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Prediction of Static Liquefaction Landslides 

 
Abouzar Sadrekarimi 
Department of Civil & Environmental Engineering, Western University, London, Ontario, 
Canada 
 
 
ABSTRACT 
Static liquefaction failure of sloping grounds has resulted in significant damages to built structures and even loss of lives. 
The principal aim of this research is to relate static liquefaction behavior of cohesionless soils to a measurable threshold 
from the field. Based on a very large number (893) of undrained laboratory shear tests on cohesionless soils collected 
from the past literature, a threshold triggering excess pore water pressure is introduced in this study above which static 
liquefaction failure occurs. The effect of variations in the direction and relative magnitudes of principal stresses associated 
with different modes of shear and ground slopes on static liquefaction failure of cohesionless soils is characterized by 
empirical relationships of the triggering excess pore water pressure ratio with these variables. The triggering pore pressure 
ratio can be employed as a more precise criterion for detecting liquefaction triggering and landslide warning in instrumented 
slopes of saturated cohesionless soils.  
 
RÉSUMÉ 
L'échec de la liquéfaction statique des sols en pente a provoqué des dommages importants aux structures construites et 
même des pertes de vies humaines. Le but principal de cette recherche est de relier le comportement statique de 
liquéfaction de sols sans cohésion à un seuil mesurable du terrain. Sur la base d’un très grand nombre (893) d’essais de 
cisaillement en laboratoire non drainés sur des sols sans cohésion, relevés dans la littérature antérieure, un seuil 
déclenchant une pression interstitielle en excès est introduit dans cette étude, au-dessus duquel se produit une défaillance 
de liquéfaction statique. L'effet des variations dans la direction et les amplitudes relatives des principales contraintes 
associées à différents modes de cisaillement et de pentes du sol sur l'échec de la liquéfaction statique de sols sans 
cohésion est caractérisé par des relations empiriques du rapport de déclenchement de la pression de l'eau dans les pores 
excédentaire avec ces variables. Le rapport de pression interstitielle de déclenchement peut être utilisé comme critère 
plus précis pour détecter le déclenchement de la liquéfaction et l'avertissement de glissement de terrain sur les pentes 
instrumentées de sols saturés et sans cohésion. 
 
 
 
1 INTRODUCTION 
 
Most landslides in steep slopes are triggered by increasing 
of excess pore water pressure (generated by a seismic 
event, heavy rainfall, rapid snowmelt, tidal fluctuations, 
water waves, pile driving, or rapid changes in water level), 
leading to an undrained static liquefaction failure and 
strain-softening. During this phenomenon, rise in pore 
water pressure reduces soil’s effective stress and thus 
shear resistance, and eventually leads to a slope failure. 
This can develop into a catastrophic flow slide failure if the 
post-liquefaction strength of the soil drops below the static 
driving shear stress beneath the slope. The sudden nature 
and the large shear displacements attained rapidly 
following flow liquefaction events have made static 
liquefaction one of the most catastrophic mechanisms in 
the failure of natural slopes, man-made dams, and mine 
tailings embankments.  

Despite considerable advances in understanding 
landslide mechanics and the employment of landslide 
monitoring systems, these phenomena continue to cause 
significant damages throughout the world. For example, 
the deadliest landslide disaster in the United State's history 
occurred on the 22th of March 2014 in Oso, Washington 
(USA) after three weeks of intense rainfall. The Oso 
landslide mass obliterated more than 50 homes, claimed 
43 lives, injured 10 people, and buried portions of a major 
state highway resulting to an estimated capital loss of at 

least $50 million. The failure occurred in a loose sandy 
colluvial material susceptible to static liquefaction (Keaton, 
et al., 2014). Even more recently, the Fundão iron mine 
tailings dam (Brazil) failed due to static liquefaction on 
November 5th, 2015. Static liquefaction failure resulted 
from a clogged drainage and the subsequent increase in 
pore water pressure (Morgenstern et al., 2016). Although 
some studies have proposed empirical rainfall thresholds, 
such thresholds can be often misleading and erratic without 
proper consideration of the mechanisms of failure and the 
role of pore water pressure. 

Previous experimental studies of flow slide failures 
indicate that the initiation of liquefaction flow failure is 
essentially associated with the build-up of excess pore 
water pressure (ue) and the corresponding reduction in 
effective stress and soil resistance (Anderson and Sitar, 
1995; Eckersley, 1990; Take, et al., 2013). With a sufficient 
increase in ue, a saturated sandy slope can undergo 
undrained strain-softening and static liquefaction. 
Accordingly, an analysis of the threshold ue required for 
static liquefaction failure can be effectively used to predict 
the occurrence of a flow failure. However, just how much 
ue is required to produce a flow slide has not yet been 
resolved. This study attempts to relate static liquefaction 
behavior to an experimentally-verifiable threshold of pore 
water pressure above which liquefaction occurs. A practical 
framework for predicting the onset of static liquefaction is 
presented based on a minimum triggering ue required to 



 

induce undrained strain-softening in a saturated 
cohesionless soil. 

