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Abstract

Cardiovascular disease (CVD) is the primary cause of death globally and is estimated to
cause one-third of deaths in Canada. Each year, millions of Canadians are affected by CVD
despite ongoing efforts to reduce risk through lifestyle modifications and pharmacological
therapies. With the expected rise in CVD prevalence due to the obesity epidemic, we need to
better understand the genetic basis of heritable, modifiable risk factors, including levels of
high-density lipoprotein (HDL) cholesterol and triglyceride, for insights into future
therapeutic treatments and risk prediction. Through the use of a targeted next-generation
sequencing panel designed specifically to study lipid and metabolic disorders, | have
explored a spectrum of genetic variation—including rare and common variants, single-
nucleotide and copy-number variants—in over 3,000 DNA samples isolated from individuals
with abnormal lipid phenotypes, including: (i) hypoalphalipoproteinemia; (ii)
hyperalphalipoproteinemia; and (iii) hypertriglyceridemia. From my research efforts, I
demonstrated that the majority of individuals with abnormal HDL cholesterol levels did not
carry many phenotypically-relevant genetic factors, but in those who did, rare variants were
more prevalent in individuals with extremely low HDL cholesterol levels, while both rare
variants and the accumulation of common variants were approximately equal in individuals
with extremely high HDL cholesterol levels. Meanwhile, hypertriglyceridemia had a stronger
genetic basis, with common variant accumulation being the most prevalent genetic
determinant. Further, | uncovered that genetic determinants are more prevalent as the
hypertriglyceridemia phenotype becomes more severe, and a genetic locus, CREB3L3, may
have an extremely important, previously unappreciated role in hypertriglyceridemia
susceptibility. By better understanding the genetic underpinnings of abnormal levels of HDL
cholesterol and triglyceride, future efforts can explore the relationship between these
phenotypes and their genetic determinants, and how we might leverage this information to
develop better therapeutics to lower levels of these risk factors or create screening methods to
identify individuals who might be at higher risk for CVD.
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Summary for Lay Audience

Heart disease is the second leading cause of death in Canada and affects millions of
individuals each year. Despite efforts to reduce disease risk with healthy lifestyles and
medications, these strategies are not always successful. The variation in effectiveness may be
linked to differences in an individual’s genetic make-up (i.e. DNA), and how these changes
in DNA might be impacting levels of well-established risk factors for heart disease, such as:
high-density lipoprotein (HDL) cholesterol—also referred to as the “good” cholesterol—and
triglyceride (i.e. fats). These two lipid factors have been observed to associate with heart
disease risk, and medications have been designed specifically to alter these lipid levels to
reduce disease risk. Here, | worked to better understand the different DNA changes, also
called “genetic variants”, that can influence levels of HDL cholesterol and triglyceride, and
to specifically study the genetic variants in individuals with extreme lipid disorders
characterized by either: (i) extremely low HDL cholesterol levels; (ii) extremely high HDL
cholesterol levels; or (iii) extremely high triglyceride levels. After studying the DNA of over
3,000 individuals, I determined that each lipid disorder has a unique combination of rare and
common genetic variants that help drive the presentation of each extreme lipid trait. During
this research, | was also able to create two “genetic risk scores”—a method to aggregate
information from many sites of common DNA variation into a single measure of disease
risk—for both HDL cholesterol and triglyceride. From my collective research efforts, we
now have a better understanding of the different DNA changes that can cause or increase risk
for different lipid disorders, each of which have varying degrees of heart disease risk. By
understanding the relevant genetic variants underlying lipid disorders involving abnormal
levels of HDL cholesterol and triglyceride, future research efforts can explore how we might
be able to take advantage of this information to develop better medications and therapeutics
to lower levels of these heart disease risk factors or create genetic screening methods to
identify individuals at higher risk for heart disease because of different types of genetic

variation.
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“Science knows no country, because knowledge belongs to humanity, and is the torch which
illuminates the world.”

— Louis Pasteur
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1.1 Overview

Cardiovascular disease (CVD) is the primary cause of death globally and is estimated to
cause one-third of deaths in Canada (Statistics Canada, 2015; World Health Organization,
2020). With an expected increase in prevalence due to the obesity epidemic, CVD will
continue to strain our health-care system and economy—over $20 billion is lost annually
through hospital costs and decreased productivity (Genest et al., 2009). As such, there is a
pressing need to characterize CVD risk factors for applications towards clinical risk

prediction, prognosis indicators, and effective medical interventions to reduce risk.

Interdisciplinary collaborations have implicated a number of risk factors for CVD,
including hypertension, obesity, diabetes, smoking, and a sedentary lifestyle (Lloyd-
Jones, 2010; Lloyd-Jones et al., 2010). Importantly, one of the most heritable, modifiable
identified risk factors are levels of plasma lipids, namely cholesterol and triglyceride, and
their lipoprotein carriers (Castelli et al., 1986; Kannel et al., 1964; Wilson et al., 1980).
Epidemiologic and clinical studies have identified three main quantitative traits
associated with CVD risk, including circulating levels of: (i) low-density lipoprotein

(LDL) cholesterol; (ii) high-density lipoprotein (HDL) cholesterol; and (iii) triglyceride.

Researchers and physicians have so far collected extensive and compelling evidence—
genetic, mechanistic, and clinical trial data—supporting a direct causal relationship
between LDL cholesterol levels and CVD (Ference et al., 2017). Several classes of drugs,
including statins (Taylor et al., 2013), ezetimibe (Ballantyne et al., 2007) and proprotein
convertase subtilisin/kexin type 9 (PCSKO9) inhibitors (Sabatine, 2019), both lower
plasma LDL cholesterol levels and reduce risk for CVD events and death; this knowledge
has been translated into clinical practice guidelines (Anderson et al., 2016; Grundy et al.,
2019).

In contrast, the path to clinically translating our understanding of HDL cholesterol and
triglyceride levels has been less straightforward. Decades’ worth of observations in
populations showing an inverse relationship between HDL cholesterol levels and CVD
prompted clinical trials to attempt to pharmacologically increase HDL cholesterol levels
with the expectation that this would lower CVD risk (Gordon et al., 1977; Sharrett et al.,



2001). Unfortunately, trials of HDL cholesterol-raising agents like niacin, fibrates and
cholesteryl ester transfer protein (CETP) inhibitors all failed to reduce CVD, and in some
cases even paradoxically increased all-cause mortality (Chait and Eckel, 2016; Schwartz
et al., 2012). These counterintuitive findings were mirrored by more recent Mendelian
randomization studies, which used genetic markers to impute lifelong levels of HDL
cholesterol and found no evidence of a causal link between HDL cholesterol levels and
CVD (Frikke-Schmidt et al., 2008; Haase et al., 2012; Johannsen et al., 2009; Voight et
al., 2012). A more rigorous characterization of the genetics underlying HDL cholesterol
levels and subsequent analyses (like Mendelian randomization studies) may have alerted

researchers to some of the challenges that were faced in clinical trials.

The disappointing clinical results due to failure to show benefit with intervention on HDL
cholesterol levels over the past 10 years have led to a shift in focus to triglyceride as an
alternative, and perhaps more reasonable target for CVD risk reduction. While
pharmacologic studies of triglyceride-lowering agents have generally been more positive
than studies of HDL cholesterol reduction, there are still inconsistencies. In
epidemiological studies, adjustments for confounding variables seemed to neutralize
associations between triglyceride levels and CVD in epidemiological studies (Dron and
Hegele, 2017a; Emerging Risk Factors Consortium et al., 2009), but Mendelian
randomization studies have shown a causal relationship between triglyceride levels and
CVD events, purported as being independent of other markers or variables (Allara et al.,
2019; Holmes et al., 2015; Jorgensen et al., 2014; Tg et al., 2014).

Without a complete understanding of the mechanisms underlying variation in HDL
cholesterol and triglyceride levels, challenges in developing strategies to target these
traits for CVD risk reduction will remain. Therefore, a comprehensive assessment of the
main factors driving these traits is necessary to overcome these uncertainties. With an
estimated heritability for plasma lipid and lipoprotein levels ranging from 40-60% (Tada
et al., 2014), it stands to reason that a thorough assessment of the genetic architecture
underlying these traits will contribute towards our foundational understanding of both

HDL cholesterol and triglyceride levels.



Early breakthroughs in understanding the genetic factors influencing these traits were
seen with studies of relatively rare individuals who had extreme levels of the respective
lipid of interest. Historically, the factors driving these phenotypes—initially characterized
as rare genetic variations with large phenotypic effects—were identified through
association studies and linkage analyses of affected kindreds (Breslow, 2000; Hegele,
2009). These early studies unveiled many key genes and proteins involved in the
respective metabolic pathways; however, relevant causal rare variants are not observed in
all phenotypically affected individuals (Candini et al., 2010; Cohen et al., 2004; Hegele,
2009; Holleboom et al., 2011; Kiss et al., 2007; Sadananda et al., 2015; Singaraja et al.,
2013; Talmud et al., 2013; Tietjen et al., 2012; Wang et al., 2016). As a result, the
research focus has expanded to consider genetic variations with smaller phenotypic
effects, namely single-nucleotide polymorphisms (SNPs), which are more frequent in the
population, but because of their small effect size, require epidemiological-scale, genome-
wide association studies (GWASS) in large populations to be detected (Frazer et al.,
2009; Hegele, 2009).

While individual research efforts have evaluated specific types of genetic determinants
for either HDL cholesterol or triglyceride levels, there has been minimal effort or
experience to date in assessing multiple types of determinants simultaneously. This is due
to a reductionist focus on only one type of variation in most experimental designs,
typically related to technological limitations. Heretofore separate methods have been
required to study different types of genetic variation. Furthermore, practical challenges
arise though the need to aggregate specialized cohorts enriched with the extreme

phenotype of interest in order to achieve sufficient statistical power.

Substantial efforts are necessary to study and understand the genetic underpinnings of
HDL cholesterol and triglyceride levels before these traits can be rationally targeted
therapeutically for CVD risk prevention—probing the complete, holistic genetic
foundation of each trait is likely required. Such holistic evaluation requires multiple
components: (i) technology enabling assessment of multiple types of genetic
determinants simultaneously; (ii) large cohorts of patients with extreme levels of either

HDL cholesterol or triglyceride with sufficient statistical confidence; and (iii) a robust



bioinformatic process to allow assessment of phenotype-genotype relationships.
Promising associations can later be followed up using laboratory experiments involving
in vitro or in vivo model systems; however, genetics often generates the earliest clues and

leads for mechanisms that can be evaluated by functional and mechanistic experiments.

1.2 Human genetic variation

The human genome is the complete set of nucleic acid sequences encoded as DNA and
resides primarily within 23 chromosome pairs in the nucleus, with a small amount in the
mitochondria. The total length of the human genome is more than 3 billion nucleotide
base pairs, of which there are four that comprise DNA: adenine (A), cytosine (C),
guanine (G), and thymine (T). Together, the human genome sequence contains all the
biological information necessary to support us throughout our life cycle. The human
genome map has allowed for accurate, quantitative positioning of every base pair. While
humans share up to 99.9% of their genomic sequence (Feuk et al., 2006), genetic
variation exists across all individuals, which manifests as nucleotide sequence differences
at particular positions along the genome map. These differences between individuals are
usually silent at the phenotypic level, but occasionally they may give rise to unique and
distinctive phenotypic characteristics and differences, including but not limited to
differences in physical appearances, metabolic and biochemical activities, and disease
risk (Frazer et al., 2009; Genomes Project et al., 2010).

Different types of interindividual variations exist within the genome and these can be
defined by various characteristics, including physical-chemical properties, frequency of a
variant within the population, and associations of variants with differences in phenotypic

outcomes.

1.2.1  Single-nucleotide variants

Single-nucleotide variants (SNVs) are defined as changes that involve single nucleotide
positions and represent the most common form of human genetic variation (Frazer et al.,
2009; Timpson et al., 2018). Substitutions that occur between the purine nucleotides (A
and G), or the pyrimidine nucleotides (C and T), are called “transitions”; while

substitutions from a purine to a pyrimidine or vice versa are called “transversions”. These



simple substitutions can be further characterized by their impact on sequence ontology

(Figure 1.1A), especially when the SNV occurs within a coding gene sequence.

For instance, SNVs with no impact on the gene’s encoded protein product are referred to
as “synonymous” variants; because of redundancy in amino acid codons, it is possible
that a change in a single nucleotide can still result in the same translated amino acid
sequence. Conversely, SNVs that alter the gene’s protein product are referred to as “non-
synonymous” variants, and can be subclassified further as: (i) “missense” variants that
lead to a codon change and result in a different translated amino acid sequence; or (ii)
“nonsense” variants that lead to the inappropriate introduction of a stop codon, often
creating an early truncation of the encoded protein product. Because of such
consequences, nonsense variants are one type of “protein-truncating” variant. Another
potential type of protein-truncating variant involve changes that affect the RNA splicing
machinery, such as “splice-donor” or “splice-acceptor” variants that fall within sequences
at mRNA splice-junctions at the beginning or end of an intron, respectively (Figure
1.1B) (Cartegni et al., 2002).

SNVs that occur outside of protein-coding regions are by definition non-coding and
cannot appropriately be labeled using terms such as “synonymous” or “nonsynonymous”.
Instead, they are defined according to the type of regions in which they are found, such as
within introns, 5’ or 3’ untranslated regions (UTRs), promoters, enhancers, silencers,
non-coding genes, or pseudogenes.

“SNPs” are a specific subtype of the more general “SNVs”, the latter of which is an
agnostic term with respect to the variant’s population frequency—it has no connotation as
to whether the variant is common or rare in the population. Describing a variant as a
“SNP” is conventional when considering variants that occur more frequently in the
population: a “SNP” implies a relatively prevalent SNV. SNPs are the workhorses of

genetic association studies, as discussed further in Section 1.3.4.2
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Figure 1.1 Different types of SNVs defined by sequence ontology.

SNVs can be characterized by their impact on sequence ontology. A) Single nucleotide
changes that occur within protein-coding regions of genes (i.e. exons) can be
“synonymous” or “silent” if the encoded amino acid does not change, or “non-
synonymous” if the encoded amino acid changes. Non-synonymous variants are normally
classified as “missense”, unless the SNV changes the amino acid to a stop codon, in which
case it is defined as “nonsense”. B) An SNV disrupting an mRNA splice junction is defined
as either a “splice-donor” or “splice-acceptor” variant, depending on whether the SNV
occurs in the splice donor or splice acceptor site, respectively. Bolded red nucleotides
reflect the SNV in each example; “X” could represent any nucleotide substitution.



1.2.2 Structural variants

“Structural variants” refer to a type of genetic variant larger than SNVs, ranging in size
from only a few impacted nucleotides, up to full chromosomal segments (Frazer et al.,
2009). Estimates have suggested that structural variants may account for 5-14% of the
human genome (Conrad et al., 2010; Sudmant et al., 2015; Zarrei et al., 2015). Given the
physical impact these variants can have on the genome—with the potential to encompass
genes in whole or in part—many have been associated and causally linked with certain
diseases. On the other hand, certain structural variants have been reported to have either
no apparent phenotypic consequence or even phenotypically beneficial ones
(Weischenfeldt et al., 2013).

Structural variants can be further classified into subgroups, including: insertions,
deletions, duplications, inversions, and translocations (Figure 1.2) (Weischenfeldt et al.,
2013). The molecular mechanisms leading to these events are typically due to errors in
DNA recombination (unequal crossing over), replication, and/or repair (Hastings et al.,
2009; Weischenfeldt et al., 2013).
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Figure 1.2 Different types of structural variants.

Structural variant sizes can range from 50 nucleotides up to full chromosomal segments.
The loss of genetic material is defined as a “deletion”, while the gain of novel genetic
material is defined as an “insertion”. “Duplications” reflect the insertion of genetic material
that has been duplicated from an existing genomic locus. An “inversion” indicates a
genomic locus that has flipped its orientation (ex. from the forward to the reverse
orientation). A “translocation” is used to describe an event in which a genomic segment
has been moved to a different chromosome (“inter-"") or to the opposing allele of the same
chromosome (“intra-”"). Each horizontal bar reflects a chromosomal region, with each
coloured block reflecting a genomic locus of interest, such as a gene. The dashed box
indicates the area of interest for each structural variant. The normal state of the human
genome is diploid, with a copy number of 2. This figure and legend have been adapted
from (lacocca et al., 2019).
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1.2.2.1 Insertions and deletions

As the terms suggest, insertions and deletions refer to the gain and loss of nucleotides,
respectively. These types of variations are jointly referred to as “indels” and can occur
anywhere throughout the genome, ranging in size from 1-50 nucleotides (Sudmant et al.,
2015).

When an indel variant occurs within a protein-coding gene, it can sometimes have a
substantial impact on the final protein product (Figure 1.3). For instance, indels that
disrupt the codon reading frame are referred to as “frameshift” variants and can alter the
protein’s amino acid sequence, effectively altering the originally encoded protein; as with
nonsense variants, some frameshift variants can result in early termination of translation
and are thus considered as protein-truncating. Indels can also shift the reading frame such
that the normal stop codon is lost, and translation continues, producing a qualitatively
abnormal, elongated protein product. Conversely, an “inframe” variant is due to an
insertion or deletion of entire codons (i.e. in multiples of 3 nucleotides), but while
slightly changing the length of the translated variant protein, they do not disrupt the

overall reading frame, keeping the stop codon intact and are thus not protein-truncating.

1.2.2.2 Copy-number variants

As diploid organisms, humans normally have two copies of their nuclear genome—both a
maternal and paternal copy. Changes to this diploid state at a particular locus or region
through either duplication or deletion events are defined as changes in copy number;
duplications lead to gains in copy number, while deletions lead to losses in copy number.
By convention, the results of these events when spanning >50 nucleotides in length are
referred to as copy-number variants (CNVs) (Redon et al., 2006; Sudmant et al., 2015).
CNVs are the most common type of structural variant within the human genome (Conrad
et al., 2010; Zarrei et al., 2015).
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Figure 1.3 Small-scale structural variants.

The gain or loss of nucleotides are defined as “insertions” and “deletions”, and can lead to
changes in an encoded protein product when these events occur within genes. Insertions or
deletions of 3n nucleotides between adjacent codons do not disrupt the reading frame and
are called “inframe”; the original amino acid sequence is largely retained. Meanwhile,
insertions or deletions that disrupt the original amino acid sequence due to a change in the
reading frame are defined as “frameshift”. Bolded red nucleotides reflect the newly inserted
or deleted nucleotide(s) in each example.
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Outcomes related to a copy-number change could be beneficial, detrimental, or neutral to
the organism, depending on the impacted regions of the genome (Zarrei et al., 2015); this
spectrum of phenotypic impact can range from adaptive features to embryonic lethality
(Conrad et al., 2010; Hastings et al., 2009; Zarrei et al., 2015).

1.2.2.3 Chromosomal alterations

Genetic variation defined as “chromosomal alterations” are often large enough to be
observed using cytogenetic techniques, such as fluorescent in situ hybridization (FISH);
some of the earliest alterations could be simply observed cytogenetically with a light
microscope (Feuk et al., 2006). Translocations and inversions are examples of intra- and
interchromosomal rearrangements, respectively (Feuk et al., 2006). Even larger
alterations include abnormal chromosomal counts, defined as aneuploidy, which could be
considered as chromosomal-scale CNVs.

1.2.3  Variant frequency

Through international collaborative efforts, publicly available databases of genetic
information have provided detailed information for the frequencies at which genomic
variants—both SNVs and structural variants—occur within the population (Genomes
Project et al., 2015; Karczewski et al., 2020; Lek et al., 2016). This variant attribute is
defined as “minor allele frequency” (MAF). The terminology is a remnant from the
nomenclature of classical genetics, in which “major” and “minor” allele refer to the more
and less common allele at a particular variant locus, respectively. This does not
necessarily correspond to the “reference” and “alternate” allele distinctions, which are
specifically relevant to the human reference genome. The population through which a
MAF is determined can be defined as the general global population, a particular ancestral
group, or specialized cohorts (e.g. those with a particular disease). This information can
reveal insights into a variant in the context of its phenotypic consequence (Figure 1.4),
ancestral significance, and its relationship with natural selection. It is notable that the
terminology and designations are relative: there are many examples of variant or
polymorphic loci at which the minor (less common) allele in one particular geographical

or ancestral group is the major (more common) allele in a different group.
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Figure 1.4 Spectrum of genetic variation related to phenotypic effect and population
frequency.

A genetic variant’s population frequency is a function of the variant’s phenotypic effect
and how it impacts an organism’s fitness, discussed in Section 1.2.3. Rare and ultra-rare
variants with large phenotypic effects are often the cause of Mendelian disorders (discussed
in Section 1.3.1), while variants with smaller effects on a phenotype are more common and
can be identified through population-scale association studies, like GWAS. Meanwhile,
rare and ultra-rare variants with smaller phenotypic effects will only be uncovered as
association study cohorts increase in size, and techniques to study rare variants improve.
Figure adapted from (Assimes and Roberts, 2016). Abbreviations: GWAS = genome-wide
association study.



14

1.2.3.1 Rare variants

Rare variants are almost universally defined as having a MAF of <1% (Katsanis, 2016;
MacArthur et al., 2014), although, the term “ultra-rare” can be used to classify variants
with stricter frequency thresholds (Katsanis, 2016).

De novo variants are considered to be the rarest type of genetic determinant, as they occur
spontaneously in an individual and in theory would have a virtually non-existent
population frequency (Ku et al., 2012). If a de novo variant occurs in the germline, when
the variant is passed along to the individual’s offspring, the variant is then classified as

“inherited” and would still have a virtually absent population frequency.

In addition to the spontaneous occurrence of de novo variants, variants that have been
acted upon by natural selection can become rare over generations. For instance, variants
that decrease an organism’s biological fitness are considered “deleterious” and undergo
negative (purifying) selection, thus becoming less frequent in the population since the
variant is not able to be passed along to subsequent generations (Lohmueller, 2014;
Quintana-Murci, 2016).

As mentioned above, sometimes allele frequencies in different ancestral groups can differ
due to founder effects and population bottlenecks (Quintana-Murci, 2016). This is an
important consideration in designing research studies and deriving conclusions,
especially when statistically testing for differences in variant frequencies between two
distinct population samples (e.g. cases and controls) and then drawing inferences about
the potential biological relevance if a statistical difference is detected. If the experiment is
not properly controlled, statistical differences in allele frequencies could reflect
artifactual differences in the samples related to ancestry rather than a biological impact of

the variant locus.

1.2.3.2 Common variants

In contrast to rare variants, common variants have a MAF of >1% (MacArthur et al.,
2014). Given their extensive range of frequency, common variants are further classified

as “uncommon”, with frequencies between 1-5%.
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A genetic variant with only a modest phenotypic impact that does not influence an
organism’s fitness is unlikely to be acted upon by natural selection, and can therefore be
inherited by subsequent generations largely undisturbed if the host organism survives to
reproductive age. As such, changes in frequency of these variants with mild-to-neutral
phenotypic effects are driven by genetic drift, and perhaps further punctuated through

founder or bottleneck populations (Quintana-Murci, 2016).

When a genetic variant improves an organism’s fitness, it can undergo positive selection
within the population and become even more frequent since there is an increased chance

of the variant being inherited by subsequent generations (Quintana-Murci, 2016).

1.3 Genetic basis of traits and disease

The genetic basis of a phenotype, whether it is a trait or a disease, is typically described

as following either a monogenic or polygenic inheritance pattern.

1.3.1  Monogenic inheritance

A phenotype driven exclusively by genetic variation in a single (i.e. “mono-") gene is
defined as “monogenic”. The term is used synonymously with “Mendelian”, referencing
the inheritance patterns described by Gregor Mendel (Abbott and Fairbanks, 2016). His
observations in pea plant height and petal colour between parent and offspring eventually
led to Mendel’s Laws of Inheritance, the foundation from which we began to understand

monogenic phenotypes.

“The Law of Segregation” states that during gamete formation in a parent, a gamete
randomly receives a single gene allele, and through “The Law of Independent
Assortment”, these alleles segregate independently from other gene alleles (Castle, 1903).
When the gametes from two parents meet during conception, “The Law of Dominance”
states that between two different alleles for the same gene, the stronger (i.e. “dominant”)

allele will dominate the expression of the weaker (i.e. “recessive”) allele (Castle, 1903).

A number of inheritance patterns exist for monogenic phenotypes and are dependent on:
(i) the dominant and/or recessive nature of the alleles present; (ii) allelic zygosity; and
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(iii) the area of genome under study, including autosomes (i.e. the non-sex

chromosomes), sex chromosomes, or the mitochondrial genome.

Monogenic phenotypes follow recessive, dominant, and co-dominant inheritance patterns
(Figure 1.5). Phenotypes that only occur in the presence of two mutated alleles due to
“bi-allelic” variants—either simple homozygous variants or distinct heterozygous
variants on opposing alleles of the same gene—are considered to be recessive (Winsor,
1988). In contrast, autosomal dominant conditions occur in the presence of a single copy
of a mutated gene allele, brought about by a heterozygous variant (Winsor, 1988).
“Haploinsufficiency” is a term used in the context of autosomal dominant phenotypes to
describe a gene that cannot produce a normal phenotype without two normal alleles
(Deutschbauer et al., 2005), such that a heterozygous loss-of-function variant leads to
half-normal net activity of the products of the gene locus, since the heterozygous normal
or “wild-type” allele still functions normally. This is distinct from “dominant negative”,
which describes when a mutated gene allele produces an abnormal protein that interferes
with the normal functioning of the protein produced from the non-mutated allele, thus
causing a dominant phenotype, but with somewhat less than half of the total possible

biological activity seen in an individual with two wild-type copies of the gene.

Autosomal co-dominant phenotypes are a huanced form of a dominant phenotype. Co-
dominance is distinguished by the fact that a mutated gene allele cannot fully overcome
the expression of the normal gene allele, but rather, there is co-expression of each the
normal and mutated allele, resulting in an intermediate phenotype between the

homozygous states for having two normal alleles or two mutated alleles.

Inheritance patterns also exist for gene variants on the X chromosome. In females, X-
linked phenotypes follow the same recessive and dominant patterns as autosomal
phenotypes because there are two copies of the X chromosome. However in males, due to
hemizygosity for the X chromosome, a single deleterious variant will have no
concomitant wild-type allele, regardless as to whether the phenotype is considered to be
recessive or dominant in females who are diploid for the X chromosome. Similarly, in

mutated genes that are found on the Y chromosome, the terms “dominant” and
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“recessive” do not apply, since a normal diploid male will only have one Y chromosome
(Winsor, 1988). If a male inherits a mutated gene allele on the X or Y chromosome, the

mutated allele will be expressed by default.

Mutated genes in the mitochondrial genome follow a different inheritance pattern than
those seen for autosomes and sex chromosomes. Since the mitochondrial genome
exclusively follows maternal inheritance, if the mother carries a mutated mitochondrial
gene and presents with a mitochondrial-related disorder, the mutation and resultant
phenotype will always be present in the offspring as well (Hutchison et al., 1974).
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Figure 1.5 Schematic representation of Mendelian inheritance patterns.

The autosomal, sex chromosome, and mitochondrial inheritance patterns are provided for
a single family pedigree comprised of two generations: (i) an unrelated father and mother;
and (i) four offspring: two daughters and two sons. Not shown: a father with a
mitochondrial variant will not pass the variant to any offspring.
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1.3.1.1 Penetrance and expressivity

Two important phenomena that are tied to monogenic inheritance include the
“penetrance” and “expressivity” of variants (Figure 1.6) (Katsanis, 2016). “Penetrance”
refers to the probability of carriers of the same variant expressing the same phenotype
(Miko, 2008). A variant with perfect or complete penetrance would be characterized by
presentation of the phenotype in 100% of carriers, while non-carriers would not express
the phenotype. In contrast, incomplete penetrance refers to the situation in which carriers
of the same variant do not all share the same phenotypic outcome; i.e. some proportion of
carriers appear to be phenotypically normal or unaffected (Miko, 2008). Conversely,
“expressivity” is a different property which refers to the situation when carriers of the
same variant show differing or variable degrees of severity of a particular phenotype
(Miko, 2008).

In the context of monogenic phenotypes, a highly penetrant variant with stable
expressivity is typically disease-causing or phenotype-driving. However, a variant with
both incomplete penetrance and variable expressivity would be difficult to classify: in
some individuals, it might be disease-causing, while in others it is simply a susceptibility
factor. By definition, a variant with incomplete penetrance and/or variable expressivity
would be considered a “polygenic” determinant, as it alone is not enough to drive a

monogenic phenotype.
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Figure 1.6 Variant penetrance and expressivity.

Genetic variation can have differing degrees of both penetrance and expressivity. Carriers
of variants with complete penetrance will always present the associated phenotype, while
carriers of variants with incomplete penetrance may or may not present with the associated
phenotype. Carriers of variants with variable expressivity will present with varying degrees
of severity for the associated phenotype. Carriers of variants with both incomplete
penetrance and variable expressivity may or may not present with some varying degree of
severity for the associated phenotype. All silhouettes shown here represent carriers for a
particular variant. A coloured silhouette represents an individual expressing a particular
phenotype; the colour intensity reflects the severity of the phenotype.



21

1.3.2  Polygenic inheritance

In contrast to monogenic phenotypes in which a single mutated gene is the driving factor,
polygenic phenotypes are the result from many (i.e. “poly-") genetic variants found
across the genome, including both common and rare variants, residing within both coding
and non-coding regions (Dron and Hegele, 2018). These variants range in size from
SNVs to structural variants and can have varying phenotypic impacts depending on
whether the variant directly or indirectly impacts biologically relevant pathways. Variants
within genes that encode proteins involved in the main mechanistic pathway tend to have

larger impacts compared to variants with peripheral involvement (Boyle et al., 2017).

With a spectrum of observable variation, quantitative or continuous traits are polygenic,
as they are driven by many genetic factors that differ in type, impact, and genomic
location (Boyle et al., 2017; Dron and Hegele, 2018). Even extreme manifestations of
quantitative traits can be polygenic in nature due to an excess of polygenic determinants
with a cumulatively large phenotypic impact; however, in some instances of these
extreme phenotypes, particularly those with syndromic features affecting multiple
systems and organs, a monogenic basis is more likely (Frazer et al., 2009; MacArthur et
al., 2014).

Because of the varying phenotypic impacts of polygenic determinants—the majority of
which tend to be modest—it can be challenging in any particular individual to assign
definitive causality to a set of genetic factors for an extreme quantitative trait (Marian,
2014). Rather, the accumulation of polygenic factors is described as increasing an
individual’s susceptibility for the phenotype, but is not absolutely causative, deterministic
or guaranteed to be associated with its expression. The degree to which these factors
increase susceptibility or “risk” may also differ between individuals, as genetic variants
have been shown to have varying degrees of impact (i.e. expressivity), even between
family members (Wright et al., 2019).

Furthermore, polygenic phenotypes are often described as being “complex” to

acknowledge the impact of not only genetic factors, but non-genetic factors as well—
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such as environmental and lifestyle—on the expression of the trait. As with the small-
effect genetic determinants, any of these individual components may not in and of itself
be sufficient to cause phenotypic expression, but in aggregate, they act additively or
synergistically. While these non-genetic factors are not a focus in the contents of this
Dissertation, they should not be forgotten as important phenotypic contributors towards

the presentation of quantitative traits.

1.3.2.1 Heritability

The term “heritability” refers to the proportion of interindividual variance observed for a
particular trait that is attributed towards genetic factors (Manolio et al., 2009). For
quantitative traits and diseases, the range of observable phenotypic variation suggests a
spectrum of genetic factors contributing towards phenotypic presentation and
susceptibility; not only does this include protein-coding variants with incomplete

penetrance and variable expressivity, but intergenic variants as well.

A common challenge faced when studying polygenic phenotypes is “missing
heritability”, which refers to the phenotypic expression and/or measurable variance of a
particular polygenic trait that cannot fully be explained by known, associated genetic
determinants (Manolio et al., 2009). In Section 1.3.4.2, it is described how genotype-

phenotype association methods have been utilized in an attempt to uncover additional
contributory genetic factors that could help account for some instances of missing

heritability for different phenotypes.

1.3.3  Methods to study genetic variation

1.3.3.1 Sanger sequencing

The ground-breaking development of Sanger sequencing allowed researchers to
effectively “read” an entire DNA sequence, which assisted in the precise identification of
genetic variation in individuals. From its initial description in 1977, this sequencing
method relied on DNA fragments of different lengths, generated using special chain-
terminating nucleotides—one each for A, C, T, and G (Sanger et al., 1977). In the

traditional Sanger method, four distinct PCR reactions were set up for each chain-
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terminating nucleotide, and the randomly-sized DNA fragments from each reaction could
be run on polyacrylamide gels by electrophoresis (Heather and Chain, 2016). By knowing
what chain-terminating nucleotide was used for each of the samples run on the four gel
lanes, the exact 5° to 3 DNA sequence could be determined by “reading” the gel from
the smallest to largest DNA fragment. In the modernized version of Sanger sequencing,
chain-terminating nucleotides are fluorescently labelled—one label each for A, C, T, and
G—so that when the different sized DNA fragments undergo size separation by capillary
gel electrophoresis, the 5’ to 3> DNA sequence can also be determined based on the
measured fluorescence given off by the smallest to the largest DNA fragment (Heather
and Chain, 2016).

Although Sanger sequencing was a pivotal method that contributed towards the
successful elucidation of the first human genome (Lander et al., 2001), it is laborious and
cost-restrictive for studies that: (i) are studying larger cohorts; (ii) are interested in larger

or multiple genomic areas; or (iii) are focused on gene or variant discovery.

1.3.3.2 Next-generation sequencing

Next-generation sequencing (NGS) techniques are an effective alternative to Sanger
sequencing. NGS is a massively parallel, high-throughput sequencing approach that
generates millions of sequencing reads for multiple genomic areas of interest (Shendure
et al., 2017). With the high read-depth coverage generated across each sequenced
nucleotide—that is, the number of times a nucleotide gets sequenced—allelic zygosity
and dosage can be determined. Further, NGS can be used to sequence DNA from
multiple samples simultaneously, which is revolutionary compared to what was feasible
during the Sanger era. As a cost-effective method for large-scale sequencing efforts, NGS
has been an incredibly useful tool in identifying phenotypically impactful variants and
biologically relevant genes for both monogenic and polygenic phenotypes (Shendure et
al., 2017).

A common example of NGS is whole-exome sequencing, which has been used to map
disease genes and variants without the constraint for familial relationships. As the name

suggests, whole-exome sequencing is a subtype of NGS that targets the exons of all
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protein-coding regions of the genome (i.e. the “exome”). This technique can be utilized
for studies ranging from individual assessments, small-scale family studies, and large-
scale population studies (Chong et al., 2015; Cordell and Clayton, 2005; MacArthur et
al., 2014; Timpson et al., 2018). With phenotype-altering SNVs and CNVs identified in
almost 3000 genes and 85% of disease-causing variants being uncovered in protein-
coding regions, it is unsurprising that whole-exome sequencing continues to be a
successfully applied method for variant and candidate disease-gene discovery (Chong et
al., 2015; Rabbani et al., 2014).

Another NGS subtype that generates data for the entire genome is aptly referred to as
“whole-genome sequencing”. This method can be utilized for a range of studies, whether
the focus is at an individual level or population level, or if the genetic variation of interest
are protein-coding or non-coding variants, SNVs or CNVs. Although the cost to sequence
a genome has dropped significantly—from over $100,000,000 for the first human
genome sequence using Sanger methods to roughly $1000 almost 20 years later
(Goodwin et al., 2016; National Human Genome Research Institute, 2020; Schwarze et
al., 2020)—Ilimitations remain. The computational resources required to bioinformatically
process whole genomes are substantial and can pose as a significant barrier for both
research and clinical laboratories that do not have the infrastructure to house and process
the associated data files. Further, genome sequencing data is often generated with a low
depth of coverage per nucleotide (2x to 4x read depth) to minimize costs and
computational resources; however, this can cause an increase in incorrect genotype calls
(Lietal., 2011). A generally accepted standard of 30x read depth has >99% genotype
accuracy (Bentley et al., 2008), and many clinical laboratories aim for greater coverage to
increase accuracy and confidence in identified variants (Rehm et al., 2013). Until these
limitations are addressed, whole-exome sequencing remains a more practical NGS

subtype compared to whole-genome sequencing.

1.3.3.2.1 Variant interpretation

With improvements to sequencing methods, identifying variants of potential phenotypic
relevance has become quite straightforward. Following the generation of NGS data,

variants of interest can be identified by: (i) prioritizing those with a MAF coinciding with
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the phenotype’s population prevalence; (ii) considering variants with disruptive sequence
ontology (i.e. nonsynonymous, frameshift); (iii) assessing predictions of how damaging a
variant will be using tools that take into account nucleotide conservation between species,
amino acid property changes, and protein-domain functionality; and (iv) utilizing
previously published data relating to how a variant is known to alter RNA expression,
protein expression, or protein function (MacArthur et al., 2014). This method typically
results in a list of rare and uncommon variants. From here, when a potential variant of
interest is identified, it cannot be classified or validated as “disease-causing” until: (i)
functional studies have been conducted to mechanistically confirm the variant’s impact
through observational changes to RNA or protein expression, protein function, or protein
interactions; (ii) there is a confirmed relationship between the mutated gene and the
phenotype of interest; and (iii) there are statistical analyses providing evidence that the
observed relationship between the variant and phenotype is not due simply to chance
(MacArthur et al., 2014).

In 2015, the American College of Medical Genetics and Genomics (ACMG) published a
framework to standardize the classification of identified variants of interest (Richards et
al., 2015). While much of the data analysis described in this Dissertation was finalized
before the wide-spread adoption of the ACMG framework?, it is worth mentioning the
importance of these guidelines moving forward. The guidelines provide a number of
recommendations based on categories for interpretation, such as population MAF,
predictive in silico algorithms, functional data, segregation data, de novo status, and
allelic data; some of these categories strongly overlap with the criteria outlined by
MacArthur et al., 2014. From the ACMG guidelines, the final classification of a variant
could be either: (i) pathogenic; (ii) likely pathogenic; (iii) uncertain significance; (iv)

likely benign; or (v) benign (Richards et al., 2015). Importantly, a slightly altered

! In Chapters 2-7, when a “causal” classification cannot be assigned due to insufficient
supporting functional data, variants with a high degree of evidence towards being
phenotypically relevant and damaging are considered as variants that “contribute”
towards disease susceptibility rather than “cause” disease. This type of consideration is
particularly common when studying complex, polygenic phenotypes.
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framework for classifying CNVs has also been published by the ACMG (Kearney et al.,
2011).

1.3.3.3 Microarrays

Unlike Sanger and NGS methods that assess stretches of sequential nucleotides,
microarrays genotype specific loci interspersed at relatively equal intervals across the
genome (Bumgarner, 2013). These loci are typically common SNPs that fall within
coding or non-coding regions; since roughly 1% of the genome encodes for proteins, the
majority of microarray targets are intergenic (Bumgarner, 2013).

The general methodological overview of a microarray is relatively straightforward. First,
DNA fragments containing the SNP loci of interest are captured and hybridized to a
microarray chip. Subsequently, two fluorescently labelled probes are applied to the
chip—one for each SNP allele—to determine the presence of different alleles at each
locus, i.e. the SNP’s genotype (Bumgarner, 2013).

As a relatively affordable genotyping method and the inclusion of unbiasedly selected
SNPs across the genome, microarrays are a popular method in genetic association studies.

While this is discussed further in the following Section 1.3.4.2.1, it is important to

emphasize that the SNP markers captured by microarrays are virtually never directly
causative for any trait or disease. Rather, they act as an associated “tag” or “proxy” for

the variant mechanistically linked to the phenotype under study.

1.3.4  Approaches to study the genetic basis of diseases

1.3.4.1 Linkage analysis in families or samples of related
individuals

Large kindreds in which many members express the same disease phenotype have served

as some of the original study cohorts to uncover disease-causing variants and the “disease

gene” behind monogenic disorders. This is largely because a Mendelian disease’s

inheritance pattern can be established from a well characterized pedigree, and the

presence of a sufficient number of affected and unaffected relatives allows for a

statistically well-powered, case-control comparison. From this natural study design,
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“linkage analyses” could be performed in an attempt to identify the genomic region

containing the candidate disease-gene and variant (Teare and Barrett, 2005).

In a linkage analysis study, DNA samples from both affected and unaffected family
members are obtained and DNA markers—typically polymorphic sites at SNP loci that
can be detected either by restriction enzyme digestion, allele specific oligonucleotide
hybridization or direct fragment sizing using gel electrophoresis—are assessed along
each chromosome to establish “haplotypes” for an individual. A “haplotype” is the
genetic pattern or signature of a chromosomal region or locus (International HapMap,
2005; Teare and Barrett, 2005). Due to recombination during gamete formation,
haplotype patterns become increasingly diverse with each subsequent generation, as new
genetic material is introduced from the biological parent external to the primary pedigree
and line of descent. When haplotype markers on the same chromosome are inherited
together more frequently than what would be expected by chance, the markers are said to
be in “linkage disequilibrium” (LD), which refers to significant allelic association or tight
correlation (Cordell and Clayton, 2005; International HapMap, 2005; Teare and Barrett,
2005).

Linkage analysis tests whether the presumed locus or variant causing a phenotype in a
family is always inherited together with certain DNA markers within a region of LD. If
there is no divergence between the phenotype and the DNA markers, the phenotype is
considered linked to the locus. Importantly, the markers themselves are almost never the
direct pathogenic cause of the disease. The metric often used to report linkage is a
logarithm of the odds (LOD) score, which evaluates the probability that a phenotype and
set of markers in LD are always inherited together compared to the state of complete
linkage equilibrium (e.g. the DNA markers and causative variant are inherited completely
independently of each other). Linkage analysis requires several variables or parameters to
compute and interpret: these include the recombination fraction for the genomic area of
interest, the putative inheritance pattern, the frequency of DNA marker alleles, and the
structure of the chromosomal haplotype (Teare and Barrett, 2005). Traditionally, a LOD
score of >3 (i.e. odds favoring non-random association or linkage between a DNA marker

and phenotype of >1000:1) is conventionally accepted as providing strong evidence to
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support co-segregation of a particular haplotype of interest and the disease under study
(Teare and Barrett, 2005). LOD scores this high are obtained only if there is a large
number of family members and there is not a single instance of mis-inheritance deviating
from affected family members each carrying the putative linked DNA marker, while all

unaffected family members lack the marker.

Typically with positive linkage, the candidate disease gene and causative variant are
contained within the haplotype block. By assessing haplotype patterns across generations
and between affected and unaffected relatives, a haplotype occurring exclusively in those
with the phenotype is said to co-segregate with disease status, suggesting that the
causative, mutated region of interest is contained within the chromosomal segment
defined by the haplotype (Palmer and Cardon, 2005; Teare and Santibanez Koref, 2014).
Once a region of interest has been established, it can be explored further using methods
like Sanger sequencing to identify a phenotypically-disruptive variant within a
biologically relevant gene (Teare and Santibanez Koref, 2014). It is also important to
note that in these kindred-based studies, it is ideal that multiple, independent kindreds
with the same disease phenotype can be studied and the results aggregated to build a joint
LOD score, in an attempt to account for possible bias due to unmeasured genetic or

environmental factors specific to a particular family (Hopper et al., 2005).

1.3.4.2 Associating genotype with phenotype

Common SNPs are incredibly informative markers of phenotypic association, serving as
genetic proxies to causal variants that fall within the same LD block. Approximately
500,000 SNPs are needed to sufficiently tag all LD blocks in individuals of non-African
ancestry (International HapMap, 2005; Visscher et al., 2012). With a plethora of common
tag SNPs, studies have been effective in assessing whether carriers of various SNP
genotypes differ statistically for a particular phenotype.

By definition, each SNP locus has two alleles and three possible genotypes (ex. AA, AB,
or BB, with “A” signifying the reference allele, and “B” signifying the alternative allele).
In consideration of quantitative phenotypes, linear regression is used to model the

relationship between the dependent variable (i.e. phenotype of interest) and independent
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variable (i.e. genotype). Since a SNP genotype may have 0, 1, or 2 alternative alleles, a
linear regression model assesses how allelic dosage for the alternative allele impacts the
phenotype of interest; importantly, an additive effect for each additional allele is assumed
(Figure 1.7A). For statistically significant relationships in which the presence of an
alternative allele modifies the phenotype, the beta coefficient of the regression model is
designated as the “weight” or “effect” of the alternative allele. An important
consideration when interpreting results from such regression models is that both variant
alleles—the reference and alternative—have the same measured magnitude of effect but
in different directions (Cordell and Clayton, 2005). Meanwhile, for dichotomous
phenotypes, chi-squared analysis, Fisher’s exact test, or logistic regression is used to
determine if there is a significant difference in the expected and observed frequencies of
the phenotype under study for each SNP genotype (Figure 1.7B) (Cordell and Clayton,
2005). When a significant association is observed, typically the calculated odds ratio

(OR) is used as the allelic weight.

For a SNP locus that is significantly associated with a quantitative trait, one allele
associates with higher levels of the trait of interest, while the other allele associates with
lower levels. Similarly, for a SNP locus significantly associated with a dichotomous
phenotype, one allele associates with the presentation of the phenotype while the other
allele associates with the absence of the phenotype. Earlier terminology such as “risk
allele” or “protective allele” that was used to describe significantly associated alleles has
given way to the more impartial term, “effect allele”; it is important that studies clearly
indicate what allele is being considered as the “effect” allele and to what phenotypic
outcome it associates with to avoid ambiguity. Importantly, effect alleles and their
associated outcomes are probabilistic and not deterministic, since phenotypically normal

individuals can also carry disease-associated effect alleles.
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Figure 1.7 Regression models to determine genotype-phenotype associations.

A) Linear regression models can be used to determine if there is an association between
variant genotypes and a quantitative, continuous phenotype. Here, examples are provided
for a strong positive correlation in which “B” is associated with increasing the trait, a strong
negative correlation in which “B” is associated with decreasing the trait, and no correlation
between either alleles and the trait. B) Logistic regression models can be used to determine
if there is an association between variant genotypes and a dichotomous phenotype with two
outcomes. The outcome (i.e. presentation of the phenotype) could be associated with either
the A or B allele, or there could be no association between either allele and the outcome.

Abbreviations: SNP = single-nucleotide polymorphism.
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1.3.4.2.1 Genome-wide association studies

Microarrays have proven to be a very accessible method to generate genotype
information for millions of SNPs across the genome. The statistical analyses described in
the previous Section can be performed for each SNP captured by a microarray in large
population studies, which serves as the foundation for large-scale genetic association
studies such as GWASs.

GWASs allow for the simultaneous assessment of association between millions of SNPs
and a particular phenotype (Tam et al., 2019). By performing GWASs in large
populations that range in size from tens to hundreds of thousands of individuals, common
genetic variants associated with small-to-modest effects towards a particular phenotype
can be identified (Visscher et al., 2017). With simultaneous statistical testing for roughly
1 million independent SNP genotypes, a Bonferroni-corrected alpha threshold of 5 x 108
is the standard for considering whether the observed association between a SNP and
phenotype meets “genome-wide significance” (Fadista et al., 2016). An important
consideration is that for any significantly associated SNP, it is unlikely to be a directly
causal variant for the phenotype of interest; rather, the SNP is likely tagging the truly
causative variant that falls elsewhere in its LD block and was not directly genotyped by

the microarray (Visscher et al., 2017).

Early GWASs successfully identified common variants with more moderately-sized
phenotypic effects, and as GWAS cohorts became magnitudes larger, common variants
with even smaller effects across additional loci were identified (Visscher et al., 2017).
For each GWAS that is performed, related “summary statistics” are generated, detailing
the genomic coordinates, reference and alternative alleles, and the estimated effect

associated with the alternate alleles for the phenotype of interest.

1.3.4.2.2 Rare variant association studies

Genetic association studies are often thought of in the context of common SNPs and their
incremental phenotypic contributions due to the successes and discoveries of GWASs.

However, rare variants with smaller phenotypic impacts that are not captured by GWASs
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can also contribute towards the heritability of traits and disease (Zuk et al., 2014). This

subset of rare, small-effect variants can be uncovered through “rare variant association

studies” (RVASs) that also rely on large cohorts and microarray technologies, similarly
to GWAS (Zuk et al., 2014).

