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Abstract 

Renal transplantation is a life-saving procedure for patients with end-stage renal disease. 

Persistent graft inflammation and fibrosis due to injury from repeated insults - both alloantigen-

dependent and -independent - lead to chronic allograft dysfunction and long-term graft loss. 

Ischemia-reperfusion injury (IRI) to the graft is an inescapable consequence of transplantation 

and can result in significant delayed graft function (DGF). Tissue damage and graft dysfunction 

resulting from transplant-associated IRI have been correlated with acute rejection and long-

term graft loss. During IRI, dying renal proximal tubular epithelial cells (TECs) release pro-

inflammatory mediators, worsening tissue damage and further potentiating injury by initiating 

an auto-amplification loop of inflammation and cell death. Therefore, therapies that curtail this 

auto-amplification loop may mitigate graft dysfunction and extend the lifespan of grafts. 

Kidney injury molecule-1 (KIM-1) is a phagocytic receptor specifically upregulated on TECs 

during renal injury, enabling them to engulf apoptotic and necrotic cells during acute kidney 

injury. While KIM-1 can directly bind to apoptotic cells via phosphatidylserine, the clearance 

of necrotic cells is enhanced by the opsonin, Apoptosis Inhibitor of Macrophage (AIM) protein. 

The extent to which KIM-1 in the donor kidney contributes to renal transplantation has not 

been well-studied. In this thesis, we studied the role of KIM-1 in the donor kidney on graft 

outcomes following renal transplantation. We assessed the therapeutic potential of exogenous 

recombinant AIM (rAIM) in mitigating transplant-associated IRI. Finally, we explored the 

association between polymorphisms of the KIM-1 gene and DGF. Using a syngeneic murine 

renal transplant model, we found that KIM-1 in the donor kidney protects against renal 

dysfunction, inflammation, graft damage and death. Moreover, the protective effect of KIM-1 
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was further enhanced with the administration of rAIM. Finally, we found that common genetic 

variations of the coding region of human KIM-1 gene suppressed the phagocytic ability in vitro 

compared to wild-type KIM-1. However, none of the variations were associated with increased 

risk of DGF in our patient cohort. In summary, the findings reported in this thesis provide 

further evidence of the protective properties of KIM-1 in transplant-related IRI and the viable 

therapeutic potential of rAIM in renal transplantation. 
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Summary for Lay Audience 

A kidney transplant has the potential to prolong the life of patients with kidney failure and 

immensely improve their quality of life. A major limitation of transplantation is the limited 

lifespan of the organs in the host. This is mainly due to cumulative damage sustained by the 

organ during procurement/surgery (lack of blood flow to the organ) and the host immune 

system (i.e. rejection). At the molecular level, this is caused by dying kidney cells which 

“explode”, releasing their inflammatory cellular contents into the body which can serve to 

activate the rejection process. Thus, the clearance of these dangerous remains is necessary.  

In this thesis, I have characterized a protein called Kidney injury molecule-1 (KIM-1), which 

help the remaining healthy kidney cells within the transplant to “eat” the surrounding dying 

cells, thereby preventing the abovementioned inflammatory cascade and help repair the 

damaged organ. In addition, I have documented the use of a potential therapeutic agent, 

“AIM”, which when administered intravenously immediately following transplantation, can 

compound the positive effect of KIM-1, to promote even faster and more effective clearance. 

Finally, I translated my findings into humans and investigated whether different versions of 

KIM-1 in the human population would affect the primary role of KIM-1, which could have 

undesirable effects on its function during transplant resulting in patients requiring dialysis 

within the first week- a problem known as delayed graft function (DGF). I uncovered that 

different versions of KIM-1 protein found in the human population decreased its ability to 

clear dying cells compared to normal KIM-1. However, the variation of KIM-1 was not 

associated with increased risk of DGF. Taken together, these findings uncover a new 

therapeutic target (KIM-1 and AIM) that may prolong kidney transplant survival.  
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Preface  

The following thesis takes you on a journey of the past 5 years of my tenure as a graduate 

student. Starting as a Master's student, I found that research into the immune and non-

immune pathologies encountered in renal transplantation to be fascinating. I soon realized 

that there was a considerable knowledge-gap regarding the fundamental types of injuries 

sustained by the graft and how this impacts the lifespan of the transplanted kidney. Thus, I 

decided to pursue a doctoral degree in the hopes of acquiring a more in-depth understanding 

of the underlying mechanisms and potentially contribute to the development of novel 

therapeutics aimed at improving the lives of transplant patients. This thesis entails the 

culmination of that journey where I focused on the role of Kidney injury molecule -1 (KIM-

1) in renal transplantation. 

This thesis may be of interest for transplant surgeons and nephrologists, or researchers 

interested in ischemia reperfusion injury and transplantation. The overall aim of this thesis is 

to understand the importance of renal transplantation in improving the long-term survival. 

However, numerous limitations to renal transplantation remain, a major one being the limited 

lifespan of kidney grafts. Hence, efforts to prolong graft lifespan and increase the likelihood 

of post-transplant success, is dependent on understanding and targeting ways to minimize the 

injury to the kidney graft. Using both mice kidney transplant model and human transplant 

data, this thesis reveals the KIM-1 protein as a potential therapeutic target to prolong kidney 

transplant survival.  
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The aim of this thesis is to understand the pathophysiological mechanisms underlying 

ischemia-reperfusion injury in renal transplantation and developing strategies to improve the 

long-term survival of the transplanted kidneys.
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Chapter 1  

 

 

 

1 Introduction 

 

 

 

 

 

 



2 

 

1.1 End-stage Renal Disease  

Kidney damage and scarring (fibrosis) affects the ability of the kidney to filter and 

remove waste and manage excess fluid. Persistent (and irreversible) kidney damage, also 

known as chronic kidney disease (CKD), can lead to the gradual failure of the kidneys.  

There are 5 progressive stages of chronic kidney disease where end-stage renal disease 

(ESRD) is the final stage of CKD where both kidneys have irreversibly failed with less 

than 15% of the kidneys functioning [1]. In the United States alone, there are 

approximately 750,000 people suffering from ESRD and over 2 million people affected 

worldwide. Alarmingly, the incidence of ESRD has been rising steadily at a rate of 5-7% 

per year [2].  

Kidney failure could manifest in the host in a variety of different ways including but not 

limited to: protein energy malnutrition, abnormal metabolism of bone and mineral, 

anemia, fluid retention, and uremia (accumulation of nitrogenous waste in the body) [1]. 

Thus, renal replacement therapy is vital for patients with ESRD. Currently, the two 

available treatments are dialysis and kidney transplantation; the 5-year survival rates can 

vary depending on the treatment type. Specifically, the 5-year survival rate was 

approximately 42-52% among dialysis patients whereas transplantation conferred 77-

84% survival rates in recipients [2-5]. Furthermore, compared to dialysis patients, 

successful transplantation recipients experience an increase in the quality of life, and are 

faced with dramatically reduced health care costs [6-9]. Therefore, renal transplantation 

is considered the optimal treatment choice for patients suffering from ESRD.  

 



3 

 

1.1.1 Renal Transplantation  

Allo-, syn- and xeno-transplantations comprise of three theoretical forms of 

transplantation. Xenogeneic or xeno-transplantation involves organ or tissue grafting 

between two members of different species and is usually experimental in the context of 

renal transplantation, whereas syngeneic transplantation involves grafting between 

individuals that are genetically identical (i.e. identical twins). Allogeneic transplantation, 

which is the most commonly performed type of transplantation in humans, is the grafting 

of organs or tissues between 2 genetically different individuals from the same species. In 

2019 alone, over 23.000 kidney transplantation was performed in the United States [2, 

10] .   

For a successful transplantation, a preoperative procedure needs to be conducted where 

the recipients and the donors undergo ABO blood group matching and human leukocyte 

antigen (HLA) compatibility assessment, as HLA mismatched transplant patients 

exhibited considerably worse graft survival due to alloreactive responses in solid organ 

transplantation [11, 12]. Upon successful matching, recipients will usually receive a 

solitary donor kidney that is placed into their iliac fossa, a different location from the 

native kidneys- this is termed a heterotopic transplant. This is because recipients usually 

do not undergo bilateral nephrectomy except under specific circumstances (e.g. large 

polycystic kidneys). Following the successful anastomoses of the donor artery to the 

recipient external iliac artery and subsequent donor vein to the external iliac vein, the 

donor ureter is then connected to the bladder of the recipients [13].  
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There are 2 types of renal transplantation performed worldwide: living donor vs. 

deceased donor transplants. Live donor recipients receive a single kidney from a healthy 

donor and generally live longer and experience better graft survival compared to 

deceased donor recipients (Table 1-1) [5]. Living donation can take place between related 

or unrelated individuals and can be directed (e.g. mother to son) or undirected (altruistic 

donation). Deceased donor transplantations on the other hand, have 2 categories: 

donation after circulatory death (DCD) and neurologic determination of death (NDD, or 

also known as donation after brainstem death, DBD). DCD involves the donor kidneys 

being retrieved from an individual who died naturally from cardiovascular causes, where 

the heart stops beating resulting in the cessation of blood supply to the body. In contrast, 

NDD involves the donor kidneys being acquired from individuals following 

determination of neurologic death, where the heart continues to provide blood supply, 

however no neurological activity is detected. Alternatively, expanded criteria donors 

(ECD) are donors (DCD or NDD) that are above 60 years of age, or donors that are 

between the ages of 50 and 59 with at least two of the following comorbidities including: 

history of hypertension, death due to cerebrovascular accident, and/or terminal creatinine 

(a metabolite of muscles which usually gets filtered by the kidneys) greater than 

1.5mg/dl. Transplant recipients that received kidneys from ECD exhibited 70% increased 

risk of graft failure compared to those who received kidneys from standard criteria 

donors (SCD) [14].   
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Table 1-1. Canadian kidney graft survival rates in renal transplant patients, 2004-

2013. 

 

Table adapted from CORR 2015 [5]. 

 

Numerous studies have shown that renal transplantation is the treatment of choice for 

patients with kidney failure for many reasons including improved long-term survival, 

lower overall cost when compared to dialysis and enhanced quality of life [7, 9, 15]. For 

instance, successful transplant recipients no longer have to depend on dialysis for 

survival, which can be as many as 3 times a week lasting 3-4 hours per session. However, 

a major limitation of renal transplantation is that there is a tremendous shortage of donor 

kidneys compared to the growing demand for organs [16]. Moreover, studies have 

suggested that the demand is steadily rising by 8% each year [2] . In Canada, the number 

of patients on the kidney transplant waitlist continue to increase, but due to limited 

number of available donor organs, the number of deaths while waiting for a transplant 

show a similar trend (Table 1-2) [5]. Likewise in the USA, there were more than 100,000 
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ESRD patients on transplant waitlist in 2016 with only 20% of the patients able to receive 

transplant surgery [2].  

Table 1-2. Number of Canadians on waiting list and deaths on waiting list, 2004-

2013. 

 

Table adapted from CORR 2015 [5]. 

 

Aside from the scarcity of donor kidneys, another complication with transplantation is the 

relatively finite lifespan of the graft. On average, the lifespan of kidney transplants are 

12-20 years for living donor grafts and 8-12 years for deceased donor grafts [17]. 

Strikingly, approximately 30% of patients on the waitlist are those with failed transplants 

[18]. Therefore, each available donor kidney is a precious commodity and steps should be 

taken to ensure the success of each transplant procedure. This has led to the “one 

transplant for life” movement [19]. One essential factor in ensuring donor kidneys remain 

in optimal condition is to minimize the injury occurred during and after the 

transplantation procedure. Unfortunately, preventing injury to the donor tissue remains a 

challenging task as renal transplants are subjected to a series of injuries from both 

alloimmune and non-alloimmune (both in the donor and upon transplantation) insults 

which can culminate to chronic allograft dysfunction and graft loss [20, 21].  
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1.1.2 Alloimmune Injury  

Due to the highly polymorphic nature of major histocompatibility complex (MHC) genes, 

or HLA genes in the humans, the physiological phenomenon of alloreactivity remains a 

major obstacle to successful renal transplantation [22]. Over 15,000 different HLA alleles 

have been discovered to date [23]. This is not to say that other non-conventional 

molecules, such as the polymorphic MHC class I chain-related (MIC) genes, do not 

contribute to alloimmunity. Allogeneic permutations between the donor and recipient can 

trigger a vast array of physiological responses via the activation of alloreactive T and B 

cells leading to graft inflammation and persistent infiltration of other immune cells such 

as macrophages [24-26]. Alloimmune injury, which can be largely categorized as T cell- 

(cellular) or antibody- (humoral) mediated, significantly contributes to persistent graft 

damage over time [27]. Allograft rejection requires the activation of alloreactive CD4+ T 

cells, which have been shown to be necessary and sufficient for rejection in animal 

models.  For example, mice deficient in CD4 + T cells were protected from renal 

dysfunction, tissue damage and infiltration of neutrophils following renal IRI [28]. 

Dendritic cells (DCs), arising from both donor and/or recipient tissues, have been 

identified as one of the key cell types involved in initiating alloimmune injury, whereby 

upon activation, DCs migrate to secondary lymphoid tissues where they can further 

activate alloreactive T cells and B cells [29-32]. Activated B cells can produce donor 

specific antibodies (DSA) that can bind to the surface of the allogeneic HLA antigen 

leading to graft rejection, also known as antibody-mediated rejection [22]. B cells can 

also serve as antigen presenting cells (APCs) for cardiac allograft rejection [33]. Notably, 

prior sensitization to alloantigens in the recipient, via blood transfusion, pregnancies 
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and/or previous transplantations, results in an even greater humoral alloresponse [22, 34]. 

In the event that the triggered alloresponse also targets the one or more of the donor HLA 

molecules expressed by the graft, the existence of donor-specific antibodies confers a 

poor prognosis on prospective recipients [35]. The culmination of persistent alloimmune 

injury to the graft from both effector T cells and/or donor specific antibodies, can lead to 

acute or chronic rejection of the graft [21, 22] .    

1.1.3 Non-alloimmune Injury  

Non-alloimmune mechanisms of injury are another major component to graft injury that 

can limit the success of a transplant, and comprises of multiple factors, including drug 

toxicity, infection following transplantation, autoimmunity against cryptic epitopes in the 

donor kidney, ischemic injury in the donor and/or recipient [27, 36]. Solid organ 

transplantation recipients require to be on lifelong immunosuppression as it decreases the 

likelihood of graft rejection. The most prescribed immunosuppressants include: 

calcineurin inhibitors (CNI) (i.e. cyclosporine and tacrolimus), mycophenolic acid, 

sirolimus, prednisone and basiliximab. Cyclosporine and tacrolimus have helped to 

drastically improve graft outcomes [37-39] but are associated with acute and chronic 

nephrotoxicity in renal and non-renal transplantation [39-41]. The pathophysiologic 

mechanisms underlying CNI nephrotoxicity include direct and indirect effects (e.g. via 

vasoconstriction, thrombotic microangiopathy) [41]. In addition, the suppression of the 

host’s immune effector cells is the desired outcome, however this inevitably renders the 

host more susceptible to viral infections and malignancies, which secondarily, can also 

cause further damage to the graft [27, 42-44].   
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Recipient factors that may curtail the lifespan of the renal transplant include the host’s 

underlying comorbidities such as diabetes, lipid disorders, hypertension, and/or the 

recurrence of the primary kidney disease (e.g. glomerulonephritis) [27, 45]. As a whole, 

these are referred to as recurrence of original renal disease which includes primary renal 

diseases (membranous glomerulonephritis), systemic diseases (e.g. amyloidosis) and 

metabolic diseases (e.g. diabetic nephropathy). Various factors are included in the 

viability of the organ category such as, donor age, living versus deceased donor, ischemia 

time, and delayed graft function, all of which can contribute to promoting injury to the 

graft [27, 46-48]. Thus, comprehensive therapies that target and address a plurality of 

mechanisms of alloimmune and non-alloimmune pathologies may pave the way in 

mitigating graft damage and ultimately prolonging the lifespan of the transplanted 

kidneys, and its effect in the recipients.  

1.1.3.1 Ischemia Reperfusion Injury  

Ultimately, all donor kidneys are inescapably subjected to a specific type of injury during 

the transplantation process, known as ischemia reperfusion injury (IRI), which is yet 

another major hurdle to transplantation success. Ischemia is defined as the reduction of 

blood flow whereas reperfusion is defined as the restoration of blood flow [49]. From the 

retrieval of the donor organ to the implantation and successful anastomosis in the 

recipients, the donor kidney is faced with varying degrees of IRI. For example, when 

donor kidneys are obtained from a DCD donor, the kidneys will face a series of varying 

periods of ischemia from the time the life support is withdrawn allowing for cardiac 

arrest (and natural death) until and including the transplantation procedure. Specifically, 
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during procurement while the kidney is still inside the body, the transplant tissue 

experiences a brief period of warm ischemia when the clamp is placed prior to 

nephrectomy. Donor kidneys subsequently undergoes a prolonged period of cold 

ischemia during storage, while submerged in the universal University of Wisconsin (UW) 

solution, at 4C until time for transplant. More recently, pulsatile hypothermic perfusion 

was shown to mitigate the effects of DGF compared to static cold storage [50]. Next, the 

donor kidney is then exposed to warm ischemia again during the period of implantation 

and successful anastomosis inside the host. Finally, the reintroduction of the host’s blood 

introduces reperfusion injury (Figure 1-1) [51].  

In the case of kidneys obtained from DBD donors, the organ is faced with similar types 

of cold and warm ischemia and reperfusion injury during procurement to successful 

transplantation. One distinction, however, is because DBD donors do not have ceased 

blood flow, they do not experience prolonged period of warm ischemia before 

procurement, but rather experience a brief period warm ischemia because neurologic 

death still alters the hemodynamics (Figure 1-1) [51, 52]. It is noteworthy that the major 

consequence of IRI is DGF following transplantation which can severely impact the 

health and longevity of the graft as well as negatively impact overall survival  [47, 48, 

53-55]. 
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Figure 1-1. Flow diagram representing the types of ischemia and reperfusion injury 

the donor organ experiences from retrieval to implantation.  

Flow diagram representing each event and type of ischemia that the donor graft endures 

from the death of the donors (both DCD and DBD) until the restoration of blood flow in 

the recipients. The red bar represents warm ischemia, and the blue bar represents cold 

ischemia. 

Figure adapted from Aitken et al. [51] 
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1.1.3.2 Delayed Graft Function  

The incidence of DGF is higher in patients receiving donor kidneys from DCD donors 

compared to DBD donors (44% vs. 24%) due to prolonged warm ischemia time in DCD 

kidneys [56]. Primarily caused by IRI, DGF is a complication where the transplanted 

kidney fails to function readily following transplantation, and is clinically defined as the 

need for dialysis within the first postoperative week [57, 58]. Some other clinical risk 

factors influencing DGF include: donor/recipient sex, donor/recipient body mass index, 

donor history of hypertension, donor age, and donor terminal serum creatinine [59, 60].  

