Western University Scholarship@Western

Electronic Thesis and Dissertation Repository

11-3-2020 2:00 PM

Examination of Institutional Investment in the United States of America from 1999 to 2018

Martin R. Lefebvre, The University of Western Ontario

Supervisor: Dr. Milford B. Green, *The University of Western Ontario* A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree in Geography © Martin R. Lefebvre 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Behavioral Economics Commons, Business Administration, Management, and Operations Commons, Business Intelligence Commons, Human Geography Commons, Other Business Commons, Other Geography Commons, Regional Economics Commons, and the Spatial Science Commons

Recommended Citation

Lefebvre, Martin R., "Examination of Institutional Investment in the United States of America from 1999 to 2018" (2020). *Electronic Thesis and Dissertation Repository*. 7561. https://ir.lib.uwo.ca/etd/7561

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

Abstract

This thesis examines the evolution of spatial preference of institutional investors located in the United States of America for the time period of 1999 to 2018 using a mix of exploratory data analysis techniques and more sophisticated space-time and machine learning techniques such as ESRI Space-Time cube and Latent Dirichlet Allocation topic modeling. This thesis concludes that despite having the appearance of a footloose industry due to almost negligible fixed costs, institutional investors are attracted to highly dynamic urban centres and on the 20 year time horizon, appear surprisingly sticky in their location preference. This is consistent with the belief from previous literature that institutional investors choose their urban locations due to the ubiquity of high quality information and access to advanced professional services commensurate to the investor's role as a command and control node in the broader economy. A close examination of the data concludes that while New York State may be in relative decline nationally, it is still the fastest growing location in absolute terms and remains firmly at the top of the US investor urban hierarchy. Lastly, the machine learning classification of investment strategies shows that California-based investors have unexpectedly poor performance across a broad range of identified strategies, however this can be explained by California's venture capital culture, hinting that local knowledge and culture can influence investment strategy decisions.

Cette thèse examine l'évolution de la préférence spatiale des investisseurs institutionnels situés aux États-Unis d'Amérique pour la période de 1999 à 2018 en utilisant un mélange de techniques d'analyse de données exploratoires et de techniques spatio-temporelles et d'apprentissage automatique plus sophistiquées telles que la modélisation de cube de temps et espace par ESRI et de rubriques d'allocation Dirichlet latent. Cette thèse conclut que malgré l'apparence d'une industrie libre en raison de coûts fixes presque négligeables, les investisseurs institutionnels sont attirés par les centres urbains très dynamiques et, à l'horizon de 20 ans, semblent étonnamment figés dans leur préférence de localisation. Cela est cohérent avec la croyance de la littérature précédente selon laquelle les investisseurs institutionnels choisissent leur emplacement urbain en raison de l'omniprésence d'informations de haute qualité et de l'accès à des services professionnels avancés à la mesure du rôle de l'investisseur en tant que noeud de commandement et de contrôle dans l'économie au sens large. Un examen attentif des données conclut que, bien que l'État de New York soit en déclin relatif au niveau national, il reste le lieu à la croissance la plus rapide en termes absolus et reste fermement au sommet de la hiérarchie urbaine des investisseurs américains. Enfin, la classification par apprentissage automatique des stratégies d'investissement montre que les investisseurs californiens ont des performances étonnamment médiocres sur un large éventail de stratégies identifiées, mais cela peut s'expliquer par la culture californienne du capital-risque, laissant entendre que la culture et les connaissances locales peuvent influencer les décisions en matière de stratégie d'investissement.

Keywords: United States, Institutional Investment, Finance, Financial Geography, New York, Space-Time Analysis, Gravity Model of Trade, LDA, Latent Dirichlet Allocation

Summary for Lay Audience

This thesis examines the evolution of spatial preference of institutional investors located in the United States of America for the time period of 1999 to 2018 using a mix of exploratory data analysis techniques and more sophisticated space-time and machine learning techniques such as ESRI Space-Time cube and Latent Dirichlet Allocation (LDA) topic modeling. This thesis concludes that institutional investors show a high preference for urban locations, and that despite having an apparent lack of fixed investments tying investors to a particular local, institutional investors are attracted to highly dynamic urban centres and on the 20 year time horizon, these location choices do not seem to change. This is consistent with the existing literature suggesting that institutional investors choose their location due to ease of access to high quality information as well as advanced professional services (such as but not limited to boutique lawyers and accounting firms) that would be needed for investors to properly allocate their capital in the economy. A close examination of the data shows that while New York State may be in relative decline nationally, it is still the fastest growing location in both absolute number of investors and money under management, and thus remains at the centre of the US financial system. Furthermore, the LDA analysis indicates that across a multitude of strategies, investors in the State of California show surprisingly low growth in terms of money under management. However this weakness can be explained by California's high level of venture capital investment (investing in startups rather than established companies listed on the stock market), hinting again that local knowledge plays an important role in investment strategy decisions.

Cette thèse examine l'évolution de la préférence spatiale des investisseurs institutionnels

situés aux États-Unis d'Amérique pour la période de 1999 à 2018 en utilisant un mélange de techniques d'analyse de données exploratoires et de techniques spatio-temporelles et d'apprentissage automatique plus sophistiquées telles que la modélisation de cube de temps et espace par ESRI et de rubriques d'allocation Dirichlet latent. Cette thèse conclut que les investisseurs institutionnels montrent une forte préférence pour les emplacements urbains, et que malgré un manque apparent d'investissements fixes liant les investisseurs à un local particulier, les investisseurs institutionnels sont attirés par les centres urbains très dynamiques et à l'horizon de 20 ans, le choix d'emplacement ne semblent pas changer. Cela est cohérent avec la littérature existante suggérant que les investisseurs institutionnels choisissent leur emplacement en raison de la facilité d'accès à des informations de haute qualité ainsi que des services professionnels avancés (tels que, mais sans s'y limiter, des avocats spécialisés et des cabinets comptables) qui seraient nécessaires pour que les investisseurs allouent leur capital à l'économie. Un examen attentif des données montre que, bien que l'État de New York soit en déclin relatif à l'échelle nationale, il reste le lieu qui connaît la croissance la plus rapide en nombre absolu d'investisseurs et d'argent sous gestion, et reste fermement au sommet de la hiérarchie urbaine des investisseurs américains. En outre, l'analyse de la d'allocation Dirichlet latent indique que dans une multitude de stratégies, les investisseurs de l'état de Californie affichent une croissance étonnamment faible en termes de fonds sous gestion. Cependant, cette faiblesse peut s'expliquer par le niveau élevé d'investissement en capital-risque de la Californie (investir dans des startups plutôt que dans des entreprises établies cotées en bourse), laissant entendre à nouveau que les connaissances locales jouent un rôle important dans les décisions de stratégie d'investissement.

Acknowlegements

I would like to express my very great appreciation to Dr Milford B. Green for his valuable and constructive suggestions during the planning and development of this research work. His willingness to give his time so generously over this project and my previous works has been very much appreciated.

I would like to acknowledge the support and encouragement provided by my family during the preparation of this project. Without their help, editing the document would have been an unbearable task and the finished product would have been less clear and concise.

I would like to acknowledge the support of the Geography department of the University of Western Ontario for their continued support and stimulating intellectual environment.

Nomenclature

CBD	Central Business District
DJIA	Dow Jones Industrial Average
DOW	Dow Jones Industrial Average
ЕМН	Efficient Market Hypothesis
FDIC	Federal Deposit Insurance Corporation
FIRE	Finance, Insurance and Real Estate
NASDAQ	National Association of Securities Dealers Automated Quotations Composite
OLS	ordinary least squares
QLT	Quaternary Location Theory
S&P 500	The Standard and Poors 500 Index
SEA of 1934	Securities Exchange Act of 1934
SEC	Securities and Exchange Commission
USD	United States Dollar

Contents

A	cknov	vlegeme	ents	i
A	bstrac	et		ii
St	ımma	ry for I	Lay Audience	iv
N	omen	clature		vi
Li	st of l	Figures		xi
Li	st of [Fables		xvii
1	Intr	oductio	n	1
	1.1	A Tho	ught Experiment	1
2	Lite	rature]	Review and Related Works	5
	2.1	What i	is Institutional Investment?	5
		2.1.1	History of Institutional Investment	6
		2.1.2	Fears and Questions about Institutional Investment in the 1960s	7
	2.2	Politic	cal Regimes	11
		2.2.1	Pension Fund Capitalism	12
	2.3	Why C	Geography and not Economics	13
		2.3.1	Trading in Aspatial Random Walks	13
		2.3.2	Big Role for Geography	15
		2.3.3	Moderate Role for Geography	20
	2.4	Conclu	usion	22

3	The	Data Pipeline	24
	3.1	Introduction	24
	3.2	The 13F-Holding Report	25
		3.2.1 Investors by Country	26
	3.3	Tying Capital to Physical Space	30
	3.4	The Time Period	31
	3.5	Conclusion	33
4	Exp	loring the Data	35
	4.1	Introduction	35
	4.2	Count and Percentage by Region	35
		4.2.1 Investors By State	37
		4.2.2 Investors by Core-Based Statistical Area	41
		4.2.3 Investors by County	43
		4.2.4 Investors by County Urban Intensity Index	46
		4.2.5 Investors By Region	49
	4.3	The K-function	50
		4.3.1 Spherical K-function	52
	4.4	Point Pattern Discussion	54
	4.5	The Gravity Model of Trade	55
		4.5.1 Gravity Model Discussion	58
	4.6	Conclusion	60
5	Spa	ce Time	69
	5.1	Introduction	69
	5.2	Space-Time Cube	69
		5.2.1 Emerging Hot Spot Analysis	72
		5.2.2 Local Outlier Analysis	73
	5.3	United States of America	73
		5.3.1 Count Data	74
		5.3.2 Funds Under Management	76

5.4	Boston
	5.4.1 Count Data
	5.4.2 Funds Under Management
5.5	Chicago
	5.5.1 Count Data
	5.5.2 Funds Under Management
5.6	Los Angeles
	5.6.1 Count Data
	5.6.2 Funds Under Management
5.7	New York City
	5.7.1 Count Data
	5.7.2 Funds Under Management
5.8	San Francisco
	5.8.1 Count Data
	5.8.2 Funds Under Management
5.9	Conclusion
IDA	of Investments in the United States 124
	Introduction
6.2	Latent Dirichlet allocation
	6.2.1 How does LDA work?
6.3	Preparing the Data
6.4	Number of Topics
6.5	Applying the Model to the Data
	6.5.1 Per-Topic Probabilities
	6.5.2 Per-Document-Per-Topic Probabilities
6.6	Shift-Share
6.6	Shift-Share
6.6 6.7	
	 5.5 5.6 5.7 5.8 5.9 LDA 6.1 6.2 6.3 6.4

7	Conclusion	152
Bi	bliography	157
Li	st of Appendices	167
A	Total of Investors in US Counties by Year	168
B	Gravity Model	184
С	Shift Share	207
	C.1 Dynamic Shift Share of the States	207
D	LDA Gamma Table Counts	238
Cu	irriculum Vitae	276

List of Figures

2.1	Funds Under Management for Hedge Funds from 2000 to Q3 2018	7
3.1	Count of 13-F Filers by Quarter	27
3.2	Stock Indices for 1999 to May 2018	31
4.1	Funds Under Management per Country in Log10	36
4.2	Percentage of Investor by State	37
4.3	Count of Institutional Investors by State	38
4.4	Distance Moved by Firms	40
4.5	Count of Institutional Investors by CBSA	42
4.6	Share of Institutional Investors by CBSA	43
4.7	Percent by Share of Institutional Investors CBSA	44
4.8	Sum of Institutional Investors by County	44
4.9	Count of Institutional Investors by County	45
4.10	Gini Coefficient of US County Count	46
4.11	Chow Test Result	61
4.12	Relative Numbers of Institutional Investors Over Time by County Urban-Rural	
	Index	62
4.13	Absolute Numbers of Institutional Investors Over Time by County Urban-Rural	
	Index	63
4.14	Count of Institutional Investors by Region (as defined by the US Census Bu-	
	reau) for the Period 1999 to 2018	64
4.15	Number of Firms by US Region	65
4.16	XKCD 1138 - Heatmaps	66
4.17	Spherical K-function for Range Band 1km	66

4.18	Spherical K-function for Range Bands 5km to 50km	67
4.19	Spherical K-function for Range Bands 100km to 750km	67
4.20	Spherical K-function for Range Bands 1000km to 5000km	68
5.1	A schematic explanation of the time-cube	71
5.2	Schematic Illustrations of a Time-Cube	71
5.3	Emerging Hot Spot Analysis of Locations of Institutional Investors in the USA	
	1999-2018	75
5.4	Local Outlier Analysis for Number of Institutional Investors in the USA 1999-	
	2018	76
5.5	Hot Spot Analysis of USA-based Institutional Investors 2013-2018	77
5.6	Local Outlier Analysis For Funds Under Management in the United States	
	2013-2018	78
5.7	Hot Spot Analysis of Number of Firms in Boston CBSA 1999-2018	80
5.8	Hot Spot Analysis of Number of Firms in Downtown Boston 1999-2018	81
5.9	Boston CBSA Local Outlier Analysis - Count of Institutional Investors 1999-	
	2018	82
5.10	Downtown Boston Local Outlier Analysis - Count of Institutional Investors	
	1999-2018	83
5.11	Emerging Hot Spot Analysis of Funds Under Management for Boston CBSA	
	2013-2018	84
5.12	Emerging Hot Spot Analysis of Funds Under Management for Downtown Boston	
	2013-2018	85
5.13	Boston CBSA Local Outlier Analysis - Funds Under Management 2013-2018 .	86
5.14	Boston Downtown Local Outlier Analysis - Funds Under Management 2013-	
	2018	87
5.15	Hot Spot Analysis of Number of Firms in Chicago CBSA 1999-2018	88
5.16	Hot Spot Analysis of Number of Firms in Downtown Chicago 1999-2018	89
5.17	Chicago CBSA Local Outlier Analysis - Count of Institutional Investors 1999-	
	2018	90

