0.1t.  Whereas 

the river-bottom profile is the longitudinal projection of the path that connects the deepest 

points within the corrosion feature, the riverbed profile is the longitudinal projection of the 

path that connects drep,j for j = 1, 2, …, m, where drep,j is the representative depth of Sj and 

defined as,  

𝑑𝑟𝑒𝑝,𝑗 = 𝑞𝑑𝑚𝑎𝑥,𝑗 + (1 − 𝑞)𝑑𝑎𝑣𝑔,𝑗 (4.4) 

In Eq. (4.4), q (0 ≤ q ≤ 1) is a weighting factor that defines the relative contributions of 

dmax,j and davg,j to drep,j.  It follows that RSTRENG-M considers the influences on the burst 
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capacity of both the maximum defect depth (i.e. dmax,j) and overall metal loss (i.e. davg,j) at 

a given circumferential plane, as opposed to dmax,j only in the RSTRENG model.  Note that 

RSTRENG-M reverts to the RSTRENG model for q = 1.  The riverbed profile in 

RSTRENG-M can be interpreted as consisting of a series of representative depths 

characterizing the “underwater” portion of the corrosion feature, i.e. the portion that is 

deeper than 10%t.  Once the riverbed profile is obtained, the effective area method as 

described in Section 4.2, i.e. Eqs. (4.1) through (4.3), can be applied to compute the burst 

capacity.  

 

Figure 4.5 Illustration of the circumferential and riverbed profiles in RSTRENG-M 

The value of q in Eq. (4.4) is determined by comparing the burst capacities predicted by 

RSTRENG-M (Pb-RSM) with the observed burst capacities (Ptest) for the 16 specimens 

containing naturally-occurring corrosion features reported in Zhang et al. (2018) and Zhang 

et al. (2020), i.e. specimens #1 through #16 in Table 4.1. Figure 4.6 depicts the mean value 

and coefficient of variation (COV) of the test-to-predicted ratios (Ptest/Pb-RSM) 

corresponding to different values of q between zero and unity.  The figure indicates that 

the COV of Ptest/Pb-RSM is minimized at q = 0.48, whereas the mean of Ptest/Pb-RSM, as 

expected, monotonically increases (i.e. the model prediction becomes more conservative) 

as q increases from zero to unity.  Given that the COV is insensitive to q in the vicinity of 

q = 0.48 as shown in Fig. 4.6, it is proposed to set q equal to 0.5 for simplicity and a 
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convenient interpretation of the representative depth.  It follows that drep,j is defined as the 

average of dmax,j and davg,j, i.e.  

𝑑𝑟𝑒𝑝,𝑗 =
𝑑𝑚𝑎𝑥,𝑗+𝑑𝑎𝑣𝑔,𝑗

2
     (j = 1, 2, …, m) (4.5) 

 

Figure 4.6 Mean and COV of test-to-predicted burst capacity ratios for RSTRENG-

M as a function of the weighting factor q 

4.4.2 Model validation 

The full-scale test data summarized in Table 4.1 are used to validate RSTRENG-M.  For 

comparison, the RSTRENG and Psqr models are also employed to predict the burst 

capacities of the specimens, denoted by Pb-RST and Pb-PSQR, respectively.  Note that y 

included in Table 4.1 are the actual (as opposed to nominal) yield strengths of the specimen 

and are employed in the RSTRENG, RSTRENG-M and Psqr models. 

 

The test and predicted burst capacities are compared in Figs. 4.7(a), 4.7(b) and 4.7(c) for 

the RSTRENG-M, RSTRENG and Psqr models, respectively.  Figure 4.7 indicates that the 

RSTRENG and RSTRENG-M models generally underpredict (i.e. being conservative) 

Ptest, while the Psqr model overpredicts the burst capacity for one of the 16 specimens 

(specimen #7 in Table 4.1) removed from in-service pipelines.  The regression lines in the 

figure suggest that the Psqr and RSTRENG-M tend to be slightly more conservative for 

larger values of Ptest, whereas RSTRENG is more or less consistent for the entire range of 

Ptest.  The mean and COV of the test-to-predicted ratios are summarized in Table 4.2 for 
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different burst test datasets.  Table 4.2 indicates that the RSTRENG-M and Psqr models 

lead to on average more accurate predictions than the RSTRENG model: the means of 

Ptest/Pb-RSM, Ptest/Pb-PSQR and Ptest/Pb-RST are 1.23, 1.18 and 1.29, respectively, with the 

corresponding COVs equal to 7.4, 7.7 and 8.1%, respectively.  The mean of Ptest/Pb-RSM 

equals 1.23 (1.18 for naturally-occurring corrosion features) suggests that RSTRENG-M 

is perhaps somewhat conservative.  We argue that the conservatism can be addressed 

without much difficulty in practice by using, for example, a simple multiplicative 

correction factor applied to the model prediction.  Table 4.2 also indicates that the 

improvement in the predictive accuracy of RSTRENG-M over that of RSTRENG is most 

significant for the naturally-occurring and artificially-induced corrosion clusters reported 

in Zhang et al. (2018) and Zhang et al. (2020).  Note that each of the clusters in Zhang et 

al. (2018) and Zhang et al. (2020) contains markedly more single anomalies than a given 

artificially-induced cluster reported in Benjamin et al. (2016) and Al-Owaisi et al. (2018) 

(see Fig. 4.4 for example).  This suggests that RSTRENG-M is particularly advantageous 

for corrosion features with relatively complex morphologies.  The predictive accuracy of 

the Psqr model is comparable to that of RSTRENG-M; however, the computational 

efficiency of the latter is an important consideration in the trade-off between the accuracy 

and efficiency of burst capacity models in practice.  It is further noticed in Table 4.2 that 

predictions of all three models are on average more conservative for the 16 artificially 

defected pipe specimens reported by Benjamin et al. (2016) than those for the 16 naturally 

corroded specimens.  This can be attributed to that the interaction rule used to group 

individual anomalies into a feature (i.e. cluster) is likely too conservative for the specimens 

in Benjamin et al. (2016), as evident from photographs of specimen rupture planes provided 

in Benjamin et al. (2016).  For the naturally corroded specimens, the interaction rule is 

more accurate because the individual anomalies within a given cluster are generally quite 

close to each other.  This may also be used to explain the more conservative predictions 

for the 16 artificially corroded specimens reported in Zhang et al. (2020), although 

photographs of the actual specimen rupture planes are unavailable for the specimens 

reported in Zhang et al. (2020).  
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a) RSTRENG-M                                        b) RSTRENG 

 
c) Psqr Model 

Figure 4.7 Comparison of test and predicted burst capacities for RSTRENG-M, 

RSTRENG and Psqr models 
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Table 4.2 Mean and COV of Test-to-predicted ratios for different burst test datasets 

Burst test dataset  Ptest/Pb-RST Ptest/Pb-RSM 
Ptest/Pb-

PSQR 

16 specimens in Zhang et al. 

(2018) and Zhang et al. (2020) 

– natural corrosion features 

Mean 1.26 1.18 1.11 

COV (%) 6.8 5.1 5.0 

14 specimens in Zhang et al. 

(2020) – artificial features 

Mean 1.35 1.24 1.15 

COV (%) 7.5 6.9 5.9 

16 specimens in Benjamin et 

al. (2016) – artificial features 

Mean 1.32 1.30 1.26 

COV (%) 5.8 5.6 5.5 

14 specimens in Al-Owaisi et 

al. (2018) – artificial features 

Mean 1.21 1.19 1.19 

COV (%) 7.9 7.9 7.9 

All 60 specimens 
Mean 1.29 1.23 1.18 

COV (%) 8.1 7.4 7.7 

4.4.3 Impact of resolution of riverbed profile   

The application of RSTRENG-M to a given corrosion feature involves discretizing the 

feature using m circumferential planes as well as discretizing each circumferential profile 

(i.e. Sj in Fig. 4.5) to evaluate drep,j.  The sensitivity of the predicted burst capacity to the 

resolution of the discretization is investigated in this section.  Two types of resolution are 

considered, namely the longitudinal resolution l (i.e. l = l/(m-1)) and circumferential 

resolution w (Fig. 4.5).  It is reasonable to assume that l governs the resolution of the 

riverbed profile for the application of the effective area method; in other words, the total 

number of sub-features (i.e. n) considered in the effective area method is completely 

dependent on l (or the value of m).  In the validation of RSTRENG-M described in the 

previous section, both l and w are set to equal 2 mm.  In the sensitivity analysis, l is 

set to equal one of three values, i.e. 2, 6 and 12 mm; the same set of values is also assigned 

to w.  This results in a total of nine sets of values of l and w, i.e. l  w = 2  2 mm, 

2  6 mm, …, 12  12 mm.  The means and COVs of Ptest/Pb-RSM for the specimens in Table 

4.1 corresponding to the nine sets of l and w values are summarized in Table 4.3.   

 

For the naturally-occurring corrosion features, the results in Table 4.3 indicate that the 

longitudinal resolution l has no impact on burst capacities evaluated by RSTRENG-M for 

l ranging from 2 to 12 mm.  On the other hand, a smaller value of w leads to on average 

more conservative predictions and a lower COV of the test-to-predicted ratios.  This is 
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because a more refined circumferential resolution is able to better capture the maximum 

depth of each circumferential profile, thus leading to more conservative predictions of the 

burst capacity with less variability.  These results suggest that l = 12 mm and w ≤ 6 mm 

be used in the implementation of RSTRENG-M for naturally-occurring corrosion features.  

Similar trend can be observed for the artificially-induced corrosion features that a smaller 

w results in a higher mean values of Ptest/Pb-RSM and a lower COV of Ptest/Pb-RSM, while the 

predictions tends to be more conservative and less scattered (lower COV values) with a 

coarser longitudinal resolution.  The results in Table 4.3 also indicate that the mean values 

and COVs of Ptest/Pb-RSM for cases with l = w (= 2, 6, or 12 mm) are always consistent.   

Table 4.3 Impact of riverbed resolution on the RSTRENG-M model in terms of 

naturally occurring and artificial corrosion features 

l  w (mm  

mm) 

Naturally corroded specimens 

(specimens #1 - #16) 

Artificially defected 

specimens (specimens #17 - 

#60) 

Mean COV (%) Mean COV (%) 

2  2 1.18 5.1 1.26 10.1 

2  6 1.17 5.2 1.22 11.1 

2  12 1.15 5.3 1.20 12.4 

6  2 1.18 5.1 1.31 9.7 

6  6 1.17 5.2 1.26 10.1 

6 12 1.15 5.3 1.24 10.5 

12  2 1.18 5.0 1.32 9.8 

12  6 1.17 5.1 1.28 10.0 

12  12 1.15 5.3 1.26 10.1 

 

4.5 Application to inline inspection data 

In practice, detailed high-resolution 3D profiles of corrosion features are usually 

unavailable.  For example, the laser scan is only feasible for pipe segments that are 

excavated and de-coated, i.e. pipe segments that have already been selected for corrosion 

mitigation.  On the other hand, ILI tools are commonly used in practice to detect, locate 

and size corrosion anomalies on buried oil and gas pipelines (Kisgawy and Gabbar 2010).  

An ILI tool typically characterizes an irregular-shaped single corrosion anomaly as a “box” 

on the pipe surface as illustrated in Fig. 4.8, and each box is associated with an ILI-reported 

length (in the longitudinal direction), width (in the circumferential direction) and depth (in 
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the through-wall thickness direction).  It follows that, by applying the interaction rule, a 

corrosion cluster identified based on the ILI data consists of a series of “boxes”. The 

corresponding river-bottom profile of the cluster obtained from the ILI data resembles a 

step function.    