DGF often necessitates prolonged hospitalization while patients undergo multiple rounds 

of dialysis which have tremendous financial considerations to both the health care system 

and the patients [60, 61]. Additional consequences of DGF are increased morbidity and 

mortality [60, 62-64]. In addition, the requirement to continue multiple rounds of dialysis 

even after transplantation can have a negative psychological impact on the patients [65]. 

Moreover, recipients experiencing complications due to DGF are at a greater risk of 

developing acute rejection, graft failure and development of chronic graft dysfunction, 

which can lead to early death [60, 62, 66, 67]. Therefore, minimizing IRI and subsequent 

DGF could tremendously improve both patient and graft outcomes following 

transplantation. 
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1.1.4 Animal Models of Renal Transplantation 

Many animal models have been implemented to study renal transplantation, including the 

use of large animals, such as pigs, to small animals like rats and mice [68, 69]. The 

advantages of large animals, specifically pigs, to study renal transplantation include: the 

close phylogenetical homology to humans compared other species, simplicity of 

breeding, and comparable kidney size with humans. Notably, pig kidneys have been 

shown to have more favorable outcomes when used in xenografts, compared to kidneys 

from non-human primates [70, 71]. Unfortunately, the limitation of using pigs to study 

renal transplantation is that the cost is exceedingly high compared to using small animals.  

Small animal models especially mice are the most commonly utilized by researchers. 

Although mice are genetically distant from humans compared to pigs, murine models are 

of great use since sufficient information is already known about their immune system, 

breeding is simple,  they are economical, extensive reagents are already available to study 

murine genes and proteins, and mice can be genetically modified allowing for 

mechanistic studies [69]. For these reasons, this thesis focused on mouse models of renal 

transplantation. 

 Considering the diverse etiologies that can give rise to the pathology associated with 

transplantation, the genetic background of donor and host mice play a vital role in 

establishing the pathogenesis of kidney injury during kidney transplantation. To study the 

effect of non-alloimmune injury (i.e. ischemia reperfusion injury), syngeneic donor and 

the recipient mice are necessary to eliminate any MHC mismatches and subsequent 

alloimmune injury. In contrast, fully MHC mismatched (allogeneic) donor and recipient 
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mice are required when assessing the effect of alloimmunity [72, 73]. Additionally, the 

degree to which allogeneic mice are subject to MHC mismatch can be correlated with 

post-transplant survival rates [72]. 

In mice, renal transplantation could be performed in one of two ways: 1) bilateral 

nephrectomy of the native kidneys following transplantation or 2) nephrectomy of one 

native kidney but leaving the contralateral native kidney in place with a transplanted 

kidney. Bilateral nephrectomy allows the mice to solely depend on the transplanted 

kidney for survival. Nephrectomy of only one native kidney following transplantation has 

both advantages and limitations. This method is often used in long-term longitudinal 

studies and chronic allograft injury models because mortality is not considered a risk 

factor due to the presence of the healthy native kidney. On the other hand, because the 

single native kidney is sufficient for maintaining adequate kidney function (adequate 

glomerular filtration rate for sustaining health), potential deficiencies in the function of 

transplant kidney cannot be delineated [72]. As such, the use of these animal models 

should be tailored to the scientific question and potential translation of findings should be 

made with the understanding of the limitations of each model.         

1.2 Pathophysiology of Ischemia Reperfusion Injury 

Tissue injury that invariably follows from ischemia is caused by the cessation of adequate 

blood flow to the organ. The arrest or limitation of blood supply leads to deprivation of 

oxygen (hypoxia) and nutrients, and the build-up of metabolic substances and carbon 

dioxide [74]. This triggers a cascade of pathways leading to a significant reduction of 

adenosine triphosphate (ATP) production and availability, and subsequent depressed 



15 

 

activity of Na+/K+ ATPase and calcium pumps [75, 76]. The disruption of the ion balance 

between the intra- and extra-cellular space and the build-up of lactic acid can lead to 

acidosis, and ultimately causes the activation of phospholipases, proteases and 

dysregulation of the cellular actin cytoskeleton [77-79]. Moreover, the disturbances of 

cellular homeostasis, during ischemic injury, leads to breakdown of tight junctions, loss 

of brush borders, and an influx of calcium leading to the overall impairment of kidney 

function [80-82].  

Upon reperfusion, following successful anastomosis, increased levels of oxygen and pH 

is observed along with restored blood flow [83]. Reperfusion introduces additional injury 

to the graft as excess influx of oxygen leads to the dysfunction of the mitochondrial 

electron transport chain, and the activation of xanthine oxidase activity which causes 

production of large amounts of harmful reactive oxygen species (ROS) [83, 84]. 

Consequently, ROS can damage and compromise the integrity of the cellular membrane 

and cytoskeleton. Additionally, ROS  increases mitochondrial calcium which forms the 

mitochondrial permeability transition pore (mTPT) leading to cell death through various 

mechanisms (Figure 1-2) [85] [86]. Taken together, both ischemia and reperfusion injury 

during transplantation result in a cascade of pathways that contribute to cellular 

dysfunction or death. Cell death from IRI can take on many forms including apoptosis or 

necrosis contributing to renal dysfunction via different mechanisms including obstructing 

the tubular lumen and triggering tissue-destructive inflammation [87, 88]. In addition, 

loss of tight junction integrity can lead to back-leak of filtered toxins (and creatinine) into 

the circulation. 
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Figure 1-2. Flow diagram outlining major pathophysiology of ischemia reperfusion 

injury leading to cell death. 

Flow diagram representing each pathological event that a graft experiences during 

ischemia reperfusion injury, which eventually leads to the death of tubular cells. 

 

Figure adapted from Kalogeris et al. [85] 
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1.2.1 Cell Death 

Proximal tubular epithelial cells (TECs) comprise of more than 75% of renal 

parenchymal cell mass, making it the most abundant renal cell type [89]. Due to their 

nature of being hypo-perfused under homeostatic conditions, coupled with their high 

energy demands while exhibiting poor glycolytic capacity, TECs are particularly more 

susceptible to IRI compared to other cells types in the kidney [90-92]. Thus, IRI to the 

TECs can trigger various forms cell death including but not limited to apoptosis, 

necroptosis and necrosis.  

Apoptotic cell death is a programmed cell death and can be triggered via intrinsic or 

extrinsic pathways [85]. DNA fragmentation into discrete fragments of about 180-200 

base pairs by specific nucleases is a distinctive characteristic of apoptosis [93]. Following 

a sufficient stressor, intrinsic apoptotic cell death can be induced which involves the 

translocation of the pro-apoptotic Bcl2 protein family, such as Bax and Bak, into the 

outer membrane of the mitochondria. Consequently, the mitochondrial outer membrane 

becomes permeabilized and results in the release of pro-apoptotic proteins such as 

cytochrome c, endonuclease-G, and Smac/DIABLO [94, 95]. Cytoplasmic cytochrome c 

can interact with apoptotic peptidase activating factor -1 (APAF-1), forming the 

apoptosome which activates caspase-9 and subsequently caspase-3. Caspase-3, the master 

regulator of apoptosis, proteolyzes numerous cellular proteins which ultimately results in 

DNA fragmentation [96]. 

The extrinsic apoptotic pathway is triggered upon activation of TNF, Fas and TRAIL 

receptors.  Trimerization of these receptors occur once they are activated, which then 
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forms the death-inducing signaling complex (DISC) by recruiting a number of proteins 

including death domain containing proteins like FADD and TRADD. This complex then 

activates caspase-8 and caspase-3 downstream [97, 98]. Cytoplasmic and nuclear 

condensation and fragmentation as a result of caspase-3 leads to formation of apoptotic 

bodies with externalization and exposure of phosphatidylserine (PS) on the outer, intact 

membrane, which is the hallmark of apoptotic cells [99]. 

Unlike apoptosis, the morphological hallmarks of necrosis are characterized by their 

cellular and organelle swelling, disruption of the plasma membrane, and the release of 

intracellular contents [100]. Initially, necrotic cell death was considered to be a random, 

unprogrammed processes in response to stress. However, growing evidence suggests that 

necroptosis, programmed necrosis, which is the predominant from of cell death during 

IRI, is regulated by activation of receptor interacting protein kinases (RIPK) [101-104]. 

Activation of RIPK, through various signaling cascades, phosphorylates mixed-lineage 

kinase domain like protein (MLKL) resulting in the loss of plasma membrane integrity 

and death by necroptosis [101, 105, 106]. Furthermore, studies have shown that blocking 

RIPK signaling conferred a protective effect in a murine model of IRI [101, 107-109].  

Aside from necroptosis, other regulated necrotic cell death pathways include pyroptosis 

and ferroptosis. Of these 3 pathways, pyroptosis is considered to be the most 

immunogenic cell death via the activation of caspase-1 [110]. Caspase-1 is responsible 

for cleaving inflammatory cytokines including pro-IL-18 and pro-IL-1β into their active 

forms, resulting in an enhanced proinflammatory environment compared to other 

regulated cell death pathways [111]. Ferroptosis is less immunogenic than pyroptosis and 

is an iron-dependent pathway of regulated necrotic cell death [112]. During ferroptosis, 
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cystine deprivation results in glutathione depletion leading to the inhibition of glutathione 

peroxidase 4 and lipid peroxidation, ultimately resulting in cell death by plasma 

membrane rupture [110, 113]. Numerous studies that have targeted downstream of these 

regulated cell death pathways exhibited successful protection against murine models of 

IRI [114-117]. As such, necroptosis, pyroptosis, and ferroptosis are the most studied 

regulated cell death pathways in ischemia reperfusion injury and transplantation. 

1.2.2 Damage Associated Molecular Patterns  

In contrast to apoptosis which is also referred to as “clean cell death”, necrosis is known 

to be the most immunogenic form of cell death due to the rupturing of the plasma 

membrane and leakage of intracellular contents into the extracellular milieu [118]. The 

intracellular contents could include several highly immunogenic compounds such as, 

high-mobility group box-1 (HMGB1), heat shock protein (HSP), histones, s100 proteins, 

and uric acid. Although the aforementioned molecules serve a vital purpose when in their 

natural intracellular location, these endogenous molecules can trigger proinflammatory 

responses once spewed into the extracellular milieu or circulation. As a result, these 

molecules have been identified as damage associated molecular patterns (DAMPs) or 

danger signals [118, 119]. Extracellular DAMPs can be recognized by renal parenchymal 

cells and innate immune cells via pattern recognition receptors (PRRs), whose activation 

in turn triggers the downstream production of proinflammatory cytokines and mediators 

[120]. The signaling pathway which links the extracellular DAMPs to the 

proinflammatory response in cells in termed danger signaling. Moreover, DAMPs can be 

released either passively or actively for instance during sepsis [121]. 
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HMGB1 is a nuclear protein that acts as a DNA chaperon to enhance chromatin folding 

and transcriptional activation in all nucleated cells [122].  However, once released 

(passively) by necrotic cells and uncleared apoptotic cells (undergoing secondary 

necrosis) [123], HMGB1 can trigger activation of inflammation through binding to toll-

like receptors-2, -4, and -9 (TLR2, TLR4 and TLR9) [124]. Through the activation of the 

MyD88 signaling cascade, nuclear factor -B (NF-B), a master regulator of 

inflammation, is activated leading to production of inflammatory cytokines (i.e. IL-1, IL-

6 and TNF-) and chemokines and subsequent recruitment of immune cells [125-127].  

Importantly, HMGB1 has been shown to mediate kidney IRI and neutralizing HMGB1 

protected against renal IRI in mouse models [128-131].  

DAMPs, particularly HMGB1 has been shown play a key role in necroinflammation 

[129, 131]. Necroinflammation describes the phenomenon of an auto-amplification loop 

of cell death which describes the process of progressive inflammation initiated by cell 

death begetting more cell death [113]. Specifically, necroinflammation is initiated 

through the interactions of DAMPs released by few necrotic cells and the immune 

response, resulting in inflammation which triggers progressively more necrotic cell death 

which in turn elicit a greater immune response. The pathological consequence of 

necroinflammation is tissue damage which manifests as graft damage and organ 

dysfunction or failure [20, 113, 132]. Therefore, endogenous pathways that promote the 

clearance of dying cells can mitigate necroinflammation and protect from tissue damage 

in IRI. Agents that enhance such processes might be a novel therapeutic strategy in renal 

transplantation where acute and chronic tissue injury is common. 



21 

 

1.3 Kidney Injury Molecule-1 

Kidney injury molecule-1 (KIM-1 in humans, and Kim-1 in mice), also known as T-cell 

immunoglobulin mucin domain -1 (TIM-1), is a member of T-cell immunoglobulin 

mucin (TIM) family [133, 134]. In humans, the TIM family consists of TIM-1, TIM-3, 

and TIM-4, whereas in mice, the TIM family includes TIM-1 to TIM-8 [135-137]. KIM-1 

is encoded by the gene hepatitis A virus cellular receptor-1 (HAVCR1), which encodes a 

receptor for hepatitis A virus [138]. Thus, depending on the anatomical location and cell 

type where this protein is expressed, it is referred to as HAVCR1 (in liver), TIM-1 (on 

immune cells including T cells, regulatory B cells, and NKT cells) or KIM-1 (in kidneys) 

[133, 139].  

Activated CD4+ T cells, predominately Th2 cells, express TIM-1, where its ligation acts 

as a co-stimulatory signal resulting in the promotion of cytokine production, T cell 

proliferation, and the inhibition of tolerance [134, 140, 141]. TIM-4, a ligand for TIM-1, 

regulates CD 4+ T cell activation and differentiation upon interaction by modulating the 

Th1/Th2 cytokine balance [142]. Interestingly, the TIM-1: TIM-4 axis was reported to 

exacerbate injury following IRI, and blocking this interaction ameliorated renal damage 

[137]. 

Originally, KIM-1 was discovered as HAVCR1, a receptor for hepatitis A virus in 

African green monkey cells [143]. The initial characterization of HAVCR1 described a 

port of entry for hepatitis A virus into the cell [144]. Later, humans were found to possess 

a homolog of HAVCR1 [145] which regulated the cellular entry of many viruses 

including: Dengue virus (DV), Human immunodeficiency virus, hepatitis C virus, and 
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Zaire Ebola Virus (EBOV) [146-149]. Shortly after the discovery of human HAVCR1, a 

mouse homolog named KIM-1, was discovered on injured kidney tubular cells [150]. 

Therefore, the conserved nature of KIM-1 provides translational power across the species 

barrier. 

1.3.1 Polymorphism of KIM-1 

The gene for KIM-1, HAVCR1, is highly polymorphic with thousands of variants 

identified.  This effect of the variability of HAVCR1 results in a highly heterogenous 

human population where numerous different forms of KIM-1 can be observed [133, 141]. 

Indeed, previous studies have shown that susceptibility to a wide range of autoimmune 

disorders and viral infections are linked with differential KIM-1 variant expression [142-

145]. Interestingly, in humans that expressed a select variant of KIM-1 which has a 6 

amino acid insertion in the mucin domain producing a “longer variant”, exhibited greater 

risk of susceptibility to severe hepatitis A [143]. The pathogenesis mediated by the longer 

variant of KIM-1 in hepatitis A infection was found to be specific for both hepatocytes 

and NKT cells. First, hepatitis A virus were able to more proficiently bind to hepatocytes 

that expressed the longer variant of KIM-1 which increased the likelihood of infection. 

Secondly, NKT cells which also express the HAVCR1 gene (known as TIM-1 in T cells), 

were more responsive to virally infected hepatocytes and targeted them for destruction by 

cellular-mediated cytotoxicity which exacerbated liver damage [143, 146]. In contrast 

however, longer KIM-1 variants were found to be protective against atopy in some 

individuals [147]. Moreover, individuals that exhibited that KIM-1 variant that caused 

lower surface level expression exhibited delayed Human immunodeficiency virus 
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infection [146]. Taken together, these and other studies, demonstrate the association 

between genetic variations in HAVCR1 and the risks of disorders of immune 

dysregulation such as asthma, rheumatoid arthritis, systemic lupus erythematosus, and 

allergic rhinitis differs [145, 148-151]. Whether genetic variants of KIM-1 affect KIM-1 

function in the kidney or are linked with susceptibility to renal injury following IRI has 

not been studied to date.  

1.3.2 Structure and Expression 

HAVCR1 encompasses 14 exons and is located on chromosome 5p33.3 [139]. With a 

length of 1095 bp, HAVCR1 mRNA encodes a type 1 cell surface glycoprotein that 

consists of an extracellular immunoglobulin variable (IgV) domain, a mucin domain, a 

transmembrane domain, and a short intracellular domain [150].  Extracellular 

compartments of KIM-1 include N-terminal six-cystine IgV domain, and a highly 

glycosylated mucin domain rich in threonine, serine and proline [162]. Intracellularly, 

KIM-1 has a short C-terminal cytoplasmic tail that has a tyrosine kinase phosphorylation 

motif (QAEDNIY) which is essential for signaling (Figure 1-3) [150, 163-165].  

KIM-1 can be found on the apical surface of renal proximal TECs [150], however, a 

healthy kidney does not express KIM-1 but transiently upregulates its expression 

following an injury to the kidney [166]. Basal expression of Kim-1 has been reported in 

Balb/c mice kidneys [167]. Upon expression on TECs, KIM-1 undergoes spontaneous 

ectodomain cleavage and shedding, releasing the extracellular portion of soluble KIM-1 

(sKIM-1) into the urine (or conditioned media in cultured TECs) [168-170]. The cleavage 

of KIM-1 is considered to be performed by tumor necrosis factor- converting enzyme 
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(TACE), also referred to as ADAM 17 [171]. At the protein level, a full-length human 

KIM-1 has an apparent molecular weight of 104 kDa, but once cleaved, it generates a 

soluble form of KIM-1 that is about 90 kDa in size and a small membrane bound form of 

KIM-1 that is approximately 14 kDa [168]. KIM-1 is predicted to generate a 34 kDa 

protein in the absence of any post-translational modifications. Murine Kim-1 is smaller in 

size at ~60 kDa, where its size discrepancies with human KIM-1 may be explained by the 

reduced number of glycosylation sites observed in mouse Kim-1 [168, 172]. 
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Figure 1-3. Structure of Kidney Injury Molecule -1  

A schematic representation of the structure of KIM-1 which consists of an extracellular, a 

transmembrane and an intracellular domain. The extracellular domain entails an IgV 

domain which is a site for phosphatidylserine binding, and a highly glycosylated mucin 

domain. The intracellular cytoplasmic domain contains tyrosine kinase phosphorylation 

motif required for signaling.  
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1.3.3 KIM-1 Function 

The IgV domain of KIM-1 contains a metal ion dependent ligand binding site, where 

phosphatidylserine, an “eat-me” signal on apoptotic cells, can bind [173]. Upon binding, 

the KIM-1 expressing renal TECs are transformed into semi-professional phagocytes and 

engulf apoptotic cells through a process known as, efferocytosis [153, 164, 174]. Using 

murine models, our lab found that total genetic ablation of KIM-1 predisposed them to 

more severe kidney dysfunction and damage following native renal IRI compared to 

wild-type mice [175]. Similar results were reported when mice exhibiting mutation in the 

KIM-1 mucin domain (KIM-1 Δmucin) which impairs binding to PS [164]. KIM-1 

Δmucin exhibited greater renal dysfunction, renal inflammation, and mortality following 

native renal IRI. The abovementioned would suggest that the primary function of KIM-1 

in the kidneys is the removal of apoptotic cells which thereby limiting further 

inflammation. 

