Audio-Motio Tachograph: A New Device for Assessing Fetal Brain Function in Low-Income Facilities

Patrick Gatutsi
Michelle Mottola
Stephen Rulisa
Sandrine de Ribaupierre
Rhodri Cusack

Follow this and additional works at: https://ir.lib.uwo.ca/wheceg
Audio-motio tachograph: A new device for assessing fetal brain function in low income facilities

Patrick Gatutsi1, Michelle Mottola PhD3, Stephen Rulisa MD, PhD4, Sandrine de Ribaupierre MD1, Rhodri Cusack PhD1,2

1Department of Neuroscience, University of Western Ontario, ON, Canada, 2Trinity College Institute of Neuroscience, Dublin, Ireland, 3Kinesiology, University of Western Ontario, ON, Canada, 4 School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda

Background
- Medical imaging with ultrasound and MRI can provide rich knowledge on the developing fetus
- However, these tools are expensive and not accessible to many people in low income countries
- Our goal is to create an affordable device that will assess fetal brain function
- We will do this by measuring changes in fetal movement and heart rate in response to sounds

Objectives
- To develop a wearable device for measuring fetal responses
- Proof-of principle: Do fetuses discriminate different complex sounds? Can we measure fetal learning and memory?

Audio-Motio Tachograph
- Prototype of lightweight, wearable device able to record fetal movement
- Strain-sensing fabric was used to measure deformation of the abdomen

Methods
42 healthy pregnant women at 32 to 38 weeks of gestational age at Gahini Hospital, Rwanda/Africa were recruited and tested after their informed consent was obtained.

Preliminary Results
- The device was sensitive to movement and detected maternal breathing in most of our participants
- In some mothers, fetal movement was also seen at the offset of sounds.
- This suggests that fetus responded to acoustic stimuli by an increase in fetal activity.

Signal Analysis
- The sensors record movements that come from a mixture of sources, including maternal breathing, maternal posture adjustment, and fetal movement.
- These sources have different patterns in time, and so can be separated to some degree using a frequency analysis
- As they are not perfectly regular, and are sometimes clustered in time, we used a wavelet transform.

Conclusions
- The results are a proof-of-principle that an affordable, wearable device, recording for a relatively long period of time can detect sound-evoked fetal movement.
- However, we believe increased sensitivity is possible with improvements in the design of the device.
- Future recording and testing will then evaluate which brain functions can be probed with this method.