5.18	Downtown Chicago Local Outlier Analysis - Count of Institutional Investors	
	1999-2018	91
5.19	Emerging Hot Spot Analysis of Funds Under Management for Chicago CBSA	
	2013-2018	92
5.20	Emerging Hot Spot Analysis of Funds Under Management for Downtown Chicago	
	2013-2018	93
5.21	Chicago CBSA Local Outlier Analysis - Funds Under Management 2013-2018	94
5.22	Downtown Chicago Local Outlier Analysis - Funds Under Management 2013-	
	2018	95
5.23	Hot Spot Analysis of Number of Firms in Los Angeles CBSA 1999-2018 9	97
5.24	Hot Spot Analysis of Number of Firms in Downtown Los Angeles and Santa	
	Monica 1999-2018	98
5.25	Los Angeles CBSA Local Outlier Analysis - Count of Institutional Investors	
	1999-2018	99
5.26	Downtown Los Angeles and Santa Monica Local Outlier Analysis - Count of	
	Institutional Investors 1999-2018	00
5.27	Emerging Hot Spot Analysis of Funds Under Management for Los Angeles	
	CBSA 2013-2018	01
5.28		
	Emerging Hot Spot Analysis of Funds Under Management for Downtown Los	
	Emerging Hot Spot Analysis of Funds Under Management for Downtown LosAngeles and Santa Monica 2013-2018Angeles and Santa Monica 2013-2018	
	Angeles and Santa Monica 2013-2018	02
5.29	Angeles and Santa Monica 2013-2018	02
5.29	Angeles and Santa Monica 2013-2018 10 Los Angeles CBSA Local Outlier Analysis - Funds Under Management 2013-2018 10 2018 10	02 03
5.29 5.30	Angeles and Santa Monica 2013-2018 10 Los Angeles CBSA Local Outlier Analysis - Funds Under Management 2013- 10 2018 10 Downtown Los Angeles and Santa Monica Local Outlier Analysis - Funds Un- 10	02 03 04
5.295.305.31	Angeles and Santa Monica 2013-2018 10 Los Angeles CBSA Local Outlier Analysis - Funds Under Management 2013-2018 10 Downtown Los Angeles and Santa Monica Local Outlier Analysis - Funds Under Management 2013-2018 10 der Management 2013-2018 10	02 03 04 06
5.295.305.315.32	Angeles and Santa Monica 2013-2018 10 Los Angeles CBSA Local Outlier Analysis - Funds Under Management 2013-2018 10 Downtown Los Angeles and Santa Monica Local Outlier Analysis - Funds Under Management 2013-2018 10 Hot Spot Analysis of Number of Firms in New York CBSA 1999-2018 10	02 03 04 06
5.295.305.315.32	Angeles and Santa Monica 2013-2018 10 Los Angeles CBSA Local Outlier Analysis - Funds Under Management 2013-2018 10 Downtown Los Angeles and Santa Monica Local Outlier Analysis - Funds Under Management 2013-2018 10 Hot Spot Analysis of Number of Firms in New York CBSA 1999-2018 10 Hot Spot Analysis of Number of Firms in Downtown New York 1999-2018 10	02 03 04 06 07
 5.29 5.30 5.31 5.32 5.33 	Angeles and Santa Monica 2013-201810Los Angeles CBSA Local Outlier Analysis - Funds Under Management 2013-201810Downtown Los Angeles and Santa Monica Local Outlier Analysis - Funds Under Management 2013-201810der Management 2013-201810Hot Spot Analysis of Number of Firms in New York CBSA 1999-201810Hot Spot Analysis of Number of Firms in Downtown New York 1999-201810New York CBSA Local Outlier Analysis - Count of Institutional Investors	02 03 04 06 07

5.35	Emerging Hot Spot Analysis of Funds Under Management for New York CBSA
	2013-2018
5.36	Emerging Hot Spot Analysis of Funds Under Management for Downtown New
	York 2013-2018
5.37	New York CBSA Local Outlier Analysis - Funds Under Management 2013-2018112
5.38	Downtown New York Local Outlier Analysis - Funds Under Management 2013-
	2018
5.39	Hot Spot Analysis of Number of Firms in San Francisco CBSA 1999-2018 114
5.40	Hot Spot Analysis of Number of Firms in Downtown San Francisco 1999-2018 115
5.41	San Francisco CBSA Local Outlier Analysis - Count of Institutional Investors
	1999-2018
5.42	Downtown San Francisco Local Outlier Analysis - Count of Institutional In-
	vestors 1999-2018
5.43	Emerging Hot Spot Analysis of Funds Under Management for San Francisco
	CBSA 2013-2018
5.44	Emerging Hot Spot Analysis of Funds Under Management for Downtown San
	Francisco 2013-2018
5.45	San Francisco CBSA Local Outlier Analysis - Funds Under Management 2013-
	2018
5.46	Downtown San Francisco Local Outlier Analysis - Funds Under Management
	2013-2018
6.1	Graphical Model of Latent Dirichlet allocation
6.2	LDAtuning Ensemble for Determining the Number of Topics in LDA 133
6.3	Topic Model with 34 Topics, Topics 1 thought 9
6.4	Topic Model with 34 Topics, Topics 10 thought 19
6.5	Topic Model with 34 Topics, Topics 19 thought 27
6.6	Topic Model with 34 Topics, Topics 28 thought 34
6.7	Regional Shifts using 34 Topic LDA, Topics 1 thought 9
6.8	Regional Shifts using 34 Topic LDA, Topics 10 thought 19

6.9 Regional Shifts using 34 Topic LDA, Topics 19 thought 27
6.10 Regional Shifts using 34 Topic LDA, Topics 28 thought 34
6.11 Violin Plot of Firm Holding Size for CA, IL, MA and NY
D.1 Count of Firms for Topic 1 by Quarter
D.2 Count of Firms for Topic 2 by Quarter
D.3 Count of Firms for Topic 3 by Quarter
D.4 Count of Firms for Topic 4 by Quarter
D.5 Count of Firms for Topic 5 by Quarter
D.6 Count of Firms for Topic 6 by Quarter
D.7 Count of Firms for Topic 7 by Quarter
D.8 Count of Firms for Topic 8 by Quarter
D.9 Count of Firms for Topic 9 by Quarter
D.10 Count of Firms for Topic 10 by Quarter
D.11 Count of Firms for Topic 11 by Quarter
D.12 Count of Firms for Topic 12 by Quarter
D.13 Count of Firms for Topic 13 by Quarter
D.14 Count of Firms for Topic 14 by Quarter
D.15 Count of Firms for Topic 15 by Quarter
D.16 Count of Firms for Topic 16 by Quarter
D.17 Count of Firms for Topic 17 by Quarter
D.18 Count of Firms for Topic 18 by Quarter
D.19 Count of Firms for Topic 19 by Quarter
D.20 Count of Firms for Topic 20 by Quarter
D.21 Count of Firms for Topic 21 by Quarter
D.22 Count of Firms for Topic 22 by Quarter
D.23 Count of Firms for Topic 23 by Quarter
D.24 Count of Firms for Topic 24 by Quarter
D.25 Count of Firms for Topic 25 by Quarter
D.26 Count of Firms for Topic 26 by Quarter

D.27 Count of Firms for Topic 27 by Quarter	
D.28 Count of Firms for Topic 28 by Quarter	
D.29 Count of Firms for Topic 29 by Quarter	
D.30 Count of Firms for Topic 30 by Quarter	
D.31 Count of Firms for Topic 31 by Quarter	
D.32 Count of Firms for Topic 32 by Quarter	
D.33 Count of Firms for Topic 33 by Quarter	
D.34 Count of Firms for Topic 34 by Quarter	

List of Tables

4.1	Number Moved by Firms
4.2	Gravity Model of Trade for Q2 2013
A.1	Total Investors by County and Quarter 1999-2002
A.2	Total Investors by County and Quarter 2003-2006
A.3	Total Investors by County and Quarter 2007-2010
A.4	Total Investors by County and Quarter 2011-2014
A.5	Total Investors by County and Quarter 2015-2018
B .1	Gravity Model of Trade for Q3 2013
B.2	Gravity Model of Trade for Q4 2013
B.3	Gravity Model of Trade for Q1 2014
B.4	Gravity Model of Trade for Q2 2014
B.5	Gravity Model of Trade for Q3 2014
B.6	Gravity Model of Trade for Q4 2014
B.7	Gravity Model of Trade for Q1 2015
B.8	Gravity Model of Trade for Q2 2015
B.9	Gravity Model of Trade for Q3 2015
B .10	Gravity Model of Trade for Q4 2015
B .11	Gravity Model of Trade for Q1 2016
B.12	Gravity Model of Trade for Q2 2016
B.13	Gravity Model of Trade for Q3 2016
B .14	Gravity Model of Trade for Q4 2016
B.15	Gravity Model of Trade for Q1 2017
B.16	Gravity Model of Trade for Q2 2017

B.17	Gravity Model of Trade for Q3 2017	01
B.18	Gravity Model of Trade for Q4 2017	02
B.19	Gravity Model of Trade for Q1 2018	03
B.20	Gravity Model of Trade for Q2 2018	04
B.21	Gravity Model of Trade for Q3 2018	05
B.22	Gravity Model of Trade for Q4 2018	06
D.1	Topics by Quarter, 2013-2014, All Investors	39
D.2	Topics by Quarter, 2015-2016, All Investors	40
D.3	Topics by Quarter, 2017-2018, All Investors	41

Chapter 1

Introduction

1.1 A Thought Experiment

As a thought experiment, what if we were to take an esteemed economic geographer from 1991 and transposed them to the year 2020, what would surprise them about the American financial system in the intervening 30 years? One might suspect that this scene would resemble that of Michael Douglas' character Gordon Gekko at the beginning of the movie *WallStreet: Money Never Sleeps* at which the disgraced former stockbroker leaves prison with his antiquated 1980s personal effects into a more technologically advanced world. After the shock of 30 years of technological advancement and cultural change, how foreign would such a person find modern institutional investment?

If this hypothetical person were to compare the evidence in this thesis to the world they knew in 1991, they would conclude that nothing and everything changed. Nothing changed, in the sense that the top tiers of American metro areas by funds under management did not change much, New York is still the unquestioned occupant of the first tier, Boston and Chicago are still

in the second tier and San Francisco and LA are in tier 2.5 today rather than tier 3. On the other hand, everything changed, since the dollar amounts invested by institutional investors, and the number of firms are at record highs and have more digits to the numbers - some holdings such as State Street have surpassed the trillion dollar mark.

In the late 1980s, the trend was for firms to leave their metro area's central business district for the lower cost, lower tax and safer suburban office parks (Bodenman, 2000). A part of the urban decay and renewal can be attributed to the lead-crime hypothesis in which leaded gasoline is responsible for a sizable amount of crime due to environmental lead poisoning via automobile exhaust (Feigenbaum and Muller, 2016; Aizer and Currie, 2017). The turnaround and revitalization of urban areas is also congruent with the 20 year lag over the reduction of urban pollution. This urban renewal allows for a return to the original role of cities, that of being a nexus of trade and information.

Similarly, from the point of view of this hypothetical economic geographer, the rise of the Asian economies might be breathtaking even if many of the preconditions for this growth were established in the 1980s. And yet, the most important Asian economy isn't Japan, as would have been expected in 1991, but the People's Republic of China.

This brings us to the research - specifically in geography - with regards to institutional investors. In effect, there is a dearth of new literature in geography about the locational preferences of institutional investors during the 21st century. Institutional investors are individuals (corporate or natural beings) that exercise investment discretion over large sums of money¹(United States Securities and Exchange Commisssion, 2013). The idea behind pooling

¹The Securities and Exchange Commission placed the reporting threshold for institutional investors at 100 million USD

funds to obtain larger risk-adjusted returns stems from the old advice against putting all of one's eggs in one basket, and the larger pool of funds allows for putting more eggs in different baskets. This age-old advice was formalized by Markowitz (1952) in his seminal paper on Modern Portfolio Theory.

As such, with a few notable exceptions such as Graves (2003); Gong and Keenan (2012) and Green et al. (2015), most of the Geography based literature for institutional investment dates to the 1980s and 1990s. At the same time, the 2000s and the 2010s have seen some Economics, Business and Finance articles that investigated the role of space and place with regards to investing. Of these contributions that relate to spatial effects, their research question is more centred in drawing a competitive advantage rather than survey the location of investors. Part of this can be explained by the culture turn in Geography and it's shifting the meta-narrative of research away from quantitative surveys to more personalized explorations of space and place. Furthermore, the culture turn has played a role in reducing the perceived importance of classical location theory, as the telecommunications revolution and de-industrialization in advanced economies have further segregated the places of production from places of consumption for most consumer goods (Bryson et al., 1999).

This pivot of the American economy away from traditional manufacturing has led to embracing the newer knowledge economy paradigm - centred around software, lean manufacturing and faster equipment depreciation. As a consequence, companies are also moving away from debt financed expansion to selling equity as the preferred method of raising capital. Graves (2003) argues that this shift is accelerated by the new economy's lack of physical assets, such as tooling, inventory and real estate that can be used as loan collateral. This has an important effect with regards to the equity market and makes initial public offerings (IPOs) more important than ever. While investor to investor trades after the IPO does not raise capital for the firm in question, the price discovery mechanism of the stock market allows for sensible pricing of secondary offerings which do raise money for the firm (Tobin, 1969). The largest holders of these stocks are institutional investors.

Going back to the esteemed economic geographer, they would be asking themselves if there is a new centre of gravity in the investing world that would displace New York City form its perch atop the financial cities hierarchy. Secondly, will the use of higher resolution and advanced techniques to analyse the portfolio choices of institutional investors reveal new and interesting spatial patterns in the year 2018? Thirdly, as presaged by Green et al. (2015), can time series be used to determine if the location pattern is a function of a historical process or is the generative process of new firms cementing or undermining this hierarchy?

In order to answer these questions, this paper uses a 20 year slice of investor reports from the years 1999 to 2018. The first goal of this research will be to update the literature on institutional investment in the United States of America in the 21st century. Secondly, this paper will use the investor reports in order to map out the evolution of investing in the United States over this time period in order to find if there are any major changes in its hierarchy of cities. Lastly, this paper will use novel methods of analysis such as Time-Cube analysis and Latent Dirichlet allocation (LDA) Topic Modeling of portfolio allocations to explore emergent patterns in the US institutional investor system.

Chapter 2

Literature Review and Related Works

2.1 What is Institutional Investment?

Institutional investors are defined in the Securities Exchange Act of 1934 (henceforth referred to as the SEA of 1934) as investors (natural or legal entities¹) with investment discretion (or beneficial ownership) over a pool of funds greater than one hundred million dollars². The theory is that by pooling capital, investors are in a better position to manage investment risk, and thus achieve a better risk-adjusted return (Davis and Steil, 2001). Those more familiar with the investment literature will see the obvious hand of the efficient frontier hypothesis, in which larger pools of capital can more efficiently manage negatively correlated investment positions (Markowitz, 1952).

¹Institutional investors can organize under different corporate structures, such as banks, insurance companies, defined benefit pension fund, investor broker-dealer, hedge fund and incorporated company.