 
 
2 THRESHOLD EXCESS PORE PRESSURE RATIO 
 
Figure 1 presents undrained triaxial compression shear 
tests on Illinois River and Toyoura sand specimens in 
terms of consolidation relative density (Drc) and excess 
pore pressure ratio (ru). Several studies (Ishihara, 2008; 
Vaid and Chern, 1983) have found that the major principal 

stress at the time of consolidation ('1c) largely controls 
liquefaction and shearing behavior of cohesionless soils. 
Accordingly, ru is defined here as the shear-induced excess 

pore water pressure (ue) normalized by '1c. Static 
liquefaction and undrained strength reduction is triggered 
when the applied monotonic shear load exceeds soil’s 
peak undrained strength, su(yield). Strain-softening 
subsequently follows the initiation of liquefaction until a 
reduced post-liquefaction undrained strength, su(liq) is 
mobilized.  

 
 

 
(a) 

 
(b) 

Figure 1. Undrained shearing behavior and the generation 
of ru,max in triaxial compression shear tests on (a) Illinois 
River and (b) Toyoura sand specimens. 

 

According to Figure 1, with increasing Drc the amount 
of strength reduction from su(yield) to su(liq) and ru 
decrease until at Drc = 34% and 31% neither of the sands 
display strain-softening and liquefaction behavior. The 
maximum ru (ru,max) developed in specimens which exhibit 
even the slightest strain-softening behavior are all greater 
than 0.64 for both Illinois River and Toyoura sand 
specimens. Whereas, those at respectively Drc = 34% and 
31% for Illinois River and Toyoura sands undergo strain-
hardening behavior with ru,max < 0.64. These suggest that 
the occurrence of static liquefaction in a saturated 
cohesionless soil is closely related to ru,max. 

Although ru,max = 0.64 is inferred from Figure 1, field 
liquefaction behavior and pore water pressure generation 
in a soil beneath a sloping ground can be more complicated 
than an isotropically-consolidated specimen. Figure 2 
illustrates a hypothetical failure plane beneath a sloping 
ground. Different modes of shearing, ranging from 
compression at the crest of the slope, to simple shear, and 
extension at the toe can exist on a failure plane. As 
illustrated in Figure 2, a transition in mode of shearing 
occurs as the angle of the failure plane with the horizontal 

varies and the associated principal stress ('1, '3) 
directions rotate (Yoshimine, et al., 1999). Different modes 
of shearing are approximately assigned along the failure 
plane in Figure 2 based on the counter-clockwise angle of 

the failure plane to the horizontal (), with  > 15o, -15o ≤  

≤ 15o, and  < -15o attributed as compression, simple 
shearing, and extension modes of shear, respectively. The 
relative magnitudes of the initial (consolidation) principal 

stresses ('1c, and '3c) under a sloping ground also 
change, which produces different principal stress 
anisotropy characterized by the principal stress ratio, Kc = 

'3c/'1c.  
 
 

 
Figure 2. Illustrative variation of principal stress directions 
and mode of shearing along a failure plane beneath a 
slope. 
 
 

As demonstrated in Figure 3, ru,max developed in a 
cohesionless soil is largely affected by differences in 
triaxial compression (TxC), direct simple shear (SS), and 
triaxial extension (TxE) modes of shear as well as Kc and 
Drc. Accordingly, for a precise prediction of ru required to 
trigger static liquefaction (ru,tr) it is necessary to account for 
the variation in principal stress directions associated with 
different modes of shearing and their relative magnitudes 
(Kc) beneath a sloping ground. Based on a large database 
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of laboratory shear tests collected from past studies, this 
study explores a threshold ru (ru,tr) beyond which static 
liquefaction could occur in a cohesionless soil. The effects 
of Kc and differences in mode shearing on ru,tr are also 
studied. 
 

 

 
(a) 

 
(b) 

Figure 3. Effects of (a) shearing mode (TxC: triaxial 
compression, SS: direct simple shear, TxE: triaxial 
extension), and (b) principal stress anisotropy (Kc) on 
undrained shearing behaviors of Toyoura and Monterey 
sands. 

