
Western University
Scholarship@Western

Computer Science Publications Computer Science Department

9-2004

Policies, Rules and Their Engines: What do They
Mean for SLAs?
Mark Perry
University of Western Ontario, mperry@uwo.ca

Michael Bauer
University of Western Ontario, bauer@csd.uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/csdpub

Part of the Computer Sciences Commons

Citation of this paper:
Perry, Mark and Bauer, Michael, "Policies, Rules and Their Engines: What do They Mean for SLAs?" (2004). Computer Science
Publications. 5.
https://ir.lib.uwo.ca/csdpub/5

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csd?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub/5?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages

 M.Gh. Negoita et al. (Eds.): KES 2004, LNAI 3213, pp. 1164–1170, 2004.
 © Springer-Verlag Berlin Heidelberg 2004

Mark Perry and Michael Bauer

Department of Computer Science, University of Western Ontario
London, Ontario N6A 5K7 Canada
{markp, bauer}@csd.uwo.ca

Abstract. In our model for autonomic management of service level agreements
(SLA), the roles played by policy and rules must be clearly differentiated.
Although policy is typically an ideal we wish to achieve through the
implementation of rules, the use of the terms policy and rule are often treated
similarly and that consequently policy-engine and rule-engine are often used
synonymously. It is our position that in the management of SLAs these terms
have specific meanings. The definitions and models embodied are illustrated.

1 Introduction

The literature is littered with evidence for the need to make use of policies to manage
various aspects of systems and networks [1,4,5,6]. Such management software
inevitably requires the means to capture and represent policies and often makes use of
rule based engines to determine actions to take. More recently, such management
systems have begun to incorporate policy engines [1]. In much of this work there is
significant overlap between “policy” and “rule”, though “rule” is often taken to be the
realization or implementation of a policy as embodied in a rule engine. In other work,
there is more distinction, such as in [4,7] where a policy is information associated
with the behaviour of a system. The range of use of these terms, the variety of
contexts (e.g. network, system, application) and variety of approaches have,
consequently, led to the terms “rule engine” and “policy engine” to be taken to mean
similar modules. Although little distinction has been made between policy and rule
driven systems within management frameworks, drawing a line between these two
concepts is required to clarify the approaches and models that we can use in systems
to manage SLAs. There is also confusion between rule- and policy-engines and the
techniques used to manage their implementation. Based on our initial work on the use
of policies in the automation of SLA management, it has become necessary to clearly
identify distinctions between these terms. This lack of clear distinction represents a
stumbling block for autonomic systems that must adjust and react to circumstances in
order to adhere to SLAs. These intelligent systems will need to eventually incorporate
rule- and policy-engines and make appropriate use of them in management. In this
paper we define rules, policies, rule- and policy-engines specifically for the SLA
environment and illustrate these via an example.

Policies, Rules and Their Engines:
What do They Mean for SLAs?

1165

2 Policy or Rule

A policy is the highest level of abstraction of implementation of an ideal. A policy
defines or specifies a desired state – one that should be maintained or one that should
be achieved. With the SLA it is desirable to stipulate the typical levels of service, i.e.,
the desired levels of service during certain time periods (these may be seen as the
policies for service levels), with clearly defined minimum service levels. Absolute
minimums may be interpreted as rules with a condition and a subsequent (possible)
action in specific instances, though at this level of implementation the flexibility of
the overall policy is not in question.

A general analogy may help clarify the distinction between the policy and the rule.
We may have a government policy to reduce personal borrowing, but cannot have a
simple rule “reduce personal borrowing” as this is not sufficiently prescriptive.
However, we can have a bundle of rules implemented that will bring about the policy,
such as a rule on maximum interest rates for borrowing, a rule on maximum debt
level an individual may incur, a rule that limits lending and other rules that can help
realize the policy. In this economic situation, people are not stopped from borrowing
under the policy, they must simply operate with rules in place that make the option
less attractive. The rule is something that must be complied with in a particular
circumstance. Failing to abide by the rule will mean that a sanction is applied (such as
fine or unenforceability of a non-compliant loan). The policy is at a higher level of
abstraction and rules are used to help achieve this objective.