A secondary equally important function of KIM-1 is in the repair of denuded tubular 

epithelium following acute injury. KIM-1 expression activates the extracellular signal 

regulated kinase/ mitogen-activated protein kinase (ERK/MAPK) signaling pathway, 

which in turn facilitates the migration and proliferation of TECs, promoting repair [176]. 

During an ischemic insult, KIM-1 was also shown to protect against cell death by 

interacting with pro-apoptotic nuclear receptor 77 (NUR77) via the IgV domain [177]. 

An in vitro study has shown that following depletion of ATP and glucose to mimic 

ischemic injury, the lack of KIM-1 expression resulted in higher levels of NUR77, and 

increased amount of cell death [177].  Therefore, the clearance of dying cells during 
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kidney injury, as well as promoting tissue repair by the neutralization of pro-apoptotic 

factors, KIM-1 plays a crucial role in mitigating inflammation and tissue damage during 

kidney injury. 

1.3.4 KIM-1 Signaling 

The conserved tyrosine kinase phosphorylation motif in the cytoplasmic tail of KIM-1 is 

involved in downstream signaling pathways via engagement with protein kinases [163]. 

Upon binding of apoptotic cells to KIM-1, the intracellular tyrosine kinase of KIM-1 is 

phosphorylated, leading to the interaction with p85. Subsequently, modulated by PI3K, 

phosphorylation and activation of NF-B signaling is inhibited, thereby negatively 

regulating inflammation (e.g. production of IL-6) (Figure 1-4) [140, 164].  

Considering that phagocytosis is the primary function of KIM-1 in the kidney, it is of no 

surprise that KIM-1 would be involved with cytoskeletal remodeling during the 

internalization of apoptotic bodies. Previously, our group has shown that KIM-1 interacts 

with T-complex testis specific protein 1 (Tctex-1), a dynein light chain protein, to 

mediate the internalization of apoptotic cells via KIM-1 dependent efferocytosis [178]. In 

addition, our laboratory has shown that during renal IRI, intracellular domain of KIM-1 

directly interacts with alpha subunit of heterotrimeric G protein 12 (G12) directly and 

suppresses its activation [179]. ROS produced during IRI activates G12 disrupting the 

formation of tight junctions and zonula occludens-1 (ZO-1) on renal TECs during renal 

repair through Src tyrosine kinases [180, 181]. Upon activation, KIM-1 acts to negatively 

regulate G12 to limit its activity spurred on by ROS [179]. Hence, the molecular 
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mechanisms involved in KIM-1- mediated protection against ischemia reperfusion injury 

involves several signaling pathways and multiple intracellular proteins. 

 

Figure 1-4. Diagram of the downstream signaling cascade pathway of KIM-1 

inhibition of NF-B upon apoptotic cell binding. 

Upon binding of apoptotic cells to KIM-1 via phosphatidylserine, p85 is recruited which 

leads to the inhibition of NF-B activity which limits the production of inflammatory 

cytokines such as IL-6, IL-1 and RANTES. KIM-1 Δ mucin are defective in binding to 

apoptotic cells leaving NF-B unperturbed, resulting in inflammation. 

 

Figure adapted from Yang et al. [164] 
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1.3.5 Clinical relevance of KIM-1 

Following injury, soluble KIM-1 is shed into the urine upon cleavage of its ectodomain. 

Because KIM-1 is upregulated during proximal tubule injury and not present in the 

healthy human kidney, KIM-1 is regarded as a specific and sensitive biomarker for renal 

acute kidney injury [182, 183].  KIM-1 is also aberrantly expressed in renal cell 

carcinoma tumours and multiple kidney diseases [182, 184-186]. Urinary KIM-1 levels in 

patients with chronic heart failure can be used as a prognostic clinical marker of 

worsening renal function [187]. Of note, KIM-1 can also be detected in the blood upon 

kidney injury which is thought to be due to the disruption of tight junctions and tubular 

back-leaking [188]. In addition, growing evidence has shown that soluble KIM-1 is also 

detected in the blood, which serves as a useful biomarker for acute and chronic kidney 

disease and has been used to predict progression to ESRD in Type 1 diabetes patients 

[189].  

Studies have shown the utility of tissue expression of KIM-1 in numerous clinical 

diseases. For example, KIM-1 expression, examined in the biopsies of transplanted 

kidney of patients who developed graft dysfunction, is used to determine the degree of 

injury [190]. Both urinary and membrane-bound KIM-1 expression can be detected in 

patients suffering from chronic kidney disease (CKD) [139, 191] Surprisingly, transgenic 

mice that were generated to expresses KIM-1 constitutively in TECs, developed 

spontaneous CKD exhibiting significant amounts of kidney inflammation and fibrosis. 

This result indicates that sustained expression of KIM-1 may be pathogenic, leading to 

renal fibrosis and kidney failure [192, 193]. During the early stages of acute kidney injury 
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(AKI), KIM-1 upregulation is protective due to its beneficial role of clearing dying cells, 

initiating TECs repair, and limiting inflammation. However, sustained chronic expression 

of KIM-1 may be harmful as could promote fibrosis, ultimately leading to CKD. 

Therefore, modulating KIM-1 expression or function for therapeutic purposes for renal 

injury must be done with caution and careful evaluation using representative animal 

models.   

1.4 Apoptosis Inhibitor of Macrophage  

Apoptosis inhibitor of macrophage (AIM) protein (also referred to as CD5-antigen like, 

CD5L), as the name suggests, is produced by tissue macrophages to aid in their survival 

by inhibiting apoptosis [194]. AIM is a member of the scavenger receptor cystine-rich 

domain superfamily (SRCR-SF) [195], and circulates in high concentrations in the blood 

(~5g/ml in both humans and mice) bound to the Fc region of pentameric 

immunoglobulin M (IgM) [196, 197]. A pentameric IgM forms a 50 groove where one 

molecule of AIM can bind [197]. Although the size of AIM is relatively small (42 kDa in 

mice and 37 kDa in humans), the assembly of AIM with IgM precludes AIM from renal 

excretion due its large molecular size (~1000kDa) [198]. During AKI, IgM-bound AIM 

dissociates where it can perform its function [196].  

Human and murine AIM share considerable homology (~78%) consisting of conserved 

protein sequences, however, they diverge in the degree of glycosylation. Human AIM 

does not contain N-glycans, whereas mouse AIM bears heavy glycosylation. 

Interestingly, modification of N-glycosylation in AIM has been shown to alter its 

secretion and activity [199]. 
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1.4.1 Clinical relevance of AIM 

Similar to KIM-1, AIM is also subject to cleavage allowing for the dissociation from IgM 

which allows for renal excretion, and consequently detection in the blood and urine. 

Although AIM cleavage is performed by an unknown protease, cleaved AIM is smaller in 

size by 10 kDa which allows for the successful filtration through the glomerulus and 

secretion into the urine [200]. The ability to detect AIM in the blood and urine makes it a 

powerful biomarker and has been used to detect numerous diseases including: patients 

with kidney injury, liver fibrosis in hepatitis C patients, atopic dermatitis, cirrhosis and 

liver cancer [196, 201-203]. Once cleaved however, AIM cannot re-associate with IgM, 

leading to its destabilization and subsequent activation where it can be free to be involved 

in multiple disease states [196, 200].  

The role of AIM in the progression of various diseases is an area of active research. 

Typically, AIM exerts its effect on disease in its IgM-free form as AIM is inactivated 

when associated with IgM. With respect to function, free AIM can be endocytosed into 

adipocytes and hepatocytes through CD36 where it acts to inhibit the synthesis of 

cytoplasmic fatty acids.  Ultimately, this causes the decrease of the deposition of 

triglycerol in cells which has been reported to prevent fatty liver progression and obesity 

[204, 205]. Likewise, by inhibiting fatty acid deposition, AIM has been shown to have a 

protective role in obesity related liver diseases and hepatocellular carcinoma [206]. 

Alternatively, AIM has also been shown to exert significant antimicrobial activity during 

bacterial infection by it enhances the clearance of bacteria and fungi through opsonization 

[207, 208]. Moreover, AIM has been studied in the context of multiple other diseases 
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including chronic obstructive pulmonary disease, multiple sclerosis, inflammatory bowel 

disease, and atherosclerosis [204, 209-212].  Finally, the modulatory function of AIM has 

also shown promise in kidney injury following renal IRI [213].   

1.4.2 AIM in Acute Kidney Injury 

During AKI, AIM is released from its IgM pentamer bound form and is filtered through 

the glomerulus where it can interact with healthy and injured tubular epithelial cells 

[213]. To date, the specific mechanism behind the dissociation between AIM and the IgM 

pentamer is yet to be determined. However, one may speculate that during IRI, the 

homeostatic balance of ions in the body is altered, reducing the affinity of AIM for IgM. 

Nevertheless, the phenomenon of AIM dissociation is essential for its protective role in 

IRI. This is supported by studies showing that cats subjected to IRI are highly prone to 

severe kidney injury because feline AIM is unable to dissociate from IgM due to a 

particularly high affinity [214, 215].  

Immunohistological staining of kidneys taken from both mice and humans suffering from 

AKI revealed that IgM-free AIM predominately accumulates on intraluminal necrotic 

debris [196, 200]. The primary role of AIM during renal injury is to prevent renal tubular 

obstruction by coating dead cell debris promoting clearance, thereby reducing 

inflammation and promoting repair. Dead cell clearance mediated by AIM is dependent 

on KIM-1. AIM coating the intraluminal debris acts as an opsonin where KIM-1 can 

recognize and directly bind necrotic cells conferring an enhanced ability of TECs to 

phagocytose and clear the necrotic debris. This process excludes PS interactions with 

KIM-1 as KIM-1 recognition of PS was not disturbed by AIM [213]. Although the direct 



33 

 

interaction of KIM-1 and AIM enhances KIM-1 mediated phagocytosis, the specific 

mechanism regarding their binding remains unknown. Furthermore, when mice suffering 

from native renal warm IRI were administered with recombinant AIM (rAIM), kidney 

function and survival was markedly rescued [213]. Hence, testing the therapeutic benefits 

of rAIM in renal transplantation is timely and has the potential to improve graft survival 

given the impact of DGF (and IRI) on the kidney graft.    

Taken together, rapid removal of cellular debris is vitally important in mitigating graft 

damage and inflammation following renal transplantation. Large bodies of work support 

KIM-1 as a potential target for therapeutic intervention in mitigating tissue injury 

following native renal warm IRI. However, the extent to which targeting KIM-1 and or 

AIM in a setting of renal transplantation where both warm and cold ischemia occurs still 

remains to be explored. 
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1.5 Rationale and Objectives  

1.5.1 Rationale  

Renal transplantation remains the optimal treatment option compared to dialysis for 

patients suffering from kidney failure evidenced by marked improvements to health, 

quality of life, and overall survival [7]. However, the major limitation is the paucity of 

donor kidneys while the demand for kidney transplants is increasing. In 2013, out of the 

3,300 Canadians on the kidney transplant waiting list, approximately 90 patients died 

while waiting [5]. Moreover, due to the finite lifespan of the graft, about 30% of 

transplant recipients require more than one transplant within their lifetime [18]. Taken 

together, in the face of a constricted supply pool, coupled with a steadily rising demand 

of donor kidneys, therapies that seek to minimize graft damage and ultimately prolong 

the longevity of kidney grafts are vitally important. 

Current knowledge describes that IRI, an avoidable consequence of kidney 

transplantation process, results in DGF which ultimately imposes a negative impact of the 

graft longevity and overall survival [47, 54]. Apoptotic and necrotic cell death is a 

hallmark of IRI due to depletion of ATP and production of ROS resulting in deleterious 

effects on the graft via necroinflammation [107, 113, 216]. Thus, one key strategy to 

maximize transplantation success is to mitigate IRI-induced tissue injury, or promote 

tissue repair following IRI [57].  

Upregulation of KIM-1, a biomarker of renal tubular injury, on proximal TECs protect 

against native renal warm IRI, restoring renal dysfunction, injury and overall mortality in 
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mice via the clearance of dying cells [164, 175]. However, the role of donor KIM-1 in 

renal transplantation where both warm and cold IRI are present has not been explored. 

The objective of my thesis was to understand the multifactorial roles of KIM-1 in injury, 

tissue repair, and inflammation following renal transplant IRI and to test whether KIM-1 

can be targeted for potential therapeutics. Finally, I also sought to translate our findings 

to clinical scenario by determining the functional consequences of naturally occurring 

genetic variants of KIM-1 and their association with clinical DGF. 

1.5.2 Objectives  

Objective 1. Determine whether donor KIM-1 expression is protective during syngeneic 

renal transplantation where severe cold and warm IRI is present using a murine model of 

renal transplantation (alloantigen-independent i.e. IRI).   

Objective 2. Determine whether targeting the KIM-1 pathway to enhance the clearance 

of dead cell/debris via administration of recombinant AIM ameliorates IRI-induced 

pathology in a murine model of renal transplantation.  

Objective 3. Investigate whether 3 coding variants of KIM-1 that occur in high frequency 

in the human population alter KIM-1 expression and/or its phagocytic function.  

Objective 4. Determine whether the 3 KIM-1 variants (Objective 3) are associated with 

increased risk of delayed graft function in human deceased donor kidney transplantation.  
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2.1 Introduction 

Renal transplantation offers improved survival and quality of life compared to staying on 

dialysis [1]. However, cold-ischemic reperfusion injury (cIRI) is unavoidable with renal 

transplantation and contributes to overall length of hospitalization, risk of acute rejection, 

and premature graft loss [2, 3]. Renal proximal tubular epithelial cells (PTECs) are highly 

susceptible to ischemic injury as they comprise more than 70% of renal parenchymal 

cells; PTECs also have high energy needs and possess poor glycolytic capacity [4]. Initial 

injury is caused by ATP depletion, but subsequent activation of innate and adaptive 

immune pathways leads to secondary graft damage [5]. Though kidneys have tremendous 

capacity for repair, severe injury and/or unregulated inflammation can hinder this ability 

[6].  

The passive release of danger-associated molecular patterns (DAMPs, e.g. HMGB1) 

from uncleared apoptotic (that undergo secondary necrosis) and necrotic cells activate 

renal parenchymal and innate immune cells via pattern recognition receptors (PRRs) [7]. 

This can lead to the production of pro-inflammatory cytokines (i.e. IL-1 and IL-1) and 

other mediators that further propagate tissue damage [8] and cell death by initiating an 

auto-amplification loop [9, 10]. In addition, tubular obstruction from extrusion of dying 

PTECs into the lumen can further contribute to renal dysfunction in IRI [11]. HMGB1 is 

released into the circulation from many types of allografts after transplantation and 

inhibiting its function has been shown to dampen alloresponses and even prolong graft 

survival in several pre-clinical models [12-14].  
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Kidney Injury Molecule-1 (KIM-1, also known as TIM-1 [15]) is a type 1 transmembrane 

glycoprotein that is upregulated on renal TECs following injury [16]. We and others have 

previously reported that KIM-1 is a phosphatidylserine (PS) receptor expressed on 

PTECs, transforming them into semi-professional phagocytes for neighboring apoptotic 

and necrotic cells [17-19]. Importantly, primary PTECs are entirely dependent on KIM-1 

for efferocytosis [19]. While KIM-1 can directly bind and clear apoptotic cells expressing 

PS [17], the binding and clearance of necrotic cells by PTECs requires the serum protein 

(opsonin), Apoptosis Inhibitor of Macrophages (AIM/CD5L), which is freely filtered by 

the kidney during acute kidney injury (AKI) [18]. KIM-1 expression, or lack thereof, 

likely does not contribute to renal pathology in native conditions, as no differences in 

kidney function or pathology between wild-type and KIM-1 deficient mice were observed 

prior to IRI induction [20]. Work by our group and that of Bonventre confirmed that, 

compared to wild-type mice, both KIM-1 deficient mice [20] and mice expressing a 

mucin domain deletion (mutant) [21] are more prone to ischemic acute kidney injury 

owing to two major mechanisms triggered by KIM-1 signaling upon engagement of 

KIM-1 (on PTECs) by apoptotic cells or debris: (1) Initiation of an anti-inflammatory 

program in PTECs mediated via interaction of KIM-1 with p85 and subsequent PI3K-

dependent down-modulation of NF-κB [21]; (2) Inhibition of harmful G12 activation by 

reactive oxygen species [20].  These studies suggested that KIM-1 primarily protected 

mice from AKI by mediating intracellular signaling in PTECs. 

Here we present new evidence of an essential role for donor-KIM-1 in regulating 

systemic and local inflammation by preventing the release of HMGB1 from necrotic cells 

and thereby protecting against transplant-related cIRI. The pathophysiology of tissue 
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damage and its consequences to the host in the setting of renal transplantation is 

fundamentally different from that of native kidney IRI (e.g. cold storage, multiple 

episodes of warm ischemia, alloimmunity) [22, 23]. In addition, renal transplantation 

affords a unique opportunity for targeted therapy for AKI because: (1) The timing of 

initial injury is known in advance; (2) there are multiple stages of injury and delivery for 

therapeutics (in the donor, storage solution, and/or the recipient). Therefore, we 

investigated the role of graft KIM-1 in a syngeneic (life-sustaining) murine renal 

transplantation model [24] with the ultimate aim of translating our findings to the clinic.  

2.2 Materials and Methods  

2.2.1 Animals 

Wild-type C57BL/6 mice were obtained from the Charles Rivers Laboratory. C57BL/6 

KIM-1 deficient mice (KIM-1-/-) were obtained from Dr. Andrew N. J. McKenzie (MRC 

laboratory of Molecular biology, Cambridge, UK). KIM-1 deficient mice were generated 

by targeted disruption of exon 2 of mouse havcr1-/- gene in mouse embryonic stem cells 

as described previously [25]. All animal procedures were pre-approved by Western 

University animal use subcommittee in accordance with the regulations of the Canadian 

Council on Animal Care. 

2.2.2 Renal transplantation  

Male KIM-1+/+ C57BL/6 recipient mice were bilaterally (sequentially) nephrectomized 

and transplanted with a single donor kidney from male KIM-1+/+ or KIM-1-/- C57BL/6 
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mice in a single procedure [26]. This is a survival model. Donor kidneys were exposed to 

35 min of cold ischemia. Mice with weight loss of 15% or clinical deterioration were 

euthanized according to animal care protocols. Animals were followed 7 days post-

transplant. Survival and renal function (serum creatinine) were monitored at 1, 3, and 7 

days post-transplant. For each group, mice were euthanized at each time point to observe 

and evaluate the graft. 