Improvements to sequencing and genotyping technologies have provided researchers the
opportunity to utilize more cost-effective and accessible methods to perform RVAS on
immense populations, addressing previous challenges related to uncovering rare variant
associations due to insufficiently sized cohorts and statistical power (Auer and Lettre,
2015; Lee et al., 2014). As well, modified study designs have provided additional

opportunities for successful RVASs.

One RVAS design is dependent on the use of an “exome-based” microarray that
specifically targets lower frequency variants within protein-coding regions, rather than
the common SNPs targeted in a traditional microarray. This alternative microarray design
has enabled a distinct type of RVAS to be conducted, namely an “exome-wide
association study”, to assess for associations between low frequency, protein-coding
variants and phenotypic traits and diseases of interest. Because of this design, there are
fewer variant loci to correct for after multiple testing; Bonferroni corrections to account
for exome-wide significance lead to an alpha threshold of 5 x 10”7 (Fadista et al., 2016).
This, coupled with the ability to sequence larger cohorts due to the affordability of an
exome-based microarray (compared to whole-exome sequencing), has provided
opportunities for rare protein-coding variants with smaller phenotypic effects to be
identified (Lee et al., 2014).

Another modified study design for an effective RVAS takes a “gene-focused” approach
rather than the typical “variant-focused” approach. In a gene-focused or “gene-based”
RVAS, rare variants are grouped by the gene they occur in (or some other genomic unit
of consideration) and are assessed with either a burden or variance-component test (Auer
and Lettre, 2015). With the underlying assumption that all rare variants have an impact
towards the same phenotypic outcome, a burden test is used to determine whether carriers

versus non-carriers for genetic variants are phenotypically distinct—that is, do they
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significantly differ for a measurable trait mean or disease prevalence for continuous or
dichotomous phenotypes, respectively (Auer and Lettre, 2015; Lee et al., 2014).
Meanwhile, for variance-component tests, this method works under the assumption that
variants in the same gene may have opposing effects for the same phenotype—that is,
some variants could lead to an increase or decrease in a measurable trait, or could
increase or decrease disease risk (Auer and Lettre, 2015; Lee et al., 2014). In a variance-
component test, the measurable variance of a trait is considered between carriers and non-
carriers for genetic variants rather than the mean: a larger degree of variance in carriers
would suggest that the rare variants within the gene under study have measurable effects
on the phenotype of interest, but in opposing directions. For a gene-based RVAS using
either test method, when correcting for multiple tests under the assumption of ~20,000
genes in the human genome, the resultant alpha threshold is 2.5 x 10 (Auer and Lettre,
2015).

1.3.4.3 Polygenic scores

While GWASs were useful in identifying common SNPs associated with a particular
phenotype, these variants alone had limited predictive power and were not overly
informative when trying to explain heritability. In 2009, the International Schizophrenia
Consortium demonstrated that schizophrenia had a sizable polygenic architecture that
involved thousands of common SNPs with small effects, and together, these SNPs could
explain a larger degree of phenotypic variance compared to individual common variants
(International Schizophrenia et al., 2009). Similarly in 2010, Yang et al. reported that the
simultaneous assessment of GWAS-identified SNPs could explain a greater degree of
heritability for height, another polygenic trait, compared to individual common variants
(Yang et al., 2010). This method to assess the accumulation of common SNPs
contributing towards a particular phenotype came to be defined as a “polygenic score” or
“polygenic risk score”—the latter term being preferentially used in the context of an
unfavourable disease phenotype. Specifically, polygenic scoring is used to quantify an
individual's total burden of phenotype-associated effect alleles across SNP loci of interest
(Choi et al., 2020).
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1.3.4.3.1 Polygenic score development

When developing a polygenic score, the first step necessitates the selection of SNPs that
will comprise the score. Early polygenic scores were constructed using a P-value
thresholding approach, which involved the selection of a limited number of highly
significant SNP loci, identified through GWAS for a particular phenotype. This approach
was further refined, as considerations started being made to account for LD. Recall that a
GWAS-identified SNP is not likely to be causal, but rather tags the causative variant that
falls elsewhere in its LD block. If multiple SNPs from the same LD block are
incorporated into a polygenic score, the calculation is effectively counting the same
association signal multiple times, which over-inflates the score’s performance (Choi et
al., 2020; Prive et al., 2019). The removal of SNPs based on LD is referred to as

“clumping” or “pruning”.

More recent SNP-selection methods have expanded beyond the P-value threshold
approach and now consider larger numbers of SNPs, even those that are not statistically
associated with the phenotype of interest. It came to be appreciated that SNPs passing
genome-wide significance was somewhat arbitrary and study dependent; with sufficiently
large study cohorts many previously “non-significant” loci would become nominally
significant even with minimal measurable effect sizes (Dron and Hegele, 2019). This
criteria liberalization and the inclusion of non-significant SNP loci allowed for orders of
magnitudes of more SNPs to be considered in score development and has become
popular for studies in which polygenic risk scores are being used for disease risk
prediction (Choi et al., 2020).

Once the set of SNPs has been selected, the polygenic risk score calculation can be
finalized. At each SNP locus, there could be 0, 1, or 2 effect alleles, depending on
zygosity. Counting the total number of effect alleles () for n SNP loci yields a
maximum score of 2n, indicating an individual who has inherited two effect alleles at
every single locus included in the score. This provides the base equation for an
unweighted polygenic risk score, which is the basic summation of effect alleles inherited
by an individual:
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n

Polygenic risk score = 2 (w;)
=1

i
A weighted polygenic score expands upon this base equation by integrating each effect

alleles’ calculated weight () towards the phenotype of interest:

n

Polygenic risk score = z (w;if;)
=1

i
A SNP’s weight in a polygenic risk score is often the measured effect allele derived from
a GWAS for the phenotype of interest. While GWAS effect estimates are widely used for
polygenic risk score weights, novel statistical methods have been developed in an attempt
to mitigate some of the limitations related to these estimates, including: (i) inability to
adjust for LD patterns; and (ii) over-estimation of the effect for casual or tagged causal
variants (i.e. Winner’s Curse) (Choi et al., 2020). Different “shrinkage” methods to
reduce GWAS effect estimates have been published, each with different underlying
assumptions and statistical foundations; however, the polygenic risk scores described in
this Dissertation use GWAS effect estimates that have not been adjusted.

When a novel polygenic score has been developed, it is crucial that: (i) the weights for
each SNP were not derived from the same population in which the polygenic score is
being calculated; and (ii) the score is tested and validated in two independent cohorts.
These considerations are necessary to prevent overfitting of the risk score. “Overfitting”
occurs when the polygenic risk score has been optimized for the cohort it was derived
from; that is, if a weighted polygenic score is calculated in the same cohort from which
the SNP effects were derived, then the score would perform extremely well and show
strong associations between the score and phenotype of interest. However, once the score
is calculated in another cohort, it would have a much poorer performance, leading to
skewed results and incorrect conclusions (Choi et al., 2020). Having separate populations
for weight derivation, score testing, and subsequent score validation, ensures the validity

of the score and increases the confidence in any derived conclusions.
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1.3.4.3.2 Applications of a polygenic score

Depending on the cohort under study and relevant research questions, polygenic risk
scores can be used for different types of analyses. For instance, in a case-control study,
polygenic risk scores can be calculated to determine differences in the accumulation of
risk-associated alleles between individuals with and without the phenotype of interest. A
straightforward application of this approach compares the mean calculated risk score
between cases and controls; a significant difference in the mean scores indicates that
cases and controls are distinct with respect to the accumulation of small-effect genetic
variants. Alternatively, the proportion of cases and controls with scores above a critical
threshold can be compared using chi-square analyses or Fisher’s exact tests. The
threshold for stratification of genetic risk is usually defined as a score percentile,
determined after calculating the polygenic risk score en masse for a large population of
healthy individuals and generating the distribution of scores in the general population.
Individuals with an extremely high polygenic risk score—often defined as a score above
the 90™ percentile—are considered to have an extreme accumulation of risk-increasing
alleles. This is the threshold for high polygenic risk that we have used in many studies
from our laboratory. Formal evaluation tests the hypothesis that a case cohort has a much
greater proportion of individuals with extreme risk scores compared to control cohorts,
versus the null hypothesis that the prevalence of high score is the same in cases and
controls. If statistical comparisons reject the null hypothesis, this suggests a strong

polygenic component of the phenotype or disease of interest.

In other experimental situations when the study cohort is a single prospectively sampled
population, instead of generating score percentiles for comparison against a different
cohort, the percentiles of risk score can be determined in the single population under
study. Regression models can be used to determine the association between the score and
phenotypic outcome of interest and the degree of phenotypic variation that can be
explained. In a regression model, the polygenic risk score can be considered a continuous
independent variable—with the input either being the raw calculated score or the score’s
percentile—or as a binary independent variable indicating whether the score falls above

or below some predetermined threshold (i.e. above or below the 90" percentile).
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1.4 Lipids and lipoproteins

Circulating levels of lipids and lipoproteins are common examples of quantitative traits
that have been heavily studied using human genetic methodologies. Concentrations of
plasma lipids and lipoproteins are regulated by a complex network of genetic
determinants that encode key biochemical products, including receptors, adaptor proteins,
transporters, enzymes, and co-factors, each of which have distinct biological roles
(Daniels et al., 2009; Dron and Hegele, 2016; Feingold and Grunfeld, 2000).
Furthermore, several secondary non-genetic factors—diet, smoking status, activity level,
other medical conditions such as diabetes, obesity or hypothyroidism, and certain
medications—can exacerbate the clinical presentation of lipid phenotypes and make it
difficult to determine phenotypic contributions from genetic versus non-genetic sources
(Brahm and Hegele, 2016; Johansen and Hegele, 2011).

Extreme deviations of lipid traits from median population levels typically suggests a
more prominent, underlying genetic influence (Hegele, 2009). Relatively more common
in this situation is an extreme polygenic accumulation of common variants. Less
commonly, these extreme trait deviations are monogenic in nature and are driven by a
single large-effect variant. Most extreme lipid phenotypes appear to have a combination
of both common and rare variants comprising their underlying genetic architecture,
illustrating the complexities behind understanding the genetics of lipid and lipoprotein
levels. However, the precise proportion of extreme lipid phenotypes driven by common
versus rare variants has not been quantified because these different types of variation
have not been studied concurrently in dyslipidemic patient cohorts. Extreme deviations of

plasma lipid concentrations will be explained further in Section 1.5.

1.4.1 Lipids

Although circulating plasma lipids levels—both cholesterol and triglyceride—are
recognized as risk factors for atherosclerotic CVD (ASCVD), they both also have
extremely important biological roles.
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1.4.1.1 Cholesterol

Cholesterol is an amphipathic sterol molecule made up of four hydrocarbon rings, a
hydrocarbon tail and a hydroxyl group (lkonen, 2008; Simons and Ikonen, 2000).
Cholesterol has many important physiological roles, including: (i) an integral component
of all cell membranes; (ii) the backbone of steroid hormones; (iii) the precursor for bile
acids; and (iv) a signalling molecule in the central nervous system (Porter and Herman,
2011; Simons and Ikonen, 2000). Our largest source of cholesterol is endogenously
synthesized though the liver; only a small amount comes from exogenous, dietary origins
(Feingold and Grunfeld, 2000; Igbal and Hussain, 2009).

1.4.1.2 Triglyceride

Triglyceride is a non-polar lipid molecule comprised of a glycerol esterified to three fatty
acid chains. These lipid molecules can be further defined by the properties of their fatty
acids. Depending on the number of double-bonded carbon (C=C) molecules, triglycerides
can be saturated (no C=C) or unsaturated (1 or more C=C) and be further classified

depending on where the C=C occurs along the fatty acid chain.

Triglycerides are an incredibly important source of energy that are stored in adipose
tissue; when metabolized, their fatty acid chains are released through hydrolysis and
undergo fatty acid oxidation where they are converted into acetyl coenzyme A (acetyl-
CoA) for use in the Krebs cycle and mevalonate pathway. Our primary source for

triglycerides are from exogenous, dietary origins (Igbal and Hussain, 2009).

1.4.1.3 Plasma lipid sources

1.4.1.3.1 Exogenous

Following the ingestion of food, dietary cholesterol and triglyceride form emulsions with
phospholipids, fat soluble vitamins, plant sterols and hepatically synthesized bile acids;
together, these molecules form mixed micelles (Feingold and Grunfeld, 2000; Igbal and
Hussain, 2009). In the duodenum of the small intestine, micelle contents are hydrolyzed
by pancreatic enzymes, resulting in free fatty acids, mono- and di-acylglycerols, and
glycerols (Feingold and Grunfeld, 2000; Igbal and Hussain, 2009). Contents of these
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micelles can be absorbed by intestinal enterocytes in the jejunum; fatty acids and
glyceride compounds are taken up through both passive and active diffusion, while
cholesterol is absorbed by the Niemann-Pick C1 like 1 protein (NPC1L1) transporter
(Feingold and Grunfeld, 2000; Igbal and Hussain, 2009). Once absorbed, these molecules
can be resynthesized into triglycerides and cholesteryl esters for subsequent lipoprotein

assembly in the intestine, which is discussed in the upcoming Section 1.4.2.2.1. Of the

cholesterol that is taken up by the enterocytes, about 50% is actively transported back
into the intestine by ATP-binding cassette transporter G5 (ABCG5) and by ATP-binding
cassette transporter G8 (ABCG8) for excretion. The majority of remaining bile acids are
reabsorbed by the terminal ileum of the small intestine and return to the liver (Feingold
and Grunfeld, 2000; Igbal and Hussain, 2009).

1.4.1.3.2 Endogenous

De novo cholesterol synthesis can occur within hepatocytes. In low states of free cellular
cholesterol, sterol regulatory element binding protein (SREBP) transcription factors
become activated and upregulate a number of cholesterol metabolism regulators,
including the main enzyme involved in cholesterol synthesis, B-hydroxy -
methylglutaryl-coenzyme A (HMG-CoA) reductase (Ikonen, 2008; Simons and Ikonen,
2000). This enzyme is the rate-limiting step in cholesterol synthesis; an increase in the
protein’s expression ultimately leads to an increase in the production of free cholesterol
via the HMG-CoA reductase or mevalonate pathway, in which acetyl-CoA is the starting
molecule (Ikonen, 2008). De novo triglyceride synthesis also occurs within hepatocytes,
using free fatty acids derived from fatty acid synthesis and glycerol derived from
glycolysis (Alves-Bezerra and Cohen, 2017). The newly synthesized lipids are assembled
into hepatically-derived lipoproteins, which is discussed in the upcoming Section
1.4.2.2.2.



40

1.4.2  Lipoproteins

Due to the insoluble nature of cholesterol and triglyceride, lipoprotein particles are
responsible for transporting these lipid molecules throughout the body. Lipoproteins are
discrete macromolecular entities that vary in size, density and composition (Figure 1.8).
These unique features arise because of qualitative and quantitative differences in their: (i)
characteristic lipid-associated proteins or “apolipoproteins” (apo); (ii) amount and ratio of
cholesterol and triglyceride content; and (iii) other lipids species, such as sphingolipids
and phospholipids (Figure 1.9) (Feingold and Grunfeld, 2000; Hegele, 2009). At a first
level of approximation, lipoproteins can be classified based on their cholesterol and
triglyceride content. The main cholesterol-carrying lipoproteins include LDL and HDL,
while chylomicrons and very-low-density lipoproteins (VLDL) are the main triglyceride-
carrying lipoproteins (Feingold and Grunfeld, 2000); VLDL also carries cholesterol,
whose molar concentration is about one-third that of triglyceride, meaning that it is
relatively cholesterol-poor and thus less dense compared to LDL and HDL. After VLDL
is secreted by the liver and remodelled through the lipolytic process (discussed further in

Section 1.4.2.2.2), the resulting remnant particle, sometimes called intermediate-density

lipoprotein (IDL), is smaller, more dense and more cholesterol-rich. However, IDL is not

usually considered as a primary carrier of either lipid.
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Figure 1.8 Lipid and apolipoprotein composition of lipoprotein classes.

This diagram shows the cross-sectional view of different lipoproteins. Lipoproteins are
complex macromolecules made up of different combinations of lipids—free cholesterol,
cholesteryl ester, phospholipid, triglyceride—and apolipoproteins. The major
apolipoprotein constituents are shown for each lipoprotein. Abbreviations: apo =
apolipoprotein; A = apo(a); A-l1 =apo A-I; A-V =apo A-V; B-48 = apo B-48; B-100 = apo
B-100; C-1l = apo C-II; C-11l = apo C-1lI; E = apo E; HDL = high-density lipoprotein; IDL
= intermediate-density lipoprotein; LDL = low-density lipoprotein; Lp(a) = lipoprotein(a);
VLDL = very-low-density lipoprotein. Biological images adapted from
https://biorender.com/.
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Figure 1.9 Lipoprotein classes and their physical characteristics.

Lipoproteins are classified based on size (diameter, nm) and density (g/mL). These
characteristics are driven by a particle’s composition of lipids and apolipoproteins (Figure
1.8). Abbreviations: HDL = high-density lipoprotein; IDL = intermediate-density
lipoprotein; LDL = low-density lipoprotein; Lp(a) = lipoprotein(a); VLDL = very-low-
density lipoprotein. Biological images adapted from https://biorender.com/.
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1.4.2.1 High-density lipoprotein

HDL is a heterogenous particle comprised of both apolipoproteins and lipids. As the
smallest and densest of the lipoproteins, more than half of an HDL particle is protein-
based; apo A-l is the defining protein of HDL and is the main structural component
(Fisher et al., 2012). There is substantial intra-particle variation, with differences in
composition, size, and charge, prompting the further subclassification of HDL particles
into HDL2 (larger and less dense) and HDL3 (smaller and more dense) (Fisher et al.,
2012; Tosheska-Trajkovska and Topuzovska, 2017). Despite this distinction, when
referring to circulating levels of HDL cholesterol in an individual, this measurement
encompasses the total amount of cholesterol associated to all types of HDL particles. The
primary physiological role of HDL is to transport cholesterol from peripheral tissues to
the liver for eventual excretion in a process called “reverse cholesterol transport”; this
transport pathway largely overlaps the natural HDL lifecycle (Figure 1.10) (Ouimet et
al., 2019), which is explained in Section 1.4.2.1.2.

1.4.21.1 High-density lipoprotein lifecycle

The synthesis of HDL particles begins with the production of apo A-I from hepatic and
intestinal sources (Fisher et al., 2012; Tosheska-Trajkovska and Topuzovska, 2017). Free
apo A-I has a high affinity for cholesterol and becomes lipidated following the expulsion
of free cholesterol and phospholipids from peripheral tissues by ATP-binding cassette
transporter A1 (ABCAL) (Fisher et al., 2012; Tosheska-Trajkovska and Topuzovska,
2017). The newly lipid-associated apo A-I takes on a discoidal shape and is considered a
nascent HDL particle. From here, hepatically-synthesized circulating lecithin-cholesterol
acyltransferase (LCAT) esterifies the free cholesterol of nascent HDL following its
activation by apo A-1 (Fisher et al., 2012; Tosheska-Trajkovska and Topuzovska, 2017).
This prompts a structural change of the lipoprotein into a more spherical shape due to the
increased cholesteryl ester content, which marks the transition of nascent HDL into
HDL3 (Tosheska-Trajkovska and Topuzovska, 2017). When HDL3 undergoes further
esterification by LCAT and acquires additional phospholipids via phospholipid transfer
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protein (PLTP), the lipoprotein matures into an HDL2 particle (Albers et al., 2012;
Daniels et al., 2009; Tosheska-Trajkovska and Topuzovska, 2017).

Following maturation into HDL2, the particle is additionally modified by CETP, which
originates from both hepatocytes and adipocytes (Daniels et al., 2009; Tosheska-
Trajkovska and Topuzovska, 2017). CETP is the main protein involved in the transfer of
cholesteryl esters from HDL2 particles to triglyceride-rich lipoproteins in exchange for
triglyceride (Tosheska-Trajkovska and Topuzovska, 2017). Because of the increased
triglyceride content, this triglyceride-carrying HDL2 particle becomes a target for hepatic
lipase (HL), a hepatically secreted enzyme that hydrolyzes triglyceride molecules into
free fatty acids (Tosheska-Trajkovska and Topuzovska, 2017). These particles may be
further targeted by endothelial lipase (EL), which works to hydrolyze the phospholipids
of HDL2 (Paradis and Lamarche, 2006). Together, HL and EL help generate smaller
HDL particles, often back into the HDL3 subclass (Daniels et al., 2009; Tosheska-
Trajkovska and Topuzovska, 2017; Yu et al., 2018).

HDL3 particles bind with high affinity to scavenger receptor class B type | (SR-BI)
located on the cell surface of many tissues, particularly the liver (Tosheska-Trajkovska
and Topuzovska, 2017). Cholesteryl esters dissociate from the particle and are moved

into the liver for delivery from peripheral tissues.
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Figure 1.10 Metabolic lifecycle of HDL particles.

After lipidation, apo A-I particles and associated lipid molecules take on a discoidal shape
and become nascent HDL. Further modification by LCAT leads to particle maturation into
HDL3. HDL3 particles can either interact with hepatic SR-BI and lose some of its
cholesteryl ester content, or mature into HDL2 after further modification by PLTP and
LCAT. HDL2 particles can exchange lipid content with triglyceride-rich lipoproteins via
CETP, and then be modified by HL and EL, back into HDL3 particles. Abbreviations:
ABCA1 = ATP-binding cassette transporter Al; apo = apolipoprotein; A-l1 = apo A-l; CE
= cholesteryl ester; CETP = cholesteryl ester transfer protein; EL = endothelial lipase; FC
= free cholesterol; HDL = high-density lipoprotein; HL = hepatic lipase; IDL =
intermediate-density lipoprotein; LCAT = lecithin-cholesterol acyltransferase; P =
phospholipid; PTLP = phospholipid transfer protein; SR-Bl = scavenger receptor class B
type I; TG =triglyceride; VLDL = very-low-density lipoprotein. Biological images adapted
from https://biorender.com/.
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1.4.2.1.2 Reverse cholesterol transport

The reverse cholesterol transport pathway encompasses the movement of excess cellular
cholesterol—following the HDL lifecycle—out of peripheral tissues by HDL and its
delivery to the liver for excretion or recycling into bile acids and salts (Ouimet et al.,
2019). The transport of cholesterol out of macrophages has been a focus of interest
related to risk for ASCVD—cholesterol-laden macrophages can develop into foam cells,

which are a prominent component of atherosclerotic lesions in the vascular wall.

A measure of the reverse cholesterol transport process is tied to an HDL particle’s ability
to accept cholesterol: this measure of HDL functionality is referred to as “cholesterol
efflux”. There is a strong inverse correlation between HDL cholesterol efflux and
ASCVD that is independent from HDL cholesterol levels (Khera et al., 2011); as such,
this functional metric of HDL has been shown to be a better measure of ASCVD risk
compared to measurable levels of HDL cholesterol (Rader and Hovingh, 2014).

1.4.2.2  Triglyceride-rich lipoproteins

Measured circulating triglyceride levels represent the integrated measurement of
triglyceride molecules carried by all circulating triglyceride-rich lipoprotein species:
chylomicrons, VLDL, and their metabolic remnants, including IDL. To a much lesser
degree, triglyceride is carried within the main cholesterol-carrying lipoproteins, but the
contribution of their triglyceride content to the total plasma measurement is miniscule
(Dron and Hegele, 2017b).

There are two distinct classes of triglyceride-rich lipoproteins: (i) those containing apo B-
48 (chylomicrons and remnants) (Figure 1.11), and (ii) those containing apo B-100
(VLDL, IDL, and remnants) (Figure 1.12). While certain proteins are involved in both
metabolic pathways, the lifecycle of these lipoproteins are largely independent, with
intestinal and hepatic origins, respectively (Feingold and Grunfeld, 2000).
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Figure 1.11 Metabolic lifecycle of chylomicrons and their remnant particles.
Chylomicrons are assembled in the intestine, with apo B-48 as the structural scaffold. After
entering circulation, additional apolipoproteins are added to the particle. Within the
vasculature, endothelial-bound LPL hydrolyzes triglycerides from circulating
chylomicrons after interactions with apo C-Il and apo A-V. Apo C-llI inhibits the
hydrolytic action of LPL. The resultant chylomicron remnant loses additional triglyceride
content due to HL, and once enriched in apo E, can interact with hepatic LDLR and LRP1
for uptake into the liver. Abbreviations: apo = apolipoprotein; A-I = apo A-I; A-1V = apo
A-1V; A-V = apo A-V; B-48 = apo B-48; C-ll = apo C-II; C-Ill = apo C-lll; CE =
cholesteryl ester; E = apo E; GPIHBP1 = glycosylphosphatidylinositol-anchored high-
density lipoprotein binding protein 1; HL = hepatic lipase; LDLR = low-density lipoprotein
receptor; LMF1 = lipase maturation factor 1; LPL = lipoprotein lipase; LRP1 = LDL-
related 1 protein; MTP = microsomal triglyceride transfer protein; P = phospholipid; TG =
triglyceride. Biological images adapted from https://biorender.com/.



https://biorender.com/

48

Liver
HDL2
TG “ q‘
gD
CETP
3
(o)
/'/}
CE
)
VLDL
GPIHBP1
LPL
Endothelial
TG, P,FC cell

(/} IDL

{/) HL
LDL 6 CE < CETP >TG
¢ “

G
HDL2

Figure 1.12 Metabolic lifecycle of VLDL, IDL, and their remnant particles.

VLDL is assembled in the liver with apo B-100 as the structural scaffold. After entering
circulation, additional apolipoproteins are added to the particle. VLDL exchanges lipid
content with HDL2 via CETP. Within the vasculature, endothelial-bound LPL hydrolyzes
triglycerides from VLDL. The resultant IDL particles also exchange lipid content with
HDL2 via CETP and can either be taken up by the liver through interactions between apo
E and LDLR or LRP1, or can be further modified by HL, lose additional apolipoproteins,
and become LDL. Abbreviations: apo = apolipoprotein; B-100 = apo B-100; C-Il = apo C-
I1; C-111 = apo C-11I; CE = cholesteryl ester; CETP = cholesteryl ester transfer protein; E =
apo E; FC = free cholesterol; GPIHBP1 = glycosylphosphatidylinositol-anchored high-
density lipoprotein binding protein 1; HDL = high-density lipoprotein; HL = hepatic lipase;
IDL = intermediate-density lipoprotein; LDL = low-density lipoprotein; LDLR = low-
density lipoprotein receptor; LPL = lipoprotein lipase; LRP1 = LDL-related 1 protein; MTP
= microsomal triglyceride transfer protein; P = phospholipid; TG = triglyceride; VLDL =
very-low-density lipoprotein. Biological images adapted from https://biorender.com/.
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1.4.2.2.1 Chylomicron metabolism

Chylomicrons are the main lipoprotein responsible for delivering endogenously acquired
dietary fats to different areas of the body for energy utilization (Xiao et al., 2019).
Intestinally absorbed cholesterol and fatty acids are re-esterified into cholesteryl esters
and triglycerides, respectively. Meanwhile, APOB is transcribed within enterocytes and
edited by apo B mRNA editing enzyme catalytic subunit 1 (APOBEC-1), such that the
resultant mMRNA is translated into a protein that is 48% of the size of the original apo B-
100 protein, namely apo B-48 (Daniels et al., 2009), the main structural component of
chylomicrons. A combination of triglyceride, cholesteryl esters, and phospholipids are
assembled around the apo B-48 backbone by microsomal triglyceride transfer protein
(MTP) to form a pre-chylomicron particle (Daniels et al., 2009). Chylomicrons do not
become fully mature until they have moved from the endoplasmic reticulum to the Golgi
apparatus to the cytoplasm, where additional apolipoproteins, including apo A-I, A-1V,
and V, are added (Xiao et al., 2019). Fully matured chylomicrons are then able to enter
the lymphatic system and eventually enter the circulatory system through the jugular
vein; during this time, chylomicrons are modified through the addition of apo C-I11, C-Ill,
and E, which are relevant for downstream enzymatic interactions (Feingold and Grunfeld,
2000).

Once circulating, chylomicrons interact with lipoprotein lipase (LPL), the main enzyme
responsible for hydrolyzing triglyceride-rich lipoproteins. As an extracellular lipase, LPL
is anchored to the endothelial lining of vascular networks throughout adipose and muscle
tissue, and interacts with circulating lipoproteins (Lambert and Parks, 2012; Zilversmit,
1995). The catabolic action of LPL removes triglyceride from the core of chylomicrons,
where they can be stored as energy reserves in adipose or used for metabolic processing
in muscle (Boullart et al., 2012; Lambert and Parks, 2012). Through these actions,

triglyceride levels are endogenously maintained.

Apo C-1l and apo A-V are important constituents of chylomicron particles that are
required for LPL hydrolysis (Daniels et al., 2009; Feingold and Grunfeld, 2000; Hegele,
2016). As a co-factor for LPL, apo C-II is essential for the interaction between circulating
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chylomicrons and anchored LPL (Kei et al., 2012). And although its precise mechanism
of action is not clearly determined, apo A-V normally enhances LPL function indirectly
by interacting with glycosylphosphatidylinositol-anchored high-density lipoprotein
binding protein 1 (GPIHBP1) (Forte et al., 2016).

Other proteins are necessary for proper LPL functioning. Lipase maturation factor 1
(LMF1Y) is a chaperone bound to the endoplasmic reticulum that assists in the folding and
maturation of LPL (Doolittle et al., 2010). Another critical protein in the early stages of
the LPL life-cycle is GPIHBPL1. Following its interaction with LMF1, LPL is transported
and anchored to the endothelial lining of the vascular wall by GPIHBP1 (Young and
Zechner, 2013). When LPL dissociates from the cell surface through indirect inhibition of
angiopoietin-like protein 3 (ANGPTL3), triglyceride hydrolysis from triglyceride-rich
lipoproteins stops (Tikka and Jauhiainen, 2016).

Subsequent to the hydrolyzing action of LPL, chylomicron particles become smaller
remnant particles and lose apo C-II (Daniels et al., 2009; Feingold and Grunfeld, 2000).
With the resultant enrichment of apo E, chylomicron remnants undergo additional
remodelling by HL and are taken up by hepatocytes through endocytosis, mediated by the
LDL receptor (LDLR) and LDL-related 1 protein (LRP1), both of which have a binding
affinity for apo E (Daniels et al., 2009). The lipid molecules taken up by the liver are
hydrolyzed and can be used in VLDL synthesis, while apo E is released back into
circulation (Daniels et al., 2009).

1.4.2.2.2 Very-low-density lipoprotein metabolism

Endogenously synthesized lipids are transported out of the liver by VLDL. Since
APOBEC-1 is not expressed in hepatocytes, the full form of APOB can be produced,
namely apo B-100—the main structural component of both VLDL and LDL (Daniels et
al., 2009; Feingold and Grunfeld, 2000). Like in the intestine, hepatic MTP aggregates
triglyceride, cholesteryl esters, and phospholipids to the apo B-100 scaffold within the
rough endoplasmic reticulum to form the basis of VLDL particles (Feingold and
Grunfeld, 2000). As it matures throughout the cell, VLDL is released into circulation,
where these nascent particles take up apo C-I1, C-11I, apo E, and cholesteryl esters from
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HDL particles through interactions with CETP (Tosheska-Trajkovska and Topuzovska,
2017). At this point, hydrolysis of triglyceride molecules in VLDL by LPL mimics the

metabolic pathway described for chylomicrons in Section 1.4.2.2.1.

As VLDL decreases in size through catabolic interactions, it loses a number of surface
constituents, including phospholipids, free cholesterol, and apolipoproteins; these
remnant particles are referred to as IDL. IDL can interact further with CETP, exchanging
its triglyceride content for additional cholesteryl esters from HDL (Daniels et al., 2009).
At this point, IDL may either be taken up by the liver through interactions between apo E
and LDLR, or may undergo further triglyceride hydrolysis by HL and become an LDL
particle after losing any remaining apo E, C-Il, and C-111 molecules (Daniels et al., 2009).
The latter pathway allows for the delivery of cholesteryl esters to peripheral tissues via
LDL transport. The metabolic pathway for LDL particles will not be discussed, as it is

beyond the scope of this Dissertation.

1.5 Dyslipidemia

“Dyslipidemia” is defined as an extreme deviation of plasma lipid concentration, which is
often due to dysfunctional lipid-related biochemical products including receptors, adaptor
proteins, transporters, enzymes, and co-factors that disrupt the metabolic synthesis,
processing, function, or catabolism of lipoproteins (Hegele, 2009). Many genetic
factors—ranging in population frequency, ontology, and functional consequence—are
often responsible for these dysfunctional metabolic proteins (Hegele, 2009); however, in
some scenarios, a dyslipidemic profile can also be driven or exacerbated by non-genetic
factors such as lifestyle behaviours (Cole et al., 2015; Dron and Hegele, 2016; Hegele,
2009). Depending on the impacted lipoprotein(s), affected lipid trait(s), and additional

phenotypic features, a more specific dyslipidemia diagnosis may be given.

1.5.1 Genetics of dyslipidemia

There are 24 named dyslipidemias with a variety of genetic underpinnings (Table 1.1)
(Hegele et al., 2015). Most of these disorders were characterized at the molecular level
>10 years ago using classical biochemical and genetic mapping methods, which allowed

researchers to establish the important, casual genes related to each disease (Breslow,
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2000; Hegele et al., 2015); the encoded protein products of these mutated genes have
important roles in the metabolic pathway of relevant lipoprotein species, many of which
were described in Section 1.4. The rarity of these phenotypes are reflected by the
infrequency in which their causative genetic factors are seen in the general population.

The majority of dyslipidemia cases are polygenic, resulting from the contributions of
several types of genetic determinants that predispose an individual towards a more severe
presentation of a lipid trait (Dron and Hegele, 2018; Kathiresan et al., 2009).
Incompletely penetrant, rare variants in genes encoding lipid-related biochemical
products contribute to polygenic dyslipidemias by conferring a state of susceptibility in
carriers (Hegele, 2009). Often, these variants are seen at an increased frequency in
cohorts of dyslipidemia cases compared to cohorts of healthy controls; however, these
variants do not completely co-segregate with abnormal phenotypes in pedigrees.
Nonetheless, their strong statistical relationship with perturbed lipids in dyslipidemia
patients support their contributory role, although are not independently causative per se in
a particular individual (Dron and Hegele, 2018). This distinction reflects the difference
between determinism—i.e., rare variants directly cause specific monogenic dyslipidemia
phenotypes—uversus probability—i.e., rare variants act as polygenic contributors (among

other factors) leading to susceptibility to dyslipidemia.
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Table 1.1 Dyslipidemia phenotypes and their genetic etiologies.

Lipid

Genetic

phenotype Clinical diagnosis basis Gene(s)
Familial . Co-AD  LDLR; APOB; PCSK9
hypercholesterolemia
High LDL Hypercholesterolemia Polygenic
cholesterol Phenocopy of familial AD APOE
hypercholesterolemia AR LDLRAP1; LIPA
Sitosterolemia AR ABCG5; ABCG8
Abetalipoproteinemia * AR MTTP
AR; AD APOB”
Ic_r?c\),;lels_tgrlz)l Hypobetalipoproteinemia AD PCSK9
AR SAR1B
Combined hypolipidemia * AR ANGPTL3
High Lp(a) Hyperlipoproteinemia(a) Co-AD LPA
Tangier disease AR ABCA1
Apo A-l deficiency AR APOA1
'Er?g’;’e:{g'al Familial LCAT deficiency AR LCAT
Fish-eye disease AR LCAT
Hypoalphalipoproteinemia Polygenic
CETP deficiency AR CETP
SR-BI deficiency AR SCARB1
High HDL Hepatic lipase deficiency AR LIPC
cholesterol Endothelial lipase AR LIPG
deficiency
Hyperalphalipoproteinemia  Polygenic
Familial chylomicronemia AR LPL; LMF1; GPIHBP1;
syndrome APOA5; APOC2
Infantile ~ AR GPD1
hypertriglyceridemia
H_|gh : Dysbetalipoproteinemia AR; AD; APOE
triglyceride polygenic
Multifactorial Polygenic
chylomicronemia
Mild-to-moderate Polygenic
hypertriglyceridemia
L.OW . Hypotriglyceridemia AR; AD.; APOC3; ANGPTLS;
triglyceride ypotrigly polygenic ANGPTL4

“* denotes a phenotype that also has a low triglyceride levels. Abbreviations: apo = apolipoprotein;
AR = autosomal recessive; AD = autosomal dominant; CETP = cholesteryl ester transfer protein; co-
AD = co-dominant; HDL = high-density lipoprotein; LCAT = lecithin-cholesterol acyltransferase;
LDL = low-density lipoprotein; Lp(a) = lipoprotein(a); SR-BI = scavenger receptor class B type I.
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The more frequent polygenic contributor are common genetic variants that have high
population frequencies but individually modest influences on lipid traits. In aggregate,
multiple common variants with smaller effects can together increase susceptibility
towards a dyslipidemic state; this accumulation can be measured using polygenic scores,
described in Section 1.3.4.3. Early GWASs from the Global Lipids Genetics Consortium

(GLGC) were some of the first to identify common variants governing plasma lipids and

lipoproteins in essentially normolipidemic populations (Teslovich et al., 2010; Willer et
al., 2013). The 157 loci identified by the GLGC explain 10-20% of the total variation in
total cholesterol, LDL cholesterol, HDL cholesterol, and triglyceride levels (Willer et al.,
2013). Over the last decade, >260 loci associated with blood lipid traits have been
discovered using genetic association studies (Albrechtsen et al., 2013; Asselbergs et al.,
2012; Below et al., 2016; Chasman et al., 2009; Liu et al., 2017; Lu et al., 2017; Peloso et
al., 2014; Teslovich et al., 2010; Willer et al., 2013). A recent meta-GWAS conducted in
over 600,000 participants between the Million Veteran Program and GLGC cohorts
revealed an additional 118 novel loci associated with these traits (Klarin et al., 2018).In
addition to GWASs, exome-wide association studies have also successfully uncovered

genetic variants with small effects on blood lipid traits (Liu et al., 2017; Lu et al., 2017).

1.5.2  Abnormalities in high-density lipoprotein cholesterol levels

HDL cholesterol levels are normally distributed in the general population (Figure 1.13)
(Sachdeva et al., 2009). Extreme deviations in HDL cholesterol levels are often caused by
genetic determinants, while the typical variation observed for this phenotype can be due

to a combination of different genetic factors.

Generally, extremely low and high levels of HDL cholesterol are diagnosed as
hypoalphalipoproteinemia and hyperalphalipoproteinemia, respectively. Defining
thresholds for these phenotypes are dependent on age, sex and race. A typical threshold
for low HDL cholesterol levels in men and women are <1 mmol/L and <1.3 mmol/L,
respectively (Schaefer et al., 2016); a extreme deficiency in HDL cholesterol is
considered as levels <0.5 mmol/L (Schaefer et al., 2016). With respect to extremely high
HDL cholesterol levels, levels above the 5™ percentile based on age and sex are often

accepted.
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Figure 1.13 The genetic architecture underlying the spectrum of measurable HDL
cholesterol levels.

The distribution of HDL cholesterol levels has a normal distribution in the general
population; however, it is important to note that this distribution includes both males and
females, which have different thresholds for what is considered “low” and “high”. The
thresholds shown in this figure are not exact and are for illustrative purposes only. Studies
tend to focus on individuals with extreme HDL cholesterol levels, falling in the tail-ends
of the distribution, to better understand the genetic determinants driving these phenotypes.
Abbreviations: HDL = high-density lipoprotein.
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1.5.2.1 Hypoalphalipoproteinemia

Extremely low levels of HDL cholesterol are suggestive of metabolic issues related to the
inability to synthesize HDL particles. There are a number of monogenic syndromes for
hypoalphalipoproteinemia that are defined by the causative mutated gene: ABCA1,
APOAL, and LCAT.

Tangier disease is an autosomal recessive disorder caused by rare bi-allelic variants in
ABCAL (Schaefer et al., 2010). With substantial disruptions to both copies of the ABCA1
gene, the first stage in the development of HDL particles through lipidation of apo A-I
cannot occur. In addition to having extremely low, virtually absent HDL cholesterol
levels because of this functional deficit of ABCAL, individuals with Tangier disease also
have moderately elevated triglyceride levels, reduced LDL cholesterol levels, and can
present with both hepatosplenomegaly and enlarged, lipid-laden tonsils (Fredrickson et
al., 1961). As well, manifestations of the disease can include peripheral neuropathy,
corneal opacities, and an increased risk for CVD (Bale et al., 1971; Engel et al., 1967).

Another autosomal recessive disorder with an extremely low HDL cholesterol level
profile is apo A-1 deficiency, caused by rare bi-allelic variants in APOA1 (Schaefer et al.,
2010). In the absence of apo A-I particles—due to either a decrease in expression or
dysfunctional forms of the proteins—HDL particles cannot be synthesized, as there is no
protein available for lipidation of free cholesterol exported out of cells via ABCAL.
Beyond undetectable levels of apo A-I and severely decreased HDL cholesterol levels, a
collection of clinical manifestations have been observed in patients, including xanthomas,
cerebellar ataxia, corneal arcus and opacification, and premature CVD (Matsunaga et al.,
1991; Ng et al., 1994; Santos et al., 2008c).

Familial LCAT deficiency (FLD) and fish-eye disease (FED) are two additional
autosomal recessive disorders caused by rare bi-allelic variants in LCAT (Schaefer et al.,
2016; Schaefer et al., 2010). The disorders differ depending on which lipoproteins are
impacted by the dysfunctional LCAT activity: (i) FLD encompasses issues impacting

HDL and apo B-containing lipoproteins, and (ii) FED encompasses issues impacting only
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HDL (Schaefer et al., 2016). Given the shared molecular disease etiology, there are a
number of overlapping clinical features between FLD and FED in addition to decreased
HDL cholesterol levels, including corneal opacification, elevated triglyceride and LDL
levels, and risk for CVD later in life (Gjone et al., 1974; Norum and Gjone, 1967; Santos
et al., 2008a; Schaefer et al., 2016; Schaefer et al., 2010). Since FLD impacts more
lipoproteins, additional clinical features have been observed, including anemia and

proteinuria (Norum and Gjone, 1967).

Beyond the aforementioned syndromes, in non-monogenic instances of
hypoalphalipoproteinemia, an increased prevalence of heterozygous rare variants in
ABCAL, APOA1, and LCAT has been observed (Candini et al., 2010; Cohen et al., 2004;
Holleboom et al., 2011; Kiss et al., 2007; Motazacker et al., 2013; Sadananda et al., 2015;
Santos et al., 2008a; Santos et al., 2008b; Santos et al., 2008c; Schaefer et al., 2016;
Singaraja et al., 2013; Tietjen et al., 2012; Wada et al., 2009). Damaging variants
disrupting these genes may impact the synthesis and modification of HDL particles that
lead to an overall lower circulating HDL cholesterol concentration. While these variants
are not deterministic and are not guaranteed to cause hypoalphalipoproteinemia, they are
instead probabilistic and increase an individual’s susceptibility towards deceased

concentrations of HDL cholesterol.

In addition to heterozygous rare variants, the polygenic aggregation of common SNPs
associated with HDL cholesterol levels can modulate further an individual’s
susceptibility towards the hypoalphalipoproteinemia phenotype; dozens of SNPs have
shown significant associations to HDL cholesterol levels across many GWASs
(Albrechtsen et al., 2013; Asselbergs et al., 2012; Below et al., 2016; Chasman et al.,
2009; Liu etal., 2017; Lu et al., 2017; Peloso et al., 2014; Teslovich et al., 2010; Willer
et al., 2013). While each individual SNP may have only a small overall phenotypic
impact, the aggregated effects from multiple SNP alleles associated with lower HDL
cholesterol levels may substantially alter the HDL cholesterol phenotype; this
aggregation can be quantified using a polygenic risk score (Aulchenko et al., 2009;
Buscot et al., 2016; Justesen et al., 2015; Latsuzbaia et al., 2016; Lutsey et al., 2012;
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Paquette et al., 2017; Piccolo et al., 2009; Raffield et al., 2013; Teslovich et al., 2010;
Tikkanen et al., 2011; Zubair et al., 2014).

1.5.2.2 Hyperalphalipoproteinemia

Extremely elevated HDL cholesterol levels can be caused by dysfunctional proteins in the
HDL metabolic pathway due to genetic variation in CETP, SCARB1, LIPC, and LIPG.

CETP deficiency was first observed in Japanese kindreds and was found to be due to
loss-of-function variants in CETP (Brown et al., 1989; Inazu et al., 1990; Yamashita et
al., 1988). Normally, CETP facilitates the exchange of cholesteryl esters for triglycerides
between HDL particles and apo B-containing lipoproteins (Tosheska-Trajkovska and
Topuzovska, 2017). When this process is hindered, HDL particles retain their cholesterol
content and the overall concentration for HDL cholesterol begins to increase; this
mechanism was pharmacologically mimicked using CETP inhibitors—small molecules
that prevented the normal functioning of CETP (Tall and Rader, 2018). While both
longevity and a reduction in CVD risk are phenotypic outcomes that have been associated
with CETP deficiency (Milman et al., 2014), there are also reports of individuals being at
an increased CVD risk despite elevations in HDL cholesterol levels (Hirano et al., 1995;
Hirano et al., 2014).

Disruptions to SCARB1, another HDL -associated gene, have similar outcomes to what
has been described for CETP deficiency. As a receptor for HDL, reductions in either the
expression or activity of SR-BI decreases hepatic uptake of HDL-associated cholesteryl
esters, which results in the increased plasma concentration of HDL cholesterol (Hoekstra
et al., 2010). In mice, an overexpression of SR-BI leads to a decrease in HDL cholesterol
levels (Ji et al., 1999; Kozarsky et al., 1997; Ueda et al., 1999; Wang et al., 1998), while
deletions of the gene cause increased levels (Brundert et al., 2005; Varban et al., 1998).
Importantly, a human individual with extremely high levels of HDL cholesterol was
found to carry a rare, homozygous missense variant in SCARB1 (Zanoni et al., 2016). In
both the knockout mice and homozygous human carrier, atherosclerotic plaque

progression was observed, despite the elevated HDL cholesterol profile.
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LIPC, encoding HL, is also closely related to HDL cholesterol levels. SNPs both in and
around the LIPC locus have been associated with elevations in HDL cholesterol levels
and decreases in HL activity (Guerra et al., 1997; Hodoglugil et al., 2010; McCaskie et
al., 2006; Zambon et al., 1998). A decrease in HL function results in a decrease in
catabolism of HDL particles through reductions in triglyceride hydrolysis and
phospholipid lipolysis (Feitosa et al., 2009); this decrease in function results in elevations
of HDL particles and by association, HDL cholesterol levels. Similarly, EL encoded by
LIPG is another lipase in which a reduction in its activity leads to elevated HDL
cholesterol levels. Many genetic variants in LIPG have shown strong associations with
HDL cholesterol levels (deLemos et al., 2002; Edmondson et al., 2009; Tietjen et al.,
2012), and a functional analysis of loss-of-function LIPG variants showed that the
resultant decrease in EL activity contributed towards the overall elevation in HDL

cholesterol levels (Singaraja et al., 2013).

Like hypoalphalipoproteinemia, hyperalphalipoproteinemia is largely influenced by
variants disrupting canonical HDL metabolism genes, both rare and common. Elsewhere
in the genome, SNPs identified through GWASs have also been associated with small
elevations in levels of HDL cholesterol (Albrechtsen et al., 2013; Asselbergs et al., 2012;
Below et al., 2016; Chasman et al., 2009; Liu et al., 2017; Lu et al., 2017; Peloso et al.,
2014; Teslovich et al., 2010; Willer et al., 2013). A polygenic basis for
hyperalphalipoproteinemia has been reported (Motazacker et al., 2013), which aligns
with the genetic architecture described for the opposing HDL cholesterol phenotype.
Despite being on opposite ends of the phenotypic spectrum, as extremes of the same trait,
it is unsurprising that similar types of genetic determinants appear to underlie both
hyperalphalipoproteinemia and hypoalphalipoproteinemia.