Returning to SLA framework, the question arises as to where we are using rules
and policies for autonomic implementation. The policies specify broad sets of
requirements or “service levels”, whereas the rules specify to the management system
how such requirements can be achieved and how “violations” can be avoided are
detected and handled. There are also various levels of policy from the highest level to
lower level policies that approach our definition of a rule. How they are described
depends on where we are sitting…. from the boardroom perspective there may be the
decision that the service ‘policy’ is to give customers very flexible licensing options –
such as ability to choose whether access to software is for a set amount of time or set
number of executions.

Thus we can say, at a minimum, that for a SLA the term ‘rule’ means a
circumstance where there is a condition test with an action specified, typically
illustrated by the ‘If… then…’ construct. The policy, on the other hand, is at the
higher level of abstraction. The term ‘policy’ is a set of conditions on one or more
states associated with a particular system, with, perhaps, associated elements defining
what constitutes “the system”, how those states are determined and how elements of
the conditions are measured. We illustrate this with an example, presented in Figure
1, from an SLA (necessarily abbreviated) that defines Internet network access.

This agreement, based on a service provider’s published SLA, illustrates policies in
the more abstract sense. 1. Several policies are embedded within this single SLA, and
within the parts of the SLA – ones dealing with availability, network latency, packet
delivery and even reporting. 2. In SLA.1, availability is determined based on the system

Policies, Rules and Their Engines: What do They Mean for SLAs?

 M. Perry and M. Bauer 1166

Fig. 1. Example Service Level Agreement

defined in a separate service agreement (not included here). This will clearly differ
between clients and so there will be a different, though similar, policy associated with
each client. 3. Consequences of not meeting SLA.1 are also specified. 4. Certain
measurements are defined, e.g. SLA.2, where the round-trip time for a transmission is
specified between specific points. This includes specification of bounds. 5. The level
of expected packet delivery is defined in SLA.4. 6. The notification policy embodied
in SLA.3 provides for notification of service outages, both scheduled and unexpected.
The example SLA outlines the type of basic service that we can expect from this
network service provider, as well as measurement metrics and some exception
handling.

Interestingly, the policies that can be readily identified within this SLA may also
create derivative policies that would be internal to the Internet provider in terms of
how it would manage its network to ensure that it meets the SLA. This could include

Internet Service Level Agreement for AAA Networks
SLA.1
The Availability Guarantee declares that the AAA Network (as defined in the

applicable service agreement) will be available 100% of the time. If AAA fails to
meet this Guarantee during any given calendar month, the Customer's account will
be credited…

SLA.2
The Latency Guarantee averages round-trip transmissions of 50 milliseconds or

less between designated inter-regional transit backbone routers ("Primary
Routers") in the continental U.S. The transatlantic Latency Guarantee averages
round-trip transmissions of 90 milliseconds or less between a Primary Router in
the Toronto metropolitan area and a Primary Router in the London metropolitan
area. Latency figures are achieved by averaging sample measurements taken
during a calendar month between Primary Routers.

SLA.3
There are two types of reporting guarantees, a Network Outage Notification

Guarantee and a Scheduled Maintenance Notification Guarantee. The Network
Outage Guarantee provides Customer notification within 10 minutes after it is
determined that the service is unavailable. The standard procedure is to ping the
Customer's router every five minutes. If the router does not respond after two
consecutive five-minute ping cycles, the service will be deemed unavailable and
the Customer's point of contact will be notified by telephone, e-mail, fax, or
pager.

SLA.4
The North American Network Packet Delivery Guarantee is packet delivery of

99.5% or greater between designated Primary Routers in North America,
measured by averaging sample measurements taken during a calendar month.

1167

policies that deal with increased latency over shorter service periods, e.g. a few
minutes. This kind of policy might be considered pre-emptive in that being able to
detect limited periods of increased latency and addressing any consequent problems,
might avoid violation of the SLA. Note that specific rules for each of the policies
must be defined.

3 Implications for SLA Management

Our interest is primarily in being able to manage SLAs on-line, supporting an on
demand infrastructure. The above example illustrates an SLA as, basically, a
monolithic agreement, the exception being the definition of the client system. It is
certainly conceivable, and even desirable, to enable clients to specify elements of an
SLA to their own situation. Using the above network service provider as an example,
one could consider clients choosing a “customized” SLA which has higher latency
guarantees, perhaps at reduced service costs, specifying different routers for
measurement, etc.