2.2.3 Primary tubular epithelial cell culture  

Primary tubular epithelial cells were cultured at 37C in 5% (vol/vol) CO2 by only 

collecting the renal cortex of KIM-1 deficient and WT C57BL/6 mice. These cells were 

maintained in DMEM (Invitrogen, Carlsbad, CA) and F12 (Invitrogen, Carlsbad, CA) 

containing 10% FBS (Invitrogen, Carlsbad, CA), 1% Penicillin-streptomycin (Invitrogen, 

Carlsbad, CA), 0.1% ITS (Invitrogen, Carlsbad, CA), 0.1% EGF (Peprotech, Rocky Hill, 

NJ) and hydrocortisone (Thermo Fisher Scientific, Rockford, IL). Primary TECs were 

used up until one passage. Hallmark appearance of TECs were confirmed by visual 

analysis. 

2.2.4 In vivo HMGB1 detection 

Post-transplant serum was collected and serum HMGB1 was quantitatively determined 

using Sandwich-enzyme immunoassay kit in accordance with its protocol (Shino-Test 

Corporation, Tokyo, Japan). Multiskan GO software was used for quantification (Thermo 

Fisher Scientific, Rockford, IL).  
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2.2.5 Phagocytosis assay/ In vitro HMGB1  

Thymocytes were isolated from C57BL/6 mice at 3-6 weeks old. To induce apoptotic 

cells, thymocytes were placed under UV light for 5 minutes followed by overnight 

incubation at 37C in 5% (vol/vol) CO2 in DMEM media containing 1% Penicillin-

streptomycin and 10% FBS. To induce necrotic cells, thymocytes were heat-killed by 

incubating the cells at 65C for 16 minutes in PBS. For the phagocytosis assay, 

approximately 1x106 primary TECs from Kim-1-/- and Kim-1+/+ C57BL/6 mice were 

plated and subsequently co-cultured with either 1x106 healthy, apoptotic, or necrotic 

thymocytes. After 24 hours of incubation at 37C in 5% (vol/vol) CO2, the conditioned 

media were collected and analyzed for HMGB1 using western blots.  

2.2.6 Western blot  

Tissue sections were stored in 4% SDS. Pierce BCA Protein Assay Kit (Thermo Fisher 

Scientific, Rockford, IL) was used to quantify isolated proteins from whole tissue 

sections. We incubated the blots with mouse polyclonal KIM-1 (R&D Systems Inc., 

Minneapolis, MN) and mouse monoclonal GAPDH antibody (Santa Cruz Biotechnology, 

Santa Cruz, CA). Western blots were developed and quantified using the FluorChem M 

system (ProteinSimple, San Jose, CA).  

2.2.7 RNA isolation and polymerase chain reaction  

Tissue sections were collected in TriPure isolation reagent (Roche Diagnostic, Basel, 

Switzerland) and total RNA was extracted. qSCRIPT cDNA SuperMix (Quanta 
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Biosciences, Gaithersburg, MD) was used to generate cDNA. Real-time polymerase 

chain reaction (RT-PCR) was completed using StepOnePlus Real-Time PCR System 

(Applied Biosystems, Waltham, MA) and SYBR Green (Thermo Fisher Scientific, 

Rockford, IL) detection was used to quantify relative expression. Primers (Integrated 

DNA Technologies, Coralville, IA) used were: IL-6: F-5’-TACTCCTTCCTACCCCA 

ATTTCC-3’ R- 5’- TTGGTCCTTAGCCACTCCTTC-3’; MIP-2: F-5’-CAAAGGCA 

AGGCTAACTGACC-3’ R- 5’ACATCAGGTACGATC CAGG C-3’; TNF-: F-5’-

AGCCCACGTCGTAGCAAAC-3’ R- 5’ACAAGGTACAACCCATC GGC-3’. 

GAPDH: F- 5’ TCAGCATCTCTAAGCGTGGT-3’ R-5’-ATGTTGTCTTC 

AGCTCGGGA-3’ was used as the housekeeping gene.   

2.2.8 Histology, immunohistochemistry  

Tissue sections were stored in 10% formalin before sectioning. A renal pathologist, 

blinded to the groups, scored the tissue sections that were stained with hematoxylin and 

eosin (H&E) using a previously described semi-quantitative method [20]. Scoring 

included: acute tubular necrosis (ATN) and tubular obstruction. For ATN, sections were 

assessed for the presence of tubular necrosis, pyknotic nuclei, formation of proteinaceous 

casts, brush border damage, proximal dilation and interstitial widening. Each section was 

given an ATN score out of 5; 0= 0%, 1= <10%, 2= 11-25%, 3= 26-45%, 4= 46-75%, 5= 

> 75% ATN [18]. Degree of tubular obstruction was measured by looking at intraluminal 

debris of dead PTECs. Similarly, each section was given a score out of 5, with the same 

scoring margins as ATN. Immunohistochemistry was performed on sections to visualize 

apoptotic cells using anti-cleaved caspase-3 (Abcam, Cambridge, MA), infiltration of 
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neutrophils using anti-myeloperoxidase (Abcam, Cambridge, MA), and macrophages 

using anti-CD68 (Abcam, Cambridge, MA).  

2.2.9 Immunofluorescence  

Ethidium homodimer (EHD; Invitrogen, Carlsbad, CA) was used to quantify necrosis in 

kidney graft sections. 5M EHD was injected into the renal artery for 10 minutes at a 

speed of 1mL/min, followed by another 10 minutes of PBS at the same speed [14]. 

Frozen sections were used, and areas of necrosis were quantified using a FLUOVIEW 

X831 confocal microscopy (Olympus, Tokyo, Japan). A total of 5 random non-

overlapping sections of the outer cortex were taken per slide. Quantification was done 

using ImageJ software (National Institutes of Health, Bethesda, MD). 

2.2.10 Statistical analysis   

Log-rank test was used to determine the graft survival. One-way ANOVA was used for 

multiple comparisons whereas t-test was used for unpaired values. Mann-Whitney test 

was used when comparing nonparametric data. All these tests were carried out using 

GraphPad Prism software (GraphPad Software Inc., La Jolla, CA). All data are presented 

as means ± SEM, and p < 0.05 was used for significance.  
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2.3 Results and Discussion  

We characterized the expression of KIM-1 following transplantation. Graft KIM-1 

expression was persistently upregulated even after 7 days post-transplantation, peaking 

by day 1 post-transplant (Figure 2-1A, 1B). We then observed that absence of KIM-1 

expression in the donor kidney resulted in significantly greater renal dysfunction as 

indicated by higher serum creatinine values on day 3 (161.8 ± 39.8 vs. 15 ± 3.082 

mol/L, p=0.0104; Figure 2-1C). Recipients of KIM-1-/- grafts also exhibited 

significantly reduced 7-day survival compared to mice receiving wild-type grafts (5/5 vs. 

3/12, p=0.0105; Figure 2-1D).  
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Figure 2-1. KIM-1 expression on PTECs improves early graft function and survival. 

C57BL/6 KIM-1 deficient or wild-type (WT) donor kidneys subjected to cold storage (35 

minutes) were transplanted into syngeneic WT recipients. (A) KIM-1 protein expression 

was confirmed in the kidney grafts of WT donor kidney recipients using Western blots. 

GAPDH was used as a loading control.  (B) Average densitometric ratio of Western blots 

showing KIM-1 expression (n=3). (C) Serum creatinine was measured as a marker of 

renal function at days 1 and 3 post-transplantation (*p < 0.05). (D) Survival of the renal 

transplant recipients. Recipients of the KIM-1 deficient donor kidneys are denoted by 
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dotted line (---), and recipients of WT donor kidneys are denoted by straight bold line 

(*p=0.0105, log- rank, n=5-12/group).  

 

Given the essential role of KIM-1 in the phagocytic clearance of apoptotic [27] and 

necrotic cells in the kidney [19], we expected that the poor transplant outcomes 

associated with donor KIM-1 deficiency would be associated with increased tubular cell 

apoptosis and necrosis (secondary necrosis of uncleared apoptotic cells [27]) early after 

transplantation. Mice transplanted with KIM-1 deficient donor kidneys exhibited 

increased numbers of both apoptotic (16.67 ± 3.333 vs. 3.75 ± 2.394, p= 0.0018; Figure 

2-2A) and necrotic cells (11.5 ± 1.041 vs. 0.5333 ± 0.1202, p= 0.0005; Figure 2-2B) 

compared to mice transplanted with wild-type donor kidneys. In addition, we looked at 

acute tubular necrosis (ATN) to determine the degree of graft injury. As shown in Figure 

2-2C, KIM-1 deficient donor grafts revealed significantly greater ATN scores compared 

to the wild-type grafts on day 3 post-transplantation (4 vs. 0.5, p=0.0286; Figure 2-2C). 

We also observed persistent tubular obstruction, which contributes to kidney dysfunction 

[11], more so in the KIM-1-/- grafts compared to the KIM-1+/+ grafts (3.5 vs. 0.5, 

p=0.0286; Figure 2-2D). A lack of any difference at day 1 here is likely explained by the 

fact that KIM-1 does not affect PTECs death due to cIRI [20, 21], but rather the removal 

of debris after acute injury.  
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Figure 2-2. Renal tubular epithelial cell death and graft injury between the two 

donors following syngeneic renal transplantation.  

(A) Apoptotic tubular cells were quantified using cleaved caspase-3 staining for early 

apoptotic cells at days 1 and 3 post-transplantation. Apoptotic cells were counted and 

averaged from 5 different fields at 400x magnification for each section (**p < 0.01). (B; 

Top) Necrotic tubular cells were quantified using EHD. (B; Bottom) 

Immunofluorescence images were taken at 400x magnification at day 3 post-

transplantation (***p < 0.001). (C-E) Formalin fixed tissue sections were stained with 

H&E and were scored by a renal pathologist blinded to their genotype. Slides were based 

on a scoring system ranging from 0-5. 0= none, 1= < 10%, 2=11-25%, 3=26-45%, 4=46-

75%, and 5= >75%. (*p < 0.05, **p < 0.01, ***p < 0.001, n=3-5/group). (C) ATN score 

(D) Tubular obstruction score (E) Images of H&E stained tissue sections at 3 days post-

transplantation.  
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An important, yet unanswered, question that remains is whether endogenous clearance of 

apoptotic and necrotic cells, and reduction in the burden of secondary necrotic or necrotic 

cells [28], would lead to a decreased release of DAMPs [27] and tissue inflammation. 

Furthermore, while mice carrying global defects in efferocytosis pathways are known to 

exhibit systemic autoimmunity [29, 30], systemic inflammation has not been attributed to 

such defects during acute tissue injury. When we analyzed the grafts for markers of 

inflammation, we noted that the absence of KIM-1 exacerbated the intra-graft 

inflammatory response. There was significantly more granulocyte infiltration at both days 

3 (1.2 ± 0.7348 vs. 0 ± 0, p=0.0060) and 7 (2.333 ± 2.333 vs,0 ± 0, p=0.0156; Figure 2-

3A). Similarly, there was significantly higher macrophage infiltration at day 7 post-

transplantation (10 ± 1.225 vs. 4.75 ± 0.4787, p=0.0072; Figure 2-3B) in KIM-1-/- vs. 

wild-type grafts. In parallel, KIM-1-/- grafts also exhibited significantly greater expression 

of IL-6 (45.08 ± 13.07 vs. 11.32 ± 0.8026, p=0.0419) and MIP-2 (108.6 ± 22.5 vs. 

29.48 ± 13.22, p=0.0231; Figure 2-3C) compared to mice transplanted with wild-type 

grafts at day 3 following transplantation. 



82 

 

 

 

 

 

 

 

 

 



83 

 

Figure 2-3. Absence of KIM-1 in the donor kidney exacerbates inflammation 

following syngeneic renal transplantation. 

(A-B) Tissue sections were stained for MPO or CD68 to detect graft-infiltrating 

neutrophils and macrophages respectively, at days 1, 3 and 7 post-transplantation. The 

images were visualized at 400x magnification. (A) Number of MPO+ neutrophils/HPF 

(*p < 0.05, **p < 0.01, n=3-5/group). (B; Top) Number of CD68+ macrophages /HPF 

(**p < 0.01. n=3-5/group). (B; Bottom) Immunohistochemistry images of kidney graft 

sections staining CD68 at day 7 post-transplantation. (C) Measurement of pro-

inflammatory cytokines (IL-6, MIP-2, and TNF-) on day 3 post-transplantation using 

quantitative RT-PCR. Data were normalized to GAPDH gene expression (*p < 0.05, 

n=4). 
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To formally test if the inability of PTECs to clear dying cells would lead to increased 

passive release of HMGB1, we conducted an in vitro study where either healthy, 

apoptotic (UV light-induced) [31] or necrotic (heat-killed) [19] cells were fed to primary 

PTECs isolated from the kidneys of either KIM-1-/-  or KIM-1+/+ mice, as previously 

shown [20], and analyzed the conditioned media for HMGB1 after 24h (Figure 2-4A). 

Virtually, none to very little HMGB1 was detected by Western blot when healthy cells 

were fed to PTECs. In contrast, the conditioned medium from KIM-1-/- PTECs fed with 

apoptotic cells (that underwent secondary necrosis after 24h) had significantly higher 

relative ratio level of HMGB1 compared to wild-type PTECs (3.568 ± 0.7507 vs. 1 ± 0, 

p= 0.0268; Figure 2-4B). As expected, when necrotic cells were fed to PTECs of either 

genotype, no significant difference in the level of HMGB1 was detected, since we 

previously showed that AIM (opsonin) is required for KIM-1-mediated clearance of 

necrotic cells [18]. Next, we determined if the phagocytic clearance of dying cells by 

KIM-1 would have any consequences on systemic HMGB1 levels.  We performed an 

enzyme-linked immunosorbent assay to quantify serum HMGB1 in vivo post-transplant. 

Similar to our in vitro study, mice transplanted with the KIM-1 deficient kidneys 

exhibited significantly greater serum HMGB1 on days 1 (50.75 ± 3.473, vs.31.67 ± 

3.844, p= 0.0146), 3 (41.33 ± 1.856, vs. 23 ± 3.512, p= 0.0099), and 7 (59.67 ± 9.171, vs. 

27.33 ± 4.256, p=0.033; Figure 2-4C) compared to mice transplanted with wild-type 

kidneys.  

During ischemic kidney injury, iNos-positive proinflammatory (M1) macrophages are 

recruited into the kidney in the first 1-2 days within injury, whereas arginase-1 and 
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mannose receptor-positive, (repair) noninflammatory (M2) macrophages predominate at 

later time points.  

Given that previous work demonstrated that HMGB1 can facilitate M1 polarization 

during acute kidney injury [32], we therefore investigated whether the elevated HMGB1 

levels in the KIM-1-/- mice correlated with increased M1 polarization in respective kidney 

grafts. Interestingly, KIM-1 deficient donor grafts had significantly greater M1: M2 (CD 

80: CD 206) ratio compared to the wild-type donor grafts on both days 3 (712.1 ± 166.2 

vs. 220.7 ± 58.66, p=0.0494) and 7 (260.3 ± 27.42, vs. 158.3 ± 21.43, p=0.0428; Figure 

2-4D) following transplantation. 
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Figure 2-4. Absence of KIM-1 in the donor kidney leads to increased release of 

HMGB1. 

(A-B) PTECs isolated from either KIM-1 deficient or WT mice were fed either 

thymocytes that were healthy, apoptotic, or necrotic. After 24 hours, conditioned media 

was collected and HMGB1 release was measured. (A) HMGB1 release was confirmed in 

the conditioned media using Western blots. (B) Relative quantification of Western blots 

(*p <0.05, n=3). (C) In vivo serum HMGB1 was quantified using an ELISA kit at days 1, 

3 and 7 days post-transplantation (*p < 0.05, **p < 0.01, n=3-4). (D) M1: M2 

macrophage ratio using markers CD80 and CD206 respectively, on days 1, 3 and 7 post-

transplantation (*p < 0.05, **p < 0.001, n=3). 
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Renal replacement therapy is absolutely needed for patients with end-stage renal disease, 

and renal transplantation is considered the best treatment [1]. However, the lifespan of 

the kidney grafts is limited as they are subjected to persistent inflammation and fibrosis 

due to repeated injury [1]. Graft inflammation can impair the induction of transplant 

tolerance and enhances acute and chronic rejection [12]. Emerging data suggest that 

necroinflammation triggered by cIRI may sustain graft inflammation via activation of 

innate and adaptive (and alloimmune) immune pathways [33, 34]. DAMPs, specifically 

HMGB1, have been shown to be a key mediator of this process [9, 14, 35].  

HMGB1, an endogenous nuclear factor normally contained within the nucleus but 

released when a cell undergoes necrosis or secondary necrosis, has been implicated in the 

pathogenesis of IRI by stimulating TLR4 signaling. Through TLR4 signaling, HMGB1 

has been reported to have a proinflammatory role during IRI, leading to organ damage 

including the kidneys [9].  

Kidney Injury Molecule-1 (KIM-1) is a type 1 transmembrane glycoprotein that is 

specifically upregulated on the apical membrane of renal proximal tubular epithelial cells 

(PTECs) following AKI [16]. Given our previous work demonstrated that KIM-1 

upregulation on PTECs is required for clearing apoptotic or necrotic cells during acute 

injury [18, 19], this study has uncovered a fundamental role for donor KIM-1-mediated 

efferocytosis in inhibiting local and systemic necroinflammation.  

In summary, we were the first to elucidate the protective role of donor KIM-1 in 

mitigating tissue damage and cell death in post-renal transplant in a life-saving syngeneic 

murine model. Since delayed graft function is a risk factor for rejection and poor long-
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term graft survival [3, 36], we provide the first evidence to support the use of therapeutic 

strategies to enhance the clearance of apoptotic and necrotic cells [18], or HMGB1 

signaling [35], during renal transplantation to improve overall graft survival. 
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Chapter 3  

 

 

 

3 Recombinant apoptosis inhibitor of macrophage 

protein reduces delayed graft function in a 

murine model of kidney transplantation 
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3.1 Introduction 

Renal ischemia reperfusion injury (IRI) is an unavoidable consequence of renal 

transplantation. While most grafts will recover from IRI, prolonged cold and warm 

ischemia may lead to delayed recovery and impaired graft function, with clinically 

important consequences.  Delayed graft function (DGF), defined as need for dialysis 

within 7 days of renal transplantation, affects 20-50% of deceased donor grafts (DCD) 

[1]. DGF not only results in acute morbidity and increased cost, but is increasingly 

recognized as a risk factor for rejection and long-term graft loss [2, 3]. As prolonged 

ischemia times are often unavoidable, especially with donation after cardiac death, a 

better understanding of the mechanisms leading to tissue damage during IRI is needed in 

order to develop effective therapeutic agents.  

