
Western University
Scholarship@Western

Computer Science Publications Computer Science Department

2007

Employing Intelligent Agents to Automate SLA
Creation
Halina Kaminski
University of Western Ontario, hkaminsk@csd.uwo.ca

Mark Perry
University of Western Ontario, mperry@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/csdpub

Part of the Computer Sciences Commons, and the Technology and Innovation Commons

Citation of this paper:
Kaminski, Halina and Perry, Mark, "Employing Intelligent Agents to Automate SLA Creation" (2007). Computer Science Publications.
3.
https://ir.lib.uwo.ca/csdpub/3

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csd?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub/3?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

Employing Intelligent Agents to Automate SLA Creation

Halina Kaminski, Mark Perry
Department of Computer Science, University of Western Ontario, Canada

{hkaminsk | markp@csd.uwo.ca}

Abstract
Service Level Agreements (SLAs) are commonly

prepared and signed agreements that form the
contracts between a service provider and its
customers, defining the obligations and liabilities of
the parties. Naturally, SLAs should reflect the
business needs of both customer and supplier. SLAs
are usually formed through either the adoption of a
boilerplate agreement from the provider, or through
a mediation/negotiation process between the parties.
With the increasing adoption of software supply
being implemented as a network service, such
schemes are rigid or slow and costly, This paper
proposes a system that the parties can use to
facilitate both fast and flexible agreements. It
proposes automation of SLA creation from a set of
Service Level Objectives (SLOs), making use of
software agents and adopting a social order function
by incorporating it into the decision process.
Keywords: Service Level Agreements, Service
Level Objectives, Web Service, Negotiation
Manager, Software Agents, Software Service
Provision

1. Introduction
One of the many benefits offered by high speed

and reliable large scale network services has been the
opportunity for software vendors to move rapidly
into providing web services, and treating software
delivery as a service. This movement away from
traditional packaged software requires a different
type of agreement between the providers of such
software and their customers, which was previously
managed by simple licensing agreements, shrink
wrap licenses and the like, or, for larger systems, by
negotiated licenses. In the service provision
environment, the relationship between the provider
and customer is typically embodied in Service Level
Agreements (SLAs). These are commonly prepared
and signed contracts between a service provider and
its customers, defining the obligations and liabilities
of the parties. Depending on the nature of the
agreement, it may take the form of adopting a
boilerplate contract from the provider, or for larger
scale agreements, a fully negotiated contract.

Although the former may satisfy many aspects
desired by the customer, it is likely that there are
many issues that do not fully meet the customer’s
needs. Fully negotiated agreements will avoid the
inclusion of such non-satisfactory terms, but will
require the intervention of personnel who can bring
technical, business needs and legal perspectives to
the negotiations [1]. It is crucial for both parties to
ensure that the terms of the agreement are realistic
and meet their requirements, as the financial
consequences of failure can be fatal to the business.
For example, many service recipients do not require
service availability to be guaranteed for 99.99% of
the time, as this would be very expensive, and a
provider guaranteeing a service that it cannot support
may find itself subject to penalties.

This paper proposes the automation of SLA
creation from a set of Service Level Objectives
(SLOs), employing software agents and adopting a
social order function by incorporating it into the
decision process. By adopting this system, the
service provider can form SLAs and satisfy the need
for fast and flexible agreements. Earlier work in SLA
management has focused on a bottom up approach,
looking to capture managed SLA data [2]. However,
the present study concentrates on automatic SLA
creation that integrates an effective negotiation
process, removing the need for the service provider
to engage highly qualified personnel at the time of
SLA adoption by the customer. One area in which
companies are seeing increased cost is support
personnel for their system offerings. Where a
company’s business is primarily (software) service
provision, such costs are critical to contain. In such
an environment there is a need to automate with the
result of reducing support and management costs [3].
This environment make it very desirable to automate
the monitoring, selection, and decision making
processes, leaving the service provider more
resources to focus on the provision of better services.
Generally, most of the business decisions are based
on resource prioritization. In this paper by a resource
we mean any service that is quantifiable, such as
application, server, CPU usage, disk space, license
etc. Such automation can be achieved by building a

software system that embodies high level decisions
and which possesses the properties of autonomy,
social ability, reactivity and pro-activeness.
Intelligent agents can provide this type of
functionality, and an SLA real-time negotiation
system that utilizes these features will prove to be a
great asset to service provision enterprises.