²The statute allows for the Securities and Exchange Commission to lower the threshold to a number no smaller than ten million dollars. However, this discretion has not been exercised as the date of publication (Davis and Steil, 2001). US Code. Title 15 - Commerce and Trade, Chapter 2B - Securities Exchanges, 78m. Available online at www.law.cornell.edu/uscode/pdf/uscode15/lii_usc_TI_15_CH_2B_SE_78m.pdf

2.1.1 History of Institutional Investment

Blume and Keim (2012) trace the history of institutional investors the first decade of the twentieth century, where they accounted for approximately five percent of the U.S. stock market and about two thirds of the US Stock market in 2010. Commenting on this growth, Friedman (1996) notes that the share of institutional money in the US stock market grew fastest in the decades after the second world war, going from approximately 10 percent in 1950 to just under 50 percent in 1994. Similarly, the Institutional Investor Study by the U.S. Securities and Exchange Commission (1971) found, with a strict definition of institutional ownership of all outstanding stock in the stock-market at seven percent in 1900, and 19 percent in 1952. Using a broader definition of institutional investor, the study found ownership of 24 percent of outstanding stock in 1952 and 26 percent in 1958. Regardless of the definition used by the report, institutional ownership favoured positions that invested disproportionately in large publicly traded companies. Also cited in the Congressional report was a census of stock ownership done by the New York Stock Exchange. The study found institutional ownership of all outstanding stock on its exchange showed growth from 31.1 percent in 1962 to 35.5 percent in 1965 and to 39.4 percent in 1970.

There's a similar growth trend within the subset of institutional investors called hedge funds. Using their own proprietary research and government supplied data, the research firm BarkleyHedge publicizes a count of hedge funds operating in the universe of US securities. Figure 2.1 demonstrates the evolution of hedge fund assets under management from a rapid recovery and growth in assets under management in the early 2000s stock market boom, followed by a precipitous drop after the Great Financial Crisis of 2008, superseded by a slow and steady rise during the Obama recovery into 2018. Therefore, there's a consilience from these authors showing the gradual rise in importance of institutional investors in the US stock market across the 20th century and the early parts of the 21st century.

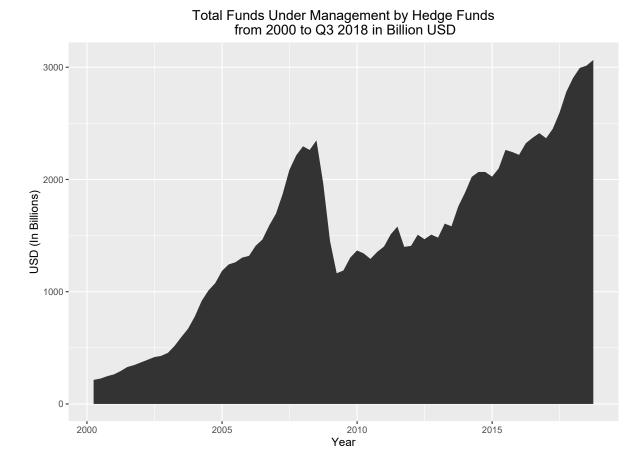


Figure 2.1: Total funds under management as measured by the research firm BarkleyHedge in December 2018.

2.1.2 Fears and Questions about Institutional Investment in the 1960s

While the definition of investor capitalist can become quite broad – anybody who engages in market activity for profit can be defined as a capitalist – most people and institutions of modest means have a marginal impact on the market as a whole. At the other extreme, many fear that the concentration of substantial pools of capital can have a distorting effect on markets in a

manner akin to how stellar objects gain influence over their peers via gravity as they accrue mass. To continue with the Newtonian gravity analogy, it was hoped that periodic disclosure of investments by the largest investors would shine a light on their stock movements and thus level the playing field with investors of more modest means. This periodic reporting would chart the distortions caused by large pools of capital, just like how gravitational distortions on other planets were used to predict and find the orbit of the planet Neptune.

The legal mechanism that mandates the periodic disclosure of institutional capital is Section 13F of the SEA of 1934. This section of law was signed by President Gerald Ford in January of 1975 and took effect in 1978³. Yet, the passing of this bill was a long and tortuous affair spread over the better part of a decade and spanned four different congresses as well as the presidencies of Lyndon Banes Johnson and Richard Milhous Nixon. A look at the bill's legislative history, the rational, as well as what was discarded during the sausage-making process of getting legislation passed, can provide insight on what the bill was meant to cover, what it wasn't meant to cover, in addition to the intended use of the tools created by the bill.

During much of the 1960s, there was fear that some shadowy cabal of investors were manipulating the stock market - seen as a key driver of American success in the Cold War - to their own ends and to the public's expense via underhanded techniques such as front-running and manipulating who could serve on the board of directors. In order to allay fears and find remedies if such action were warranted, the 91st Congress (January 3, 1969 to January 3, 1971) commissioned a study which was completed and presented in front of the 92nd Congress (United States Congress House Committee on Banking and Currency, 1971).

While the 1971 report could not prove extant manipulation by institutional investors, the re-

³US Code, Title 15, Chapter 2b, 78m

port did suggest that a periodic disclosure of investment positions would help allay fears by increasing transparency in the market and thus reduce the perception of corruption. Furthermore, the report shows that investors – across different lines of investment, be it insurance, banks, pension funds among others - were increasingly conscious of "performance" and thus were willing to increase the risk of their portfolio in exchange for higher yields (U.S. Securities and Exchange Commission, 1971). However, the commission found in interviews with investors that they were unaware of the nature of the risk they were running by chasing higher yields. In order to protect investors, the report suggests that periodic disclosure of investment risk would help investors balance risk and reward in their investment decisions and looked for regulatory tools to make this a reality. The report also found that the SEC had the pre-exiting statutory authority to require increased risk reporting for mutual funds under the Investment Company Act of 1940, but that institutional investors were not covered by this Act since by their very nature institutional investors were not a public facing investment provider. As a consequence, the SEC asked the Congress for tools to mandate regular disclosure of stock holdings for institutional investors. One more problem uncovered by the report was the disparate treatment of domestic and offshore investment funds. It was found that in practice, funds that operated outside of the territorial jurisdiction of the United States had a competitive advantage since they operated under a more permissive regulatory and taxation regime. The report suggests that by equalizing the playing-field by forcing foreigners to register with the Securities and Exchange Commission, foreign investors would also receive stronger consumer protections.

Senator Harrison Williams⁴ (D-NJ) shepherded the 13F amendment through multiple re-

⁴Ironically Senator Williams is the only Senator successfully convicted during the "ABSCAM" investigation into Congressional corruption in the early 1980s. Gershman (1982)

form minded Congresses (Shaw, 1981). The first pieces of legislation that can be recognized as the ancestors of the current Section 13F are a pair of bills called Senate Bill 2234 and Senate Bill 2683. The more ambitious bill (Senate Bill 2234) had a more inclusive definition of who is an institutional investor, a reporting threshold of 10 million dollars rather than 100 million dollars in S.2683, as well as mandating reporting of a broader basket of holdings, such as real estate, art, bonds, cash deposits, and commodities in addition to securities. By contrast, Senate Bill 2683 is the more modest of the two bills that Senator Williams presented concurrently to the Senate Banking committee and is substantially similar to the present section 13F of the Securities and Exchanges Act of 1934 (United States Congress House Committee on Banking and Currency, 1971).

Senate Bill 2234 was deemed to be too invasive and impractical by the ranking member Bill Bennett (R-UT) since the broader basket of disclosure wasn't as easily priced as securities that are openly and regularly traded on various exchanges. As a compromise, language was added to Senate Bill 2683 to give the SEC discretion to ratchet down the reporting threshold to 10 million dollar should they feel it necessary (United States Congress House Committee on Banking and Currency, 1971).

Senate Bill 2683 sailed out of the banking committee and passed in the Senate with little opposition. However, the bill did not make it to the House of Representatives. Journalists covering this story attribute the failure in the lower house to the intrepid lobbying by Wall Street agents upset by the lowering of brokerage rates that was recommended by the Congressional report (Zimmerman, 1971). During the lame duck session between the 93rd and 94th Congresses, Senator Harrison Williams went on a publicity tour in order to drum up support for the bill in the face of the New York based opposition (Dallos, 1974b,a). His efforts were rewarded

when the language to create section 13F of the SEA of 1934 was passed by Congress early in the 94th Congress and was signed into law by President Gerald Ford on June 4th, 1975 (Library of Congress, 1975).

2.2 **Political Regimes**

Spatial patterns in Human Geography, and Economic Geography in particular can often show different spatial patterns from similar economic conditions due to the political and regulatory realities on the ground. For example, Lefebvre (2014) discovered that Toronto was more central to the Canadian institutional investor city hierarchy than New York City was for America. Calomiris (2013) ascribes this difference to the constitutional differences in Canadian and American federalism, where the Canadian Constitution under article 91 gives the regulatory responsibility of banking to the federal government in Ottawa, whereas in the American case, the absence of explicit language dealing with banking activities in the American Constitution moved the responsibility for banking to the States under the reserve clause in the 10th amendment. This State responsibility for banking activities severely constrained inter-state and even inter-county business activities.

The only real constraint was geography. Banks were not able to cross state lines and, in many states such as New York, were not able to cross city and county lines. As a result, the most successful of them were concentrated in New York City and, to lesser extent in Chicago. Their power derived from the connections they had forged over the years with businesses and corporations.(Geisst, 1997, p.120)

This doctrine of State banking started being reversed under the Ronald Reagan adminis-

tration in response to increasing foreign competition as well as dealing with bankruptcies. In 1982, an amendment to the Bank Holding Company Act of 1956 gave a mechanism to the Federal government to facilitate banks to buy distressed competitors across state lines as an alternative instead of relying on Federal Deposit Insurance Corporation (FDIC) funds (Calomiris, 2000; Calomiris and Haber, 2014). Lastly, the Riegle-Neal Interstate Banking and Branching Efficiency Act of 1994 streamlined the process of mergers and acquisitions for financial institutions and paved the way for branch banking in the United States.

It is apparent that constitutional regimes can play a part in setting different organizational structures. Due to the branch banking approach in the Canadian system, there are only 86 banks that fall under the supervision of the Canadian Deposit Insurance Cooperation, whereas the American FDIC insures 5 116 banking institutions (Canadian Deposit Insurance Cooperation, 2020; Federal Deposit Insurance Corporation, 2020). This is much larger than the usual order of magnitude rule-of-thumb when comparing Canadian and American count data, indicating that political regimes can have a large influence on spatial patterns of banks and investors.

2.2.1 Pension Fund Capitalism

It was fashionable in the late 1980s and early 1990s to examine the role of state pension funds as engines for local economic development. One of the first papers to seriously examine the portfolio of a state pension fund is Botts and Patterson (1987). They examined the investment locations for the Wisconsin State pension fund, and found that contrary to their public goal of using pension funds for the economic development of Wisconsin, a larger proportion of their investments were done in rapidly growing sunbelt states, due to their higher rate of return. On the other hand, Savard's treatment of the Caisse de Depot & Placement du Québec's highlighted the role of this fund in driving investments in the Province of Quebec by conditioning investment into moving some operations - especially headquarters - into the Province of Quebec. This posed an interesting question as to the priorities of State pension funds - absolute return for the beneficiaries, or should the community also benefit from this investment capital? (Savard, 1993)

Finally, while these two papers offers insights into the entire portfolio of pension funds that would otherwise fall outside the realm of 13-F HR reporting requirements (real estate, bonds, commodities...), these studies are silent with regards to the location of the fund itself.

2.3 Why Geography and not Economics

2.3.1 Trading in Aspatial Random Walks

In 1900, French mathematician Louis Bachellier submitted his thesis called "*Théorie de spéculation*", in which Bachellier formulated that the long-run expected value of speculation on a market experiencing a random walk process was zero. In other words, if one were to assume that the stock market was truly random and thus had a long term trend of zero, it would be impossible to gain money off the stock market by buying and selling stocks only at the opportune time over a sufficiently long time period. While the mathematical proofs in Bachellier's work was more intuitive than rigorous, often hinting mathematical concepts that would shape the field of Mathematics in the twentieth century such as Brownian motion and Markov chains, this work was an important stepping stone to Eugene Fama's Efficient Market Hypothesis (Courtault et al.,

2000).

The Efficient Market Hypothesis (EMH) (Fama, 1970, 1991) posits that asset prices fully reflect all available information. As such, it follows that it's impossible for the average investor to continuously outperform the market average performance on a risk adjusted basis since any information is updated and baked-into the price of the security. Eugene Fama offers the theory in three related variants: Weak, Semi-Strong, and Strong. The Weak variant posits that it is impossible to derive future prices from past information, the Semi-Strong variant posits that current prices reflect all known public information and the Strong version that all information (private and public) is reflected in the price (Fama, 1970). Graves (2003) argues that this seminal paper cast a long shadow on the field of investment research, to the point that many papers fail to consider geography as a plausible explanation for sustained trading advantage, since it would violate the Semi-Strong and Strong version of the EMH. For example, Easley and O'Hara (2011) find that hedge funds survive on information asymmetry, private knowledge and price ambiguity, but fail to inquire about possible sources for these sustained advantages. Similarly, Cohen et al. (2008) find that mutual funds overweight stocks of firms in which the directors of the mutual funds have a board of directors connection with a shared educational network (alma matter), but fail to consider current social networks and geographical proximity as confounding variables. That being said, the literature is rife with studies that appear to conciliate on the point that there is some geographic bias in investment returns and that these abnormal returns stem mostly from local information asymmetry. However, it does appear that this phenomenon was stronger prior to the information technology and telecommunications revolution that was ushered in during the 1980s.

2.3.2 Big Role for Geography

From the first market towns to Marshallian industrial districts, commerce and other economic activities are the *sine qua non* of its existence. An inherent advantage of being located at a trade nexus is the ability to easily compile information on market conditions. Westaway (1974) finds that as firms grow, management functions aggregate towards larger urban centres since these places have greater access to necessary specialized information. This serves as a foundation for Pred (1977), where they theorizes that the location of information-intensive activities is a positive feedback process. Furthermore, Wheeler (1988) as well as Wheeler and Mitchelson (1989a,b) show that urban centres see benefits proportional to their relative importance in corporate decision making. This fits nicely with Quaternary Location Theory (QLT)(Semple, 1985) which emphasises that command and control functions will naturally aggregate to large urban centres.

While the initial flurry of Quaternary Location Theory papers focused mostly on corporate locational preferences – specifically command and control centres, it wasn't long before the field turned its attention towards banking and investment. An early paper (Green, 1993) looked at the geography of institutional investment. This paper looks at inter-city ownership of American institutional investors by using a sample of 395 institutional investors that held stocks in Fortune 500 companies for the year 1980. In this sample, New York City is the only city in the first tier of urban hierarchy, followed by a set of four second tier cities and a steep decline thereafter. The ranking in between city population and financial ownership is not correlated and the ordinary least-squares (OLS) spatial gravity model explains about 6 to 9 percent of the local bias in holdings. In a follow-up paper (Green, 1995) the author adds an additional time

window (1990) and compares the new data with the data from 1980. The OLS spatial gravity model for 1990 is quite different than the model for 1980, showing a more diffused spatial process, which the author ascribes to the increased role of telecommunications. Green also notes the absolute increase of investors in New York City, but that its role is less dominant in the urban hierarchy in 1990 than it was in 1980.