During renal IRI, ATP depletion and reactive oxygen species production leads to 

apoptosis and/or, more predominantly, necrosis of the renal tubular epithelial cells 

(TECs) [4-7]. To add insult to injury, dying cells lose membrane integrity, releasing 

intracellular damage associated molecular patterns (DAMPs) into the extracellular milieu, 

which trigger inflammation and promote further cell death.  This positive-feedback loop 

of inflammation and cell death – or necroinflammation – exacerbates tissue damage [8] 

and potentiates both alloimmune - and non-alloimmune injury [7-9].  Although kidneys 

have marked regenerative capacity, such unregulated inflammation and/or severe injury 

can lead to irreversible allograft fibrosis [10, 11]. Thus, positing therapies that target 

enhancing clearance of dying cells which would dampen the release of danger signals 



99 

 

would break the feedback loop and may lead to protection against both graft damage 

from IRI and alloimmune injury. 

Kidney Injury Molecule-1 (KIM-1) is an endogenous transmembrane glycoprotein 

transiently upregulated on proximal TECs during renal injury [12].  KIM-1 upregulation 

on renal TECs during injury transforms them into semi-professional phagocytes capable 

of clearing apoptotic cells (efferocytosis) [13], via direct binding of KIM-1 to 

phosphatidylserine on apoptotic cells. Importantly, efferocytosis by proximal TECs is 

solely dependent on KIM-1 [14]. We have previously reported that compared to wild-type 

mice, KIM-1 deficient or KIM-1 mutant (KIM-1  mucin) mice exhibited greater renal 

tissue damage, inflammation and mortality when their native kidneys were subjected to 

warm IRI [14, 15]. In a different study, when we exposed donor kidneys from KIM-1 

deficient to both warm and cold ischemia and then transplanted them into wild-type mice. 

We observed greater renal and systemic inflammation as well as increased susceptibility 

to renal dysfunction and tissue damage, compared to transplanted kidneys from wild-type 

donors [16]. Taken together, these studies suggest that KIM-1 plays a protective role in 

mitigating tissue damage by inhibiting necroinflammation [16].  

While KIM-1 expression confers TECs with the capacity for direct phagocytosis of 

apoptotic cells, clearance of necrotic cells by KIM-1 expressing TECs is enhanced 

through the opsonization by the serum protein, apoptosis inhibitor of macrophage (AIM), 

also known as CD5L [17].  AIM is produced by macrophages to support their survival 

and circulates in the blood at high concentrations [18, 19]. Previous studies have 

delineated the role of AIM in several conditions [18, 20]. At steady state, AIM is bound 

to the much larger circulating IgM pentamer complexes, effectively preventing 
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trafficking into the renal tissue architecture [17, 19-21]. However, during acute kidney 

injury, AIM undergoes cleavage and dissociates from IgM pentamers through an 

unknown mechanism [17, 19]. It is then filtered by the glomerulus and accumulates on 

necrotic debris within renal tubules in both humans and in mice [17, 19, 21]. We have 

previously demonstrated that, during moderate warm IRI of native kidneys, filtered AIM 

accelerated renal recovery and improved mice survival in a KIM-1 dependent fashion 

[17]. However, the anti-inflammatory and therapeutic effects of rAIM in renal 

transplantation has not been studied. 

Although KIM-1 expression is essential in the protection of sustained kidney damage and 

function following renal transplant IRI, early kidney pathology and dysfunction was still 

evident (Chapter 2) [16].  To this end, we tested whether administration of recombinant 

AIM can be used as a potential therapeutic agent to further boost the protective effect of 

KIM-1 and ultimately improve renal recovery after transplantation of kidneys exposed to 

severe warm and cold ischemia.  If found to be beneficial, exogenous AIM administration 

could potentially be used to reduce incidence of DGF after transplantation of donor kidneys 

which have inevitably been exposed to prolonged ischemia, thus improving long-term graft 

outcomes in humans. We hypothesized that administration of exogenous recombinant AIM 

would augment KIM-1-mediated clearance of necrotic cells, mitigating 

necroinflammation, tissue damage, and renal dysfunction after transplantation of kidneys 

exposed to severe IRI.  
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3.2 Materials and Methods  

3.2.1 Renal transplantation/ AIM administration 

We performed single kidney transplants of male C57BL/6 (B6) mice kidneys into male 

B6 recipients following bilateral nephrectomy [22, 23]. Donor kidneys were exposed to 

approximately 60 min of warm ischemia and 35 min of cold ischemia during each 

procedure. Following kidney transplantation, recipients were administered a single 200 l 

dose of either mouse rAIM (2mg/ml), or an equal volume of PBS intravenously via the 

tail vein. Dosage of rAIM was previously determined [17]. Murine rAIM was generated 

as previously described and provided by Dr. Miyazaki [17, 21]. All recipient mice were 

viable at 2 days post-transplantation at which point they were euthanized, and graft tissue 

and serum were collected.  The primary outcome was renal function at 2 days and was 

quantified by serum creatinine as previously described [16]. We assessed tissue damage 

and local inflammation by histology; pro-inflammatory cytokine (IL-6, MIP-2, IL-1) 

expression in the graft; and systemic inflammation by serum HMGBI.  

B6 mice were obtained from the Charles Rivers Laboratory. All animal procedures were 

pre-approved by Western University animal use subcommittee in accordance with the 

regulations of the Canadian Council on Animal Care. 

3.2.2 Histology/ immunohistochemistry  

A renal pathologist, blinded to the treatment groups, scored the degree of tubular necrosis 

and tubular obstruction on tissue H&E sections using a previously described semi-
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quantitative method as follows:  0 = 0%, 1 = <10%, 2 = 11-25%, 3 = 26-45%, 4 = 46-

75%, 5 = >75% [14]. Immunohistochemistry was performed on sections to visualize 

apoptotic cells using anti-cleaved caspase-3, infiltration of neutrophils using anti-

myeloperoxidase antibody, and macrophages using anti-CD68 antibody. All antibodies 

were obtained from Abcam, Cambridge, MA. Quantification was done by counting and 

averaging from 5 different fields at 400x magnification for each section. 

3.2.3 Inflammatory markers  

Tissue sections were collected in TriPure isolation reagent (Roche Diagnostic, Basel, 

Switzerland) and total RNA extracted. qSCRIPT cDNA SuperMix (Quanta Biosciences, 

Gaithersburg, MD) was used to generate cDNA. Real-time polymerase chain reaction 

(RT-PCR) was completed using StepOnePlus Real-Time PCR System (Applied 

Biosystems, Waltham, MA) and SYBR Green (Thermo Fisher Scientific, Rockford, IL) 

detection was used to quantify relative expression. Primers (Integrated DNA 

Technologies, Coralville, IA) used were: IL-6: F-5’-TACTCCTTCCTACCCCA 

ATTTCC-3’ R- 5’- TTGGTCCTTAGCCACTCCTTC-3’; MIP-2: F-5’-CAAAGGCA 

AGGCTAACTGACC-3’ R- 5’ACATCAGGTACGATC CAGG C-3’; and IL-1: F-5’- 

ACCTAGCTGTCAACGTGTGG -3’ R-5’ TCAAAGCAATGTGCTGGTGC-3’.  We 

used GAPDH: F- 5’ TCAGCATCTCTAAGCGTGGT-3’ R-5’-ATGTTGTCTTC 

AGCTCGGGA-3’as an internal control.   

Serum HMGB1 was quantitatively determined using Sandwich-enzyme immunoassay kit 

in accordance with its protocol (Shino-Test Corporation, Tokyo, Japan). Multiskan GO 

(Thermo Fisher Scientific, Rockford, IL) was used for quantification.  
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3.2.4 Cell cultures  

Human Embryonic Kidney 293 (HEK 293) cells and mouse kidney (Renca) cells were 

obtained from America Type Culture Collection (ATCC, Manassas, VA) and cultured at 

37C in 5% (vol/vol) CO2 incubator. HEK 293 cells stably expressing human KIM-1 

pcDNA (HEK293 -pcDNA) were generated by transfecting with plasmid construct 

encoding human KIM-1 using Lipofectamine® 2000 (Life technologies. Thermo Fisher 

Scientific, Rockford, IL).  Stable cell lines were maintained with geneticin (G418) sulfate 

(Santa Cruz Biotechnology, Santa Cruz, CA) supplemented in DMEM (Invitrogen, 

Carlsbad, CA) containing 10% FBS (Invitrogen, Carlsbad, CA), and 1% Penicillin-

streptomycin (Invitrogen, Carlsbad, CA).  Renca cells stably expressing mouse KIM-1 

were generated by transducing with Lenti ORF particles, Havcr1 (Myc-DDK-tagged) or 

LentiORF control particles (OriGene Technologies, Rockville, MD). These stable cell 

lines were maintained with puromycin dihydrochloride (Sigma-Aldrich) and cultured in 

RPMI-1640 medium containing 10% FBS, 5% PS, 0.1mM non-essential amino acids 

(ThermoFisher Scientific, Waltham, MA), 1 mM sodium pyruvate (ThermoFisher 

Scientific), and 2 mM L-glutamine (ThermoFisher Scientific). Hallmark appearance of 

these cells was confirmed by visual analysis. 

3.2.5 Phagocytosis assay/ Flow cytometry  

We collected thymocytes from B6 mice and heat-killed them by incubating the cells at 

65C for 20 minutes to induce necrosis. Necrotic thymocytes were verified by flow 

cytometry analysis showing double positive staining for propidium iodide (Biolegend, 
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San Diego, CA) and annexin V (Biolegend, San Diego, CA).  Necrotic thymocytes were 

labeled with human rAIM (100 μg/ml) (R&D systems, Minneapolis, MN) at 37C for 1 

hour, or nothing. We then performed phagocytosis assay as previously described [17].  

Briefly, approximately 1x106 HEK 293 cells were plated and fed 3x106 necrotic 

thymocytes with or without human rAIM, or no thymocytes (control).  After incubation 

for 90 minutes at 37C in 5% CO2 incubator, cells were placed on ice to reduce non-

specific binding for 30 minutes, washed 3 times with ice-cold PBS and harvested. The % 

phagocytosis, which represents the number of tubular cells that have phagocytosed the 

necrotic cells, was analyzed using BD LSR II flow cytometer (BD Biosciences, San Jose, 

CA).  Similar procedure was performed using mouse Renca cells and mouse rAIM.  

3.2.6 Statistics   

Continuous variables (creatinine, inflammatory markers, % phagocytosis) and tissue 

injury scores were compared between groups using one-way ANOVA/ Student’s t- and 

Mann-Whitney U tests, respectively.  All analyses were performed with GraphPad Prism 

(GraphPad Software Inc., La Jolla, CA). All data are presented as means ± SEM; p-

values < 0.05 were considered statistically significant without adjustment for multiple 

comparisons.  
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3.3 Results 

3.3.1 Renal Function and Tissue Damage 

Recipient mice who received exogenous rAIM had significantly lower serum creatinine 

at 2 days following renal transplantation compared to those who received PBS controls 

(33.29 ± 10.83 vs. 192.7 ± 27.86 µmol/L, p=0.0019; Figure 3-1A). The rAIM treated 

mice also exhibited significantly less tubular necrosis (1.5 vs. 3.5, p=0.0286; Figure 3-

1B), less tubular obstruction (1.5 vs. 3.5, p=0.0286; Figure 3-1C and 3-1D), and less 

apoptotic tubular cell death compared to PBS treated mice (2.5 ± 0.866 vs. 6 ± 0.7071, 

p=0.0203; Figure 3-1E and 3-1F). 
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Figure 3-1. Administration of recombinant AIM improves graft function and 

mitigates graft damage. 

Donor kidneys were transplanted into B6 wild-type recipients. Following transplantation, 

recipients were injected I.V. with either 200 μl of rAIM (2mg/ml) or PBS. On day 2 post-

transplantation, mice were euthanized and (A) Serum creatinine was measured as a 

marker of renal function (B-D) Formalin-fixed tissue sections were stained with H&E 

and were scored in a blinded fashion. Scoring system: 0 = none, 1= <10%, 2 =11-25%, 3 

=26-45%, 4 =46-75%, and 5 = >75%. (B) ATN score, (C) tubular obstruction score (D) 

H&E sections (E) early apoptotic tubular cells were quantified. Positive staining for 

apoptotic cells were counted and averaged from 5 different fields at 400x magnification 

for each section (F) Images of H&E -stained tissue sections. *p<0.05, **<p<0.01, 

n=4~5/group.  
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3.3.2 Local and Systemic Inflammation 

Transplanted kidneys from mice treated with rAIM exhibited significantly less 

macrophage infiltration (2.25 ± 1.315 vs. 10.75 ± 1.493, p=0.0052; Figure 3-2A and 3-

2B) and granulocyte infiltration (3.5 ± 1.041 vs. 12 ± 2.041, p=0.01; Figure 3-2C and 3-

2D) compared to those from PBS treated mice. Transcript analysis of transplanted 

kidneys revealed that grafts from rAIM treated mice had significantly less expression of 

pro-inflammatory genes: IL-6 (1.478 ± 0.3042 vs. 25.61 ± 8.566, p=0.0306), MIP-2 

(19.79 ± 4.45 vs. 158.8 ± 57.65, p=0.0352), and IL-1 compared to grafts from PBS 

treated controls (39.71 ± 7.822 vs. 142.1 ±34.11, p=0.0264; Figure 3-2E). We also 

observed significantly decreased serum levels of HMGB1 in rAIM-treated mice 

compared to PBS-treated mice (22.75 ± 6.098 vs. 40.48 ± 4.564 ng/ml, p=0.0450; Figure 

3-2F).  
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Figure 3-2. Recombinant AIM administration alleviates local tissue and systemic 

inflammation following syngeneic renal transplantation. 

(A-D) Kidney tissue sections were stained for CD68 or MPO to detect graft-infiltrating 

macrophages and granulocytes, respectively. (A) Number of CD68+ macrophages/HPF. 

(B) Immunohistochemistry images of kidney graft sections staining CD68. (C) Number 

of MPO+ granulocytes/HPF. (D) Immunohistochemistry images of kidney graft sections 

staining MPO. (E) Measurement of pro-inflammatory cytokines (IL-6, MIP-2ɑ, and IL-

1β) using quantitative RT-PCR. Data were normalized to GAPDH gene expression. 

*p<0.05, **p<0.01, n=4/group. (F) Serum HMGB1 levels were quantified using ELISA. 

p= 0.1, n=4-6/group.  
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3.3.3 In vitro Phagocytosis 

Renca cells stably expressing murine KIM-1 were able to engulf necrotic cells 

significantly more in the presence of rAIM compared to without rAIM (17.7 ± 0.4726 vs. 

12.9 ± 0.781%, p=0.0063; Figure 3-3A). Phagocytosis was found to be KIM-1 dependent 

as Renca cells transfected with empty vector failed to clear necrotic cells. 

Immunophenotyping by flow cytometry confirmed that the phagocytic target cells were 

indeed necrotic cells as they were either double positive for annexin V and PI or single 

positive for PI (Figure 3-3B). KIM-1 expression by the stably transfected Renca cells was 

verified using Western blot (Figure 3-3C).  

Similarly, in the presence of rAIM, human kidney cells expressing KIM-1 exhibited 

significantly enhanced phagocytic activity of necrotic cells compared to controls (22.27 ± 

0.4333 vs. 13.53 ± 0.7753%, p=0.0006; Figure 3-3D). Analogous to mouse Renca cells, 

rAIM-mediated phagocytosis of necrotic cells was found to be dependent on KIM-1 

expression as non-KIM-1-expressing human kidney cells failed to exhibit increased 

clearance of necrotic cells in the presence of rAIM. KIM-1 expression on these cells was 

verified by Western blot (Figure 3-3E).  
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Figure 3-3. Recombinant AIM enhances the phagocytic uptake of necrotic cells by 

both KIM-1 expressing mouse and human kidney cells. 

Renca cells (mouse) or HEK293 (human) expressing KIM-1 or without KIM-1 were fed 

necrotic thymocytes with or without rAIM (A-C). (A) Renca cells (mouse) after a 90-

minute incubation, % phagocytosis was quantified using flow cytometry. (B) 

Immunotyping of necrotic cell populations. (C) Western Blots were performed 

confirming the expression of KIM-1 on Renca cells. (D) HEK 293 cells (human) after a 

90-minute incubation, % phagocytosis was quantified using flow cytometry. (E) Western 

Blots were performed confirming the expression of KIM-1 on HEK293 cells. Histograms 

are representative results of at least 3 independent experiments. All flow cytometry 

experiments were analyzed using Flowjo X software. **p<0.01, ***p<0.001.  
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3.4 Discussion 

AIM has been reported to be of therapeutic relevance in various conditions including 

obesity [18], autoimmune disease [24], and hepatocellular carcinoma [20]. Here, we 

demonstrate the therapeutic potential of rAIM against transplant-associated IRI using a 

clinically relevant model of kidney transplantation which incorporates severe forms of 

both warm and cold ischemia. We found that a single dose of rAIM given to transplanted 

mice almost completely normalized renal function at 48 h post-transplant and this was 

accompanied by markedly reduced tissue inflammation and damage compared to 

controls. Although AIM has been shown to protect against native renal warm IRI 

previously [17], our study is the first to elucidate the anti-inflammatory effect of AIM in 

a transplant IRI setting.  

As the name suggests, AIM was initially identified as an apoptosis inhibitor which 

ultimately supports the survival of macrophages [25]. Both humans and mice have 

relatively high levels of serum AIM (5g/ml and 2g/ml, respectively) and similar 

reported function [19]. With a half-life of 5 days for mice and 6 hours for humans, the 

majority of circulating AIM is bound to the Fc region of pentameric IgM (>500kDa), 

where one IgM pentamer houses one AIM. It is in this state where AIM is stabilized and 

not filtered, albeit inactive. It is likely that the interaction between AIM and IgM-Fc is 

due to the positively charged domain on the AIM protein being attracted to the negatively 

charged area in the IgM-Fc [21]. However, during kidney injury, AIM dissociates from 

IgM-Fc and is then filtered and accumulates on necrotic debris and interacts with KIM-1 

thereby enhancing the phagocytic ability of KIM-1 to clear the necrotic debris [17]. The 
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mechanism as to how AIM dissociates from IgM-Fc is still unknown, but one speculation 

may be that during kidney injury, altered homeostasis may disturb the charge differences. 

However, this has yet to be investigated. 

The main clinical manifestation of transplant IRI is DGF, resulting in increased 

morbidity, prolonged length of stay and increased resource utilization [1, 3].  Decreasing 

the incidence of DGF would thus be of major benefit. This is particularly true in the 

current era where the use of DCD kidney donors, which is associated with the highest 

rates of DGF, is approaching 20% in North America [26, 27]. To date, there are no 

effective therapies to prevent DGF.  Thus, if rAIM were to be equally effective in 

humans as it was in mice, the therapeutic implications are likely to be of great 

importance. 