1.5.3  Abnormalities in triglyceride levels

Fasting triglyceride levels follow a right-skewed distribution in the general population
(Figure 1.14). While both environmental and genetic factors can influence triglyceride
levels, the more extreme phenotypes primarily have a genetic basis, ranging from rare to
common variants with varying phenotypic impacts (Hegele et al., 2009; Johansen et al.,
2010; Wang et al., 2008a; Wang et al., 2008b; Wang et al., 2007). The precise assortment
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of variants differ among individuals; those with a greater quantitative and qualitative
burden of triglyceride-raising variants are assumed to be predisposed to more severe
pathological triglyceride elevations. Conversely, individuals with an extreme absence of
these triglyceride-raising variants instead possess an extreme burden of triglyceride-
lowering variants and are more likely to present with very low triglyceride

concentrations.
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Figure 1.14 The genetic architecture underlying the spectrum of measurable
triglyceride levels.

The distribution of triglyceride levels has a positive skew in the general population. Normal
levels of triglyceride are considered to be less than 2.0 mmol/L. Individuals with
triglyceride levels between 2.0 to 9.9 mmol/L are diagnosed with mild-to-moderate
hypertriglyceridemia, while individuals with triglyceride levels above 10.0 mmol/L are
diagnosed with severe hypertriglyceridemia. Studies tend to focus on individuals with
hypertriglyceridemia to better understand the genetic determinants driving this extreme
phenotype.
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1.5.3.1 Hypertriglyceridemia

A clinical diagnosis of “hypertriglyceridemia” is usually made by applying threshold
values to the distribution of plasma triglyceride levels (Hegele et al., 2014). Different
consensus committees recommend various threshold values for such discrete
classifications as mild-to-moderate and severe hypertriglyceridemia (Hegele et al., 2014).
From the Canadian Heart Health Surveys, the mean overall triglyceride level in adults is
1.6 mmol/L (Connelly et al., 1999). A level of 2.0 mmol/L represents about the 75"
percentile, while a level of 3.3 mmol/L represents the top 95" percentile (Connelly et al.,
1999; Johansen et al., 2011a); however, these thresholds can vary between geographic

areas and jurisdictions, and can also be dependent on age, sex, and race.

1.5.3.1.1 Severe hypertriglyceridemia

Severe hypertriglyceridemia is defined as total plasma triglyceride >10 mmol/L (885
mg/dL). Such an extreme elevation in triglyceride levels typically signals the persistence
of large intestinally-derived chylomicrons, particularly in the fasting state, when these
particles otherwise should have been physiologically cleared (Lewis et al., 2015).
Chylomicrons, with their high ratio of volume-to-surface area, present the most direct
physical mechanism to achieve severe hypertriglyceridemia (Brahm and Hegele, 2013;
Brahm and Hegele, 2015); as such, severe hypertriglyceridemia is often referred to as
“chylomicronemia” to better describe this abnormal lipoprotein content. Elevations of the
remaining classes of smaller triglyceride-rich lipoproteins can further augment the
phenotype and may have larger roles in potential risk for CVD, discussed in the
upcoming Section 1.5.3.1.3.

1.5.3.1.1.1 Familial Chylomicronemia Syndrome

Familial chylomicronemia syndrome (FCS) is the monogenic form of severe
hypertriglyceridemia and follows a classic autosomal recessive inheritance pattern
(Brahm and Hegele, 2015). FCS is extremely rare in the population, with a prevalence of
1in 100,000-1,000,000 individuals (Brahm and Hegele, 2013; Brahm and Hegele, 2015;

Gotoda et al., 2012). Clinical diagnosis can occur between infancy and early adulthood
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(Brahm and Hegele, 2013; Brahm and Hegele, 2015). An accumulation of triglyceride-
rich chylomicrons starting at birth may lead to manifestation of clinical features including
failure to thrive, lipemia retinalis, recurrent abdominal pain, nausea, vomiting,
hepatosplenomegaly, and eruptive xanthomas on the trunk, extremities and buttocks
(Feoli-Fonseca et al., 1998; Rahalkar and Hegele, 2008). Of these, the most serious
complication is the increased risk of acute pancreatitis and its 5-6% associated mortality
rate (Brahm and Hegele, 2015). A number of less common features may also appear and
include anemia, diarrhea, intestinal bleeding, irritability, seizures, and encephalopathy
(Feoli-Fonseca et al., 1998; Rahalkar and Hegele, 2008).

As an autosomal recessive disease, the molecular basis underlying FCS involves the
presence of rare, bi-allelic variants in the canonical triglyceride metabolism genes that
exert large, disruptive effects on triglyceride hydrolysis. Specifically, variants that
compromise the regulation or function of the LPL enzyme and impede the breakdown of
chylomicrons, leading to extreme deviations of triglyceride levels from normal (Chokshi
et al., 2014). The most common form of FCS—making up 95% or more of cases—results
from bi-allelic variants within the LPL gene itself. Monogenic disruptions of related
genes encoding factors that interact with LPL including LMF1, GPIHBP1, APOC2, and
APOAS5, are much less frequent than bi-allelic LPL variants and affect a total of <100
reported families worldwide (Brahm and Hegele, 2015).

1.5.3.1.1.2 Multifactorial Chylomicronemia

In contrast to FCS, multifactorial chylomicronemia (MCM) is much more common,
complicated and nuanced due to its polygenic nature (Chait and Eckel, 2019). Based on
the reported Canadian prevalence of adults with severe hypertriglyceridemia, the
estimated population prevalence of MCM is roughly 1 in 600-1,000 individuals (Dron
and Hegele, 2020; Johansen et al., 2011a). Because lipolysis activity is only partially
compromised by polygenic determinants, MCM encompasses a much broader population
of elevated triglyceride-rich lipoprotein and remnant species than FCS, including
chylomicrons, VLDL, IDL, and remnant particles. These mechanistic discrepancies are
also reflected in different clinical features between monogenic FCS and polygenic MCM.

For instance, onset of polygenic chylomicronemia typically begins in adulthood, and
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while patients are likely to experience recurrent abdominal pain, nausea, and vomiting as
in the monogenic form, they are less likely to present lipemia retinalis, and eruptive
xanthomas (Brahm and Hegele, 2015; Chait and Eckel, 2019). In addition, while the
absolute risk of acute pancreatitis is high, it occurs less commonly in MCM than in FCS;
some estimates are ~10-20% over a lifetime, while rates in FCS have been estimated at
~60-80% (Baass et al., 2020; Gotoda et al., 2012). Not surprisingly, the differences in
these clinical manifestations and their underlying molecular mechanisms are attributable
to the complex nature of polygenic inheritance, as there is a wider range of potential

permutations of genetic factors.

MCM is polygenic in nature, and unlike FCS, relevant genetic factors are probabilistic in
that they increase the risk of developing MCM, but do not guarantee its clinical

expression.

Rare loss-of-function variants in LPL, LMF1, GPIHBP1, APOAS5, and APOC2 are
important genetic contributors to MCM; however, many heterozygotes for such
dysfunctional variants have normal lipid profiles (Johansen et al., 2011b; Surendran et al.,
2012); a secondary factor is required to drive expression of the severe phenotype. Not
only are patients with MCM more likely to carry disruptive heterozygous variants in
these canonical genes, they are also more likely to carry rare variants in non-canonical
genes involved in triglyceride metabolism (Johansen et al., 2010; Johansen et al., 2011b;
Johansen et al., 2012). For instance, CREB3L3 encoding the transcription factor cyclic
AMP-responsive element-binding protein H (CREBH), is an example of a gene that
impacts triglyceride levels and was discovered through the use of animal models (Lee et
al., 2011). In addition, GCKR encoding glucokinase regulatory protein, is an example of a
gene that harbors rare large-effect determinants of human triglyceride levels that was
initially identified as a common locus for triglyceride levels through GWAS (Rees et al.,
2014).

In addition to the accumulation of heterozygous rare variants within triglyceride-related
genes, another defining genetic feature of MCM is the increased burden of triglyceride-
associated SNPs (Teslovich et al., 2010; Wang et al., 2008b). Many GWASSs have
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successfully identified these common variants and their small phenotypic effects on
triglyceride levels (Albrechtsen et al., 2013; Asselbergs et al., 2012; Below et al., 2016;
Chasman et al., 2009; Liu et al., 2017; Lu et al., 2017; Peloso et al., 2014; Teslovich et
al., 2010; Willer et al., 2013). Several of these SNPs are within loci already known to be
involved in triglyceride metabolism, including LPL and APOAS5 (Kuivenhoven and
Hegele, 2014). Others were found in close proximity to genes that at the time were not
relevant, but were found to be in subsequent studies (i.e. GCKR); and many SNPs
identified were intergenic and may be important in regulatory processes. When
considering triglyceride-associated SNPs in MCM patients compared to normolipidemic
individuals, a distinct increase in SNP accumulation in these patients has been observed
(Johansen et al., 2010; Johansen et al., 2011b). Individually, each SNP has a slight
influence on triglyceride levels; however, when a substantial burden of multiple small-
effect variants is present in an individual, it can synergistically contribute towards an

overall large phenotypic effect.

The contributory effects coming from rare heterozygous variants with larger phenotypic
influences and the excessive accumulation of common variants scattered throughout the
genome, all work in concert to produce polygenic MCM due to perturbations of

chylomicrons, as well as other triglyceride-rich lipoproteins.

1.5.3.1.2 Mild-to-moderate hypertriglyceridemia

Mild-to-moderate hypertriglyceridemia is defined as total plasma triglyceride between
2.0 and 9.9 mmol/L (Hegele et al., 2014) and most often results from elevations of liver-
derived, triglyceride-rich lipoprotein species such as VLDL and their remnants, rather
than chylomicrons. Thus, factors related to biosynthesis, secretion and catabolism of
VLDL would be relatively more important in susceptibility for mild-to-moderate
hypertriglyceridemia. In contrast, factors related to biosynthesis, secretion and catabolism
of chylomicrons are relatively more important in susceptibility to severe
hypertriglyceridemia, although there is considerable overlap with factors that modulate

VLDL levels, particularly on the catabolic side (Dron and Hegele, 2016).
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Unsurprisingly, a similar general architecture of genetic susceptibility is seen in patients
with mild-to-moderate hypertriglyceridemia and in patients with polygenic MCM (Dron
and Hegele, 2016; Hegele et al., 2014; Johansen et al., 2011b). This includes: (i) higher
odds of carrying a heterozygous rare variant in one of the five canonical metabolism
genes (Johansen et al., 2010; Johansen et al., 2011b; Johansen et al., 2012; Surendran et
al., 2012); and (ii) an increased cumulative burden of small-effect SNPs (Johansen et al.,
2011b). The relative burden of these factors together with secondary non-genetic factors
may determine the severity of the phenotype between individuals (Dron and Hegele,
2016; Hegele et al., 2014).

1.5.3.1.3 Hypertriglyceridemia and risk for cardiovascular
disease
The relationship between hypertriglyceridemia and CVD stems from the disturbed
lipoprotein fractions in the individual. Mild-to-moderate hypertriglyceridemia is
associated with a higher risk for CVD because the predominantly disturbed lipoproteins
are VLDL and IDL (Brahm and Hegele, 2015). These triglyceride-rich lipoprotein
species of hepatic origin are atherogenic in nature due to their increased cholesterol
content compared to chylomicrons, as this cholesterol can contribute towards the build-up
of atherosclerotic lesions (Varbo and Nordestgaard, 2016). This is a modernization of the
seminal Zilversmit hypothesis, an early articulation of the atherogenic role of
triglyceride-rich lipoproteins (Zilversmit, 1995): according to this model, triglyceride-
rich lipoproteins are metabolically independent of LDL cholesterol in atherogenesis, and

act additively to further increase CVD risk.

From the distribution of triglyceride levels within the population, most patients with
hypertriglyceridemia fall within the mild-to-moderate range, and thus any potential
atherosclerosis risk is tied to elevations in VLDL and IDL particles. At higher strata of
triglyceride levels, chylomicrons and their remnants begin to predominate. In this
important but much less prevalent subgroup, it has been more or less axiomatic that
chylomicrons are too large to penetrate the arterial wall (Chait and Brunzell, 1992; Lewis
et al., 2015). However, chylomicron remnants, especially on the smaller end of the

spectrum, may contribute to atherogenesis since they are smaller in size and may be able
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to directly contribute their cholesterol towards atherosclerotic lesions after passing

through the arterial wall (Lewis et al., 2015).

Thus, among the diverse range of patients with hypertriglyceridemia, those with
monogenic impairment of triglyceride hydrolysis would primarily have chylomicronemia
because the deficiency in LPL activity prevents their catabolism, and would be at a
relatively low risk for atherosclerosis. In contrast, among individuals with the same
degree of triglyceride elevation due to varied polygenic plus secondary factors, the
spectrum of triglyceride-rich particles is much more diffuse, and includes many remnant
particles, since lipolysis is not completely impaired (Johansen and Hegele, 2012). Here
one could postulate that atherosclerosis risk is increased, due to the relative abundance of

atherosclerosis-related remnants.

1.5.3.2 Hypotriglyceridemia

Hypotriglyceridemia is defined as very low or absent triglyceride levels. As with
hypertriglyceridemia, genetic determinants of hypotriglyceridemia include ultra-rare
monogenic syndromic disorders that are associated with a range of other lipoprotein,
biochemical and clinical abnormalities, such as abetalipoproteinemia and homozygous
hypobetalipoproteinemia, which result, respectively, from bi-allelic variants in MTTP and
APOB (Hegele, 2009). Importantly, heterozygotes for MTTP loss-of-function variants

have no obvious clinical or biochemical phenotypes.

Non-syndromic forms of hypotriglyceridemia have been reportedly driven by
deficiencies of apo C-I1l and ANGPTL3, which result from bi-allelic variants in APOC3
and ANGPTL3, respectively (Musunuru et al., 2010; Pollin et al., 2008). Carriers for
heterozygous loss-of-function variants in these genes, as well as in the ANGPTL4 gene,
have been reported to have significantly lower triglyceride levels and a decreased risk for
CVD (Dewey et al., 2016; Jorgensen et al., 2014; Myocardial Infarction et al., 2016;
Pisciotta et al., 2012; Romeo et al., 2007; Stitziel et al., 2017; Tg et al., 2014).
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1.6 Genetic assessment of dyslipidemia

Historically, genetic researchers have availed themselves of the prevalent genetic
technologies of any particular era. The low-hanging fruit—rare large-effect variants (i.e.
highly penetrant, disease-causing mutations)—uwere first identified by studying kindreds
containing individuals with clinically diagnosed dyslipidemia syndromes (Dron and
Hegele, 2016; Hegele, 2009). In that era, Sanger sequencing was used to identify rare
variants in candidate genes—sometimes highlighted through linkage analysis—driving
monogenic forms of dyslipidemia (Dron and Hegele, 2016). The effects of these variants
are so strong and highly penetrant that they faithfully co-segregate with disease
phenotypes across generations; their pathogenicity can be inferred by studying only a few

individuals or families.

Over the last decade, the focus has shifted towards studying the influence of SNP
genotypes on inter-individual variation of lipid traits in the general population. In contrast
to rare large-effect variants, the weak and inconsistent effects of common SNPs are
difficult to ascertain in families. Their modest phenotypic effects underlie low phenotypic
penetrance, with no obvious co-segregation across generations. The inconsistent
association of SNPs with lipid traits in small samples was also a feature of candidate
gene-association studies performed in the 1990's and early 2000's (Hegele, 2002). More
recently, aggregation and meta-analyses of large cohorts coupled with cost-effective,
microarray-based, high-throughput genotyping has enabled informative GWASs that
have revolutionized our understanding of the small phenotypic effects imparted by SNPs
(Christoffersen and Tybjaerg-Hansen, 2015).

GWASSs have allowed researchers to uncover common variants dispersed across the
genome—including intergenic and intronic regions—that are associated with small but
consistent phenotypic effects in essentially normolipidemic individuals. To date, over 300
SNPs with subtle effects on lipid or lipoprotein traits have been described (Albrechtsen et
al., 2013; Asselbergs et al., 2012; Below et al., 2016; Chasman et al., 2009; Klarin et al.,
2018; Liu etal., 2017; Lu et al., 2017; Peloso et al., 2014; Teslovich et al., 2010; Willer

et al., 2013). While many of the significantly associated loci were already well-known in
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the field, the majority of loci uncovered by GWAS had no previous known connection to

lipoprotein metabolism.

We are now well into the “post-GWAS” era, in which NGS technologies have become
more accessible in both clinical and research settings. Researchers can explore rare
variants in important genetic loci that arose from candidate gene studies and GWASs, and
can characterize rare large-effect variants in genes not previously known to be related to
lipid traits. The present genetic technological methods have brought the field to a point
where assessing multiple types of genetic factors across virtually all areas of the genome

is feasible.

1.6.1 LipidSeq: a targeted next-generation sequencing panel for
dyslipidemia phenotypes
One of the main objectives of the Hegele Lab is to uncover and understand the genetic
factors underlying the phenotypes of patients from the London Lipid Genetics Clinic.
Because the clinical practice encompasses all dyslipidemias and many metabolic
syndromes, a primary focus has been on disease ontology (Fu et al., 2013; Hegele, 2009;
Rahalkar and Hegele, 2008) and on documenting dyslipidemia-associated variants (Fu et
al., 2013). With this focused interest, a targeted NGS panel, called “LipidSeq”, was
designed to aid in the genetic diagnosis and research of this set of diseases and associated

genetic variants (Dron et al., 2020; Johansen et al., 2014).

Unlike whole-exome sequencing in which all genes are sequenced, or whole-genome
sequencing in which the entire genome is sequenced, the LipidSeq panel was designed to
target a specific subset of genes (Figure 1.15) underlying known dyslipidemias and other
disorders for which dyslipidemia is a secondary manifestation, such as inherited forms of
diabetes (Hegele, 2019; Johansen et al., 2014). With a high read-depth of coverage,
sequencing data generated from LipidSeq has allowed for the ability to concurrently
identify CNVs along with SNVs; previously, separate dedicated methods to identify
CNVs were required, such as multiplex ligation-dependent probe amplification (MLPA)
or microarrays (lacocca and Hegele, 2017, 2018). Furthermore, because of our

laboratory’s longstanding interest in the polygenic basis of plasma lipids (Hegele et al.,
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1995; Johansen et al., 2011b; Wang et al., 2008b), the panel was designed to
simultaneously genotype 185 SNP loci that were reported from early GWASSs to be
associated with lipid and lipoprotein levels (Kathiresan et al., 2009; Teslovich et al.,
2010; Willer et al., 2013). This focused interest on a subset of SNPs negated the need for
running full microarrays in conjunction with sequencing the phenotypically relevant

genes of interest.

Thus, LipidSeq is a targeted NGS panel that can be used to simultaneously detect: (i)
functionally relevant rare SNVs and CNVs in genes underlying monogenic
dyslipidemias; and (ii) SNPs associated with lipid and lipoprotein levels that can be used
to develop lipid-specific polygenic scores (Dron et al., 2020). This method allows for the
comprehensive assessment of a range of genetic determinants relevant to dyslipidemia
phenotypes. Until now, the assessment of genetic factors related to dyslipidemia were
dependent on the technology used: rare variants could only be identified through gene-
sequencing approaches like Sanger or whole-exome sequencing, while SNPs could only
be assessed using microarrays or Sanger sequencing of SNP loci. Short of performing
whole-genome sequencing—which was neither economically feasible for thousands of
patient samples, nor computationally feasible for large-scale bioinformatically analysis—
there were no effective methodological options for the in-depth genetic assessments of

dyslipidemia cohorts prior to the development of LipidSeq.
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HDL cholesterol Triglyceride LDL cholesterol
ABCA1 LIPG ANGPTL3* GCKR ABCG5 MTTP
ABCG1 LIPC APOA4 GPD1 ABCGS8 MYLIP
APOA1 SCARB1 APOAS GPIHBP1 ANGPTL3* NPC1L1
CETP PLTP APOC2 LMF1 APOB PCSK9
LCAT APOC3 LPL APOE* SAR1B
APOE™ MLXIPL LDLR SORT1
CREB3L3 PPARA LDLRAP1 STAP1

GALNT?2 TRIB1 LIPA

Lipodystrophy Diabetes Miscellaneous

AGPAT2 LMNB2 ABCC8 INS CAV2 PNPLA2
AKT2 LPINT BLK KCNJ11
BSCL?2 PLINT CEL KLF11

CAV1 POLD1 GCK NEUROD1

CIDEC PPARG HNF1A PAX4
DYRK1B PTRF HNF1B PDX1

LIPE WRN HNF4A

LMNA ZMPSTE24

Figure 1.15 Genes targeted by the LipidSeq panel.

The 69 genes that are targeted by LipidSeq panel, grouped by their associated lipid or
metabolic phenotype. Bolded genes were included in Table 1.1, as they have causal or
statistical associations with different named dyslipidemias. “*” denotes genes that appear
in multiple lipid categories. Abbreviations: HDL = high-density lipoprotein; LDL = low-
density lipoprotein.
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1.7 Thesis outline

1.7.1  Overall research aim and objectives

To date, independent studies have examined the genetic determinants underlying
different dyslipidemia phenotypes—hypoalphalipoproteinemia,
hyperalphalipoproteinemia, and hypertriglyceridemia. However, despite appreciation for
the range of genetic variation that influence phenotypic susceptibility, the comprehensive
genetic profile for each phenotype has not been objectively or rigorously quantified. It
stands to reason that a more detailed characterization of multiple genetic determinants—
rare SNVs, CNVs, and common SNPs—related to each dyslipidemia of interest will help
improve general academic knowledge of the full range of genetic factors driving these
phenotypes. With this information, concerted efforts can be made to establish methods to
better determine genetic risk for each dyslipidemia, with possible downstream

applications related to mitigating associated health risks like CVD.

The aim of my PhD research was to robustly characterize the genetic determinants of
hypoalphalipoproteinemia, hyperalphalipoproteinemia, and hypertriglyceridemia using

sequencing data generated from the targeted NGS panel, LipidSeq.

My first objective was focused on the phenotypic extremes of HDL cholesterol levels and
assessing the prevalence of rare SNVs and extreme accumulation of SNPs in
hypoalphalipoproteinemia and hyperalphalipoproteinemia patients compared to
normolipidemic individuals. Rare SNVs were screened for following a candidate gene
approach for each phenotype, and | developed a novel polygenic risk score to quantify
the accumulation of HDL cholesterol-associated SNPs. The details of these efforts are
provided in Chapter 2. After the release of a novel CNV detection algorithm, |
subsequently screened the study subjects from Chapter 2 for CNVs disrupting the same
candidate genes of interest. The details of this effort are provided in Chapter 3.

My second objective was focused on elevations in triglyceride levels and assessing the
prevalence of rare SNVs, CNVs, and the extreme accumulation of SNPs in severe

hypertriglyceridemia and mild-to-moderate hypertriglyceridemia patients, compared to
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normolipidemic individuals. Rare variants were screened for following a candidate gene
approach, and I developed a novel polygenic risk score to quantify the accumulation of

triglyceride-associated SNPs. The details of these efforts for severe hypertriglyceridemia

are provided in Chapters 4 and 5, while the details of these efforts for mild-to-moderate

hypertriglyceridemia are provided in Chapter 6.

My final objective was to employ a custom-designed bioinformatic pipeline (Appendix
L) to perform a gene-based RVAS in an attempt to identify rare variants in non-candidate
(i.e. “non-canonical”) genes that might be further contributing towards susceptibility
towards extreme elevations in triglyceride levels, namely, severe hypertriglyceridemia.

The details of these efforts are provided in Chapter 7.

1.7.2  Hypothesis

Extreme levels of circulating lipids, both HDL cholesterol and triglycerides, have
distinctive and genetically diverse architectures made up of discrete combinations of rare
SNVs and CNVs with larger phenotypic impacts and common SNPs with smaller
phenotypic effects, that cumulatively contribute towards polygenic susceptibility for (i)

hypoalphalipoproteinemia; (ii) hyperalphalipoproteinemia; or (iii) hypertriglyceridemia.

1.7.3 Summary

This Dissertation details my research related to uncovering and understanding the
comprehensive genetic profile of patients with either: (i) hypoalphalipoproteinemia; (ii)
hyperalphalipoproteinemia; or (iii) hypertriglyceridemia. To achieve this, I utilized the
LipidSeq targeted NGS panel to capture genetic variation—ranging from rare SNVs and
CNVs to common SNPs—across metabolically relevant genetic loci in over 3,000 patient
and control samples. Collectively, this work has furthered our understanding of the
genetic nature of the aforementioned phenotypes of interest. Importantly, my work has
highlighted a prominent polygenic underpinning for each dyslipidemia phenotype,
demonstrating the importance of considering common genetic variants—despite having
smaller phenotypic effects—in conjunction with heterozygous rare, large-effect variants
for an improved understanding towards genetic factors contributing towards the

susceptibility for extremes of either HDL cholesterol or triglyceride levels.
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Chapter 2 — Polygenic determinants in extremes of high-
density lipoprotein cholesterol

The work contained in this Chapter has been edited from its original publication in the
Journal of Lipid Research for brevity and to ensure consistency throughout this

Dissertation.
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2.1 Abstract

Objective: Levels of high-density lipoprotein (HDL) cholesterol remain a superior
biochemical predictor of cardiovascular disease risk, but its genetic basis is incompletely
defined. In patients with extreme HDL cholesterol concentrations, we concurrently
evaluated the presence of rare variants and the accumulation of multiple common

variants.

Methods and Results: In a discovery sample of 255 unrelated lipid clinic patients with
extreme HDL cholesterol levels, we used a targeted next-generation sequencing panel to
evaluate rare variants in known HDL metabolism genes, and simultaneously assessed the
burden of common variants using a novel polygenic risk score. Two additional cohorts
were used to validate our polygenic risk score, totaling 2,794 individuals. After
combining cohorts, we found rare variants in 18.7% and 10.9% of low and high HDL
cholesterol patients, respectively. We also found common variant accumulation—
indicated by extreme polygenic risk scores—in an additional 12.8% and 19.3% of overall

cases of low and high HDL cholesterol extremes, respectively.

Conclusions: The genetic basis of extreme HDL cholesterol concentrations encountered
clinically is comprised of both rare and common variants. Multiple types of genetic
variants should be considered as contributing factors in patients with extreme

dyslipidemia.

2.2 Introduction

Despite apprehension over its direct causal role in atherogenesis and value as a drug
target (Rosenson, 2016), high-density lipoprotein (HDL) cholesterol remains a valid
biochemical predictor of cardiovascular disease (CVD) risk (Emerging Risk Factors
Consortium et al., 2012; Parish et al., 2012; Perk et al., 2012). Understanding the full
range of factors that determine plasma HDL cholesterol concentrations, including
genetics, still has relevance for epidemiology and risk projection (Raffield et al., 2013).

Furthermore, specific etiologies of extreme perturbations of HDL cholesterol may have
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clinical importance in terms of diagnosis and directed therapies (Hovingh et al., 2015;
Rosenson, 2016).

Multiple genetic factors could be present in an individual, creating a polygenic network
of influential determinants on HDL cholesterol levels (Cohen et al., 2004; Hegele, 2009;
Motazacker et al., 2013). These determinants include monogenic disorders (Dron and
Hegele, 2016; Weissglas-Volkov and Pajukanta, 2010), such as extremely low or absent
HDL cholesterol levels (i.e. “hypoalphalipoproteinemia”) due to bi-allelic rare variants in
ABCAL, LCAT and APOAL (Brooks-Wilson et al., 1999; Kuivenhoven et al., 1996; Ng et
al., 1994; Schaefer et al., 2016), and extremely elevated HDL cholesterol levels (i.e.
“hyperalphalipoproteinemia”) due to rare variants in CETP, LIPC, SCARBL, and LIPG
(Hegele et al., 1993; Inazu et al., 1990; Tietjen et al., 2012; Zanoni et al., 2016). In
contrast, the potential role of other genetic determinants in extreme, non-monogenic HDL
cholesterol phenotypes, namely common single-nucleotide polymorphisms (SNPs)

(Rosenson, 2016), has not been systematically evaluated.

Polygenic factors—which can be assessed by quantifying the accumulation of SNPs with
small phenotypic effects using polygenic scores—contribute to numerous medical
conditions, including coronary artery disease (McPherson and Tybjaerg-Hansen, 2016)
and diabetes (Bonnefond and Froguel, 2015). Among dyslipidemias, polygenic factors
play a substantial role in familial hypercholesterolemia (FH) (Talmud et al., 2013), which
was previously considered an archetypal “monogenic” disorder. For instance, in patients
referred with extremely elevated low-density lipoprotein (LDL) cholesterol, targeted
next-generation sequencing (NGS) demonstrated that ~50% of individuals had
heterozygous rare variants while another ~16% had an accumulation of common SNPs,
identified previously from genome-wide association studies (GWASSs) as determinants of
LDL cholesterol (Wang et al., 2016). While earlier sequencing experiments indicate that
11-35% of patients with extremely low HDL cholesterol and 5-20% of patients with
extremely high HDL cholesterol have heterozygous rare variants driving the phenotypes,
the proportion of such patients with excessive GWAS-identified SNPs, as quantified

using polygenic risk scores, is unknown (Candini et al., 2010; Cohen et al., 2004;
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Holleboom et al., 2011; Kiss et al., 2007; Sadananda et al., 2015; Singaraja et al., 2013;
Tietjen et al., 2012).

Here we used targeted NGS to robustly characterize the genetic determinants influencing
HDL cholesterol levels in patients with low and high HDL cholesterol phenotypes. This
allowed us to concurrently evaluate the burden of rare variants and common SNPs, the
latter assessed using a polygenic score. We saw that ~30% of individuals at each HDL
cholesterol extreme had an identifiable genetic determinant, with an extreme SNP
accumulation being more common than the presence of a rare variant. Our findings
illustrate that both types of determinants are enriched in individuals with extremely low

and high HDL cholesterol levels compared to normolipidemic controls.

2.3 Materials and Methods
2.3.1  Study subjects

Patients of interest included those of European ancestry and with either low or high levels
of HDL cholesterol from the Lipid Genetics Clinic at the London Health Sciences Centre,
University Hospital (London ON, Canada), the Montréal Heart Institute (MHI) Biobank
(Montreal, QC, Canada), or the University of Pennsylvania (UPenn) (Philadelphia, PA,
USA).

Low HDL cholesterol was defined as <0.8 mmol/L and <1.0 mmol/L in males and
females, respectively. High HDL cholesterol was defined as >1.4 mmol/L and >1.8
mmol/L in males and females, respectively. These thresholds adhere closely to the top
and bottom 10" percentiles of HDL cholesterol levels in a population largely of European
ancestry (Rifkind and Segal, 1983). The two patient exclusion criteria were: 1)
triglyceride levels >3.37 mmol/L—as low HDL cholesterol can simply be secondary to
elevated triglycerides, which have their own distinct determinants—and 2) diagnosis of

monogenic syndromes of extreme HDL cholesterol (e.g. Tangier disease).

In adherence to the Declaration of Helsinki, all patients provided written, informed
consent for collection of personal data and DNA with approval from the Western
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University (London ON, Canada) ethics review board (no. 07290E) or the patients’

originating study centre.

As a reference control cohort of normolipidemic individuals, the publicly available data
pertaining to the European subgroup of the 1000 Genomes Project (N=503) were studied.
An additional 1,198 normolipidemic individuals were assessed from the MHI Biobank,

ascertained as previously described (Low-Kam et al., 2016).

2.3.2 DNA preparation and targeted sequencing

Genomic DNA was extracted from patient blood samples using the Puregene® DNA
Blood Kit (Gentra Systems, Qiagen Inc., Mississauga, ON, Canada) (Cat No. 158389).
Sequencing libraries consisting of 24 patient DNA samples were generated for indexing
and enrichment with the Nextera® Rapid Capture Custom Enrichment Kit (Cat No. FC-
140-1009) “LipidSeq” design (Johansen et al., 2014). Briefly, samples were enriched for
genomic areas in accordance with our “LipidSeq” panel, which captures 69 genes (all
exons, and 50 bases into the intron from each splice junction) and 185 SNPs associated
with dyslipidemia and other metabolic disorders (Figure 1.15) (Johansen et al., 2014).
These libraries were then sequenced at the London Regional Genomics Centre
(www.Irgc.ca; London ON, Canada) on an lllumina MiSeq personal sequencer (Illumina,
San Diego CA, USA).

Sequencing and genotyping methods performed at the MHI Biobank (Low-Kam et al.,
2016) and UPenn (Zanoni et al., 2016) are described elsewhere.

2.3.3 Bioinformatic processing of sequencing data

After sequencing, two FASTQ files were generated for each patient sample—one each
for sequencing reads generated for forward and reverse strands—and imported into CLC
Bio Genomics Workbench (version 7.5; CLC Bio, Aarhus, Denmark). For each patient
sample, the sequencing reads within each FASTQ file were mapped and aligned against
the human reference genome (GRCh37/hg19); a secondary local alignment was
performed to control for possible misalignment due to insertions or deletions not present

in the reference genome. Duplicate mapped reads due to PCR amplification from the
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library preparation were removed to ensure accurate depth-of-coverage metrics for each
sequenced nucleotide. From the reassembled sequencing reads, variants with a minimum
30-fold coverage and 35% variant frequency were called for each patient sample and
exported into VCF files (Dilliott et al., 2018; Johansen et al., 2014).

Sequence data from the European subset of the 1000 Genomes Project were downloaded
and filtered for the genomic coordinates captured by our LipidSeq panel using PLINK
v1.9 (Purcell et al., 2007).

2.3.4  Annotation and analysis of rare variants

Variants were annotated with a customized ANNOVAR annotation pipeline (Wang et al.,
2010). Annotation methods performed at the MHI Biobank (Low-Kam et al., 2016) and

UPenn (Zanoni et al., 2016) are described elsewhere.

Rare variants were defined as those with a minor allele frequency of <1% or missing in

the 1000 Genomes Project (http://browser.1000genomes.org/index.html) (Genomes

Project et al., 2015), Exome Sequencing Project (ESP;
http://evs.gs.washington.edu/EVS/), and Exome Aggregation Consortium (EXAC;

http://exac.broadinstitute.org/) (Lek et al., 2016) databases. Rare variants were considered

to have large phenotypic effects if they met the following criteria: 1) sequence ontology
of either missense, nonsense, deletion, insertion, splice-acceptor site, or splice-donor site;
and 2) deleterious or damaging predictions in at least half of the available in silico
prediction tools, including Polymorphism Phenotyping version 2 (PolyPhen2;
http://genetics.bwh.harvard.edu/pph2/) (Adzhubei et al., 2013), Sorting Intolerant from
Tolerant (SIFT; http://sift.jcvi.org/) (Kumar et al., 2009), MutationTaster

(http://www.mutationtaster.org/), Combined Annotation Dependent Depletion (CADD;

http://cadd.gs.washington.edu/score) (Kircher et al., 2014), Splicing Based Analysis of
Variants (SPANR; http://tools.genes.toronto.edu/) (Xiong et al., 2015), and Automated
Splice Site and Exon Definition Analyses (ASSEDA; http://splice.uwo.ca/) (Mucaki et
al., 2013).
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We also considered rare variants that did not necessarily meet the above criteria, but were
previously reported in the Human Gene Mutation Database

(http://www.hgmd.cf.ac.uk/ac/all.php) (Stenson et al., 2014) as causative for either

lowering or raising levels of HDL cholesterol.

Of the variants meeting the above criteria, those within lipid-associated genes with
candidate (primary) and non-candidate (secondary) effects on HDL cholesterol levels
were considered for analysis (Table 2.1). It is important to note that since the UPenn
cohort comes from an established on-going study (the UPenn High HDL Cholesterol
Study), the criteria used in identifying rare variants of interest differs slightly from what
was considered here (Edmondson et al., 2009; Zanoni et al., 2016). To ensure consistent
filtering criteria, the UPenn cohort was excluded from the rare variant analysis and was

only used in the validation of our polygenic score.


http://www.hgmd.cf.ac.uk/ac/all.php
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Table 2.1 Genes with candidate (primary) and non-candidate (secondary) influences
on HDL cholesterol levels.

Influence on

HDL cholesterol Phenotype Gene Related disorder
ABCA1l Tangier disease
Ic_rcl)(;/\lle:([a)rlal APOAL Apolipoprotein A-I deficiency
LCAT Familial LCAT deficiency
Primary LIPC Hepatic lipase deficiency
High HDL SCARB1 SR-BI deficiency
cholesterol CETP CETP deficiency
LIPG Hyperalphalipoproteinemia
tLriog;I;cheride APOC3 Apolipoprotein C-I11 deficiency
LPL Lipoprotein lipase deficiency
APOA2 Apolipoprotein C-I1 deficiency
Secondary . APOA5 Apolipoprotein A-V deficiency
High h . .
triglyceride LMF1 Lipase maturat_lon fac_tor dgflClency
GPIHBPI Severe hypertriglyceridemia
GPD1 Infantile hypertriglyceridemia
APOE Dysbetalipoproteinemia

Genes of interest were selected based on phenotypic reporting by Johansen et al. (2014). Abbreviation:
CETP = cholesteryl ester transfer protein; HDL = high-density lipoprotein; LCAT = lecithin-cholesterol
acyltransferase; SR-BI = scavenger receptor class B type I.
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2.3.5 Polygenic risk score for high-density lipoprotein cholesterol
levels
Between the LipidSeq targets and 1000 Genomes Project variant data, genotypes for 34
HDL cholesterol-associated SNPs were available for study; these SNPs were selected
from the most recent GWAS meta-analyses on blood lipids and lipoproteins, published
by the Global Lipids Genetics Consortium (GLGC) (Willer et al., 2013). A polygenic
score encompassing all available SNPs was calculated for patients in the discovery cohort
(i.e. the Lipid Genetics Clinic cohort). In the interest of future application and usability,
smaller sets of 10 SNPs or less were tested and compared to the original 34-SNP score—
the aim was to select a smaller number of SNPs that were just as informative as the full
set of 34. For each SNP set, SNPs could not be in linkage disequilibrium (LD) with each

other.

Scores were calculated using a weighted approach; the number of alleles associated with
raising HDL cholesterol at a locus (0, 1, or 2) were summed and multiplied by the
reported effect size for the respective allele. The products for each locus were totalled to
provide the overall polygenic risk score for an individual. The underlying assumption
when calculating the polygenic risk score was that each allele had an additive effect
towards their respective HDL cholesterol phenotypes. Higher scores indicated that
individuals carried a greater number of alleles associated with raising HDL cholesterol
levels, while lower scores indicated that individuals carried fewer alleles associated with
raising HDL cholesterol, and therefore carried a greater number of alleles associated with

lowering HDL cholesterol levels.

2.3.6  Statistical analysis

Normality was assessed using the D’ Agostino and Pearson test. Differences between
parametric data were assessed using an unpaired Students t-test while differences
between nonparametric data were assessed using a Mann-Whitney test. Differences
between mean polygenic risk scores were assessed using a one-tailed, unpaired Wilcoxon
rank-sum tests. All tests were performed assuming unequal variances and are reported as

the mean + standard deviation (SD). Odds ratios (ORs) were derived using 2-by-2
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contingency tables, with Fisher’s exact tests to assess significance. Statistical analyses
were conducted using SAS (version 9.3; SAS Institute, Cary NC, USA). Statistical
significance was defined as P<0.05.

2.4 Results

2.4.1 Characteristics of study subjects

Two hundred and fifty-five unrelated patients were selected for study from the Lipid
Genetics Clinic; 136 patients had low HDL cholesterol levels and 119 patients had high
HDL cholesterol levels. An additional cohort of 201 and 347 patients with low and high
HDL cholesterol levels, respectively, were selected from the MHI Biobank. Further, 349
and 699 patients with low and high HDL cholesterol levels, respectively, were selected
from UPenn, ascertained as previously described (Edmondson et al., 2009; Zanoni et al.,
2016).

Clinical and demographic information for patients with low and high HDL cholesterol
levels from the Lipid Genetics Clinic, the MHI Biobank, and UPenn are summarized in
Table 2.2 and Table 2.3.

2.4.2 Rare variants identified in high-density lipoprotein
cholesterol-altering genes
A total of 68 unique variants were identified in patients from the Lipid Genetics Clinic:
43 were in primary genes, and 10 were in secondary genes (Figure 2.1A, Appendix C,
Appendix D). When considering variants in the primary genes, 72.1% were missense,
4.7% were splicing, 14.0% were frameshift, and 9.3% were nonsense (Figure 2.1B). One
individual was homozygous for ABCA1 p.G851R, and one individual was a compound
heterozygote for ABCA1 p.W590C and p.W590L. A single individual carried rare
heterozygous variants in both a low and high HDL cholesterol-associated gene—i.e.
ABCAL and SCARB1—and presented with low HDL cholesterol levels.
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Table 2.2 Clinical and demographic information of patients with low HDL cholesterol levels (N=686).

Lipid Genetics Clinic Montreal Heart Institute Biobank  University of Pennsylvania

Males Females Males Females Males Females
N 90 46 131 70 202 147
Age 48.1+16.8" 454+125" 64.4+10.4 68.9 + 8.4 56.0 £ 12.2 53.2+15.0
BMI (kg/m?) 29.0+56" 288%6.0 31.0+5.2" 31.4+6.4" 324+5.0" 345+7.4"
Total cholesterol (mmol/L) 42+1.4 58%2.3 34+11 3.7x10 40+1.1 45+1.3
HDL cholesterol (mmol/L) 06+0.2 0.8%0.2 0.7£0.1 0901 0.8£0.2 09£0.2
LDL cholesterol (mmol/L) 27+13 40+23 22%10 22%09 27%+13 32+17
Triglyceride (mmol/L) 22+13 2011 2.2+0.7 23107 1.8+0.7 1.6+0.6
CVD Hx 45.2%" 21.9%" 60.3% 67.1% 11.9%" 12.9%"

Values are indicative of the mean = SD. “*” indicates means were calculated with an incomplete dataset. Abbreviations: BMI = body-mass index; CVD Hx =
cardiovascular disease history; HDL = high-density lipoprotein; LDL = low-density lipoprotein.

Table 2.3 Clinical and demographic information of patients with high HDL cholesterol levels (N=1,165).
Lipid Genetics Clinic Montréal Heart Institute Biobank  University of Pennsylvania

Males Females Males Females Males Females
N 60 59 280 67 217 482
Age 585+14.2 58.6+105 65.6 + 10.1 712+7.2 58.7 + 14.9 58.2+11.7
BMI (kg/m?) 26.5+3.7 253+3.5" 26.9+45" 26.4+6.0" 29.0+5.0 272+7.0"
Total cholesterol (mmol/L) 57114 6.9+15 45+10°% 52+1.1 6.5+1.6 6.4+12
HDL cholesterol (mmol/L) 21+0.5 2.7+0.7 1.7+0.2 21+03 25%0.5 29+0.5
LDL cholesterol (mmol/L) 32+14 3715 24+09°2 25%+09 3012 3620
Triglyceride (mmol/L) 1.0+£05 1.2+0.6 1.4+0.6 1.3+05 09104 09104
CVD Hx 29.8%" 16.7%" 40.7% 31.3% 6.0%" 4.1%"

Values are indicative of the mean + SD. “*” indicates means were calculated with an incomplete dataset. Abbreviations: BMI = body-mass index; CVD Hx =

cardiovascular disease history; HDL = high-density lipoprotein; LDL = low-density lipoprotein.
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Figure 2.1 Summary of rare variants identified within patients from the Lipid
Genetics Clinic cohort (N=255).

A) A total of 68 unique variants were identified: 43 were in primary genes, and 10 were in
secondary genes. B) For each unique variant within the primary genes, breakdown by
variant ontology has been presented for patients with low HDL cholesterol levels (left) and
high HDL cholesterol levels (right). Abbreviations: HDL = high-density lipoprotein.
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Only a few rare variants were identified in secondary genes of interest (Appendix D). In
nine low HDL cholesterol patients, missense variants were identified in LPL, APOAD5,
LMF1, GPD1, and APOE. In two high HDL cholesterol patients, the same splicing
variant was identified in APOC3. All variants in the secondary genes were heterozygous.

Overall, 30.1% and 12.6% of patients from the Lipid Genetics Clinic with low and high
HDL cholesterol, respectively, carried at least one variant contributing towards their
phenotype. In the MHI cohort, 10.9% and 10.4% of patients with of patients with low and
high HDL cholesterol, respectively, carried rare variants—all were heterozygous. In the
UPenn cohort, since different criteria were used in rare variant identification carriers

were not considered for analysis.

2.4.3  Polygenic risk score development

After testing polygenic risk scores made up of 10 SNPs or less, a set of nine SNPs were
selected to make up the polygenic risk score used in this study, as the score’s results were
the most similar to the results from the original 34-SNP score. The nine SNPs were in
linkage equilibrium and showed significant primary associations with plasma levels of
HDL cholesterol; some of the loci were previously implicated either directly or indirectly
to HDL metabolism (Table 2.4). Each SNP was selected on the basis of its reported P-
value; the most significantly associated SNPs were of top priority. The allele associated

with higher HDL cholesterol levels was taken as the primary variable.



Table 2.4 The 9 SNPs used in the polygenic risk score for HDL cholesterol levels.
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Chr:position  rsID Cllogs ! Relation with HDL metabolism VeI
gene allele ontology

1:182199750 rs1689800 ZNF648 A (0.034) Mechanism is poorly characterized. Upstream
Recently confirmed as an important determinant of HDL

1:230159944  rs4846914 GALNT2 A (0.048) choleste);ol (Khetarpal et al., 2016). Upstream

9:104902020 rs1883025 ABCAl C (0.07)  Causative gene for Tangier disease (Hovingh et al., 2015).  Downstream
MVK encodes mevalonate kinase, which is involved in
biosynthesis of cholesterol and isoprenoids (Browne and

MVK- Timson, 2015), although the closely linked MMAB gene

IR (BLE 028, MMAB (s encoding cob()l)alamingadenosyltra?\/sferase may actﬂally PR
underlie the HDL cholesterol association at this locus
(Fogarty et al., 2010).

12:124777047 rs838880 SCARB1 C (0.048) Causative gene for SR-BI deficiency. Downstream

15:58391167 rs1532085 LIPC A (0.107) Causative gene for hepatic lipase deficiency. Upstream
Causative gene for CETP deficiency. Facilitates the

16:56959412 rs3764261 CETP A (0.241) transfer of lipids between HDL and triglyceride-rich Upstream
lipoproteins.

16:81501185 rs2925979 CMIP C (0.035) Mechanism is poorly characterized. Intronic
Regulates lipoprotein lipase with reciprocal effects on

19:8368312 rs7255436 ANGPTL4 A (0.032) triglycerides and HDL cholesterol (Dijk and Kersten, Upstream

2014).

Variant information related to effect size was extracted from Willer et al. (2013). Effect alleles are in reference to trait elevation; the bracketed
value denotes the effect size of each allele per increase in standard deviation. Variant ontology is relative to the closest gene. Abbreviations: chr
= chromosome; CETP = cholesteryl ester transfer protein; HDL = high-density lipoprotein; SR-BI = scavenger receptor class B type I.
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2.4.4  Testing and validation of the polygenic risk score

The polygenic score was tested in the Lipid Genetics Clinic cohort and then validated in
the MHI and UPenn cohorts. The score distribution in each cohort, subdivided by
phenotype and rare variant carrier status are illustrated in Figure 2.2. Only patients

without identifiable rare variants (i.e. “non-carriers”) were considered in this analysis.