 
 
3 DATABASE OF LABORATORY SHEAR TESTS 
 
A large database of 873 triaxial compression shear, TxC 
(Castro, 1969; Chen, 1984; Chu, 1995; Dawson, et al., 
1998; de Gregorio, 1990; Dennis, 1988; Di Prisco, et al., 
1995; Doanh, et al., 1997; Durham and Townsend, 1973; 
Finge, et al., 2006; Fourie and Tshabalala, 2005; Gajo and 
Piffer, 1999; Gassman, 1994; Highter and Tobin, 1980; 
Highter and Vallee, 1980; Hird and Hassona, 1990; Hyodo, 
et al., 1994; Jefferies and Been, 2006; Kato, et al., 2001; 
Konrad, 1993; Konrad and Pouliot, 1997; Kramer and 
Seed, 1988; Lavigne, 1988; Lee, 1965; Leong and Chu, 
2002; Murthy, et al., 2007; Omar, 2013; Riemer, 1992; 
Sadrekarimi, 2009; Sasitharan, 1994; Sasitharan, et al., 

1994; Skirrow, 1996; Sladen, et al., 1985; Sladen and 
Handford, 1987; Stiber, 1992; Takeshita, et al., 1995; 
Tsomokos and Georgiannou, 2010; Vaid, et al., 2001; 
Verdugo, 1992; Wanatowski and Chu, 2007; Wang, 2005; 
Wride and Robertson, 1997a; Wride and Robertson, 
1997b; Yoshimine, 1996; Zhang, 1997), torsional simple 
shear, TSS (Alarcon-Guzman, et al., 1988; Keyhani and 
Haeri, 2013; Nakata, et al., 1998; Sivathayalan and Vaid, 
2002; Wride and Robertson, 1997a; Yoshimine and 
Ishihara, 1998; Yoshimine, et al., 1999), and triaxial 
extension shear, TxE (Been, et al., 1991; Chung, 1985; 
Doanh, et al., 1997; Gajo and Piffer, 1999; Hyodo, et al., 
1994; Lade, et al., 2006; Riemer, 1992; Shahsavari, 2012; 
Vaid, et al., 2001; Vaid and Thomas, 1995; Yoshimine, et 
al., 1998; Yoshimine, et al., 2001; Yoshimine, et al., 1999) 
tests on cohesionless soils are collected in this study which 
cover a very wide range of non-plastic silt contents, SC (0 
to 60%), consolidation void ratios, ec (0.261 to 1.287), 

major consolidation principal stresses, '1c (29 to 60,000 
kPa), specimen preparation techniques (AP: air pluviation; 
WP: water pluviation; MT: moist tamping), and 
consolidation principal stress ratios, Kc (0.33 to 1.0). The 
wide range of Kc (0.33 to 1.0) allows the modeling of 
different sloping ground initial conditions. Principal stress 
directions continuously rotate in TSS tests or undergo an 
abrupt 90o rotation in TxE shearing of anisotropically 
consolidated specimens, while the principal stress 
directions remain the same in TxC tests. Note that shear 
stress is applied in TSS tests by torsion, while TxC and TxE 
samples undergo shearing on the failure plane as a result 
of a deviator stress. 
As shown in Figure 1, su(yield) and su(liq) respectively 
describe the liquefaction triggering condition and the 
subsequent behavior after liquefaction occurs. Following 
the triggering of liquefaction, the mobilized undrained 
strength reduces from su(yield) to su(liq). The normalized 
difference between su(yield) and su(liq) is used here to 
quantify the degree of strain-softening and determine the 
occurrence of static liquefaction. This is often defined by 
the undrained brittleness index, IB as below (Bishop, 1971): 
 

 

( ) ( )
( )yieldus

liqusyieldus

BI
−

=      [1]

  
  
IB ranges from 0 to 1, where IB = 1 indicates a very brittle 
soil behavior associated with an extremely low su(liq), while 
IB = 0 occurs in non-brittle or strain-hardening soils where 
no strength reduction occurs during undrained shear.  
In the following, the liquefaction behavior of cohesionless 
soils is characterized in terms of IB and ru,max for the 873 
laboratory shear tests collected in this study. Note that 

su(yield) includes the initial shear stress (tc) resulting from 
anisotropic consolidation, as well as the additional shear 
stress applied to cause strain-softening and liquefaction. 
The post-liquefaction undrained strength, su(liq) is chosen 
at the end of the tests where a critical state of constant 
effective stress and shear stress is attained following 
strain-softening behavior. Whereas, for specimens 
exhibiting a limited liquefaction the minimum undrained 
strength prior to strain-hardening is more relevant to flow 
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failures and stability analysis and this is adopted here as 
su(liq). 