 

Figure 4.8 Assumed ILI-identified corrosion anomalies and cluster on specimen 16-1 

in Table 4.1 

The 3D shape of each box is further idealized to be either semi-ellipsoidal or cubic, with 

the width, length and depth of the semi ellipsoid (cube) equal to the width, length and 

maximum depth, respectively, of the corresponding corrosion anomaly (see Fig. 4.9).  It 

should be emphasized that the measurement errors associated with the ILI tool in sizing 

corrosion anomalies (Siraj and Zhou 2019) are not considered in this study.  Figure 4.10 

depicts the burst capacities predicted by the RSTRENG, RSTRENG-M and Psqr models 

for the 14 specimens (specimens #1 to #16 excluding #4 and #6), with the means and COVs 

of the test-to-predicted ratios summarized in Table 4.4.  Figure 4.10 and Table 4.4 indicate 

that all three models result in markedly conservative predictions of the burst capacities by 

assuming the geometry of individual anomalies to be cubic: the average under-prediction 

ranges from 46% (the Psqr model) to 51% (RSTRENG).  By assuming individual 

anomalies to be semi-ellipsoidal, the conservatism in the predicted burst capacity can be 

reduced substantially.  The mean of Ptest/Pb-RSM (1.30) is almost the same as that of Ptest/Pb-

PSQR (1.27), and markedly lower than that of Ptest/Pb-RST (1.36).  Furthermore, the COV of 

Ptest/Pb-RSM (11.1%) is markedly lower than those of Ptest/Pb-PSQR and Ptest/Pb-RST (both about 
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15%).  These results illustrate the advantages of RSTRENG-M when applied to the ILI 

data. 

 

a) Cubic individual anomalies 

 
b) Semi-ellipsoidal individual anomalies 

Figure 4.9 A corrosion cluster consisting of cubic and semi-ellipsoidal individual 

anomalies 
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a) Cubic boxes                                  b) Semi-ellipsoidal boxes      

Figure 4.10 Comparison between the RSTRENG, RSTRENG-M and Psqr models 

based on the 14 simulated ILI measured clusters 

 

Table 4.4 Mean and COV of Test-to-predicted ratios for 14 specimens containing 

naturally occurring corrosion features in the context of ILI data 

Assumed geometry of 

individual anomalies 

 Ptest/Pb-RST Ptest/Pb-RSM

  

Ptest/Pb-

PSQR 

Cube  
Mean 1.51 1.48 1.46 

COV (%) 18.7 18.7 20.7 

Semi-ellipsoid 
Mean 1.36 1.30 1.27 

COV (%) 15.2 11.1 14.4 

 

To further facilitate the application of RSTRENG-M in practice, it is desirable to estimate 

the riverbed profile of a corrosion cluster based on the ILI data only.  Since the maximum 

depths of individual anomalies included in the cluster are available in the ILI data, the 

riverbed profile can be estimated if the representative depth (drep) of a given circumferential 

profile is directly estimated from the corresponding maximum depth of the same 

circumferential profile without using Eq. (4.5).  In other words, the application of 

RSTRENG-M is facilitated by eliminating the need to evaluate the average depth of the 

circumferential profile.  Let dmax-s denote the maximum depth of a given circumferential 

profile S (only the portion of the profile that is deeper than 10%t is considered) of the 

corrosion cluster – the subscript “s” is used to emphasize that dmax-s is associated with a 

given circumferential profile as opposed to the entire cluster.  We attempt to develop an 
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empirical equation to evaluate drep from dmax-s based on the 16 naturally corroded specimens 

in Table 4.1.  The 16 specimens contain 667 corrosion clusters, for which a total of 30,763 

circumferential profiles are generated.  The values of davg-s and dmax-s corresponding to these 

profiles are plotted in Fig. 4.11(a), which reveals a moderately strong linear correlation 

between these two quantities.  Figure 4.11(b), which depicts values of drep and dmax-s, 

reveals a strong linear correlation between these two quantities.  Given Fig. 4.11(b), the 

following equation is developed from the least squares analysis: 

𝑑𝑟𝑒𝑝

𝑡
= 0.69

𝑑𝑚𝑎𝑥−𝑠

𝑡
+ 0.04    (dmax-s/t > 0.1)     (4.6) 

  

a)  davg-s vs. dmax-s                                                  b) drep vs. dmax-s 

Figure 4.11 Relationships between davg-s and dmax-s, and drep and dmax-s, based on 

30,763 circumferential profiles obtained from 667 clusters on 16 naturally corrode 

pipe specimens 

Given Eq. (4.6), the riverbed profile for a corrosion cluster consisting of a set of individual 

anomalies detected and sized by the ILI tool can be rapidly generated by assuming each 

individual anomaly to be a cubic box with the corresponding length, width and depth 

reported by the ILI tool.  This approach is employed to evaluate the burst capacities of 

specimens #1 through #16 (excluding #4 and #6) in Table 4.1, and the corresponding 

results are depicted in Fig. 4.12(a) along with the predicted burst capacities by assuming 

the individual anomalies to be cubic or semi-ellipsoidal boxes (without applying Eq. (4.6)). 

The mean and COV of the test-to-predicted burst capacity ratios corresponding to Eq. (4.6) 

equal 1.31 and 9.2%, respectively.  Figure 4.12(b) depicts four different riverbed profiles 
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for a cluster on specimen 16-1 generated by using four different approaches: 1) detailed 

3D corrosion profile, 2) individual anomalies assumed to be cubic boxes, 3) individual 

anomalies assumed to be semi-ellipsoidal boxes, and 4) individual anomalies assumed to 

be cubic boxes together with Eq. (4.6).  The above results indicate the validity and 

suitability of using Eq. (4.6) to rapidly develop the riverbed profile for the application of 

RSTRENG-M in the context of the ILI data.    

 

a) Comparison of predicted burst capacities 

 
b) Comparison of riverbed profiles obtained by using different approaches for 

specimen 16-1 in Table 4.1 

Figure 4.12 Comparisons of predicted burst capacities and the riverbed profiles 

when the riverbed profile is obtained by Eq. (4.6) or by assuming the corrosion 

anomalies as cubic and semi-ellipsoidal metal losses 
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4.6 Conclusion 

An improvement of the well-known RSTRENG model, referred to as RSTRENG-M, is 

proposed in the present study to evaluate the burst capacity of corroded pipelines.  

RSTRENG-M differs from the RSTRENG model by employing the riverbed profile (as 

opposed to the river-bottom profile employed in RSTRENG) of a corrosion feature, which 

consists of the representative depths for a series of circumferential profiles of the feature.  

The representative depth for a given circumferential profile of the corrosion feature is the 

average of the maximum and average depths of the portion of the profile deeper than 10% 

of the pipe wall thickness.  Given the riverbed profile, the effective area method as 

employed in RSTRENG is then applied to evaluate the burst capacity of the corrosion 

feature.  The predictive accuracy of RSTRENG-M is demonstrated based on 60 full-scale 

burst tests of pipe specimens containing naturally-occurring or artificially-induced 

corrosion features reported in the literature: the mean and COV of test-to-predicted burst 

capacity ratios equal 1.23 and 7.4%, respectively.  RSTRENG-M is shown to be more 

accurate than RSTRENG, in particular for corrosion clusters consisting of a large number 

of individual anomalies, and of similar accuracy as but more computationally efficient than 

the recently developed Psqr model.   

 

The predictive accuracy of RSTRENG-M given the ILI-reported corrosion information is 

investigated based on the burst test data for 14 full-scale naturally corroded pipe specimens.  

It is observed that RSTRENG-M results in moderately conservative estimates of the burst 

capacity with relatively small variability (the mean and COV of the test-to-predicted ratios 

equal to 1.30 and 11.2%), if the individual corrosion anomalies included in a cluster are 

assumed to be semi-ellipsoidal-shaped with the corresponding width, length and depth 

reported by ILI.  To further facilitate the application of RSTRENG-M in the context of ILI, 

a simple, empirical equation is developed to estimate the representative depth directly from 

the maximum depth for a given circumferential profile based on 30,763 circumferential 

profiles generated from a total of 667 corrosion clusters on 16 naturally corroded pipe 

specimens.  RSTRENG-M offers a viable alternative for the fitness-for-service assessment 

of corroded oil and gas pipelines.    
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5 A Random Field Model of External Metal-loss Corrosion 
on Buried Pipelines  

5.1 Introduction 

Metal-loss corrosion is one of the main threats to the structural integrity of buried oil and 

gas pipelines (Lam and Zhou 2016), and generally manifests itself as irregular-shaped 

features of pipe wall thinning on the external or internal surface (or both) of the pipeline.  

Figure 5.1 depicts two-dimensional (2D) and three-dimensional (3D) images of the 

corroded external surface of pipe segment #1 in Table 5.1 (see Section 5.3) based on 

measurements using a laser scanning device.  The corrosion depth (z) in the unit of %t (t 

denotes the pipe wall thickness) at a given point on the surface quantifies the corresponding 

loss of the wall thickness at the point.  The fitness-for-service (FFS) assessment of corroded 

pipelines in practice involves evaluating the pressure containment capacity, i.e. burst 

capacity, of the pipeline at corrosion features using suitable models, which are generally 

of the semi-empirical nature (Kiefner and Vieth 1989; Zhou and Huang 2012).  An 

important step in the development of burst capacity models is to validate them using results 

of full-scale burst tests of corroded pipe specimens (Kiefner and Vieth 1989; Zhang et al. 

2018).  Pipe specimens containing naturally-occurring corrosion features are ideal for this 

purpose; however, it is a costly undertaking to obtain such specimens by extracting them 

from in-service pipelines.  This imposes a severe constraint on the number of test 

specimens that can be afforded by the research program.  Furthermore, it is difficult to 

control characteristics of the specimen (such as the diameter, wall thickness and material 

properties) and corrosion features (such as the maximum corrosion depth) for specimens 

removed from in-service pipelines.  Alternatively, specimens containing artificially-

induced flaws are employed in the burst tests (e.g. Benjamin et al. 2005; Al-Owaisi et al. 

2018; Mokhtari and Melchers 2019).  This overcomes the above-described disadvantages 

of specimens containing naturally-occurring corrosion; however, since artificially-induced 

flaws are in general regular-shaped, e.g. cubic or semi-ellipsoidal, they do not capture 

geometric characteristics of naturally-occurring corrosion features.  Burst capacity models 

validated using test specimens containing artificially-induced flaws may not be suitable for 

practical FFS assessments.  Three-dimensional (3D) elasto-plastic Finite Element Analyses 

(FEA) are being increasingly used to evaluate the burst capacity of corroded pipelines 
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(Chiodo and Ruggieri 2009; Al-Owaisi et al. 2018; Bao et al. 2018; Mokhtari and Melchers 

2019).  Various studies (Yoshida and Yamaguchi 2013; Bao et al. 2018; Mokhtari and 

Melchers 2019) reported in the literature have confirmed the high accuracy of FEA by 

comparing FEA-predicted burst capacities of test specimens containing naturally-occurring 

and artificially-induced corrosion features with the corresponding burst capacities 

observed in the test.  

 
a) 2D image 

  
b) 3D image 

Figure 5.1 2D and 3D images of a corroded surface measured by the laser scanner 

 

The advancement in FEA of the burst capacity of corroded pipelines motivates us to 

develop a random field model that can capture characteristics of naturally-occurring 

corrosion features and be used to stochastically simulate such features.  By combining FEA 

with the random field-based corrosion model, full-scale burst tests of pipe specimens 

containing realistic corrosion features can be carried out numerically.  This leads to 
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significant cost savings and great flexibility in selecting test parameters (e.g. pipe and 

corrosion geometry) as well as investigating influences of these parameters on the burst 

capacity of corroded pipelines.  The random field corrosion model can be further employed 

to investigate the capacity of corroded pipelines with different configurations (e.g. pipe 

elbows) (Lee et al. 2015; Wang and Zhou 2019) and/or under complex loading conditions 

(e.g. internal pressure combined with bending) (Mohd et al. 2015; Chegeni et al. 2019).  

The present study focuses on modeling the external corrosion, i.e. corrosion on the external 

surface of the pipeline, based on high-resolution laser-scan corrosion measurements 

obtained from in-service pipelines.  The proposed model employs a latent Gaussian random 

field, which is extensively used in the stochastic spatial modeling of rainfall (Bell 1987; 

Rasmussen 2013; Oliveira et al. 2018).  The similarity between the rainfall and corrosion 

models is discussed in the following sections.   