In the Lipid Genetics Clinic cohorts, neither carrier group for low nor high HDL
cholesterol had mean polygenic scores significantly different from the normolipidemic
controls (data not shown). Compared to the mean polygenic score for normolipidemic
controls (0.58 = 0.19), non-carriers with low HDL cholesterol (0.48 £+ 0.18, P<0.0001)
and non-carriers with high HDL cholesterol (0.65 + 0.21, P=0.0015) had significantly
lower and greater mean scores, respectively (Figure 2.2A). In addition, 25.3% of non-
carriers with low HDL cholesterol had an excess of alleles associated with lowering HDL
cholesterol levels, as defined by the bottom 10" percentile of polygenic scores in the
normolipidemic controls. These patients were 3.00-times (95% CI [1.67-5.35];
P<0.0001), as likely to have extremely low polygenic scores compared to the
normolipidemic controls Figure 2.3). Conversely, 20.2% of non-carriers with high HDL
cholesterol had an excess of alleles associated with raising HDL cholesterol levels, as
defined by the top 90™ percentile of polygenic scores in the normolipidemic controls.
These patients were 2.19-times (95% CI [1.21-3.96]; P=0.006), as likely to have
extremely high polygenic scores compared to the normolipidemic controls (Figure 2.4).
Patients were defined as having a more polygenic basis for their phenotype if they had an
extreme polygenic score (extremely low for patients with low HDL cholesterol, and

extremely high for patients with high HDL cholesterol) (Figure 2.5).

When patients were grouped by polygenic score decile, there was a strong linear
relationship between increasing scores and HDL cholesterol levels (Figure 2.6).

Results from the MHI cohort were similar to those of the Lipid Genetics Clinic.
Compared to the mean polygenic score for normolipidemic controls (0.58 + 0.19), non-
carriers with low HDL cholesterol (0.55 + 0.20, P=0.007) and non-carriers with high
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HDL cholesterol (0.64 + 0.20, P<0.0001) had significantly lower and greater mean
scores, respectively (Figure 2.2B). However, in contrast to the Lipid Genetics Clinic
cohort, only the non-carriers with high HDL cholesterol showed a significantly increased
prevalence of having extremely high polygenic scores (OR: 2.12 [95% CI: 1.48-3.02];
P<0.0001) (Figure 2.5).

From the UPenn cohort, only the non-carriers with high HDL cholesterol (0.66 + 0.20,
P<0.0001) had a mean polygenic score significantly greater than the normolipidemic
controls (0.58 £ 0.19) (Figure 2.2C). Similarly, only in the non-carriers with high HDL
cholesterol was there was a significantly increased prevalence of having extremely high
polygenic scores (OR: 2.27 [95% CI: 1.59-3.24]; P<0.0001) (Figure 2.6).
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Figure 2.2 Polygenic risk score distribution of non-carrier patients between different
cohorts.

Violin plots illustrate the distribution of polygenic risk scores in normolipidemic controls,
patients with low HDL cholesterol, or patients with high HDL cholesterol in the A) Lipid
Genetics Clinic cohort; B) the MHI Biobank cohort; and C) UPenn cohort. Red diamonds
mark the mean score of the group. The top and bottom dashed lines represent the threshold
for the top 90™ and bottom 10™ percentiles of scores in the normolipidemic controls from
the 1000 Genomes Project, respectively. P-values were generated from a Kruskal-Wallis
test and adjusted with Dunn’s multiple comparisons based on mean polygenic risk score
values between groups. P-values: * <0.05; ** <0.01; *** <0.001. Abbreviations: HDL =
high-density lipoprotein.
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Figure 2.3 Differences in extreme polygenic risk scores between carrier and non-
carrier patients with low HDL cholesterol levels.

This forest plot illustrates the odds ratio of carriers or non-carriers for rare variants having
an extreme accumulation of common HDL cholesterol-lowering alleles (as indicated by an
extremely low polygenic risk score) in patients from different cohorts, compared to
normolipidemic controls. The dashed line indicates an odds ratio of 1.0. P-values were
generated using a Fisher’s exact tests. P-values: ** <0.01; **** <0.0001. Abbreviations:
MHI = Montréal Heart Institute; UPenn = University of Pennsylvania.
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Figure 2.4 Differences in extreme polygenic risk scores between carrier and non-
carrier patients with high HDL cholesterol levels.

This forest plot illustrates the odds ratio of carriers or non-carriers for rare variants having
an extreme accumulation of common HDL cholesterol-raising alleles (as indicated by an
extremely high polygenic risk score) in patients from different cohorts, compared to
normolipidemic controls. The dashed line indicates an odds ratio of 1.0. P-values were
generated using a Fisher’s exact tests. P-values: ** <0.01; **** <0.0001. Abbreviations:
MHI = Montréal Heart Institute; UPenn = University of Pennsylvania.
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Figure 2.5 The comparison of genetic profiles of extreme HDL cholesterol phenotypes
between cohorts.
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noted that the UPenn cohort was not screened for rare variants. Abbreviations: HDL =
high-density lipoprotein; MHI = Montréal Heart Institute; UPenn = University of
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114

2.5
J
g 2.0 % }
£ ¢
'© 1.5+ } }
R EERE
g |
R? = 0.8696
7 0.5+ y=0117x + 0.8533
T P < 0.0001
00 1 1 1 | 1 | 1 | 1 1
o 1 2 3 4 5 6 7 8 9 10

Polygenic risk score decile
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Mean HDL cholesterol levels for each polygenic risk score decile is shown for non-carriers
from the Lipid Genetics Clinic cohort. There is a strong linear relationship between
increasing polygenic scores and HDL cholesterol levels, as indicated by the R? value of
0.8696 (P<0.0001). Vertical bars indicate standard error of the mean. Abbreviations: HDL
= high-density lipoprotein.
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2.5 Discussion

We report a polygenic risk score for HDL cholesterol that expands the proportion of
individuals that have a relevant, identifiable genetic determinant. We first confirmed an
excess of heterozygous rare variants in ABCA1, LCAT and APOA1, and in CETP, LIPC,
LIPG, and SCARB1 among individuals with extremely low and high HDL cholesterol,
respectively. Overall, 18.7% and 10.9% of patients with low and high HDL cholesterol
levels, were rare variant carriers, respectively. Then, among the remaining non-carriers,
we showed an ~1.5- to 2-fold increased risk of having an extreme polygenic score due to
an extreme accumulation of SNPs. Overall, 12.8% and 19.3% of patients with low and
high HDL cholesterol levels, respectively, had an extreme polygenic score. Cumulatively,
>30% of patients had either a rare variant or an extreme accumulation of SNPs associated
with their respective HDL cholesterol phenotype. Our study highlights the importance of
polygenic effects as determinants of extreme HDL cholesterol, and reinforces the

polygenic nature of this complex trait.

From the Lipid Genetics Clinic, 47.7% and 30.2% of patients with low and high HDL
cholesterol levels, respectively, had identifiable genetic factors contributing towards their
phenotypes. The prevalence of rare variant carriers in the low HDL cholesterol subgroup
was higher than the prevalence of rare variant carriers in the MHI cohort, perhaps
reflecting ascertainment bias. Mean HDL cholesterol levels were markedly lower in the
clinically ascertained low HDL cholesterol subgroup compared with the MHI and UPenn
cohorts; rare variants may be more important determinants of the phenotype.
Furthermore, it appeared that when a rare variant was present, it was the main
determinant of the HDL cholesterol phenotype, overriding a polygenic score favouring

the opposite phenotype.

In contrast, among clinically ascertained carriers with low HDL cholesterol levels, many
also had low polygenic scores. There were non-significant trends towards lower
polygenic scores among non-carrier patients from MHI and UPenn. This pattern was
mirrored by respective deficits of high polygenic risk scores in these cohorts (Figure

2.3). This demonstrates that individuals with low HDL cholesterol levels and no large-
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effect variants had a more prominent polygenic contribution of small-effect variants. In
the Lipid Genetics Clinic, MHI, and UPenn cohorts, among non-carriers with high HDL
cholesterol levels, many had high polygenic risk scores (overall OR: 2.27 [95% CI: 1.82-
2.83]; P<0.0001). This pattern was mirrored by deficits of low polygenic risk scores in
the same cohorts (Figure 2.4). This demonstrates that among individuals with high HDL
cholesterol and no large-effect variants, there was a significant polygenic contribution

from small-effect variants.

We also found that individuals carrying a rare variant and having an extreme polygenic
score, both in association with the same HDL cholesterol phenotype, did not have HDL
cholesterol levels that were significantly different than carriers with a normal polygenic
score (data not shown). This suggests that rare variants and polygenic determinants are
independent, and when present together, are not necessarily additive: rare variants appear
to predominantly determine the HDL cholesterol phenotype. This contrasts with
conclusions derived from a whole-genome sequence analysis of individuals with less
extreme phenotypes, in whom common variants were determined to be the predominant
determinants of HDL cholesterol (Morrison et al., 2013). Of course, our cohorts were still
relatively small: a possible additive or synergistic relationship between rare and common

variants will require evaluation in much larger samples of such extreme individuals.

Application of polygenic scores is becoming popular in the area of cardiovascular health
and related complex traits (Smith et al., 2015). Mendelian randomization studies have
previously evaluated these scores to infer a causal role of HDL cholesterol in CVD
outcomes (Voight et al., 2012). However, until now there has been minimal to no
evaluation of polygenic scores in individuals selected for extremes of HDL cholesterol

levels.

Among extreme dyslipidemias, polygenic scores have been well-studied in cohorts of
patients with extremely high LDL cholesterol levels, particularly FH. For instance,
among clinically ascertained individuals with likely FH, 50-80% have a heterozygous
rare variant in either LDLR, APOB or PCSK9, while another 15-20% have an extreme
polygenic score comprised for LDL cholesterol (Talmud et al., 2013; Wang et al., 2016).
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The exact proportions of individuals with rare and common variants differ in our cohorts
with extreme HDL cholesterol levels, but the overall pattern of genetic contributors to
both complex lipoprotein traits is similar. One possible difference is that syndromic FH
was intentionally enriched in the extreme LDL cholesterol studies, while we excluded

patients with known clinical syndromes of extreme HDL cholesterol levels.

Also, for LDL cholesterol, only individuals with extremely high levels are typically
studied. In contrast, our current study assessed individuals with both extremes. The fact
that our polygenic score was directionally associated with both extremes of HDL
cholesterol (i.e. excessive high and low polygenic among individuals with high and low
HDL phenotypes, respectively) indicates that this score applies bi-directionally for HDL
cholesterol.

There may be clinical relevance in knowing the genetic basis of a patient’s HDL
cholesterol phenotype. For instance, in patients with high LDL cholesterol, the CVD risk
compared to normolipidemic individuals was ~22-fold higher in those who carried a
heterozygous rare variant versus ~6-fold higher among those who did not (Khera et al.,
2016). Although polygenic effects were not evaluated, extreme LDL cholesterol in at
least some individuals in the latter subgroup likely had a polygenic basis. While both
groups are at high risk, having such patient-substrata can be used to generate hypotheses
for different interventions under the framework of precision medicine. For instance,
prospective randomized studies may show that among individuals with extremely high
LDL cholesterol, carriers of a rare variant may benefit relatively more from certain
treatments, such as PCSK9 inhibitors, than individuals with a stronger polygenic basis
(Santos et al., 2016). By analogy, individuals with extremely low HDL cholesterol who
carry a rare variant versus those who have a high polygenic burden can be studied to
determine if there are differential effects of therapies targeted towards raising HDL
cholesterol (Zheng et al., 2016).

This study has some limitations. First, patient ascertainment differed between the three
cohorts: Lipid Genetics Clinic patients were referred because of abnormal lipid profiles,

MHI Biobank participants were recruited based on cardiovascular health, and while
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UPenn patients also came from lipid referrals, there was more of focus on high HDL
cholesterol phenotypes. This may explain why the patients with low HDL cholesterol
levels from the discovery cohort had a greater burden of rare variants: these individuals’
HDL cholesterol phenotypes were more pronounced, and perhaps more likely to have a
genetic basis. In contrast, since CVD was of primary interest at the MHI, abnormal HDL
cholesterol profiles were less extreme and perhaps more often secondary to other, non-
genetic health issues. Testing the polygenic score in other cohorts with more closely
matched patient-ascertainment parameters would not only increase the power of our
study, but also alleviate these biases. Second, application of the polygenic score assumes
each allele has a linearly additive effect, with no epistatic interactions. Modelling
epistasis could improve polygenic score accuracy and comprehension. Third, the
polygenic score was tested largely in individuals of European ancestry and may not be
generalizable to other ancestral groups. Also, we did not evaluate other factors—such as
epigenetic regulators or large copy-number variants—as possible explanations for the
extreme phenotypes. Additionally, some important variants may have been overlooked,
since only genes with a known link to HDL cholesterol syndromes were screened, and
only a subset of SNPs were considered; this could have led to a skew in the percentage of
carriers identified or patients with an extreme SNP accumulation. Finally, given that low-
pass whole-genome sequencing was used to genetically characterize participants from the
MHI Biobank, it is possible that rare variants may have been missed. Despite these
limitations, we have demonstrated the genetic complexity underlying extreme HDL
cholesterol phenotypes by considering both rare variants and the accumulation of

common SNPs simultaneously, for the first time.

2.6 Conclusion

In summary, we concurrently detected both rare variants and the accumulation of
common SNPs using our NGS platform. In patients with both low and high HDL
cholesterol extremes, we confirmed the enrichment of rare variants, while simultaneously
detecting individuals with extreme polygenic scores. This substantially expanded the
number of individuals with a genetic contributor towards their phenotype: about one-

sixth of patients with extreme HDL cholesterol levels had an extreme polygenic score.
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Loci for rare and common variants contributing to extreme HDL cholesterol levels
encode products acting at all stages of the HDL lifecycle; we suggest that both rare and
common variants be considered concurrently for understanding extreme HDL cholesterol
levels. The large proportion of individuals still unaccounted for can be studied for
additional mechanisms, such as possible new genes, gene-gene or gene-environment
interactions, and non-Mendelian influences including mitochondrial or epigenetic effects.
In addition to acquiring a more complete genetic picture of patients with extreme
dyslipidemia, stratifying them genetically may help evaluate inter-individual differences

in their clinical course or responses to interventions.
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Chapter 3 — Large-scale deletions of the ABCA1 gene in
patients with hypoalphalipoproteinemia

The work contained in this Chapter has been edited from its original publication in the
Journal of Lipid Research for brevity and to ensure consistency throughout this
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3.1 Abstract

Objective: Copy-number variants (CNVs) have been studied in the context of familial
hypercholesterolemia but have not yet been evaluated in patients with extreme levels of

high-density lipoprotein (HDL) cholesterol.

Methods and Results: We evaluated targeted next-generation sequencing (NGS) data
from patients with extremely low levels of HDL cholesterol (i.e.,
hypoalphalipoproteinemia) with the VarSeg-CNV® caller algorithm to screen for CNVs
disrupting the ABCA1, LCAT, or APOA1 genes. In four individuals, we found three
unique deletions in ABCAL: a heterozygous deletion of exon 4, a heterozygous deletion
that spanned exons 8 to 31, and a heterozygous deletion of the entire ABCAL gene.
Breakpoints were identified with Sanger sequencing, and the full-gene deletion was

confirmed using exome sequencing and the Affymetrix CytoScan HD array.

Conclusion: Previously, large-scale deletions in candidate HDL genes had not been
associated with hypoalphalipoproteinemia; our findings indicate that CNVs in ABCA1
may be a previously unappreciated genetic determinant of low levels of HDL cholesterol.
By coupling bioinformatic analyses with NGS data, we can successfully assess the
spectrum of genetic determinants of many dyslipidemias, including
hypoalphalipoproteinemia.

3.2 Introduction

Extremely low levels of high-density lipoprotein (HDL) cholesterol, clinically
characterized as “hypoalphalipoproteinemia”, can result from various molecular
etiologies. DNA sequencing of candidate genes has shown that between ~10-35% of
affected individuals have rare heterozygous missense, nonsense or splicing variants in
ABCAL, APOAL and LCAT genes, encoding ATP-binding cassette subfamily member Al
(ABCAL), apolipoprotein (apo) A-I and lecithin cholesterol acyl transferase (LCAT),
respectively (Candini et al., 2010; Cohen et al., 2004; Dron et al., 2017; Holleboom et al.,
2011; Kiss et al., 2007; Sadananda et al., 2015). We recently found that another ~18% of

affected individuals have an extreme polygenic accumulation of common variants, as
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quantified by a polygenic risk score that considers several common single-nucleotide
polymorphisms (SNPs) associated with HDL cholesterol levels (Dron et al., 2017).
However, the genetic basis of low HDL cholesterol in the majority of individuals with

hypoalphalipoproteinemia remains to be characterized.

Copy-number variants (CNVSs) are deletions and duplications of genomic material that
are much larger than single-nucleotide variations (SNVs); by convention, “CNVs” are
deletions or duplications >50 bp in size (Zarrei et al., 2015). While CNVs have been
commonly identified throughout the genome, there has been a surging focus on CNVs
that are rare within the population, and their relationship to certain phenotypes and
diseases (lacocca and Hegele, 2018). This redefined focus has been due to improvements
in bioinformatic tools, and targeted next-generation sequencing (NGS) panels designed
for clinical utility. Previously, specialized molecular methods, such as multiplex ligation-
dependent probe amplification (MLPA), have been required to detect CNVs, and had to
be performed concurrently to other genetic methods. Now, through the development of
new bioinformatic methods, CNVs can be easily screened for in patient groups using data
generated by a single genetic approach, namely, NGS. We recently reported that data
generated with a targeted NGS panel designed to detect SNVs in genes related to familial
hypercholesterolemia (FH) could be processed with dedicated bioinformatic tools to
diagnose the presence of CNVs in LDLR, encoding the low-density lipoprotein (LDL)
receptor. Results of our NGS-based CNV detection method showed 100% concordance
with traditional MLPA of LDLR, with no false negative or false positive results (lacocca
etal., 2017).

CNVs disrupting ABCA1, APOAL, or LCAT in individuals with
hypoalphalipoproteinemia have not yet been reported. Here, we applied our novel
bioinformatic approach on previously generated targeted NGS data from patients with
hypoalphalipoproteinemia, with particular interest in patients without rare variants in
HDL-associated genes or without an extreme polygenic accumulation of common
variants (Dron and Hegele, 2018). Out of 288 patients screened, four carried one of three
novel heterozygous CNVs within the ABCA1 gene; the variants were confirmed using

independent methods. Our findings not only demonstrate the usefulness of applying
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bioinformatically-based CNV calling algorithms to NGS data, but we also provide the
first example of large-scale CNV deletions that may be contributing towards the

hypoalphalipoproteinemia phenotype.

3.3 Materials and Methods
3.3.1  Study subjects

Patients who were referred to the Lipid Genetics Clinic at the London Health Sciences
Centre, University Hospital (London ON, Canada) for “low HDL cholesterol” or
“hypoalphalipoproteinemia” were considered for this screening study. Patients provided
signed consent with approval from the Western University ethics review board (no.
07290E).

3.3.2 DNA preparation and targeted sequencing

DNA isolation and preparation for targeted sequencing follows the same methodology as
described in Chapter 2, Section 2.3.2.

3.3.3 Bioinformatic processing of sequencing data

The bioinformatic processing of sequencing data follows the same methodology as
described in Chapter 2, Section 2.3.3; however, an updated version of CLC Bio

Genomics Workbench (version 8.5; CLC Bio, Aarhus, Denmark) was used. In addition to
CLC Bio Genomics Workbench generating VCF files containing variant information for
each patient, depth of coverage for a patient’s sequencing data was also exported as a
BAM file.

3.3.4  Detection of single-nucleotide and copy-number variants

The BAM and VVCF files generated for each patient were imported into VarSeg® (version
1.4.8; Golden Helix, Inc., Bozeman MT, USA) for annotation of each genetic variant.
SNVs were identified following methods described in Chapter 2, Section 2.3.4.
Assessment of CNVs in ABCAL, APOA1, and LCAT was performed using the VarSeg-
CNV® caller algorithm. To identify CNVs, the depth-of-coverage information contained

within each subject’s BAM file was compared against the average coverage information
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from a set of samples that have been confirmed to not carry CNVs. Increases and
decreases in read-depth indicate a duplication or deletion of genetic material,
respectively. The exact criteria used to identify CNVs has been previously described
(lacocca et al., 2017).

3.3.5 Validation of partial gene deletions

3.3.5.1 Breakpoint identification

To identify the presence of partial gene deletions, primers were designed to flank regions
surrounding the putative deletions and were used for PCR amplification (Expand 20 kbP's
PCR System, Roche, Mannheim, Germany) (Cat No. 11811002001). Forward (F) and
reverse (R) primers flanking the deletion junctions were: F1 5°-
AGCACGATAGGAAGCATCTTC-3’ and R1 5>-ATCACTGTCTGTGGCAACCAG-3’
(exon 4 deletion); F2 5>-GACCCAGCTTCCAATCTTCATAA-3’ and R2 5°-
TAGACAGAATCAGGCCATAATCTG-3’ (exons 8-31 deletion). Gel electrophoresis of
the PCR products was used as a visual confirmation of the mutant alleles. Sanger
sequencing and primer-walking of the PCR products were performed to identify the

deletion breakpoints.

3.3.5.2 Sanger confirmation

Once deletion breakpoints were identified, screening primers spanning the upstream or
downstream breakpoint were designed for PCR and Sanger sequencing (Appendix E) to

confirm the deletion breakpoint sequences for the wild-type or deleted alleles.

3.3.6  Validation of full gene deletions

3.3.6.1 Exome sequencing

Patients with expected full-gene deletions had their DNA samples indexed and pooled
using the TruSeq Rapid Exome Kit (Illumina, San Diego CA, USA) (Cat No. 20020616)
in preparation for exome sequencing. Sequencing was then performed at the London
Regional Genomics Centre (www.lrgc.ca; London ON, Canada), using a NextSeq 500
(IMumina, San Diego CA, USA). The same bioinformatic approach described above was
used to replicate the CNV call made by the VarSeg-CNV® caller algorithm.


http://www.lrgc.ca/
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3.3.6.2 Microarray analysis

Patients with expected full-gene deletions had their DNA samples assessed with the
Affymetrix CytoScan™ HD Array (Thermo Fisher Scientific, Waltham MA, USA) for
the genomic region containing the CNV. With >2 million probes on the array, deletions
>25 kb can be detected. The microarray was performed following the manufacturer’s
instructions at Victoria Hospital (London ON, Canada), and the resultant data were
analyzed using the Chromosome Analysis Suite (version 3.2; Thermo Fisher Scientific,
Waltham MA, USA). The regions between adjacent probes that differed in copy-number
state were marked as containing the approximate breakpoints of the CNV and were used

to gauge the approximate size of the deletion.

3.3.6.3 Breakpoint identification

Once establishing the magnitude of the deletion, the approximate locations of each
breakpoint were estimated. Primers flanking the deletion junction were: F3 5°-
CCTGGCTGCTTCTAAGAGCCTATGATC-3” and R3 5°-
TGTCTCTACATGGTCCTCCTTCTGTGC-3’, and were used for PCR amplification
(Expand 20 kbP"'s PCR System, Roche, Mannheim, Germany) (Cat No. 11811002001).
Gel electrophoresis of the PCR products was used as a visual confirmation of the mutant
allele. Sanger sequencing and primer-walking of the PCR product were performed to

identify the deletion breakpoints.

3.3.6.4 Sanger confirmation

Once deletion breakpoints were identified, screening primers spanning the upstream or
downstream breakpoint were designed for PCR and Sanger sequencing (Appendix E) to

confirm the deletion breakpoint sequences for the wild-type or deleted allele.

3.4 Results
3.4.1  Study subjects

A total of 288 patients with “low HDL cholesterol” or “hypoalphalipoproteinemia” were
sequenced with LipidSeq and screened for CNVs disrupting ABCAL, APOAL, and LCAT.
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Clinical and biochemical characteristics of the four patients identified as carriers for
CNVs are shown in Table 3.1.

3.4.2 ABCA1 copy-number variant detection

Analysis of LipidSeq output with the VarSeg-CNV® caller algorithm identified four
hypoalphalipoproteinemia patients as carriers of large-scale deletions in ABCA1 (Figure
3.1). Patient 1 had a heterozygous deletion spanning exon 4; Patient 2 and Patient 3, a
pair of siblings had a heterozygous deletion spanning exons 8 to 31; and Patient 4 had a
heterozygous deletion spanning the entire ABCA1 gene. None of these patients carried
rare SNVs in ABCAL, APOAL or LCAT. There were no CNVs detected in APOA1 or
LCAT for any patients in this study.

To determine the size of the deletion in Patient 4, the VarSeq-CNV® caller algorithm
was used on exome data to confirm the heterozygous absence of ABCA1 (Figure 3.2),
while the CytoScan™ analysis confirmed and replicated the heterozygous nature of this
CNV (Figure 3.3A). Exome sequencing and Cytoscan™ revealed that the CNV was ~2
Mb in length, and encompassed six additional protein-coding genes, including SMC2,
NIPSNAP3A, NIPSNAP3B, SLC44A1, FSD1L, and FKTN.

3.4.3 Copy-number variant validation and identifying breakpoints

Sanger sequencing across the CNV breakpoints in Patient 1 (Figure 3.4A), Patients 2 and
3 (Figure 3.4B), and Patient 4 (Figure 3.3B) revealed the genomic coordinates involved
in the deletion event and allowed us to determine the exact size of the CNV (Table 3.2).
Screening primers spanning breakpoints were used to distinguish between wild-type and

deleted alleles, as indicated in Figure 3.3C, Figure 3.4C and Figure 3.4D.
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Table 3.1 Clinical and demographic features of subjects with ABCA1 CNVs.

Patient 1 Patient 2 Patient 3 Patient 4
Age 37 34 59 40
Sex Female Female Male Female
BMI (kg/m?) 235 29.2 - 24.1
Ancestry European European European European
Total
cholesterol 8.16 3.30 5.46 4.71
(mmol/L)
TTElRTEREe 252 1.01 4.48 5.13
(mmol/L)
HDL
cholesterol 0.81 0.56 0.47 0.03
(mmol/L)
LDL
cholesterol 6.20 2.42 3.28 3.54
(mmol/L)
apo A-1
- 0.59 0.60 0.09
(9/L)
apo B
- 0.81 1.33 -
(9/L) ’
Creatine kinase
(UIL) 79 - 78 113
Fasting glucose
(mmol/L) 4.0 54 5.3 4.7
Lp(a) (nmol/L) - - 290 363
TIA; cerebral
Heterozygous . .
arteriosclerotic
FH (LDLR . . ; .
Hypertension;  microangiopathy;
N D002y TIA; aortic hypertension;
Co-morbidities p.V523M); Obesity ' _yp "
: ; valvular juvenile myoclonic
minor carotid . . e
o stenosis epilepsy; diffuse
L non-Hodgkin’s
thickening g

lymphoma stage Il

Values provided are from first presentation to specialist lipid clinic, or date first obtained. Lp(a)
conversions from g/L to nmol/L were done following the conversion factor described by Brown WV et al.
(2010). Abbreviations: apo = apolipoprotein; BMI = body-mass index; FH = familial
hypercholesterolemia; HDL = high-density lipoprotein; LDL = low-density lipoprotein; Lp(a) =
lipoprotein(a); TIA = transient ischemic attack.
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Figure 3.1 Identification of ABCA1 CNVs using the VarSeq-CNV® caller algorithm on targeted sequencing data.
Chr9:107,542,273-107,697,356 (hg19 genome build) is the region visualized in each panel, with the CNV “ratio”, “Z score”, and “state”
available for each subject. A) Subject 1, carrier of a heterozygous deletion of exon 4. B) Subject 2, carrier of a heterozygous deletion
spanning exons 8 to 31. C) Subject 3, carrier of a heterozygous deletion spanning exons 8 to 31. D) Subject 4, carrier of a heterozygous
deletion of the entire ABCA1 gene. Abbreviations: CNV = copy-number variant.
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Figure 3.2 Confirmation of the full-gene ABCA1 CNV using the VarSeq-CNV® caller algorithm on exome data.
Chr9:105,295,869-109,769,141 (hgl9 genome build) is the region visualized, with the CNV “ratio”, “Z score”, and “state” available
for the subject. Subject 4, carrier of a heterozygous deletion of the entire ABCAL gene and surrounding loci. Abbreviations: CNV =
copy-number variation.
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Figure 3.3 Validation of full-gene deletion of ABCALl in Patient 4 with
hypoalphalipoproteinemia.

A) Results of the CytoScan™ HD Array, visualized using Chromosome Analysis Suite
“Copy Number State (segments)” identifies the region containing the CNV. “Probe
Intensities” show a drop in signal, indicating a decrease in copy number at that position,
evident under “Copy Number State”. The black arrows demonstrate the position and
orientation of primers used in breakpoint identification and Sanger sequencing. The genes,
both coding and non-coding, encompassed by the deletion are evident under “RefSeq
Genes”; the image was taken and modified from and VarSeq®. B) Sanger sequencing
results for the forward strand across upstream and downstream breakpoints, and the
deletion junction. C) Gel electrophoresis of PCR products across upstream and
downstream breakpoints, and deletion junction. Results from Patient 4 are presented on the
top, with results from a normal control on the bottom. Lane 1 contains 100bp ladder, lane
2 contains products across the upstream breakpoint, lane 3 contains products across the
downstream breakpoint, and lane 4 contains products across the deletion junction.
Abbreviations: bp = base pair; chr = chromosome; F = forward strand; P = primer; R =
reverse strand.
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Figure 3.4 Validation of partial gene deletions of ABCAL in Patients 1, 2, and 3 with
hypoalphalipoproteinemia.

Sanger sequencing results for the reverse strand across upstream and downstream
breakpoints, and the deletion junctions for A) Patient 1 and B) Patients 2 and 3. Underlined
bases represent polymorphic sites between subjects. The black slashes indicate the
sequence breakpoints, while the arrows demonstrate the position and orientation of primers
used in breakpoint identification and Sanger sequencing. The gene transcript image was
taken and modified from and VarSeq®. Gel electrophoresis of PCR products across
upstream and downstream breakpoints, and deletion junction for C) Patient 1 and D)
Patients 2 and 3. Results from each patient are presented on the top, with results from a
normal control on the bottom. Lane 1 contains 100bp ladder, lane 2 contains products
across the upstream breakpoint, lane 3 contains products across the downstream
breakpoint, and lane 4 contains products across the deletion junction. Abbreviations: bp =
base pair; chr = chromosome; P = primer.
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Table 3.2 Genomic coordinates and breakpoints of ABCA1 CNVs.

Zygosity Breakpoint
CNV Genomic Length :
state coordinates (bp) HGVS notation
chr9:107645536 to g.107645536_107649333delinsATCCA

Exon 4 Het chr9:107649333 3,798 .160_301del

' p.Cysb4LeufsTer22
Exons 8 chr9-107568343 to 0.107568343 107619540del
0 31 Het chr9:107619540 51,197 €.720_4463del

' p.Arg241 GIn1488del
Eull chr9:106425268

. Het to 1,976,200 9.106425268_108401467del

deletion

chr9:108401467

The sequences are in the forward-strand orientation, with genomic coordinates based on the hgl9 human
genome reference build. Abbreviations: bp = base pair; chr = chromosome; CNV = copy-number variation;
het = heterozygous; HGVS = Human Genome Variation Society.
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3.5 Discussion

In 288 patients with hypoalphalipoproteinemia, we identified three rare, large-scale
deletions in ABCAL in four individuals by applying specialized bioinformatic tools to
NGS data. While it is not the first time CNVs have been observed in ABCA1 (Abecasis et
al., 2012; Ahn et al., 2009; Alsmadi et al., 2014; Boomsma et al., 2014; Conrad et al.,
2010; Cooper et al., 2011; Itsara et al., 2009; Kidd et al., 2008; Mills et al., 2011; Park et
al., 2010; Shaikh et al., 2009; Suktitipat et al., 2014; Teague et al., 2010; Tuzun et al.,
2005; Wong et al., 2013), it is the first report of ABCA1 CNVs being found specifically in
patients with hypoalphalipoproteinemia, and may be large contributors towards the low
HDL cholesterol phenotype.

ABCAL is a critical player in the reverse cholesterol transport pathway. Found on the
surface of macrophages, ABCA1 mediates the transport of free cholesterol out of the cell,
where it can be picked up by apo A-I, leading to the generation of nascent HDL particles
(Lewis and Rader, 2005). Disruptions to this protein can alter its function and lead to
problems with cholesterol efflux and the generation of circulating HDL particles. Rare
homozygous variants in this gene have been shown to cause Tangier Disease (Bodzioch
et al., 1999; Brooks-Wilson et al., 1999; Rust et al., 1999), while heterozygous mutations
can lead to less severe forms of hypoalphalipoproteinemia (Brooks-Wilson et al., 1999;
Marcil et al., 1999). Given the sizes of our identified CNVs and their predicted
consequences on the protein product, they are likely loss-of-function, leading to a
decrease in the generation of HDL particles and an overall decrease in circulating HDL

cholesterol.

The smallest CNV deletion is 3,798 bp in size, with its breakpoints in introns 3 and 4,
causing a partial loss of both introns, and a full loss of exon 4. The deletion of the coding
sequence caused a frameshift and a premature truncation of the protein at the 76" amino
acid: 96.7% of the protein is lost. Since our study is limited in that we did not test nRNA
levels, protein levels, or protein function, we cannot comment on the exact mechanism by
which this ABCAL CNV leads to low HDL cholesterol levels; however, given that the
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CNV produces a premature stop codon, the truncated mMRNA could be degraded through
the nonsense-mediated decay pathway (Brogna and Wen, 2009).

The intermediate CNV deletion is 51,197 bp size, with its breakpoints in introns 7 and 31,
causing a partial loss of both introns, and a full loss of 23 exons. Since the deletion is in-
frame, there is no introduction of a premature stop codon, but 1248 out of 2261 amino
acids are lost, accounting for 55.2% of the protein. The lost amino acids span from the
first extracellular domain to the second, and include the intracellular nucleotide-binding
domain, the first regulatory domain, and six transmembrane domains (Qian et al., 2017).
Given the size of the deletion, there are many possibilities for mechanistic dysfunction.
One possibility is that apo A-I is unable to interact with ABCA1 through its extracellular
domains, while an alternative possibility is that cholesterol cannot be transported out the
cell (Fitzgerald et al., 2004; Nagao et al., 2012; Vedhachalam et al., 2007; Wang et al.,
2000).

The full-gene CNV deletion is ~2 Mb and encompasses seven protein-coding genes,
including ABCAL. In contrast to the previous two CNVs, due to the complete loss of a
functional allele, the mechanism of decreased HDL cholesterol may simply be based on a
decrease in ABCAL expression. As the largest CNV out of all four patients, it is also
interesting to note that the patient carrying this deletion has the most severely decreased
levels of HDL cholesterol, at 0.03 mmol/L.

When considering the magnitude of each CNV, the size of the genomic deletion
correlates to the severity of the HDL phenotype for each patient; however, the
corresponding loss of amino acids does not. The patient with the smallest CNV had an
HDL cholesterol level of 0.81 mmol/L, while the patients with the intermediate CNV had
HDL cholesterol levels of 0.56 mmol/L and 0.47 mmol/L. Additional studies are
necessary to fully understand the mechanistic consequences of each CNV—yparticularly
the partial deletions—and how they impact each patients’ HDL phenotype. As well, the
severity of each patients’ phenotype may not solely be due to the CNV, but may be
influenced by additional genetic or environmental determinants (Cole et al., 2015).

Others have noted a wide range in HDL cholesterol levels, ranging from ~15 to 70% of
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normal values among heterozygous carriers of ABCAL nonsense mutations resulting in
premature protein truncation (Pisciotta et al., 2004); this inter-individual variation in
HDL cholesterol reduction echoes the range of biochemical disturbances seen in the
small patient sample studied here. Difficulty in attributing quantitative or pathogenic
impact is also encountered in research on heterozygous ABCA1 SNVs that affect HDL
cholesterol; functional studies may help understand the mechanistic impact of a SNV, but
even between individuals who share the same genetic variant, there can be substantial
differences in HDL cholesterol levels (Brunham et al., 2006). Such differences might
result from unmeasured gene-gene interactions, unmeasured gene-environment

interactions, epigenetic, mitochondrial or microbiome effects.

3.6 Conclusion

Our findings implicate a novel form of genetic variation that is likely impacting HDL
cholesterol levels, and further emphasizes the complex genetic architecture underlying
HDL phenotypes. Understanding that levels of HDL cholesterol can be influenced by rare
SNVs, accumulation of common SNPs, and now the presence of rare CNVs, will
influence future screening of individuals with extreme HDL phenotypes. Systematic
screening for CNVs until recently had heretofore not been feasible due to time-
consuming and costly methods (lacocca and Hegele, 2018); improvements to
bioinformatic tools have enabled robust analysis of NGS data, leading to comprehensive,
simultaneous assessment of multiple types of genetic determinants. These tools will
likely reveal further diversity of the genetic basis for other dyslipidemia and metabolic
phenotypes. Given their low frequency in our patient cohort, we anticipate that large-
scale CNVs, either deletions or insertions, will likely be infrequent among patients with
dyslipidemias, but will nonetheless still need to be considered, in addition to small-scale

rare genetic variants and polygenic risk.
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4.1 Abstract

Objective: Hypertriglyceridemia is a complex trait defined by elevated plasma
triglyceride levels. Genetic determinants of hypertriglyceridemia have so far been
examined in a piecemeal manner; understanding of its molecular basis, both monogenic
and polygenic, is thus incomplete. Here, we characterize genetic profiles of severe
hypertriglyceridemia patients and quantify their genetic determinants and molecular

contributors.

Methods and Results: We concurrently assessed rare and common variants in two
independent cohorts of 251 and 312 severe hypertriglyceridemia patients of European
ancestry. DNA was subjected to targeted next-generation sequencing of 69 genes and 185
SNPs associated with dyslipidemia. LPL, LMF1, GPIHBP1, APOA5, and APOC2 genes
were screened for rare variants, and a polygenic risk score was used to assess the
accumulation of common variants. As there were no significant differences in the
prevalence of genetic determinants between cohorts, data were combined for all 563
patients: 1.1% had bi-allelic (homozygous or compound heterozygous) rare variants,
14.4% had heterozygous rare variants, 32.0% had an extreme accumulation of common
variants (i.e. high polygenic risk), and 52.6% remained genetically undefined.
Hypertriglyceridemia patients were 5.77-times (95% CI [4.26-7.82]; P<0.0001) more
likely to carry one of these types of genetic susceptibility compared to normolipidemic

controls.

Conclusions: We report the most in-depth, systematic evaluation of genetic determinants
of severe hypertriglyceridemia to date. The predominant feature was an extreme
accumulation of common variants (high polygenic risk score), while a substantial
proportion of patients also carried heterozygous rare variants. Overall, 46.3% of patients
had polygenic hypertriglyceridemia (i.e. multifactorial chylomicronemia), while only

1.1% had monogenic hypertriglyceridemia (i.e. familial chylomicronemia syndrome).
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4.2 Introduction

Elevated fasting levels of plasma triglyceride is a common dyslipidemia that is clinically
identified as hypertriglyceridemia. Depending on the degree of elevation,
hypertriglyceridemia can be mild-to-moderate (>2-9.9 mmol/L) or severe (>10 mmol/L)
(Hegele et al., 2014). Of particular importance is severe hypertriglyceridemia: with a
prevalence of ~1 in 600 (Johansen et al., 2011a), affected individuals are at risk of several
clinical manifestations, the most serious being acute pancreatitis (Brahm and Hegele,
2015; Dron and Hegele, 2017). Although it is relatively prevalent in the population and
can lead to life-threating medical emergencies, there remains substantial unfamiliarity
with the molecular genetic determinants of severe hypertriglyceridemia, as well as the

role of genetic testing in its diagnosis.

Severe hypertriglyceridemia very often results from chylomicronemia, defined as the
pathological accumulation of circulating chylomicrons (Brahm and Hegele, 2015). While
abnormalities in the catabolic processing of other triglyceride-rich lipoproteins—namely,
very-low-density lipoprotein (VLDL), intermediate-density lipoproteins (IDL), and
remnant particles—can also contribute to the severe hypertriglyceridemia phenotype,
chylomicrons are usually considered to be the primary lipoprotein of concern.
Biochemically quantifying chylomicron concentration can be inconvenient and difficult,
so a diagnosis of “chylomicronemia” is often based on the fasting triglyceride
concentration and the presence of other suggestive features, such as a milky appearance
of the patient’s blood plasma (Brahm and Hegele, 2013; Brahm and Hegele, 2015).
Clinically, patients are at risk of pancreatitis and physical signs such as eruptive
xanthomas, lipemia retinalis and hepatosplenomegaly can be observed. Due to the
challenges in quantifying the abnormal lipoprotein fractions in patients with elevated
triglyceride, we focus on the generalized “severe hypertriglyceridemia” phenotype, rather
than subtypes defined by the presence of particular abnormal lipoprotein particles, as
seen in the Fredrickson classification of hyperlipidemias (Beaumont et al., 1970).

Severe hypertriglyceridemia is considered to have both monogenic and polygenic
determinants (Brahm and Hegele, 2015). A subset of this patient group has familial
chylomicronemia syndrome (FCS), a rare form of monogenic hypertriglyceridemia that
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has textbook estimates of a prevalence of ~1 to 10 in a million (Johansen et al., 2011a).
As an autosomal recessive disorder, definitive molecular diagnosis of FCS hinges on
detection of rare, bi-allelic (homozygous or compound heterozygous) variants in the same
gene (Johansen et al., 2011a); the canonical triglyceride metabolism genes found to be
mutated in FCS include LPL, LMF1, GPIHBP1, APOA5, and APOC2. Genetic
assessment has superseded biochemical assays of plasma post-heparin lipolytic activity as
the current gold standard for diagnosis of deficiency of lipoprotein lipase (LPL), encoded
by LPL, and related factors (Brahm and Hegele, 2015).

The remainder of genetically-based, non-FCS cases of severe hypertriglyceridemia are
considered to be polygenic in nature and can be referred to as “multifactorial
chylomicronemia” (Brahm and Hegele, 2015). Here, several different genetic factors
contribute to disease susceptibility, including rare heterozygous variants in canonical
triglyceride genes, common variants associated with elevated triglyceride levels, and/or
variants in non-canonical triglyceride genes (Johansen et al., 2010; Johansen et al.,
2011b; Johansen et al., 2012; Kathiresan et al., 2009; Surendran et al., 2012; Teslovich et
al., 2010; Wang et al., 2008; Willer et al., 2013). As well, certain environmental factors
can interact with this assortment of polygenic determinants to force expression of
severely elevated triglyceride levels. Despite the detailed documentation of similarities
and differences between monogenic and polygenic hypertriglyceridemia (i.e. FCS vs.
multifactorial chylomicronemia), in practice, there is a tendency to equate “severe
hypertriglyceridemia” with FCS (Brahm and Hegele, 2015). Usually, when triglyceride
levels exceed 10 mmol/L, there is no monogenic cause identified (Brahm and Hegele,
2015), making LPL deficiency or FCS a highly unlikely cause of severe
hypertriglyceridemia.

In our experience, a molecular diagnosis for a patient with severe hypertriglyceridemia
requires simultaneous assessment of all possible genetic determinants—both common
and rare variants. Here, we sought to systematically evaluate the genetic profiles of
almost 600 severe hypertriglyceridemia patients to provide an updated and
comprehensive description of the genetic landscape of this complex phenotype. With our

custom-designed, targeted next-generation sequencing (NGS) panel, “LipidSeq”, and
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bioinformatic tools, we can concurrently measure multiple genetic factors, including rare
variants—both single-nucleotide variants (SNVs) and copy-number variants (CNVs)—
together with the accumulation of common variants (i.e. single-nucleotide
polymorphisms [SNPs]) within a polygenic risk score, thus directly evaluating prevalence
of each type of genetic determinant in severe hypertriglyceridemia. We demonstrate that
severe hypertriglyceridemia in adults is most often associated with polygenic factors
(either heterozygous rare variants or high polygenic risk scores), and that FCS due to
monogenic bi-allelic variants (i.e. homozygous or compound heterozygous) is very

uncommon in these patient cohorts.

4.3 Materials and Methods
4.3.1  Study subjects

Patients of interest included those of European ancestry with triglyceride levels >10

mmol/L; they were defined as having “severe” hypertriglyceridemia.

In adherence to the Declaration of Helsinki, all patients provided written, informed
consent for collection of personal data and DNA with approval from either the Western
University (London ON, Canada) ethics review board (no. 07290E) or the Committee on

Human Research of the University of California, San Francisco (UCSF).

As a reference control cohort of normolipidemic individuals, the publicly available data
pertaining to the self-reported healthy individuals from the European subgroup of the
1000 Genomes Project (N=503) were studied.

4.3.2 DNA preparation and targeted sequencing

DNA isolation and preparation for targeted NGS follows the same methodology as
described in Chapter 2, Section 2.3.2.

From the UCSF cohort, genomic DNA was isolated as described elsewhere (Pullinger et
al., 2015).
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4.3.3  Bioinformatic processing of sequencing data

The bioinformatic processing of sequencing data follows the same methodology as

described in Chapter 3, Section 3.3.3; however, an updated version of CLC Bio

Genomics Workbench (version 10.0; CLC Bio, Aarhus, Denmark) was used.

4.3.4  Annotation and analysis of rare single-nucleotide variants

The SNVs contained within each patients’ VCF file were annotated using VarSeq®
(version 1.4.8; Golden Helix, Inc., Bozeman MT, USA). Variants of interest within LPL,
LMF1, GPIHBP1, APOAS5, and APOC2 were identified following a “rare variant” model.
SNVs were identified as having a minor allele frequency of <1% or missing in the Exome

Aggregation Consortium (EXAC; http://exac.broadinstitute.org/) (Lek et al., 2016) and

1000 Genomes Project (http://browser.1000genomes.org/index.html) (Genomes Project

et al., 2015) databases. Rare missense, nonsense, deletion, insertion, splice-acceptor, and
splice-donor variants were retained. In silico prediction algorithms were then used to

select SNVs with likely large phenotypic effects. The Combined Annotation Dependent
Depletion (CADD; http://cadd.gs.washington.edu/score) (Kircher et al., 2014) PHRED-

scaled score was the primary metric considered for variant deleteriousness. Variants were

required to have a CADD PHRED-scaled score >10, and be predicted to be deleterious or
damaging by at least one additional prediction tool—Polymorphism Phenotyping version
2 (PolyPhen2; http://genetics.bwh.harvard.edu/pph2/) (Adzhubei et al., 2013), Sorting
Intolerant From Tolerant (SIFT; http://sift.jcvi.org/) (Kumar et al., 2009), and

MutationTaster (http://www.mutationtaster.org/)—when classifications were available.

SNVs with a read-depth of <30 were excluded.

4.3.5 Detection of rare copy-number variants

CNVs were identified following the same methodology as described in Chapter 3,
Section 3.3.4. The genes in which CNVs were screened for included LPL, LMF1,
GPIHBP1, APOAS5, and APOC2.

CNV analysis could not be performed on the 1000 Genomes Project data, as BAM files

were not available.


http://exac.broadinstitute.org/
http://browser.1000genomes.org/index.html
http://cadd.gs.washington.edu/score
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/
http://www.mutationtaster.org/
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4.3.6  Polygenic risk score for elevated triglyceride levels

We created a weighted polygenic risk score consisting of 16 SNPs associated with
triglyceride levels, as reported by the Global Lipids Genetics Consortium (GLGC)
genome-wide association study (GWAS) (Willer et al., 2013), and calculated it for each
patient (Table 4.1). The number of triglyceride-raising alleles at a locus (either 0, 1, or 2)
was counted and multiplied by its beta coefficient, or phenotypic “effect size” as reported
in the GLGC GWAS summary statistics. The products for each SNP locus were then
totalled for the overall weighted polygenic risk score for each patient.

4.3.7  Statistical analysis

Normality was assessed using the D’ Agostino and Pearson test. Differences between
parametric data were assessed using an unpaired, one-tailed Students t-test while
differences between nonparametric data were assessed using a Mann-Whitney test.
Differences between mean polygenic risk scores and mean triglyceride levels across
molecular hypertriglyceridemia cohorts were assessed using a Kruskal-Wallis test
followed by a Dunn’s multiple comparison. All tests were performed assuming unequal
variances and are reported as the mean + standard deviation (SD). Odds ratios (ORs)
were derived using 2-by-2 contingency tables, with one-tailed Fisher’s exact tests to
assess significance. Statistical analyses were conducted using GraphPad Prism for
Windows (version 7.04; GraphPad Software, La Jolla CA, USA). Statistical significance
was defined as P<0.05.