Meyer and Green (1996) examined the spatial distribution of mutual funds from 1940 to 1985. They find that most mutual funds are managed out of three main cities: New York, Boston and Chicago (in that order). Using log-linear analysis on three explanatory variables (location tier ⁵, year and mutual fund type), the researchers find that they can rule out a 3 way interaction, but can't rule out a 2-way interaction in the data. Closer examination shows that the most profitable funds are located in core cities.

Graves (1998) examines the location of mutual fund companies for the year 1996. The author posits that the size of a fund is a function of the fund's past performance, and that the past performance is somewhat dependant on the amount and quality of information available.

Graves (1998) gives three reasons why mutual funds have different spatial patterns than banks. The first reason is that mutual funds and banks have a different history of spatiallybased regulations. More specifically, mutual funds did not experience the State banking era regulatory regime. Secondly, unlike banks which need to interact with customers on a regular basis to perform banking functions such as check cashing and bill payment, mutual funds can conduct their business by mail and other methods of communication. Lastly, banks and mutual funds have different economies/diseconomies of scale curves with regards to personnel and investment positions. This is mostly due to the fact that investment positions do not scale well,

⁵Core, Semi-Core and Periphery

as they become more illiquid with size.

While Graves (1998) hypothesizes that the control nexus of investment funds will coalesce into the cities at the top of the urban hierarchy, the opposite seems to be happening, for smaller centres are growing faster than larger cities. A possible explanation for the drop in the growth rate of funds in New York City is that modern telecommunications have reduced benefit of co-location to the point that the higher rent is no longer commensurate with the locational advantage. According to Graves, this result calls into question the ability of Quaternary Location Theory to explain the contemporary pattern of investment locations. Graves offers as an explanation that the theory was written during an era with highly aggregated data and inferior communications technology – lacking fax, internet and low cost wireless communication.

Outside of Geography and located mainly in Finance and Business, there exists a parallel literature examining the influence of locational choice and investment returns. Furthermore, this literature is highly steeped in empirical examinations over fitting evidence into established geographical theories. Hau (2001) finds that traders on the Frankfurt Stock Exchange who are located in Frankfurt outperform traders located outside of Frankfurt on a intra-day basis, suggesting that there is an information distance decay function. Similarly, Dvořák (2005) reports that foreign traders fare worse than domestic traders at the Jakarta stock exchange, and Choe et al. (2005) discover that foreign-born traders pay on average 21 basis points more than domestic traders when buying stocks, and received 16 basis points less than domestic traders when selling. Meanwhile, Teo (2009) found that hedge funds with offices in the same country as their investments outperform hedge funds without an office in the same country as their investment.

Following this trend, Zhu (2002) used data from a discount brokerage firm and found that

individual investors show a propensity to invest in companies that are local to them, and that this propensity cannot be explained by fundamentals-based investment strategies. Since these individual investors are also more likely to invest in firms that advertise heavily, the author suggests that this is a results of investors being biased by firms they find familiar. This finding is similar to the findings of Huberman (2001), who found that owners of Regional Bell Operating Companies tend to live in areas that were served by the company. That being said, Monk (2009) states that while investing in firms in which the investor has a high level of familiarity may represent a sub-optimal strategy from the point of view of traditional portfolio theory. In some cases, it can provide for those willing to look beyond the efficient market hypothesis a source of information overlooked by the market and thus a way to profit from information asymmetry. That being said, well publicised investment flops in which State pension funds are used to prop-up failing local champions leading to large losses, such as the 80 percent haircut the State of Connecticut experienced on its loan to Colt Industries in the early 1990s, can make this type of strategy politically difficult to execute.

Bradley et al. (2016) report that, in a sample of 16 internally managed state pension funds, they are over-weighted in local companies by 26 percent relative to the average portfolio. Furthermore, these investments occur predominately in companies that are active in local politics, as measured by both political donations and active lobbying. The authors explore three nonmutually exclusive explanations for this over-investment:

1. **Information advantages due to local effect:** This theory posits that political connections lead to better information flow to the pension fund trustees, and this can be used for trading advantage.

- 2. **Familiarity:** This theory posits that managers are more familiar with local firms and over-estimate the quality of their information, but is otherwise a neutral position.
- 3. **Pay to Play:** This theory posits that political bias and influence peddling leads to malinvestment of State pension funds into politically connected firms. These conflicted motives lead to worse performance.

In total, the evidence (that the effect is stronger in States with a larger share of politically appointed pension fund board trustees as well as States with more powerful members of congress) points towards solution 3 as being the most likely.

Malloy (2005) reports that geographically proximate analysts outperform distant analysts in their buy and sell recommendations. The author posits that analysts who make house calls rather than conference calls can obtain more valuable and actionable private information via face to face communication, direct view of the operations floor, talk to floor employees as well as being better positioned to talk to suppliers. The effect is stronger in smaller locals. Similarly, Farooq (2013) studied the buy and sell recommendations by foreign and local stock analysis covering Thailand, Indonesia, Malaysia and South Korea during the Asian Financial crisis (1997-1999). This study found that foreign-based analysts had more accurate buy recommendations, whereas local analysts had more accurate sell recommendations. Furthermore, Eckel et al. (2011) found, via spatial regression analysis, larger returns than what would be expected for investment firms that invested in companies within a headquarters with 50 miles of their location compared to a random portfolio of companies with similar attributes.

Continuing on the theme of information decaying over distance providing real investment advantages, Cashman et al. (2017) use the cost of borrowing capital for publicly traded real estate companies in Asia-Pacific as a proxy for the cost of information opacity. The authors conclude that more diffused firms (those operating in more than one country) have higher capital costs than firms that only operate in one country and thus they posit that companies pay an opacity tax.

In an interesting parallel to the debate on the importance of Marshallian agglomeration with regards to footloose industries, that is to say those that do not necessitate large fixed upfront costs such as factories, Mitchell (2019) looks at the productivity of literary authors of the 18th and 19th century. This study found that when controlling for a multitude of factors authors were most productive when located in London UK and that there's a statistically robust relationship between time spent in London and increased productivity. Furthermore, the results of this paper suggest that there was a benefit to being located in London that was not present in other UK and Irish literary cities such as Edinburgh or Dublin. The paper posits that geographic concentration fosters thicker social networks with their peers, individuals of influence (agents, editors, publishers) and patrons, thus facilitating the ease of getting published.

2.3.3 Moderate Role for Geography

There exists an other branch of the literature that walks the middle ground between the importance and irrelevance of space with regards to investing. At a coarse level, this literature can be summarized as believing that locational advantages were quite measurable prior to the telecommunications revolution of the 1970s and 1980s, and accepts a limited role at best for locational advantages to accrue in the face of modern telecommunications technology.

During the time period between 1925 and 1978, Rhoades (1982) looked at the distribution

of deposits in commercial banks and found that due to bank consolidation that were mostly driven by mergers and acquisitions, the distribution of bank deposits were increasingly concentrated towards the top end of the top 100 largest banks list. Furthermore, while this period saw important demographic changes in the US with the increasing population in the Southern and South-Western United States, changes in the location of the top 100 largest banks were less reflective of the demographic shift than would be expected in a naive model in which bank size is a function of population. This suggests that large urban centres with preexisting banking infrastructure have an innate pull factor that make banks less footloose than would otherwise be assumed.

With a more expansive look at locational preferences, Bodenman (1998) examines the exodus of Finance, Insurance and Real Estate (FIRE) sector firms in downtown Philadelphia, Pennsylvania. During the period between 1983 and 1993, the concentration of FIRE firms located in downtown Central Business District (CBD) fell from 61.9 percent to 24.9 percent. Examining why firms were leaving the Central Business District, the author asked FIRE sector businesses for factors that were at the heart of the locational preferences. Personal preference and quality of life were given as top answers, whereas access to information was not given as a priority. In a related study, Bodenman (2000) looks at how the information technology revolution permits institutional investors broader choice of location without sacrificing access to high quality and quantity of data/information. Bodenman finds that not all actions taken by institutional investors require face to face contact, such as accounting and regulatory compliance, portfolio management, and trading. In contrast, activities that do require face to face contact, such as finding and/or managing clients as well as researching investment opportunities do not require a constant downtown presence. As a consequence, Bodenman (2000) posits that active traders will have a propensity to locate in the CBD, whereas passive investors and quantitative traders will locate in suburban office parks where rent is less expensive.

Gong and Keenan (2012) examine the geographical dispersion and return on the island of Manhattan shortly before and in the aftermath of the 9/11 terrorist attack. Of the 79 firms surveyed, fifty-four did not change location, while ten moved on a temporary basis (one month to a year and a half), and fifteen changed locations permanently. Of the ten who changed locations toward the periphery of the New York area, the most common reason for returning to Manhattan is the ability to meet with clients. Most of the firms that moved were located in Downtown and Midtown, in contrast, those that returned were located exclusively in Downtown Manhattan. Furthermore, the survey says that prior to the 9/11 attack, most firm managers were reporting that their locational preferences were shaped by maximising the prestige of the building, adjacency to the New York Subway system, as well as being conveniently located in order to meet with clients. After the attack, the location preference was dominated by an emphasis on office space, building infrastructure and rental costs, while keeping in mind that high prestige buildings would be more susceptible to terrorism in the future.

2.4 Conclusion

The literature on location choice for stock market investors can be divided into three broad categories. The first stems from the Eugene Fama's Efficient Market Hypothesis and Louis Bachellier's *"Théorie de spéculation"*, which states that it should be impossible to derive a long term trading advantage from one's physical location. The second stems from a more Industrial Geography perspective that values the use of tacit knowledge networks derived from

co-location to create long-term trading advantages (Westaway, 1974; Coval and Moskowitz, 2001). The last category tries to bridge the first two, for the telecommunications revolution has reduced the benefits of co-location and thus liberalized location choice as explored by Moriset and Malecki (2009) where they argue that modern telecommunications re-arrange spatial forces of agglomeration, and thus reduces the need for vertical hierarchies. The following chapters will examine which school of thought on location choice best reflects the actual location of investment firms in the twenty-first century.

Chapter 3

The Data Pipeline

3.1 Introduction

The 13F-HR report is the cornerstone of this study, for it offers a very detailed peek into the stock holdings of all institutional investors with holdings above 100 million dollars USD in fair market value, as well as voluntary reports for firms with smaller holdings¹. Understanding the data pipeline, that is to say how the data went from the SEC's Edgar server, wrangled into the databases, and then cleaned prior to use in statistical models is important in understanding the strengths and limitations of these models. Otherwise it's garbage in, garbage out (GIGO) research.

¹Some institutional investors with holdings under 100 million USD are compulsory rather than voluntary in nature due to having exceeded the 100 million USD reporting threshold in the previous 4 quarters.

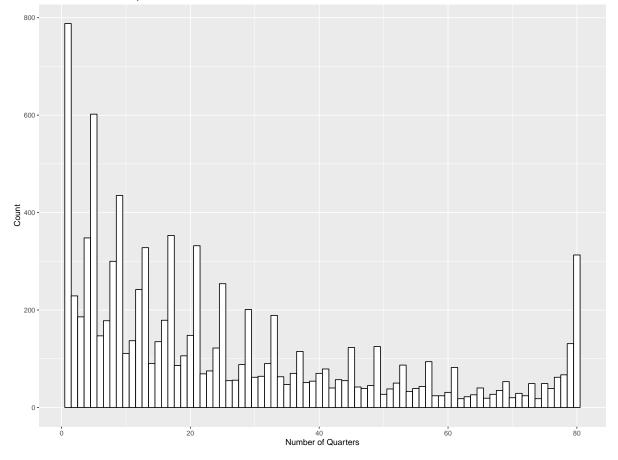
3.2 The 13F-Holding Report

There are countless news articles that use 13F-Holding Reports (13F-HR) data as a basis for "whale watching", that is to say, poring over the 13F reports of successful investors such as, but not limited to Warren Buffet, and imitating their strategies and/or replicating their holdings on a smaller scale (Brody, 2012). While some may debate the wisdom of buying and selling stocks based on what experts were holding 45 days in the past², other say that these reports allow smaller investors to gain insights based on the research departments of larger investors (WilmerHale, 2013).

The data for this thesis was collected from the SEC's Edgar database between 2015 and February 18th, 2019. The Edgar database provides 13F filings in two different formats. The first of these formats is the ".txt" format, which covers the period of March 31, 1999 to March 31, 2013. It should be noted that despite the existence of older filings on the Edgar server prior to March 31, 1999, these filings covering the time period of 1990 to 1998 only exist for a handful of filers each quarter and thus would provide an incomplete and biased sample. This era of filings contain holding information in an unstructured format that are easily human readable, but unreliable when parsed by computers. The second era of filing formats covers the periods of June 30th, 2013 to December 31st, 2018. These filings are in the newer "XBRL" file format which is a derivative of the popular "XML" file structure. This file format has the benefit of being easily machine readable. Furthermore, all 13F-HR/A files represent amendments to previous filings were integrated in to the database.

Due to the difficulties in parsing the older ".txt" file formats, this mandated the creation of

²13F-HR reports are due to the SEC for public access no more than 45 days after the end of a quarter. For example, reports for the period ending March 31st would be due no later than May 15th (or the next Monday if that date would fall on a Saturday or Sunday)


two different databases of institutional investors. One piece of information that was easily extracted from the ".txt" files was the business address of the investor. This leads to the creation of a database containing what is essentially a "phone book" information for all institutional investors that filed at least one quarterly report during the 20 year period covered by this research (n = 242084). The second database is derived from the "XBRL" encoded files and contains a list of all positions reported by the filer to the SEC. Since some filers chose to disclose more information than required, and in the interest of maintaining a fair comparison across firms, only positions containing securities were kept in the database (n = 92539).

When plotting the duration of how long different filers (as defined by unique Central Index Key (CIK)) exist in the database, as seen in Figure 3.1, one notices a pattern in the data where peeks can be found at n+1 quarters where n is zero or an integer divisible by 4. The most likely explanation for this reporting artifact is the requirement to report for the next four quarters after which they have fallen back under the 100 million dollar reporting threshold.