2. Service Level Agreements
Most SLAs are formed by the provider of

services, although it is possible that a customer may
come up with a totally original SLA in extraordinary
circumstance. Here, we focus on the provision of
SLAs from the provider side, but this does not
preclude the development of customer originating
agreements. Naturally, the provider’s perspective is
for the SLA to reflect the business goals of the
company. It is likely that this will also include the
maximization of the customer satisfaction in addition
to the limitation of provider liability for problems
such as non-performance or failure to meet the
quality goals. Rather than simply an end issue, the
development of SLAs must be considered a vital step
in the business process. Although static, preformed
SLAs, which are basically monolithic agreements,
may continue to have a role to play in the future, it is
desirable to enable clients to select elements of an
SLA, or the overall type of SLA, that can meet the
requirements of their own situation. Our aim is to
provide methods for dynamic, automated SLA
creation. As well as benefiting the service provider
with automation, such a flexible, dynamic system
will allow customers to choose the type of SLA
scheme that they want and, consequently, exercise
control over the policies for which they have the
most concern.

An SLA is not created in isolation, simply to meet
the technical needs of the parties, although these
need to be considered. The total business strategy of
the service provider must be integral to the process.
Generally, every SLA should include:
a) the specification and availability of the service to

the customer,
b) the performance goals of various components of

the customer’s workloads,
c) the bounds of guaranteed performance and

availability,
d) the measurement and reporting mechanisms,
e) the cost of the service,
f) priorities if service can not be delivered,
g) penalties if the customer exceeds the load,
h) penalties if the provider does not provide service

as agreed,
i) schedules for follow-up meetings and interface [3].

SLAs become more complex when the provider
offers multiple services such as networking, online
databases and end user direct support [4]. Usually,
the services provided by such businesses vary both in
diversity and intricacy. Many organizations are now
utilizing service level objectives (SLOs) as a means
of expressing the aims of the company, and to
establish parameters for the tracking of the
effectiveness of their service infrastructure.

3. Service Level Objectives
A business in the highly competitive and growing

online, on demand, service environment must have a
clear business plan and define service levels that can
be attained. Every resource that is offered to a
customer should have an indication what its business
levels are and what performance is acceptable to the
end-user. These will include performance
requirements for applications offered as services,
and, in addition, more general business objectives
that need to be attained by the system. It has been
suggested [5] that SLOs must be realistic,
quantifiable (measurable), clear and meaningful,
manageable, cost effective and mutually acceptable.
The target goals of SLOs have to reflect reality and
should be attainable. They also should include the
metric definition which contain how the values are
measured and reported to the managing authority.
Each SLO has to have a meaningful description of
the service level such that it can be easily understood
by a customer. For example, expressing service
performance in packets dropped or server congestion
may not be of significance to the end-user. Most
importantly, SLOs have to be cost effective. There is
a belief that the best SLOs are impractical because
they are too expensive to be measured. Simply
having the objectives by themselves is not sufficient
to provide a high quality service.

A wide variety of service offerings poses another
difficulty: to create the best possible SLA from a
selection of SLOs from an option pool requires
careful consideration and quantification of resource
dependencies and the connections between resources
wherever possible. As an example, by having two
servers that are each capable of handling ten
thousand transactions per second does not
necessarily mean that we can provide a service of
twenty thousand transactions per second to a
customer. Both servers could be using a secondary
resource that is limited to a lower capacity (a
common router for example). Thus the overall
performance of the entire business system is unlikely
to be a simple summation of the resources available.
Many objectives can be embodied in a single SLA,
and within the parts of the SLA; for example, with a

network service provision agreement there may be
ones dealing with availability, network latency,
packet delivery and even reporting. This will clearly
differ between clients and so there will be a different,
though similar, set of objectives associated with each
client.

As an example, a partial SLO set for a resource
(SellSolution application) is shown in Table 1.

Application
name =
SellSolution

..