 
 
4 RESULTS AND DISCUSSION 
 
Figure 4 presents IB versus ru,max for each mode of shear 
based on the large database of laboratory shear tests. 
While IB and the amount of strain-softening increase with 
increasing ru,max for all modes of shearing, these plots show 
greater ru,max in compression and simple shearing modes 
than when a soil is subject to an extension mode of shear. 
The plots of Figure 4 further indicate that increasing 
anisotropic consolidation (decreasing Kc) promotes strain 
softening and increases IB. 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Undrained brittleness (IB) and maximum excess 
pore water pressure ratio (ru,max) data for (a) TxC, (b) TSS, 
and (c) TxE shear tests. 
 

 
An interesting feature of Figure 4 is that the ru,max – IB data 
fall on a distinct trendline for each Kc, inferring that ru,max is 
primarily affected by Kc and the mode of shearing for 
saturated granular soils. The small scatter at a given Kc for 
each mode of shear possibly emerges from differences in 
SC, specimen preparation method (i.e. soil fabric), ec and 

'1c, besides inaccuracies in laboratory shear testing of 
loose sands at large shear strains (e.g., membrane 
resistance, bedding errors, boundary effects, non-uniform 
stress distribution associated with specimen bulging in TxC 

and necking in TxE). It follows that a state of ru,max = 1.0 ('3 
= 0) is only possible for isotropically consolidated soils (Kc 
= 1), while for anisotropically consolidated cohesionless 
soils (Kc < 1) severe strain-softening and IB ≈ 1 could ensue 
at ru,max < 1.0.  
For each mode of shearing in Figure 4, the average ru,max - 
IB trendline for each Kc resembles that of Kc = 1 which is 
translated both horizontally (decreasing ru,max) and 
vertically (increasing IB) in proportion to its Kc value. 
Accordingly, modified IB* and ru,max* parameters are used 
to shift these data onto the Kc = 1 trendline in Figure 5. 
Figure 5 further presents specific correlations between IB* 
and ru,max* for each mode of shear which include the effects 
of Kc. Despite the wide ranges of testing parameters (ec, 

SC, '1c, Kc, specimen preparation methods), correlations 
shown in Figure 5 display a relatively narrow range of 
variations and the average relationships exhibit high 
coefficients of correlation (R2) indicating their accuracy. 
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(a) 
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Figure 5. Unified relationships based on modified IB* and 
ru* data for (a) TxC, (b) TSS, and (c) TxE shear tests. 

 
 

5 TRIGGERING OF STATIC LIQUEFACTION 
 
Static liquefaction could trigger when a soil is no longer 
able to sustain the applied shear stress and hence 
undergoes strain-softening (IB ≥ 0). Therefore, IB = 0 would 
represent the minimum condition to instigate static 

liquefaction behavior as well as the threshold ru (ru,tr) above 
which a saturated cohesionless soil will liquefy (IB > 0). The 
relationships shown in Figure 5 can thus be used to 
estimate the ranges of ru,tr corresponding to the initiation of 
static liquefaction (IB ≥ 0) for each shearing mode.  

At any given Kc, a range of I*B is obtained from its 
relationship with IB as shown in the abscissa of Figure 5 for 
each mode of shearing and sweeping IB from 0 to 1.0. 
Based on the fitted correlation between I*

B and r*
u,tr for each 

shearing mode, ru,tr is then calculated from r*
u,tr using the 

corresponding equation between ru,tr and r*
u,tr shown in the 

ordinates of Figure 5. The variation of ru,tr with Kc is 
subsequently demonstrated in Figure 6 for each mode of 
shearing. According to this figure, ru,tr increases with 
increasing Kc for compression and simple shearing modes. 
In other words, the potential for static liquefaction failure 
would increase (i.e. failure occurs earlier at a lower ru,tr) 
with increasing ground slope. Griffiths et al. (2011) and 
Eichenberger et al. (2013) report similar trends respectively 
for saturated cohesive soils and volcanic ash in finite 
element simulations. In extension however, since 
anisotropic consolidation pre-shearing (Kc) and undrained 
extensional shearing occur in different directions, shear 
stress reversal occurs on the failure plane in TxE tests, and 
thus ru,tr exhibits a brief increase with decreasing Kc 
followed by a more-or-less constant ru,tr = 0.136. 
Accordingly, in order to obtain more accurate estimates of 
ru,tr for triggering analysis it is imperative to consider the 
appropriate Kc corresponding to the operating mode of 
shear and the in-situ stress condition. Note that although 
ru,tr seems to be independent of Drc, this can be considered 
by measuring the in-situ ru as Drc affects a soil's ability to 
develop excess pore pressure and attain ru,tr for instigating 
liquefaction. 