3.2.1 Investors by Country

While these filings are filed under pain of perjury, there is no guarantee that these filings are a true and accurate reflection of the investor's books³. In fact, the SEC's EDGAR server warns users that they are not responsible for any damages caused by acting on incorrect information. In line with this warning, it is obvious that some filings are incorrect. In a few cases, one quarter's filings were orders of magnitude larger than all other filings reported by that filer. For example, Firm 0000863748's filing for March 31st, 2016 reported a total fund value of 5,632,710,967,874.14 USD. This value is more than twice the value recorded for BlackRock

³For example, Bernie Madoff's fraudulent fund is still listed in the pre-2008 data

Count of 13-F Filers by Total Quarters in the Database

Figure 3.1: Count of 13-F filers by quarter in the EDGAR 13-F Database. One should note the regular pattern of n + 1 quarters, where n is zero or an integer divisible by 4.

family of funds, as well as being orders magnitude larger than the neighbouring filings. While there is no absolute guarantee that all filings are accurate, the yearly totals were verified for anomalous values using the Rosner Test as found in the EnvStats R package (Millard, 2013). During the period of June 2013 to December 2018, there were 570 filings with anomalous topline values flagged by the Rosner Test. However, not all abrupt changes in top-line valuation are due to erroneous filings. One such example is BlackRock which underwent a change of reporting scheme for 2017 onwards, where it decided to consolidate more reports under one filing (BlackRock Advisors, LLC, BlackRock Fund Advisors, BlackRock Investment Management, LLC, BlackRock Group Limited, BlackRock Institutional Trust Company, N.A. and BlackRock Japan Co., Ltd.), and thus went from reporting 70.6 billion USD to 1.8 trillion USD. For the suspect filings that could not otherwise be explained, these values were extracted from the database and replaced with a synthetic entry using a weighted average of the surrounding 4 quarters⁴.

This is further complicated by the fact that the legal basis for 13F-HR disclosure mandates only the disclosure of securities and thus the conversion of an investment position to a non-reportable position has a warping effect on the top-line value for each fund. For example, if an investor were to convert a million dollar position in a company into a million dollars worth of real estate, the 13F-HR filing would show a drop of 1 million dollars in the subsequent filing, however the fund's true bottom line did not change. Furthermore, research conducted by Griffin and Xu (2009) looked at the difference between institutional investors and mutual funds, and how they organize their respective short and long positions. As a matter of law, mutual

⁴The main weighting is a (0.2/0.3/suspect entry/0.3/0.2), however, June 2013 and first company filings are treated with a suspect entry/0.6/0.4 (opposite weights for last filing and December 2018), the filing for September 2013 and filers with suspect second entry is 0.4/suspect entry/0.4/0.2. (Inverse weights for September 2018 and December 2018)

funds can't short stocks and thus are forced to make their profit off of their long positions. By contrast, the hedge fund's more permissive regulatory regime allows for short-selling and thus allows for the set-up of using long positions for hedges, and short-selling as a profitgenerator. That being said, the researchers found that there is no statistical difference between the long position profitability between hedge funds and mutual funds. As a consequence, the long positions as reported in the 13F-HR filings should still hold valuable insights in corporate command and control functions, especially since many firms have a waiting period before the power to vote on board of directors vest.

Interestingly, Bernard L. Madoff Investment Securities LLC (CIK number 00001386924) exists within the database from June 2006 to September 2008. However, as was revealed in December 2008, Bernie Madoff was at the centre of a 50 billion USD Ponzi scheme (Appelbaum et al., 2008) in which instead of investing his client's money, he would deposit investments into his personal bank account, as well as pay redemption from this account. As Harry Markopolos detailed in his testimony to the House Financial Services Committee in the aftermath of the Bernie Madoff scheme's unravelling, use of 13F-HR should have uncovered the scheme years earlier, since what he reported on the disclosure form did not match what he was telling clients (Markopolos, 2009). Due to being a known fraud, Bernard L. Madoff Investment Securities LLC (CIK number 00001386924) was censored from the database. While it's unknown how many other fraudulent investment funds exist, there is no other choice than to believe that all the filings are done in good faith, and that the 570 anomalous filings were based on human error.

3.3 Tying Capital to Physical Space

Financial Capital is inherently global while money often acts on the local scale (Clark, 2005). An apt metaphor according to Clark is that money will flow like mercury due to the following properties:

Characteristically, mercury tends to (1) run together at speed, (2) form in pools, (3) re-form in pools if disturbed, (4) follow the rivulets and channels of any surface however smooth it may appear to be, and (5) is poisonous in small and large doses if poorly managed. (Clark, 2005, p105)

These characteristics can make mapping global finance difficult. With the information available in the form 13F-HR, the best one can do to tie the command and control functions of the decision makers is to use the business address in which investors deal with the US regulatory system, and the Securities and Exchange Commission in particular.

3.4 The Time Period

Figure 3.2: Collection of six stock indices for the years 1999 to 2018. The information was collected from Yahoo! Finance API on December 28, 2018. Shaded Areas represent recessions as defined by the National Bureau of Economic Research's Business Cycle Dating Committee https://www.nber.org/cycles/cyclesmain.html. The first recession dates from March 2001 to November 2001 and the second dates from December 2007 to June 2009.

Stock market indices provide a general guideline on the overall health of the stock market (Lo, 2016). From the investor's point of view, this is often used as a performance benchmark in which to evaluate their return *vis-a-vis* their peers. Figure 3.2 shows a collection of six stock indices. Three of these indices are used as bell-weathers of the US Stock-Market: The

Dow Jones Industrial Average (DJIA/DOW)⁵, The Standard and Poors 500 (S&P 500)⁶ and the National Association of Securities Dealers Automated Quotations Composite (NASDAQ Composite)⁷. The three other indices give insights to the national stock markets of various important regions for this study. The first is the UK's FTSE 100, Japan's Nikkei 225 and Canada's TSX.

Examining the correlations over time of various stock index is beyond the scope of this thesis, one would be remiss to forget to draw attention to the correlated nature of the various stock indices. That being said, being aware of the general nature of the stock market (Bear vs Bull market) gives context to whether growth in an investor's position can be partially explained by capital gains rather than attracting new clients and capital. More specifically, the 20 year period of 1999 to 2018 is an era that can be characterised as having strong overall growth, punctuated by two rather large financial crises: the DotCom crash of 2000 and the Great Financial Crisis of 2008-2009. As a consequence, this time period contains 2 powerful bull markets in which the market recovers powerfully from crash. The first being the mid-aughts economic boom and the other the Obama recovery.

While stock markets are somewhat useful in determining the scope and duration of a recession, Samuelson (1966) oft-quoted quip of "the stock market has forecast nine of the last five recessions" has a certain amount of truth to it. This is why the significant stock market

⁵The Dow Jones Industrial Average is an index of 30 blue chip US stocks covering the US economy except for transportation and utilities. The mix of 30 stocks has changed over time to reflect changes in the economy (S&P Dow Jones Indecies, 2020a).

⁶The S&P 500 is an index of 500 large-cap stocks that tries to be representative of the US economy (S&P Dow Jones Indecies, 2020b)

⁷The NASDAQ is a broad-based index of over 3000 stocks listed on the NASDAQ stock exchange. This index is heavily weighted towards the tech sector, and as such the "irrational exuberance" of the DotCom era cast a large shadow over this index, taking 15 years to surpass to the record highs that were recorded during this era (NASDAQ, 2018).

correction that took place in 2016 isn't shaded as a recession in figure 3.2, since this did not have a significantly negative impact on the broader economy. This is why the National Bureau of Economic Research (NBER) does not have a fixed definition of what exactly constitutes a recession, going for an approach similar to Justice Potter Stuart's definition of obscenity -"You know it when you see it" (Jacobellis v. Ohio, 378 U.S. 184. 1964). As such, the NBER's Business Cycle Dating Committee is charged at taking a holistic view of the economy when determining the length and breath of a recession such as changes in employment, housing starts, payroll numbers, manufacturing output and aggregate hours worked in the economy rather than fixate of certain metrics such as stock market contractions or changes in Gross Domestic Product (Robert et al., 2020).

3.5 Conclusion

This section explores the data collection pipeline from the SEC's Edgar server to the decision to create two separate databases of 13F investors. As seen from the examples of inconceivable wealth declared in certain 13F-HR files due to various clerical errors, the data cleaning was an important factor in being able to trust the outputs of the models. Furthermore, the inability to trust the semi-structured text format led to the creation of the "phone book" database and the more machine readable "XBRL" based database. The first database covers the time period of 1999 to 2018 and contains what is essentially phone book information such as years active and locations. The more detailed "XBRL" based database covers the time period of June 2013 to December 2018. This second database contains a detailed stock listing of their end of quarter holdings. Both databases were then geocoded using Google Maps API. Next, these databases

were contextualized by exploring the time period in which they were active.

In the following chapters, these databases will permit this paper to map the evolution of institutional investing in the United States for time periods they cover in order to examine if there are any significant changes in the hierarchies of cities from the time of Green (1993) and Graves (1998). Secondly, the more detailed database will allow for the examination of whether portfolio preferences play a role *vis-a-vis* the locational choices of investors.

Chapter 4

Exploring the Data

4.1 Introduction

Statistician John Tukey is a strong advocate for exploratory data analysis (EDA). Collectively, EDA is a series of graphical and quantitative techniques used to explore novel data in order to examine its data structure, and thus generate insights that can be used as a springboard for hypothesis and model generation (Tukey, 1977; Hoaglin et al., 1983).

This chapter performs EDA on the data at various ground scales (country, state, core-based statistical area (CBSA), county and point) using a variety of techniques such as simple counts to more elaborate techniques such as Ripley's K and the gravity model of trade.

4.2 Count and Percentage by Region

Figure 4.1 is a slope graph showing the sum of funds under management for all firms headquartered in each country. As explored earlier, the 13F holdings report is a US legal instrument

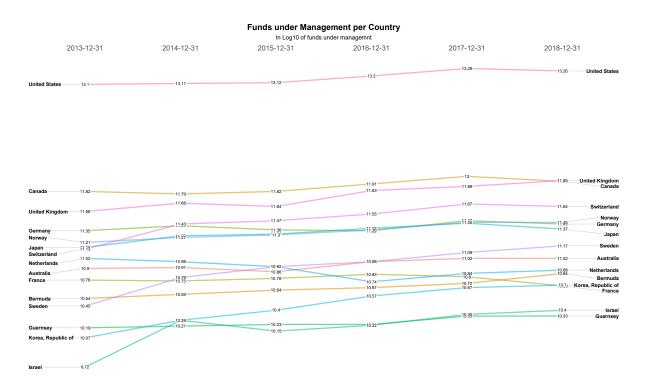
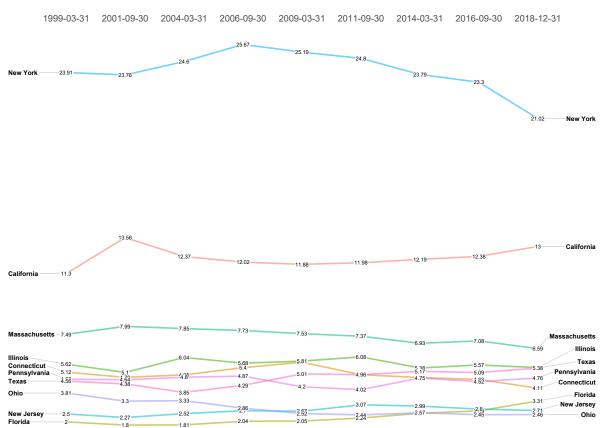


Figure 4.1: Funds under management by country/political entity for top 15 countries in the world by funds under management. Due to the very large gap between the USA and all other countries, the dollar value is represented in log10 form.

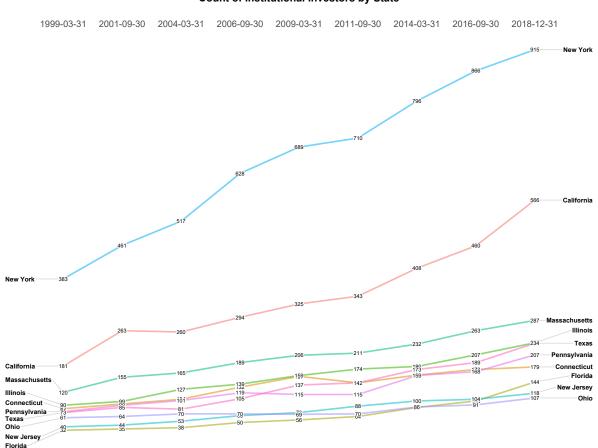

primarily interested in reporting the holdings of shares of US headquartered companies. It is no surprise that the United States of America is over-represented in this database. Furthermore, since many of the other countries on this list have their own robust domestic stock markets, one should take caution before making direct comparison between the US-based investors and foreign investors. Secondly, it is interesting to note that Canada, despite being a smaller economy than the United Kingdom, is home to more investors as measured by funds under management than UK based investors¹. Finally, it is not surprising that the list of countries in Figure 4.1 are mostly populated by advanced economies and countries/political entities that specialise in

¹This is strictly true provided that Crown Dependencies (Guernsey, Jersey, and the Isle of Mann) and British Overseas Territory (Gibraltar and Bermuda being the most prominent) are excluded from the UK's total. With respect to the law, the Crown Dependencies are not part of the UK legislative and legal apparatus, and are autonomous with regard to their legal system, however the Crown is ultimately responsible for maintain good governance of these territories. (Ministry of Justice, 2018)

financial services, such as Switzerland, Guernsey, and Bermuda.

4.2.1 Investors By State

While the 13F data has global reach with regards to foreign investors using US investment system, the use of a domestic stock market is a significant confounding variable. Therefore, for practical purposes, the focus of this research will be centred to a greater extent on the United States of America, its commonwealths and oversees territories.



Percentage of Institutional Investors by State

Figure 4.2: Percentage of institutional investors locational preference by share of investors by State.

There exists institutional investors in every US State, however there is a very unequal dis-

tribution when it comes to their location, by both number of investors and funds under management. Wheeler and Mitchelson (1989a); Green (1995); Bodenman (2000); Graves (2003) have seen and forecasted the continued relative decline of New York, and specifically it's namesake city. And yet, despite the continual relative decline of New York State's position at the centre of the United States's financial system (Figure 4.2), New York State is still home to the largest growth in institutional investors in absolute terms for this time period (Figure 4.3). It should be noted that the renewal of New York's relative decline resumes on or around the first quarter of 2007. This will be discussed in further detail at the county level (Section 4.2.3) and in point pattern analysis using Ripley's K (Section 4.3).

Count of Institutional Investors by State

Figure 4.3: Count of institutional investors by State for the period 1999 to 2018.

While the region that contained the former industrial heart of the United States of America is experiencing a rather severe relative decline, these regions still manage to grow their number of firms in absolute terms. This suggests that the cause of relative decline is a slower genesis of new firms rather than a migration of footloose firms. This is consistent with the findings of Gong and Keenan (2012), which show that despite large shocks, a firm's geographical preferences are sticky.

Further evidence for the point that firms are sticky can be found in figure 4.4, where the great circle distance was measured between the locations of the first and second, second and third, third and fourth, ect... locations of firms in the "phonebook" database of 13F filers created by the author. In the database there are 14 922 unique location and central index key (CIK)² combinations, of which 5 603 firms (CIK) stay in the same location for the duration. For the remainder of 3 649 firms (CIKs), the database show them making 5 190 moves, for a total of 9 319 unique CIK/locations. While this 9 319 unique locations may make the moves to appear very footloose, one must remember that a move implies two distinct locations. In this database, the most footloose firm has a total of 7 moves, but this is the far end of the distribution as seen in Table 4.1.