 

The remainder of this chapter is organized as follows.  Section 5.2 presents a literature 

review of spatial models of metal-loss corrosion; Section 5.3 describes the corrosion 

measurement data that are the basis of the random field model proposed in this study; 

Section 5.4 presents the random field model, its analogy with the spatial rainfall model, a 

comparison between simulated and measured corrosion fields, and the impact of model 

parameters on the simulated field.  Concluding remarks are included in Section 5.5.   

5.2 Literature review  

The spatial modeling of corrosion on ship structures, cast/ductile iron pipes and steel 

pipelines has been reported in the literature.  Teixeira and Soares (2008) investigated the 

collapse strength of corroded steel plates in ship structures and employed a homogeneous, 

isotropic lognormal random field to characterize the corrosion depth on the ship plate.  The 

authors assumed a Gaussian (squared exponential) correlation function (Vanmarcke 2010) 

as well as a representative value of the correlation length.  Htun et al. (2013) carried out a 

similar study and employed the Gaussian random field to characterize the corrosion 

wastage on ship plates.  Garbatov and Soares (2019) proposed two spatial models to 

characterize the thickness of corroded ship plates: the uniform density of corrosion pits 

with uncorrelated depths and randomly-located semi-elliptical-shaped corrosion pits with 
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uncorrelated shape coefficients.  Ranji (2012) proposed a power spectral density function 

describing the nonuniform corrosion depths on both sides of a plate and simulated the 

corroded surface by a homogeneous Gaussian random field with the proposed power 

spectral density function.  Li et al. (2017) assumed corrosion pits to distribute uniformly 

on the surface of ductile iron pipes and the growth of individual pits to follow a gamma 

process.  The copula is employed to characterize the statistical dependence between 

growths of different pits.  Aryai and Mahmoodian (2017) employed the Gaussian random 

field to model the depths of corrosion pits on the surface of cast iron water pipes and 

considered a time-dependent correlation length of the Gaussian random field.  The 

corrosion measurement data obtained in the present study indicate that a significant portion 

of a corroded pipe surface has negligibly small corrosion depths and can be deemed 

corrosion free.  This feature, i.e. the intermingling of corroded and corrosion-free areas on 

the pipe surface, cannot be dealt with by the aforementioned spatial models, but is a central 

component of the model proposed in the present study.  Furthermore, the proposed model 

has the flexibility to incorporate the specific marginal distribution of the corrosion depth, 

which is non-Gaussian by physical constraints, and accounts for the spatial correlation 

between corrosion depths at different locations on the pipe surface.   

5.3 Corrosion measurement data  

The corrosion measurement data employed in the present study are provided by a Canadian 

pipeline operator.  A series of naturally corroded pipe segments were removed from in-

service pipelines owned by the operator for the purpose of corrosion mitigation.  A portion 

of the external surface of each pipe segment was then scanned using a high-resolution laser-

scanning device.  The device measures the corrosion depths at regularly spaced points (i.e. 

grid points) on the pipe surface, with a grid spacing of 1 mm along the pipe longitudinal 

direction and 1 mm along the pipe circumferential direction, i.e. a 1 × 1 mm grid.  Note 

that the circumferential grid spacing is the arc length.  Table 5.1 summarizes the basic 

attributes of five pipe segments and corresponding laser scan data, where D is the pipe 

outside diameter, and L and W denote, respectively, the longitudinal and circumferential 

lengths of the scanned pipe surface, and zmax denotes the maximum corrosion depth 

recorded by the laser scan.    
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Table 5.1 Relevant information of the pipe segments in the analysis 

Pipe 

segment 

Specimen 

ID 

D 

(mm) 

t 

(mm) 

L 

(mm) 

W 

(mm) 

zmax 

(%t) 

% of grid 

points with z  

≤ 2 ≤ 5 

1 24-1 610.5 6.8 6387 408 32 43 77 

2 24-2 610.5 6.7 8080 497 39 60 90 

3 30-1 763.2 8.4 6147 500 68 35 70 

4 30-2 763.4 8.5 3127 461 48 58 81 

5 30-3 763.2 8.4 2467 606 73 58 85 

 

A common feature of the corrosion data obtained from the five pipe segments is that a 

significant portion of the measured corrosion depths on a given pipe is quite small, as 

indicated in the last two columns of Table 5.1.  Take the corroded surface of pipe segment 

#1 as an example (depicted in Fig. 5.1).  Out of a total of 2,606,304 grid points included in 

the scanned surface, 43% and 77% of them have measured corrosion depths less than 2%t 

and 5%t, respectively.  Note that the laser scan device is inevitably associated with 

measurement errors.  Typical specifications of the laser scan indicate that the measured 

corrosion depth is within ±1.5%t (Applus n.d.).  This suggests that the low end of measured 

corrosion depths contains considerable measurement noises and should be treated 

separately from deeper corrosion depths.  From a practical standpoint, FFS assessments of 

corroded pipelines typically ignore shallow corrosion depths, say, z ≤ 10%t, as their effect 

on the burst capacity is negligible (CSA 2019).  Based on these considerations, a threshold 

of zth= 5%t is imposed in the present study such that any measured corrosion depths less 

than or equal to zth are ignored with the corresponding grid points considered corrosion-

free.  Figure 5.2 depicts the corrosion depths of the scanned surface on pipe segment #1 

after the threshold is imposed.  We are therefore seeking a random field model that can 

capture the intermingling of corrosion-free and corroded areas on the pipe surface.   
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Figure 5.2 Corrosion depths on segment #1 with the corrosion threshold zth= 5%t 

imposed 

5.4 Random field model of corrosion on pipelines 

5.4.1 Fundamentals 

The intermingling of corrosion-free and corroded areas within a bounded region on the 

pipe surface is akin to the so-called spatial intermittency of rainfall (Bell 1987; Rasmussen 

2013; Oliveira et al. 2018); that is, a geographical region of interest can be divided into two 

sub-regions at the end of a short rainfall accumulation period: a dry sub-region where there 

is no rainfall or rainfall below a minimum reportable amount (Wilks 1998), and a wet sub-

region where the rainfall exceeds the minimum reportable amount.  Rainfall models that 

employ one or two latent Gaussian random fields to capture the spatial characteristics of 

rainfall, including the intermittency, are extensively reported in the literature.  For example, 

Bell (1987) first proposed to use a single latent Gaussian random field to characterize the 

rainfall occurrence (i.e. separation of dry and wet sub-regions) as well as the amount of 

rainfall in the wet sub-region through a suitable transformation of the Gaussian field.  This 

approach can be considered an extension of the binary random field model (Vanmarcke 

2010).  Wilks (1998) and Berrocal et al. (2008) employed two independent latent Gaussian 

random fields to characterize the rainfall occurrence and amount, respectively.  Oliveira et 

al. (2018) also employed two latent Gaussian random fields with the rainfall occurrence 

characterized by one of the fields and the rainfall amount jointly characterized by the two 

fields.   
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Inspired by the above-described spatial rainfall models, we propose to use a single latent 

homogeneous Gaussian random field to characterize corroded pipe surfaces.  Let Z(x, y) 

denote the random field of corrosion depths within an area of interest on the pipe surface, 

where x and y are the spatial coordinates, i.e. the longitudinal and circumferential positions, 

of a given point within the area with respect to an origin.  It is assumed that the probability 

of having a nonzero corrosion depth at any given point within the field is fc (0  fc  1); in 

other words, the probability of the point being corrosion-free is 1 - fc.  One may simply 

assume fc to be a constant within the field.  Indeed, a similar assumption was adopted by 

Bell (1987), who considered the probability of rainfall at any point within a bounded 

geographic region to be independent of the spatial position.  However, this assumption is 

not supported by the corrosion data.  As shown in Fig. 5.2, the corroded areas tend to be 

clustered as opposed to be uniformly distributed within the scanned surface.  Therefore, fc 

is considered in this study to be dependent on the spatial coordinates, i.e. fc = fc(x, y).  For 

notational brevity, x and y are not explicitly included in the formulations hereafter unless 

necessary for clarity.  The nonzero corrosion depth is characterized by a cumulative 

distribution function (CDF) denoted by H(z) that is assumed to be independent of spatial 

position.  It follows that 

𝐹𝑍(𝑧) = {
1 − 𝑓𝑐                                𝑧 = 0

1 − 𝑓𝑐 + 𝑓𝑐𝐻(𝑧)            𝑧 > 0
 (5.1) 

where FZ(z) (z ≥ 0) denotes the CDF of Z.  Let G denote the latent homogeneous Gaussian 

random field with a mean value of zero and a variance of unity.  The correspondence 

between Z and G is first established by selecting a threshold g0 in G such that G at any 

given point exceeds g0 with a probability of fc, i.e. Prob[G ≤ g0] = 1 - fc (Bell 1987; 

Rasmussen 2013).  It follows that g0 is given by 

𝑔0 = Φ
−1(1 − 𝑓𝑐) (5.2) 

where -1(•) denotes the inverse of the standard Gaussian CDF (•).  It is emphasized that 

g0 is dependent on the spatial coordinates, i.e. g0 = g0(x, y).  

 

The complete correspondence between Z and G is then given by (Bell 1987; Rasmussen 

2013), 
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𝑧 = {
0                                 𝑔 ≤ 𝑔0

𝐻−1 (
Φ(𝑔)−(1−𝑓𝑐)

𝑓𝑐
)       𝑔 > 𝑔0    

 (5.3) 

where g is a value of G, and H-1(•) denotes the inverse of H(z).  The second branch of Eq. 

(5.3) is the inverse probability transformation between FZ(z) (z > 0) and (g), or 

equivalently between H(z) (z > 0) and a truncated Gaussian distribution (g > g0).  Figure 

5.3 schematically illustrates the correspondence between Z and G.  For easy illustration, 

the two-dimensional pipe surface is represented by a single horizontal axis in Fig. 5.3.   

 

Figure 5.3 Illustration of the correspondence between Z and G 

The nonzero corrosion depths within Z are assumed to be spatially correlated.  The direct 

definition of the spatial correlation structure of Z is however difficult and ambiguous due 

to the existence of corrosion-free area in Z.  Therefore, the spatial correlation structure of 

the latent Gaussian random field G is considered instead (Rasmussen 2013).  It follows 

from G being a homogenous random field that the correlation coefficient between G(x1, y1) 

and G(x2, y2) ((x1, y1) ≠ (x2, y2)) depends only on the separation between the two points.  

Let rG(x, y) denote the correlation coefficient, where x = |x1 - x2| and y = |y1 - y2|.  

Given the corrosion measurement data such as that described in Section 5.3, the maximum 

likelihood (ML) method as described in the following can be used to estimate rG(x, y) 

(Rasmussen 2013).  There are four scenarios in terms of values of z1 = z(x1, y1) and z2 = 

z(x2, y2): 1) z1 = z2 = 0; 2) z1 = 0 and z2 > 0; 3) z1 > 0 and z2 = 0, and 4) z1 > 0 and z2 > 0.  
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Let n1, n2, n3 and n4 denote the numbers of pairs of grid points that are separated by (x, 

y) and belong to scenarios 1), 2), 3) and 4), respectively.  Further let L1, L2, L3 and L4 

denote the likelihood functions associated with pairs of points belonging to scenarios 1), 

2), 3) and 4) respectively.  Based on the correspondence between Z and G, the following 

expressions for L1, L2, L3 and L4 are derived (see Appendix B for the derivation): 

𝐿1 = ∏ Φ2(𝑔0,1
𝑖 , 𝑔0,2

𝑖 , 𝑟𝐺)
𝑛1
𝑖=1  (5.4a) 

𝐿2 = ∏  Φ(
𝑔0,1
𝑗
−𝑟𝐺Φ

−1(𝐹𝑍(𝑧2,𝑗))

√1−(𝑟𝐺)2
)ϕ(Φ−1 (𝐹𝑍(𝑧2,𝑗)))

𝑛2
𝑗=1  (z2,j > 0) (5.4b) 

𝐿3 = ∏ Φ(
𝑔0,2
𝑘 −𝑟𝐺Φ

−1(𝐹𝑍(𝑧1,𝑘))

√1−(𝑟𝐺)2
)ϕ(Φ−1 (𝐹𝑍(𝑧1,𝑘)))

𝑛3
𝑘=1  (z1,k > 0) (5.4c) 

𝐿4 = ∏ ϕ2 (Φ
−1 (𝐹𝑍(𝑧1,𝑠)) ,Φ

−1 (𝐹𝑍(𝑧2,𝑠)) , 𝑟𝐺)
𝑛4
𝑠=1  (z1,s, z2,s > 0) (5.4d) 

where 𝑔0,1
⋅  and 𝑔0,2

⋅  represent values of g0 at z1 and z2, respectively, with the superscript • 

indexing different pairs of z1 and z2 in scenarios 1), 2) and 3); 2(•, •, rG) and 2(•, •, rG) 

denote, respectively, the CDF and probability density function (PDF) of a standard 

bivariate Gaussian distribution with a correlation coefficient of rG (for notational brevity, 

rG(x, y) is simply written as rG); z2,j (j = 1, 2, …, n2) and z1,k (k = 1, 2, …, n3) denote 

values of nonzero corrosion depths in scenarios 2) and 3), respectively, and z1,s and z2,s (s 

= 1, 2, …, n4) denote values of nonzero corrosion depths in scenario 4).  An estimate of rG, 

𝑟𝐺̃, can be obtained by maximizing the log-likelihood function for the n (= n1 + n2 + n3 + 

n4) pairs of points, i.e.  