 
 

 
Fig. 6: Effect of anisotropic consolidation (Kc) on ru,tr 

 
 

6 APPLICATION FOR STATIC LIQUEFACTION 
PREDICTION 

 
It is proposed that ru,tr can provide a refined criterion for 
examining field stress paths and determining the proximity 
of an in-situ stress state to instability. The proposed 
method can be employed as a pragmatic triggering 
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criterion in landslide warning and in-situ monitoring 
systems for enhanced prediction of flow slide failures 
resulting from static liquefaction. This would require 
warning pore water pressure thresholds to be set with 
respect to ru,tr for the corresponding mode of shear and 
stress anisotropy (Kc). A drained limit equilibrium analysis 
of the pre-failure slope geometry should be first performed 
to identify the probable critical sliding surface (with the 
lowest factor of safety) and establish the pre-failure 

(consolidation) shear (tc) and normal ('nc) stresses along 
the sliding surface. The magnitude of Kc along a potential 
failure plane can be determined from the following equation 
(Ishihara, 2008):  

 
 

t+t+

t+t−
=




=

tanccoscnc

tanccoscnc

c1

c3
cK    [6]

   
 
An infinite slope is a special case of Equation [6] in 

which the sliding plane is parallel to the ground slope (a = 

), and thus Kc = (1 – sin a)/(1+sin a) beneath an infinite 

slope of an angle a. 
Similar to Figure 2, approximate modes of shear can be 

assigned based on the inclination of the failure plane from 

the horizontal (), with  > 15o, -15o ≤  ≤ 15o, and  < -15o 
corresponding to compression, simple shearing, and 
extension modes of shear, respectively. Relationships 
shown in Figure 5 can then be employed to calculate ru,tr 
on the failure plane and predict liquefaction-induced 
landslides. The critical sliding surface (determined from a 
limit equilibrium analysis) can be used as a preliminary 
guideline for the installation of piezometers for measuring 
ue along the probable failure surface. An ideal field 
monitoring system would be automated with sufficient 
measurement points to examine the pattern of pore water 
pressure generation and identify the most critical pore 
pressure regime on a real-time basis. The strength of the 
proposed method is that the in-situ ru is directly measured 
by piezometers, and there is no need for expensive soil 
sampling or the determination of in-situ density of 
cohesionless soils. The key contribution of this method is 
that the fundamental effects of mode of shearing and Kc 
are considered in predicting static liquefaction and ru,tr.  

Note that the proposed method is only applicable when 
a slope has become fully saturated. In an unsaturated soil, 
suction among soil particles imparts additional confining 

stress which could create steep slopes (a ≥ 30o). If 
saturated (e.g., by a rainfall, tidal fluctuation, snowmelt), 
the decrease of soil suction and the increase of soil unit 
weight (as water infiltrates soil) can produce a rapid 
accumulation of shear strain and positive ue. Due to steep 
slopes (high Kc), ru,tr required to instigate static liquefaction 
failure could be quickly attained.  

 
 

7 CONCLUSIONS 
 
This study suggests a certain threshold of pore water 
pressure ratio (ru,tr) required to trigger static liquefaction 
and produce undrained strain-softening behavior. The 

threshold excess pore water pressure ratio defines a 
boundary between liquefaction and non-liquefaction 
behaviors based on a large number of high-quality 
laboratory shear test results. The laboratory test results 
indicate that excess pore pressure equal to the total 
overburden pressure (i.e., ru = 100%) is not necessarily 
required for static liquefaction triggering, and failure could 
occur at a much lower ru,tr. It is further observed that ru,tr 
mobilized in compression and simple shearing modes 
decrease with increasing initial stress anisotropy 
(decreasing Kc). Whereas for extension shearing, Kc has a 
relatively reduced effect on ru,tr.  

Based on the premise that ru,tr is developed just before 
the occurrence of static liquefaction, an empirical approach 
is developed in this study for estimating ru,tr. The concept 
of triggering pore pressure recognizes that pore pressure 
is central to liquefaction and flow failures, and it is based 
on the principles that stress anisotropy and mode of 
shearing determine liquefaction potential and ru,tr produced 
in a cohesionless soil subject to a monotonic shear load. 
The results of this study provide the possibility to develop 
more precise early warning systems based on the 
measurement of pore water pressure required for triggering 
liquefaction-induced landslides. Soil characteristics such 
as relative density, silt content, or fabric are indirectly 
considered by measuring and monitoring of the in-situ ru, 
while slope geometry is accounted for through Kc.  
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