Number of Moves	1	2	3	4	5	6	7
Count	2,477	886	221	52	9	3	1

Table 4.1: Number of Moves by an institutional investor between the years 1999 and 2018

During this time period, 4 917 of 5 190 (94.7%) of location changes have been what can be considered intra-city/intra-metro area (less than 150 km) rather than 47 inter-city. This lack

²Unique SEC identifier

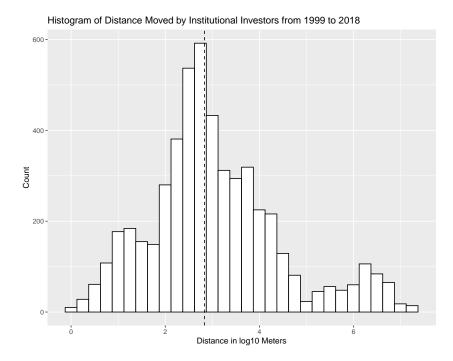


Figure 4.4: Distance Moved by firms during the time period of 1999 to 2018 in Log10 meters. The dashed vertical bar represents the median distance traveled of 680 meters. The mean distance was 269 040 meters. (All distances rounded to the nearest 10m).

of long-distance movement makes attracting firms to a new locale a near-non factor in location changes over time, suggesting some costs in movement, or that rent isn't a top-line deciding factor in location. Even more important for how sticky firms are in their locational preference are that 2 903 of 5 190 (55.9%) of firm locational changes are of less than one km in distance.

One would be remiss to not point out that movement can evade capture in this data set by closing down firm A in location Alpha and creating firm B in location Beta. However, since this would necessitate a non-negligible amount of paperwork, it is doubtful that this would occur only for the purpose of concealing changes in location.

A further cause for the widespread distribution of institutional investors in the United States is the historical legacy of US banking regulations. The 10th Amendment of the US Constitution reserved banking regulations to the States, whereas the commerce clause gave the Federal government jurisdiction over interstate commerce. This division in jurisdiction led to the creation of a regime of regional banks rather than a small clique of national banks (Calomiris, 2000). Furthermore, the proliferation of State-managed employee pension funds ensures the existence of institutional investors outside of financially centred metropolitan areas such as New York, Boston, Chicago or San Francisco. This remains the case despite the recent trend of outsourcing a sizable portions of pension funds into more opaque (and thus outside of the purview of 13F disclosure) and hopefully high yielding private placement deals Lerner et al. (2019).

4.2.2 Investors by Core-Based Statistical Area

Core-Based Statistical Areas (CBSA) are a relatively recent geographical construct by the U.S. Office of Management and Budget with the goal of creating a set of nationally consistent geographies that are useful for tabulating and comparing statistics. These areas consist of at least one core county with a population greater than 10 000 inhabitants, as well as all adjacent counties with substantial economic and social integration (US Census Bureau, 2016). The CBSA is a useful construct for comparing urban areas since it creates a more homogeneous unit of comparison between different urban areas in the United States, particularly since the USA has a disparate mix of regional sub-units such as New England townships and Louisiana parishes. Furthermore, the CBSA is subdivided into either a Metropolitan Statistical Area (population greater than 50 000) or a Micropolitan Statistical Area (population less than 50 000).

Figure 4.5 illustrates the absolute count of institutional investors by CBSA. As previously mentioned in the State breakdown of institutional investors, the New York - Newark - Jersey

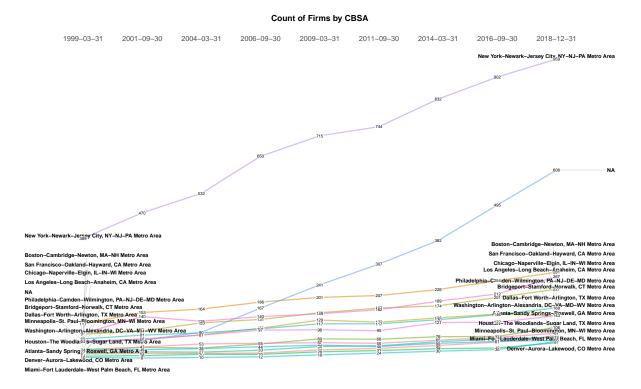


Figure 4.5: Count of institutional investors by Core-Based Statistical Areas for the period 1999 to 2018

City CBSA gains the largest absolute amount of new institutional investors by a considerable margin, and Figure 4.6 shows a similar picture to Figure 4.2 in which New York sees a relative decline. Due to the presence of a few investors in non-CBSA counties, the investors located outside of CBSA were added to figures 4.5 and 4.6. Of particular note is the rapid rise of investment firms outside of the USA during this time period. Figure 4.7 is similar to Figure 4.6, but with the absence of foreign investment firms. When comparing these graphs, the difference in slope trajectory when the number of foreign firms is removed from the baseline is remarkable. At this scale, the relative density of investment firms still follows the same inverted U shape, with a peak on or about the first quarter of 2007.

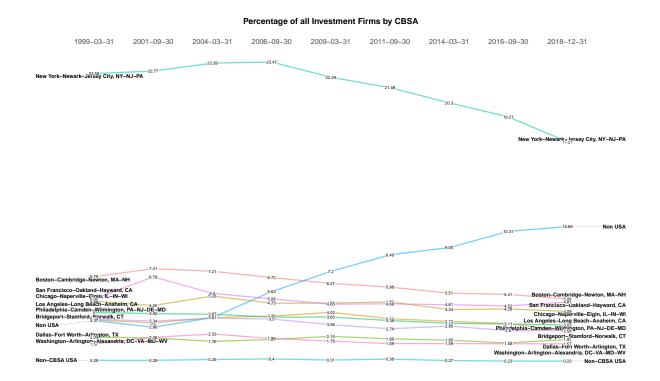


Figure 4.6: Share of institutional investors by Core-Based Statistical Areas for the period 1999 to 2018

4.2.3 Investors by County

Diving further down the building blocks of US territorial systems, the next level down is that of the county. There are 3 242 counties and county equivalents in the USA, and its territories, of which 2 707 do not have institutional investors during the entire period. In March of 1999, 2 972 counties do not host an institutional investor, however by December 2018 the number of counties devoid of institutional investors falls to 2 786. Considering that the USA added over 2 500 institutional investors during this period, this suggests that new institutional investors are attracted to counties with a pre-existing institutional investor population rather than filling-out empty counties.

This larger number of counties permits a different sort of analysis to be used: that of comparing Gini coefficients over time. The Gini coefficient is a common descriptive statistic of

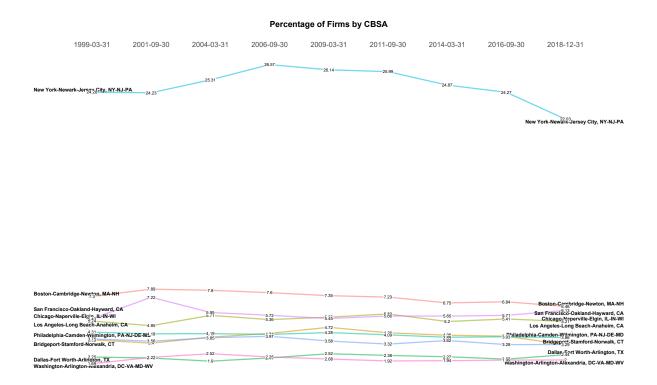


Figure 4.7: Percent by Share of institutional investors by Core-Based Statistical Areas for the period 1999 to 2018. Percentages are re-calibrated by removing investors located outside of CBSAs

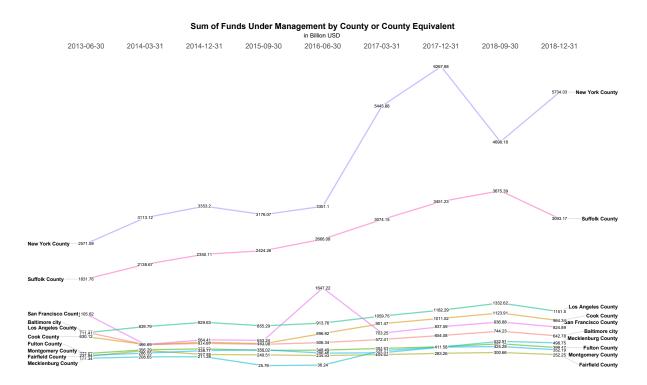


Figure 4.8: Sum of institutional investors by county for the period 1999 to 2018

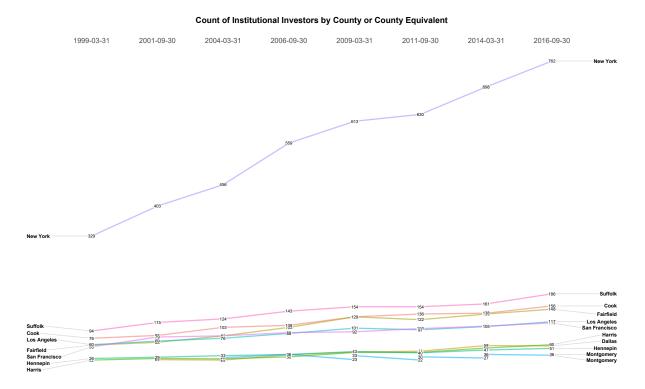


Figure 4.9: Count institutional investors by county for the period 1999 to 2018

inequality, with a value of 1 describing perfect inequality (one case having all of the measured variable) and 0 describing perfect equality (all cases having equal amounts of the variable).

The Chow test is a statistical test developed by econometrician Gregory Chow for determining if two regression lines are equal. Within the field of time series analysis, this is useful for determining if there is the presence of a structural break in the data. A look at figure 4.10 shows an increase in spatial dispersion over time. Using a Chow test (Figure 4.11) to find the change in linear trend of the Gini coefficient indicates that there is a breakpoint in trend on June 30th, 2011 (Chow, 1960). This is much later than the breakpoints mentioned earlier when looking at the concentration of firms in States and CBSAs. This can be somewhat explained by the Gini coefficient being more sensitive to areas going from 0 to 1 than say 15 to 16.

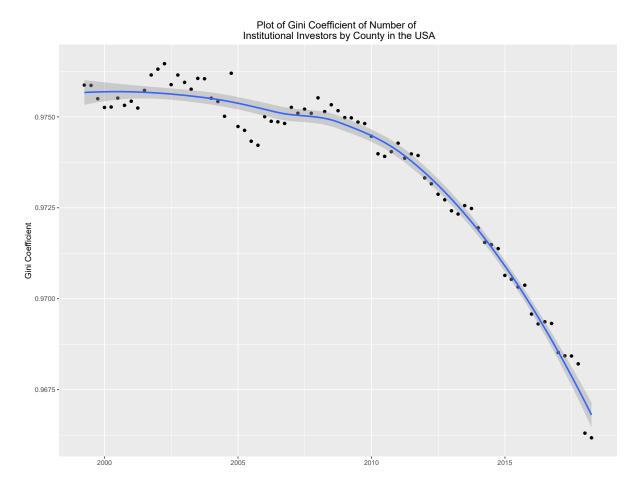


Figure 4.10: Gini coefficient of US county count

4.2.4 Investors by County Urban Intensity Index

Counties (and their equivalents) are important building blocks in the American territorial administration. However, not all counties are created equal. For example, Los Angeles County in California has a population approaching 10 million people, whereas rural counties such as Loving County in Texas contains less than 200 inhabitants (U.S. Census Bureau, 2013). In the field of health geography and epidemiology, rural-urban divide can play a role in predicting health outcomes. The National Center for Health Statistics devised a classification scheme for all US counties that can be used as a proxy for the degree of urban surface area in each county (Ingram and Franco, 2014). This classifies counties into one of 6 different categories.

- 1. Metropolitan Categories:
 - (a) Large Central Metropolitan counties (Category 1) are counties in Metropolitan Statistical Areas (MSAs) with at least 1 million inhabitants, and one of the following characteristics:
 - i. contain the entire population of the largest principal city of the MSA, or
 - ii. are completely contained within the largest principal city of the MSA, or
 - iii. contain at least 250,000 residents of any principal city in the MSA.

Examples: New York County New York³, Bronx County New York, Los Angeles County California, Cook County Illinois.

- (b) Large peripheral metro counties (Category 2) are counties in a MSA with a population greater than or equal to 1 million, but do not qualify as category 1 county. Examples: Orange County New York, San Mateo County California
- (c) **Medium metro counties** (Category 3) are counties in MSA with a population greater than 250,000 but less than one million in population.

Example: Fresno County California, New London County Connecticut

(d) Small metro counties (Category 4) are counties in MSAs with populations greater than 50,000 but less than 250,000 in population.

Example: Yuma County Arizona, Franklin County Vermont

- 2. Non-metropolitan Categories:
 - (a) Micropolitan counties (Category 5) are counties in a micropolitan statistical area

³Coterminous with Manhattan Borough in the City of New York

Example: Juneau City and Borough Alaska, Talladega County Alabama

(b) **Noncore counties** (Category 6) are counties that do not contain a micropolitan statistical areas

Example: Loving County Texas, Denali Borough Alaska

This categorisation of counties gives insight into the type of region the new institutional investors prefer. As predicted by Quaternary Location Theory, it is hardly surprising that institutional investors are primarily found in large urban areas. This was also hinted in Figures 4.5, 4.6, and 4.7, where it shows that the majority of investors are clustered around the topmost cities in the American urban hierarchy. Therefore, it should be of no surprise that Figure 4.12 indicates that 95 percent of institutional investors are located in Metropolitan counties, and that the share of investors in Micropolitan counties is quite stable over time. The largest change is that category 2 counties see an increase in market share, which mostly comes at the expense of category 1 counties. This provides evidence that while downtown areas are slightly less attractive to investors, going for bargain basement land costs is also not a preferred strategy, or else we would see an uptick over time in the counts of category 5 or category 6 counties. While the relative gains of category 2 counties are impressive, one should not lose sight of the fact that the largest absolute growth in the number of institutional investors occurs in category 1 counties (Figure 4.13).

It should be noted that the drop in number of firms in the aftermath of the 2008 great financial crisis is of nearly equal proportion in all categories of counties (Figure 4.12). Yet it is quite evident when looking in absolute numbers of extant institutional investors (Figure 4.13) that category 1 counties take a longer period of time to reestablish their number of investors.

This growth in secondary counties in a conurbation may also hint a second phenomenon, such as an increase preference and/or availability of suburban office space in response to the expense of downtown offices. Pohl (2004) examines the remaining stock of real-estate in Manhattan after the terrorist attack on the World Trade Center and concludes that the destruction of World Trade Center Buildings 1, 2 and 7, as well as the damage on the other buildings essentially removed nearly a quarter of Manhattan's tier 1 and 2 office space from the market, and that the resulting scramble for office space tightened Manhattans' office market, spilling over into the other 4 boroughs as well as suburban New York, New Jersey, and Connecticut.