In addition to the effect of rAIM on graft function, our data also highlighted the potent 

effect of rAIM administration on curtailing both graft and systemic inflammation (serum 

HMGB1) caused by excess necrosis in the graft. Based on our previous work [16, 17], as 

well as data presented in Figure 3-2, we conclude that the anti-inflammatory effect of 

rAIM is mediated by the enhanced phagocytic clearance of necrotic cell debris within the 

injured grafts. The ability to limit DAMP release from the damaged tissue may be 

particularly important in the setting of allogeneic transplantation where extracellular 

DAMPs have been shown to exacerbate alloimmunity [5, 16, 28].  Our syngeneic 

transplant model was well-suited to studying the effects of rAIM on transplant-associated 

IRI, but to test whether rAIM administration will mitigate alloimmune injury to the graft, 

which can be persistent unlike IRI, is an important question.  
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In addition to ameliorating inflammation, our work also demonstrated that rAIM 

treatment decreased dead cell debris within the tubular lumen, which also likely 

contributed to graft recovery given that tubular obstruction is a major mechanism 

contributing to decline in glomerular filtration rate during AKI [10]. Finally, our finding 

that rAIM augmented the phagocytic uptake of necrotic cells by human kidney cells 

expressing human KIM-1 supports the translation of our work to transplant patients.  

In summary, our study is the first to delineate the therapeutic role of recombinant AIM in 

renal transplantation. Furthermore, our results demonstrate that KIM-1/AIM-mediated 

clearance of dying cells mitigates graft damage, and inflammation, while improving early 

graft function. Taken together, our findings suggest that the administration of 

recombinant AIM may be used as a therapeutic strategy to improve graft outcomes in 

kidney transplant patients. 
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4.1 Introduction 

Renal ischemia reperfusion injury (IRI) occurs when blood flow to the kidney is 

significantly reduced for a period of time followed by reperfusion. IRI pathology has a 

two-pronged effect as ischemic conditions limits oxygen uptake resulting in ATP 

depletion and the build-up of toxic by-products, whereas the restoration of blood flow can 

produce harmful reactive oxygen species (ROS), leading to tissue damage [1, 2]. Notably, 

IRI is one of the most common mechanisms of kidney injury in many clinical conditions 

such as transplantation, sepsis and patients undergoing cardiac bypass surgery [3-5].  

The destructive consequence of ATP depletion and ROS production during IRI cause 

renal tubular epithelial cells (TECs) to be more susceptible to cell death via apoptosis or 

necrosis [6, 7]. To add insult to injury, membrane integrity is typically compromised in 

necrotic cells leading to the release of their immunogenic intracellular contents, also 

known as danger, associated molecular patterns (DAMPs), into the extracellular milieu 

which further exacerbates inflammation [8, 9]. This in turn can trigger an auto-

amplification loop of inflammation and subsequent cell death [10]. Thus, inducing rapid 

phagocytosis and clearance of these dying cells may suppress inflammation and mitigate 

kidney injury during IRI [11]. 

Kidney injury molecule -1 (KIM-1) is a cell-surface glycoprotein which transiently gets 

expressed on TECs following kidney injury [12]. As a transmembrane protein, KIM-1 

has its extracellular portion consisting of Ig-like and mucin domains that binds apoptotic 

and necrotic cells allowing for the subsequent phagocytosis of neighbouring TECs [13]. 

KIM-1 binds directly to phosphatidylserine (PS) on apoptotic cells whereas phagocytosis 
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of necrotic cells requires KIM-1 to interact with another protein that acts as an opsonin, 

apoptosis inhibitor of macrophage (AIM) [14]. Using murine models, we have previously 

shown that compared to KIM-1 deficient or KIM-1 mutant (KIM-1  mucin) mice, wild-

type mice exhibited curtailed inflammation and limited tissue damage during renal 

transplant and native renal warm IRI [15-17].  In addition, we found that phagocytosis of 

PS expressing apoptotic cells was attenuated in KIM-1  mucin mice [17].  Therefore, 

the alteration of the mucin domain or key residues required for PS binding may 

profoundly affect the biological function of KIM-1. 

The KIM-1 gene (HAVCR1), which was initially identified as the Hepatitis A Virus 

Cellular Receptor 1 [18], is highly polymorphic and its variants are associated with 

differential susceptibility to severe hepatitis A infection, allergy and autoimmune 

disorders [18-20]. Considering the importance of the mucin domain to the functional 

capacity of KIM-1, we hypothesized that in human populations, certain high frequency 

HAVCR1 variants specific to the coding regions of the mucin domain would be 

associated with altered phagocytic activity in vitro. This study provides novel insight into 

the potential prognostic risk factors associated with KIM-1 variants and renal 

transplantation.  

4.2 Materials and Methods  

4.2.1 Designing of the KIM-1 gene variants  

Met158_Pro162del, Thr200del, and Thr207Ala mutations were created using pcDNA3 

and the Quickchange lightning mutagenesis kit (Agilent Technologies) following the 
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manufacturer’s directions.  Primers were designed using Agilent’s primer design 

program.  Mutated plasmids were isolated from bacterial stock using a QIAprep spin 

miniprep kit following the manufacturer’s directions (Qiagen, 27104). Mutations and 

deletions were confirmed by DNA sequencing at the London Regional Genomics Centre.  

Sequences were compared to Homo sapiens hepatitis A virus cellular receptor 1 

(HAVCR1), transcript variant 1, mRNA NCBI Reference Sequence: NM_012206.3. 

 Primers used:  

Met158_Pro162del tgttccaacgacaacgactgttccaacgacaactgttc 

Met158_Pro162del-antisense gaacagttgtcgttggaacagtcgttgtcgttggaaca 

Del200 cgacaacgagcattccaacaacaagtgttccagtg 

Del200-antisense cactggaacacttgttgttggaatgctcgttgtcg 

Thr207Ala gaacaaaggtagagacagctgttgtcactggaacact 

Thr207Ala-antisense agtgttccagtgacaacagctgtctctacctttgttc 

 

4.2.2 Patients and Donor DNA sample collection 

Total of 627 archived donor DNA samples from the histocompatibility laboratory at 

London Health Research Centre (London, ON, CA) for all consecutive recipients of 

deceased donor kidney transplants from 2008 to 2018 were collected. After verifying 

DNA quality, Sanger sequencing and fragment length analysis were performed for the 
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HAVCR1 variants, and genotype and allele frequencies were calculated by the members 

of the Hegele Lab. Donor DNA was extracted from peripheral blood mononuclear cells 

or splenocytes at the time of transplantation for HLA typing.  Permission for use the 

leftover DNA samples for this study was granted by the research ethics board of the 

University of Western Ontario and Lawson Health Research Institute Research Ethics 

Committee of the UMC.  

4.2.3 Transfection of KIM-1 variants/ Cell cultures  

Human Embryonic Kidney 293 (HEK293) cells were obtained from America Type 

Culture Collection (ATCC, Manassas, VA) and cultured at 37C in 5% (vol/vol) CO2 

incubator. HEK293 cells stably expressing wild-type human KIM-1 pcDNA (HEK293 -

pcDNA) were generated by transfecting with plasmid construct encoding human KIM-1 

using Lipofectamine® 2000 (Life technologies. Thermo Fisher Scientific, Rockford, IL), 

along with the 3 human KIM-1 variants described above. Stable cell lines were 

maintained with geneticin (G418) sulfate (Santa Cruz Biotechnology, Santa Cruz, CA) 

supplemented in DMEM (Invitrogen, Carlsbad, CA) containing 10% FBS (Invitrogen, 

Carlsbad, CA), and 1% Penicillin-streptomycin (Invitrogen, Carlsbad, CA).  Hallmark 

appearance of these cells was confirmed by visual analysis. 

4.2.4 KIM-1 surface staining/ Flow cytometry/ 

Immunofluorescence  

Cells expressing human wild-type KIM-1 and the 3 variants were grown in media and 

then harvested and stained with florescent anti-human KIM-1 antibody (AKG α-hKIM-
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1). They were then analyzed using BD LSR II flow cytometer (BD Biosciences, San Jose, 

CA) for mean florescent intensity (MFI) to detect KIM-1 cell surface staining. For 

immunofluorescence, cells were grown in normal media on cover slips then fixed with 

2% paraformaldehyde. Cells were then incubated overnight with AKG α-hKIM-1 

monoclonal primary antibody at 4C followed by secondary incubation with 

fluorochrome-conjugated Alexa-Fluor 488® goat anti-mouse secondary antibody for an 

hour at room temperature. All images were analyzed using a FLUOVIEW X831 confocal 

microscopy (Olympus, Tokyo, Japan). 

4.2.5 Phagocytosis assay/ Flow cytometry  

Thymocytes were collected from 3-6-week-old C57BL/6 mice. Apoptosis was induced 

by exposure to UV light for 7 minutes followed by overnight incubation in DMEM media 

containing 1% Penicillin-streptomycin and 10% FBS at 37C in 5% (vol/vol) CO2. 

Apoptotic thymocytes were verified by flow cytometry analysis showing single positive 

staining for Annexin V (Biolegend, San Diego, CA) but negative for propidium iodide 

(Biolegend, San Diego, CA).  Apoptotic thymocytes were labeled with pHrodo, and 

phagocytic activity was assessed as previously described [14].  Briefly, 1x106 HEK293 

cells, with differential KIM-1 variant expression, were in co-culture with 3x106 pHrodo-

labelled apoptotic thymocytes.  After incubation for 90 minutes at 37C at 5% CO2, cells 

were placed on ice to reduce non-specific binding for 30 minutes and harvested. The % 

phagocytosis, which represents the number of tubular cells that have phagocytosed the 

apoptotic thymocytes, was analyzed using BD LSR II flow cytometer (BD Biosciences, 

San Jose, CA).   
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4.2.6 Western blot  

KIM-1 variants’ cell lysates were stored in 4% SDS. Pierce BCA Protein Assay Kit 

(Thermo Fisher Scientific, Rockford, IL) was used whereby isolated proteins from whole 

tissue sections were quantified. We incubated the blots with human KIM-1 (AKG) and 

mouse monoclonal GAPDH antibody (Santa Cruz Biotechnology, Santa Cruz, CA). 

Western blots were developed and quantified using the FluorChem M system 

(ProteinSimple, San Jose, CA).  

4.2.7 Statistics   

Percent phagocytosis and MFI (KIM-1 surface expression) were compared between 

groups using one-way ANOVA. All analyses were performed with GraphPad Prism 

(GraphPad Software Inc., La Jolla, CA). All data are presented as means ± SEM; p-

values < 0.05 were considered statistically significant without adjustment for multiple 

comparisons.  
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4.3 Results  

4.3.1 KIM-1 polymorphisms in the coding region have high 

allele frequencies   

Polymorphisms occurring in the coding region of a gene can either change the amino acid 

sequence (nonsynonymous), or be silent (synonymous). Thus, we selected 3 known KIM-

1 nonsynonymous variants that are of known to have high allele frequencies in a global 

population. Total of 627 donor DNA samples of recipients of deceased donor kidney 

transplants at London Health Research Centre was obtained. The genotype and allele 

frequencies of the 3 variants of our sample population were calculated which showed 

striking similarities to the global population frequencies reported in GeneCards (Table 4-

1).  
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Table 4-1. Genotype and allele frequencies of 3 KIM-1 coding variants. Table of 

distribution of genotype and allele frequencies of KIM-1 variants from 627 patients. 

 

+/+: normal (no nucleotide changes/ deletion), +/-: WT/del or WT/nucleotide change 

(heterozygous), -/-: del/del or nucleotide change/nucleotide change (homozygous). 

 

We then generated constructs for these coding variants through site-directed mutagenesis 

(Figure 4-1A and 4-1B). The 3 KIM-1 variants that we selected are as follows:  KIM-1-

1Met158-Pro162del (deletion of methionine to proline at positions 158-162); KIM-1-

Thr200del (deletion of threonine at position 200); and KIM-1Thr207Ala (substitution of 

threonine with alanine at position 207) (Figure 4-1A). All of these polymorphisms are 

located in the extracellular mucin domain of KIM-1 which is known to have an important 

role in phagocytosis (Figure 4-1B).  
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Figure 4-1. Generation of nonsynonymous KIM-1 variants. 

 (A) Diagram confirming the genotypes of the site-directed mutants corresponding to 3 

nonsynonymous (coding) KIM-1- variants (KIM-1Met15_Pro162 del: deletion of 

methionine to proline at positions 158-162; KIM-1-Thr200 del: deletion of threonine at 

position 200; KIM-1-Thr207Ala: substitution of threonine with alanine at position 207). 

(B) Schematic showing the phenotypic changes of the 3 (coding) nonsynonymous KIM-1 

variants relative to wild-type.  
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4.3.2 KIM-1 variants have altered cell surface KIM-1 

expression  

All 3 of the constructed KIM-1 variants expressed KIM-1 protein as efficiently compared 

to the wild-type (Figure 4-2A). However, the 3 variants showed variable cell surface 

KIM-1 expression in vitro (Figure 4-2B and 4-2C). Interestingly, HEK293 cells 

transfected with KIM-1-Thr200del and Met158_Pro162del exhibited significant 

upregulation and reduced expression of surface KIM-1, respectively, when compared to 

the wild-type, whereas KIM-1-Thr207Ala showed comparable levels of KIM-1 cell 

surface expression with the wild-type (Figure 4-2B). To further support our finding, 

fluorescent microscope images stained for KIM-1 also showed congruent results (Figure 

4-2C) as our flow cytometry data.  
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Figure 4-2. KIM-1 variants have altered cell surface KIM-1 expression. 

Functional analysis nonsynonymous KIM-1 variants. KIM-1 wild-type (WT) and KIM-1 

variants (Thr200 del, Thr207Ala and Met158_Pro162Del) were expressed by transfection 

in human embryonic kidney cells (HEK293). (A) Expression of KIM-1 protein in total 

cell lysates by Western blot. (B) Expression of KIM-1 protein at the cell-surface by 

fluorescently-conjugated human KIM-1 antibody via flow cytometry. Histograms are 

representative results of at least 3 independent experiments. All flow cytometry 

experiments were run on cytoFLEX cytometer and analyzed using Flowjo X software. 

*p<0.05 (C) Fluorescent microscopic images of HEK293 cells transfected with KIM-1 

variants positively stained for KIM-1.  

 

4.3.3 KIM-1 variants have lower phagocytic capability  

The functional capacity of our KIM-1 variants was assessed. Interestingly, we found that 

all 3 coding variants exhibited significantly reduced phagocytic uptake of apoptotic cells 

compared to the wild-type in vitro (Figure 4-3). Specifically, HEK293 cells transfected 

with either Thr200del, Thr207Ala, or Met158_pro162del KIM-1 variants exhibited 25%, 

57% and 10%, respectively, of the phagocytic ability of wild-type KIM-1. The corollary 

to this finding would suggest that these HAVCR1 variants would significantly impair the 

protective function of KIM-1 in IRI. 
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Figure 4-3. KIM-1 variants have lower phagocytic capability. 

HEK293 cells transfected with nonsynonymous KIM-1 variants. KIM-1 wild-type (WT) 

and KIM-1 variants (Thr200 del, Thr207Ala and Met158_Pro162Del) were fed apoptotic 

thymocytes. After 90-minute incubation, % change in phagocytosis (relative 

phagocytosis of fluorescently labelled apoptotic cells) was quantified by flow cytometry. 

Histograms are representative results of 6 independent experiments. All flow cytometry 

experiments were run on cytoFLEX cytometer and analyzed using Flowjo X software. 

****p<0.0001. 
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4.4 Discussion  

Renal tubular epithelial cells upregulate the surface expression of KIM-1 upon injury 

which is then shed into the urine allowing for its detection as a biomarker for tissue 

damage [21]. Indeed, KIM-1 has been reported to be used as a biomarker for kidney 

injury and renal cell carcinoma [22, 23]. Additionally, KIM-1 is a receptor for 

phosphatidylserine which allows the phagocytosis of neighbouring dying cells by the 

KIM-1 expressing TECs which mitigates subsequent necroinflammation. Previous 

studies have shown the protective role of KIM-1 against renal ischemia reperfusion injury 

using various injury models [16, 17].  

The KIM-1 gene (HAVCR1) is subject to high degrees of polymorphism, whereby 

HAVCR1 variants have been linked with several clinical diseases including, hepatitis A 

infections, and a diverse range of autoimmune disorders [18-20, 24]. KIM-1 has also 

been shown to play an important role in renal transplantation, where its expression is 

readily upregulated in donor kidneys upon engraftment, which is indicative of injury [25, 

26]. Ischemia reperfusion injury is one of the major clinical risk factors that affect the 

quality and longevity of donor kidneys [1, 27]. We have previously shown that KIM-1 

expression in the donor kidney protects against renal transplant ischemia reperfusion 

injury using a mice model [15]. Thus, our question was whether mutations in the KIM-1 

gene would alter its functional ability. Here we found that the 3 high frequency coding 

variants induced differential cell surface KIM-1 expression and universally decreased 

phagocytosis compared to the wild-type. Interestingly, only the Thr200Del variant 

exhibited increased cell surface KIM-1 expression, however its phagocytic ability was 
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still significantly reduced. It is possible that mutations in the mucin domain of KIM-1 

allows for the binding of PS-expressing apoptotic cells but prevents the internalization 

and subsequent clearance. Future investigations into the specific mechanisms that would 

elucidate the diminished functional capacity of KIM-1 variants are warranted. Although 

our data highlights the association between genetic variation and phagocytosis in vitro, 

the role of these KIM-1 variants in vivo with respect to renal transplantation, graft 

damage, and signaling is unknown and requires further examination. Our findings have 

translatable implications, since all 3 variants were found to be of high frequency in 

human donor kidneys. It would be important to analyze whether the KIM-1 variant 

incidence would correlate with prognostic outcomes of kidney graft success.  

In summary, our study is the first to delineate the functional role of KIM-1 gene variants 

in vitro. Furthermore, our findings show that the 3 distinct mutations in the coding region 

of HAVCR1 have altered surface expression but universally lead to significantly reduced 

phagocytic capability. Taken together, our findings suggest that mutations in the KIM-1 

gene may lead to increased risk of allograft rejection following renal transplantation.  
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5 Defective Kidney Injury Molecule-1 

Polymorphisms and Risk of Delayed Graft 

Function in Humans 

 

 

 

 

 

 

 

 



143 

 

5.1 Introduction  

Delayed graft function (DGF), defined as the need for dialysis with in the first 7 days 

post-transplant surgery, is a common complication faced by renal transplant recipients 

[1]. The incidence of DGF can vary from 20-30% in deceased donor kidney recipients, 

reaching >40% in recipients of donation after circulatory death (DCD) donors [2]. 

Patients with DGF have significantly poorer clinical outcomes, experiencing prolonged 

hospitalization, higher risk of developing acute rejection, and poor long-term graft 

survival [3-5]. Clinical risk factors of DGF include both donor and recipient 

characteristics but specific prediction tools are lacking. Some of these factors include 

duration of cold ischemia, DCD donor, duration of dialysis, terminal donor creatinine, 

donor and recipient sex, age, and body mass index (BMI), and recipients’ race [5-7]. A 

growing body of experimental literature suggests that donor kidney-intrinsic genes also 

profoundly influence DGF risk [8, 9].  