𝑟𝐺̃ = argmax
𝑟𝐺
{ln(𝐿1𝐿2𝐿3𝐿4)} (5.5) 

By repeating the ML method to evaluate 𝑟𝐺̃ corresponding to different values of x and y, 

a parametric function of rG(x, y) can be developed from curve fitting. 
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5.4.2 Parameter estimation 

The proposed random field corrosion model is fully defined given fc(x, y), H(z) and rG(x, 

y).  Given the corrosion data described in Section 5.3, fc(x, y) is determined by calculating 

the fraction of grid points of nonzero corrosion depths (i.e. z > zth) within a local area (e.g. 

a 10 × 10 mm square) of the scanned surface and assigning the calculated fc value to the 

grid point at the center of the area.  This calculation is repeated until fc values for all the 

grid points within the scanned surface are estimated.  Figure 5.4 depicts the estimated fc 

values for pipe segment #1.  These empirical values of fc(x, y) can be directly employed in 

the random field model.  Alternatively, a parametric function of fc(x, y) can be developed 

by fitting the empirical values (see Appendix C), and then employed in the random field 

model.  

  

Figure 5.4 Empirical fc(x, y) values for pipe segment #1 

To estimate H(z), the nonzero corrosion depths at well-separated grid points within the 

scanned surface are extracted such that the data are close to independent and identically 

distributed (iid) observations.  Figure 5.5 depicts the empirical CDFs of nonzero corrosion 

depths on the five pipe segments, corresponding to different minimum separation distances 

(x and y) between the grid points from which the data are extracted.  It is observed that 

the empirical CDF for a given pipe segment remains essentially the same for x and y 

greater than 20 mm.  Furthermore, a shifted lognormal distribution with a lower bound of 

zth is found to fit the empirical CDF well, as also depicted in Fig. 5.5. The corrosion depths 

measured from the five specimens with x and y greater than 60 mm are also shown in 

the lognormal probability paper in Fig. 5.6.  The means and coefficients of variation (COV) 
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of H(z), denoted by mH and vH respectively, are calculated based on samples of nonzero 

corrosion depths corresponding to x ≥ 60 mm and y ≥ 60 mm for the 5 pipe segments 

and are summarized in Table 5.2.  By considering H(z) as a shifted lognormal distribution 

with the lower bound of zth, Eq. (5.3) is rewritten as follows: 

𝑧 = {
0                                                                   𝑔 ≤ 𝑔0

exp (𝜂Φ−1 (
Φ(𝑔)−(1−𝑓𝑐)

𝑓𝑐
) + 𝜉) + 𝑧𝑡ℎ       𝑔 > 𝑔0    

 (5.6) 

where 𝜂 = √ln (1 + 𝑣𝐻
2 𝑚𝐻

2

(𝑚𝐻−𝑧𝑡ℎ)
2) and 𝜉 = ln(𝑚𝐻 − 𝑧𝑡ℎ) −

1

2
𝜂2.   

 
a) segment #1                                                    b) segment #2 

 
c) segment #3                                                     d) segment #4 
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e) segment #5 

Figure 5.5 Empirical CDFs at different separation distances versus the fitted CDF 

for the five pipe segments in Table 5.1 

 

a) segment #1                                                    b) segment #2 

 
c) segment #3                                                     d) segment #4 
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e) segment #5 

Figure 5.6 Lognormal probability papers for the corrosion depths measured with x 

≥ 60 mm and y ≥ 60 mm on the five pipe segments in Table 5.1 

Table 5.2 Parameters of the random field corrosion model for the five pipe segments 

Pipe segment mH (%t) vH (%) c (mm) 
#1 8.61 39.8 45.9 

#2 7.51 40.4 21.2 

#3 12.23 60.1 45.6 

#4 9.07 52.0 45.1 

#5 7.81 68.2 54.7 

 

Figure 5.7 depicts the values of 𝑟𝐺̃ obtained from the ML method described in Section 5.4.1 

for the five pipe segments.  It is observed that 𝑟𝐺̃ for a given pipe segment can be well fitted 

by the following exponential correlation model (Vanmarcke 2010): 

𝑟𝐺(Δ𝑥, Δ𝑦) = exp(−√(
∆𝑥

∆𝑐𝑥
)
2

+(
∆𝑦

∆𝑐𝑦
)
2

) (5.7) 

where cx and cy are the correlation lengths along the longitudinal and circumferential 

direction, respectively, and obtained from the curve fitting.   
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a) segment #1                           b) segment #2                            c) segment #3   

  
d) segment #4                         e) segment #5 

Figure 5.7 Values of 𝒓𝑮̃ for the five pipe segments 

It is further observed that cx and cy for a given pipe segment differ only marginally, 

generally less than 10%.  Therefore, Eq. (5.7) is simplified to be the following isotropic 

exponential model: 

𝑟𝐺(Δ) = exp (−
Δ

Δ𝑐
) (5.8) 

where Δ = √Δ𝑥2 + Δ𝑦2  and c = (cx + cy)/2.  As summarized in Table 5.2, the values of c 

for the five pipe segments range from 21.2 to 54.7 mm.  Figure 5.8 depicts Eq. (5.8) and 

𝑟𝐺̃ for the five pipe segments.   

   
a) segment #1                           b) segment #2                            c) segment #3   
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d) segment #4                        e) segment #5 

Figure 5.8 Fitting accuracy of Eq. (5.8) for the five pipe segments 

 

5.4.3 Simulated corrosion on pipe surface  

The above-described random field model is used to simulate corrosion on the pipe surface.  

For illustration, we simulate corrosions on pipe segments #1 and #2.  The parameters of 

the random field model, i.e. mH, vH, zth (= 5%t), fc and rG, are therefore set to equal the 

corresponding values for the respective pipe segment.  Note that the empirical values of 

fc(x, y) are directly employed in the simulation.  The simulated corrosion field Z has the 

same area as that of the scanned surface for each pipe segment: an area of 6400 × 408 mm 

for pipe segment #1 and an area of 8100 × 498 mm for pipe segment #2.  To improve the 

computational efficiency, a grid spacing of 3  3 mm is employed in the simulation.  The 

latent Gaussian random field G is realized using the Karhunen-Loève (KL) expansion and 

Galerkin method with staircase shape functions (Ghanem and Spanos 1991).  Because the 

size of the latent Gaussian field is much greater than its correlation length (c), the localized 

KL expansion method (Panunzio et al. 2018) is employed to reduce the computational cost 

associated with the eigen decomposition of the covariance matrix.  Figures 5.9(a) and 

5.9(c) depict single realizations of Z for pipe segments #1 and #2, respectively.  For 

comparison, the scanned surfaces (with the corrosion threshold zth = 5%t imposed) of pipe 

segments #1 and #2 are included in Figs. 5.9(b) and 5.9(d), respectively.  Figure 5.9 

indicates that the simulated corrosion field is similar to the measured field by observation.    
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a) A single realization of the random field corrosion model for segment #1   

 
b) scanned corroded surface of segment #1 
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c) A single realization of the random field corrosion model for segment #2 

 
d) scanned corroded surface of segment #2 

Figure 5.9 Comparisons between the simulated and scanned corrosion surfaces of 

pipe segments #1 and #2 

The simulated and measured corrosion fields are more quantitatively compared based on 

the corrosion anomalies and clusters contained in each field.  To make the comparison 

more meaningful, the grid size in the measured corrosion field is increased from 1  1 mm 

to 3  3 mm such that it is the same as the grid size in the simulated field.  A corrosion 

anomaly is defined as an “island” of grid points with nonzero corrosion depths, as 

illustrated in the inset of Fig. 5.9(b).  Two or more closely-spaced anomalies then form a 

cluster based on the so-called interaction rule (Fig. 5.10).  In this study, the widely used 

B31.4 interaction rule (ASME 2019) is adopted to identify corrosion clusters.  According 

to this rule, two corrosion anomalies form a cluster if both of the following two conditions 

are met: SL ≤ 1 inch and SC ≤ 6t (Fig. 5.10), where SL and SC denote, respectively, the 
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longitudinal and circumferential separation distances between the anomalies.  Table 5.3 

compares the average number of corrosion anomalies and clusters in 100 realizations of 

the simulated corrosion fields and in the measured fields for pipe segments #1 and #2.   

 

Figure 5.10 Illustration of the 1 inch  6t interaction rule 

Table 5.3 Comparison between the numbers of corrosion anomalies and clusters 

contained in the simulated and measured fields of segment #1 and #2 

 

# of anomalies # of clusters 

Measured field 
Average of 100 

simulated fields 
Measured field 

Average of 100 

simulated fields 

Segment 

#1 
2076 1511 28 29 

Segment 

#2 
1772 1405 50 75 

 

Let la, wa and za denote, respectively, the length, width and maximum depth of a corrosion 

anomaly; let lc, wc and zc denote, respectively, the length, width and maximum depth of a 

corrosion cluster.  Figure 5.11 depicts the empirical CDFs of za/la, za/wa and wa/la from the 

measured corrosion field and 100 realizations of the simulated corrosion fields for the two 

pipe segments, whereas the empirical CDFs of zc/lc, zc/wc and wc/lc from the measured and 

simulated corrosion fields for the two pipe segments are depicted in Fig. 5.12.  Note that 

za and zc in Figs. 5.11 and 5.12 are in the unit of mm (i.e. the same as la, wa, lc and wc) such 

that all the ratios are dimensionless.  As shown in Figs. 5.11(a), 5.11(b), 5.11(d) and 

5.11(e), the CDFs of za/la and za/wa from the measured fields are slightly on the right side 

of the corresponding CDFs from the simulated fields, which implies that the measured 

corrosion field contain more small corrosion pits than the simulated fields.  This may be 

attributed to that the homogenous latent Gaussian field does not fully capture the non-
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homogeneity of the actual corrosion field at small length scales.  On the other hand, Fig. 

5.12 indicates that the characteristics of the corrosion clusters in the simulated fields match 

well with those in the measured fields.  This suggests that the random field model generally 

captures the characteristics of the corrosion field at larger length scales.   

 

To further compare the measured and simulated corrosion fields, the burst capacities of the 

two pipe segments at real and simulated corrosion clusters are compared.  To this end, the 

burst capacity of the pipe segment at a given corrosion cluster is computed using the well-

known RSTRENG model (Kiefner and Vieth 1989) with the yield strength of the pipe steel 

assumed to equal 483 MPa (i.e. X70 grade steel).  The empirical CDFs of the computed 

burst capacities corresponding to the clusters on the measured field and 100 realizations of 

the simulated field for the two pipe segments are compared in Fig. 5.13.  Define the 

corrosion cluster associated with the lowest burst capacity on a pipe segment as the critical 

cluster.  The CDFs of the burst capacities of the critical clusters corresponding to the 100 

realizations of the simulated fields are depicted in Fig. 5.14 for both pipe segments, 

together with the burst capacities of the critical clusters from the measured fields.  Figures 

5.13 and 5.14 indicate that random field model is capable of generating simulated corrosion 

clusters corresponding to a range of the burst capacities based on the corrosion 

measurement data. 