Service Level
Platinum

Gold

Silver

…

Number of
transactions

unlimited

1000

500

…

Initial
Response

Time

10 sec

12 sec

15 sec

…

Transaction
Processing

Time

2 µs

3 µs

5 µs

…

Monthly
Availability

98%

97%

95%

…

Validity Time
Start/End

To be filled
at the SLA

creation
time

To be filled
at the SLA

creation
time

To be filled at
the SLA

creation time

…

Cost

$500.-

$ 150.00

$ 80.00

…

Table 1. SLOs for a specified resource

It is our goal to be able to set service levels for the

resource (service) in such a way that they are not
custom made, but predefined and reusable. Ideally
there should be many levels for the same resource
and the levels would differ in QoS and the cost for
flexible offerings. Levels of service can be
predefined for the resources of the same type, and
the same level of service can be used by many
customers. SLOs also express a commitment to
maintain a particular state of the service in a
predefined period of time. For example, (SLO) gold
in Table 1 indicates that the SellSolution will start
within 12 seconds from the initial request and every
transaction will be processed in less than 3 µs. The
customer is limited to perform 1000 transactions. In
this service level the application will be available to
the user 97% of time and the cost for this type of
service is $150.00. The validation time period has to
be specified during the negotiation phase i.e. when
the customer and the service provider agree to the
specific service terms. We will return to this example
in section 6.4.

The flexibility of having a pool of SLOs available
will result in the existence of a range of service

levels and performance metrics for each resource: for
each service there will be multiple SLOs on the basis
of which SLAs will be offered.

4. Intelligent Agents
A negotiation model is an abstract representation

of the structure, activities, processes, information,
resources, people, behaviour, goals, rules and the
constraints of a computing service environment.
From the operational perspective, the negotiation
model supplies the information and knowledge
necessary to support the SLA creation process. There
is a wide variety of information systems that
participate in business processes and they are aimed
at fulfilling different business requirements.
Consequently in business, there are widely varying
viewpoints and assumptions regarding what is
essentially the same subject. A negotiation
framework should have a very carefully
“engineered” translation of such different reasoning.
To deal with the complex representation issue the
system should support the appropriate ontology. The
purpose is to provide a shared and common
understanding of a domain that can be communicated
to people, application systems, and businesses giving
some specification of the meaning of semantics of
the terminology within the vocabulary [6]. The basic
concepts of ontology have also been established in
works on intelligent agents and knowledge sharing,
such as Knowledge Interchange Format (KIF) and
Ontolingua languages [7, 8].

The automation of a negotiation process can
advantageously adopt the intelligent agent paradigm.
The system can contain one super agent that gets its
knowledge from other agents: there can be an agent
assigned to each sub-domain, such as a business
rules agent, a price agent, an obligations agent, and a
resource discovery agent. All of the secondary agents
would be reporting to the super agent and only the
super agent will engage in the decision making and
outer interactions. Figure 1 depicts a Negotiation
Model Agent assignment.

Figure 1. Intelligent Agent Assignments

 Super Agent

Business
 Rules
Agent

Resource
Agent

SLO/SLA
Agent

Client

The Negotiation Manager system is based on a
multiple agent framework. There should be one
agent per every issue that needs an agreement such
as resources, price and business policies. Our model
is based on a sequential decision making (i.e. as each
party presents an offer, a counteroffer or a decision
to accept or decline is made in sequence).

5. Negotiations
To date, most research in service provision has

concentrated on how to manage SLA compliance as
well as tracking performance for planning purposes.
The existence of a variety of measuring tools allows
the service managers to measure and track
performance of service levels based on the actual
service usage. At the same time the results obtained
from such metrics can be used in planning corrective
actions.

Automated contract creation enables service
providers and their clients to make use of technology
to create SLAs within pre-planned and pre-approved
parameters. Our goal is to use intelligent agents to
provide automation of SLA development and
creation, (i.e. the creation of the electronic contracts
for computing services), which in addition to giving
flexibility to the contracting system will optimize the
provider’s profits. At the same time it will maximize
the customer’s satisfaction and the ability to be
flexible. We are developing a negotiating tool (SLA
Negotiation Manager) described hereafter along with
the process of negotiation and creation of a SLA
from existing business objectives. The Negotiation
Manager is a truth based system and it has a system-
wide objective of computing an efficient cost-gain
relation. Our goal is to provide an interactive
negotiation system that would help a service provider
to formulate and evaluate an offer, and then send that
offer to the client.