The aim is to allow customers to choose the type of licensing (SLA) scheme that
they want and, consequently, the policies that they are concerned about. We see the
need for a policy engine to facilitate such choices on line. So how do we design a
policy engine to execute our flexible SLA, to allow customers wide flexibility in their
choice of license arrangement with the service provider? The ‘customer’ can be an in-
house client or subscriber to a service, as illustrated by the above SLA, or could be an
organization making use of a computation or storage grid providing additional, on
demand, resources [2,3]. The latter, of course, is interesting in that the “on demand”
nature means the use of resources may not be anticipated and lengthy negotiations to
establish SLAs may not be possible.

When it comes to the realization of a client’s SLA, after the choices have been
made, it is likely that we shall have a number of policies derived from the SLA and
likely other policies as derivatives, such as internal policies; let us call these policies
operational policies since these will likely be policies created to ensure operation of
the environment and, most importantly, avoid violation of the SLA. We see the
polices derived from the SLA as being the purview of the policy engine. Some
operational policies may also be derived from the SLA, but are likely determined by
the provider. Given our definitions earlier, we would expect to have rules in place to
concretise the implementation. We envisage the policy engine assembling the bundles
of rules that we need to implement a particular policy, both for SLA policies and
operational policies. Hence, we need both policies and rules in our SLA framework,
and if we have on demand and autonomic computing services this implies that we
need both policy engines and rule engines.

Rules that fall within the various policy definitions can be constructed to facilitate
aims of the policy. A simple example would be the Network Outage Policy in SLA.3
of the AAA Network example. Here, the policy is to inform customers when the
network is down. (if the network is out for more than 10 minutes, then the Customer
should be notified). A rule associated with this policy might be:

Policies, Rules and Their Engines: What do They Mean for SLAs?

 M. Perry and M. Bauer 1168

Rule: OutageDetect

Customer: IP.IP.IP.IP

Count: Integer

1: ping Customer

2: if no_ping then Count +1; else Count=0

3: wait 5 minutes

4: if Count>1 phone customer

So for the autonomic SLA scenario, we have the policy engine enabling the kind

of policy this particular user is able to engage. It is also providing the means for the
service provider to define the kinds of policies that they are willing to operate the
service under and then facilitate the implementation of the rules that will execute
within the framework of that policy. This clearly is more flexible than a simple rule
engine, (or simple decision tree). This relationship is illustrated in Figure 2.

Rule
Engine

Policy
Engine

Client

Operational
Policies

SLA

Rules

Fig. 2. SLA management

We see a parameterized SLA, perhaps in an on demand scenario for resources or

services, being customized by a client to meet their particular needs and timeframe.
This customised SLA is processed by a policy engine that, with additional operational
policies defined by the provider, generates rules to be used in the management of the
underlying system.

1169

This approach raises several interesting questions. Consider the situation in which
multiple users are involved with a single service provider in an on demand facility
(becoming an increasingly common occurrence), then the policies selected by the
individual users, while consistent on an individual basis, may in fact create
conflicting or anomalous situations for the provider. For example, suppose there is 10
Mbits of bandwidth available and 2 separate users opt for SLAs that guarantee at least
8Mbs – What does the service provider do? Should the policy engine dynamically
adapt the available policies as a result of other user choice? Does this mean that in the
dynamic creation of SLAs the policy engine must include some kind of “admission
policy” or be able to estimate anticipated resource needs? We are just beginning to
explore these questions.

A provider offering software as part of its service is another example that
illustrates levels of abstraction of policy within an autonomic SLA model. The
greatest level of abstraction would be a management policy: “give users great
freedom in their contract (SLA) choice for flexible software licensing”. At a lower
level we have policies that allow customers to choose the type of licensing for their
SLA. This is particularly useful for service providers that supply software
components on demand.