  

   
a) za/la for segment #1          b) za/wa for segment #1             c) wa/la for segment #1 



103 

 

   
d) za/la for segment #2          e) za/wa for segment #2            f) wa/la for segment #2 

Figure 5.11 Geometric characteristics comparison between the real and simulated 

corrosion anomalies on pipe segments #1 and #2 

 

   
a)  zc/lc for segment #1          b) zc/wc for segment #1             c) wc/lc for segment #1 

   
d) zc/lc for segment #2          e) zc/wc for segment #2            f) wc/lc for segment #2 

Figure 5.12 Geometric characteristics comparison between the real and simulated 

corrosion clusters on the pipe segments #1 and #2 
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a) segment #1                                                       b) segment #2 

Figure 5.13 Comparison between the empirical CDFs of the burst capacities 

corresponding to the real and simulated corrosion clusters on pipe segments #1 and 

#2 

 

Figure 5.14 Empirical CDF of the burst capacities of critical corrosion clusters 

corresponding to 100 realizations of simulated corrosion fields for pipe segments #1 

and #2 

 

5.4.4 Impact of correlation length 

The sensitivity of the simulated corrosion field to the correlation length c is investigated 

in this section by considering pipe segment #1.  A parametric form of fc (see Appendix C) 

for the pipe is developed by fitting the empirical fc values and employed in the sensitivity 

analysis.  The fitted fc equation will greatly facilitate the application of the proposed 

random field model as it eliminates the need to rely on the empirical fc values to simulate 

corrosion fields (H(z) and rG(x, y) are both parameterized).  Three realizations of Z are 
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depicted in Fig. 5.15, corresponding to c = 20, 40 and 60 mm, respectively.  Note that the 

values of mH and vH employed in the simulation are the same as those given in Table 5.2 

for pipe segment #1.   As indicated in Fig. 5.15, the simulated corrosion field contain more 

individual “pits” for c = 20 mm, but more corrosion “patches” as c increases.  

 
a) c = 20 mm 

 
b) c = 40 mm 

 
c) c = 60 mm 

Figure 5.15 Impact of correlation length on the simulated corrosion field for pipe 

segment #1 
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5.5 Conclusion 

A random field model is developed in this study to simulate the corrosion depth on the 

external surface of buried oil and gas pipelines based on high-resolution corrosion 

measurements obtained from pipe segments removed from in-service pipelines. The model 

employs a latent homogeneous Gaussian random field to characterize the intermingling of 

corroded and corrosion-free areas on the pipe surface and quantify the nonzero corrosion 

depth.  Similar models have been employed to characterize the spatial distribution of 

rainfall accumulations within a geographic area.  The probability of a given point having 

nonzero corrosion depth (fc) is converted to a threshold in the latent Gaussian field.  The 

nonzero corrosion depth is obtained through a transformation between CDF of the 

corrosion depth and that of the truncated Gaussian distribution.  The ML method is 

proposed to quantify the correlation structure of the latent Gaussian field.   

 

The corrosion measurement data from five pipe segments are used to estimate parameters 

of the proposed random field model.  It is observed that the nonzero corrosion depth can 

be well fitted by a lognormal distribution with a lower bound of 5%t, mean values ranging 

from 7 to 12%t, and COV values ranging from 40 to 70%.  It is further observed that an 

isotropic exponential correlation model is adequate to characterize the correlation structure 

of the latent Gaussian field, with the correlation length ranging from 20 to 55 mm. 

Realizations of the proposed model are compared with the corresponding measured 

corrosion fields in terms of the geometric characteristics of individual corrosion anomalies 

as well as clusters, and burst capacity of the critical clusters in respective fields.  The 

comparison suggests that the proposed model is able to capture the main characteristics of 

corrosion on the external surface of naturally-corroded pipelines.  Sensitivity analysis of 

the simulated corrosion field to the correlation length of the latent Gaussian field is also 

investigated.  A parametric expression of fc as a function of the spatial coordinates is further 

developed to facilitate the application of the proposed model.    
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6 Predictive Accuracy Investigation of Burst Models for 
Corroded Pipelines Using Finite Element Analysis and 
Random Field-based Corrosion Simulation Model  

6.1 Introduction  

Corrosion is one of the major threats to the pipeline safety and integrity (Lam and Zhou 

2016).  The naturally occurring corrosions are three-dimensional metal loss features of 

complex morphologies on the external or internal (or both) surfaces of buried pipelines.  

The corrosion features can be categorized into two types, i.e. individual corrosion 

anomalies and corrosion clusters consisting of interacting individual anomalies (see Fig. 

6.1).  The so-called interacting rules (Lamontagne 2002) are used to group closely spaced 

corrosion anomalies into a corrosion cluster.  In the past few decades, various semi-

empirical models were proposed to evaluate the burst capacity of corroded pipelines, for 

example the ASME B31G (ASME 2018), B31G Modified (Kiefner and Vieth 1989), 

RSTRENG (Kiefner and Vieth 1989), CSA (CSA 2019), DNV (DNV 2017), and PCORRC 

(Leis and Stephens 1997; Stephens and Leis 2000) models.     

 

Figure 6.1 Illustration of corrosion anomaly, corrosion cluster, river-bottom path 

and river-bottom profile 

The semi-empirical models can be classified into two levels (ASME 2018), namely Level 

1 and Level 2 models.  Level 1 models employ the maximum corrosion depth (dmax) and 

length (l) (Fig. 6.1) to evaluate the burst capacity of a corrosion feature; Level 2 models 

incorporate greater details of the corrosion geometry than Level 1 models, such as the so-
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called river bottom profile employed in the CSA and RSTRENG models.  As shown in Fig. 

6.1, a river bottom path is defined by connecting the maximum corrosion depths at different 

longitudinal coordinates within a corrosion feature, and the river bottom profile is 

generated by projecting the river bottom path onto a longitudinal plane perpendicular to 

the wall thickness direction.  Zhou and Huang (2012a) investigated the predictive accuracy 

of several well-known Level 1 and 2 models by comparing model-predicted burst 

capacities with the corresponding observed values from a series of full-scale tests of pipe 

specimens containing naturally-occurring corrosion features.  They reported that Level 2 

models always achieve higher predictive accuracies than Level 1 models.  However, high 

costs of obtaining naturally corroded full-scale pipe specimens for burst tests greatly limit 

the number of specimens that can be afforded in a research program.   

 

Alternatively, the finite element analysis (FEA) has proven to be a viable tool to accurately 

evaluate the burst capacities of corroded pipelines.  Bao et al. (2018), Chouchaoui (1993), 

Cronin (2000) and Pimentel et al. (2020) validated the accuracy of high-fidelity FEA 

models to evaluate the full-scale burst tests of the specimens containing naturally occurring 

corrosion features.  Bao and Zhou (2020) carried out FEA to investigate the predictive 

accuracy of different semi-empirical models in terms of different classifications (POF 

2016) of the naturally occurring corrosion anomalies.  Mokhtari and Melchers (2019) 

proposed the 3D PCORRC model and validated the accuracy of 3D PCORRC by 

comparing the model-predicted and FEA-evaluated burst capacities of artificially 

introduced corrosion anomalies with complex corrosion morphologies.  

 

A random field-based corrosion model is described in Chapter 5 to simulate naturally-

occurring corrosions on the external surfaces of buried pipelines.  The random field model 

employs a latent homogeneous Gaussian random field and spatially varying thresholds 

associated with the latent Gaussian field to capture the intermingling nature of the corroded 

and corrosion-free areas on the external surface of a pipeline.  By combining FEA with the 

random field-based corrosion model, full-scale burst tests of pipe specimens containing 

simulated corrosion features resembling naturally-occurring corrosions, referred to as 

synthetic corrosion features, can be carried out numerically, which leads to significant cost 
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reduction and great flexibility in selecting test parameters (e.g. geometry of corrosion 

features).   

 

In this chapter, the predictive accuracy of the modified RSTRENG model (RSTRENG-M) 

as proposed in Chapter 4 is investigated based on FEA of 120 synthetic corrosion features 

generated by using the random field-based corrosion model.  For comparison, five existing 

Level 2 semi-empirical models, namely DNV, RSTRENG, CSA, Psqr (Zhang et al. 2018) 

and CPS (Cronin and Pick 2002), are also applied to the 120 corrosion features.  The rest 

of the chapter is organized as follows: Section 6.2 introduces the above mentioned six 

Level 2 burst capacity evaluation models; Section 6.3 briefly describes the parameter 

selection for the random field-based corrosion model and the identification of corrosion 

clusters from the simulated corroded surfaces, along with the FEA simulation of the 

synthetic corrosion clusters, and the predictive accuracies of the six burst capacity models 

and the impact of geometries of corrosion features on the model accuracies are discussed 

based on the FEA results in Section 6.4, followed by the conclusion in Section 6.5.  

6.2 Semi-empirical burst capacity models for corroded 
pipelines  

All the six burst capacity models considered in this study, except for the CPS model, are 

rooted in the well-known NG-18 equation (Maxey et al. 1972), which expresses the burst 

capacity of a corroded pipe in terms of the burst capacity of the pristine pipe, projected 

corrosion area on a longitudinal plane perpendicular to the wall thickness and Folias 

(bulging) factor.  Among the six models, the RSTRENG, CSA, CPS and DNV models 

calculate the burst capacities by utilizing the river-bottom profile.  Although the river-

bottom profile is a reasonable representation of the 3D corrosion profile, its two-

dimensional nature means that it may miss other important corrosion morphologies.  In this 

regard, the RSTRENG-M model described in Chapter 4 considers the profile of a corrosion 

feature along each circumferential plane.  Zhang et al. (2018) proposed to use multiple 

plausible profiles, as opposed to a single river bottom profile, to evaluate the burst capacity 

of a corrosion feature. The details of RSTRENG, RSTRENG-M and CSA models have 
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been presented in Chapters 2 and 4.  The DNV, CPS and Psqr models are briefly described 

in the following sections.  

6.2.1 DNV model 

Since all the corrosion features included in this study are corrosion clusters consisting of 

multiple interacting single corrosion anomalies, the DNV model for interacting anomalies 

(DNV 2017) is considered in this study.  In this model, each of the corrosion anomalies 

included in a cluster is simplified as a cubic metal loss (Fig. 6.2), which has the same 

length, width and maximum depth as the corresponding anomaly.  To apply the DNV 

model, one needs to project all the boxes onto a longitudinal plane to generate the projected 

profile (river-bottom profiles of the boxes enclosing the anomalies).  As depicted in Fig. 

6.2, if the projections of some corrosion anomalies overlap on the longitudinal plane, they 

should be treated as a single anomaly, with length equal to the total length and depth equal 

to the maximum depth of all the overlapped anomalies.   

 

Assume a corrosion cluster contains m corrosion anomalies.  Equations (6.1a) and (6.1b) 

are used to calculate the burst capacity of each single anomaly.  

𝑃𝑏−𝐷𝑁𝑉
𝑖 =

2𝑡𝜎𝑢

𝐷−𝑡

1−
𝑑𝑚𝑎𝑥,𝑖

𝑡

1−
𝑑𝑚𝑎𝑥,𝑖
𝑡𝑀𝑖

       𝑖 = 1,2,3, … ,𝑚 (6.1a) 

𝑀𝑖 = √1 + 0.31
𝑙𝑖
2

𝐷𝑡
                                   (6.1b) 

where 𝑃𝑏−𝐷𝑁𝑉
𝑖  is the burst capacity of corrosion anomaly i; d max,i and li are the maximum 

corrosion depth and length of the ith corrosion anomaly; D is the outside diameter of the 

pipeline; t is the pipe wall thickness, and u is the material ultimate tensile strength.  
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Figure 6.2 Illustration of the DNV model and combined corrosion anomaly 

 

Moreover, the reduction of the burst capacity is considered in the DNV model that adjacent 

corrosion anomalies should be combined into groups. For example, the anomalies 1 and 2 

in Fig. 6.2 are grouped to form a combined corrosion anomaly. The length l12 and the 

effective depth deff,12 of the combined anomaly are  

𝑙12 = 𝑙1 + 𝑙2 + 𝑠𝑙,1 (6.2) 

𝑑𝑒𝑓𝑓,12 =
𝑑𝑚𝑎𝑥,1𝑙1+𝑑𝑚𝑎𝑥,2𝑙2

𝑙12
 (6.3) 

where sl,1 is the longitudinal spacing between anomalies 1 and 2.  Then, the burst capacity 

of combined anomaly, 𝑃𝑏−𝐷𝑁𝑉
12 , is calculated by replacing li and dmax,i in Eqs. (6.1a) and 

(6.1b) with l12 and deff,12, respectively.  Similarly, the burst capacities of all the combined 

corrosion anomalies should be calculated. To this end, the burst capacity for the corrosion 

cluster predicted by DNV model, Pb-DNV, is defined as the minimum of the capacities of all 

the single and combined anomalies. 