The main module of our system will be dedicated
to automate processes on behalf of service provider.
The overall negotiation process will be modeled as
exchanging proposals and counter-proposals between
the provider and the customer. Figure 2 presents a
state diagram for a negotiation process.

Each negotiation starts with the customer
choosing one service offer from a pool of predefined
service packs. Usually such offer depends on service
price, delivery, quality etc. The initial offers can be
pre-defined and stored in a repository or they can be
automatically generated by using existing SLOs and
current system’s state.

Figure 2. Negotiation Process State Diagram

The provider takes all factors into account and
calculates the expected pay-off value function
associated with possible offers, and selects the offer
that maximizes its payoff. When satisfied with an
offer, the customer (client) just sends an acceptance
message to the provider and a SLA is finalized. In
Figure 2, the transition:

1 −> 2 −> 3 −> SUCCESS
presents such process. If not accepting the first offer,
then the client can either abort the negotiations:

1 −> 2 −> 3 −> FAIL
or can send a counter - proposal:

1 −> 2 −> 3 −> {4 −>3}
At this point the service provider evaluates an offer
and updates its knowledge about the customer. If the
offer is acceptable the Negotiation Manager creates
an SLA, otherwise provider sends counter-proposal.
Exchange of counter-proposals continues until one of
the parties decides to accept an offer or quit. The
state SUCCESS or FAIL has to be reached. The
essential work in creating SLOs takes place in the
business/marketing department. SLOs should aim at
achieving the best performance possible, but
representing true and real values at all times.

6. Implementation
 In our system resource specific knowledge
inclusion should eliminate many of the inefficiencies
in SLA creation. By using templates and SLO
libraries SLA Negotiation Manager will ease the
contract creation. Our system makes the use of the
widely approved contract language Web Service
Level Agreement (WSLA). It also provides a user
friendly interface for the client to see and choose
requested services as well as enabling the exchange
of counter-offers. It is anticipated that the contract
creation time will be reduced significantly as a result

 Client
 request

 timeout

 deny/timeout

no service available

de
ny

/ti
m

eo
ut

 accept accept

counteroffer

offer

 1 2

 4

 3

FAIL SUCCESS

of the usage of templates and pre-approved clauses.
By using our system the service provider will be able
to ensure consistency and compliance with
company’s standards. Storing all SLAs in a single
repository will provide an additional benefit to the
service planning and management tools, so that it is
required to search for a contract in only one place. In
the SLA creation process, a client is presented with
the services that are offered by the provider. Based
on the customer’s choice the Negotiation Manager
aggregates and combines these choices into various
SLA parameters, chooses service levels (SLO) for
every SLA parameter. Every SLA has to be checked
for the resource availability because it defines the
agreed level of performance for a particular service.
This process is also known as compliance
monitoring. It has been our attempt to teach the SLA
Negotiation Manager the business knowledge, goals,
and policies of the party it belongs to. Such
knowledge enables the system to choose and
combine the set of SLOs that should be specified in
the SLA in order to ensure compliance with the
business goals.

In [7] it is shown that there are five main
components of an enterprise Contract Lifecycle
Management strategy:
• automated contract creation,
• secure contract negotiation,
• electronic contract repository,
• automatic upload of relevant contract data to

back-end systems,
• generation of proactive management reports and

alerts to encourage compliance to committed
contract terms and conditions.

It is our goal to provide first four out of the above
five directives in the SLA Negotiation Manager. Our
system will automate contract creation through a
secure negotiation with the customer, then newly
created SLA will be stored in a central repository and
the back-end system logs will be updated for the
usage of resources that are specified in the contract.
As for the last component, we leave the generation of
relevant reports to the service management tools.

6.1 System dependencies
 Every SLA consists of at least two signatory

parties: the service provider and the customer
(client). Both service provider and a client can have
multiple SLAs in their internal company’s
repository. Each SLA can consist of multiple SLOs.
There is at least one SLO for each service offered.

As an illustration of these type of situations,
hereafter is a typical scenario of a retail store that
needs a front end billing transactions handled.