4.2.5 Investors By Region

A way to reconcile the decline in market share of the New York region in Figures 4.2, 4.6, and 4.7 with Figures 4.12 and 4.13 is to ask if the traditional definition of State or CBSA is too narrow, and that the declines may be partially explained by the modifiable area problem (MAP). The MAP is a source of statistical bias in geography-based data aggregation, since boundaries on reporting areas can have an outsized influence (Fotheringham and Wong, 1991). A common extreme case of the MAP is gerrymandering, in which a political party can gain more seats relative to its vote share by controlling how the votes are aggregated into different districts. In this case, all of the levels of aggregation seen so far (State, CBSA and County) fail to holistically capture Megaregions in the USA, and in particular the Boston-New York-Washington (Bos-Ny-Wash) megaregion (Lang and Nelson, 2007). While it may not fully encompass the Bos-Ny-Wash, the US Census Bureau's Region⁴ does a good approximation of

⁴https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf for a map listing the geographies encompassed by the different regions

this.

In the case of Figure 4.15, the decline of the North East is much slower than one would expect from previous graphs, mostly due to the inclusion of the south shore of Connecticut and the North shore of New Jersey.

Increases in the number of Southern-based investors lies mainly in the growth of firms located in the DC/Arlington Virginia region as well as Atlanta. With regards to the decline of the Mid-West, as mentioned previously, this is more of a relative decline than an absolute decline, for while it started the study period with 321 (20%) institutional investors and ended with 728 (17.6%).

4.3 The K-function

One of the earliest uses of point pattern analysis is the famous cholera map by Dr. John Snow. Although he knew nothing about the cause of the bacterial outbreak, he did discover that the cases of cholera were clustered around a particular water pump on Broad Street. Although scholarship such as Brody et al. (2000) call into question whether Dr. Snow's map was more confirmatory than exploratory since the insights into the cause of the cholera epidemic requires an understanding of germ theory. That is to say, that these maps would not be able to create their historic insights without subject matter expertise. Regardless of whether Dr. Snow used his point density mapping technique as a starting point or only for confirmation of his hypothesis, a common method of quantifying points in space is measuring the intensity of the point pattern per unit of area. Old staples used for measuring point patterns are quadrat analysis and nearest neighbour index. However, these techniques have well known limitations such as the undue influence caused by border selection as well as the inability to determine whether points cluster or disperse at different ground scales (Baddeley et al., 2015).

The examination of various ground scales is important since firms may exhibit different clustering tendencies at various scales. The mirroring of population maps and geographic profile maps at a national scale is humorously examined in XKCD comic 1138 (Figure 4.16) (Munroe, 2012). However, firms may behave differently at different scales. For example, a national maps of firms such as coffee shops, fast food chains, banks, automated teller machines, gas stations and grocery stores may mirror the national population map, yet they would appear diffuse on a local map, for each operates their own local catchment areas. However, other sectors such as software development have a tendency to cluster at the local and regional level (Meyer, 2006). A useful tool for examining point patterns of institutional investment locations across multiple ground scales is Ripley's K function.

At its most basic form, the K-function calculates using a Poisson process of actual verses expected counts of points within distance h of each point in the data set (Dixon, 2014). This yields a density function which can be compared to the expected point pattern intensity under the conditions of complete spatial randomness at different distances. For more information about *Ripley's K*, see Ripley (1976); Fischer and Getis (2009); Baddeley et al. (2015).

With regards to examining the clustering behaviour of institutional investors at various scales, the inherent ability to be used at various ground scales makes Ripley's K well suited for examining the clustering behaviour of institutional investors. This facilitates the examination of spatial clustering of institutional investors and determines if they exhibit locational preferences closer to that of ATMs or software developers.

The K-function in it's most basic form can be written as follows:

$$K(d) = \lambda^{-1} E(Nd) \tag{4.1}$$

Where *Nd* is the number of events *Xi* within distance *d* of a randomly chosen event from all points $\{X_i, ..., X_j\}$. When working with a sample of data points $\{X_j\}$, the K-function for the underlying distribution isn't usually known. However, it can be estimated by using a sample. If d_{ij} is the distance between x_i and x_j , the estimate of K(d) is

$$\hat{K}(d) = \hat{\lambda}^{-1} \sum_{i} \sum_{i \neq j} \frac{(d_{ij} < d)}{n(n-1)}$$
(4.2)

$$\hat{\lambda} = \frac{n}{|A|} \tag{4.3}$$

The CSR equation

$$K_{csr}(d) = \pi d^2 \tag{4.4}$$

Where |A| is the surface area of the study. In order to determine whether a sample is clustered or dispersed, one compares $K_{CSR}(d)$ to $\hat{K}(d)$. If the generated sample is sufficiently different than what one would expect under CSR, one may conclude that the underlying process generating the events is not influenced by a random spatial process (Brunsdon and Comber, 2015).

4.3.1 Spherical K-function

The basic implementation of *Ripley's K* technique assumes that the point pattern exists on a Euclidean surface. While it may be justifiable to assume a Euclidean plain for regions of

less than a few hundred kilometres (Lynch and Moorcroft, 2008; Wilschut et al., 2015), the use of Euclidean space becomes problematic above such distances, and the global distribution of institutional investors is certainly more than a few hundred kilometers, and thus spherical geometry becomes a better option. Furthermore, Tobler (2002) demonstrates that while the Earth is technically an oblate spheroid, most statistical techniques on a continental scale can be done adequately on a sphere.

The K-function displayed in Figures 4.17, 4.18, 4.19, and 4.20 were performed in statistical language R using Robeson's implementation of spherical geometry on Ripley's K (Robeson et al., 2015). This analysis was conducted with a 99-fold cross-validation, in which for each time step, the 1/99 of the data was randomly reserved from the data set⁵. This creates an envelope of possible K-functions. Particular care should be noted for the third and fourth quarters of 2004. These quarters were run a second time with a similar result, suggesting that the problem may lie with the data pipeline from Edgar rather than a sudden and reversible shift in locations preference. A similar, but less extreme discontinuity exists between the fourth quarter of 2013 and the first quarter of 2014.

As with the other forms of measuring the concentration and dispersion at various scales seen earlier, the overall trend of initial concentration and dispersion on or after 2007 continues with the K-function. In greater detail, Figure 4.17 looks at the 1 km scale, where there is an initial concentration followed by a gradual diffusion starting on or around 2003. Figure 4.18 shows a slightly different picture, more akin to the County and CBSA graphs of concentration form 1999 to on or about 2007 and an increased diffusion afterwards. Figure 4.19 shows a

⁵The calculation of the K function for the 80 quarters involved in this study was performed on 3 different computers for a duration of 3 months for a total of 9-computer/months calculation time

similar pattern - just not as starkly. Finally, Figure 4.20 shows that the continental scales resemble the shape seen in Figure 4.17, since there is a continual diffusion of firms from a earlier peak.

This is an important confirmation of the trend, since Ripley's K is a point pattern analysis, and is thus immune to the modifiable areal unit problem. This suggests that something fundamental in the business world occurred in the time-frame of the pivot that changed the calculus in terms of benefits of the forces of agglomeration and desegregation. There is precedence in the location preferences shifting in the past, with a substantial amount of dispersion occurring in the 1970s and 1980s when the first telecommunication revolution occurred (Bodenman, 2000).

While it is beyond the scope of this research, it would be interesting to examine if the rise of so called business-oriented "smartphones" by Blackberry (formerly known as Research In Motion), touchscreen smartphones such as "iPhone" and "Android" devices, in addition to widespread wifi-enabled cafes have reduced the productivity tax of conducting business away from the office, and thus reduce the costs of locating outside of the central business district.

4.4 Point Pattern Discussion

Green et al. (2015) examined the location of institutional investors in the US for the fourth quarter of 2010 and concluded that there was stability in the urban hierarchy by examining the total funds under management for each metro area. However, the limited snapshot in time (fourth quarter of 2010) could not sort out whether the continued dominance of New York was a product of inertia or that spatial forces privileged the formation of new firms in large

cities. That being said, this paper attempts to answer this question. Across various measures of spatial dispersion examined in this paper, this time series of 80 quarters (20 years) show that the evolution of point patterns is primarily driven by the generation of new firms rather than inertia, and that while there is a case that can be made for the increasing suburbanization of institutional investment and a shift towards the sunbelt cities such Atlanta and increased internationalization, new firms are still predisposed to open up in the old centres.

4.5 The Gravity Model of Trade

Gravity model of trade is an empirically derived technique to describe and predict flows from a variety of origins to destinations. One of the first researchers to propose a model for explaining flows of population across space is Ravenstein (1885). He identified a series of "laws" of migration, while not explicitly referencing Newtonian gravity, identified the key variables of distance as well as push and pull factors (Tobler, 1995).

The most naive way of allocating flows across a land mass is to assume a uniform distribution. However, this is questionable at best, for this disregards a myriad of variables that can be used to account for differences in trade. Nobody would seriously expect that trade between New York County, New York (Manhattan) and Loving County, Texas to be on the same level as that between New York County, New York and Los Angeles County, California. Standardizing the flow by a variable such as population might help, but there's no guarantee that the flow scales solely with population (Crymble, 2019). The most naive version of the gravity model is as follows:

$$F = G \frac{M_1 M_2}{r^2}$$
(4.5)

Equation 4.5 is inspired by Sir Issac Newton's gravity equation. As with the gravity equation, F represent the trade in goods from points M_1 to M_2 . M_1 and M_2 represents the aggregate push and pull factors and is traditionally measured as the size of each's market. r^2 is the square of the distance between these points and G is a constant representing the friction of trade, such as the conditions of the roads, the productivity of the longshorepeople or tariff regimes. Unlike the theoretical apple falling from a tree (or the spherical cow thrown by a frictionless trebuchet in a vacuum), human endeavours are plagued by free will and the myriad of uncertainty that follows.

A gravity model's goal is to tell the user: Given a number of influencing forces (distance, costs of living, desirability, access to services, access to markets) affecting the movements of a large number of entities of the same type (fungible commodities or similarly situated people) between a set number of points, what is the most probable distribution? Furthermore, comparing real-world flows to the model's prediction can be used to find anomalies, and these can be useful starting points for future research(Crymble, 2019).

With respect to the gravity model, one must make sure that the data is either complete or a representative sample of the underlying flows, else the model will be hopelessly biased. In this case, the model will be using the universe of 13F holdings for the period of June 2013 to December 2018 to create flows between investors and to the company in which the stocks belong. The destination information is drawn from the COMPUSAT database (Capital IQ

Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
					-29.19***
					(0.18)
					-0.33***
					(0.01)
					0.14***
					(0.00)
			. ,		0.12***
					(0.00)
(0.00)		(0.00)	(0.00)		1.45***
					(0.04)
				. ,	0.18***
	(0.04)	0 00***			(0.04)
		(0.00)		(0.00)	
					2.38***
					(0.02)
			2.40***		2.38***
			(0.02)		(0.02)
0.24	0.25	0.33	0.31	0.34	0.31
0.24	0.25	0.33	0.31	0.34	0.31
214832	214832	214832	214832	214832	214832
5.17	5.14	4.85	4.93	4.82	4.91
	0.24 214832	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 4.2: Gravity model of trade as applied to investment flows between US CBSAs for the period of the second quarter of 2013 (ending on June 30, 2013)

 $^{***}p < 0.001, \,^{**}p < 0.01, \,^{*}p < 0.05$

Compustat, 2019) of stock information filings, and more specifically, the address of their headquarters which was subsequently geocoded using Google Maps. The push and pull factors were calculated as the total stock ownership in the 13F database for each quarter in each CBSA. CBSAs were used for this analysis rather than States (n = 50) or counties and their equivalents(n = 3, 142) due to the CBSA's occupation of a "sweet spot" with regards to detail and manageability (n = 935, of which there are 465 CBSAs which contain at least one flow).

The resultant flows matrix was quite porous, with 20,695 of 214,832 cells being otherwise empty for the second quarter of 2013 and 27,440 of 214,832 cells for the second quarter of

2018. This poses a problem for the model, since zero is undefined when transformed by logarithm. A quick and dirty remedy for this is to add a dummy transaction of 1/10 000 of USD to each CBSA. For each cell that would otherwise reported zero flow now reports 0.005 USD in flows. While the value of 0.005 USD is too small to be represented in hard currency, this value will give a defined value when transformed.

4.5.1 Gravity Model Discussion

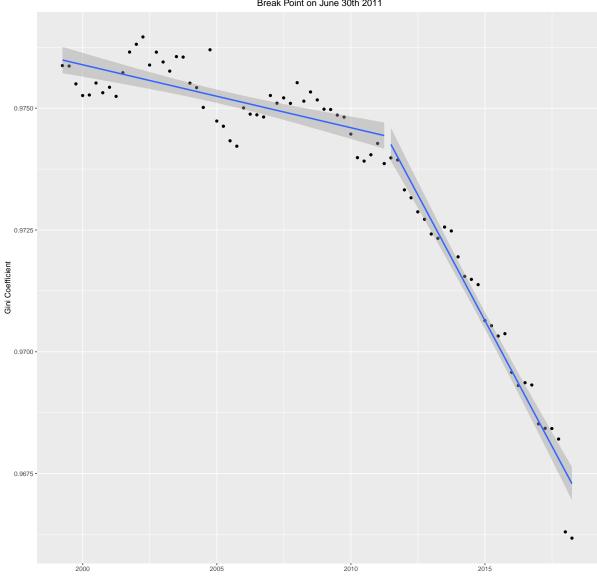
In total, six models were run for each quarter for a total of 114 total models. Since there is very little quarter to quarter variation between model runs, only the model for the second quarter of 2013 (June 30th, 2013) will be discussed here. The results of the other quarters are available in Appendix B.

The first model is the most naive model possible where only the distance between CBSAs, as measured CBSA centroid to CBSA centroid, as well as the investment capital available in each origin and destination are considered. Consistent with previous literature such as Green (1995); Graves (1998); Coval and Moskowitz (1999, 2001); Dvořák (2005), model 1 (Table 4.2) shows a significant distance decay function in the flows between different CBSAs. Furthermore, this naive model can explain 24 percent of the variance seen in the network of flows.

Examining the residuals of the naive model, the largest outliers are where the model drastically underestimated the flows between large cities with robust financial centres, such as Boston to New York, San-Francisco to New York, New York to San-Francisco, New York to Boston. At the other side of the outliers the model has trouble factoring eccentric portfolio choices, such as foundations being bequeathed large amounts of a single stock. One such notable example is the Kellogg W. K. Foundation Trust, for it is a holder of a large amount of Kellogg stock located in the relatively rural city of Battle Creek Michigan, the historical home of the Kellogg Corporation, yet shows no ties to nearby large financial centres such as Chicago or New York, as well as mid to lower tier financial centres such as Detroit or Minneapolis-Saint Paul.