 

Note that Eq. (6.1a) is derived from the burst capacity model for the single isolated 

corrosion anomalies (DNV 2017), in which the corrosion anomalies are treated as the cubic 

metal losses with length li and maximum depth di.  Hence, the DNV model simplifies the 
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naturally occurring corrosion features to single or combined corrosion anomalies of cubic 

shapes. 

6.2.2 CPS model  

The CPS model considers the burst capacity of a pipe segment containing a corrosion 

feature, Pb-CPS, to be bounded by the burst capacity of a plain (corrosion free) pipe, PPP, as 

the upper limit and the burst capacity of a pipe containing an axially-oriented infinitely-

long groove having the same depth as the maximum depth of the corrosion feature, PLG, as 

the lower limit.  The burst capacity of the feature is then calculated from PPP and PLG with 

an interpolation parameter g (0  g  1) depending on the pipe geometry and corrosion 

morphology.   

𝑃𝑏−𝐶𝑃𝑆 = 𝑃𝐿𝐺 + 𝑔(𝑃𝑃𝑃 − 𝑃𝐿𝐺) (6.4) 

𝑃𝑃𝑃 = (
2+√3

4√3
)
𝑛+1

4𝑡

𝐷
𝜎𝑢 (6.5) 

𝑃𝐿𝐺 =
𝜎𝑐𝑟𝑖𝑡(𝑡−𝑑𝑚𝑎𝑥)

𝑅𝑖√
3

4

𝑒𝑥𝑝 (−√
3

4
𝜀𝑐𝑟𝑖𝑡) (6.6) 

In this study, PPP is evaluated using Eq. (6.5), which is proposed by Zhu and Leis (2012) 

and has been shown to be highly accurate (Zhou and Huang 2012b).  In Eqs. (6.4)-(6.6), 

dmax is the maximum depth of a corrosion feature, and Ri =D/2-t is the pipe internal radius. 

n is the strain hardening exponent and can be estimated from an empirical equation 

proposed by Zhu and Leis (2012) as n = 0.224(u/y - 1)0.604 with y being the steel yield 

strength.  crit = ue
n and crit = n are the true stress and true strain at the point of necking 

in a tensile coupon test, where e is the base of natural logarithm. The calculation of g 

involves an iterative procedure and is described in the following.   

 

As shown in Fig. 6.3, the river bottom profile of a corrosion feature is measured at M 

locations with the measurement resolution equal to x along the longitudinal direction.  Let 

xi and xeva denote the longitudinal coordinates of the ith measurement point and an 

evaluation point, respectively. Let di and deva denote the corrosion depths of the ith 

measurement point and the evaluation point on the river bottom profile.   
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Figure 6.3 Illustration of the CPS model and the determination of the parameter g 

 

Define the parameter g for the evaluation point in Fig. 6.3 as 

𝑔 =
𝑠𝑢𝑚𝑊𝐷𝐷

𝑀𝑎𝑥 𝑊𝐷𝐷
 (6.7) 

where, 

𝑠𝑢𝑚𝑊𝐷𝐷 = ∑ {𝑠𝑒𝑐ℎ [
𝑥𝑒𝑣𝑎−𝑥𝑖

√𝐷(𝑡−𝑑𝑚𝑎𝑥)
] [(1 −

𝑑𝑖

𝑡
) − (1 −

𝑑𝑒𝑣𝑎

𝑡
)] ∆𝑥}𝑀

𝑖=1  (6.8) 

The MaxWDD corresponds to the weighted difference of a plain pipe such that di (i = 1, 2, 

…, M) in Eq. (6.8) is equal to zero.  

𝑀𝑎𝑥𝑊𝐷𝐷 = ∑ {𝑠𝑒𝑐ℎ [
𝑥𝑒𝑣𝑎−𝑥𝑖

√𝐷(𝑡−𝑑𝑚𝑎𝑥)
] [(1 −

0

𝑡
) − (1 −

𝑑𝑒𝑣𝑎

𝑡
)] ∆𝑥}𝑀

𝑖=1  (6.9) 

In Eqs. (6.8) and (6.9), sech is the hyperbolic secant function.  The burst capacity of the 

corrosion feature should be evaluated at each of the M measurement points on the river 

bottom points by inserting Eq. (6.7) into Eq. (6.4).  The burst capacity of the corrosion 

feature is defined as the minimum burst capacity of that evaluated at the M measurement 

points. 

 

6.2.3 Psqr model 

While the RSTRENG, RSTRENG-M, DNV and CPS models employ one corrosion profile, 

e.g. the river-bottom profile, the Psqr model presented in Fig. 6.4 considers multiple (e.g. 

500) plausible corrosion profiles depending on the corrosion depths and the circumferential 

distances between longitudinal neighbouring points. The burst capacity for each of the 

plausible profiles is calculated by using the effective area method (Eqs. (4.1) and (4.2) in 
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Chapter 4).  The burst capacity of the corrosion feature is defined as a low percentile value 

(i.e. 5th percentile) of the burst capacities corresponding to all the plausible profiles.  

 

Figure 6.4 Illustration of the plausible profiles and Psqr model 

 

6.3 Generation and FEA of synthetic corrosion features 

6.3.1 Generation of synthetic corrosion features 

The random field-based corrosion model presented in Chapter 5 is employed to simulate 

the external surface of a naturally corroded underground pipeline.  As shown in Eq. (5.6), 

the model has 4 parameters, i.e. the mean (mH) and coefficient of variation (COV) (vH) of 

the shifted lognormal distribution, correlation length (c) and a spatially dependent 

function (fc(x, y)), which is a function of the longitudinal and circumferential (arclength) 

coordinates (x, y) of the external pipe surface. The values of mH, vH, and c are estimated 

from five naturally corroded pipe segments removed from in-service pipelines. Table 6.1 

summarizes the ranges of these model parameters presented in Chapter 5.  The fc(x, y) is 

fitted by a two-dimensional Fourier sine series (Eq. C.1) with the coefficients cij provided 

in Table C.1.  
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Table 6.1 The ranges of the model parameters for the random field corrosion model 

presented in Chapter 5 

Parameter mH (%t) vH (%) c (mm) 

Range 7.5 - 12.5 40 - 70 20 - 55 

 

In this study, an example pipeline with the outside diameter and wall thickness assumed to 

be 508 and 6.35 mm, respectively, is considered.  Three different steel grades (i.e. X52, 

X60 and X70) are considered in the analyses with the corresponding material properties 

(i.e. yield strength, ultimate tensile strengths and Young’s modulus E) listed in Table 6.2. 

The correlation length of the latent Gaussian field for the random field corrosion model is 

selected, somewhat arbitrarily, to be 35, 55 and 25 mm for the X52 X60 and X70 steels, 

respectively. The length (L) and width (W) of the random corrosion field are selected to be 

6400 mm and 400 mm, respectively. The values of mH and vH corresponding to each 

realization are randomly selected within the corresponding ranges of mH and vH indicated 

in Table 6.1.  The random field is realized on a grid of 2  2 mm (i.e. grid sizes along both 

the longitudinal and circumferential directions are 2 mm).  A total of 120 corrosion surfaces 

are generated in this study with 40 cases for the X52 pipe, 40 cases for the X60 pipe and 

40 cases for the X70 pipe. The maximum corrosion depths (zmax) of the 120 simulated 

surfaces are between 30 and 70%t.  The widely used B31.4 (ASME 2019) (see the 

description in Chapter 5) is applied to the 120 corrosion surfaces to combine the corrosion 

anomalies in close proximity into clusters.  Figure 6.5 illustrates one of the realized random 

fields, which consists of 1052 corrosion anomalies and 51 corrosion clusters.   

 

The deepest corrosion cluster on each simulated surface is collected and employed in this 

study.  Hence, a total of 120 corrosion clusters are selected for the subsequent burst 

capacity evaluation with the ranges of the length (l), width (w) and depth summarized in 

Table 6.2.  Figure 6.6 depicts the lengths and widths of all 120 clusters.  
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Figure 6.5 A realization of the random corrosion field with mH = 8.6 %t, vH = 39.8% 

and c = 35 mm 

Table 6.2 Summary of the material and geometrical properties of the corrosion 

clusters simulated in this study 

Material property Geometric property 
Number of 

clusters 
Steel 

grade 
y (MPa) u (MPa) 

E 

(GPa) 

D 

(mm) 

t 

(mm) 
l (mm) w (mm) 

dmax 

(%t) 

X52 359 455 

207 508 6.35 

64-584 48-406 

30-70 

40 

X60 415 520 88-492 72-400 40 

X70 483 565 42-492 24-404 40 

 

 

Figure 6.6 Lengths and widths of the 120 corrosion clusters on the pipe segments 

made by X52, X60 and X70 steels 
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6.3.2 FEA of synthetic corrosion clusters 

Pipe segments containing synthetic corrosion clusters are analyzed by using the 

commercial FEA software ANSYS (version 16.1).  The configuration of the FEA model 

and the mesh generation have been described in Chapter 3.  Based on the convergence 

analysis, the element size within the corrosion clusters is selected at 2  2 mm and a coarser 

mesh of 32  32 mm is used to generate the corrosion free region.  Four layers of elements 

are placed along the wall thickness direction to avoid the shear locking.  Figure 6.7 depicts 

one of the FEA models containing the synthetic corrosion cluster as an example.  The FEA 

model consists of around 80,000 nodes and 85,000 elements.  

 

a) configuration of the FEA model 

 

b) corrosion cluster and transition elements 

Figure 6.7 Configuration of the FEA model containing a synthetic corrosion cluster 

The true stress () - true strain () relationship input in FEA is fitted by the commonly used 

power-law that  
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{
𝜎 = 𝐸𝜀         𝜎 < 𝜎𝑦
𝜎 = 𝐾𝜀𝑛        𝜎 ≥ 𝜎𝑦

 (6.10) 

where the strength coefficient 𝐾 =
𝜎𝑢𝑒

𝑛

𝑛𝑛
 and n = 0.224(u/y - 1)0.604 (Zhu and Leis 2012) 

are calculated based on the y and u values for different steel grades in Table 6.2.  By 

tracking the maximum nodal von Mises stress within the corrosion cluster, the failure 

criterion described in Chapter 3 is used to predict the burst capacity of the FEA model.  

The FEA model validation is carried out by comparing the FEA-predicted burst capacities 

of the critical corrosion clusters of the 14 pipe segments with the capacities observed in the 

full-scale burst pressure tests, which has been reported in Chapter 3.   

 

6.4 Investigation of the predictive accuracy based on FEA 
results 

Given the high accuracy of the FEA predictions, the predictive accuracies of all the six 

semi-empirical models are investigated and compared based on the FEA predicted burst 

capacities (PFEA).  Define Pb-RST, Pb-RSM, Pb-Psqr and Pb-CSA as the burst capacities predicted 

by RSTRENG, RSTRENG-M, Psqr and CSA models, respectively. The predicted burst 

capacities of the 120 corrosion clusters using the six models are depicted in Fig. 6.8, and 

the mean and COV of the FEA-to-predicted ratios are listed in Table 6.3.  In general, all 

the models are on average conservative compared to the FEA predictions.  From Fig. 6.8 

and Table 6.3, it is observed that the DNV model is the most inaccurate among the six 

Level 2 models, i.e. the mean and COV of the FEA-to-predicted ratios for DNV model are 

1.67 and 21.6%, respectively.  The DNV model is more conservative for larger and deeper 

corrosion clusters, i.e. the FEA-over-model prediction ratios increases as PFEA decreases.  