A customer finds a service description and relative
URL in the business directory (e.g. UDDI). Then it
connects to the company that offers the service.
Upon such connection an SLA Negotiation Manager
is started. The customer wants to subscribe to a
particular service (for example: store customers’
billing system). The customer knows that to be
successful it needs to have an access to software that
can handle 10,000 transactions per day, with an
initial transaction response time lower than 5
seconds and the average transaction time not longer
than 60 seconds.

The customer is willing to pay $800/month for
such service. The SLA Negotiation Manager by
examining existing SLOs and existing SLAs checks
if such service is available (checking of the existing
SLAs is done in order to avoid over-commitment). If
the provider’s company can provide a service
required then a SLA is created accordingly and
presented to the customer for an acceptation.

Upon customer’s acceptance, the SLA is stored
into the repository and the service is made available
to the client. It is anticipated that at this point a SLO
defining a service of renting a hardware capable of
performing 10,000 transactions per day would have
to be removed from a resource pool to avoid over-
commitment.

This is the best case scenario. Often, the service
provider can not commit to the requested service and
then the SLA Negotiation Manager would come up

Figure 3: Use case diagram for negotiation scenario

Scan business policies

 Provider

prepare offer
Check SLAs

check SLOs

Negotiation

present offer

counteroffer

present SLA

Client

with the next best offer. Such decision making might
be based on asking customer how much money it is
willing to spend or how many transactions its store
must absolutely have and based on that and on
knowledge of the system the Negotiation Manager
can propose a number of options to choose from. The
offer can also depend on other parameters as well.
Maybe the provider can commit to 10,000
transactions, but the upper limit on the average
transaction time will be 90 seconds. One option
might be an offer of 8,000 transactions per day with
the initial response time lower than 10 seconds and
an average transaction time of less than 60 seconds
for $650.00/month and/or another offer could be
12,000 transactions per day with the initial response
time lower than 5 seconds and the average
transaction time of 3 minutes for $1,000.00/month.
Ideally the customer chooses one of the offers and a
SLA is created. If the customer does not agree to the
proposed service then negotiation continues.

6.2 Negotiation Manager Model
An Automated Negotiation Manager model is a 7-

tuple: {R, K, Z, P, Q, F, M} where:
R is a set of participants,
K is a set of all possible agreements (SLAs),
Z is a set of business rules,
P is a set of all SLOs,
Q is a set of all negotiation sequences,
F is a utility function,
M is a set of all possible offers.

1. R is a set of participants. This set contains all
parties that can be involved in the contract. The
customer, service provider and all supporting parties
belong to this set. At least two elements of this set
(service provider and customer) must participate in
any SLA negotiation process qn Q.
2. K is a set of all possible agreements (SLAs).
Every existing SLA agreement that is stored in a data
base belongs to the set K. It also contains all the
possible agreements that can be created as a result of
any successful negotiation process.
3. Z is a set of business rules (also called business
knowledge). A business rule that a service can not
cost less than $0.07 per transaction might be an
example of zi Z. Set Z represents corporate
preferences and aligns business strategies of a
service provider.
4. P is a set of all SLOs. Every SLA contains at least
one SLO for the agreed service.
5. Q is a set of all sequences s, such that every s
=q1,q2,q3 … qn where qi is an action (an offer, a
counteroffer, accept or decline). Each s illustrates a
negotiation process and every successful negotiation

is a finite sequence s. Here, by successful negotiation
we mean any negotiation process that resulted in
either accept or decline. Sequence s can also serve as
a history log when stored in a repository. The past
negotiation procedure can be recreated from such
sequence.
6. F is a utility function. This function is customized
according to the negotiating party needs and business
preferences. For example it might be widely known
that the customer offers 10% less for the service than
it is really willing to pay. Function f might be used to
calculate next offer: f = current offer - 10%.
7. M is a set of all possible offers. Every permutation
of elements of P belongs to M. In addition M
contains any combination of an offer that has been
modified according to one or more business rules
from set Z.
 There have been many mathematical models
developed for negotiations, typically on direct e-
commerce negotiations, and often employing game
theory algorithms [8,9]. Although these are not
directly applicable to the SLA environment where
there are a great deal more factors to consider above
the product and price, they are useful for further
development of the negotiation system.