By adopting a policy driven licensing model we can allow for the supplier to offer
a licensing model that fits the needs of the customer [9], and the customer could
choose to have time-based licensing, concurrent, capacity licensing or any of the
common licensing types. These different types of policy that we are going to allow
within our overarching policy of ‘flexibility’ can be regarded as policies rather than
rules, as they serve as the guide for the various rules that will be implemented within
each choice. For example, an SLA that uses a time-based licensing option allows
users to contract for services for a set period of time. The details of the time-based
licensing can be best executed by rules, of which there can be many. However, two
simple rules illustrate the concept, the first rule being a calendar based license
agreement, the second being run time based:

Rule: DateBasedTerminate

CurrentDate: Date

ExpiryDate: Date

 1: if CurrentDate>ExpiryDate then Terminate

Rule: Per iodBasedTerminate

TimeGrant ed: Time

TimeConsu me: Time

 1: if TimeConsumed>TimeGranted then Terminate

Typically for each type of licensing policy managed within the policy engine

there will be bundles of rules that can be executed, depending on the nature of the
licensing type chosen within the SLA.

Policies, Rules and Their Engines: What do They Mean for SLAs?

 M. Perry and M. Bauer 1170

4 Summary

In looking at SLA management for on demand services, we see a policy engine as
key in enabling the formation of client-specific policies as a result of choices a client
makes in SLA definition. The policy engine is also key in mapping these, as
operational policies set by the provider, to collections of rules that can be used to
ensure that conditions associated with SLAs are met. As organizations and users
come to rely more and more on digital interactions for services, they will come to
expect systems to behave within certain limits, that is, adhere to SLAs. In turn, these
systems will need to behave intelligently to meet user expectations as captured in
policies, their own, those of providers and others. Policy engines and associated sets
rules will be part of that intelligent infrastructure.

Within the SLA environment the potential role for policies and their management
engines is much deeper. The policy engine in the autonomic, on demand, SLA is even
greater than meeting business goals and objectives [10], it becomes the key to
achieving the aims of flexible, dynamic and intelligent management.

References

1. E. Bertino et al. “UCS-Router: a Policy Engine for Enforcing Message Routing Rules in a
Universal Communication System”, Proceedings of the Third International Conference
on Mobile Data Management 2002.

2. Buco, M.; Rong Chang; Luan, L.; Ward, C.; Wolf, J.; Yu, P, “Managing eBusiness on
demand SLA contracts in business terms using the cross-SLA execution manager SAM”,
Sixth International Symposium on Autonomous Decentralized Systems, 2003. ISADS
2003 pp. 157 -164.

3. CIO.com. (http://www.cio.com/archive) “IBM’s New Hook.”, CIO Magazine, July 1,
2003.

4. N. Damianou, N. Dulay, E. Lupu, and M. Sloman: "The Ponder Specification Language",
Proc. Policy 2001: Workshop on Policies for Distributed Systems and Networks,
Bristol, UK, 29-31 Jan. 2001, Springer-Verlag LNCS 1995, pp. 18-39.

5. H. Lutfiyya, G. Molenkamp, M. Katchabaw, M. Bauer. “Issues in Managing Soft QoS
requirements in Distributed Systems Using a Policy-Based Framework”, International
Workshop on Policies, 2001.

6. E. C. Lupu and M. Sloman. “Conflicts in Policy-Based Distributed Systems Ma l. 25, No.
6, 1999, pp. 852-869.

7. “The PONDER Policy management”, IEEE Trans. On Software Engineering, Vo
Based Management Toolkit” at http://www-dse.doc.ic.ac.uk/ August 2002.

8. Y. Snir, et al., “Policy QoS Information Model”, Policy Working Group, IETF info-
model-04.txt.

9. Q. Zhao, Y. Zhou and, M. Perry, “Component Software and Policy-Driven Licensing
Model”, Proceedings of Policy 2003 -IEEE 4th International Workshop on Policies
for Distributed Systems and Networks, 2003

10. B. Moore, E. Ellesson, J. Strassner, A. Westerinen “Policy Core Information Model --
Version 1 Specification”, IETF RFC 3060 ftp://ftp.rfc-editor.org/in-notes/rfc3460.txt,
February 2001.

	Western University
	Scholarship@Western
	9-2004

	Policies, Rules and Their Engines: What do They Mean for SLAs?
	Mark Perry
	Michael Bauer
	Citation of this paper:

	Introduction
	Policy or Rule
	Implications for SLA Management
	Summary
	References