Since the evaluation equations for the DNV model (Eq. (6.1)) is derived from the burst 

capacity of a single cubic corrosion anomaly, it implies that it is inadequate to simplify 

irregularly-shaped naturally-occurring corrosion clusters to single or combined corrosion 

anomalies of cubic shapes as described in section 6.2.1.  

 

The accuracy of the CPS model is also relatively poor as reflected from the mean and COV 

values of the corresponding FEA-to-model prediction ratios given in Table 6.3.  The 
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accuracy of the CPS model for the 40 clusters on the X60 steel pipe is lower than that for 

the clusters on the X52 and X70 pipes: the COV of the FEA-to-predicted ratios of the 

clusters on X60 pipe is 7.5%, higher than the 5.2% and 3.4% of the clusters on X52 and 

X70 pipes.  It can be attributed to that the correlation length used to simulate the corrosion 

surfaces on the X60 pipe is greater than those used on the X52 and X70 pipes.  A longer 

correlation length leads to a corrosion surface containing more corrosion “patches” of 

higher morphological complexity, as opposed to the corrosion “pits” generated when 

correlation length is short.  Similarly, the improvements of RSTRENG-M and Psqr over 

the RSTRENG model in terms of the predictive accuracy is observed to be most significant 

for the clusters on the X60 pipe.  This suggests that the river-bottom profile may not be 

adequate to capture the geometric characteristics of corrosion clusters of complex 

morphology.  In this case, it is important to take into account the geometric information 

along the circumferential direction of the corrosion cluster.   

 

The mean and COV of FEA-to-CSA predicted ratio (1.18 and 4.7%) are generally similar 

to the RSTRENG model (1.15 and 4.8%).  The RSTRENG-M and Psqr models are 

observed to be the two most accurate models; RSTRENG-M is less biased (smaller mean 

value of FEA-to-model prediction ratios) and more accurate than the RSTRENG and CSA 

models for the clusters on all the three pipe materials.   

  

a) DNV                                                  b) CSA                                         
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c) CPS                                                         d) RSTRENG 

   

e) Psqr                                        f) RSTRENG-M 

Figure 6.8 Comparison between the FEA and predicted burst capacities in terms of 

different semi-empirical models based on the 120 synthetic corrosion clusters 
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Table 6.3 Summary of the basic statistics of the FEA-to-predicted ratios of corrosion 

clusters on the pipe segments made by different materials 

Model  Steel Grade 

X52 X60 X70 All 

PFEA/Pb-DNV 
Mean 1.70 1.66 1.64 1.67 

COV (%) 20.6 20.2 24.3 21.6 

PFEA/Pb-CSA 
Mean 1.18 1.16 1.20 1.18 

COV (%) 3.9 4.7 4.6 4.7 

PFEA/Pb-CPS 
Mean 1.14 1.13 1.13 1.13 

COV (%) 5.2 7.5 3.4 5.6 

PFEA/Pb-RST 
Mean 1.16 1.16 1.14 1.15 

COV (%) 4.4 6.1 3.3 4.8 

PFEA/Pb-Psqr 
Mean 1.09 1.09 1.08 1.09 

COV (%) 3.3 3.7 3.6 3.5 

PFEA/Pb-RSM 
Mean 1.12 1.11 1.10 1.11 

COV (%) 3.7 4.5 3.2 3.8 

 

The impact of the length l and maximum depth dmax of the corrosion clusters on the 

predictive accuracies of the six burst capacity models are investigated as well.  Figure 6.9 

depicts the mean and COV of the FEA-to-predicted burst capacity ratios for different 

corrosion depth ranges with the bracketed numbers denoting the number of corrosion 

clusters used for the calculations. Except for the CPS and DNV models, all the models tend 

to be less conservative when the maximum corrosion depth increases from 30 to 70%t, 

while CPS and DNV model are more conservative when they are applied to deeper 

corrosion clusters.  The predictions by all the models have greater variability, i.e. associated 

with higher COV values of the FEA-to-model prediction ratios, for corrosion clusters with 

larger dmax.  The CPS model is the most accurate for the relatively shallow corrosion 

clusters (i.e. dmax < 40%t), which may be attributed to the high accuracy of the burst 

capacity equation for the pristine pipe (Eq.(6.5)) such that the CPS model performs the best 

for shallow corrosion clusters as the impact of the corrosion on the burst capacity is 

relatively small. The accuracy of the CPS model decreases noticeably when the corrosion 

cluster becomes deeper.  

 

The predictive accuracy of the DNV model deteriorates markedly when applied to the 

deeper corrosion anomalies, e.g. the mean (COV) of FEA-to-model prediction ratios for 
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the DNV model increases from 1.3 (13.5%) to 2.1 (23.6%) as the maximum corrosion 

depth increases from the range of 30 - 40%t to the range of 60 - 70%t.  The RSTRENG-M 

and Psqr models are more accurate than RSTRENG for the deep corrosion clusters as can 

be clearly observed from Fig. 6.9.    

 

a) mean                                                     b) COV 

Figure 6.9 Impact of the maximum depths of corrosion clusters on the model 

accuracy 

The effect of the length of the corrosion cluster on the predictive accuracy of the models is 

presented in Fig. 6.10. The DNV models results in highly conservative predictions for long 

corrosion clusters (e.g. the average FEA-to-model prediction ratio is higher than 1.52 when 

the corrosion cluster is longer than 200 mm).  The RSTRENG model tends to be more 

conservative as the length of the cluster increases, while the predictions of CPS and Psqr 

models are shown to be less conservative as the length increases.  The mean value of FEA-

to-RSTRENG-M prediction ratios is more or less the same regardless of the corrosion 

cluster length.  No clear trend is observed between the corrosion cluster length and COV 

values for all the models.  On the other hand, the predictive accuracies (mean and COV) of 

the six models are independent of the corrosion length for lengths greater than 300 mm.  
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a) mean                                       b) COV 

Figure 6.10 Impact of the lengths of corrosion clusters on the model accuracy 

 

6.5 Conclusions 

In this chapter, the external corrosion surfaces of buried pipelines are simulated using a 

random field-based corrosion model.  The corrosion anomalies on simulated corrosion 

surfaces are combined into 120 synthetic corrosion clusters, and the burst capacities of the 

corrosion clusters are evaluated by using six Level 2 burst capacities models, as well as 

three-dimensional elasto-plastic FEA.  The six burst capacity models are the DNV, CSA, 

CPS, RSTRENG, RSTRENG-M and Psqr models.   

 

With the FEA-predicted burst capacities considered as the benchmark, the accuracies of 

the six semi-empirical burst capacity models are evaluated based on the mean and COV of 

the FEA-to-model predicted burst capacity ratios.  It is observed that the predictive 

accuracy of the DNV model is the poorest among the six models.  The RSTRENG-M and 

Psqr models are the most accurate in that the mean of FEA-to-model prediction ratios equal 

1.11 and 1.09, respectively, with the corresponding COV equal to 3.8 and 3.5%, 

respectively.  

 

The impact of maximum corrosion depths and lengths of corrosion clusters on the model 

accuracies is also investigated. The results suggest that the RSTRENG, RSTRENG-M, 

CSA and Psqr models tend to be less conservative with an increasing maximum corrosion 
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depth, whereas the CPS and DNV models are more conservative for deeper corrosion 

clusters.  The predictive accuracies of all the models decrease (higher COV values) when 

they are applied to the deeper corrosion clusters.  There is no clear dependence of the COVs 

of FEA-to-predicted ratios on the cluster lengths for all the six models based on 120 FEA 

results of synthetical corrosion clusters. The mean and COV values tend to be uncorrelated 

with the corrosion length when the corrosion clusters are longer than 300 mm.  
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7 Summary, Conclusions and Recommendations for 
Future Study 

7.1 General 

This research employs the finite element analysis (FEA) and random field analysis to 

address five issues regarding the fitness-for-service (FFS) assessment of naturally corroded 

pipelines.  The conclusions drawn from this thesis and recommendations for the future 

study are given as follows.  

7.2 Influence of depth threshold and interaction rule on the 
burst capacity evaluation of naturally corroded pipelines by 
using FEA and RSTRENG model  

 

In Chapter 2, both the RSTRENG model and FEA are employed to evaluate the burst 

capacities of corroded pipelines.  The impact of the depth threshold on the predicted burst 

capacity is investigated by FEA of modified corrosion surfaces of 14 naturally corroded 

pipe segments that corrosions shallower than different threshold values are removed. The 

results indicate that applying a corrosion threshold depth of 10% wall thickness to corroded 

pipe surface causes an insignificant increase of the predicted burst capacity.  Hence, 10%t 

is recommended to identify corrosion anomalies.  

 

The effectiveness of the DNV, 6WT, 3WT, B31.4 and CW interaction rules are 

investigated by comparing the RSTRENG-predicted and FEA-predicted burst capacities of 

54 groups of critical corrosion clusters to that of 54 significant corrosion areas on 14 pipe 

specimens.  The burst capacities of the critical corrosion clusters generated by the CW, 

B31.4, and 3WT rules can be 5% higher than the burst capacity of the corresponding 

corrosion area, while the burst capacities of the critical clusters based on the DNV and 

6WT rules are always within 3% difference compared to the capacities of the 

corresponding corrosion surface.  The large interacting limits in DNV rule result in large-

sized corrosion clusters such that the generated corrosion clusters are time-consuming to 

analyze.  The 6WT corrosion clusters are smaller than the DNV clusters in size, but they 

are always observed to cover the critical corrosion areas and having the similar burst 
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capacities to the DNV corrosion clusters.  Thus, the 6WT rule is considered as the optimal 

to generate the corrosion cluster in the practical FFS assessment.  

 

7.3 Impact of corrosion anomaly class on the predictive 
accuracy of burst capacity models for corroded pipelines 

 

In Chapter 3, the predictive accuracies of B31G, B31G-M, PCORRC, PCORRC-M, 

Shell92, CSA and RSTRENG models are investigated in terms of the classification of 

corrosion anomalies.  A total of 897 corrosion anomalies are collected from the external 

surfaces of 16 pipe segments removed from in-service pipelines.  Based on the POF 

classification rule of corrosion anomalies, the 897 corrosion anomalies consist of 46 pin 

holes, 39 circumferential slotting, 16 circumferential grooving, 52 axial slotting, 42 axial 

grooving, 601 pitting and 101 general corrosion anomalies.  The burst capacities of all the 

corrosion anomalies are predicted by using the 3D elasto-plastic FEA, which are treated as 

the benchmark to compare the predictive accuracies of the seven semi-empirical models 

based on the mean and COV of FEA-to-model predicted ratio of each model.   

 

All the seven models have the similar predictive accuracies when they are applied to the 

non-general corrosion anomalies, while the models requiring the detailed corrosion profiles 

lead to more accurate predictions compared to the ones calculating the burst capacity based 

on the simple inputs for the general corrosion anomalies.  The PCORRC model is 

recommended for non-general classes of anomalies considering its least unbiasedness, and 

the CSA model is recommended for anomalies in the general class due mainly to its 

smallest COV of FEA-to-model predicted ratios among all the seven models.  

 

7.4 A modified RSTRENG model to predict the burst 
capacity for corroded pipelines 

 

Chapter 4 presents a RSTRENG-M model to evaluate the burst capacity of corroded 

pipelines.  As opposed to the river bottom profile employed in the RSTRENG model, the 
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RSTRENG-M model considers riverbed profile connecting the representative corrosion 

depths on a series of circumferential profiles.  The representative depth at a given 

circumferential profile of the corrosion feature is the average of the maximum and average 

depths of the portion of the profile deeper than 10% of the pipe wall thickness.  Given the 

riverbed profile, the effective area method as employed in RSTRENG is applied to evaluate 

the burst capacity of the corrosion feature.  Based on 60 full scale burst test results of 

corroded pipe segments containing both the naturally- occurring and artificially induced 

corrosion features collected from 3 publications, the RSTRENG-M model is more accurate 

than the RSTRENG model and has the similar performance to the Psqr model.  Moreover, 

the RSTRENG-M model is computationally more efficient than the Psqr model.  