4.4 Results

4.4.1  Characteristics of study subjects

Two-hundred and fifty-one patients were selected for study from the Lipid Genetics
Clinic at the London Health Sciences Centre, University Hospital (London ON, Canada).
An additional 312 patients were also selected from the Genomic Resource in
Arteriosclerosis and Metabolic Disease who were recruited at the Lipid, Diabetes, or
Cardiology Clinics at UCSF (San Francisco, CA, USA). Clinical and demographic
characteristics of both cohorts are defined in Table 4.2.
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Table 4.1 The 16 SNPs used in polygenic risk score for elevated triglyceride levels.

Chr:position  rsID ;:engESt E{T:ﬁ; Relation with triglyceride metabolism Variant ontology
163025942 152131925 ANGPTL3 T (0.066) ANGPTIT3_ inhibits LPL and reduces triglyceride hydrolysis (Tikka Upstream
and Jauhiainen, 2016).

1:230295691  rs4846914  GALNT2 G (0.04) zmgﬁgtsot:rg'ztcg'd%’l'el;‘rance e OB EE ) e CH Intronic
4:88030261 rs442177 XIIEEIl_ 8, T (0.031) Mechanism is poorly characterized. Downstream
5:55861786 rs9686661 MAP3K1 T (0.038) Mechanism is poorly characterized. Upstream
7:72982874 rs17145738  MLXIPL  C (0.115) '("I\f;ﬁz;zﬂ:’;agfaﬁ'ygg'f’f)‘s gluconeogenesis and lipogenesis Downstream
8:18272881 rs1495741 NAT2 G (0.04) Rolein insulin sensitivity (Knowles et al., 2015). Downstream
8:19844222 rs12678919  LPL A (0.17) (Hé%cé'eyéfng'ggﬁ?'ngzr?m triglyceride-rich lipoproteins Downstream
8:126490972 rs2954029 TRIB1 A (0.076) Regulates expression of lipogenic genes (Douvris et al., 2014). Downstream
10:65027610 rs10761731  JMJD1C A (0.031) Regulates expression of lipogenic genes (Viscarra et al., 2020). Intronic
11:61569830 rs174546 FADE T (0.045) Modification of dietary fatty acids (Mathias et al., 2014). &I, Jalfoits,

$2-S3 downstream

. APOA1- Involved in the structure of triglyceride-rich lipoproteins and Downstream, upstream,

11:116648917 s964184 C3-A4-A5 G (0.234) regulation of triglyceride hydrolysis (Feingold and Grunfeld, 2000).  downstream, downstream
15:42683787 rs2412710 CAPN3 A (0.099) Mechanism is poorly characterized. Intronic
15:44245931 rs2929282 FRMD5 T (0.072) Mechanism is poorly characterized. Intronic
16:56993324  rs3764261  CETP C (0.04) ESZ';?(?:;;;“?S;?}?ZEref‘;l"pz'gf)g)et""ee“ IEIL sl gl earelod @n Upstream
19:19407718 rs10401969 glslf)F?zs T (0.121) Mechanism is poorly characterized. Intronic
20:44554015 rs6065906 PLTP C (0.053) Moves phospholipids between lipoproteins (Daniels et al., 2009). Upstream

Variant information related to effect size was extracted from Willer et al. (2013). Effect alleles are in reference to trait elevation; the bracketed value denotes the
effect size of each allele per increase in standard deviation. Variant ontology is relative to the closest gene. Abbreviations: ANGPTL3 = angiopoietin-like protein
3; apo = apolipoprotein; chr = chromosome; HDL = high-density lipoprotein; LPL = lipoprotein lipase; UTR = untranslated region.
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Table 4.2 Clinical and demographic information of severe hypertriglyceridemia

cohorts (N=563).

Lipid Genetics Clinic UCSF

Males Females Males Females
N 171 80 203 109
Age 509+11.2°  49.0+150°  471+117  50.3+13.7
BMI (kg/m?) 30.6+4.42°  308+6.03°  207+486°  28.2+4.68"
Total cholesterol 1) 559 1794737  111+544° 123+ 658"
(mmol/L)
Triglyceride 26.6+209  303+263  221+17.9 29.4+325
(mmol/L)
HDL cholesterol ) os, 045" 0774027  074+032°  0.81+041"
(mmol/L)
LDL cholesterol 55/, 510" 367+500° 211+125 2,09+ 1.10"
(mmol/L)
Diabetes 37.7%" 37.5%" 36.3%" 47 5%

Values are indicative of the mean + SD. “*” indicates means were calculated with an incomplete dataset.
Abbreviations: BMI = body-mass index; HDL = high-density lipoprotein; LDL = low-density lipoprotein;
UCSF = University of California, San Francisco.
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4.4.2 Rare variants identified in canonical triglyceride metabolism
genes

We assessed patients for rare SNVs or CNVs in the primary triglyceride-related genes

(LPL, LMF1, GPIHBP1, APOA5, and APOC2). From the Lipid Genetics Clinic and

UCSF, 15.9% (40/251) and 15.0% (47/312) of patients carried rare variants, respectively,

compared to only 4.0% (20/503) of individuals from the normolipidemic controls. A total

of 71 unique variants were present across all five genes in these samples.

Across all three cohorts, the majority of rare SNVs were heterozygous and only a few
were bi-allelic. Both bi-allelic SNVs and CNVs were exclusive to the patient cohorts.
From the Lipid Genetics Clinic, three patients carried bi-allelic SNVs, and 37 patients
carried heterozygous SNVs (Appendix F). From UCSF, three patients carried bi-allelic
SNVs, 43 patients carried heterozygous SNVs, and one patient carried a CNV—a partial
deletion of LPL (Figure 4.1 and Appendix G). Twenty individuals from the 1000
Genomes cohort carried heterozygous SNVs (Appendix H).

4.4.3  Measuring accumulation of common triglyceride-raising
alleles

When assessing our polygenic risk score, higher scores reflect increased accumulations of

triglyceride-raising alleles. We considered scores >1.49 (90" percentile in accordance

with scores from the normolipidemic controls) as “extreme” risk scores, indicating an

extreme accumulation of triglyceride-raising alleles.

From the Lipid Genetics Clinic and UCSF cohorts, 41.2% (87/211) and 35.0% (93/265)
of patients without rare variants, respectively, had extreme risk scores, compared to only
9.5% (48/473) of individuals without rare variants from the 1000 Genomes cohort. When
considering all individuals from the Lipid Genetics Clinic and UCSF, 34.7% (87/251)
and 29.8% (93/312) of patients had extreme polygenic risk scores, respectively,

indicating a polygenic basis for their severe hypertriglyceridemia phenotype (Figure 4.2).
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Figure 4.1 Identification of a LPL CNV using the VarSeq-CNV® caller algorithm.
A patient from UCSF was found to carry a heterozygous deletion of LPL. This figure has been taken and modified from the VarSeq

program. Chr8:19,794,505-19,826,742 (hg19 genome build) is the region visualized in each panel, with the CNV “ratio”, and “Z-score”
for the deleted region. Spanning across two exons, the deleted region has an average target depth of 129.753, an average Z-score of -

7.248, and an average ratio of 0.546. Abbreviations: CNV = copy-number variant.
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Figure 4.2 Polygenic risk score analysis for severe hypertriglyceridemia patients.
Violin plots illustrate the distribution of polygenic risk scores in normolipidemic controls
from the 1000 Genomes cohort and severe hypertriglyceridemia patients from the Lipid
Genetics Clinic cohort and UCSF. Patients with an “extreme” accumulation of triglyceride-
raising SNP alleles are defined as having scores above the 90" percentile threshold (>1.49)
in the 1000 Genomes cohort, which is illustrated by the grey hashed line. The hashed lines
within each violin plot represent the median and interquartile ranges. P-values were
generated from a Kruskal-Wallis test and adjusted with Dunn’s multiple comparisons based
on mean polygenic risk score values between groups. P-values: **** <0.0001.
Abbreviations: UCSF = University of California, San Francisco.



160

4.4.4  Comparison of genetic profiles between cohorts

The genetic profiles for the Lipid Genetics Clinic, UCSF and 1000 Genomes Project are
presented in Figure 4.3. The ORs comparisons for each type of genetic variant are
detailed in Figure 4.4 and demonstrate that there is no genetic difference between the
two patient groups, indicating a successful validation of the observations from the Lipid
Genetics Clinic analysis. Overall, hypertriglyceridemia patients are 5.77-times (95% CI
[4.26-7.82]; P<0.0001) more likely to carry one of the three types of genetic determinants
linked to hypertriglyceridemia, compared to normolipidemic controls. There is a striking
difference in the genetic profiles between patients with severe hypertriglyceridemia, and

normolipidemic controls (see Figure 4.3 and Figure 4.4).

4.4.5 Comparison of triglyceride levels between molecular forms
of hypertriglyceridemia

There was a nonsignificant trend towards elevated mean triglyceride levels in patients

with FCS (N=6; 34.8 = 13.8 mmol/L), compared to patients with polygenic (N=261; 25.5

+ 19.8 mmol/L; P=0.153) or genetically undefined (N=296; 26.3 + 26.8 mmol/L;

P=0.077) hypertriglyceridemia.
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Figure 4.3 The comparison of genetic determinants of severe hypertriglyceridemia
between cohorts.

Percentages were determined from individuals from the Lipid Genetics Clinic, UCSF
cohort, combined patient cohort and the 1000 Genomes Project. Only the patient cohorts
contain bi-allelic variants, which are the molecular hallmark of monogenic FCS.
Abbreviations: SNPs = single-nucleotide polymorphism; UCSF = University of California,
San Francisco.



162

Contols (N=503) ; {1 |
-
=
& Lipid Genetics Clinic (N=251)- e s
: |
e UCSF (N=312) P
m I
Overall (N=563) ——
[3) Contols (N=503)- ——
=
% ol EE
%’* 5 Lipid Genetics Clinic (N=251) -
2 o
¢ Xx
EQ UCSF (N=312) i
Q =
=
L Overall (N=563)- —H
Contols (N=503)- e I |
Shs . i i Kokkk
28 Lipid Genetics Clinic (N=251)- {1+
=
& E
> UCSF (N=312)+ il
<3
Overall (N=563)- H1H
T T LA L | T T AL |
0.1 1 10

Odds ratio (95% Cl)

Figure 4.4 Differences in genetic determinants of severe hypertriglyceridemia
between cohorts.

Each forest plot illustrates the odds ratio of patients from the Lipid Genetics Clinic and
UCSF cohorts having rare variants (including SNVs and CNVs), the extreme accumulation
of common triglyceride-raising alleles (as indicated by an extreme polygenic risk score),
or either type of genetic determinant, compared to normolipidemic controls from the 1000
Genomes Project. The dashed line indicates an odds ratio of 1.0. P-values were generated
from one-tailed Fisher’s exact tests. P-values: * <0.05; **** <0.0001. Abbreviations: Cl =
confidence interval; UCSF = University of California, San Francisco.
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4.5 Discussion

Here we report a comprehensive genetic analysis using NGS and bioinformatic tools to
simultaneously assess multiple types of genetic variants in patients with severe
hypertriglyceridemia. From the Lipid Genetics Clinic cohort of 251 patients, we
identified ~50% of individuals with a genetic factor likely contributing towards their
severe hypertriglyceridemia phenotype. Of importance was the virtually identical
replication of this genetic profile in an independent cohort from UCSF of 312 severe
hypertriglyceridemia patients. Across all 563 severe hypertriglyceridemia patients, 1.1%
had bi-allelic rare SNVs, 14.2% had heterozygous rare SNVs, and 0.2% had
heterozygous rare CNVs, 32.0% had extreme polygenic risk scores, and 52.6% were
genetically undefined. In consideration of the genetic classifications of
hypertriglyceridemia, 1.1% of patients had monogenic hypertriglyceridemia (defined as
having bi-allelic variants in the same gene; i.e. FCS), 46.6% of patients had polygenic
hypertriglyceridemia (defined as either a heterozygous mutant rare allele or high
polygenic risk scores; i.e. multifactorial chylomicronemia), while the remaining 52.6% of

patients had genetically uncharacterized hypertriglyceridemia.

The presence of bi-allelic, loss-of-function variants in canonical triglyceride genes causes
FCS; however only 1.1% of patients across both cohorts carried these variants. Our
findings strengthen previous reports that bi-allelic variants and FCS are actually an
extremely rare subset of the entirety of severe hypertriglyceridemia. Our findings confirm
that polygenic hypertriglyceridemia or multifactorial chylomicronemia is
overwhelmingly the most common form of this phenotype in adults. We note that the six
hypertriglyceridemia individuals with bi-allelic variants tended to have higher
triglyceride levels (by about 20%) than individuals with other defined genetic forms of
hypertriglyceridemia. The impulse to think first of the ultra-rare monogenic explanation
versus the more likely polygenic explanation when confronted with a patient whose
triglyceride level exceeds 10 mmol/L should be restrained; although these rare patients
with bi-allelic variants exist they constitute a tiny minority of adult patients with severe

hypertriglyceridemia (Hegele, 2018).



164

Heterozygous SNVs were the most frequent type of rare variant identified and were
extremely prevalent in hypertriglyceridemia patients compared to normolipidemic
controls. Increased heterozygous rare variant frequency in patients compared to healthy
individuals has been shown previously for hypertriglyceridemia and other dyslipidemias
(Johansen et al., 2010; Johansen et al., 2011b; Johansen et al., 2012; Motazacker et al.,
2013). Interestingly, 4.0% of normolipidemic controls also carried heterozygous SNVs.
Studies have reported that individuals sharing the same rare, heterozygous variant can
have a wide range of triglyceride levels (Babirak et al., 1989; Hegele et al., 1991,
Nordestgaard et al., 1997); secondary factors likely underlie these differences and help
explain the presence of heterozygous rare variants with no apparent clinical consequences
in some healthy individuals. Indeed, this is commonly seen in complex traits; while a rare
heterozygous variant may not be sufficient to drive the severe hypertriglyceridemia
phenotype, in concert with other genetic and environmental influences, it can act as a
strong polygenic contributor that increases susceptibility to high triglyceride levels (Dron
and Hegele, 2018; Hegele et al., 2014).

We observed that CNVs in canonical triglyceride genes were the rarest of all genetic
determinants. Although less frequent than bi-allelic variants, the identified CNV was
heterozygous, and like heterozygous SNVs, is also insufficient to be considered a driver
of FCS. While the LPL CNV deletion almost certainly resulted in no functional protein
from the mutant allele, the patient was heterozygous, meaning that they potentially had
one fully functional LPL allele. However, total potential lipolytic capacity would be
diminished for this patient, creating vulnerability to the effects of a secondary factor that

further compromised LPL activity.

The most prevalent genetic feature underlying severe hypertriglyceridemia here was the
polygenic accumulation of common variants—more specifically, the accumulation of
triglyceride-raising alleles across multiple SNP loci. While it has been appreciated that
SNPs with small phenotypic effects are enriched in hypertriglyceridemia patients (Hegele
et al., 2009; Johansen et al., 2011b; Piccolo et al., 2009; Teslovich et al., 2010; Wang et
al., 2008), and triglyceride-based risk scores have explained a portion of the variance in

triglyceride levels (Aulchenko et al., 2009; Justesen et al., 2015; Latsuzbaia et al., 2016;
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Lutsey et al., 2012; Tikkanen et al., 2011), direct comparisons between triglyceride
polygenic risk scores in large severe hypertriglyceridemia cohorts and normolipidemic
controls are scarce. For the first time, we illustrate that an extreme accumulation of
common variants is the most predominant genetic determinant, present in >30% of severe
hypertriglyceridemia patients, demonstrating that a large proportion of cases result from
the accumulation of multiple small effects originating from numerous small-effect
triglyceride-raising loci from across the genome. Our OR calculations confirm that an
extreme accumulation of common variants is strongly associated with severe
hypertriglyceridemia. Our results further emphasize the importance of considering
“polygenic” hypertriglyceridemia as the most common type of genetically-derived severe

hypertriglyceridemia.

For the remaining 52.6% of patients without the above genetic determinants, there remain
several possible factors that may contribute towards their phenotype. They may have rare
variants with clinically relevant effect sizes within certain non-canonical
hypertriglyceridemia genes that were not assayed in this study, such as GALNT2 or
CREB3L3. This would also include genes involved in pathways that are secondarily
associated with elevated triglyceride levels, such as diabetes, insulin resistance and
hepatosteatosis. Furthermore, while variants in such genes are not directly associated
with extremely elevated triglyceride levels like what is seen in patients with severe
hypertriglyceridemia, perhaps they contribute to this phenotype in conjunction with other
factors, such as environmental and lifestyle determinants. Studies have started to consider
complex gene-environment interactions (Cole et al., 2015), and could guide future
analyses in severe hypertriglyceridemia. Certain genotypes alone are likely insufficient to
cause extreme elevations in triglyceride levels, but in the presence of certain
environmental triggers such as poor diet, obesity, stress or alcohol use, these could
contribute to phenotypic changes. For example, adiposity was shown to almost double the
impact of triglyceride-associated SNPs incorporated into a weighted risk score (Cole et
al., 2014).

Compared to genetic analyses performed in individuals with extremes of low-density
lipoprotein (LDL) cholesterol (Wang et al., 2016) and high-density lipoprotein (HDL)
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cholesterol (Dron et al., 2017), the severe hypertriglyceridemia phenotype shows marked
differences in prevalence and predominance of genetic determinants. Different extreme
lipid phenotypes appear to have different underlying genetic architecture. For example,
extremely high levels of LDL cholesterol, presenting as “suspected familial
hypercholesterolemia” (FH), has a large monogenic component. When studying patients
with extreme deviations of HDL cholesterol and triglyceride, researchers have often
assumed an analogy with FH and have imposed a monogenic framework on their
experiments to define genetic determinants of these complex dyslipidemias. However, a
substantial proportion of patients with extreme lipid phenotypes have a primarily
polygenic basis, even for many cases of FH (Futema et al., 2015; Talmud et al., 2013;
Wang et al., 2016). Furthermore, with clearly defined monogenic dyslipidemias, there
can be phenotypic differences depending on the underlying genetic basis, such as in the
case of FCS patients who have bi-allelic LPL variants versus those with bi-allelic variants

in the four minor canonical genes (Hegele et al., 2018).

Another tendency when dealing with quantitative traits is to assume that more extreme
deviations reflect stronger genetic components. This has been observed in FH, where
patients with higher LDL cholesterol levels were more likely to have monogenic FH
(Wang et al., 2016). However, this is not the case for hypertriglyceridemia. Among a
subgroup of nine of our patients with triglyceride >100 mmol/L, only one had a rare
heterozygous LPL variant, while another had an extremely high polygenic risk score, and
the remaining seven had no defined genetic determinant. The initial clinical intuition
might be that these patients must have monogenic FCS, and that the extreme deviation is
due to bi-allelic, large-effect variants (i.e. FCS analogous to homozygous FH). However,
this is not the case; hypertriglyceridemia is a volatile trait with genetics that are not

analogous to FH or other dyslipidemias.

Our study has some limitations. First, we have no triglyceride measurements for the
normolipidemic controls from the 1000 Genomes Project. Since they were self-reported
as healthy, we assumed this cohort followed the general distribution of triglyceride levels
in a European population. With a prevalence of 1 in 600 individuals having severe

hypertriglyceridemia, it is unlikely that any affected individuals were included. Second,
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as previously mentioned, neither variants in non-canonical triglyceride genes nor gene-
environment interactions were considered. It is very likely that some of the remaining
genetically undefined patients may carry one of these alternative genetic influences. To
build on this study, future steps could incorporate these factors for an even more detailed
look into the genetic landscape of severe hypertriglyceridemia. Also, to broaden our
understanding of hypertriglyceridemia, genetic analysis could be extended to include
individuals with mild-to-moderate hypertriglyceridemia. Finally, our study was limited to
individuals of European ancestry, and may not be generalizable to other geographical
ancestries, a shortcoming that is not unique to this study (Need and Goldstein, 2009;
Popejoy and Fullerton, 2016). Given the emerging challenge of dyslipidemia in the
developing world, it is crucial to evaluate hypertriglyceridemia patients of different
geographical ancestries.

4.6 Conclusion

Here, we assessed genetic profiles of severe hypertriglyceridemia patients using our
targeted NGS panel and bioinformatic tools. We report the most comprehensive and in-
depth portrait of genetic determinants of severe hypertriglyceridemia to date. After a
concurrent assessment of rare variants, both SNVs and CNVs, and the accumulation of
common variants, we found that the accumulation of common variants was the most
predominant genetic feature, and almost half of the patients had some type of polygenic
determinant. Patients with bi-allelic rare variants (i.e. FCS) are a very rare subset of this
phenotype. Nonetheless, there is a very strong genetic component underlying severe
hypertriglyceridemia; this is clearly polygenic in large proportion of patients with severe
hypertriglyceridemia.
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Chapter 5 — Partial LPL deletions: rare copy-number variants
contributing towards the polygenic form of severe
hypertriglyceridemia

The work contained in this Chapter has been edited from its original publication in the

Journal of Lipid Research for brevity and consistency throughout this Dissertation.
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5.1 Abstract

Objective: Severe hypertriglyceridemia is a relatively common form of dyslipidemia
with a complex pathophysiology and serious health complications. Hypertriglyceridemia
can develop in the presence of rare genetic factors disrupting genes involved in the
triglyceride metabolic pathway, including large-scale copy-number variants (CNVSs).
Improvements in next-generation sequencing (NGS) technologies and bioinformatic
analyses have better allowed assessment of CNVs as possible causes of or contributors to

severe hypertriglyceridemia.

Methods and Results: We screened targeted NGS data of 632 patients with severe
hypertriglyceridemia and identified partial deletions of the LPL gene, encoding the
central enzyme involved in the metabolism of triglyceride-rich lipoproteins, in four
individuals (0.63%). We confirmed the genomic breakpoints in each patient with Sanger
sequencing. Three patients carried an identical heterozygous deletion spanning the 5’
untranslated region (UTR) to LPL exon 2, and one patient carried a heterozygous deletion
spanning the 5’UTR to LPL exon 1. All four heterozygous CNV carriers were determined
to have the polygenic form of severe hypertriglyceridemia (i.e. multifactorial

chylomicronemia).

Conclusion: The predicted null nature of our identified LPL deletions may contribute to
relatively higher triglyceride levels and a more severe clinical phenotype than other forms
of genetic variation associated with the disease, particularly in the polygenic state. The
identification of novel CNVs in patients with severe hypertriglyceridemia suggests that
methods for CNV detection should be included in the diagnostic workflow and genetic

evaluation of patients with high triglyceride levels.

5.2 Introduction

Elevations in fasting plasma triglyceride levels are diagnosed as hypertriglyceridemia;
triglyceride levels >10 mmol/L are classified as “severe” hypertriglyceridemia (Hegele et
al., 2014) and are seen in ~1 in 600 individuals (Dron and Hegele, 2017). As a relatively

common form of dyslipidemia with serious health complications that include pancreatitis
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(Brahm and Hegele, 2015; Dron and Hegele, 2017), there is a focus on identifying and
understanding factors that can increase susceptibility or cause severe

hypertriglyceridemia.

A combination of rare single-nucleotide variants (SNVs) and common single-nucleotide
polymorphisms (SNPs) can contribute permissively or causally towards the presentation
of this complex disease (Brahm and Hegele, 2015). The monogenic form of severe
hypertriglyceridemia—also referred to as familial chylomicronemia syndrome (FCS)—is
caused by bi-allelic variants disrupting canonical genes involved in triglyceride
metabolism, such as LPL, LMF1, GPIHBP1, APOA5, and APOC2 (Johansen et al.,
2011a). Conversely, increased susceptibility for the polygenic form of severe
hypertriglyceridemia, called “multifactorial chylomicronemia”, is due to heterozygous
rare variants, common triglyceride-raising alleles at certain SNP loci, or a combination of
both (Dron et al., 2019; Johansen et al., 2010; Johansen et al., 2011b; Johansen et al.,
2012; Kathiresan et al., 2009; Surendran et al., 2012; Teslovich et al., 2010; Wang et al.,
2008; Willer et al., 2013).

Previously, it has been shown that copy-number variants (CNVSs) are an additional type
of genetic variation that can markedly contribute to extreme perturbations of triglyceride
levels (Benlian et al., 1995; Devlin et al., 1990; Langlois et al., 1989; Okubo et al., 2007),
as well as other lipid traits and disorders (Dron et al., 2018; lacocca et al., 2018a; lacocca
et al., 2019; lacocca and Hegele, 2018; lacocca et al., 2018b). Assessment of CNVs is
becoming easier due to improvements in sequencing technologies and bioinformatic
analysis tools (lacocca and Hegele, 2018; Valsesia et al., 2013). Because of this, it is
possible to screen for CNVs in patient samples concurrently with rare SNVs and SNPs
(lacocca et al., 2019), and assess them as possible causes or contributors towards severe

hypertriglyceridemia.

A previous study of 563 patients with severe hypertriglyceridemia led to the
identification of one individual who was likely carrying a heterozygous CNV deletion in
LPL (Dron et al., 2019). From our next-generation sequencing (NGS) method and data
archive (Johansen et al., 2014), we expanded our search for additional LPL CNVs that
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might be contributing towards the presentation of severe hypertriglyceridemia in a larger
cohort of patients. We discovered a total of four out of 632 patients with severe
hypertriglyceridemia who were heterozygous carriers for one of two novel CNV
deletions disrupting LPL. We molecularly confirm and characterize each deletion and

discuss their likely contribution to severe hypertriglyceridemia.

5.3 Materials and Methods
5.3.1  Study subjects

Severe hypertriglyceridemia patients (defined as triglyceride levels >10 mmol/L on at
least one occasion) from the Lipid Genetics Clinic at the London Health Sciences Centre,
University Hospital (London ON, Canada), the Genomic Resource in Arteriosclerosis and
Metabolic Disease recruited at the Lipid, Diabetes, or Cardiology Clinics (University of
California, San Francisco CA, USA), or patient samples directly from collaborating
research centres were screened for CNVs. Patients provided signed consent with approval
from the Western University ethics review board (no. 07290E) or from the originating

institution.

5.3.2 DNA preparation and targeted sequencing

DNA isolation and preparation for targeted NGS follows the same methodology as
described in Chapter 2, Section 2.3.2.

5.3.3 Bioinformatic processing of sequencing data

The bioinformatic processing of sequencing data follows the same methodology as

described in Chapter 3, Section 3.3.3; however, an updated version of CLC Bio

Genomics Workbench (version 12.0; CLC Bio, Aarhus, Denmark) was used.

5.3.4  Detection of copy-number variants

CNVs were detected following the same methodology described in Chapter 3, Section

3.3.4; however, an updated version of VarSeq® (version 2.1.0; Golden Helix, Inc.,

Bozeman MT, USA) was used. The LPL gene was specifically screened for CNVs.
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5.3.5 Validation of partial gene deletions

5.3.5.1 Breakpoint identification

To confirm each deletion, we designed primers to flank the regions likely to contain the
deletions and used them for PCR amplification (Expand 20 kb PCR System, Sigma-
Aldrich St. Louis MO, USA, cat. No. 11811002001). The forward (F) and reverse (R)
primers used were: F1 5>-TACAAGACGGTGTGTTGTGTTGTGGCACGG-3’ and R1
5’-GTGACTTGATCCACAGCACAGAGCTGGAG-3’ (5’ untranslated region [UTR] —
exon 1 deletion); F2 5’-AAGCTAGCTAGCTAGCTGGCTGGCCAG-3" and R2 5°-
GGGTCTCTTGCAGCTAAGTCAGAACTCCAG-3’ (5’UTR — exon 2 deletion). PCR
products were run on a gel for visual confirmation of the mutant alleles. Sanger
sequencing and primer-walking of the PCR products were performed to identify the

deletion breakpoints.

5.3.5.2 Sanger confirmation

After identifying deletion breakpoints by primer-walking the PCR products, screening
primers spanning the proximal or distal breakpoint were designed for PCR and Sanger

sequencing (Appendix I).

5.4 Results
5.4.1  Study subjects

A total of 632 patients with severe hypertriglyceridemia were screened for CNVs
disrupting LPL. We identified four individuals (Table 5.1) who were carriers for partial
deletions in LPL using the VarSeq-CNV® caller algorithm (Figure 5.1).

5.4.2  LPL copy-number variant detection

Subject 1 was detected as carrying a heterozygous deletion of the 5’UTR to exon 1. From
our LipidSeq panel, the CNV was detected to cover a single probe, and had an average

ratio of 0.504 and average Z score of -13.030.

Subjects 2, 3, and 4 were all detected as carrying a heterozygous deletion of the 5’UTR to

exon 2; the observation of Subject 4’s CNV was first reported by our group earlier this
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year (Dron et al., 2019). From our LipidSeq panel, the CNV was detected to cover two
probes. Subject 2 had an average ratio of 0.566 and average Z score of -7.058. Subject 3
had an average ratio of 0.542 and average Z score of -9.713. Subject 4 had an average
ratio of 0.546 and average Z score of -7.248.

5.4.3  Copy-number variant validation and identifying breakpoints

A combination of PCR primer-walking upstream and downstream of the putative CNVs
and gel electrophoresis validated the deletions and allowed for their characterization
(Table 5.2). The deletion in Subject 1 was found to be 5,917 bp in size. This deletion
began 1,038 bp upstream of LPL, covered the 5’UTR and exon 1, and ended 4,420 bp
downstream of the splice donor site in intron 1 (Figure 5.2). Subjects 2, 3, and 4 were
found to have the exact same deletion, which was 11,598 bp in size. This deletion began
1,432 bp upstream of LPL, covered the 5’UTR, exon 1 and exon 2, and ended 895 bp
downstream of the splice donor in intron 2 (Figure 5.2). We currently do not have any

information suggesting that these three individuals are related.
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Figure 5.1 Identification of LPL CNVs using the VarSeq-CNV® caller algorithm on targeted sequencing data.
Chr8:19,795,931-19,829,369 (hg19 genome build) is the region visualized in each panel. A) Subject 1, carrier of a heterozygous deletion
spanning the 5’UTR and exon 1 of LPL. B) Subject 2, 3, and 4, carriers of a heterozygous deletion spanning the 5’UTR, exon 1 and
exon 2 of LPL. Abbreviations: chr = chromosome; CNV = copy-number variant; het = heterozygous.

CNV State

Het Delation

RefSeq Gene Transcript
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Table 5.1 Clinical and demographic features of subjects with LPL CNVs.

Subject 1 Subject 2 Subject 3 Subject 4
Age 53 48 64 46
Sex Male Male Male Female
BMI (kg/mz) 30.3 28.9 31.2 34.6
Race White and Hispanic White White White
Total
cholesterol 10.1 4.98 7.54 17.4
(mmol/L)
Pllclcetice 36.1 16.7 35.9 36.4
(mmol/L)
HDL
cholesterol 0.59 0.76 0.45 0.39
(mmol/L)
LDL
cholesterol 1.76 - - 1.24
(mmol/L)
apo B (g/L) 1.28 0.69 0.84 4.44
Fasting
glucose 10.0 6.3 10.0 11.0
(mmol/L)
Acute pancreatitis x3;
pancreatic pseudocyst; Acute
type 2 diabetes; carotid Herpes zoster; pancreatitis Acute pancreatitis:
Co- and aortoiliac plaque; impaired glucose X3; type 2 a[I)Istones '
morbidities hepatic steatosis, gout; tolerance; diabetes; cho?ec stectom
historically highest hepatosteatosis CABG, MI ( Y y)
triglyceride was 102 X2; gout
mmol/L
. LPL exon 1 deletion LPL exon 1-2 Id‘glgtﬁxno?hz)z, LPL exon 1-2
Identified (het); common LPL deletion (het); normal deletion (het);
genetic p.D36N variant (het); normal polygenic olvaenicirisk normal polygenic
factors normal polygenic risk risk score (<43™ psc?)/?e (<77 risk score (<31%

score (<64™ percentile)

percentile) percentile)

percentile)

Values provided are from first presentation to specialist lipid clinic, or date first obtained. Abbreviations:
apo = apolipoprotein; BMI = body-mass index; CABG = coronary artery bypass graft; HDL = high-density
lipoprotein; het = heterozygous; LDL = low-density lipoprotein; MI = myocardial infarction.
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Zygosity Breakpoint
SN state Genc_)mlc L HGVS notation
coordinates (bp)
5UTR 9.19795544-19801460del
chr8:19,795,544 to
to exon Het T on 5,917 c. 1 _88del
1 chr8:19,801,460 0. Met1?
5 UTR _ 9.19795150-19806747del
moon M SUSERESIBUD g g c.1_249del
chr8:19,806,747
2 p.Metl1?

The sequences are in the forward-strand orientation. Abbreviations: bp = base pair; chr = chromosome;

CNV = copy-number variation; het = heterozygous; HGVS = Human Genome Variation Society.
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P1 P2 P4 PG LPL
5 l L | - f—
P3 P5 PT
Chr8:19,795,544 —19,801,460 Chr8:19,795,150-19,806,747
5,917 bp deletion 11,598 bp deletion
TGTGTGRCGGLGGE GGCCGRGGCGGGET CTTCTGICATTTIT T TARCATTC
Chr8:18,785, 544 (upstream breakpoint) Chr3:18,801,480 (downstream breakpeint) Chrg:19,795,150 [upstream breakpoint) Chr8:19,808,747 (downstream breakpaint)
[ I
I
TGIGIGACGGLEEGENGECCGAEECEEET
+ TGTCATTTTTT TAAC TGICETTITII. TALC, TGICRITITTI TRELC
S1: delation junction
81 NC S1 NC 51 NC
1) 622 b
500 bp ii)) o b o om . LI 4
p 2. deletion junction 53: deletion junction 54: deletion jundtion
iii) 604 bp
53 52 53 54 NC S2 S3 S4
100 bp Primers Primers Primers
ladder 283 485 285 500 bp i)1,114 bp
i) 406 bp
iii) 487 bp

100 bp
ladder

Primers 1 & 3

Primers 6 & 7

Primers 1 &7

Figure 5.2 Validation of deletions disrupting LPL in patients with severe

hypertriglyceridemia.

The LPL gene transcript with the approximate breakpoints of the smaller CNV deletion
encompassing exon 1 (left) and the larger CNV deletion encompassing exons 1 and 2
(right) are indicated in blue and yellow, respectively. The diagonal slashes along the
transcript indicate sequence breakpoints, while the arrows demonstrate the position and
orientation of primers used in breakpoint identification and Sanger sequencing. Gel
electrophoresis of PCR products across upstream and downstream breakpoints, and
deletion junctions for each deletion are shown for Subjects 1 to 4. The primer pairs used
for each PCR are indicated underneath the corresponding gel lanes. Abbreviations: bp =
base pair; chr = chromosome; NC = normal control; P = primer; S = subject.
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5.5 Discussion

Out of 632 patients with severe hypertriglyceridemia, four (0.63%) were identified as
carriers of one of two unique, partial gene deletions in LPL. CNVs involving LPL—both
deletions and duplications—have previously been identified using older methods
(Benlian et al., 1995; Devlin et al., 1990; Langlois et al., 1989; Okubo et al., 2007), but to
our knowledge this is one of the first few reports identifying and characterizing LPL
CNVs using an NGS-based bioinformatic method, with confirmation of the genomic
breakpoints. A recent study identified an LPL CNV deletion in an individual with severe
hypertriglyceridemia last year using different NGS-based methods (Marmontel et al.,
2018).

LPL is the primary enzyme responsible for the hydrolysis of triglyceride-rich
lipoproteins, such as chylomicrons and very-low-density lipoproteins (VLDL)
(Olivecrona, 2016; Young and Zechner, 2013). After being chaperoned by lipase
maturation factor 1 (LMF1) from parenchymal cells to endothelial cells, LPL is anchored
to the vascular lumen by glycosylphosphatidylinositol-anchored high-density lipoprotein-
binding protein 1 (GPIHBP1) (Young and Zechner, 2013). From there, LPL binds to the
apolipoprotein (apo) C-11 component of circulating triglyceride-rich lipoproteins to
initiate the catabolism of their triglyceride-rich cores (Young and Zechner, 2013).
Molecular disruptions that impair LPL mobilization or activity lead to an overall decrease
in the hydrolysis of triglyceride. With fewer triglyceride-rich lipoproteins being
catabolized, there is a resultant increase in the circulating concentration of triglyceride,
which is the defining feature of hypertriglyceridemia.

Considering the two identified CNVs spanning the 5’UTR to exon 1 and the 5’UTR to
exon 2 both delete the initiator codon, it is almost certain that these CNVs are null
mutations (Walter et al., 2005). However, the exact molecular consequences of these
partial gene deletions cannot be confirmed without functional data related to mMRNA
expression, protein expression, or protein function. Since only heterozygous deletions
were found, each patient can be classified as presenting with the polygenic form of
hypertriglyceridemia (Brahm and Hegele, 2015; Dron et al., 2019; Wang et al., 2008)
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with additional factors—either genetic or environmental or both—contributing to their
clinical phenotype (Cole et al., 2015); this can also be referred to as “multifactorial
chylomicronemia”. Interestingly, none of these patients have a high polygenic risk score
or any other rare variants in canonical triglyceride metabolism genes. Although the sizes
of the CNVs are quite large and the reported triglyceride levels are extremely high, these
patients are not considered to have FCS, which refers specifically to a highly penetrant
autosomal recessive disease. Only individuals with bi-allelic variants disrupting one of
the canonical triglyceride metabolism genes can be diagnosed with FCS.

To our knowledge, these particular LPL CNV deletions have never been reported.
Overall, publications on LPL CNVs have been infrequent. In 1989, Langlois et al.
identified several LPL-deficient individuals with either a 2-kb insertion or a 6-kb deletion
in LPL using Southern blotting (Langlois et al., 1989). The next year, Devlin et al. further
characterized the insertion and showed that it was a 2-kb tandem duplication event
disrupting exon 6 of LPL (Devlin et al., 1990). Some years later, the first report of a
homozygous CNV deletion in LPL was reported by Benlian et al. who used a PCR-based
approach to define a 2.1-kb deletion encompassing exon 9 and flanking intronic sequence
in a patient with LPL deficiency (Benlian et al., 1995). The next report on a LPL CNV
was published more than a decade later, when Okubo et al. described a complex deletion-
insertion event (Okubo et al., 2007). By using both Southern blot analysis and PCR, they
found their LPL-deficient proband was a homozygous carrier for a 2.3-kb deletion across
exon 2 and 150 bp insertion at the break junction (Okubo et al., 2007). When considering
more modern detection methods, a recent study by Marmontel et al. identified a
heterozygous LPL deletion of exons 3 to 7 in a young patient with severe
hypertriglyceridemia (triglyceride = 87 mmol/L); this individual also carried a
heterozygous SNV in LPL (c.642A>C) and was classified as having a bi-allelic variant,
and thus was diagnosed with FCS (Marmontel et al., 2018).

Given the rarity of LPL CNVs, it was interesting to find the same deletion in three of our
patients, Subjects 2 to 4, who have no known relationship between them. Since their
deletion breakpoints are identical by sequencing, it is possible that these individuals have

a distant common ancestor who carried the CNV. Although these patients presently live
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in different geographical locations, they all self-report similar ancestry. An alternative—
albeit far less likely—explanation is that the exact same CNV event occurred
independently in each separate patient lineage. For this deletion, there is sequence
homology and repeated sequence around the breakpoint junction, which increases the
likelihood of slippage, replication errors, and CNV events (Hastings et al., 2009). Despite
having features that promote CNV events, the rarity of this LPL deletion in the literature
and public databases suggests that this CNV is more likely shared by a common ancestor,
rather than a reoccurring, independent deletion.

When considering triglyceride levels in these patients, we noted that Subject 1 who had
the smallest CNV also had the highest measured triglyceride levels at 102 mmol/L, while
Subjects 2 to 4 who shared the larger CNV had somewhat lower triglyceride
measurements ranging between 16.7 mmol/L and 36.4 mmol/L. It is unclear as to
whether CNV size corresponds to magnitude in triglyceride elevation, or if it gives any
indication for the function of the resultant protein product. Overall, the patients ranged
from 48 to 53 years old and presented with a variety of co-morbidities. Interestingly,
Subjects 1, 3 and 4 had reported past instances of acute pancreatitis requiring
hospitalization; Subjects 1 and 3 each had three reported episodes. Acute pancreatitis has
heretofore been a more frequent manifestation among individuals with the monogenic
form of severe hypertriglyceridemia (Paquette et al., 2019). Given that these four patients
almost certainly have polygenic hypertriglyceridemia, we speculate these predicted null
mutations may have predisposed to relatively higher triglyceride levels than other types
of genetic variation. Without functional studies and larger cohorts, it is difficult to isolate
the CNV-specific effects. Disparities in genotype-phenotype relationships have
previously been observed with CNVs underlying depressed high-density lipoprotein
(HDL) cholesterol levels, in which the same genetic variants were found in individuals
with variable lipid profiles (Brunham et al., 2006; Dron et al., 2018).

The reported non-genetic factors, including co-morbidities such as diabetes (Table 5.1),
are likely contributing towards the overall severity of these patients’ hypertriglyceridemia
phenotypes, and in turn may help to explain the frequency of acute pancreatitis episodes

in these individuals. By considering these additional pieces of information, we can more
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specifically diagnose our patients with multifactorial chylomicronemia. As stated
previously, a single heterozygous variant is not enough to cause hypertriglyceridemia;
given that the patients did not have any additional related genetic factors identified as
contributing towards their phenotypes, these non-genetic factors must be considered as

likely contributory factors.

Future studies are required to characterize the functional impact of our identified CNVs
on LPL activity and triglyceride clearance pathways. Moving forward, it is also important
to screen for CNVs in the other canonical triglyceride metabolism genes, as they have
been previously identified in individuals with hypertriglyceridemia, such as CNVs
disrupting GPIHBP1 and APOC2 (Hegele et al., 2018; Patni et al., 2016; Rios et al.,
2012).

5.6 Conclusion

In summary, although they are relatively infrequent, LPL CNVs are an important type of
genetic variation that should be screened for when establishing the genetic basis of
hypertriglyceridemia, given their disruptive nature. With developments and
improvements to NGS techniques and more accessible CNV detection methods, CNV
assessment can be easily incorporated into routine screens of rare SNVs and polygenic
risk score calculations (lacocca et al., 2019; lacocca and Hegele, 2018). Efforts must be
taken to carefully characterize different determinants, including CNVs, SNVs, and the
accumulation of SNPs. By assessing a larger spectrum of genetic factors, we can achieve
a more comprehensive understanding of the genetic etiology underlying severe

hypertriglyceridemia.
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6.1 Abstract

Objective: Patients with mild-to-moderate hypertriglyceridemia are thought to share
specific genetic susceptibility factors that are also present in severe hypertriglyceridemia
patients, but no data have been reported on this issue. Here, we characterized genetic
profiles of mild-to-moderate hypertriglyceridemia patients and compared them to patients

with severe hypertriglyceridemia.

Methods and Results: DNA from patients with mild-to-moderate hypertriglyceridemia
was sequenced using our targeted sequencing panel, “LipidSeq”. For each patient, we
assessed: 1) rare variants disrupting five triglyceride metabolism genes; and 2) the
accumulation of 16 common single-nucleotide polymorphisms (SNPs) using a polygenic
risk score. The genetic profiles for these patients were then compared to normolipidemic
controls and to patients with severe hypertriglyceridemia. Across 134 mild-to-moderate
hypertriglyceridemia patients, 9.0% carried heterozygous rare variants and 24.6% had an
excess accumulation of common SNPs. Mild-to-moderate hypertriglyceridemia patients
were 2.38-times (95% CI [1.13-4.99]; P=0.021) more likely to carry a rare variant and
3.26-times (95% CI [2.02-5.26]; P<0.0001) more likely to have an extreme polygenic
risk score compared to normolipidemic controls from the 1000 Genomes Project. In
addition, severe hypertriglyceridemia patients were 1.86-times (95% ClI [0.98-3.51];
P=0.032) more likely to carry a rare variant and 1.63-times (95% CI [1.07-2.48];
P=0.013) more likely to have an extreme polygenic risk score compared to mild-to-

moderate hypertriglyceridemia patients.

Conclusions: We report an increased prevalence of genetic determinants in patients with
an increased severity of the hypertriglyceridemia phenotype when considering either rare
variants disrupting triglyceride metabolism genes or an excess accumulation of common
SNPs. As well, the findings confirm that the most prevalent genetic contributor to

hypertriglyceridemia, regardless of severity, is polygenic SNP accumulation.
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6.2 Introduction

As a common dyslipidemia encountered in the clinic, hypertriglyceridemia is defined by
elevated fasting triglyceride levels. Depending on the degree of elevation, individuals can
present with mild-to-moderate hypertriglyceridemia (range 2-9.9 mmol/L) or severe
hypertriglyceridemia (>10 mmol/L) (Hegele et al., 2014). Numerous genetic determinants
contribute to susceptibility and presentation of hypertriglyceridemia (Brahm and Hegele,
2015). In severe hypertriglyceridemia patients with the monogenic recessive form of the
disease—familial chylomicronemia syndrome (FCS)—bi-allelic rare variants disrupting
canonical genes in the triglyceride metabolic pathway—including LPL, LMF1,
GPIHBP1, APOAS5, and APOC2—are casual factors (Johansen et al., 2011a). There is no
reported autosomal dominant form of hypertriglyceridemia. By contrast, most individuals
with severe hypertriglyceridemia have a complex polygenic predisposition; genetic
susceptibility results from either incompletely penetrant heterozygous rare variants
disrupting the aforementioned triglyceride metabolism genes, or the incremental effects
from the accumulation of common triglyceride-associated single-nucleotide
polymorphisms (SNPs), or a combination of these genetic factors (Johansen et al., 2010;
Johansen et al., 2011b; Johansen et al., 2012; Kathiresan et al., 2009; Surendran et al.,
2012; Teslovich et al., 2010; Wang et al., 2008; Willer et al., 2013). This is referred to as

multifactorial chylomicronemia.

Previously, we characterized the genetic determinants underlying severe
hypertriglyceridemia in a cohort of 563 patients and found: 1) 1.1% of cases were
monogenic due to bi-allelic rare variants; and 2) 14.4% of cases carried heterozygous rare
variants of variable penetrance; and 3) 32.0% had an excess accumulation of common
SNPs (Dron et al., 2019). While that study advanced our understanding of the genetic
profiles of severe hypertriglyceridemia patients, the genetic profiles of mild-to-moderate

hypertriglyceridemia patients have not been examined.

Despite having lower triglyceride levels compared to those with severe
hypertriglyceridemia, patients with mild-to-moderate hypertriglyceridemia also have
health concerns, including an increased risk for cardiovascular disease (Dron and Hegele,

2017). The main disturbance in mild-to-moderate hypertriglyceridemia patients is an
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excess of very-low-density lipoproteins (VLDL) and their remnants, including
intermediate-density lipoproteins (IDL) (Brahm and Hegele, 2015; Varbo and
Nordestgaard, 2016), which are considered atherogenic. Fasting chylomicrons are usually
absent in mild-to-moderate hypertriglyceridemia patients, while in severe
hypertriglyceridemia patients, chylomicrons are present typically together with excess
VLDL and remnant particles (Chait and Brunzell, 1992; Dron et al., 2017; Lewis et al.,
2015). Some patients with mild-to-moderate hypertriglyceridemia can deteriorate into
severe hypertriglyceridemia when excess VLDL saturates triglyceride removal
mechanisms, such that incoming chylomicrons cannot be cleared and thus accumulate
pathologically (Chait and Eckel, 2019). It has been assumed that patients with mild-to-
moderate hypertriglyceridemia share particular genetic susceptibility factors with severe
hypertriglyceridemia patients. The phenotype can be further worsened by secondary
factors such as diabetes, obesity, poor diet or alcohol use. Genetically characterizing
mild-to-moderate hypertriglyceridemia patients may clarify potential underlying

similarities and differences with severe hypertriglyceridemia.

In our clinic, we routinely perform next-generation sequencing (NGS) on all consenting
patients and obtain a complete profile of both rare variants of large effect and common
variants of small effect underlying dyslipidemias, including mild-to-moderate and severe
hypertriglyceridemia. Here, we report the use of our well-established sequencing panel to
assess the genetic profiles of 134 mild-to-moderate hypertriglyceridemia patients and

compare these with reported findings from patients with severe hypertriglyceridemia.