Ischemia reperfusion injury (IRI) is a largely unavoidable consequence of transplantation 

and is a major cause of DGF [9]. ATP depletion and the subsequent production of 

reactive oxygen species (ROS) during IRI induces vast amounts of tubular epithelial cells 

(TEC) to undergo sublethal injury or death via apoptosis or necrosis. Severe IRI leads to 

acute tubular necrosis whereby necrotic debris collects within the tubules and obstructs 

the flow of ultrafiltrate [10]. As a consequence, glomerular filtration rate declines, and 

may lead to delayed graft function [11, 12]. Secondarily, IRI can enhance the 

immunogenicity of the allograft by inducing the upregulation of HLA molecules and co-

stimulatory on the surface of endothelial cells and antigen presenting cells (APCs) 
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(passenger leukocytes or infiltrating APCs), respectively which can engage the adaptive 

immune system to exacerbate alloimmune injury [13]. The underlying mechanism 

includes the release of danger signals such as High Mobility Group Box-1 (HMGB1), 

either passively from necrotic cells (e.g. TECs) or actively from injured and/or inflamed 

cells (e.g. macrophages), which then act on pattern recognition receptors on various 

parenchymal or innate immune cells within the injured graft to promote 

“necroinflammation” [14-16].   

Kidney injury molecule -1 (KIM-1) is a glycoprotein whose expression is upregulated on 

the apical surface of renal proximal TECs following kidney injury [17]. The principle 

function of KIM-1 is to mediate the clearance of dying (apoptotic and necrotic) cells. The 

immunoglobulin variant (IgV) domain of KIM-1 directly recognizes and binds to 

phosphatidylserine (PS), which allows for the phagocytosis of the apoptotic cell bodies 

which display PS on their outer membrane for removal [18, 19].  In addition, KIM-1 

expression enhances the uptake of necrotic cells through an opsonin, apoptosis inhibitor 

of macrophage (AIM) protein that is filtered by kidneys during IRI and binds to necrotic 

debris within the tubules [20]. This was evident in mice deficient for KIM-1, as they 

experienced significantly higher inflammation and tissue damage following native kidney 

warm IRI [19, 21]. Similarly, mice with a mutation in the mucin domain (KIM-1  

mucin) of KIM-1, rendering them incapable of binding to apoptotic cells and mediating 

their phagocytic uptake, are more susceptible to IRI compared to wild-type mice [22]. In 

the context of a mouse model of renal transplantation, KIM-1 deficiency in donor kidneys 

aggravated graft damage and resulted in severe renal function leading to lower overall 

survival [23].  Thus, these findings suggest that, not only the expression of KIM-1, but its 
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functional activity in TECs is essential in mitigating graft damage from IRI and 

improving graft function following renal transplantation.  

The gene that encodes KIM-1 was initially identified as Hepatitis A virus cellular 

receptor-1 (HAVCR1), since KIM-1 was discovered as the cellular port of entry for 

Hepatitis A virus. KIM-1 is highly polymorphic with >5000 variants reported to date [24, 

25]. A large number of the identified human HAVCR1 polymorphisms are located within 

exon 4 which codes for the mucin domain.  The degree of polymorphisms in exon 4 has 

may be driven by natural selection pressure driven by infection with Hepatitis A Virus 

[26]. Notably, a polymorphism resulting in a 6-amino-acid insertion in KIM-1/HAVCR1 

(157insMTTTVP) was associated with severe Hepatitis A Virus-induced liver disease 

[25]. The long allele of KIM-1 was shown to a more effective receptor for HAV than the 

short allele. Several other HAVCR1 polymorphisms have been linked with increased 

susceptibility to hepatitis C infection, asthma, and eczema [25, 27-29]. Thus far, no 

studies have investigated the effect of HAVCR1 polymorphisms on outcomes in acute 

kidney injury or transplant-associated IRI (e.g. DGF).  

It is increasingly recognized that donor kidney-intrinsic genetic factors influence the 

severity of DGF [8, 30]. Previous studies have examined whether certain donor- and/or 

recipient-derived polymorphic genes affect the outcome of transplanted kidneys [6, 31], 

but to date, few genetic determinants have been identified that predict the risk of DGF in 

patients [32]. Moreover, to our knowledge, no studies have associated genetic 

polymorphisms that encode for defects in proteins involved in the pathophysiology of 

acute kidney injury with altered clinical outcomes. Given that KIM-1-mediated 

phagocytic clearance of apoptotic and necrotic cells mitigates IRI and the absence of 



146 

 

KIM-1 in the donor kidney led to graft dysfunction and damage in a syngeneic mouse 

model of renal transplantation [18, 19, 22, 23], we investigated whether functional 

polymorphisms in affecting KIM-1 function in the donor kidney plays a role in DGF 

following deceased donor kidney transplantation. To this end, we have identified three 

coding variants of human HAVCR1 encode for KIM-1 proteins that are significantly 

impaired in their phagocytic activity (Chapter 4 of this thesis).  Based on these findings, 

we conducted a retrospective cohort study of patients who received a deceased donor 

kidney transplant to determine if those who received a kidney from donors with one or 

more KIM-1 variants are at increased risk of developing DGF. 

5.2 Materials and Methods  

5.2.1 KIM-1 variant selection 

As correlational studies that examine the association between the phagocytic function of 

KIM-1 and clinical outcomes are lacking, we identified high-frequency allelic KIM-1 

variants that have been previously reported to have an association in non-renal diseases 

[26, 33, 34]. KIM-1 variants with Minor Allele Frequencies (MAF) between 0.25-0.5 

from North American populations previously reported from GeneCards were chosen. In 

total, 3 KIM-1 (non-synonymous) variants located in the coding region were selected. We 

chose to study these KIM-1 variants as a follow-up study to Chapter 4 based on the 

observed significant reduction on phagocytic function. 
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5.2.2 Population 

The London Health Sciences Centre (LHSC, London, Ontario, Canada) Renal 

Transplantation Program has performed 49-126 renal transplant surgeries annually since 

1995.  Since 2008, DNA samples from kidney donors have been collected and are stored 

at the LHSC Histocompatibility Laboratory. For this study, we included all adults >18 

years old who received a kidney transplant from a deceased donor between 2008 – 2018.  

Patients who had undergone combined transplantation with more than one organ (i.e. 

kidney/liver or kidney/pancreas), or who had missing, or unusable donor DNA samples 

were excluded. A total of 627 recipients met eligibility criteria.  As this was a 

retrospective study with collection of de-identified data, patient consent was waived.  The 

study was approved by Western University’s (HSREB# 107181) and Lawson Health 

Research Institute’s Research Ethics Boards (R-15-563). 

5.2.3 Data collection 

We reviewed recipient medical charts for baseline demographic information, duration of 

end-stage renal disease, type of dialysis, comorbidities, body mass index, and baseline 

laboratory values.  We collected post-operative outcome data, including: 

immunosuppressive agents used, daily creatinine values, need for dialysis, and hospital 

length of stay, and graft rejection. All data was obtained from the patient’s electronic 

medical record (PowerChart) for transplants performed since 2012. For those who 

received transplants prior to 2012, paper medical charts were retrieved and reviewed.   

Information on donor age and comorbidities, and warm and cold ischemia times were 

obtained.  Each recipient donor pair was assigned a unique study ID number and all data 
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was entered into Microsoft Access spreadsheet which was later combined with the 

information on donor genotyping for further analysis. 

5.2.4 Donor genotyping 

Donor DNA were extracted using either the Bromide salts (dodecyltrimethylammonium 

bromide; DTAB/ cetyltrimethylammonium bromide; CTAB) method or using Roche 

magnetic glass particle kits and Roche MagNA Pure extractors (Roche Molecular 

Systems. Pleasanton, CA). Sanger sequencing and fragment length analysis were used to 

determine the genotypes for the following KIM-1 coding variants: rs6149307, 

rs45439103, and rs12522248. Genotyping was done by members of the Hegele Lab.  

Donor genotypes were linked to the corresponding recipients in our de-identified 

database. 

5.2.5 Primary outcome definition 

The primary outcome of the study was DGF, defined as requiring at least one session of 

dialysis within the first 7 days post-transplantation [1, 5]. To determine the risk of DGF 

with each genetic variant of KIM-1, the usage of relative risk was favored over odds 

ratio.  

5.2.6 Statistical analysis  

Significance of the deviation of variant genotype frequencies from Hardy-Weinberg 

equilibrium was assessed using chi-square analysis. Pairwise linkage disequilibrium 

between HAVCR1 alleles was determined using Pearson correlation coefficients as 
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described [35].  Recipients were grouped into subjects and controls based on donor 

genotype. Throughout the study, the terms locus was used interchangeably with the 

corresponding KIM-1 variants (Table 5-1), the term variant was used to describe the 

defective KIM-1 allele, and wild-type was used to describe the non-defective reference 

allele of KIM-1. Subjects were defined as being homozygous for each HAVCR1 variant 

(rs12522248, rs45439103, rs6149307), while controls were defined as being 

heterozygous for the respective variant or homozygous for the wild-type HAVCR1.   

Baseline demographic and clinical variables were compared between subjects and 

controls using student’s t-test for continuous variables and with Chi-squared test for 

categorical variables. Differences in the rate of the primary outcome of DGF between 

subjects and controls were assessed using univariate and multivariable logistic regression.  

For the multivariable models, we adjusted for the following potential confounders: (donor 

and recipient BMI, donor and recipient sex, history of hypertension, terminal creatinine, 

type of donor (expanded criteria or not) and cold ischemia time [2, 5, 36-38]. This 

exercise was repeated for each genotype comparison group.  Results are expressed as 

relative risk with 95% confidence interval (CI); p-values were derived from likelihood 

ratio tests. All statistical analyses were performed using SAS version 9.4 (Cary, NC), 

with a nominal level of significance defined as P < 0.05 (two-sided). 
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5.3 Results 

5.3.1 KIM-1 variants allele frequencies  

We determined donor HAVCR1 (KIM-1) genotypes in a cohort of 627 deceased donor 

kidney transplant recipients for three select functional (identified in Chapter 4) 

polymorphisms (Table 5-1). Table 5-2 reports the observed genotype and allele 

frequencies of the 3 variants in our population which were found to be in Hardy-

Weinberg equilibrium corresponding to global population frequencies reported in 

GeneCards.  For both rs12522248 and rs45439103, the polymorphism coding for 

impaired phagocytosis was less common.  Surprisingly, for rs6149307, having the 5 

amino acid deletion that impairs phagocytosis (see chapter 4) was more common (allele 

frequencies 0.614) (Table 5-2). 
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Table 5-1. Description of genotypes for the 3 KIM-1 variants studies. 

 

Abbreviations: aa= Amino acid, - = Deletion, WW = Homozygous wild type, WV = 

Heterozygous variant, VV= Homozygous Variant. 

 

 

Table 5-2. Allele and Genotype frequencies of the 3 KIM-1 variants. 

 

Abbreviation: Ref allele= Reference allele, Alt allele= Alternative allele. WW = 

Homozygous wild type, WV = Heterozygous variant, VV= Homozygous Variant. 
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5.3.2 Baseline Characteristics  

Baseline donor, recipient and transplant patient demographics influencing DGF were 

similar between subjects and controls for each KIM-1 variant, except for donor female 

sex, donation after cardiac death (DCD) donor, panel reactive antibody (PRA) and 

thymoglobulin induction therapy for subjects in the rs45439103 group (Table 5-3).   
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Table 5-3. Baseline demographic characteristics according to KIM-1 variant 

accession numbers. 

 

 

Subjects = homozygous variant for each KIM-1 variant, Controls = heterozygous variant 

and homozygous wild-type. N indicates the number, % indicates the percentage of the 

study group exhibiting a particular characteristic. Means ± SD. Abbreviations: N/N = 

Normal/Normal, N/D= Normal/Deletion, D/D= Deletion/Deletion, BMI= Body mass 

index, PRA= Panel reactive antibody (peak), HTN= Hypertension, NS= Not significant. 
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5.3.3 Primary Outcome: Rate of DGF 

Of 627 individuals in our cohort, 165 developed DGF (26.3%). In univariate analysis, 

DGF was not significantly different between subjects compared to controls (Table 5-4): 

the relative risk of developing DGF for patients that received donor kidneys that were 

homozygous for the polymorphisms at locus 1, locus 2 and locus 3 were 1.57 (95% CI = 

0.97 – 2.53), 0.64 (0.25 – 1.65) and 1.01 (0.81 – 1.26), respectively. When we limited the 

control group to recipients of donor kidneys with at least one copy of the wild-type allele 

(at all 3 loci, N=203, see Table 5-7), the unadjusted relative risk did not change 

appreciably from the primary analysis.  Multi-variable adjusted analysis yielded similar 

results (Table 5-4).   

However, there was a trend to more DGF in patients who received donor kidneys 

homozygous for the rs12522248 substitution allele compared to controls, but this did not 

reach statistical significance (36% vs. 25.2%, unadjusted RR 1.57 (95% CI 0.97 – 2.53, 

p=0.062). Adjusted analysis revealed a similar trend but was not statistically significant 

(Table 5-4). Taken together, these findings suggest a potential risk of acquiring DGF 

associated with donor kidneys that are homozygous for the rs12522248 variant.   
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Table 5-4. Univariate and multivariate analysis for the deceased donors for the 

occurrence of delayed graft function. 

 

*Adjusted for: recipient age, recipient sex, recipient BMI (body mass index), and donor 

age, donor sex, donor hypertension, terminal creatinine, cold ischemia time, and DCD 

(donation after cardiac death)  

Subjects = homozygous variant for each KIM-1 variant, Controls = heterozygous variant 

and homozygous wild-type. 

Abbreviation: N=Number, DGF= Delayed Graft Function, CI= Confidence interval, RR= 

Relative risk. 
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5.3.4 KIM-1 variant haplotype groups and definition  

Linkage disequilibrium is defined as nonrandom association between alleles at 2 or more 

loci [39]. Haplotypes under linkage disequilibrium have divergent frequencies compared 

to the expected values when looking at independent alleles. Linkage disequilibrium is 

said to be positive or negative, when 2 alleles occur together on the same haplotype 

beyond or below expected values, respectively [40]. Therefore, rather than a single 

variant being responsible for the association with an observed phenotype, it is possible 

that one or more inherited variants that are co-expressed within the haplotype may be 

contributing to the phenotype. Thus, to determine the cooperative consequence of KIM-1 

haplotypes that get inherited together, we further dissected the prevalence of linkage 

disequilibrium within our sample population (Table 5-5). We found that rs6149307 and 

rs45439103 alleles are in close proximity and are in linkage disequilibrium with each 

other. 

 

 

Table 5-5. Linkage disequilibrium D’ values for KIM-1 variants. 

 

Positive occurrence of linkage disequilibrium was determined by any D’ values > 0.36.  
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Table 5-6 illustrates the haplotype groups with the presence or absence of mutation in 

each locus exhibiting the variants that exist in a single chromosome, and the 

corresponding frequencies observed in our cohorts. We then grouped the observed 

haplotypes according to chromosome pairs (Table 5-7). Strikingly, of the 64 patients that 

were homozygous variants for rs12522248 at locus 1 (Table 5-3), 56 patients expressed 

both the rs12522248 homozygous variant allele at locus 1 and homozygous variant 

rs6149307 allele at locus 3 on both chromosomes (Table 5-7). 
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Table 5-6. Definition and Frequencies of each Haplotype. 

 

Numbers 1-5 represent distinct haplotype groups for a chromosome where 1 is N/N/N; 2 

is N/N/D; 3 is N/D/N; 4 is C/N/N; 5 is C/N/D for the 3 loci with 

rs125222248/rs45439103/rs6149307 respectively. N represents wild-type normal copy; D 

represents deletion, and C represents T to C substitution as described in Table 5-1. 
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Table 5-7. Haplotype Groups Definition in our Cohort and Frequencies. 
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The sample population was grouped according to the KIM-1 haplotype distribution that 

exist in the human population. Numbers 1-5 represent distinct haplotype groups for a 

chromosome where 1 is N/N/N; 2 is N/N/D; 3 is N/D/N; 4 is C/N/N; 5 is C/N/D for the 3 

loci with rs125222248/rs45439103/rs6149307 respectively (Table 5-6). N represents 

wild-type normal copy; D or C represents a mutational event described in Table 5-1. 
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5.4 Discussion  

Kidney injury molecule-1 (KIM-1) is of particular interest in renal diseases due to its 

transient expression on the renal proximal TECs upon injury in both mice and in humans 

as well as its role in various renal diseases involving IRI [17, 19, 23, 41]. We have 

previously reported the protective effect of KIM-1 in renal transplantation in mouse 

models [23], however, whether our findings are translatable to patients was unknown and 

thus remained an important question that needed to be answered. The genetic variability 

of HAVCR1 is linked with various degrees of susceptibility to diseases such as asthma 

and Hepatis A virus infection [25, 26, 28]. In Chapter 4, we identified 3 distinct genetic 

variants affecting the coding region of KIM-1. The ensuing amino acid change(s) 

resulting from the genetic variation significantly attenuated the phagocytic function of 

KIM-1 (Chapter 4). To that end, we selected these 3 coding variants for this study with 

the hypothesis that one or more of these variants that impair the function of KIM-1 would 

lead to an increased risk of DGF. This hypothesis was based on previous work done by 

the Bonventre laboratory [18, 22, 42] and our group [19, 21, 23] (including Chapters 2 

and 3) suggesting that compromised clearance of dying cells would result in increased 

tubular obstruction and necroinflammation, which in turn would further aggravate graft 

damage and impair glomerular filtration, and ultimately lead to delayed graft function 

[16, 43]. Using a large cohort consisting of 627 deceased donor-recipient pairs, we tested 

whether one or more of the 3 donor coding variants of KIM-1 would predispose 

transplant recipients to an increased risk of DGF.  
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We report that compared to wild-type (“normal”) KIM-1, none of the recipients of donor 

kidneys containing the KIM-1 variants were significantly associated with an increased 

risk of DGF following renal transplantation. Interestingly, the patients who inherited a 

kidney from a donor who was homozygous for rs12522248 exhibited 1.57 times greater 

risk of developing DGF compared to everyone else in the cohort, but this did not reach 

statistical significance. The DGF rate in this group was reached almost 36% compared to 

25% in the controls group (Table 5-4). Notably, 56 of the 65 people who were 

homozygous for this allele in our cohort were also homozygous for the rs6149307 allele 

(Table 5-7), representing 9% of the population.  It would be important to know if these 

two simultaneous changes to the coding sequence of KIM-1 would further impair 

phagocytic function when expressed in TECs compared cell expressing the rs6149307 

variant (see Chapter 4).  If so, it is plausible that having two phagocytic defects (i.e. 

homozygous at 2 loci) may confer an increased risk of DGF. However, our study was not 

powered to confirm this hypothesis, and further study is needed. Interestingly, males 

(donors) are more likely to have the rs12522248 allele compared to females. 