 

The RSTRENG-M model also leads to the moderately conservative estimates and lower 

variability when applied to the simulated ILI reported corrosion features, in which the 

irregular-shaped corrosion anomalies are replaced by the semi-ellipsoidal metal losses 

having the same length, width and maximum corrosion depth to the naturally occurring 

corrosion anomalies.  A simple empirical equation between the maximum corrosion depth 

and the representative corrosion depth on the circumferential profile is fitted based on 

30,763 circumferential profiles generated from a total of 667 corrosion clusters on 16 

naturally corroded pipe specimens to facilitate the application of the RSTRENG-M model 

in the context of the ILI reported corrosion profiles.  

 

7.5 A random field model to simulate the naturally corroded 
external surface of buried pipelines 

 

Chapter 5 proposes a random field model to simulate the external surface of naturally 

corroded buried pipelines.  A spatially correlated latent Gaussian random field and a 

coordinate dependent function are employed to capture the intermittent characteristics of 

the corroded and non-corroded areas on the corrosion surfaces.  The coordinate dependent 

function is then converted to a threshold function of the latent Gaussian field.  The nonzero 

corrosion depth is obtained through a transformation between marginal CDF of the 
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corrosion depth and that of the truncated Gaussian distribution, and the values of the latent 

field less than the threshold function are set to zero.  The marginal distribution of the 

nonzero corrosion depth and the correlation structures of the latent Gaussian field are 

determined from five naturally corroded pipe segments measured by the high-resolution 

laser scanners.  A shifted lognormal distribution with a lower bound of 5%t has been 

observed to fit the distribution of the nonzero corrosion depths on the external surfaces 

very well.  It is further observed that an isotropic exponential correlation model is adequate 

to characterize the correlation structure of the latent Gaussian field, with the correlation 

length ranging from 20 to 55 mm.  The realized random field is capable of capturing the 

geometric and mechanical properties of the corrosion anomalies and clusters on the 

simulated surface.  

 

Combining with FEA, this random field-based corrosion model can greatly facilitate the 

burst capacity evaluation of naturally corrosion features and reduce the cost for obtaining 

the naturally corroded pipe segments.   

 

7.6 Predictive accuracy investigation of burst models for 
corroded pipelines based on FEA of synthetic corrosion 
features generated by the random field-based corrosion 
model  

 

In Chapter 6, the burst capacities of 120 synthetical corrosion features generated by the 

random field-based corrosion model are evaluated by FEA. The maximum corrosion 

depths of the 120 synthetical corrosion features are between 30 to 70%t with lengths 

between 42 to 584 mm.  Considering the high accuracy of the FEA predictions, the 

predictive accuracies of DNV, CSA, CPS, RSTRENG, RSTRENG-M and Psqr models are 

compared based on the mean and COV of the FEA-to-model predicted burst capacity 

ratios.    

 

The DNV model is the most inaccurate among the six models that the predictive accuracy 

deteriorates significantly for deep corrosion features. The mean of FEA-to-DNV predicted 
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ratio increases from 1.3 to 2.1, and COV increases from 13.5 to 23.6%, as the maximum 

depth range of corrosion features increases from 30 - 40%t to 60 - 70%t.  

 

The RSTRENG-M and Psqr models are the most accurate in that the means of FEA-to-

model prediction ratios equal 1.11 and 1.09, respectively, with the corresponding COVs 

equal to 3.8 and 3.5%, respectively.  Both the RSTRENG-M and Psqr models tend to be 

slightly less accurate for the corrosion features of greater maximum corrosion depths. The 

CPS model is the most accurate for the shallow corrosion features, while the prediction 

accuracy decreases for deep corrosion features.  

 

The impact of corrosion feature lengths on the predictive accuracies is also investigated 

based on the 120 synthetic corrosion features.  For long corrosion features, CPS and Psqr 

are less conservative, while DNV, RSTRENG and CSA are shown to be more conservative.  

No dependence of the COV of FEA-to-model prediction ratios on the corrosion feature 

lengths is observed for all the six models.  

7.7 Research significance and novelty  

Corrosion is a main threat to the integrity of underground transmission pipelines.  To deal 

with the pipeline corrosion, pipeline operators usually carry out the FFS assessment to 

demonstrate the integrity of pipelines for the continued service.  The FFS assessment 

generally involves the corrosion anomaly identification, corrosion cluster generation and 

the burst capacity prediction.  The existing researches investigate the FFS assessment by 

using the pipe segments containing the artificially induced corrosion features. However, 

the geometric differences between the artificial corrosion features and the naturally 

occurring corrosion features indicate that the artificial corrosion features are not suitable 

for the investigation of the FFS assessment of corroded pipelines.  This thesis helps to 

improve the FFS assessment by employing the FEA and random field-based corrosion 

simulation model of naturally corroded pipe segments. The findings of this thesis will 

directly benefit the pipeline industry with the corrosion anomaly identification, corrosion 

cluster generation and the improvement of the predictive accuracy of the burst capacity of 

corroded pipelines.   The random field-based corrosion simulation model can be combined 



135 

 

with FEA to generate and analyze the corrosion features in a large quantity to facilitate the 

proposal and validation of the new semi-empirical models.   

7.8 Recommendations for future study 

 

The recommendations for future study are summarized as follows: 

 

1. The prediction accuracy of FEA should be improved if possible.  It is observed from the 

results in this study, as well as some published papers, that the failure criterion might be 

depending on the pipeline grade steel and the detailed corrosion geometry.  It will be a 

good topic if the FEA simulated burst processes can be compared to a vast amount of full 

scale burst tests of pipe segments made by different grade steels not only on the burst 

pressure, but also the strain (e.g. Green-Lagrangian strain) and displacement field. 

 

2. It is worthwhile to employ a new random field-based corrosion model to consider the 

non-homogeneity of the corroded surface.  The correlation structure of the small pits on 

the scanned surface is supposed to be different from the large sized general corrosions.  

Besides, the new model may focus only on the critical corrosion clusters, instead of the 

entire scan surface to improve the simulation efficiency.   

 

3.  The RSTRENG-M model has proven to be more accurate than the RSTRENG based on 

a large amount of full scale burst tests and FEA of pipe segments with the detailed corrosion 

profiles, whereas the application of RSTRENG-M to the ILI data is only investigated with 

14 simulated ILI clusters.  The RSTRENG-M model should be validated by more realistic 

ILI data.  

 

4. The efficiency of the FEA model generation and calculation is still very low when the 

corrosion clusters are large in size.  The computational cost can be reduced by sub modeling 

technique that the FEA model of the full-sized naturally corroded pipe segment can be 

divided into two sub models for simultaneous simulation.  One sub model simulates the 

full-sized defect free pipe with coarse mesh density and provides the boundary conditions 
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to the other sub model.  The second sub model only simulates the corrosion cluster with 

high mesh density.    
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Appendices 

Appendix A Corroded areas and critical corrosion clusters on specimens #2 - #14  

 
a) Specimen 16-2 

 
b) specimen 16-3 

 
c) specimen 16-5 
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d) specimen 16-6 

 
e) specimen 16-7 

 
f) specimen 24-1 
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g) specimen 24-2 

 
h) specimen 30-1 

 
i) specimen 30-2 

 
j) specimen 30-3 
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k) specimen 30-4 

 
l) specimen 30-5 

 

 
m) specimen 30-6 

Figure A.1 Corroded areas on specimens #2 - #14 in Table 2.2 and critical corrosion 

clusters identified based on different interaction rules 
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Appendix B Derivation of Eq. (5.4) 

If a pair of grid points belong to scenario 1), i.e. z1 = z2 = 0, its likelihood is the probability 

of G1 ≤ g0,1 and G2 ≤ g0,2, where G1 and G2 are the standard Gaussian variates with a 

correlation coefficient of rG.  It follows that the likelihood of z1 = z2 = 0 is,  

Φ2(𝑔0,1, 𝑔0,2, 𝑟𝐺) (B.1) 

 

If a pair of grid points belong to scenario 2), i.e. z1 = 0 and z2 > 0, its likelihood is equivalent 

to that of G1 ≤ g0,1 and G2 = g2, where g2 = Φ−1(𝐹𝑍(𝑧2)), which can be expressed using 

the conditional probability as, 

Φ(
𝑔0,1−𝑟𝐺𝑔2

√1−(𝑟𝐺)2
)ϕ(𝑔2) = Φ(

𝑔0,1−𝑟𝐺Φ
−1(𝐹𝑍(𝑧2))

√1−(𝑟𝐺)2
)ϕ(Φ−1(𝐹𝑍(𝑧2))) (B.2) 

 

The likelihood for scenario 3), i.e. z1 > 0 and z2 = 0, can be similarly derived as  

Φ(
𝑔0,2−𝑟𝐺𝑔1

√1−(𝑟𝐺)2
)ϕ(𝑔1) = Φ(

𝑔0,2−𝑟𝐺Φ
−1(𝐹𝑍(𝑧1))

√1−(𝑟𝐺)2
)ϕ(Φ−1(𝐹𝑍(𝑧1))) (B.3) 

where g1 = Φ−1(𝐹𝑍(𝑧1)).  Finally, if a pair of grid points belong to scenario 4), i.e. z1 > 0 

and z2 > 0, its likelihood is equivalent to that of G1 = g1 and G2 = g2, which is given by  

ϕ2(Φ
−1(𝐹𝑍(𝑧1)),Φ

−1(𝐹𝑍(𝑧2)), 𝑟𝐺) (B.4) 

By considering n1, n2, n3 and n4 pair of points in scenarios 1), 2), 3) and 4) respectively, 

their corresponding likelihood functions, i.e. Eqs. 5.4(a) – 5.4(d), can be readily obtained 

from Eqs. (B.1) - (B.4), respectively.  

 

Appendix C Parametric expression of fc for pipe segment #1 

The following equation is found to fit the empirical value of fc for pipe segment #1 

reasonably well:  

𝑓𝑐(𝑥, 𝑦) = max {0, ∑ ∑ 𝑐𝑖𝑗𝑠𝑖𝑛 (
𝑖𝜋𝑥

𝐿
)10

𝑗=1 𝑠𝑖𝑛 (
𝑗𝜋𝑦

𝑊
)10

𝑖=1 }        (C.1) 

where cij (i, j = 1, 2, …, 10) are given in Table C.1.  The values of fc obtained from Eq. 

(C.1) for pipe segment #1 are shown in Fig. C.1.   
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Table C.1 Values of cij in Eq. (C.1) 

cij ( 

10-3) 

j 

i 

 1 2 3 4 5 6 7 8 9 10 

1 505.8 17.8 97.2 -84.9 84.3 99.4 43.5 86.4 -70.1 -90.5 

2 -71.2 39.7 -108.8 4.1 -70.1 17.0 -23.9 -30.0 71.0 -45.9 

3 -34.0 -44.1 75.9 11.6 27.7 -20.9 -13.9 42.7 -46.0 -18.5 

4 -20.2 6.4 30.5 16.8 -34.1 9.9 -3.4 14.6 28.8 -41.7 

5 6.8 -20.9 28.1 -18.5 19.9 -4.9 6.8 6.8 -14.3 -22.2 

6 21.8 12.0 -17.5 13.2 -2.1 14.0 7.4 -5.3 21.1 -0.2 

7 29.8 5.5 10.1 -15.5 -0.6 -1.4 -0.7 3.8 -9.2 -5.5 

8 18.2 9.3 -11.6 6.0 -8.8 10.9 -2.7 11.6 12.5 -20.8 

9 18.6 -7.9 9.5 -18.1 1.8 -6.7 7.1 6.1 -16.9 0.2 

10 -24.4 11.3 -5.4 9.0 11.5 15.2 -0.8 1.4 9.6 0.5 

 

 

Figure C.1 Values of fc for pipe segment #1 calculated using Eq. (C.1) 
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