6.3 Materials and Methods
6.3.1  Study subjects

Patients of interested included those of European ancestry with earliest reported
triglyceride levels >3.3 mmol/L and <10 mmol/L, and a total cholesterol of <5 mmol/L.
Patients with triglyceride levels ever reported as >10 mmol/L were excluded from

consideration.
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In adherence to the Declaration of Helsinki, all patients provided written, informed
consent for collection of personal data and DNA with approval from the Western
University (London ON, Canada) ethics review board (no. 07290E).

As a reference cohort of normolipidemic controls, we used the European subset of the
1000 Genomes Project (N=503) (Genomes Project et al., 2015). For additional
comparison, we also utilized our cohort of 563 severe hypertriglyceridemia patients, in
which all patients had triglyceride levels >10 mmol/L (Dron et al., 2019); this cohort is
described in Chapter 4.

6.3.2 DNA preparation and targeted sequencing

DNA isolation and preparation for targeted NGS follows the same methodology as
described in Chapter 2, Section 2.3.2.

6.3.3  Bioinformatic processing of sequencing data

The bioinformatic processing of sequencing data follows the same methodology as
described in Chapter 5, Section 5.3.3.

6.3.4  Annotation and analysis of rare single-nucleotide variants

The annotation and analysis of rare single-nucleotide variants (SNVs) follows the same
methodology as described in Chapter 4, Section 4.3.4; however, an updated version of
VarSeq® (version 2.1.1; Golden Helix, Inc., Bozeman MT, USA) was used.

6.3.5 Detection of rare copy-number variants

Copy-number variants (CNVs) were identified following the same methodology as
described in Chapter 4, Section 4.3.5; however, an updated version of VarSeq® (version
2.1.1; Golden Helix, Inc., Bozeman MT, USA) was used.

6.3.6  Polygenic risk score for elevated triglyceride levels

The polygenic risk score used to assess for single-nucleotide polymorphisms (SNPs)

associated with triglycerides is described in Chapter 4, Section 4.3.6. This score was

calculated in all patients and controls assessed in this study.
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6.3.7  Statistical analysis

Statistical analyses were performed as described in Chapter 4, Section 4.3.7; however, an

updated version of GraphPad Prism for Windows (version 8.0.2; GraphPad Software, La
Jolla CA, USA) was used.

6.4 Results

6.4.1 Characteristics of study subjects

One hundred and thirty-four patients were selected for study from the Lipid Genetics
Clinic at the London Health Sciences Centre, University Hospital (London ON, Canada).
The demographic and clinical characteristics of the 134 mild-to-moderate

hypertriglyceridemia patients are summarized in Table 6.1.

6.4.2 Rare variants identified in canonical triglyceride metabolism
genes

Mild-to-moderate hypertriglyceridemia patients were assessed for rare variants—both

SNVs and CNVs—in the five canonical triglyceride metabolism genes. Overall, 9.0%

(12/134) of patients were carriers for heterozygous rare SNVs, representing 11 unique

variants (Appendix J). Neither bi-allelic SNVs nor CNVs were identified. Of interest,

one patient carried two rare heterozygous SNVs: one in LPL and one in APOADS (i.e.

“double heterozygosity”).

6.4.3  Measuring accumulation of common triglyceride-raising
alleles

An extreme accumulation of triglyceride-raising alleles at common SNP sites was

defined as a polygenic risk score >1.49 (>90" percentile) (Dron et al., 2019). An extreme

score was identified in 26.9% (36/134) of mild-to-moderate hypertriglyceridemia

patients. The distribution of polygenic risk scores for each cohort are visualized in Figure

6.1.



197

Table 6.1 Clinical and demographic information of the mild-to-moderate

hypertriglyceridemia patient cohort (N=134).

Mild-to-moderate Severe p-value

Males Females Total Total
N 93 41 134 563
Age 532 +11.8"° 549+12.6° 5368+120 49.12+125 0.0006
BMI 3118+28  3087+59° 3007+40 29.86+50° 0.2201
(kg/m?)
Total
cholesterol  4.06 + 0.6 414+ 0.6 408+06  11.3+6.1° <0.0001
(mmol/L)
Triglyceride  j ey 13 473+14  468+13  2603+237 <0.0001
(mmol/L)
HDL
cholesterol  0.79 % 0.2 0.86 0.3 081+£02  081+04° 00231
(mmol/L)

Values are indicative of the mean + SD. “*” indicates means that were calculated with an incomplete
dataset. All reported P-values are two-tailed and show comparisons between the total mild-to-moderate
hypertriglyceridemia and total severe hypertriglyceridemia cohort. Abbreviations: BMI = body-mass
index; HDL = high-density lipoprotein.
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Figure 6.1 Polygenic risk score distributions between cohorts.

Each violin plot illustrates the distribution of the 16-SNP polygenic risk score calculated
in the 1000 Genomes Project, mild-to-moderate hypertriglyceridemia, and severe
hypertriglyceridemia cohorts. The 90" percentile is denoted by the hashed black line
(1.49). The lines within each plot represent the median and quartiles for each cohort. P-
values were generated from a Kruskal-Wallis test and adjusted with Dunn’s multiple
comparisons based on mean polygenic risk score values between groups. P-values: * <0.05;
***x <0.0001.
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6.4.4  Comparison of genetic profiles between cohorts

The genetic profile of the mild-to-moderate hypertriglyceridemia cohort was compared to
individuals from the previously published 1000 Genomes Project and severe
hypertriglyceridemia cohorts (Dron et al., 2019) (Figure 6.2). When considering rare
variants only, 4.0% (20/503), 9.0% (12/134), and 15.5% (87/563) of individuals in the
1000 Genomes Project, mild-to-moderate hypertriglyceridemia, and severe
hypertriglyceridemia cohorts were carriers, respectively. When considering the
accumulation of triglyceride-raising alleles, 10.1% (51/503), 26.9% (36/134), and 37.5%
(211/563) of individuals in the 1000 Genomes Project, mild-to-moderate
hypertriglyceridemia, and severe hypertriglyceridemia cohorts had extreme polygenic
risk scores, respectively. When considering both rare variants or accumulated
triglyceride-raising alleles (i.e. an extreme polygenic risk score), 13.5% (68/503), 33.6%
(45/134), and 47.4% (267/563) of individuals in the 1000 Genomes Project, mild-to-
moderate hypertriglyceridemia, and severe hypertriglyceridemia cohorts had either

genetic determinant, respectively.

The forest plots in Figure 6.3 highlight differences in prevalence of genetic determinants
between mild-to-moderate and severe hypertriglyceridemia patient cohorts, compared to
the 1000 Genomes Project. Mild-to-moderate hypertriglyceridemia patients are 2.38-
times (95% CI [1.13-4.99]; P=0.021) more likely to carry a rare variant and 3.26-times
(95% CI [2.02-5.26]; P<0.0001) more likely to have an extreme polygenic risk score
compared to the 1000 Genomes Project. Severe hypertriglyceridemia patients are 1.86-
times (95% CI [0.98-3.51]; P=0.032) more likely to carry a rare variant and are 1.63-
times (95% CI [1.07-2.48]; P=0.013) more likely to have an extreme polygenic risk score
compared to mild-to-moderate hypertriglyceridemia patients. These comparisons show a
significant stepwise increase in the prevalence of genetic determinants—both rare and
common—from control to mild-to-moderate to severe hypertriglyceridemia patients.
Finally, in our mild-to-moderate hypertriglyceridemia cohort, only 3/12 patients (25%)
with a rare variant also had an extreme polygenic risk score, while in our severe
hypertriglyceridemia cohort, 30/87 patients (34.5%) with a rare variant also had an

extreme polygenic risk score.
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Figure 6.2 The comparison of genetic profiles between cohorts.

Percentages were determined from normolipidemic controls and patients with either mild-
to-moderate or severe hypertriglyceridemia. The prevalence of genetic determinants in the
1000 Genomes Project cohort and severe hypertriglyceridemia cohort have been previously
reported by Dron et al. (2019). Abbreviations: SNPs = single-nucleotide polymorphisms.
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Figure 6.3 Differences in genetic determinants of hypertriglyceridemia.
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severe

hypertriglyceridemia patients having rare variants (including SNVs and CNVs), the
extreme accumulation of common triglyceride-raising alleles (as indicated by an extreme
polygenic risk score), or either type of genetic determinant, compared to the
normolipidemic controls of the 1000 Genomes Project. The dashed line indicates an odds
ratio of 1.0. P-values were generated from one-tailed Fisher’s exact tests. P-values: * <0.05;
**** <0.0001. Abbreviations: CI = confidence interval.
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6.5 Discussion

In this study, we performed a comprehensive assessment of the genetic determinants
underlying mild-to-moderate hypertriglyceridemia. Using the same rare variant and
polygenic risk score analysis as we reported previously in our severe
hypertriglyceridemia cohort (Dron et al., 2019), we compared genetic profiles of patients
who had varying hypertriglyceridemia severity. Across 134 mild-to-moderate
hypertriglyceridemia patients, 9.0% carried heterozygous rare variants and 24.6% had an
excess accumulation of common SNPs, totalling 33.6% of the study sample with an

identifiable genetic determinant, while 66.4% were genetically undefined.

Next, after comparing the genetic profiles of mild-to-moderate and severe
hypertriglyceridemia patients (Dron et al., 2019), we noted a stepwise increase in the
prevalence of genetic determinants as the hypertriglyceridemia phenotype became more
severe. These differences were significant between pairwise comparisons. Cumulatively,
our data show that mild-to-moderate hypertriglyceridemia patients have a genetic burden
that is intermediate between normolipidemic controls and patients with severe

hypertriglyceridemia.

Despite the significantly increased overall prevalence of rare variants in severe
hypertriglyceridemia patients compared to mild-to-moderate hypertriglyceridemia
patients (Dron et al., 2019), certain rare variants were shared between individuals in the
two patient groups, underscoring that a single rare variant is insufficient to distinguish
between the hypertriglyceridemia sub-phenotypes (Babirak et al., 1989; Hegele et al.,
1991; Nordestgaard et al., 1997). These determinants might affect individuals differently
or could have variable penetrance, making it challenging to isolate a single genetic factor
responsible for causing hypertriglyceridemia, except for bi-allelic rare variants in
monogenic FCS (Brahm and Hegele, 2015). Such underlying similarities are consistent
with the complex nature of the disease. Not only might there be genetic determinants
beyond what we assessed in this study, there are also environmental influences such as
smoking, activity level, and diet that increase disease susceptibility and modulate
triglyceride levels (Brahm and Hegele, 2015; Cole et al., 2015; Dron and Hegele, 2018;
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Hegele et al., 2014; Johansen et al., 2010; Johansen et al., 2011b; Johansen et al., 2012;
Kathiresan et al., 2009; Surendran et al., 2012; Teslovich et al., 2010; Wang et al., 2008;
Willer et al., 2013). These additional factors may contribute to phenotype severity,
perhaps determining whether a patient develops mild-to-moderate versus severe

hypertriglyceridemia.

Genetic factors increase risk of developing hypertriglyceridemia, but are not absolute
indicators for causality, except for bi-allelic rare variants that cause monogenic FCS.
Additionally, phenotypic severity can depend on a myriad of exposures that may change
over time, possibly blurring the prediction at any time point of whether an individual will
express the mild-to-moderate or severe form of the disease. Among patients with severe
hypertriglyceridemia, those with a rare variant or extreme SNP accumulation had
significantly more metabolic risk factors—including higher body-mass index, blood
pressure, and fasting glucose—compared to patients with FCS (Paquette et al., 2019).
Individuals may develop this phenotype due to a greater overall burden of both genetic
and environmental risk factors that contribute towards disease presentation. In contrast,
individuals with mild-to-moderate hypertriglyceridemia have an intermediate burden of
genetic predisposing factors. But in the presence of secondary non-genetic factors, the
milder genetic susceptibility in mild-to-moderate hypertriglyceridemia can be overcome,

and patients could slip metabolically into a severe hypertriglyceridemia phenotype.

To predict future risk of developing hypertriglyceridemia, either mild-to-moderate or
severe, assessing genetic and non-genetic determinants simultaneously would seem
logical. Genetic analysis could be broadened to include a genome-wide polygenic score
that concurrently assesses millions of SNPs contributing towards hypertriglyceridemia
susceptibility. Several such large-scale, genome-wide polygenic scores have been created
for other complex diseases, including coronary artery disease, atrial fibrillation, type 2
diabetes, inflammatory bowel disease, and breast cancer (Khera et al., 2018). In large
populations, Khera et al. found that individuals with a high genome-wide polygenic score
were at an equivalent risk for disease as individuals carrying a single pathogenic variant
related to the disease (Khera et al., 2018). In addition, rare variants disrupting non-

canonical triglyceride genes could be examined for a better-defined genetic profile, as
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other genes beyond the triglyceride metabolic pathway have reported relationships with
triglyceride levels, such as CREB3L3, MLXIPL and GCKR (Kathiresan et al., 2009;
Santoro et al., 2012; Willer et al., 2008).

Finally, environmental factors must be considered in conjunction with the genetic profile
when diagnosing and defining hypertriglyceridemia. Future research could study
differences in environmental factors between individuals with similar genetic profiles yet
differing severities of hypertriglyceridemia. We did not systematically record baseline
environmental factors, which is a limitation as we would anticipate a lesser burden of
non-genetic stressors among patients with mild-to-moderate hypertriglyceridemia versus
severe hypertriglyceridemia. Larger and more systematically defined
hypertriglyceridemia cohorts would be ideal going forward, for instance, when
developing hypertriglyceridemia patient registries.

6.6 Conclusion

With more extreme hypertriglyceridemia severity, we see an increased prevalence of
genetic determinants, including both variably penetrant heterozygous rare variants
disrupting a triglyceride metabolism gene—including LPL, LMF1, GPIHBP1, APOAS5,
and APOC2—and an extreme accumulation of 16 common triglyceride-associated SNPs.
Genetic testing alone cannot be used to accurately predict hypertriglyceridemia severity
for any single patient at any particular time point. At present, we have no evidence that
clinical outcomes or interventions differ according to the genotype, although its potential
use in prognostication and predicting response to treatment should be evaluated.
Additional research is required to consider environmental risk factors in conjunction with
our established method of ascertaining genetic profiles related to hypertriglyceridemia.
At present, we recommend that most clinical decisions—diet, statin, fibrate, new
biologics (Laufs et al., 2020)—can be based on the biochemical severity of the lipid

disturbance, without the need for extensive genetic testing.
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Chapter 7 — Loss-of-function CREB3L3 variants in patients
with severe hypertriglyceridemia

The work contained in this Chapter has been edited from its original publication in
Arteriosclerosis, Thrombosis, and Vascular Biology for brevity and consistency

throughout this Dissertation.
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7.1 Abstract

Objective: Significant genetic determinants of severe hypertriglyceridemia include both
common variants with small effects (assessed using polygenic risk scores) plus
heterozygous and homozygous rare variants in canonical genes directly affecting
triglyceride metabolism. Here we broadened our scope to detect statistical associations of
rare loss-of-function variants in genes affecting non-canonical pathways, including those

known to affect triglyceride metabolism indirectly.

Methods and Results: From targeted next-generation sequencing of 69 metabolism-
related genes in 265 patients of European descent with severe hypertriglyceridemia (>10
mmol/L) and 477 normolipidemic controls, we focused on the association of rare
heterozygous loss-of-function variants in individual genes. We observed that compared to
controls, severe hypertriglyceridemia patients were 20.2-times (95% CI [1.11-366.1];
P=0.03) more likely than controls to carry a rare loss-of-function variant in CREB3L3,
which encodes a transcription factor that regulates several target genes with roles in

triglyceride metabolism.

Conclusions: Our findings indicate that rare variants in a non-canonical gene for
triglyceride metabolism, namely CREB3L3, contribute significantly to severe
hypertriglyceridemia. Secondary genes and pathways should be considered when

evaluating the genetic architecture of this complex trait.

7.2 Introduction

Severe hypertriglyceridemia is defined as triglyceride levels >10 mmol/L in the fasted
state (Hegele et al., 2014). With a population prevalence of about 1 in 600, individuals
with severely elevated triglyceride levels are at risk for several health complications, the
most serious being acute pancreatitis (Brahm and Hegele, 2015; Dron and Hegele, 2017).
As a multifactorial disease, severe hypertriglyceridemia can be caused by various genetic
determinants, environmental factors, or some combination of both, which strongly

reflects the phenotype’s complexity (Brahm and Hegele, 2015; Hegele et al., 2014).
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When studying genetic influences on triglyceride levels, canonical genes involved in
triglyceride metabolism—LPL, LMF1, GPIHBP1, APOA5, and APOC2—are screened
for rare variants that disrupt the catabolism of triglyceride-rich lipoproteins and lead to
marked elevations in plasma triglyceride concentration (Johansen and Hegele, 2012;
Johansen et al., 2011). Additionally, we consider the accumulation of common
triglyceride-associated single-nucleotide polymorphisms (SNPs) using polygenic scores;
although individual SNPs have small phenotypic impacts, in aggregate they impart a
larger cumulative increase in triglyceride levels (Dron et al., 2019). Assessing these
different types of genetic determinants simultaneously is necessary to understand the

broader genetic basis of hypertriglyceridemia.

We recently studied rare variants and common SNPs in a cohort of 563 severe
hypertriglyceridemia patients. We found that 1.1% of patients carried bi-allelic rare
variants in canonical triglyceride metabolism genes (Dron et al., 2019). By definition,
these patients were diagnosed with familial chylomicronemia syndrome (FCS), the
monogenic form of severe hypertriglyceridemia. As an autosomal recessive disorder,
FCS is the only instance in which a patient’s hypertriglyceridemia phenotype is driven
exclusively by a single genetic factor. All other hypertriglyceridemia cases are non-
monogenic and follow a multifactorial model; this distinction of severe
hypertriglyceridemia is defined as “multifactorial chylomicronemia”. From the same
severe hypertriglyceridemia cohort, 46.4% of patients were found to carry genetic
determinants contributing towards their phenotypes, including either heterozygous rare
variants disrupting canonical metabolism genes or an excess accumulation of
triglyceride-associated SNPs (Dron et al., 2019). The remaining 52.6% of patients did not
carry any identified genetic determinant. With a multifactorial nature and strong
polygenic background, many of these multifactorial patients likely have additional
genetic factors contributing towards their severe hypertriglyceridemia phenotype that

were not assessed in our initial study.

Uncovering new genetic determinants contributing towards disease can be challenging,
particularly when focusing on rare variants in non-canonical genes; large patient cohorts

are required to provide adequate power to show associations between variants and the
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phenotype of interest (Auer and Lettre, 2015; Lee et al., 2014; Michailidou, 2018). In
smaller cohorts, gene-based rare variant association studies (RVAS) are an alternative
method that can be used to boost statistical power by grouping variants according to
function(s) of the gene product (Auer and Lettre, 2015; lonita-Laza, 2013; Lee et al.,
2014). If a gene has an increased prevalence of rare variants in cases versus controls, it
suggests that the gene may play some role in driving or influencing the phenotype of
interest. This methodology has been successful in uncovering new gene associations in
complex traits and diseases such as body-mass index, height, Alzheimer’s disease, and
lipid levels (Marouli et al., 2017; Nho et al., 2016; Pirim et al., 2015; Turcot et al., 2018).

Since the severe hypertriglyceridemia patients were previously sequenced using our
targeted LipidSeq panel design, in addition to the five aforementioned canonical genes
for FCS, sequencing data were also generated for 64 other genes associated with lipid
traits and metabolic disorders. To better define the full spectrum of genetic determinants
underlying severe hypertriglyceridemia, we evaluated the multifactorial and undefined
hypertriglyceridemia patients using gene-based RVAS to identify rare loss-of-function
variants in secondary or non-canonical genes. We thus explored a diverse range of
genetic determinants across non-canonical triglyceride genes to further tease out the
genetic underpinnings of severe hypertriglyceridemia and define in greater detail the

multifactorial and polygenic nature of this phenotype.

7.3 Materials and Methods
7.3.1  Study subjects

Patients of interest included those of European ancestry with triglyceride levels >10
mmol/L. Importantly, patients with FCS, diagnosed by the presence of bi-allelic rare
variants in canonical triglyceride metabolism genes (Dron et al., 2019) were excluded
from consideration, since these patients have a clear, genetic explanation for their severe

hypertriglyceridemia phenotype.

Five hundred and fifty-seven patients met our criteria and were selected for study from
either the Lipid Genetics Clinic at the London Health Sciences Centre, University

Hospital (London ON, Canada), or the Lipid, Diabetes, and Cardiology Clinics at the
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University of California, San Francisco. In adherence to the Declaration of Helsinki, all
patients provided written, informed consent for collection of personal data and DNA with
approval from either the Western University (London ON, Canada) ethics review board
(no. 07290E) or the Committee on Human Research of the University of California, San

Francisco.

Clinical and demographic information for each patient were collected at the time of their
first clinic visit. Fasting lipid profiles were measured according to clinical standards of
care using the Roche Cobas C502 Analyzer (Hoffmann La Roche, Mississauga, Ontario).

As a reference control cohort, we used the European subset of the 1000 Genomes Project
(N=503) (Genomes Project et al., 2015). While phenotype information is not available for
these individuals, we make the assumption that their triglyceride levels follow the typical
distribution seen in a population with similar ancestral background (Castelli et al., 1977;
National Cholesterol Education Program Expert Panel on Detection and Treatment of
High Blood Cholesterol in Adults, 2002). Further, severe hypertriglyceridemia has a
population prevalence of ~1 in 600 individuals, which suggests that it is very unlikely
that anyone in the 1000 Genomes Project has extremely elevated triglyceride levels. For

these reasons, we refer to this cohort as “normolipidemic”.

7.3.2 DNA preparation and targeted sequencing

DNA isolation and preparation for targeted next-generation sequencing (NGS) follows

the same methodology as described in Chapter 2, Section 2.3.2.

7.3.3  Bioinformatic processing of sequencing data

The bioinformatic processing of sequencing data follows the same methodology as
described in Chapter 5, Section 5.3.3.

7.3.4  Principal component analysis

To account for differential ancestry and batch effects of the patients and normolipidemic
controls, a principal component analysis (PCA) was performed. VCF files were merged

and filtered to include only single-nucleotide variants (SNVs) appearing within the
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exonic and splice regions captured by the LipidSeq panel with a minor allele frequency of

>0.5% in the Genome Aggregation Database (gnomAD;

https://gnomad.broadinstitute.org/) (Karczewski et al., 2020). The merged VCF was then

processed with Exautomate (https://github.com/exautomate/Exautomate-Core) (Davis et
al., 2019) to produce MAP and PED files. Linkage disequilibrium pruning at a threshold
of 0.5 and PCA were executed within SNP & Variation Suite v8.8.3 (SVS; Golden Helix
Inc., Bozeman MT, USA). Significant principal components were identified using
logistic regression within R. Multidimensional outlier detection (multiplier = 1.5) was

performed using significant components within SVS v8.8.3.

7.3.5 Annotation and analysis of loss-of-function variants

Variant annotation using VarSeg® (Golden Helix, Inc., Bozeman MT, USA) was
described in Chapter 6, Section 6.3.4.

Loss-of-function variants in patients and normolipidemic controls were identified using
the following criteria: 1) minor allele frequency of <1% or missing in gnomAD; 2)
sequence ontology of nonsense, frameshift, splice donor, splice acceptor, or copy-number
variant (CNV) deletion; 3) CADD PHRED-scaled score of >10; and 4) an American
College of Medical Genetics (ACMG) classification of pathogenic, likely pathogenic, or

uncertain significance (Richards et al., 2015).

7.3.6  Gene-based rare variant association study

The optimal unified sequence kernel association test (SKAT-O) (Lee et al., 2012a; Lee et
al., 2012b)—a combination of burden and variance-component tests—was used to
perform a gene-based RVAS between our patients and normolipidemic controls. To
enrich for variants that likely have the largest phenotypic impact, only loss-of-function
variants were considered in this analysis. We performed SKAT-O using a linear weighted
kernel and the optimal adjustment method through the use of Exautomate
(https://github.com/exautomate/Exautomate-Core) (Davis et al., 2019) (Appendix L). P-

values generated by SKAT-O were adjusted with the Bonferroni correction for multiple

comparisons. Significant results were considered as P<0.05.


https://gnomad.broadinstitute.org/
https://github.com/exautomate/Exautomate-Core
https://github.com/exautomate/Exautomate-Core
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7.3.7 Odds ratio assessment

Since only SNVs can be considered using SKAT-0, we followed up by generating 2-by-2
contingency tables for each gene by counting carriers versus non-carriers of loss-of-
function variants, including SNVs, frameshifts, and CNVs. After determining the odds
ratios (ORs) and 95% confidence intervals (Cls) for each gene, P-values were generated
using Fisher’s exact tests and adjusted with the Bonferroni correction for multiple
comparisons. One-tailed P-values were generated if the gene was considered to be a
canonical metabolism gene, and two-tailed P-values were generated for the remaining
genes. To calculate ORs with cell counts of zero, the Haldane-Anscombe correction

method was applied by adding 0.5 to each cell of the contingency table.

Statistical analyses were performed using GraphPad Prism v8.0.1 (GraphPad Software,
La Jolla, CA, USA).

7.4 Results

7.4.1 Characteristics of study subjects

We performed a PCA and multidimensional outlier detection to remove samples that may
have been affected by batch effects or were population outliers (Figure 7.1). Following
outlier removal, the final dataset consisted of 265 patients and 477 normolipidemic

controls.

The demographic and clinical characteristics of the 265 severe hypertriglyceridemia

patients are summarized in Figure 7.1
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Figure 7.1 Principal component analysis.

Principal component (PC) analysis of patients with severe hypertriglyceridemia (N=557) and the normolipidemic controls from the
European subset of the 1000 Genomes Project (N=503). A) PC1 and PC2 of the HTG patients and normolipidemic controls. B) PC2 and
PC3 and the severe hypertriglyceridemia patients and normolipidemic controls. C) PC1 and PC3 of the severe hypertriglyceridemia
patients and normolipidemic controls. Abbreviations: 1000G = 1000 Genomes Project; HTG = hypertriglyceridemia; PC = principal
component.
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Table 7.1. Across the total patient cohort, the mean * standard deviation (SD) triglyceride
concentration and age were 26.7 £ 25.2 mmol/L and 50.9 + 12.3 years, respectively. Most

patients were male (64.2%) and of the 216 patients with data available, 44.4% had
diabetes.
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Figure 7.1 Principal component analysis.

Principal component (PC) analysis of patients with severe hypertriglyceridemia (N=557) and the normolipidemic controls from the
European subset of the 1000 Genomes Project (N=503). A) PC1 and PC2 of the HTG patients and normolipidemic controls. B) PC2 and
PC3 and the severe hypertriglyceridemia patients and normolipidemic controls. C) PC1 and PC3 of the severe hypertriglyceridemia
patients and normolipidemic controls. Abbreviations: 1000G = 1000 Genomes Project; HTG = hypertriglyceridemia; PC = principal
component.
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Table 7.1 Clinical and demographic information of patients with severe
hypertriglyceridemia (N=265).

Males Females
N 170 95
Age 50.0+£10.9 52.6 £14.3
BMI (kg/m?) 29.8 + 4.4" 29.4 52"
Total cholesterol (mmol/L) 11.3+6.4 12.0+6.8"
Triglyceride (mmol/L) 25.0+£22.6 29.8 £ 29.2
HDL cholesterol (mmol/L) 0.77 0.4 0.82+0.4"
Diabetes 41.0%" 50.0%"

Values are indicative of the mean + SD. “*” indicates an incomplete dataset. Abbreviations: BMI = body-
mass index; HDL = high-density lipoprotein.
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7.4.2  Loss-of-function variants identified from the LipidSeq gene
panel

In 37 carriers, we identified 26 unique loss-of-function variants across 15 different genes

between our patients and normolipidemic controls (Appendix K). Of these unique

variants, 10 (38.5%) were frameshifts, 9 (34.6%) were nonsense, two (7.7%) were splice

donors, and five (19.2%) were CNV deletions.

GCKR had the highest number of unique variants (4; 15.4%) and the highest number of
carriers (10; 27.0%).

7.4.3 Gene-based rare variant association analysis using SKAT-O

From our SKAT-O analysis, only SNVs from 14 genes were considered. With such a
small working dataset, there were no genes that had a significantly different number of
variants between our patients and normolipidemic controls (Table 7.2). CREB3L3,
APOAS5, LIPC, and PLIN1 were the only genes that had a non-one P-value, although they

were not significant.

7.4.4 Gene-based odds ratio assessment

In order to consider frameshift variants and CNVs along with SNVs, we performed OR
assessments on 15 genes (Table 7.3). CREB3L3 had a significant increase in the
prevalence of patients carrying loss-of-function variants compared to normolipidemic
controls (Figure 7.2). Our severe hypertriglyceridemia patients were 20.2-times (95% CI
[1.11-366.1]; two-tailed P=0.03) more likely to carry a rare loss-of-function variant in

CREB3L3 compared to normolipidemic controls.
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Table 7.2 Output from SKAT-O analysis between severe hypertriglyceridemia
(N=265) and normolipidemic controls (N=477).

Gene Adjusted P-value  Number of variants considered in analysis
CREB3L3 0.090735 4
APOAS * 0.090735 3
LIPC 0.090735 1
PLIN1 0.090735 1
GCKR 1 2
KLF11 1 1
ABCG5H 1 1
ABCGS 1 1
NPC1L1 1 1
BLK 1 1
LPL * 1 1
WRN 1 1
PYGM 1 1
LMF1 * 1 1

P-values were adjusted using the Bonferroni correction method. “*” indicates canonical genes involved
in the triglyceride metabolic pathway.
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Table 7.3 The odds of severe hypertriglyceridemia patients (N=265) carrying a loss-
of-function variant in a particular gene compared to normolipidemic controls
(N=477).

Gene OR (95% ClI) AI;djusted Case_s with Contrc_JIs with
-value variants variants
CREB3L3 20.2(1.11-366.1) 0.03 5 0
LPL * 12.7 (0.66-247.5) 0.24 3 0
LIPC 12.7 (0.66-247.5) 0.24 3 0
APOA5* 9.1 (0.43-189.4) 0.675 2 0
PPARG 9.1 (0.43-189.4) 0.675 2 0
HNF1A 5.4 (0.22-133.4) 1 1 0
MTTP 5.4 (0.22-133.4) 1 1 0
PLIN1 5.4 (0.22-133.4) 1 1 0
LDLR 5.4 (0.22-133.4) 1 1 0
LIPA 1.8 (0.11-28.94) 1 1 1
ABCGS8 0.6 (0.02-14.74) 1 0 1
APOB 0.6 (0.02-14.74) 1 0 1
BSCL2 0.6 (0.02-14.74) 1 0 1
GCKR 0.4 (0.09-2.12) 1 2 8
APOC3* 0.3 (0.01-4.96) 1 0 3

“*” indicates canonical genes involved in the triglyceride metabolic pathway. P-values were generated
using Fisher’s exact test and adjusted using the Bonferroni correction for multiple comparisons. Canonical
genes have one-tailed P-values listed, while the remaining genes have two-tailed P-values listed.
Abbreviations: Cl = confidence interval; OR = odds ratio.
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Figure 7.2 Odds ratio of loss-of-function variants across LipidSeq genes.

Each forest plot illustrates the odds ratio of severe hypertriglyceridemia patients (N=265)
carrying a loss-of-function variant in one particular gene compared to normolipidemic
controls from the1000 Genomes Project (N=477). The dashed line indicates an odds ratio
of 1.0. Canonical genes involved in the triglyceride metabolic pathway include APOAS5,
APOC3, LMF1, and LPL. P-values were generated using Fisher’s exact test and adjusted
using the Bonferroni correction for multiple comparisons. Canonical genes have one-tailed
P-values listed, while the remaining genes have two-tailed P-values listed. P-value: *
<0.05. Abbreviations: CI = confidence interval.
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7.5 Discussion

In this study, we considered genetic determinants beyond the canonical triglyceride
metabolism genes in 265 patients of European decent with non-FCS, severe
hypertriglyceridemia to determine whether rare variants in other genes contribute towards
the phenotype. By analyzing this subset of patients from the initial severe
hypertriglyceridemia cohort, we enriched for individuals likely carrying non-canonical,
polygenic variants. Moreover, by focusing solely on loss-of-function variants in our
analyses, we enriched our dataset for variants with likely larger impacts on triglyceride

levels.

Our initial gene-based RVAS using SKAT-O did not reveal any significant results. This
was unsurprising, since we had two relatively small cohorts; if causative genes harbored
only a few variants with modest influences on triglyceride levels affecting a few patients,
these individual gene signals would be difficult to detect with such small sample sizes.
From our SKAT-O analysis, CREB3L3 was one of four the genes that produced P-values
not equal to one. It was interesting to note that CREB3L3 appeared as the most significant

result in subsequent analyses that aggregated variants.

SKAT-O is limited in that it cannot be used to consider multi-nucleotide variants, such as
frameshifts and CNVs. Therefore, gene-specific 2-by-2 contingency tables for carriers of
any type of loss-of-function variants were used to determine gene-specific ORs. With this
approach, CREB3L3 was shown to have a significant enrichment for such variants in our
patients compared to normolipidemic controls. The genes LPL and APOA5 appearing
among the top most enriched genes, albeit not significantly, provided positive validation
for our analysis, since both genes encode proteins directly involved in triglyceride
metabolism (Brahm and Hegele, 2015; Hegele et al., 2014). We previously showed that
46.4% of the initial severe hypertriglyceridemia cohort carried heterozygous rare variants
in the canonical genes, including LPL and APOAS (Dron et al., 2019). The present novel
findings indicate that CREB3L3, a non-canonical gene, is associated with the severe
hypertriglyceridemia phenotype with at least similar strength or magnitude as LPL and
APOAG.
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Severe hypertriglyceridemia patients were 20.2-times (P=0.03) more likely to carry rare
loss-of-function variants in CREB3L3 compared to normolipidemic controls. CREB3L3
encodes cCAMP-responsive element-binding protein H (CREBH), a transcription factor
primarily expressed in the liver and small intestine (Nakagawa and Shimano, 2018).
CREBH has been shown to regulate apo C-1l and A-1V expression, which helps activate
triglyceride hydrolysis through its transfer from triglyceride-rich lipoproteins to high-
density lipoprotein (HDL) particles (Goldberg et al., 1990; Nakagawa and Shimano,
2018; Weinberg and Spector, 1985; Xu et al., 2014). Previous reports have shown an
excess of CREB3L3 rare variants in hypertriglyceridemia patients (Johansen et al., 2012);
a very recent study noted a number of CREB3L3 variants in patients with multifactorial
chylomicronemia (D'Erasmo et al., 2019). Furthermore, in an in vivo model, Creb3I3™
mice had significantly higher plasma triglyceride levels compared to wild-type littermates
(Lee et al., 2011), and when bred onto a full LdIr”- background, mice had increased very-
low-density lipoprotein (VLDL) levels and decreased hepatic apo A-I production when
fed a Western diet (Park et al., 2016). Although bi-allelic, loss-of-function variants in
CREB3L3 have not yet been found to cause FCS—these variants were absent in our
clinical database and publicly available databases—the excess variants found in our
patients and the mechanistic relationship with triglyceride metabolism demonstrate that
CREB3L3 is an important non-canonical triglyceride gene in the context of
hypertriglyceridemia. Previous studies have even suggested that certain loss-of-function
variants with variable penetrance lead to severe hypertriglyceridemia (Cefalu et al.,
2015).

After CREB3L3, LPL and APOAGS had the next highest prevalence of loss-of-function
variants in severe hypertriglyceridemia patients, at 12.7-times (95% CI [0.66-247.5]; two-
tailed P=0.24) and 9.1-times (95% CI [0.43-189.4]; two-tailed P=0.675) compared to
normolipidemic controls, respectively. LPL encodes lipoprotein lipase (LPL), the main
enzyme involved in triglyceride hydrolysis (Boullart et al., 2012; Lambert and Parks,
2012), while APOAS encodes apo A-V, an apolipoprotein that assists in enhancing the
function of LPL (Forte et al., 2016). With rare bi-allelic variants in these genes causing
FCS, heterozygous loss-of-function variants likely lead to large elevations in triglyceride

levels through partial disruptions in the metabolic pathway, contributing towards the
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severe hypertriglyceridemia phenotype (Brahm and Hegele, 2015; Dron et al., 2019;
Hegele et al., 2014).

Although not significant, we observed that certain loss-of-function variants only occurred
in normolipidemic controls and were absent in our patient cohort. Apo C-I111, encoded by
APQOC3, is found on triglyceride-rich lipoproteins and inhibits LPL-mediated triglyceride
hydrolysis by opposing the stimulatory action between apo C-1l and LPL (Brahm and
Hegele, 2015; Johansen et al., 2011; van Dijk et al., 2004). In vivo models have shown
that mice overexpressing apo C-111 have hypertriglyceridemia (Ito et al., 1990), while
APQOC3-deficient mice have hypotriglyceridemia (Maeda et al., 1994). Further, many
studies have found human carriers of APOC3 loss-of-function variants to have reduced
triglyceride levels (Kohan, 2015). Our results are in line with these findings, supporting
the conclusion that lost or reduced apo C-I11 function reduces circulating triglyceride

levels and “protects” against the hypertriglyceridemia phenotype.

Despite the strengths of our study design, some limitations remain. By stringently only
considering rare loss-of-function variants, their infrequency constrained the number of
genetic determinants that could be considered for analysis, such as deleterious missense
variants. Our study was also limited in that we were unable to discover new gene
relationships since the LipidSeq panel was designed to target genes already known to be
involved in dyslipidemic phenotypes and metabolic disorders. To address these
limitations, a larger sample size would increase the statistical power and likelihood of
identifying more variants of interest. An increased sample size would also be necessary if
an even larger gene set were to be analyzed in the hopes of identifying genes with novel

or unexplored relationships with the hypertriglyceridemia phenotype.

7.6 Conclusion

When evaluating the genetic determinants contributing towards a complex phenotype, it
can be challenging to identify genes carrying variants with milder phenotypic impacts
compared to genes associated with monogenic forms of disease. As such, rare variant
association methods that group variants by gene can help to increase power and identify

such additional genetic influencers. From our gene-based analysis, we found that the non-
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canonical triglyceride gene, CREB3L3, is an important contributor towards the severe
hypertriglyceridemia phenotype. Importantly, the associated loss-of-function variants
were more prevalent in CREB3L3 compared to both LPL and APOADS, both of which are
well-established genes involved in triglyceride metabolism, and in which homozygous
rare variants can cause FCS. Our findings suggest that searching beyond the canonical
triglyceride metabolism genes may help better understand the genetic basis of severe
hypertriglyceridemia. Future studies should widen the range of secondary factors and
pathways for which genetic determinants may contribute to the pool of patients with

severe hypertriglyceridemia.
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8.1 Overview

In this Dissertation, | have described in detail my efforts to comprehensively evaluate the
genetic determinants underlying three dyslipidemia phenotypes: (i)
hypoalphalipoproteinemia; (ii) hyperalphalipoproteinemia; and (iii) hypertriglyceridemia.
By leveraging data produced by our laboratory’s targeted next-generation sequencing
(NGS) panel, LipidSeq, | have assessed a range of genetic factors—rare single-nucleotide
variants (SNVs), copy-number variants (CNVs), and common single-nucleotide
polymorphisms (SNPs)—across metabolically relevant genetic loci that heretofore
required separate, dedicated methods for identification. With the sequencing data
generated using LipidSeq, | have successfully analyzed the genetic factors of over 3,000

dyslipidemia patients and have detailed the genetic nature of each phenotype.

8.2 Summary of research findings

8.2.1  The genetic architecture of extreme high-density lipoprotein
cholesterol levels
A summary for the genetic architecture of extreme deviations in high-density lipoprotein
(HDL) cholesterol levels is depicted in Figure 8.1. In order to establish this genetic
summary, DNA samples collected from individuals with hypoalphalipoproteinemia and
hyperalphalipoproteinemia across North America—including at the Lipid Genetics Clinic
at the London Health Sciences Centre, University Hospital (London ON, Canada), the
Montréal Heart Institute (MHI) Biobank (Montréal, QC, Canada), and the University of
Pennsylvania (UPenn) (Philadelphia, PA, USA)—were carefully evaluated for various

genetic determinants.
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Figure 8.1 The updated genetic architecture underlying the spectrum of measurable
HDL cholesterol levels.

The distribution of HDL cholesterol levels has a normal distribution in the general
population; however, it is important to note that this distribution includes both males and
females. For the research described in this Dissertation, low levels of HDL cholesterol (i.e.
“hypoalphalipoproteinemia’”) were diagnosed for males and females with levels below 0.8
and 1.0 mmol/L, respectively. High levels of HDL cholesterol (i.e.
“hyperalphalipoproteinemia’) were diagnosed for males and females with levels above 1.4
and 1.8 mmol/L, respectively. Normal levels were considered between these thresholds.
The thresholds shown in this figure are not exact and are for illustrative purposes. More
extreme phenotypes that fall at the tails of the distribution are more likely to have a genetic
factor contributing towards the phenotype; monogenic syndromes of HDL cholesterol have
either virtually non-existent levels of HDL cholesterol, or extremely high levels. The
prevalence of heterozygous rare variants in genes involved in HDL metabolism was
slightly higher in individuals with low HDL cholesterol levels. The accumulation of
common SNPs had a similar prevalence between both extremes of HDL cholesterol.
Abbreviations: HDL = high-density lipoprotein.
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8.2.1.1 Hypoalphalipoproteinemia

The results described in Chapters 2 and 3 are the summation of the first comprehensive

assessment of rare SNVs, CNVs, and common variant accumulation in individuals with
extremely low levels of HDL cholesterol (Dron et al., 2018; Dron et al., 2017).

A total of 686 DNA samples from patients with HDL cholesterol levels <0.8 mmol/L and
<1.0 mmol/L in males and females, respectively, were collected from the Lipid Genetics
Clinic, MHI Biobank, and UPenn. Initially, rare variants disrupting candidate genes with
primary effects on HDL cholesterol levels were screened for in ABCA1, APOAL, and
LCAT,; rare variants were also screened for in non-candidate genes with secondary effects
on HDL cholesterol. Across cohorts, it was identified that 18.7% of patients carried at
least one variant likely contributing towards their hypoalphalipoproteinemia phenotype.
The difference in rare variant carriers between cohorts was discussed in Chapter 2,
Section 2.5, and is likely due to differences in patient ascertainment and sequencing

methods.

With the majority of patients lacking an identifiable rare variant, we sought to determine
whether there was an excess accumulation of common small-effect SNP alleles
contributing towards the hypoalphalipoproteinemia phenotype. To achieve this, we
developed a novel polygenic risk score using 9 SNPs identified from previous genome-
wide association studies (GWASSs) that were highly associated with HDL cholesterol
levels (Willer et al., 2013). The score was calculated for all 686 patients, and 12.8%, had
extremely low scores—this reflected a severe absence of SNP alleles associated with
raising HDL cholesterol levels. Collectively, rare variant non-carriers were 1.47-times
(95% CI [1.11-1.96]; one-tailed P<0.01) more likely to have an extremely low polygenic
risk score compared to normolipidemic controls. When considering patients from the
Lipid Genetics Clinic cohort alone, rare variant non-carriers were 3.00-times (95% ClI
[1.67-5.35]; one-tailed P <0.0001) more likely to have an extremely low polygenic risk

score compared to normolipidemic controls.
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In the Lipid Genetics Clinic cohort (N=136), 47.8% of patients had an identifiable
genetic determinant likely contributing towards their phenotypic presentation of
hypoalphalipoproteinemia. For the remaining 52.2% of individuals, it is possible that they
carried a contributory genetic determinant that was not captured by the rare variant
assessment or 9-SNP polygenic risk score. Subsequent to the publication of these results,
a new bioinformatic tool became available, allowing us to leverage read-depth coverage

information generated by our LipidSeq panel to identify CNVs in our sequencing data.

Including the 136 patient samples described in Chapter 2, a total of 288
hypoalphalipoproteinemia patients from the Lipid Genetics Clinic were screened for
CNVs in ABCA1, APOAL, and LCAT (Dron et al., 2018). Three unique deletions in
ABCA1 were identified across four individuals, including: (i) a heterozygous deletion of
exon 4; (ii) a heterozygous deletion that spanned exons 8 to 31; and (iii) a heterozygous
deletion of the entire ABCA1 gene. These results presented in Chapter 3 were the first
reported instance of hypoalphalipoproteinemia patients carrying CNVs in ABCA1 or any
other candidate low HDL cholesterol gene, as the main genetic determinant for the
phenotype (Dron et al., 2018).

Together, the assessment of rare SNVs, CNVs, and polygenic risk scores allowed for the
most comprehensive understanding to date about the genetic determinants underlying low

HDL cholesterol levels, and highlighted the polygenic component of this phenotype.

8.2.1.2 Hyperalphalipoproteinemia

The results presented in Chapter 2 also highlight the polygenic nature of extremely high
levels of HDL cholesterol through the presence of both rare SNVs and accumulation of

common genetic SNPs (Dron et al., 2017).

DNA samples from 1,165 patients with HDL cholesterol levels >1.4 mmol/L and >1.8
mmol/L in males and females, respectively, were collected from the Lipid Genetics
Clinic, MHI Biobank, and UPenn. Initially, rare variants disrupting candidate genes with
primary effects on HDL cholesterol were screened for in genes previously linked to high
HDL cholesterol phenotypes, including LIPC, SCARB1, CETP, and LIPG (Hegele et al.,
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1993; Inazu et al., 1990; Tietjen et al., 2012; Zanoni et al., 2016). Rare variants in a non-
candidate gene with secondary effects on HDL cholesterol, were also screened for. It was
identified that 10.9% of patients carried at least one variant likely contributing towards
their hyperalphalipoproteinemia phenotype.

Following the rare variant assessment, the 9-SNP polygenic risk score was calculated in
all 1,165 study participants to determine common SNP accumulation. It was identified
that 10.3% of individuals had extremely high scores reflecting an excess of SNP alleles
associated with raising HDL cholesterol levels. Collectively, rare variant non-carriers
were 2.27-times (95% CI [1.82-2.83]; one-tailed P<0.0001) more likely to have an
extremely high polygenic risk score compared to normolipidemic controls. When
considering the Lipid Genetics Clinic cohort alone, rare variant non-carriers were 2.19-
times (95% CI [1.21-3.96]; one-tailed P<0.01) more likely to have an extremely high

polygenic risk score compared to normolipidemic controls.

Between rare variants and the extreme accumulation of SNP alleles in the Lipid Genetics
Clinic cohort, 30.3% of patients had an identifiable genetic determinant contributing
towards their phenotypic presentation of hyperalphalipoproteinemia. The subsequent
assessment for rare CNVs in the candidate genes associated with elevated levels of HDL

cholesterol did not reveal any changes in copy-number.

8.2.1.3 Genetic influences across high-density lipoprotein
cholesterol levels

Collectively, my research has illustrated the prevalence of polygenic determinants across

extremes of HDL cholesterol. Rare variants—both SNVS and CNVs—are more prevalent

in individuals with hypoalphalipoproteinemia compared to hyperalphalipoproteinemia.

Although the polygenic accumulation of SNPs is similar between HDL cholesterol

extremes, there is a slight increase of extreme polygenic risk scores in patients with

hyperalphalipoproteinemia.

Across both extreme HDL cholesterol cohorts, more than half of the patients under study
did not have an identifiable genetic factor relevant to their phenotype. This could suggest

that in those patients, either: (i) they carry genetic factors that were not screened for;
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and/or (ii) non-genetic factors—diet, medications and activity levels—may be

influencing the HDL cholesterol phenotype.

8.2.2  The genetic architecture of hypertriglyceridemia

A summary for the genetic architecture of hypertriglyceridemia is depicted in Figure 8.2.
In order to establish this genetic summary, DNA samples collected from individuals with
varying severities of hypertriglyceridemia across North America—including at the Lipid
Genetics Clinic at the London Health Sciences Centre, University Hospital (London ON,
Canada) and the Lipid, Diabetes, or Cardiology Clinics at the University of California,
San Francisco (UCSF) (San Francisco, CA, USA)—were carefully evaluated for various

genetic determinants.