A key factor for a Negotiation Manager is the
ability to operate in an open environment where the
preferences of a client are not known and we can
only assume using a common knowledge that client’s
goal is to get more of a service for less money. This
comes from the fact that customer’s needs may go
beyond specialized capabilities of any single service
offerings. Moreover, the participating parties’ legacy
environments have to be incorporated seamlessly
into the system. The Negotiation Manager design
will follow the framework of a computational
mechanism design which is an aggregation of a game
theory, artificial intelligence and algorithmic theory.
Mechanism design problem is to implement a system
wide solution to a decentralized optimization
problem with an intelligent agent representing the
service provider and a customer who has private
information about its preferences for different
outcomes.

6.3 Negotiation Mechanism
A negotiation mechanism design is to define the

possible strategies and a method used to select an
outcome based on client’s type and preferences. A
negotiation mechanism:

M = (∑1,…∑n, g(.))
defines a set of strategies ∑i available to the
negotiation agent, and an outcome rule:

g:∑1 x ∑2 … ∑n −> O, such that g(δ) is the outcome
implemented by mechanism for strategy profile δ =
(δ1,…δn).

All of the SLA’s components and SLA itself has
to be translated into the machine readable format.
There are several such specifications resulting from
ongoing research at the large software companies
such as HP, Sun Microsystems and IBM [10,11]. For
our model we have chosen WSLA expressions.
WSLA is based on Extensible Markup Language
(XML), and it has the ability to define and describe
computing services along with quality of service and
service performance parameters. In addition XML is
a very flexible text format that was originally
designed to meet the challenges of large-scale
electronic publishing, and it can be easily extended
to meet one’s needs. WSLA is defined as an XML
schema therefore the resulting SLOs can be easily
translated into system-level configuration and stored
in the machine readable format to be used by various
system services such as SLA Negotiation Manager.
We do not discuss SLOs creation in this paper as this
is research topic of its own, and the scope of this
paper does not allow for an elaboration on this
process. Here we assume that SLOs are developed by
the Business/Marketing department and have
already been defined in WSLA.

In our scenario there are two sides of the
negotiations. One side, a service provider, has a
repository of SLOs that define limits of the resources
offered and the cost for each service, and on the
other side there is a customer, who also has to define
thresholds for acceptable service performance and
the price that it is willing to pay.

In our automated SLA Negotiation Manager the
system will provide the compliance monitoring
according to the customers choices. A base
framework for SLA negotiation model is presented
in Figure 4.

6.4 Service Process Explained
It is very common that the service providers list

their service offers in some business directory such
as UDDI. A potential customer can find such listing
on the web and locate the service. For the clarity of
this paper we will continue with our retail store
customer who needs hardware and necessary
network connections to provide a store front sale
billing functionality. Upon the client’s choice of a
specific vendor (or a specific service) the SLA
negotiation manager will be executed. Figure 6
shows a sequence diagram for the SLA creation
scenario. Let the application SellSolution serve as an
example here.

A financial institution, offers a Web service to
private and corporate store owners to perform a
number of different types of store transactions (such
as bank account transfers, credit card payments,
returns, store credit option) and generate the
statements needed for tax related and bookkeeping
purposes. It is a web service on demand (also called
utility service) where the customers can be billed for
services used. The computing resource is
SellSolution that allows for billing transactions on
demand. A potential customer might be a large
corporation that has a variety of different types of
transactions; a medium size store that uses store
credit card charges; or a single private store owner
who only wants to use bank account debit charges.

The billing rate might be based on number of
transactions, transaction time and/or availability to
the customer. In our example the SellSolution has
four SLOs specified for different performance levels:
platinum, gold, silver and bronze.(Shown in Table 1)
Every level depends on a number of transactions
being performed. The platinum level has an
unlimited number of transactions, but instead is
bounded by the response time and transaction time.

Figure 4. Process of creating an SLA

store SLA in
database

request
service

negotiation

Business
Policies

present
SLA

Customer

SLA
Negotiation
Manager

SLAs

SLOs

Cost/Risk
mngmt

In our model, every customer no matter how

small or how large of an enterprise will be able to
take advantage of an automatic SLA creation through
our SLA Negotiation Manager. The resulting SLA
will be based on the SLOs of the business, and
created according to WSLA specifications, which in
turn will make them readable for other system
utilities such as performance manager or service
level manager.