Animal data presented in Chapter 2 clearly showed that donor KIM-1 expression is 

required for protection against graft dysfunction (“mouse DGF”) in mice. Given the 

severity with which the rs6149307 affected KIM-1 function, if interpret the above data to 

mean that patients receiving a kidney from donors carrying two copies of this alleles did 

not experience any additional risk of DGF, this could imply that the phagocytic function 

of KIM-1 is not required (or is redundant) for protection against DGF. If so, the non-

phagocytic functions of KIM-1 in DGF may need to be examined more carefully. Indeed, 

mutations in the IgV domain or the cytoplasmic domain can significantly alter KIM-1’s 
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non-phagocytic function, but no variants that met our frequency criteria are known to 

exist (GeneCards). Our lab has previously reported that the intracellular domain of KIM-

1 inhibits the harmful effects of activated G12 during IRI, ultimately enhancing kidney 

repair [19, 21]. Consequently, non-synonymous variations in KIM-1 intracellular domain 

that impede the interaction with G12 may lead to increased risk of DGF. The 

cytoplasmic and IgV domains of KIM-1 have been shown to interact with the ligand 

binding domain of pro-apoptotic nuclear receptor 77 (NUR77). This interaction did not 

require the mucin domain of KIM-1 where our three coding variants are located. Through 

this interaction, NUR77 is targeted for degradation, promoting epithelial cell survival 

[44]. Mutations in the cytoplasmic or IgV domains of KIM-1 may impede the interaction 

with NUR77 resulting in abrogation of NUR77 degradation and ultimately diminishing 

the survival of TECs. Taken together, KIM-1 may protect against DGF via mechanisms 

other than phagocytic clearance of apoptotic cells [22]. Identifying common non-

synonymous variants that alter the non-phagocytic function of KIM-1 could enable us to 

test if they predispose to DGF development following renal transplantation.  

In summary, in our cohort, we were not able to demonstrate that polymorphisms in any of 

the 3 coding KIM-1 loci (rs12522248, rs45439103 and rs6149307) are associated with 

increased risk of delayed graft function following renal transplantation. Our study was 

limited by a relatively small sample size: <10% of donor kidneys were homozygous for 

variant allele at rs12522248, and rs6149307.  We did uncover that the variant allele for 

rs6149307 was more common than the reference allele in the population (Table 5-2) and 

that it is in linkage disequilibrium with the defective variant of rs12522248 making the 

double mutant relatively common (Table 5-7). However, whether inheriting double 
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mutations on KIM-1 on both alleles increases the risk of DGF requires further study. 

Alternatively, it may be that the phagocytic function of KIM-1 alone does not play a 

significant role in mitigating early allorecognition and rejection of the graft in humans, 

but most likely a combination of multiple pathways is involved in the development of 

DGF. 
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6.1 Discussion  

Renal transplantation is the optimal treatment for patients suffering from end-stage renal 

disease [1, 2], however, ischemia-reperfusion injury (IRI) is an inescapable consequence 

of transplantation that can limit the longevity of the kidney grafts [3-5]. The pathological 

process of IRI is two-fold; firstly, ischemia is initiated when adequate blood flow is 

restricted leading to decreased production of ATP, secondly reperfusion, which occurs 

when the flow of oxygenated blood is restored, can induce burst of ROS production [6-8].  

Renal tubular epithelial cells (TECs), which are highly susceptible to IRI, can either 

overcome this insult leading to recovery or otherwise undergo various modes of cell 

death [9-11]. The accumulation of dying cells in the microenvironment due to inefficient 

clearance paves the way for secondary necrosis of apoptotic bodies. Although primary 

and secondary necrotic cells exhibit different characteristics and morphology - secondary 

necrotic cells are smaller in size and are depicted by the loss of chromatin, high levels of 

monosodium urate microcrystals, and low ATP - they both lead to the release of DAMPs 

(i.e. HMGB1; free, reduced form for primary and nucleosome bound and oxidized form 

for secondary necrotic cells), which ultimately further exacerbates inflammation [9-11]. 

To add insult to injury, inflammation is progressively amplified via an auto-amplification 

loop. Together, the culmination of this inflammatory cascade manifests as severe 

secondary tissue damage [12]. Thus, targeting the efficient removal of dying cells in IRI-

impacted kidneys may be a promising therapy for mitigating graft damage. In this thesis, 

I outlined the protective mechanism of Kidney injury molecule -1 (KIM-1) against 

transplant related -IRI in a murine model of renal transplantation. Moreover, with the aim 

of translating our findings from the bench to the bedside, I also demonstrated how 
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recombinant AIM can be used to enhance KIM-1 function to ameliorate DGF/tissue 

damage and examined the effect of KIM-1 genetic variation in human patients in 

predicting DGF following deceased donor renal transplantation. To this end, I elucidated 

the importance of the phagocytic ability of KIM-1 in renal transplantation using in both 

mice and in humans.  

6.1.1 Kidney injury molecule-1 expression in donor kidneys 

alleviate graft damage, renal dysfunction and graft failure 

through mitigating necroinflammation following renal 

transplantation 

In Chapter 2, using a murine syngeneic renal transplant model, I determined the role of 

donor kidney KIM-1 expression in transplant-associated graft damage. In these studies, 

the donor kidneys were retrieved while the heart was still beating, therefore, our 

transplant model most closely resembles transplants where the donors were deemed to be 

neurological determination of death (NDD). I discovered that kidney KIM-1 expression 

in the donor kidney significantly improved early graft function and improved overall 

survival (Figure 2-1). In addition, KIM-1 expression mitigated graft damage and 

decreased local and systemic inflammation (Figure 2-2 and 2-3). Interestingly, serum 

levels of the danger signal, HMGB1, were elevated and increased M1 polarization of 

macrophages were observed in recipients that received kidneys from KIM-1 deficient 

mice compared to those who received kidneys from wild type mice (Figure 2-4 C-D). 

Collectively, these findings suggest that KIM-1 mediated clearance of dying cells during 
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syngeneic renal transplantation is required for limiting necroinflammation, ultimately 

conferring a survival advantage. Although previous studies have delineated the protective 

effect of KIM-1 in native kidney warm IRI [13, 14], my work is the first to define the role 

of KIM-1 in renal transplantation, where both warm and cold ischemia occur 

concurrently.   

By using a syngeneic transplant model, we eliminated the potential confounding effect of 

allogenic immune response, and thus we were able to elucidate the pathology strictly 

stemming from IRI. The functional significance of KIM-1 in allogeneic transplantation, 

however, is an important and clinically relevant question since human transplants occur 

predominantly between HLA-mismatched donor and recipient pairs. Autotransplants are 

done in cases of loin pain hematuria or mechanical issues pertaining to the ureter or renal 

vasculature [15]. Notably, allogeneic transplants between HLA mismatched pairs exhibit 

greater rejection and poorer overall survival compared to transplants between HLA 

identical siblings [16]. Whether KIM-1 would also provide a protective benefit in the 

context of allogenic transplants warrants further investigation.  

Regulatory T cells (T regs), an important population responsible for suppressing 

inflammation, has shown to be protective in kidney injury by participating in renal repair 

following IRI [17], and by preventing transplant rejection through maintaining immune 

tolerance [18-20]. Although danger signals are not strictly a prerequisite for graft 

rejection, they may block tolerance induction via the inhibition of Tregs [21, 22]. The 

inflammatory cytokine, IL-6, plays a key role in the blocking of Treg expansion [23, 24], 

whereas IL-6 neutralization has been shown to enhance the proliferation of Tregs [25]. 

The production of IL-6 has been purported to be sourced from injured tubular epithelial 
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cells following IRI and dendritic cells in response to DAMPs [22, 25]. In my model, I 

observed increased levels of DAMPs (Figure 2-4 C) and IL-6 production (Figure 2-3 C) 

in the recipients harboring KIM-1 deficient kidneys, which suggests a possible 

mechanism by which KIM-1 could confer protection from alloimmune injury via the 

promotion of Treg expansion.  

Preconditioning is a protective clinical measure to render tolerance to severe IRI through 

the application of brief episodes of ischemia and reperfusion to the organ prior to 

transplantation [26]. A recent meta-analysis using experimental animal models reported 

that ischemic preconditioning exhibited protected effects by reducing serum creatinine, 

blood urea nitrogen, and histological damage following renal IRI compared to non-

treated [27]. Similarly, Torras J et al. reported that a brief cycle of ischemic 

preconditioning attenuated damage from renal transplant associated IRI in Sprague-

Dawley rats [28]. It would be interesting to investigate the potential link between KIM-1 

expression and preconditioning. It is possible that KIM-1 expression may be upregulated 

during preconditioning and contribute to its protective phenotype. 

The protective effects of transient KIM-1 expression during renal injury notwithstanding, 

chronic expression of KIM-1 has been associated with regions of fibrosis, chronic 

inflammation and progression of chronic kidney disease in human patients [29, 30]. 

Additionally, constitutive expression of KIM-1 in the absence of renal insult leads to 

spontaneous development of renal fibrosis, renal failure and death in mice [31]. Taken 

together, these findings highlight that a delicate balance limited KIM-1 expression is 

necessary for optimal renal function and that therapies aimed to enhance KIM-1 function 

must be cognizant of its proclivity towards pathogenicity.  
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Although this dissertation has focused on the protective role of KIM-1 in renal 

transplantation, it is true that transplant-associated pathologies can arise from diverse 

aetiologies involving numerous pathways. Therefore, it is likely the case that a 

combinational therapy that targets KIM-1 in addition to current clinical regimens, such as 

immunosuppressants, may be the most ideal approach going forward.  In this chapter, I 

discovered that KIM-1 mitigates early graft inflammation and damage and increased 

overall survival following renal transplantation by dampening necroinflammation through 

phagocytosis of dying cells. My findings add to the body of work describing the role of 

KIM-1 in kidney injury and provides a “stepping-stone” in delineating KIM-1 function in 

long-term pathologies associated with allogeneic renal transplantation. 

6.1.2 Recombinant apoptosis inhibitor of macrophage protein 

ameliorates graft damage and renal dysfunction via 

enhancement of KIM-1 mediated clearance of necrotic 

cells following renal transplantation 

In chapter 3, I examined the therapeutic potential of recombinant AIM (rAIM) in 

mitigating graft damage following renal transplantation by enhancing the KIM-1 

mediated removal of dying cells. Arai S et al. first described the protective role of AIM 

administration in native kidney IRI, where they reported that AIM opsonized necrotic 

cells were effectively cleared by KIM-1 [32]. This study suggested that the filtration of 

endogenous AIM in the body is not maximized during kidney injury, and that additional 

administration of exogenous AIM confers a therapeutic effect against kidney IRI. Here, I 
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have shown that administration of rAIM in transplant recipient mice resulted in markedly 

improved renal function and minimized graft damage (Figure 3-1). In addition, rAIM 

treated mice released significantly less DAMPs into the circulation and displayed 

decreased graft inflammation (Figure 3-2). Finally, we assessed whether rAIM would 

potentiate the phagocytic ability of KIM-1 by enhancing the clearance of cellular debris. 

As expected, I showed that the addition of rAIM to KIM-1 expressing human HEK 293 

cells significantly increased the overall phagocytic activity in vitro (Figure 3-3D). Taken 

together, my findings show that rAIM potentiates the functional activity of KIM-1 in the 

clearance of necrotic cells which conferred a protective phenotype in the context of renal 

transplantation. 

Alloimmune injury is a major component of graft injury during renal transplantation 

which is not addressed in syngeneic models [33]. Moreover, IRI has been found to 

increase sensitization to donor alloantigens [5] and promote alloreactive CD4+ T cells 

responses [34, 35] in allogeneic models of transplantation.  Indeed, allogeneic 

transplantation results in tissue damage to be incurred from both alloimmune responses 

and IRI. In addition, autoantibodies (e.g. against LG3) can also aggravate IRI during 

allotransplantation [36]. Thus, an important line of investigation is whether the rAIM 

administration would similarly confer protection in an allogeneic transplant model where 

alloimmune and autoimmune injuries significantly contribute to the overall pathology.  

One limitation of this chapter is that it is unclear whether the protective effects attributed 

to the administration of rAIM is solely mediated by KIM-1 and/or through the 

enhancement of macrophage activity. Although Arai S et al. reported that in the absence 

of KIM-1, administration of rAIM did not exhibit any protective effect following native 
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renal warm IRI [32], whether rAIM will also be protective independent of KIM-1 in 

transplant IRI needs further investigation. Notably, the original function of AIM was 

identified to have pro-survival effects on macrophages [37]. Thus, how the presence of 

additional exogenous AIM could contribute the survival and the recruitment of 

macrophage to the kidney grafts and whether it exhibits additional protective effects 

independent of KIM-1 by regulating macrophages needs to be further studied in detail.     

Numerous studies have targeted various key molecules involved in necroinflammation in 

attempt to block or abrogate the auto-amplification loop in order to mitigate kidney 

damage [38]. In particular, Kumer S et al. described another DAMP, extracellular 

histones, in the context of glomerulonephritis, exacerbated inflammation and kidney 

damage, however DAMP neutralization markedly improved severe glomerulonephritis in 

mice [39].  My own findings showed enhancing the clearance of dying cells via rAIM, 

mitigated the release of DAMPs. Future investigations should examine whether rAIM 

administration could stop the inflammatory feedback loop in an allogeneic model of renal 

transplantation, which would ostensibly reduce the immunogenicity of the kidney graft 

ultimately resulting in prolonged graft survival. Taken together with data from chapter 2, 

my findings highlight the therapeutic application of rAIM to potentiate the protective 

effects of KIM-1 in renal transplantation. 
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6.1.3 The effect of genetic variations in human Kidney injury 

molecule-1 in altering its phagocytic function and in 

predicting delayed graft function   

In chapter 4, I uncovered that 3 HAVCR1 variants that altered the region encoding for the 

mucin domain of KIM-1 all significantly impaired its (apoptotic cell) phagocytic function 

compared to wild-type KIM-1 in vitro. Interestingly, the total protein levels of each 

variant when expressed in HEK 293 cells remained unaltered. However, there was some 

variability in the relative cell-surface expression of each variant compared to cells 

expressing wild-type KIM-1 (Figure 4-2). Furthermore, out of the 3 variants, rs6149307 

exhibited greatest reduction in its phagocytic ability of apoptotic target cells compared to 

the wild-type (Figure 4-3).  

Considering that KIM-1 has a critical role in ameliorating graft damage and renal 

dysfunction in kidney transplantation (Chapter 2) [40], coupled with the finding that 

variations in the coding region result in impaired phagocytic activity (Chapter 4), the next 

question was to assess whether donor kidneys that were positive for the select variants 

examined in Chapter 4 predisposes recipients to an increased risk of DGF. In Chapter 5, 

logistic regression analysis of a clinical database revealed that none of these variants 

were significantly correlated with increased risk of DGF (Table 5-4). However, our 

cohorts that inherited kidneys from donors homozygous for rs12522248 allele exhibited 

increased DGF rate and 1.664 times greater risk of developing DGF compared to the 

control groups (Table 5-4). Thus, taken together with the increased DGF rate observed in 

the 64 patients with homozygous mutation in rs12522248, and 56 patients of these 
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patients exhibiting 2 significant defects in loci on both chromosomes (double mutants), 

this group of cohorts therefore may be an interesting group and requires further study.  

KIM-1 expression has been reported to be correlated with renal function and fibrosis 

following renal transplantation [41]. DGF, although an important indicator of 

transplantation prognosis, is only one of many clinical factors that may influence a 

transplant’s success.  It may also be of interest to examine the potential association of 

each KIM-1 variant with risk of long-term graft survival since KIM-1 expression is 

known to correlate with fibrosis and progression to CKD [31, 42, 43].  

The contribution of necrotic cell death to IRI and DGF is another factor that could have 

confounded our multivariate analysis. Indeed, the predominant form of cellular injury 

during renal IRI is believed to be via necroptosis [44, 45]. Although, we showed that 

genetic polymorphisms in select KIM-1 variants resulted in defective clearance of 

apoptotic cells (Chapter 4), whether these variants also were defective in its ability to 

bind to AIM on opsonized necrotic cells was not tested. Therefore, it is possible that 

these select variants still retained the ability to clear necrotic cells which would render a 

negligible association with DGF.  

Although Chapter 5 took sex into consideration when determining the risk of DGF with 

the three functional KIM-1 variants, Chapters 2 and 3 of my thesis only examined the 

role of KIM-1 in the donor kidneys of male mice. Numerous studies have implicated that 

males are more prone to IRI and consequently exhibit poorer transplant outcomes 

compared to females [46, 47]. In addition, when subjecting mice and rats to bilateral 

ischemia reperfusion injury, males developed significantly greater amount of kidney 
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deterioration, renal dysfunction and severe tubular necrosis compared to females [48, 49]. 

Administration of testosterone exacerbated damage due to renal IRI in females. Similarly, 

estrogen administered to castrated males provided significant protection [50]. Taken 

together, these results propose that testosterone is a key determinant for enhanced 

susceptibility to IRI. Therefore, examining the potential for sex differences in the role of 

KIM-1 in kidney transplants is an interesting question and needs further investigation.  

Here we show for the first time that 3 select variations in the coding region of KIM-1 

causes alteration in cell surface expression and significantly attenuates its phagocytic 

function. However, whether these select variants are predictive for the potential risk of 

developing DGF require additional studies. Although further analysis of the data is 

necessary in uncovering potential associations with clinical prognostic markers, these 

findings may provide novel insight in potentially linking the non-phagocytic function of 

KIM-1 with long-term transplant outcomes in human patients. 
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6.2 Conclusion  

The overarching theme of this thesis is to examine the role of KIM-1 in mitigating graft 

damage in the hopes of providing evidence for potential therapies that would prolong the 

lifespan of the transplanted kidney. Ischemia reperfusion injury is a major element that 

limits the lifespan of the kidney grafts [3, 4, 6, 7, 51, 52] and delayed graft function is a 

major consequence of IRI which  

in turn is associated with graft rejection and poor long-term survival [53, 54]. This thesis 

systematically describes how efficient clearance of dying cells could markedly improve 

transplant outcomes via regulating necroinflammation that occurs downstream of KIM-1 

(Figure 6-1). First, I identified KIM-1 as a target protein in mitigating graft injury which 

consequently improved overall survival. Second, I validated a KIM-1 specific therapy, 

rAIM, as a potential treatment agent in transplantation. Finally, I assessed the clinical 

significance of various KIM-1 haplotypes in human kidney transplantations. There are 

still unanswered questions including: the role of KIM-1 in an allogeneic transplantation; 

whether chronic expression of KIM-1 following renal transplantation is pathogenic; and 

whether genetic variants of KIM-1 in donor kidneys predispose human recipients to 

chronic kidney disease and subsequent graft failure. Nevertheless, this thesis elucidates 

the protective role of KIM-1 and rAIM administration during renal transplantation, and 

highlights the effective targeting of KIM-1 to be an attractive therapeutic strategy that 

may prolong kidney transplant survival. 
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Figure 6-1. Expression of KIM-1 in the donor kidneys protects against transplant 

associated-IRI through regulation of necroinflammation via the clearance of dying 

cells. 

Abbreviations: AC = Apoptotic cell, AIM= Apoptosis inhibitor of macrophage protein, 

IRI= Ischemia-reperfusion injury, NC= Necrotic cell. 
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