8.2.2.1 Severe hypertriglyceridemia

The research described in Chapters 4, 5, and 7 has culminated in the most comprehensive

assessment of genetic factors in the largest cohort of severe hypertriglyceridemia patients
to date (Dron et al., 2020a; Dron et al., 2019a; Dron et al., 2019b). Prior to this, studies
focused on single types of genetic determinants at a time, effectively missing the overall
spectrum of genetic variation contributing towards extreme elevations in triglyceride

levels.

A total of 563 individuals with severe hypertriglyceridemia (triglycerides >10 mmol/L)
were screened for rare variants disrupting canonical triglyceride metabolism genes (i.e.
LPL, LMF1, GPIHBP1, APOA5, APOC2). We identified only a small subset of patients
with the monogenic, autosomal recessive disorder, familial chylomicronemia syndrome
(FCS); this highlighted the rarity of FCS, since even in a specialized cohort enriched for
individuals with extremely elevated triglyceride levels, only 1.1% (6/563) of patients had
FCS due to the presence of bi-allelic rare variants in a canonical triglyceride metabolism
gene (Dron et al., 2019a). When considering heterozygous rare variants, 14.4% (81/563)
of individuals were carriers, and were thus considered to have multifactorial

chylomicronemia, a polygenic form of severe hypertriglyceridemia.
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Figure 8.2 The updated genetic architecture underlying the spectrum of measurable
triglyceride levels.

The distribution of triglyceride levels has a positive skew in the general population. Normal
levels of triglyceride are considered to be less than 2.0 mmol/L. Individuals with
triglyceride levels between 2.0 to 9.9 mmol/L are diagnosed with mild-to-moderate
hypertriglyceridemia, while individuals with triglyceride levels above 10.0 mmol/L are
diagnosed with severe hypertriglyceridemia. Although not focused on in this Dissertation,
individuals with extremely low levels of triglyceride are diagnosed with
hypotriglyceridemia (not shown in diagram). Severe hypertriglyceridemia cases caused by
monogenic determinants (i.e. bi-allelic rare variants in triglyceride metabolism genes) are
defined as familial chylomicronemia syndrome (FCS) and are extremely rare in the
population, while cases driven by polygenic determinants (i.e. heterozygous rare variants
in triglyceride metabolism genes and/or the extreme accumulation of SNPs) are defined as
multifactorial chylomicronemia and are far more common relative to FCS.
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In addition to rare variants, we sought to assess whether an excess of common SNPs with
smaller phenotypic effects might also be contributing towards the hypertriglyceridemia
phenotype. After developing a polygenic risk score comprised of 16 SNPs significantly
associated to triglyceride levels (Willer et al., 2013), we calculated it in all patients under
study and identified that 32.0% (180/563) of severe hypertriglyceridemia patients had
extremely high polygenic risk scores. When considering both types of genetic
determinants simultaneously, 30/87 patients (34.5%) with a rare variant also had an

extreme polygenic risk score.

When considering all types of genetic determinants, severe hypertriglyceridemia patients
were 4.41-times (95% CI [2.67-7.29]; one-tailed P<0.0001) more likely to carry a rare
variant compared to normolipidemic controls, and were 4.45-times (95% CI [3.15-6.30];
one-tailed P<0.0001) more likely to have an extremely high polygenic risk score
compared to normolipidemic controls. Overall, severe hypertriglyceridemia patients were
5.77-times (95% CI [4.26-7.82]; one-tailed P<0.0001) more likely to carry any type of
genetic determinant linked to hypertriglyceridemia, compared to normolipidemic

controls.

As part of our rare variant screening, we identified and characterized novel CNV
deletions disrupting LPL in a single individual; in Chapter 5, after further screening of 69
severe hypertriglyceridemia patients, three additional individuals were found to carry
CNVs in LPL. Collectively, the CNVs included: (i) a heterozygous deletion spanning the
5’UTR to exon 2; and (ii) a heterozygous deletion spanning the 5’UTR to exon 1 (Dron et
al., 2019b). Similarly to what has been observed for SNVs in canonical metabolism
genes, the impact of CNVs on the processing of triglyceride-rich lipoproteins likely
increases susceptibility for hypertriglyceridemia. Although CNVs as drivers of
hypertriglyceridemia are not frequently reported, they are important phenotypic

contributors that should be screened for (lacocca et al., 2019).

Chapter 7 describes further efforts to uncover genetic contributions towards severe
hypertriglyceridemia susceptibility. A subset of 265 multifactorial chylomicronemia

patients were screened for rare loss-of-function variants across all genes included on the
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LipidSeq panel (Figure 1.15). Specifically, a gene-based rare variant association study
(RVAS) using a variance-component test was performed between severe
hypertriglyceridemia patients and normolipidemic controls to determine if rare loss-of-
function variants in non-canonical triglyceride metabolism genes were susceptibility
factors towards the hypertriglyceridemia phenotype (Dron et al., 2020a). We identified
that multifactorial chylomicronemia patients were 20.2-times (95% CI [1.11-366.1]; two-
tailed P=0.03) more likely to carry a rare loss-of-function variant in CREB3L3 compared
to normolipidemic controls, suggesting that this gene has an important role in influencing
measurable triglyceride levels and is important in the context of hypertriglyceridemia.
CREB3L3 encodes cAMP-responsive element-binding protein H (CREBH), a
transcription factor expressed in the liver and small intestine, that upregulates genes
involved in the hydrolysis of triglyceride-rich lipoproteins (Goldberg et al., 1990;
Nakagawa and Shimano, 2018; Weinberg and Spector, 1985; Xu et al., 2014). Since an
enrichment of rare variants was more substantial than what was observed in the canonical
triglyceride metabolism genes, our findings suggest that screening CREB3L3 for loss-of-
function variants may be incredibly useful in identifying individuals with increased

susceptibility for extremely elevated triglyceride levels.

Between rare variants in triglyceride metabolism genes, extremely high polygenic risk
scores, and loss-of-function variants in CREB3L3, there is a variety of genetic
determinants underlying severe hypertriglyceridemia. The collective findings here
emphasize that the majority of severe hypertriglyceridemia cases are polygenic in nature,
can be further classified as “multifactorial chylomicronemia”, and likely come about
through the increased accumulation of genetic determinants that increase phenotypic

susceptibility.

8.2.2.2 Mild-to-moderate hypertriglyceridemia

My research described in Chapter 6 details the genetic profile of patients with mild-to-
moderate hypertriglyceridemia and provides a clearer understanding behind the genetic

architecture of this phenotype (Dron et al., 2020b).
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Following the study design established for severe hypertriglyceridemia in Chapter 4, rare
variants disrupting the canonical triglyceride metabolism genes and a triglyceride-
specific polygenic risk score were assessed in 134 individuals with mild-to-moderate
hypertriglyceridemia (triglyceride between 2-9.9 mmol/L). It was determined that 9.0%
(12/134) of patients were heterozygous rare variant carriers, while 24.6% (36/134) of
patients had extremely high polygenic risk scores, reflecting an excess of SNP alleles
associated with elevated triglyceride levels. When considering both types of genetic
determinants simultaneously, only 3/12 patients (25%) with a rare variant also had an

extreme polygenic risk score.

Mild-to-moderate hypertriglyceridemia patients were 2.38-times (95% CI [1.13-4.99];
one-tailed P=0.021) more likely to carry a rare variant and 3.26-times (95% CI [2.02-
5.26]; one-tailed P<0.0001) more likely to have an extreme polygenic risk score
compared to normolipidemic controls. Overall, these patients were 3.23-times (95% CI
[2.08-5.02]; one-tailed P<0.0001) more likely to carry any type of genetic determinant

linked to hypertriglyceridemia, compared to normolipidemic controls.

Although the prevalence of genetic factors in patients with mild-to-moderate
hypertriglyceridemia was not as high as patients with severe hypertriglyceridemia—
33.6% compared to 47.4%, respectively—the overall pattern remained the same: the most
common genetic determinant was an increased accumulation of common variants (as

denoted by a high polygenic risk score), followed by the presence of rare variants.

8.2.2.3 Genetic influences across hypertriglyceridemia phenotypes

Collectively, my research has demonstrated that hypertriglyceridemia—along its
spectrum of severity—is largely polygenic, with both common and rare genetic
susceptibility components; except for cases of FCS, which is monogenic in nature (Table
8.1). Furthermore, clinical expression of the hypertriglyceridemia phenotype is likely
related to qualitative and quantitative differences in the precise combination of variants in
an individual’s genome. A higher burden of both rare and common triglyceride-raising
variants likely associates with a more extreme phenotype, such as multifactorial

chylomicronemia. Additional genetic factors not considered in the contents of this
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Dissertation might also contribute towards differences in phenotypic presentation as well:
this includes variation impacting other genomic loci beyond what is captured by
LipidSeq, as well as concepts like variant penetrance and expressivity that were not
accounted for here. Importantly, secondary non-genetic factors—including diet, alcohol
intake, obesity, diabetes control, liver and renal disease—are important in determining
the final quantitative triglyceride phenotype, although are not discussed here (Hegele et
al., 2014). These additional considerations could be used to tease apart key differences in

what drives a mild-to-moderate versus severe form of hypertriglyceridemia.
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Table 8.1 Distinguishing between familial chylomicronemia syndrome,
multifactorial chylomicronemia, and mild-to-moderate hypertriglyceridemia.
Severe hypertriglyceridemia
Familial Mild-to-moderate

. : Multifactorial . ) .
chylomicronemia chylomicronemia hypertriglyceridemia

syndrome
Triglyceride >10.0 2.0109.9
range (mmol/L)
Primarily Chylomicrons
disturbed Chylomicrons and remnants VLDL
lipoprotein VLDL (IDL)
fractions IDL
Genetic basis Monogenic . Polygenic
(autosomal recessive)
Relevant - Bi-allelic - Heterozygous rare variants in canonical
genetic (homozygous or triglyceride metabolism genes (LPL,
determinants compound LMF1, GPIHBP1, APOA5, APOC?2)
heterozygous) rare - The accumulation of common SNPs
variants in canonical  associated with small elevations in
triglyceride triglyceride concentration
metabolism genes - Rare variants in non-canonical genes
(LPL, LMF1, peripherally involved in triglyceride
GPIHBP1, APOAS5, metabolism (ex. CREB3L3)
APOC2)
Is there an - Severity of the - Since these phenotypes are complex, a
impact from phenotype may be combination of genetic and
environmental exacerbated by environmental factors lead to the
determinants? environmental phenotype’s presentation. Gene-
factors, but the environment interactions may account
phenotype is driven for phenotypic variability/severity

by bi-allelic variants

Abbreviations: IDL= intermediate-density lipoprotein; SNPs = single-nucleotide polymorphisms; VLDL
= very-low-density lipoprotein.
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8.3 Study strengths, limitations and caveats

In Chapters 2-7 of this Dissertation, the strengths and limitations specific to each study,
along with caveats for consideration, were described in the relevant Discussion sections.
Here, | will describe the overarching considerations—specifically related to study design,

methodologies, and technological resources—that apply to my collective research efforts.

8.3.1  Strengths

The targeted nature of the LipidSeq panel was the main strength of my research, as it
allowed for the assessment of: (i) rare and common variants; (ii) both SNVs and CNVs;
and (iii) biologically relevant genomic loci for multiple dyslipidemia phenotypes.
Separate methodologies were previously required to study rare SNVs (ex. Sanger
sequencing, whole-exome sequencing), CNVs, (ex. multiplex ligation-dependent probe
amplification, microarray), and common variants (ex. microarray, Sanger sequencing,
TagMan genotyping); with LipidSeq, these genetic variations can be studied using the
same dataset. Further, because the LipidSeq panel was designed specifically for the
patients of the Lipid Genetics Clinic, the genomic loci that the panel targets are relevant
to the patients’ dyslipidemia and metabolic phenotypes (Dron et al., 2020c). Overall,
LipidSeq led to the generation of a single dataset for robust assessment of multiple types

of genetic factors and multiple phenotypes.

With respect to the identification of CNVs, this was only made possible due to the high
read-depth generated by the LipidSeq panel, at almost 300-times coverage (Johansen et
al., 2014). Within the last decade, computational algorithms have been developed to
leverage read-depth information from NGS runs to uncover genomic areas with an
enrichment or a depletion of sequencing reads, which signals the presence of a CNV
(lacocca et al., 2019). Between the depth-of-coverage of the LipidSeq panel—greater
coverage provides greater confidence in identifying CNVs—and the development of the
VarSeq-CNV® caller algorithm (Golden Helix, Inc., Bozeman MT, USA), we could
screen the LipidSeq sequencing data for each individual and uncover CNVs disrupting
phenotypically relevant genes (lacocca et al., 2019; lacocca et al., 2017). This provided

us the opportunity to perform one of the first large-scale, NGS screening efforts for
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CNVs in dyslipidemia cohorts (Dron et al., 2020c). Many novel CNVs were identified in
the process (Berberich et al., 2019a; Berberich et al., 2019b; Dron et al., 2018; Dron et
al., 2019b; lacocca et al., 2017; lacocca et al., 2018).

Beyond the benefits of LipidSeq, another strength of my research is attributed towards
the number of patient DNA samples | had access to. For over 25 years, between our
laboratory’s research efforts and the Lipid Genetics Clinic, we have collected and
sequenced DNA from over 3,000 individuals with a variety of dyslipidemia and
metabolic phenotypes (Dron et al., 2020c). Because of the samples obtained through our
referral clinic and from external research collaborators, our studies often boast some of
the largest specialized dyslipidemia study cohorts in the field. For example, although
severe hypertriglyceridemia has a population prevalence of ~1 in 600, my study cohort
was comprised of over 500 patient samples. The benefit here is that extreme
phenotypes—both Mendelian disorders and extreme manifestations of quantitative
traits—are more likely to have a genetic basis (MacArthur et al., 2014; Panarella and
Burkett, 2019), so studying cohorts enriched for individuals with extreme dyslipidemia
phenotypes increases the likelihood of uncovering relevant genetic factors contributing
towards disease susceptibility. Notably, the size of the dyslipidemia cohorts | had access
to was directly responsible for the success of my gene-based RVAS described in Chapter
1.

8.3.2 Caveats

When considering the data presented in this Dissertation, certain caveats should be

considered for appropriate interpretation of the conclusions and implications.

The main results reported in this Dissertation were the prevalence of different genetic
determinants within the study cohorts of interest—I did not quantify the estimated effects
of each determinant towards the phenotype of interest (i.e. impact on disease
susceptibility or effects on HDL cholesterol or triglyceride levels). Despite this, my
results provide a sense of what types of genetic factors are the most common in a
particular disease cohort. This information could help guide screening strategies to
identify individuals at an increased genetic risk for hypoalphalipoproteinemia,
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hyperalphalipoproteinemia, or hypertriglyceridemia, or could assist researchers in
prioritizing what types of genetic variation should be studied further to better understand
genetic-specific effects on these phenotypes (Bookman et al., 2006; Kwon and Goate,
2000). In order to quantify effect estimates of genetic variation, linear or logistic
regression models could be used to assess the effect of variants towards changes in
measurable lipid levels or disease presentation, respectively; however, additional
information would be required as covariates to adjust these models for other variables
impacting lipid phenotypes (Cole et al., 2015; Heller et al., 1993; Johnson et al., 2004).

Additional caveat considerations are in relation to the measured lipid concentrations for
our study participants. Although blood samples are requested to be taken after a 12-hour
fast, mechanisms were not in place to systematically confirm adherence. Individuals who
did not fast likely had higher measurable lipid levels given the recent exogenous lipid
source, particularly triglycerides. It is possible that non-fasting individuals may have had
higher lipid measurements than normal; however, this is unlikely to have impacted
patient recruitment for either extreme HDL cholesterol cohort. It is possible that non-
fasting individuals could have passed the lower bound of inclusion for the mild-to-
moderate hypertriglyceridemia cohort, but for the severe hypertriglyceridemia cohort, the
inclusion criteria was so high, that even individuals non-compliant with the fasting
recommendation would not have likely had triglyceride levels surpass that threshold
(Nordestgaard et al., 2016). Although, if non-fasting individuals did present with a
triglyceride profile surpassing our threshold of 10 mmol/L, that might be indicative of
dysfunctional clearance of triglyceride-rich lipoprotein particles, potentially due to
genetic factors—in which case, these individuals would be of interest to study. To
address this potential issue of fasting vs. non-fasting in future studies, additional
inclusion criteria could necessitate multiple triglyceride measurements above 10 mmol/L
to ensure the severe hypertriglyceridemia phenotype is neither transient nor driven

exclusively by non-genetic factors.

Another caveat is in reference to the disease study cohorts. While a huge strength of this
work is related to cohorts enriched for extreme dyslipidemia phenotypes, it also means

that the results are not directly translatable to a general population (Panarella and Burkett,
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2019). Further, if I had determined effect estimates for the genetic determinants under
study, the estimates would be inflated and have a larger magnitude compared to if | had
calculated effect estimates in a cohort more representative of the general population
(Panarella and Burkett, 2019).

Lastly, the polygenic risk scores developed for HDL cholesterol and triglyceride were
constrained to the SNPs targeted by the LipidSeq panel. Having been designed in 2014,
LipidSeq only captures the lipid-related SNP loci identified by GWAS published by that
point—it does not include SNPs identified in more recent GWASs. Fortunately, because
the SNPs targeted by LipidSeq were among the original loci found to be associated with
lipid traits, these SNPs have larger phenotypic impacts compared to more recently
uncovered loci, since they were identified in smaller study cohorts (Visscher et al., 2012).
So while the polygenic risk scores used in this Dissertation were not large in terms of the
number of SNPs that were included, they did include SNPs with larger phenotypic

impacts.

8.3.3 Limitations

Clinical and biochemical variables were not systematically available for all study
subjects, including: ancestry, body-mass index, diabetes status, smoking status, fasting
status, diet, alcohol intake, activity level, etc. Without these additional data points, | was
unable to assess environmental factors that may have been contributing towards the
phenotypes under study (Cole et al., 2015; Heller et al., 1993; Johnson et al., 2004). As
discussed in the previous Section, these variables could have been used as covariates in
models to better estimate the effects of the genetic determinants and to uncover gene-
environment or gene-gene interactions. Interestingly, recent studies have modeled how
polygenic determinants alter the penetrance of a rare variant for many phenotypes,
including different lipid disorders, breast cancer, Huntington’s disease, and glaucoma
(Craig et al., 2020; Fahed et al., 2020; Jong-Min Lee et al., 2015; Oetjens et al., 2019).
This is an extremely important demonstration of the interplay between genetic
determinants that was not assessed in my work, but could be in the future by following a
rigorous standardization of covariate data for cases and controls, the latter for which we

are extremely limited as we had no phenotypic information available.
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Another limitation to consider is related to the polygenic risk scores developed in

Chapters 2 and 4. The underlying assumption in the score’s calculation is that the

cumulative effect from different alleles works in a linearly additive manner; however,
this assumption may be invalid considering the complexities and non-linearity of
pathways and networks in lipid metabolism. Further, allele effect estimates are also
derived under this assumption of a simple additive effect (de VVlaming and Groenen,
2015). Taken together, the method employed here for polygenic risk score derivation and
calculation cannot account for potential non-linear epistatic effects that might occur in the
presence of a certain combination of risk alleles. Additional work is needed to advance
polygenic risk scores, specifically focusing on the linear additive assumption and
assessing whether new frameworks can be established to better reflect the genetic
complexities underlying different traits and disease. While there has been some effort in
this area, polygenic risk scores out-perform other non-linear, machine-learning methods,
suggesting that either polygenic risk scores and their linear assumptions are valid, or we
have not developed the proper statistical methods to adequately address this research
question (Gola et al., 2020; Vivian-Griffiths et al., 2019).

Additionally, another limitation that is applicable to almost all polygenic risk scores
studies is that these scores are tailored towards European populations (Martin et al.,
2019); across a 10-year span, more than 60% of studies using polygenic risk scores were
made up exclusively of individuals of European ancestry (Duncan et al., 2019). This is
arguably one of the biggest limitations not only in this Dissertation, but in the genetics
community as a whole, as there is substantial bias and inequality in research towards
Black, Indigenous and people of colour (Cell Editorial, 2020). The polygenic risk score
bias is a product of selecting SNPs and their weights from GWAS that have been
performed in individuals of European ancestry (Asselbergs et al., 2012; Aulchenko et al.,
2009; Chasman et al., 2009; Chasman et al., 2008; Duncan et al., 2019; Kathiresan et al.,
2007; Kathiresan et al., 2008; Kathiresan et al., 2009; Martin et al., 2019; Sabatti et al.,
2009; Surakka et al., 2015; Teslovich et al., 2010; Willer et al., 2013; Wu et al., 2013).
Because GWAS:s rely on linkage disequilibrium (LD) blocks and “tag SNPs” to identify
SNP associations with the nearby causal variant, differences in ancestral-specific LD

patterns alter association signals; a tag SNP may be associated with a phenotype in one
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ancestral group but not the other, simply because the SNP does not tag the same LD
blocks between groups. Since LD blocks are larger in Europeans (Shifman et al., 2003):
(1) more tag SNPs are required to effectively capture these additional LD blocks in non-
Europeans; and (ii) it is easier to identify an association signal in European cohorts
because tag SNPs cover larger genomic regions (i.e. LD blocks) that might harbour the
causative variant (Martin et al., 2019). The need for additional SNP genotypes to get the
same amount of information between ancestral groups, coupled with the fact that there
are fewer non-Europeans being included in GWASs, further impacts the bias (Martin et
al., 2019). Fortunately, there have been efforts to increase the number of large-scale
sequencing projects in non-European cohorts to identify ancestral-specific SNP
associations and ancestral-specific effect estimates (Below et al., 2016; Kim et al., 2011;
Liu etal., 2017; Takeuchi et al., 2012; Wu et al., 2013), which should allow for ancestral-
specific polygenic risk scores. There are also efforts to develop methods for trans-
ancestry polygenic risk scores, which could be applied to individuals of different

ancestral groups (Wang et al., 2020b).

As an extension of the aforementioned point, another limitation in this Dissertation was
that the study cohorts were made up of individuals of European ancestry, due to our
geographic location in Southern Ontario; to match our ancestry breakdown, collaborators
could only provide European patient samples of as well. This prevented us from
determining if the genetic determinants underlying different dyslipidemia phenotypes

were consistent across ancestral groups, or if the genetic profile varied.

Lastly, due to the LipidSeq panel design, novel gene discovery was not a feasible
component of the research described in this Dissertation. While the targeted design
provided huge strengths in terms of studying candidate genes related to each phenotype,
this constraint prevented the discovery of genes with previously unknown links to HDL
cholesterol or triglyceride metabolism; whole-exome sequencing would have provided
this discovery opportunity. The gene-based RVAS that included non-candidate genes
described in Chapter 7 was an effective alternative to novel gene discovery. CREB3L3
had been reported previously in the literature with links to triglyceride levels, but there

had not been strong evidence in human subjects linking it to severe hypertriglyceridemia
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until recently (D'Erasmo et al., 2019). Rather than discovering a new gene, | instead
provided additional evidence to support and further substantiate the importance of

CREB3L3 in the context of hypertriglyceridemia.

8.4 Applications and future directions

With my research helping to enhance the foundational understanding of the genetic basis
of extreme lipid disorders, there are now avenues to further explore the complex network
of contributory factors towards these dyslipidemia phenotypes, and areas where this

information could be applied towards more clinically relevant applications.

8.4.1  Estimating effects of genetic determinants

Future studies could quantify the effect estimates of specific genetic determinants
towards either: (i) measurable changes to HDL cholesterol or triglyceride levels; and/or
(ii) susceptibility for hypoalphalipoproteinemia, hyperalphalipoproteinemia, or
hypertriglyceridemia. This work could be further expanded to consider interactive effects
between rare variants and the accumulation of common SNPs, similarly to what was done
in previous studies that assessed how a polygenic background could modify variant
penetrance (Craig et al., 2020; Fahed et al., 2020; Jong-Min Lee et al., 2015; Oetjens et
al., 2019).

Assessing how the penetrance and expressivity of rare variants is polygenically modified
through the use of polygenic risk scores is an area of extreme interest, as it is a relatively
unexplored area in the lipids field. If researchers are able to quantify genetic effects and
determine which factors have the largest contributions towards a particular disease state,
then this information could be utilized in genetic screening endeavours to identify
individuals, for example, at high risk for hypertriglyceridemia.

8.4.2  Screening for genetic risk

Screening individuals earlier in life for genetic factors increasing their risk for
dyslipidemia provides an opportunity to proactively alter lifestyle behaviours to more
aggressively combat negative genetic influences towards lipid profiles (Khera et al.,
2016). An early indication of being at high risk for a lipid disorder could also prompt
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individuals to have their blood lipid profile monitored more frequently to catch when

their lipids exceed a particular threshold, warranting medical attention and treatment.

There is also the possibility that future studies could reveal therapeutic treatments tailored
towards individuals with a particular genetic determinant (e.g. variants disrupting a
particular gene) driving their phenotype or individuals who fall within a certain
stratification of genetic risk (e.g. top 95 percentile of a polygenic risk score) (Mars et
al., 2020). For example, inhibitors of proteins with key roles in different lipoprotein
processing pathways have been of great clinical benefit, including: (i) evolocumab to
inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) and lower levels of low-
density lipoprotein (LDL) cholesterol in individuals with increased genetic risk for
cardiovascular disease (CVD) (Marston et al., 2020); (ii) volanesorsen to inhibit
apolipoprotein (apo) C-I11 and lower levels of triglyceride in individuals with FCS
(Witztum et al., 2019); and (iii) evinacumab to inhibit angiopoietin-like protein 3
(ANGPTL3) and lower levels of LDL cholesterol in individuals with homozygous
familial hypercholesterolemia (FH) (Raal et al., 2020). This level of specificity between
an individual and therapy—down to the genetic level—is considered precision or
personalized medicine, in which a therapeutic treatment is completely tailored towards
the individual and their phenotype etiology. In the future, additional therapies may
become available that are particularly effective for individuals with a high polygenic risk
score for a particular dyslipidemia.

8.4.3  Updating lipid-based polygenic risk scores

With each additional lipid-centric GWAS, larger cohorts have revealed a larger number
of significantly associated SNPs. In 2010, a GWAS of ~100,000 people identified 95
SNP loci significantly associated at genome-wide levels with at least one plasma lipid
trait (Teslovich et al., 2010). In 2013 and 2018, when the sample sizes increased to
~188,000 and >600,000 people, respectively, an additional 62 (Willer et al., 2013) and
118 (Klarin et al., 2018) new SNPs reached genome-wide levels of significance. The
effect sizes of the newly associated SNP loci were very small—larger sample sizes
permit the identification of SNPs with very small effects (Visscher et al., 2012). With

additional statistically significant loci, researchers can incorporate more SNPs into their
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risk scores when using the P-value threshold and pruning method, described in Chapter 1,

Section 1.3.4.3. Further, improved methods to derive SNP weights have been developed

by accounting for LD patterns and adjusting for the underlying genetic architecture of the
phenotype of interest (Choi et al., 2020; Ge et al., 2019; Vilhjalmsson et al., 2015; Wang
et al., 2020b); these effect weights can be incorporated into weighted polygenic scores for
a more accurate measure of polygenic determinants for a particular phenotype. Concerted
efforts must also be made to derive risk scores that can be utilized effectively in
populations of non-European ancestry, through the use of SNPs and estimated effects
derived from non-European populations and methods that account for ancestral LD
patterns (Wang et al., 2020b).

8.4.3.1 Genome-wide scores

As polygenic scores and risk scores grew to encompass millions of SNP loci—the
majority of them with non-significant trait effects—they were defined as “genome-wide
scores”. These scores came to the forefront of polygenic research when Khera et al.
described five different scores for five common diseases: coronary artery disease, atrial
fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer (Khera et al.,
2018a). In this study, the prevalence of individuals with extremely high genome-wide
risk scores was compared to the prevalence of individuals carrying rare variants that
conferred similar degrees of risk. Specifically for coronary artery disease, when
considering genetic determinants that conferred a 3-fold increased risk for disease,
individuals with high genome-wide risk scores were 20-fold as frequent in the population
compared to rare variant carriers (Khera et al., 2018a). This incredible finding not only
demonstrated the importance of genome-wide scores and using them to find more
individuals at risk for disease, but it also demonstrated that considering the polygenic
nature of common diseases and complex traits was extremely informative, despite the
smaller associated effects from common SNPs. Genome-wide scores have since been
used to consider early-onset myocardial infarction (Khera et al., 2018b), weight and
obesity trajectories (Khera et al., 2019), ischemic stroke (Hachiya et al., 2020), severe
hypercholesterolemia (Natarajan et al., 2018; Ripatti et al., 2020), and
hypertriglyceridemia (Ripatti et al., 2020).
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Specifically related to the hypertriglyceridemia genome-wide score, its degree of
association was assessed against both triglyceride measurements and coronary artery
disease risk in the Finnish National FINRISK Study population cohort and FinnGen
project cohort, respectively (Ripatti et al., 2020). The authors demonstrated that the score
could explain 5.1% of variation in triglyceride levels, and individuals with scores in the
90" percentile had a 1.3-fold increased risk for coronary artery disease (Ripatti et al.,
2020).

With respect to genome-wide risk scores, efforts have already been made in assessing
their practicality in non-European groups in a concerted effort to deal with ancestral
biases related to polygenic-based methodologies, as discussed in the previous section
(Wang et al., 2020a).

8.4.4  Finding additional susceptibility genes

Gene-based RVAS may help to uncover genes with previously unappreciated or
unreported links to HDL cholesterol and triglyceride metabolism. In consideration of the
data presented in Chapter 7, with a larger sample cohort and exome-level data, a similar
gene-based approach could be used to determine if there are non-candidate genes beyond
what is targeted by LipidSeq that are enriched for rare variants and driving dyslipidemia
phenotypes. Since there was a large proportion of study subjects in my Dissertation
without an identifiable genetic factor related to their phenotype, a gene-based RVAS
using exome sequencing data in those individuals might uncover genes with some
currently unappreciated link towards HDL cholesterol or triglyceride metabolism, or a
novel mechanistic pathway all together. For example, a recent study performed gene-
based RVASs for over 4,000 phenotypes using almost 50,000 exomes from the UK
Biobank (Cirulli et al., 2020). Their findings related to HDL cholesterol and triglyceride
levels showed a number of known metabolic genes, as well as genes not directly
implicated with these two lipid traits, which provide new avenues of exploration.
Although CREB3L3 did not appear in their top results related to triglyceride levels, the
UK Biobank is made up largely healthy volunteers, which is distinct from the cohort of
patients with severe hypertriglyceridemia studied in Chapter 7.
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8.5 Risk for cardiovascular disease, and levels of high-
density lipoprotein cholesterol and triglyceride

As we deepen our understanding of the genetic underpinnings of extreme circulating
levels of HDL cholesterol and triglyceride, it becomes more feasible to critically assess
these traits and their relationship with CVD, as well as develop a better appreciation for

previous studies in this space.

While HDL cholesterol levels remain a widely used risk predictor for CVD (Anderson et
al., 2016; Grundy et al., 2019), bypassing this metabolic measurement and instead relying
on associated genetic factors has not been an effective predictor. CVD was not a
consistent outcome in individuals with monogenic forms of hypoalphalipoproteinemia.
Despite understanding the genetic cause and mechanism leading to Tangier disease, apo
A-I deficiency, familial LCAT deficiency (FLD) and fish-eye disease (FED), premature
CVD was not explicitly shown to associate with these syndromes (Rader and Hovingh,
2014). Even in cases of extremely high HDL cholesterol levels due to cholesteryl ester
transfer protein (CETP) deficiency, there was no clear consensus on whether there was
protection against CVD (Rader and Hovingh, 2014). Further, Mendelian randomization
studies—an epidemiological approach that relies on genetic variants to assess causality of
a modifiable exposure (i.e. lipids) on a particular phenotypic outcome (i.e. CVD), by
leveraging the understanding of genetic variation with known associations to the
modifiable exposure (Emdin et al., 2017)—demonstrated that genetic variants associated
with HDL cholesterol levels beyond ABCAL, APOA1L, LCAT and CETP failed to show
causal links to CVD outcomes (Burgess and Thompson, 2015; Do et al., 2013; Voight et
al., 2012). In many of these studies, only a small subset of relevant genetic factors were
considered. As demonstrated by the findings presented in this Dissertation, multiple types
of genetic determinants are responsible for driving HDL cholesterol levels, particularly
towards extremes of the distribution (Dron et al., 2017). It remains to be seen whether a
collective assessment of multiple genetic determinants, both rare and common, related to

HDL cholesterol levels would associate with CVD. As mentioned in Chapter 1, Section

1.1, it has been shown that the functionality of HDL or the number of HDL particles are

better metrics to assess CVD risk compared to measurable HDL cholesterol levels
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(Mackey et al., 2012; Mora et al., 2013). Perhaps future studies should focus on the
genetic determinants related to HDL functionality and cholesterol efflux, rather than

measurable levels of HDL cholesterol.

In contrast, genetic variants associated with triglyceride concentration have shown
stronger associations with CVD risk. For example, a number of loss-of-function variants
in APOC3 were shown to reduce triglyceride levels and coronary artery disease risk
(Jorgensen et al., 2014; Pollin et al., 2008; Tg et al., 2014). Further, a genome-wide score
of ~6 million SNPs showed an association to coronary artery disease as well (Ripatti et
al., 2020); however, adjustments were not made for HDL cholesterol levels. A challenge
the field has faced in this space has been disentangling the joint, inverse association
between HDL cholesterol and triglyceride levels, as both traits are often simultaneously
abnormal when CVD associations are observed (see Table 1 from Dron and Hegele,
2017) (Clee et al., 2001; Dewey et al., 2016; Do et al., 2015; Jorgensen et al., 2014;
Mailly et al., 1996; Myocardial Infarction et al., 2016; Nordestgaard, 2016; Teslovich et
al., 2010; Tg et al., 2014; Triglyceride Coronary Disease Genetics et al., 2010). There are
few studies that show an association with only one of the aforementioned lipid traits and
CVD risk. For example, after model adjustments, Do et al. identified that genetic
determinants with predominantly triglyceride-related effects were correlated with
increased coronary heart disease risk, while genetic determinants with predominantly
HDL cholesterol-related effects were not (Do et al., 2013). This triglyceride-specific
association might be related to the cholesterol content of triglyceride-rich lipoprotein
particles and their remnants, specifically very-low-density lipoproteins (VLDL) and
intermediate-density lipoprotein (IDL) (Ference et al., 2019; Varbo et al., 2013). This
aligns with the association between CVD risk and mild-to-moderate
hypertriglyceridemia: disturbances in levels of VLDL and IDL lead to elevations in
triglyceride levels, and due to their cholesterol content, are likely also contributing
towards CVD risk through atherosclerotic plaque development (Dron and Hegele, 2017).
This is in contrast to severe hypertriglyceridemia, in which chylomicrons—with a very
small cholesterol content—are the main lipoprotein disturbance, and the overall CVD risk

is almost negligible. In considering differing severities of hypertriglyceridemia and the
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associated health complications, it is evident that knowing what lipoprotein fractions are

disturbed is useful in assessing CVD risk.

With respect to both HDL particles and triglyceride-rich lipoproteins, it can be
challenging to assess fraction breakdown, lipid-content per fraction, and lipoprotein
particle numbers on a large-scale because of more involved techniques and assays;
however, it might provide better risk predictions for CVD compared to the measurable
circulating concentration of HDL cholesterol and triglyceride. If this holds true, then
future genetic studies could look at associations between genetic variants and these
measurements (i.e. fraction breakdown, lipoprotein functionality) to eventually work
towards a genetic test for CVD prediction earlier in life. Or, findings from these studies
may reveal an area of lipid and lipoprotein metabolic pathways that might be an attractive
target for future therapies attempting to reduce CVD risk.

To summarize, without a clear causal relationship or independent association, assessing
the predictive power of single genetic variants related to either HDL cholesterol or
triglyceride levels and CVD is not an ideal course of action. Either a collective genetic
assessment spanning multiple types of determinants or coupling genetic data with
functional information on lipoprotein fraction-specific data, might prove more useful in
CVD risk prediction and possibly narrowing the focus towards mechanistically impactful

metabolic areas that are therapeutically targetable for CVD risk reduction.

8.6 Conclusions

Fully understanding the genetic architecture of dyslipidemia is challenging. The
perturbed lipid traits defining these phenotypes—cholesterol and triglyceride—are
influenced by a complex network of genetic determinants that differ in population
frequency, physical size, sequence ontology, and phenotypic impact. Throughout my
Dissertation, | have assessed the diverse spectrum of genetic determinants present in
groups of patients with different dyslipidemia phenotypes, including: (i)
hypoalphalipoproteinemia (Chapters 2-3); (ii) hyperalphalipoproteinemia (Chapter 2);
and (iii) hypertriglyceridemia (Chapters 4-7). This was made possible using the targeted

NGS panel, LipidSeq, that produced a single dataset from which I could perform a robust
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set of genetic analyses. From my research, | have demonstrated that despite being jointly
considered as “lipid disorders”, each phenotype studied has a distinct genetic profile
(Figure 8.3). By better understanding the genetic underpinnings of HDL cholesterol,
triglyceride, and their dyslipidemic counterparts, future efforts can explore the
relationship between these phenotypes and their co-morbidities, such as CVD. As
demonstrated previously, genetics often provides invaluable insights into the biological

mechanisms driving health and disease.



259

— 0.6%
Low HDL cholesterol
(N=337)_ 18.1%
6.2%
Controls |
(N=503)

High HDL cholesterol

(N=466) 10-9%

3.6%

Controls |
(N=503)

1.1%

Severe
hypertriglyceridemia
(N=536)

Mild-to-moderate
hypertriglyceridemia— 9.0%

(N=134)
Contols |
(N=503)
1 1 1 1
0% 25% 50% 75% 100%
Percentage
[ Bi-allelic rare variant [1 Heterozygous rare variant

I Polygenic accumulation of SNPs [ Genetically undefined

Figure 8.3 The comparison of genetic profiles of different dyslipidemia phenotypes.
The percentage of individuals in each cohort that carried a particular type of genetic
determinant relevant to the phenotype under study, either hypoalphalipoproteinemia (i.e.
low HDL cholesterol), hyperalphalipoproteinemia (i.e. high HDL cholesterol), severe
hypertriglyceridemia (including familial chylomicronemia syndrome and multifactorial
chylomicronemia), or mild-to-moderate hypertriglyceridemia. Abbreviations: HDL =
high-density lipoprotein; SNPs = single-nucleotide polymorphisms.
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Appendix C. Summary of unique rare SNVs identified in primary HDL cholesterol genes.
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- - )
Gene Nucleotide change (TN EHE SIS AU HGMD In silico predictions® Sl
change Ontology count cholesterol phenotype
¢.103A>G p.135V Missense 1 22.9 | Benign | Damaging | Damaging Low
€.206G>T p.W69L Missense 2 26.3 | Probably damaging | Damaging | Damaging Low
.208delG p.V70fsX53 Frameshift 2 22.9|NA|NA|NA Low
c.688C>T p.R230C Missense 1 Yes 19.22 | Benign | Tolerated | Tolerated Low
€.1660T>C p.Y554H Missense 1 27.5 | Possibly damaging | Damaging | Damaging Low
€.1770G>C p.W590C Missense 1 Yes 24.7 | Possibly damaging | Damaging | Damaging Low
c.1769G>T p.W590L Missense 1 Yes 24.7 | Possibly damaging | Tolerated | Damaging Low
€.2270T>C p.L757P Missense 2 28 | Probably damaging | Damaging | Damaging Low
€.2328G>C p.K776N Missense 2 Yes 27.6 | Probably damaging | Damaging | Damaging Low
ABCAL €.2551G>A p.G851R Missense 2 34 | Probably damaging | Damaging | Damaging Low
€.2819C>T p.T940M Missense 1 Yes 32 | Probably damaging | Damaging | Damaging Low
€.3191A>G p.D1064G Missense 1 29.5 | Probably damaging | Damaging| Damaging Low
€.3343_3344delTC p.S1115PfsX31 Frameshift 1 Yes 35| NA|NA|NA Low
€.3544G>A p.A1182T Missense 1 20.9 | Benign | Tolerated | Damaging Low
c.4156G>A p.E1386K Missense 1 24.7 | Benign | Tolerated | Damaging Low
€.4430G>T p.C1477F Missense 1 Yes 34 | Probably damaging | Damaging | Damaging Low
€.5398A>C p.N1800H Missense 2 Yes 26.6 | Possibly damaging | Damaging | Damaging Low
IVS42+1G>A Splicing 1 27.2| NA|NA|NA Low
€.5672A>C p.E1891A Missense 1 25.2 | Probably damaging | Damaging | Damaging Low
c.5774G>A p.R1925Q Missense 1 24.8 | Benign | Tolerated | Damaging Low
¢.85dupC p.Q29PfsX29 Frameshift 2 Yes 28.3|NA|NA|NA Low
APOAL c.535delC p.H179MfsX45 Fra_meshift 1 24.8 | Probably damag?ng | Damag?ng | Damag?ng Low
€.566C>G p.P189R Missense 1 Yes 24.8 | Probably damaging | Damaging | Damaging Low
c.718C>T p.Q240X Nonsense 1 Yes 35| NA | NA | Damaging Low
CETP c.164delC p.S56AfsX11 Frameshift 1 36 | NA | NA | Damaging H!gh
c.976C>T p.Q326X Nonsense 1 Yes 32 | NA|NA |NA High
€.109_110delAC p.T37AfsX3 Frameshift 1 37| NA | NA | Damaging Low
€.321C>A p.Y107X Nonsense 1 Yes 31 | Probably damaging | Tolerated | Damaging Low
c.491G>A p.R164H Missense 2 Yes 27.8 | Probably damaging | Damaging | Damaging Low
LCAT c.892A>C p.T298P Missense 1 31 | Probably damaging | Damaging | Damaging Low
c.997G>A p.V333M Missense 1 Yes 31 | Probably damaging | Damaging | Damaging Low
€.1039C>T p.R347C Missense 1 Yes 18.3 | Benign | Damaging | Tolerated | Damaging Low
€.1244A>G p.N415S Missense 1 Yes 22.8 | Possibly damaging | Tolerated | Damaging Low
€.193C>T p.R65X Nonsense 1 35| NA | NA | Damaging High
LIPC c.866C>T p.S289F Missense 1 Yes 25.5 | Probably damaging | Damaging | Damaging High
c.1214C>T p.T405M Missense 3 Yes 24.6 | Probably damaging | Damaging | Damaging High
€.1231G>C p.G411R Missense 1 27.5 | Probably damaging | Damaging | Damaging High
LIPG IVS5+1G>T Splicing 1 23.2| NA | NA | Damaging High
c.1187A>G p.N396S Missense 4 23.8 | Probably damaging | Tolerated | Damaging High
SCARBI ¢.520C>T p.R174C Missense 1 32 | Probably damaging | Damaging | Damaging High
€.1258G>T p.G420W Missense 1 31 | Probably damaging | Damaging | Damaging Low

“*” The order of prediction tool outcomes is: CADD PHRED Score, PolyPhen2, SIFT, and MutationTaster. Abbreviations: NA = not available; del = deletion; dup = duplication;
ext = extension; fs = frameshift; HDL = HDL cholesterol; HGMD = Human Gene Mutation Database; SNV = single-nucleotide variant.



Appendix D. Summary of unique rare SNVs identified in secondary HDL cholesterol genes.
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- - . Sequence Allele - T Carrier’s HDL

Gene Nucleotide change  Amino acid change Or?tology count HGMD In silico predictions cholesterol phenotype

APOA5 €.944C>T p.A315V Missense 1 Yes 28 | Probably damaging | Damaging | Tolerated Low

APOC3 IVS2+1G>A Splicing 2 Yes 25.1 | NA | NA | Damaging High

APOE €.433G>C p.G145R Missense 1 28.4 | Probably damaging | Damaging | Tolerated Low
€.805C>G p.R269G Missense 2 Yes 25.6 | Benign | Damaging | Damaging Low

GPDL €.208C>A p.P70T Missense 1 31 | Probably damaging | Damaging | Damaging Low
C.760G>A p.E254K Missense 1 27.7 | Probably damaging | Damaging | Damaging Low

LMF1 €.1351C>T p.R451W Missense 2 Yes 24.9 | Probably damaging | Damaging | Tolerated Low
c.1405G>A p.A469T Missense 2 Yes 29.7 | Probably damaging | Damaging | Damaging Low

LPL C.644G>A p.G215E Missense 1 Yes 22 | Probably damaging | Tolerated | Damaging Low
c.701C>T p.P234L Missense 1 Yes 34 | Probably damaging | Damaging | Damaging Low

“*” The order of prediction tool outcomes is: CADD PHRED Score, PolyPhen2, SIFT, and MutationTaster. Abbreviations: NA = not available; del = deletion; dup = duplication;
ext = extension; fs = frameshift; HDL = HDL cholesterol; HGMD = Human Gene Mutation Database; SNV = single-nucleotide variant.
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Appendix E. Screening primers for ABCAL copy-number variations.

Primer labels in

. Primer Primer sequence Annealin .
CNV B el direction (5’ to ?‘a’) temperatureg(°C) F'%?gﬁi%ind
Upstream FWD CCAAATAGCTGAGACTACAGGCATG 60 P1
Exon 4 REV GTGATGGTGAAGGTATTTCAG 60 P2
Downstream FWD CATGACTGCATTGGTATAAAGATG 60 P3
REV ATCACTGTCTGTGGCAACCAG 60 P4
Upstream FWD GACCCAGCTTCCAATCTTCATAATCCTC 60 P5
Exons 8 to REV GGTTGCAAAGATCCCTGTAGAG 60 P6
31 Downstream FWD GAGATATCATGTTGGGAGGGTCTG 60 P7
REV GCCACAGTCTGTCCTGTGACTTTAC 60 P8
Upstream FWD TATCATGCTACTCAGAACAGCATG 60 P9
Full REV TGGTGATTCTTGTGTGCACAAAG 60 P10
deletion Downstream FWD CAGGATATTACATAGGTAAGCAGG 60 P11
REV CTTAATGATAGTGGAAGACAAGGAG 60 P12

The primers listed were designed to flank the two breakpoints for each CNV. The “Breakpoint™ listed is relative to the deletion section of the gene. The sequence
orientation for P1-P8 are relative to the ABCAL gene, while the sequence orientation for P9-P12 are relative to the full chromosome. Abbreviations: CNV =
copy-number variant; FWD = forward; REV = reverse.