7. Conclusion
Even though the software has been around for

decades, with passage of time, the complexity of it
simply increases. The latest studies show that
computing services in combination with software on
demand might provide solution for an enterprise
level architecture.

Our paper presents a unique approach to the
creation of Service Level Agreements. In practice
constructing an SLA requires planning and care.
While the process can vary among companies, it is
often a politically oriented topic. SLAs are known to
be used to find blame instead of being a driving force
towards a positive change. There is a lot more to
SLA Management tools than XML schemas and
standards. The combination of information and
contract negotiation procedure plays an important
role. The system presented in this paper will provide

an automated way to create and document SLAs
which in turn will increase web service provider’s
profits, maximize customer satisfaction, and it will
open up the way to more flexible service provision.

References:

[1] Christopher Ward, Melissa J. Buco, Rong N. Chang,

Laura Z. Luan, Edward So, Chunqiang Tang “Fresco:
A Web Services based Framework for Configuring
Extensible SLA Management Systems” Proceedings
of the IEEE International Conference on Web
Services (ICWS’05) 11-15 July 2005 Page(s):237 -
245 vol.1

[2] Buco M.JU., Chang R.N., Luan L.Z., Ward C., Wolf
JL., Yu P.S. “Utility computing SLA management
based upon business objectives” IBM Systems
Journal Vol 43 No.1 2004 p.159.

[3] Suh, Bob. “Avoiding an Austerity Trap” Outlook
Journal, February 2004 Retrieved from:
http://www.accenture.com/Global/Research_and_Insi
ghts/By_Subject/High_Performance_Business/Avoidi
ngtheAusterityTrap.htm on Dec 12, 2005

[4] Leopoldi, R. “IT Services Management, A Description
of Service Level Agreements”, White Paper, RL
Consulting, 2002 Retrieved from:
http://www.itsm.info/SLA%20description.pdf on June
22, 2005

[5] Sturm, Richard. “Service Level Objectives”, Network
Word Fusion, 2002 Enterprise Management
Associates, Inc. Retrieved from:
http://www.slminfo.com/articles/slobjectives.htm on
Dec 12, 2005

[6] Gualtieri Andrea, Ruffolo Massimo, ”An Ontology-
Based Framework for Representing Organizational
Knowledge”, Proceedings of I-KNOW ’05 Graz,
Austria, June 29 - July 1, 2005

[7] Weintraub Allan, “Contract Management – A Strategic
Asset” CRM Today website , Retrieved from:
http://www.crm2day.com/highlights/EEplVVVFlpFC
MLrUcN.php On June 22, 2005

[8] Zeng, D., and Sycara, K. “Bayesian Learning in
Negotiation” Working Notes of the AAAI 1996
Stanford Spring Symposium Series on Adaptation,
Co-evolution and Learning in Multiagent Systems

[9] Oprea M., “An Adaptive Negotiation Model for
Agent-Based Electronic Commerce”, Studies in
Informatics and Control, Vol.11, No 3,
September 2002

[10] Dan, A., Ludwig, H., Pacifici, G., “Web Service
Differentiation With Service Level Agreements”,
White Paper, IBM Corporation, March 2003,
Retrieved from: http://www-106.ibm.com/developer
works/library/ws-slafram/ on Feb 02, 2005

[11] Sun Microsystems, “Using the Sun ONE Application
Server 7 to Enable Collaborative B2B Transactions”
Informit Network Website, Retrieved from:
http://www.informit.com/articles/article.asp?p=10066
4&seqNum=2&rl=1 on Feb 22, 2005

check
availability()

 createSLA()

 [negative]denyRequest()

[positive]
presentSLA()

request()

:SLANegotiation
 Manager

Client

:applicati
on

:Resource/SLO
Metrics

return
result()

Figure 4. Sequence diagram for SLA
creation process

	Western University
	Scholarship@Western
	2007

	Employing Intelligent Agents to Automate SLA Creation
	Halina Kaminski
	Mark Perry
	Citation of this paper:

	Microsoft Word - HK_MP_ECOWS_Final.doc