Appendix F. Summary of unique rare SNVs and CNVs identified in the Lipid Genetics Clinic cohort (N=251).
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Variant information

RefSeq gene information

Minor allele frequencies

In silico predictions

= Allele
Gene Chr:Pos Ref/Alt HGVSc. HGVSp.  Sequence Ontology  EXAC 1KG CADD PHRED SIFT PolyPhen2 M#atgtté?n Counts
11:116661290  C/G €.655G>C p.Ala219Pro Missense 22.9 T PoD T 1
11:116661305 CIG €.640G>C p.Ala214Pro Missense 24.2 D ProD D 2
APOA5 11:116661335  G/A €.610C>T p.Arg204Cys Missense 8.27E-06 0.000199681 33 D PoD D 2
11:116661656 G/IA €.289C>T p.GIn97Ter Nonsense 8.24E-05 36 D 1
11:116663095 CIT c.-33+1G>A Splice donor 24.4 1
APOC2  19:45452024 AIC c.122A>C p.Lys41Thr Missense 0.0008731  0.000399361 15 D B D 4
16:904642 CIT c.1594G>A p.Gly532Ser Missense 29.7 D ProD D 1
16:919894 CIT .1405G>A p.Ala469Thr Missense 0.0008543 0.000599042 29.7 D ProD D 1
16:919912 CIT c.1387G>A p.Asp463Asn Missense 3.31E-05 28.3 D ProD D 1
LMF1 16:919948 GIA c.1351C>T p.Arg451Trp Missense 0.004243 0.00319489 24.9 D ProD T 3
16:929680 G/A c.787C>T p.His263Tyr Missense 2.48E-05 24.9 D ProD D 2
16:943023 AIG c.713T>C p.-Met238Thr Missense 26.8 D ProD D 1
16:1004615 CT/- C.244 245delAG  p.Arg82Glyfs Frameshift 2.48E-05 22.9 1
8:19796997 CA/- c.46_47delCA p.GIn16Glufs Frameshift 35 2
8:19805715 AlG ¢.113A>G p.Glu38Gly Missense 8.24E-06 24.3 D PoD D 1
8:19805736 CIA c.134C>A p.Thr45Asn Missense 0.0001071 22.7 D PoD D 1
8:19805756 G/C ¢.154G>C p.Asp52His Missense 28.9 D ProD D 1
8:19809302 G/A €.272G>A p.Trp91Ter Nonsense 38 D 1
8:19809316 G/C €.286G>C p.Val96Leu Missense 0.0001235 28.2 D ProD D 1
8:19811733 G/A c.644G>A p.Gly215Glu Missense 0.0001318 0.000199681 22 T ProD D 9
LPL 8:19811769 TIC €.680T>C p.Val227Ala Missense 3.30E-05 0.000199681 27 D PoD D 1
8:19811790 CIT c.701C>T p.Pro234Leu Missense 4.94E-05 34 D ProD D 1
8:19811806 TIA C.717T>A p.Phe239Leu Missense 26.5 D ProD D 1
8:19813405 G/A c.829G>A p.Asp277Asn Missense 8.24E-06 32 D B D 1
8:19813411 CIG .835C>G p.Leu279Vval Missense 0.0001318 25.7 D ProD D 1
8:19813474 G/C €.898G>C p.Gly300Arg Missense 31 D ProD D 1
8:19813594 G/A c.1018G>A p.Val340lle Missense 23.3 D B D 1
8:19816785 G/A c.1033G>A p.Val345lle Missense 1.65E-05 18.9 T B D 1
8:19816892 G/A €.1139+1G>A Splice donor 8.24E-06 26.5 D 1

Abbreviations: 1KG = 1000 Genomes Project; Alt = alternate; B = benign; CADD = Combined Annotation Dependent Depletion; CNV = copy-number variant; D = damaging;
del = deletion; EXAC = Exome Aggregation Consortium; HGVS = Human Genome Variation Society; fs = frameshift; ins = insertion; PoD = possibly damaging; ProD = probably
damaging; Ref = reference; SNV = single-nucleotide variant; T = tolerated.



Appendix G. Summary of unique rare SNVs and CNVs identified in the UCSF cohort (N=312).
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Variant information

RefSeq gene information

Minor allele frequencies

In silico predictions

= Allele
Gene Chr:Pos Ref/Alt HGVSc. HGVS p. sequence g ke OAPD gier poiyphens MUMBUON - coynts
Ontology PHRED Taster
11:116660857 AT c.1088T>A p.Leu363GIn Missense 10.58 D B T 1
11:116661001 G/IA C.944C>T p.Ala315Val Missense 0.000626 0.0003993 28 D ProD T 7
11:116661057 T/- c.888delA p.lle296Metfs Frameshift del 24.4 1
APOA5 11:116661062 GIA c.883C>T p.GIn295Ter Nonsense 8.24E-06 37 D 1
11:116661656 G/IA €.289C>T p.GIn97Ter Nonsense 8.24E-05 36 D 1
11:116661734 G/- c.211delC p.Leu71Trpfs Frameshift del 17.42 1
11:116662386 Cl- c.77delG p.Gly26Alafs Frameshift del 24 1
19:45451743 CIT c.8C>T p.Thr3lle Missense 0.0003377 0.0007987 13.79 D B T 1
APOC2 19:45451745 CIG ¢.10C>G p.Arg4Gly Missense 9.88E-05 23.6 D ProD T 1
19:45452024 A/C c.122A>C p.Lys41Thr Missense 0.0008731 0.0003994 15 D B D 1
GPIHBP1 8:144297206 G/IA €.368G>A p.Gly123Glu Missense 0.0004616 17.35 B T 1
8:144297361 GIC €.523G>C p.Gly175Arg Missense 0.0008799  0.0021965 14.89 PoD T 1
16:919894 CIT €.1405G>A p.Alad69Thr Missense 0.0008543  0.0005990 29.7 D ProD D 2
16:919908 CIT c.1391G>A p.Trp464Ter Nonsense 39 D 1
16:919948 G/IA €.1351C>T p.Arg451Trp Missense 0.004243 0.0031949 24.9 D ProD T 4
16:919982 G/IC ¢.1317C>G p.Tyrd39Ter Nonsense 36 D 2
LMFE1 16:920817 CIT c.1144G>A p.Val382Met Missense 6.61E-05 0.0001997 27.3 D ProD D 1
16:921293 T/IC €.946A>G p.-Met316Val Missense 8.28E-06 15.58 T B D 1
16:929617 CIT c.850G>A p.Gly284Ser Missense 2.48E-05 24.2 T PoD D 1
16:943023 AIG c.713T>C p-Met238Thr Missense 26.8 D ProD D 1
16:943053 CIG €.683G>C p.Gly228Ala Missense 24 D PoD D 1
16:943053 CIT c.683G>A p.Gly228Glu Missense 0.000198 28.8 D PoD D 1
8:19796331-19806101 (approximate) Large-scale deletion 1
8:19805730 -IT €.127_128insT p.Arg44Lysfs Frameshift ins 33 1
8:19805815 CIG €.213C>G p.His71GIn Missense 0.001128 0.0037939 12.52 T B D 1
8:19809322 G/IA €.292G>A p.Ala98Thr Missense 0.0001647 33 D ProD D 1
8:19811679 G/IA €.590G>A p.Arg197His Missense 4.12E-05 29.3 D ProD D 1
8:19811710 CIG €.621C>G p.Asp207Glu Missense 21.6 D ProD D 2
8:19811711 G/IA €.622G>A p.Val208lle Missense 28.4 D ProD D 1
8:19811733 G/IA C.644G>A p.Gly215Glu Missense 0.0001318  0.0001997 22 T ProD D 8
LPL 8:19811751 TIC €.662T>C p.11e221Thr Missense 8.24E-06 27.1 D ProD D 2
8:19811844 T/IC c.755T>C p.11e252Thr Missense 1.65E-05 24.8 D PoD D 1
8:19811864 G/IA C.775G>A p.Asp259Asn Missense 11.9 T B D 1
8:19813465 T/IC .889T>C p.Phe297Leu Missense 29 D PoD D 1
8:19813501 CIT €.925C>T p.Arg309Cys Missense 1.65E-05 35 D ProD D 1
8:19813528 AIG €.952A>G p.Asn318Asp Missense 23.6 T B D 1
8:19816785 G/IA c.1033G>A p.Val345lle Missense 1.65E-05 18.9 T B D 1
8:19816888 CIT €.1136C>T p.Thr3791le Missense 0.001911 20.2 D B T 1
8:19818574 ATTTT €.1302delinsTTTT  p.Lys434delinsAsnPhe Inframe ins 18.857 1

Abbreviations: 1KG = 1000 Genomes Project; Alt = alternate; B = benign; CADD = Combined Annotation Dependent Depletion; CNV = copy-number variant; D = damaging;
del = deletion; EXAC = Exome Aggregation Consortium; HGVS = Human Genome Variation Society; fs = frameshift; ins = insertion; PoD = possibly damaging; ProD = probably
damaging; Ref = reference; SNV = single-nucleotide variant; T = tolerated; UCSF = University of California, San Francisco.



Appendix H. Summary of unique rare SNVs identified in the reference 1000 Genomes Project cohort (N=503).
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oAt ; ; . Minor allele - .
Variant information RefSeq gene information . In silico predictions
99 frequencies P Allele
Ref/ Sequence CADD Mutation Counts
Gene Chr:Pos rsID HGVS c. HGVS p. g ExAC 1KG SIFT  PolyPhen2
Alt Ontology PHRED Taster

APOAS 11:116660983 TIA rs201201147 C.962A>T p.His321Leu Missense 0.001095 0.000599042 25.7 D PoD D 3

11:116661335 GIA rs546060544  ¢.610C>T p.Arg204Cys Missense 8.27E-06  0.000199681 33 D PoD D 1
APOC2 19:45452024 AIC rs120074114  ¢.122A>C p.Lys41Thr Missense 0.0008731  0.000399361 15 D B D 2
GPIHBP1  8:144297142 CIT 5200196582  ¢.304C>T p.Leu102Phe Missense 0.000199681 13.7 B T 1

16:904561 G/IA rs199544373 c.1675C>T p.Arg559Cys Missense 3.33E-05 0.000199681 25.1 D ProD D 1

16:919883 CIG rs200876477  ¢.1416G>C p.GIn472His Missense 0.000199681 23.3 T PoD D 1

16:919894 CIT rs181731943 c.1405G>A p.Alad69Thr Missense 0.0008543  0.000599042 29.7 D ProD D 2
LMF1 16:919948 GIA rs138205062  ¢.1351C>T p.Arg451Trp Missense 0.004243 0.00319489 24.9 D ProD T 4

16:920733 cIT rs199713950  ¢.1228G>A p.Gly410Arg Missense 0.0008925  0.000599042 26.4 D ProD D 1

16:929692 GIC rs564167344  ¢.775C>G p.Pro259Ala Missense 8.28E-06  0.000199681 235 D ProD D 1

16:1004447 GIC rs200382562  ¢.413C>G p.Ser138Cys Missense 0.0004132  0.000399361 10.68 T PoD T 1

8:19805792 GIA rs114101772  ¢.190G>A p.Val64Met Missense 2.47E-05  0.000199681 24.8 D PoD T 1
LPL 8:19811631 GIA rs191402029  ¢.542G>A p.Gly181Asp Missense 8.24E-06  0.000199681 27 D ProD D 1

8:19819628 T/G rs116403115  ¢.1325T>G p.Val442Gly Missense 0.0004036  0.000199681 25.6 D PoD D 1

Abbreviations: 1KG = 1000 Genomes Project; Alt = alternate; B = benign; CADD = Combined Annotation Dependent Depletion; CNV = copy-number variant; D = damaging;
del = deletion; EXAC = Exome Aggregation Consortium; HGVS = Human Genome Variation Society; fs = frameshift; ins = insertion; PoD = possibly damaging; ProD = probably
damaging; Ref = reference; SNV = single-nucleotide variant; T = tolerated.
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Appendix I. Screening primers for LPL CNVs.

. Primer Primer sequence Annealin Primer labels in

SR ElEELpaIG direction (5’ to g’) temperatureg(°C) Figure 5.2
Upstream F TTGTAGGTTAGAGTGAACGTGCACAG 60 P2
5’UTR — R CATTATGCTGATGCTGCACAACTCTG 60 P3
exon 1 Downstream F TTCACACTTGATGGTCTCATTCAGTGG 60 P4
R GATCAGACTGAATTGATTGGTCTGTTCAG 60 P5
Upstream F CTCTATTGGACGTGCTAATGGCACAG 60 P1
5’ UTR — R CATTATGCTGATGCTGCACAACTCTG 60 P3
exon 2 Downstream F ACTGACATGCTGACATGCCAGATG 60 P6
R CATCTGTGTGAATTCTGTTAGTAGTAG 60 P7

The primers listed were designed to flank the two breakpoints for each CNV. The “Breakpoint” listed is relative to the deleted section of the gene. The sequence
orientation for P1-P7 are relative to LPL. Highlighted primer sequences are the same. Abbreviations: CNV = copy-number variant; F = forward; R = reverse;
UTR = untranslated region.



Appendix J. Summary of unique rare SNVs identified in mild-to-moderate hypertriglyceridemia patients (N=134).
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Variant Information

Minor allele frequencies

In silico predictions

= Allele
. Ref/ Sequence CADD Mutation
Gene Chr:Pos Alt HGVS c. HGVS p. Ontology gnomAD EXAC 1KG PHRED SIFT PolyPhen2 Taster Counts
8:19811733 G/A C.644G>A p.Gly215Glu Missense 6.46E-05 0.0001318 0.0001997 233 T ProD D 2
LPL 8:19811864 G/IA C.775G>A p.Asp259Asn M?ssense 22.9 T B D 1
8:19813384 * CIT €.808C>T p.Arg270Cys Missense 1.65E-05 34 D ProD D 1
8:19813481 GIT €.905G>T p.Cys302Phe Missense 32 D ProD D 1
11:116661001 *  G/A €.944C>T p.Ala315Val Missense 0.000581546 0.000626 0.0003994 24.4 D ProD T 1
APOA5 11:116661392 CIA €.553G>T p.Gly185Cys Missense 0.00531122 0.006132 0.0113818 22.7 D ProD T 2
11:116661653 CIA €.292G>T p.Glu98Ter Nonsense 36 D 1
11:116661656 G/A €.289C>T p.GIn97Ter Nonsense 6.46E-05 8.24E-05 37 D 1
16:919894 CIT c.1405G>A p.Alad69Thr Missense 0.000258415 0.0008543 0.0005990 24.8 D ProD D 1
LMF1 16:921323 CIT c.916G>A p.Gly306Arg Missense 5.80E-05 275 D ProD D 1
16:929650 T/G c.817A>C p.lle273Leu Missense 4.13E-05 10.72 T B D 1

“*” indicates the variants that occur in the same patient. Abbreviations: 1KG = 1000 Genomes Project; Alt = alternate; B = benign; CADD = Combined Annotation Dependent
Depletion; D = damaging; del = deletion; EXAC = Exome Aggregation Consortium; HGVS = Human Genome Variation Society; fs = frameshift; ins = insertion; PoD = possibly
damaging; ProD = probably damaging; Ref = reference; SNVs = single-nucleotide variants; T = tolerated.



Appendix K. Summary of unique rare LOF variants identified in multifactorial chylomicronemia patients (N=265).
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. A L Total Allele

Variant Info MAF in silico Prediction Tools Counts
Chr: Ref/ Sequence  gnomAD Poly Mutation # #
Position Alt S i e A Ontology  All Pops SRSy Phen2 Taster ol Het  Hom
2:21231489 CIA _ APOB NM_000384.2:c.8251G>T NP_000375.2:p.Glu2751Ter Nonsense 35 D LP 1 0
2:27726415 CIT GCKR NM_001486.3:¢c.679C>T NP_001477.2:p.Arg227Ter Nonsense 0.0003185 35 D LP 1 0
2:27730170 JA  GCKR NM_001486.3:c.1135dupA g'ep—om‘m'2:p‘Thr379AS”fs* Frameshift ~ 0.0012737  22.8 Lp 3 0
2:27745372 CIT  GCKR NM_001486.3:¢.1618C>T NP_001477.2:p.Arg540Ter Nonsense  0.0008602 35 D LP 5 0
2:27746184 GIT GCKR NM_001486.3:c.1756G>T NP_001477.2:p.Glu586Ter Nonsense 0.0010832 35 D VUS 1 0
2:44102404 GIA  ABCGS NM_022437.2:¢.1608G>A NP_071882.1:p.Trp536Ter Nonsense  3.18E-05 51 D P 1 0

. CTT NM_015869.4:c.1014_1018delC NP_056953.2:p.Asp338Glufs* .
3:12458392 oa.  PPARG TTGA e Frameshift 35 P 1 0
3:12475485 Cl-  PPARG NM_015869.4:¢.1361deIC ’l\‘f 056953 2:p ProdSaLeufs™  r o echife 35 P 1 0
, NM_000253.3:.-229_- .

4:100485266 JGA  MTTP 2280pAG Frameshift 14.44 LP 1 0
8:19795150-19806747 LPL NM_001715.2:c.1_249del NP_006184.2:p.Met1? CNV del 1 0
8:19796997 CA-  LPL NM_000237.2:c.46_47delCA TP—OOOZZB'1:p'G'”1GG'“fS*2 Frameshift 34 LP 1 0
8:19805730 -IT LPL NM_000237.2:c.128dupT NP_000228.1:p.Arg44Lysfs*4 Frameshift 28.1 LP 1 0
10:91005432  C/T  LIPA NM_000235.3:¢.220+1G>A g‘(’)'r']f)er 34 D Lp 1 0
10:90987706-90988405 LIPA Deletion encompassing: Exon 4 CNV del 1 0
11:62458267 GIA  BSCL2 NM_032667.6:.953C>T NP_001124174.2:p.GIn271Ter ~ Nonsense  9.56E-05 17.53 T B T LP 1 0
11:116661062  G/A  APOAS NM_052968.4:¢.883C>T NP_443200.2:p.GIn295Ter Nonsense  3.18E-05 39 S LP 1 0
11:116661734 G/ APOAS NM_052968.4:c.211delC NP_443200.2:p.Leu71Trpfs*4  Frameshift 224 LP 1 0
11:116701354  G/A  APOC3 NM_000040.1:c.55+1G>A g%'r']ger 0.0013398 31 D P 3 0
12:121432117  -IC HNF1A NM_000545.6:¢.863_864insC ’7\'P—OOOSSG'5:p'Pr°289A'afS*2 Frameshift 26.2 LP 1 0
15:58723924-58724569 LIPC Deletion encompassing: Exon 1 CNV del 2 0
15:58838104 JCG  LIPC NM_000236.2:¢.738_739dupCG ’l\'zp—000227'z:p'G'y247A'afS* Frameshift ~ 0.0001912 35 VUS 1 0
15:90213298 G/IA PLIN1 NM_002666.4:¢.511C>T NP_002657.3:p.Argl71Ter Nonsense 36 D LP 1 0
19:4168357 CIT  CREB3L3  NM_032607.2:c.724C>T NP_115996.1:p.Arg242Ter Nonsense  9.57E-05 39 D VUS 1 0
19:4168365 4G CREB3L3  NM_032607.2:.732dupG ’1\'3%—115996'Lp"-ysz“SG'”fs* Frameshift  0.0003190 35 VUS 3 0
19:4153347-4155274 CREB3L3 Deletion encompassing: 5'UTR to exon 2 CNV del 1 0
19:11241706-11244755 LDLR Deletion encompassing: Exon 18 to the 3UTR CNV del 1 0

Abbreviations: Alt = alternate; B = benign; CADD = Combined Annotation Dependent Depletion; Chr = chromosome; CNV = copy-number variant; D = damaging; del = deletion;
ExAC = Exome Aggregation Consortium; HGVS = Human Genome Variation Society; het = heterozygous; fs = frameshift; ins = insertion; LOF = loss-of-function; LP = likely
pathogenic; MAF = minor allele frequency; P = pathogenic; pops = populations; Ref = reference; SNVs = single-nucleotide variants; T = tolerated; VUS = variant of uncertain

significant.
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Appendix L. Exautomate: A user-friendly tool for region-based rare variant
association analysis



290

bioRxiv preprint first posted online May. 24, 2019; doi: http:/dx.doi.org/10.1101/649368. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license.

Exautomate: A user-friendly tool for region-based rare variant association

analysis (RVAA)

Brent D. Davis'*, Jacqueline S. Dron?3*, John F. Robinson?, Robert A. Hegele?*#, Dan J.
Lizotte"®

" Department of Computer Science, Western University, London, Canada

2 Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University,
London, Canada

3 Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University,
London, Canada

4 Department of Medicine, Schulich School of Medicine and Dentistry, Western University,
London, Canada

5 Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry,
Western University, London, Canada

* Authors contributed equally to this work.




291

bioRxiv preprint first posted online May. 24, 2019; doi: http:/dx.doi.org/10.1101/649368. The copyright holder for this preprint
(which was not peer-reviewed) is the author/ffunder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license.

Abstract

Region-based rare variant association analysis (RVAA) is a popular method to study
rare genetic variation in large datasets, especially in the context of complex traits and diseases.
Although this method shows great promise in increasing our understanding of the genetic
architecture of complex phenotypes, performing a region-based RVAA can be challenging. The
sequence kernel association test (SKAT) can be used to perform this analysis, but its inputs and
modifiable parameters can be extremely overwhelming and may lead to results that are difficult
to reproduce. We have developed a software package called “Exautomate” that contains the
tools necessary to run a region-based RVAA using SKAT and is easy-to-use for any researcher,
regardless of their previous bioinformatic experiences. In this report, we discuss the utilities of
Exautomate and provide detailed examples of implementing our package. Importantly, we
demonstrate a proof-of-principle analysis using a previously studied cohort of 313 familial
hypercholesterolemia (FH) patients. Our results show an increased burden of rare variants in
genes known to cause FH, thereby demonstrating a successful region-based RVAA using
Exautomate. With our easy-to-use package, we hope researchers will be able to perform
reproducible region-based RVAA to further our collective understanding behind the genetics of

complex traits and diseases.
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Introduction

Understanding the genetic architecture of complex traits and diseases is an active area
of research, driven largely by massive next-generation sequencing (NGS) efforts and the
availability of public repositories containing genotypic and phenotypic data on hundreds of
thousands of individuals'2. While the previous obstacle in genetics research was acquiring such
datasets, we are now faced with the challenge of figuring out how to effectively and
appropriately study these data*®.

Bioinformatic analyses are necessary to help identify unknown genetic determinants and
explore these datasets. Rare variant association analysis (RVAA) is an increasingly popular
approach to study rare variants in this context®'%; however, their frequency in the population
makes it difficult to attain large enough sample sizes to detect significant relationships between
variants and disease '3, As such, researchers often perform region-based RVAA by grouping
or collapsing rare variants together—typically by gene—to increase statistical power for
association testing'%4.

One method frequently used for region-based RVAA is the sequence kernel association
test (SKAT)'S'8. While the method has been useful in revealing rare variants and genomic loci
of interest in complex traits and diseases—such as cardiovascular disease, body-mass index,
height, and neurodegenerative diseases'®?>—reproducing these results can be difficult. SKAT is
challenging to implement for exome- and genome-scale analyses as it requires significant data
preprocessing involving additional software dependencies and variables that can complicate
reproducibility?®>. On top of that, few published studies report the exact preprocessing steps and
SKAT parameters used in their analysis. With an increase in the availability of genetic and
phenotypic data, there has been a surge in exploratory analyses of the large NGS datasets,
making SKAT a very popular tool. To assist with transparency in research and encouraging
reproducibility of results, easily accessible and user-friendly bioinformatic tools are necessary.

We have created an open-access, modular script package built from pre-existing tools to
automate data handling, processing, and perform a region-based RVAA using SKAT. As a proof
of principle, we utilized publicly available data from the 1000 Genomes Project and data from a
well-characterized lipid disorder in which the disease-causing genes are known, to test our
script package. We also outline precautions needed when performing a region-based RVAA and
adjusting SKAT parameters.

Our “Exautomate” package is user-friendly, designed with genetic researchers in mind,

and generates a detailed methods-log to be utilized in publishing efforts. Our automated
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analysis package is our standardization attempt to ensure consistent, reproducible region-based
RVAA results, and to further the validity of this modern, exploratory genetic method.

Methods & Recommended Script Usage
Operating system compatibility

Our packages have been tested on the following platforms: 1) Windows Subsystem for
Linux (WSL, Bash on Windows) I; 2) Ubuntu 16.04 and 18.04; and 3) Mac OS X 10.13.1.

Software dependencies and installation

The Exautomate package is presented as a series of bash scripts that can be found on

Github (https://github.com/exautomate/Exautomate-Core). An installer script [Installer.sh or

mac-installer.sh]is available to download and install the following dependencies:
bedtools®, BWA?, Genome Analysis Toolkit (GATK) including Picard?®, SAMtools?, tabix?8, and
VCFtools?. The following programming languages are required: C, Java, Perl, Python, and R.
These dependencies are installed using a combination of browserless downloads, wget,
and the apt-get package manager. The included Mac OS X installer requires homebrew. \WWhen
using R, the R-specific libraries of SKAT'®, ggplot2°?, and reshape2® are installed inside
RunSkat . R if they have not been installed previously. At the time of this publication, all
packages listed are open-source and freely available. The authors of PLINK®? and ANNOVAR®
would prefer that their tools be registered before being downloaded and are therefore not
included in our installers. Details on how to download ANNOVAR and PLINK for use by

Exautomate can be found in the Supplemental Materials (Methods).

Performing the region-based RVAA
Options ‘1’ and 2’ from the Exautomate main menu allow the user to: 1) perform SKAT

or SKAT-O on a pre-merged .vcf file containing variant data on both controls and cases, or 2)
merge a .vcf file containing variant data on controls with a .vcf file containing variant data on
cases, from which the resultant .vcf file is used for SKAT or SKAT-O. Exautomate is set up such
that the user inputs the necessary pieces of information (i.e. number of cases vs. controls, file
names, kernel option, SKAT method) at the start of the workflow. There are two subsequent
instances where the user will need to interact with the terminal before script completion. First,
the user must encode the newly generated .fam file with control/case information by assigning
the “phenotype” column variable as 1 (unaffected) or 2 (affected). Second, the user must modify
the newly generated .SetlD file; the “sets” in the first column of the file cannot be greater than 50
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characters. Exautomate is set up under the assumption that the user wishes to group variants
into gene sets, and therefore generates a gene-based .SetlD file from ANNOVAR output. This
step in the workflow is where the user may alter their sets as required. Considerations for

preparing .SetlD files can be found in the Supplemental Materials (Additional Information).

Retrieval of 1000 Genomes data

Option ‘3’ from the Exautomate main menu allows the user to download data from the
1000 Genomes FTP site. There are options to filter the downloaded data based on ethnicity and
genomic sites of interest, as specified by a .bed file. An example of using this option can be
found in Supplemental Materials (Methods). An important note on this option is that it does
not download information related to the sex chromosomes or mitochondrial DNA, and it does

not take relatedness of the 1000 Genomes participants into account.

Creating a synthetic dataset

Option ‘4’ from the Exautomate main menu allows the user to perform SKAT or SKAT-O
analysis with a synthetic dataset in the form of a .sim file, generated using PLINK. This option
was largely used to test the functionality of the Exautomate package and has been included as

an extra feature for users.

Proof-of-principle demonstration analysis

The European subset of the 1000 Genomes cohort (N=503) was retrieved using option
‘3’ of Exautomate and was filtered to contain sites covered by the LipidSeq targeted NGS
panel®. Patients diagnosed with familial hypercholesterolemia (FH) (N=313), which is defined
as having severely elevated low-density lipoprotein (LDL) cholesterol levels, were used as a
case cohort. Since these patients have been genetically diagnosed in a previous study®® and the
FH phenotype itself is well characterized, we have an a priori expectation of what the analysis
should reveal, making it an ideal cohort for a proof of principle.

To highlight usage of the Exautomate package, we document each step of the
workflow—from installation to output—for our proof-of-principle analysis using data from the
1000 Genomes and the FH patient cohort in the Supplemental Materials (Methods). We
strongly encourage users to consult this document first for a complete understanding of the tool,
as we outline important considerations for each stage of the workflow. \We also provide a

general overview in Figure 1 regarding the flow of information between file types.
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Results
Region-based RVAA on FH patient cohort

The .vcf files from all FH patients and 1000 Genomes controls were merged together

and filtered on the following parameters: biallelic sites, minor allele frequency <1% (based on
the gnomAD database®®), sequence ontology (insertion, deletion, missense, splice acceptor,
splice donor, nonsense), and in silico predictions (CADD Phred®”*8 2 10). This filtered .vcf was
used as the input .vcf for option "1’ of Exautomate. We selected options for a linear weighted,
gene-based SKAT-O analysis and a Bonferroni adjustment of P-values. From start to finish—
including manually editing the .fam and .SetID files—Exautomate ran for 5 minutes and 13
seconds on an 8-cores @ 2.33GHz, 64GB RAM Ubuntu 18.04 Server machine.

The gene sets and their adjusted P-values are detailed in Table $1, while the
distribution of adjusted P-values is illustrated in Figure 2. Overall, 19 genes met statistical
significance when using an a-threshold of 0.05 (Table 1). Of importance, neither the SKAT nor
SKAT-O analysis indicate which study group (i.e. the cases or the controls) has the increased
burden of rare variants driving the statistical association; therefore, additional downstream
analysis is required to determine if the increase of rare variants is specific to the cases or

controls.

Discussion

Through the development and implementation of our open-access, user-friendly
Exautomate package, we have made possible the ability to conduct a region-based RVAA
following a reliable, reproducible, and transparent method. As a proof-of-principle, we utilized
Exautomate to perform a region-based RVAA on a previously studied disease cohort of 313 FH
patients with an a priori understanding of the genetic factors causing their phenotypes®. As one
of the most commonly inherited types of metabolic disease, the molecular basis and
mechanisms leading to FH are extremely well characterized®.

After performing optimally adjusted SKAT-O, our resultant output suggested a reliable
analysis. The gene with the most significant prevalence of rare variants in cases compared to
controls was LDLR, encoding the LDL receptor (LDLR). The LDLR is the primary receptor
responsible for the removal of LDL particles from the blood; an extreme accumulation of LDL
particles leads to an extreme elevation in LDL cholesterol levels, which is the main phenotypic
feature of FH*. Given that mutations in LDLR account for >90% of FH cases*'—with over 2000
mutations reported to cause FH3*—it is unsurprising that our analysis revealed LDLR to have

the greatest prevalence of rare variants. It should be noted that in the previously described FH
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study, 105 unique LDLR variants were reported to explain the FH phenotype of 53.7% of
patients, while our region-based RVAA only utilized 70 variants for analysis. This difference is
because our analysis only considers single-nucleotide variants, and if there is a single missing
allele call at any position, that entire genomic coordinate will be excluded from analysis. These
are points that should be considered when running Exautomate on any dataset.

Two other genes known to cause ~8% and ~2% of FH cases include APOB and PCSK9,
encoding apolipoprotein (apo) B and proprotein convertase subtilisin/kexin type 9 (PCSK9)
respectively*'; both genes were present on our list of significant results. Apo B is the main
protein constituent of LDL particles and serves as the primary ligand for LDLR binding, allowing
for the clearance of LDL particles from circulation*?. Disruptions to the LDLR-binding site causes
disruptions in the uptake of LDL, leading to elevations in circulating levels of LDL cholesterol®,
Conversely, PCSK9 is a circulating protein that directly interacts with LDLR. When bound to
LDLR, PCSK® prevents the cell-surface recycling of the receptor following its internalization,
and instead targets it for lysosomal degradation*®. Rare gain-of-function variants in PCSK9
direct more receptors towards degradation*; fewer available LDLRs leads to a decrease in LDL
particle clearance and an increase in LDL cholesterol levels.

Understanding and correctly interpreting our results required an intimate understanding of
our study cohorts and NGS panel. For example, we were left to consider why APOB and
PCSK9 did not rank as the second and third most significant hits from our RVAA, respectively.
One of the biggest considerations of this proof-of-principle analysis was that each cohort was
sequenced using different methods. Regarding our second most significant gene output, CEL,
we observed that the majority of rare variants appeared in our FH cohort. Some individuals
might interpret this to mean that CEL is related to FH; however, through prolonged use and
familiarity of our LipidSeq panel, we know that CEL is often met with sequencing artifacts due to
a neighboring pseudogene, which we have observed to harbour a large number of variants*®.
Since our control cohort was sequenced using a different method, these artifacts do not appear
in the control dataset, explaining the apparently artefactual statistical association of CEL with
FH in this analysis. Had our control dataset been sequenced with LipidSeq, we anticipate this
would have corrected the issue. It may be the case that a few of our significant gene hits are
false positives due to this cohort-sequencing bias. When applying a region-based RVAA to any
dataset of interest, it is imperative to understand possible differences in sequencing methods,
be familiar with the nature of genes, and consider inherent characteristics of both case and
control cohorts—this will help in remaining mindful of the high false positive rate and will assist

with correctly interpreting results.
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We recommend performing a region-based RVAA using our Exautomate package as an
early-stage analysis for exploratory or observational purposes. Given the considerations
discussed above, and reports of this analysis having a higher false positive rate and other
limitations'34647 potentially interesting results should be followed up with more stringent
approaches including segregation analyses and functional studies. An attractive application for
a region-based RVAA may be to serve as a guide for gene exploration: if the objective is to
identify a previously unreported gene related to a disease or phenotype of interest, the
significant output may be used as a starting point to help narrow the focus on potential genes of
interest. This could be particularly helpful when dealing with exome data, with over 20,000
possible genes to consider.

The potential for variable results is large, given the number of parameters that could be
adjusted prior to performing a region-based RVAA. When developing Exautomate, we took into
consideration the importance of reproducible and transparent results, so we created a detailed
method log output to assist in reporting. Particularly with SKAT and SKAT-O, even slight
parameter adjustments at the outset can produce significant differences in output. Ina
substantial search of published articles reporting the use of SKAT or SKAT-O for different
phenotypes—including cardiovascular disease, body-mass index, height, amyotrophic lateral
sclerosis, red blood cell traits, Alzheimer's disease, Parkinson's disease, lipid traits, and blood
pressure—there are virtually no statements or reporting of the specific parameters used, other
than perhaps the variant frequency threshold!®-224854_ Unfortunately, this trend of minimal
methodological information neither instills confidence in the research, nor does it facilitate
replications of results. As a powerful analysis, researchers using SKAT-related tools must
provide the appropriate information in published works; one might argue that these
methodological details are more important than the results themselves.

While the possibility for false positives remains and efforts to explore potential
biologically relevant results requires careful consideration and subsequent analysis, a region-
based RVAA still remains an attractive method to set the stage for in-depth studies of rare
variants influencing complex phenotypes. In order to successfully perform these analyses,
researchers must have easily accessible tools that support the idea of transparency and
reproducibility in research. With our Exautomate package and its implementation of SKAT and
SKAT-O, we hope that researchers will utilize this tool to assist in their efforts to publish well-
documented methods, correctly interpret results, and make new discoveries that will continue to
add to our growing understanding of the genetic architecture underlying complex traits and

disease.
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Figures and Tables

Sequencing

fastq

PLINK files

.bim, .bam, Binary PLINK files

fam -
J

.SetlD

4

Region-based RVAA

Figure 1. The flow of information between file formats from sequencing to a region-based
RVAA. Our automation pipeline aims to reduce the need for user input and minimize potential
sources of variability. Abbreviations: RVAA = rare variant association analysis.
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Figure 2. Kernel density plot of SKAT-O output, after performing a region-based RVAA on FH
patients (N=313) vs. controls from the 1000 Genomes cohort (N=503). The dashed line

represents a P-value of 0.05. P-values have been adjusted using the Bonferroni comrection
method.
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Table 1. Output from proof-of-principle SKAT-O analysis demonstrating genes with a significant
burden of rare variants in one study cohort compared to the other.

Gene group Adjusted P-value Number of variants used in test
LDLR * 1.32E-52 70
CEL 1.04E-31 23
APOB * 6.66E-13 19
CYP2D6 2.84E-07 20
ABCAT1 3.24E-06 13
ABCG8 0.000582935 9
PYGM 0.001242416 10
LIPE 0.002173174 9
CPT2 0.002959799 9
ABCGS5 0.003864299 9
LMNB2 0.006346106 3
POLD1 0.008366644 5
LMF1 0.011220071 7
NPC1L1 0.011858161 8
PCSK9 * 0.015456462 7
SORT1 0.023792097 6
ABCC8 0.030397477 %
HNF4A 0.031537345 4
PNPLA2 0.040399011 5

P-values have been adjusted using the Bonferroni correction method. “*” indicate genes known
to cause autosomal dominant FH.
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Supplemental Materials

Dependencies, Future Proofing, and Open-Source Software

Much of modern research software development is supported by the open-source
community. More often, research efforts seem to require cutting-edge technology, such as
machine-learning approaches and advanced, computationally intensive statistical methods.
Programming languages that support rapid software updates and the speed behind novel tool
development are key to the fast-paced research environment; however, languages come in and
out of vogue. While Python and R are currently popular in the research community—our
Exautomate packages utilizes tools requiring both languages—new trends may lead to drastic
changes in dependencies, which leaves a constant issue of not always being able to ensure
consistent or reproducible methods.

We want to further emphasize that our pipeline has been built entirely on open-source
software (although some of it requires registration). Eventually, the software we rely on may
undergo a combination of interface changes, functionality changes, abandonment issues or
other software daemons that are going to result in a broken pipeline. To prepare for this, we
strongly recommend that users of Exautomate investigate the possibility of creating code
containers, such as Docker or Singularity, which support their code in a reproducible,
maintained environment. As long as the containers produced by Docker or Singularity are
available, users will be able to run the software contained therein.

Issues, Bugs, and Feature Requests
We ask that all users who encounter issues, bugs or desire new features added to the

Exautomate core, post their issues or requests at https://github.com/exautomate/Exautomate-

Corelissues.
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Methods
How to download PLINK1.9

PLINK1.9 is an open-source whole genome association analysis toolset!, with its recent

versions maintained by Cog Genomics. The PLINK package is available for download at
https://www.cog-genomics.org/plink2. The download link is updated daily, which makes an
automated download and install more difficult. VWe recommend downloading the latest stable
version for use with the download link provided.

For use with Exautomate, download and unzip plink.zip into /dependencies/ .
Exautomate expects the PLINK file to be found at /dependencies/plink. This completes the
PLINK installation.

From their own preference, users may alias the command to run just by typing ‘plink’;

however, this is not performed by Installer.sh.

How to download ANNOVAR
ANNOVAR is a powerful tool for annotating genetic variants?. It is used in Exautomate

as part of a process to automatically generate a .SetID file from a .vcf file. Prior to using
ANNOVAR, users must register for it with the following form:

http://www.openbioinformatics.org/annovar/annovar_download form.php. Once the file has

been downloaded, ensure that convert2annovar.pl and table annovar.pl are placed
into /dependencies/annovar/. This completes the ANNOVAR installation.

ANNOVAR uses a collection of perl scripts, which may require the installation of perl;
however, it is uncommon to not already have perl installed in some form.

Example: Retrieval of 1000 Genomes data (Option ‘3")

L AT O

< 7N IR [ < > Yy vy |
NS (PR AR/ | | R SIS/ S [ |
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Welcome to Exautomate.
Main Menu:
1: Pre-merged .vcf for analysis.
2: Merge case and control .vcf for analysis.
3: Retrieve 1000 Genomes, no analysis.
4: Synthetic run.
5 EXit.
Please select an option to run (1-5): E

#it#i###E OPTION 3: 1000 Genomes Utility Suite #it#####

Option for input .bed files:
../input/lipidseq.bed ../input/exome.bed

Enter the name of the .bed file to filter by: FWETYIRFAETRT =M1l

Ethnicities in the 1000 Genomes cohort:

EUR (includes: CEU, FIN, GBR, IBS, TSI)

EAS (includes: CDX, CHB, CHS, JPT, KHV)

AMR (includes: CLM, MXL, PEL, PUR)

SAS (includes: BEB, GIH, ITU, PJL, STU)

AFR (includes: ACB, ASW, ESN, GWD, LWK, MSL, YRI)

CUSTOM (user-specified file, must be named 'custom.txt' in the src directory)
ALL (the entire 1000 Genomes dataset)

Please select which population group (3-letter code only, ALL, or CUSTOM) you'd
like to download from the 1000 Genomes database: Eni

Finished 1000 Genomes retrieval.
Finished concatenation of 1000 Genomes files.
Filtering by ethnicity on 1000 Genomes files.

Finished filtering 1000 Genomes file. Ensure that your final 1000 Genomes .vcf file
of interest is in the output directory.
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Delete original 1000 Genomes files? (y/n): m

Delete bed filtered chromosome files? (y/n): ﬂ

Example: Proof-of-principle demonstration analysis

For this proof-of-principle analysis, all scripts were run using Ubuntu 18.04 unless
otherwise specified. We specifically used ‘Option 1’ from the Exautomate menu, which required

us to have already generated a case/control merged .vcf file.

1) Gathering .vcf files — Gather all of the .vcf files needed for this study. For
organizational purposes, we recommend having a folder for case .vcf files, a folder
for control .vcf files, and a folder for case and control .vcf files together.

2) Merging .vcf files — Use your favourite method of merging .vcf files. After merging,
ensure that the cases and controls are grouped together within the merged .vcf file
(i.e. All of the cases appear first, followed by all of the controls. Or, all of the controls
appear first, followed by all of the cases).
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3) Selecting variants of interest — This step may be dependent on the tools and
resources available to the user. Ensure you have a tab-delimited .txt file with one
variant of interest per line in the format of: ‘chromosome number’'<tab>’scaffold

position’. This file does not require a header. An example of what this file should look

like can be found in Figure A.
9 | variants.txt - Notepad =& =

File Edit Format View Help

12040196 -
12040206
12040363
12040578
12041777
12041978
12041978
12041978
12041978
12041992
12042096
12049151
12049309
12049406
12049409
12049428
12052640
12052724
12056461
12057158
12057235
12057316
12058711 v

Figure A. In variants.txt, the first column
contains the chromosome number, while the
second column contains the scaffold position.
Each line is a unique variant of interest.

B B e b e e e e e e

4) Pre-processing the merged .vcf file — This step can be tailored towards the .vcf
file(s) in use, as it will largely depend on how the .vcf files were generated. Below is

an example of a minimal number of pre-processing steps.

vcf merged.vcf --positions variants.txt --recode --out merged_filtered

-c¢ merged_filtered.recode.vcf > merged-case_control.vcf
merged-case_control.vcf

5) Running Exautomate — Once the .vcf file has been properly modified, it must be
placed in /input/.
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_ __ \\
< > YAy N/ N
N /| N | | R RV

Welcome to Exautomate.

Main Menu:

1: Pre-merged .vcf for analysis.

2: Merge case and control .vcf for analysis.
3: Retrieve 1000 Genomes, no analysis.
4
>

: Synthetic run.
: Exit.

Please select an option to run (1-5): E
##HHH OPTION 1: Pre-merged .vcf for analysis #itiHHi

Options for input .vcf files:
.. /input/merged-case_control.vcf

Enter the .vcf file you would like to analyze (include path and extension):

../input/merged-case_control.vcf

Input .vcf file: ../input/merged-case_control.vcf

Ensure that in your merged .vcf file, the cases are lumped together and the
controls are lumped together. It doesn't matter which group is listed first.
What group comes first in your merged .vcf file: cases or controls?
Enter the number of cases in your .vcf file:

Choose filename for the processed .vcf and PLINK files (no extension): |giMelellle

Kernel options: linear, linear.weighted, quadratic, IBS, 2wayIX
Enter the kernel to be used in the analysis: IEQEEINSMIREg1d=]
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Choose SKAT or SKAT-0: HyE

Multiple comparisons options: holm, hochberg, hommel, bonferroni, BH, BY, fdr, none
Enter the multiple comparison option to be used in the analysis:

Stop and edit the .fam file (must be the same name as what was entered at the
beginning + .adj.fam). Finished? (y/n): ﬂ

Stop and edit the .SetID file (must be the same name as what was entered at the
beginning + .adj.SetID). Finished? (y/n):

6) Finishing Exautomate — All intermediate and final files, along with the
EXAUTOMATEmethods.log, will be in /output/. We recommend viewing the

.log file using Microsoft Excel or a similar program for readability.
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Figures and Tables

Table $1. Output from proof-of-principle SKAT-O analysis.

Gene group

Adjusted P-value

Number of variants used in test

LDLR ™ 1.32E-52 70
CEL 1.04E-31 23
APOB * 6.66E-13 19
CYP2D6 2.84E-07 20
ABCAT1 3.24E-06 13
ABCGS8 0.000582935 9
PYGM 0.001242416 10
LIPE 0.002173174 9
CPT2 0.002959799 9
ABCGS 0.003864299 9
LMNB2 0.006346106 3
POLD1 0.008366644 5
LMF1 0.011220071 7
NPC1L1 0.011858161 8
PCSK9 * 0.015456462 7
SORT1 0.023792097 6
ABCC8 0.030397477 T
HNF4A 0.031537345 4
PNPLA2 0.040399011 5
MLXIPL 0.057246197 5
PLINT 0.073372526 5
LPINT 0.094274082 5
BSCL2 0.094407912 5
APOA4 0.09445813 5
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CIDEC 0.123915735 2
WRN 0.127442247 6
AMPD1 0.15541434 3
BLK 0.156022806 4
PLTP 0.290540089 4
ABCG1 0.29216291 4
CETP 0.292540617 4
SCARB1 0.293263721 4
GPIHBP1 0.338799533 3
LIPC 0.342994911 3
LPL 0.348510034 3
PPARA 0.805521573 3
MTTP 0.817677583 3
TRIB1 0.821329205 2
HNF1A 0.833601165 3
LDLRAP1 0.84751109 3
coQ2 0.853822722 2
PAX4 0.857245649 3
AKT2 0.867023187 2
ANGPTL3 0.877304003 2
MFN2 1 2
GALNT2 1 2
KLF11 1 2
GCKR 1 2
NEUROD1 1 1
PPARG 1 2

STAP1
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GCK 1 1
CAV2 1 1
AGPAT2 1 2
LIPA 1 1
KCNJ11 1 2
SLC22A8 1 2
APOAS 1 2
GPD1 1 1
PDX1 1 2
LCAT 1 1
HNF1B 1 2
LIPG 1 1
CREB3L3 1 2
DYRK1B 1 2

10

P-values have been adjusted using the Bonferroni correction method. “*” indicate genes known

to cause familial hypercholesterolemia.
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Additional Information

File-type Glossary

11

Haploview text
pedigree +

File Type Extension Additional Notes
PLINK binary .bed o Described here
biallelic e Not to be confused with the UCSC Genome Browser's
genotype table BED format
PLINK .bim e Described here
extended .map
file
PLINK sample fam o Described here
information file
[ x = I s adjusted_example.fam - Excel ?
HOME INSERT PAGELAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER
Al - fx | #Famity_ip
A B C D E F
1 RFamlIy_ID_FIndlwdual_ID #Father_ID #Mother_ID #Sex #Phenotype
2 |Subjectl  Subjectl 0 0 0 2
3 Subject2 Subject2 0 0o o 2
4 Subject3 Subject3 0 0 0 2
5 'Subjectd Subjectd 0 0 0 2
6 Subject5 Subject5 0 0 0 2
7 Subject6  Subject6 0 0 0 2
8 |Subject? Subject? 0 0o o 2
9 Subject8 Subject8 0 0 0 2
10 Subject9  Subject9 0 0 0 2
11 |Subject10 Subject10 o 0 o 2
12 |Subjectll Subjectll 0 0 0 2
e Headers are included in this image for clarity but should
not be present when running Exautomate. As well, for
our purposes, Exautomate does not require information
in columns C to E, so they can remain coded as “0".
e When utilizing PLINK for relatedness applications,
columns A and B may not be identical, and columns C
and D would have additional information.
FASTQ fastq e Contains both sequencing reads and the base Phred
qualities
PLINK text .map e Described here
fileset variant
information file
PLINK/MERLI .ped e Described here
N/
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12

genotype table

Set identified
file

.SellD

This file defines variant sets
< In Exautomate, the assumption is that the sets of
interest are by gene
The first column contains the name of the set (i.e. the
name of the gene), and the second column contains the
variant position

@) eampleadjustedSetlD-... — [ X
Al v fr v

A B C -
Genel _1:12052647
Genel 1:12052724
Genel 1:12061533
Genel 1:12064892
Genel 1:12065885
Genel 1:12066736
Genel 1:12069692
8 |Genel 1:12069698
9 Genel 1:12069725
10 Gene2 1:25870259
11 Gene2 1:25880491
12 |Gene2 1:25881397
13 Gene2 1:25881403
14 |Gene2 1:25889633
15 |Gene2 1:25890200
16 |Gene2 1:25893463
17 |Gene3 1:40735764
8 |Gene3 1:40756572
19 |Gene3 1:40756617
20 Gene3 1:40758172
21 Gened  1:53668099
Important considerations are required when dealing with
.SellD files
< The name of the set must be less than 50
characters long
< Duplicate entries (i.e. matching set and variant
position) are not allowed
< ANNOVAR generates extra transcript
information that may need to be manually
removed following a prompt from Exautomate

s W N

~ o

Variant Call
Format file

vef

Contains basic information on genetic variants
Chromosome

Scaffold position

rsID (if applicable)

Reference and alternate allele

May also include additional information, such as

GGG
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13

sequencing depth, genotype, and genotype quality

o}

If there are errors when running Exautomate, the
user may consider using bcftools to remove
some of this additional information that is not
necessary for RVAA
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