Models 2 through 4 build on the naive model by adding an extra explanatory variable. In the case of model 2, binary variables were added to the model representing if the CBSA contained a State capital. This was added in order to control for the observation that many State pension funds are located in their Capitol city (at least from an administrative capacity) rather than in a nearby financial centre, such as the various New York State employees and teachers pension funds being controlled out of Albany NY rather than New York City. Similarly, one can point to the California Public Employees' Retirement System (CalPERS) and the California State Teachers' Retirement System (CalSTRS) being run out of Sacramento California rather than San Francisco or Los Angeles. Unsurprisingly, model 2 shows this to be a significant factor in predicting monetary flows. This is consistent with the literature such as Bradley et al. (2016) that examine the role of State-level power brokers in fostering a suitable business environment.

Model 3 adds the human population of the CBSA as a variable, while model 4 adds this population transformed by the logarithm of the population. Here the untransformed population count is a better predictor variable of flows than the log of the population when looking at the adjusted r^2 and Root Mean Square Error (RMSE).


Models 5 and 6 are kitchen sink approaches, where all of the explored explanatory variables are included in the model. It should be noted that the human population of the origins and destinations are not examined at the same time as the log of human population since this would be in effect measuring the same thing twice, and thus unbalancing the model by adding covariates.

Taken as an ensemble, Model 5 has the lowest residual mean square error and hightest r^2 . This model suggests that there is definitely is a distance decay function with regards to investing.

4.6 Conclusion

This chapter performs an exploratory treatment of the cleaned SEC's Edgar data for the period of 1999 to 2018. Across the different scales of analysis (state, CBSA, county, point), and techniques from simple counts to more computer intensive techniques such as the spherical application of Ripley's K-function, there is a broad agreement that overtime the locational preferences of investors steer toward slightly less concentration, while still maintaining a decidedly major metro area preference. This time period shows a continued relative decline of New York City within the American hierarchy of financial cities. However, it is important to note that this decline is only relative, and that New York City is still the number one location for new institutional investors in the absolute sense.

Lastly, the gravity model of trade as applied to institutional investors suggests that distance plays a part in investment flows, and that distance decay can be measured. Furthermore, the less naive models continue to show the importance of State Capitals and large metro areas with regards to locating institutional investors, suggesting that institutional investment continues to play a strong command and control function within the American and world economy.

The Two Trends Discovered via Chow Test Break Point on June 30th 2011

Figure 4.11: Result of Chow test. Breakpoint on June 30th 2011

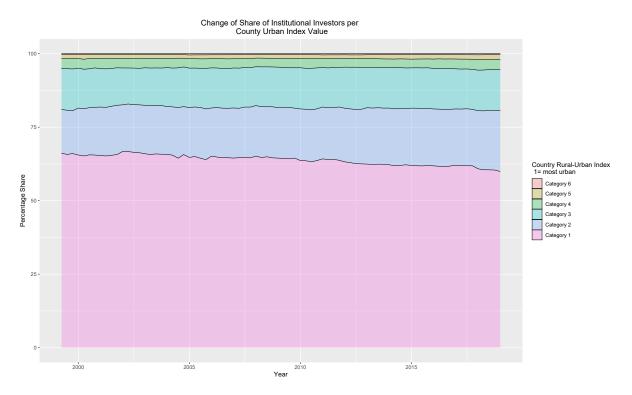


Figure 4.12: Percentage share of firms by County Urban Index Value from 1999 to 2018

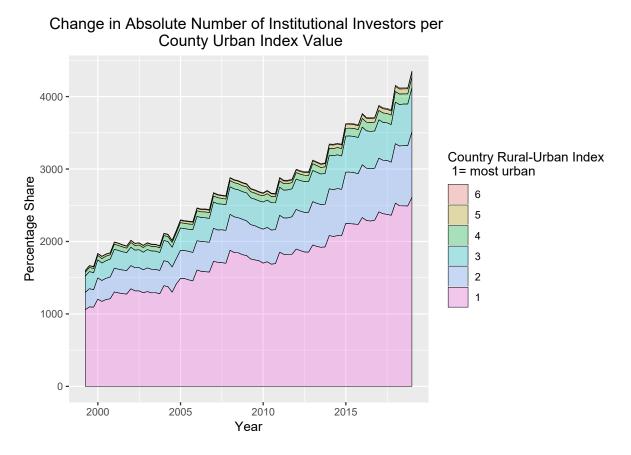
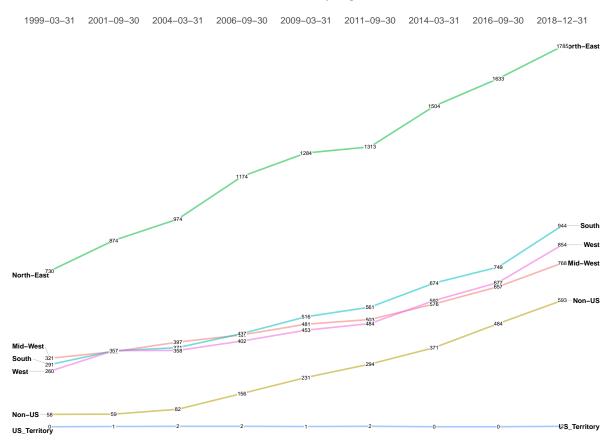
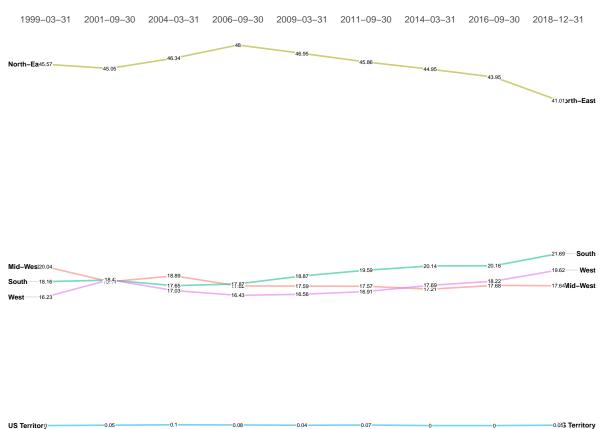




Figure 4.13: Count of firms by County Urban Index Value from 1999 to 2018

Count of Firms by Region

Figure 4.14: Relative percentage of institutional investors by region during the study period (March 1999 to December 2018)

Percentage of Firms by Region

Figure 4.15: Number of Firms by US Region

[Total number of firms by region (as defined by the US Census Bureau) during the study period (March 1999 to December 2018)]

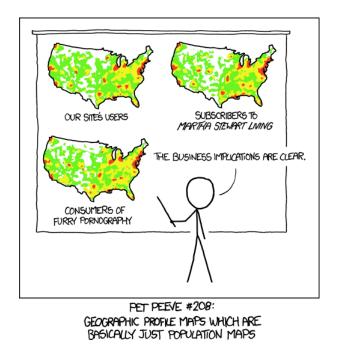


Figure 4.16: XKCD #1138 - Heatmaps by Randall Monroe. This illustrates the point that many patterns can be approximated by human density. Used with Permission (Creative Commons Attribution-NonCommercial 2.5 License)

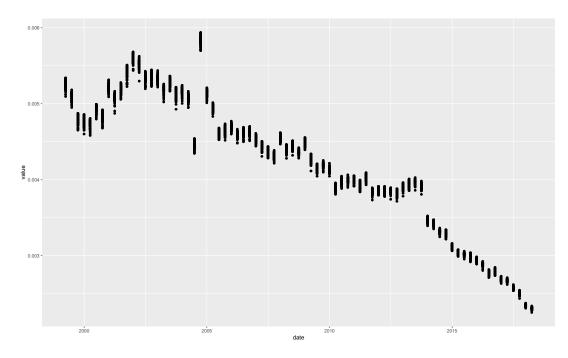


Figure 4.17: Spherical K-function for the range band of 1 km for the years 1999 to 2018. Each quarter consist of 99 points representing a cross-validated K-function.

4.6. CONCLUSION

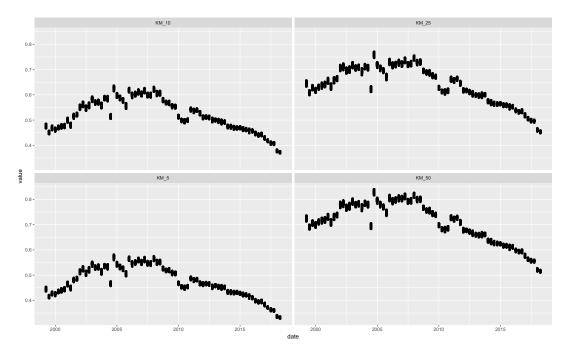


Figure 4.18: Spherical K-function for range bands 5km, 10km, 25km, 50km for the years 1999 to 2018. Each quarter consist of 99 points representing a cross-validated K-function

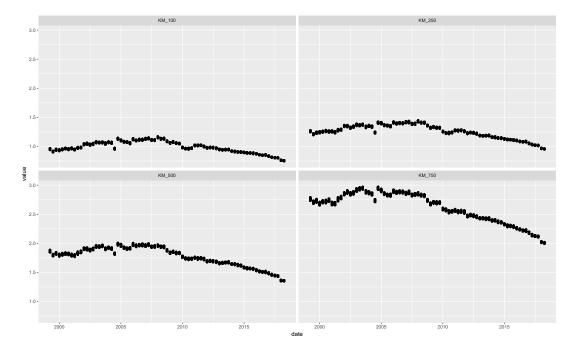


Figure 4.19: Spherical K-function for range bands 100 km, 250 km, 500 km, 750 km for the years 1999 to 2018. Each quarter consist of 99 points representing a cross-validated K-function

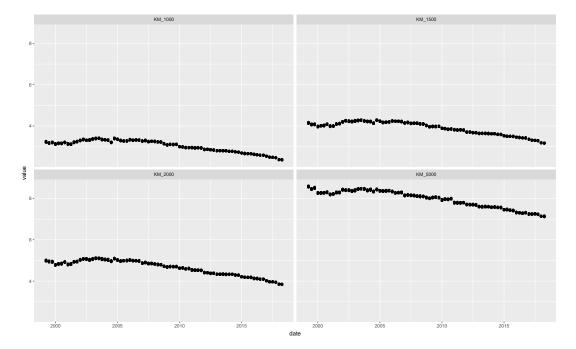


Figure 4.20: Spherical K-function for range bands 1000 km, 1500 km, 2000 km, 5000 km for the years 1999 to 2018. Each quarter consist of 99 points representing a cross-validated K-function

Chapter 5

Space Time

5.1 Introduction

The previous chapter shows that institutional investment is mostly an urban phenomenon. This chapter examines the evolution of institutional investors across space and time. Furthermore, for ease of statistical analysis, both databases will only draw from investors located in the continental United States (CONUS), as well as for the top 5 core-based statistical areas (CBSA) in terms of total institutional investment. In alphabetical order, these 5 metro regions are Boston, Chicago, Los Angeles, New York City and San Francisco.

5.2 Space-Time Cube

The space-time cube is a space-time analytical technique that bins point objects into a spacetime grid in order to examine the relationship between points not only in space but across time ESRI (2019). Two types of space-time cubes are created, the first one aggregates the total number of institutional investors for the time period of March 1999 to December 2018. The second space-time cube aggregates the total number of funds under management for the period of June 2013 to December 2018.

The first step in creating a space-time cube is the creation of a Network Common Data Form (NetCDF) file. This file format permits ArcGIS to store multidimensional information with a defined geographical position (x and y) alongside a defined time period as well as any additional relevant information such as count data, sum, average, median and standard deviation. This creates a data-structure in which further analysis can be performed, such as emerging hotspot analysis and local outlier analysis. Figure 5.2 provides two perspectives on the data aggregation process.

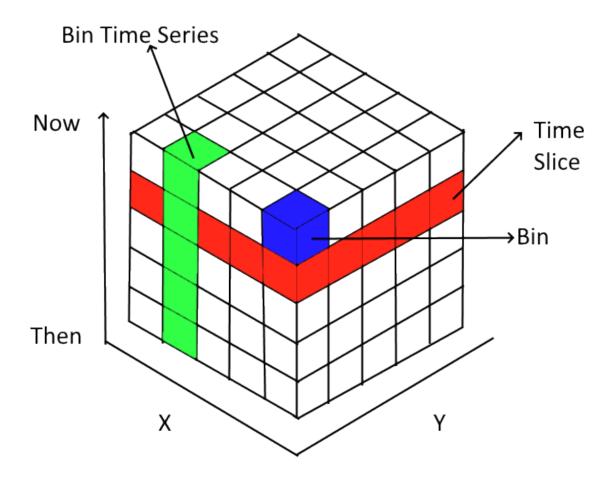


Figure 5.1: A schematic explanation of the time-cube

Figure 5.2: Schematic illustration of a time-cube. It should be noted that unlike this schematic representation of the time-cube, the analysis in this paper uses a hexagonal bin rather than a square bin for spatial data. Image created by the author adapted from the following illustration: http://desktop.arcgis.com/en/arcmap/10.3/tools/ space-time-pattern-mining-toolbox/visualizing-cube-data.htm

It should be noted that unlike Figure 5.1 and **??**, this analysis was run using hexagonal bins. Unlike the traditional square bins (or in Esri's parlance, a fishnet grid), the hexagons have multiple advantages over squares, such as: of the three geometric forms that can tessellate (repeat a shape over and over without overlap), the square, the hexagon and the equilateral triangle, hexagons have the lowest perimeter to area ratio. This is due to hexagons being the

closest of the three tessellating shapes to a circle. As such, this reduces the border effect when binning points, since the hexagon has the shortest average distance between perimeter and centroid. Furthermore, the centroids of hexagons are equidistant from each other when tessellated. This cannot be said about squares in a grid using the queen's movement, for the distances between centroids in square bins are shorter along the rook's movement than the bishop's movement due to the Pythagorean theorem. Lastly, at larger distances hexagons suffer less distortion than squares. Unfortunately for square bins, the implementation of spatial bins in this project does not play to its strengths, such as ease of use when conducting matrix algebra and having an orthogonal coordinate system (Birch et al., 2007).

With regards to the time dimension of the data, the dates are aligned such that bins coincide with the last date in the datasets (December 31, 2018) and work backwards from there in 3 month intervals. As such, each temporal bin covers one filing period for 13F-HR disclosures. (Figure 5.2)

5.2.1 Emerging Hot Spot Analysis

Emerging hot spot analysis is the space-time implementation of the Getis-Ord Gi* statistic (Getis and Ord, 2010), and examines whether high or low values cluster geographically. High *g* values are created when the local sum and that of its neighbours are significantly larger than their proportion to the global sum, with low values in the reverse case. The ArcGIS implementation of emerging hot spot Analysis performs the false discovery rate (FDR) correction. FDR accounts for multiple testing, and therefore compensates for the possibility that certain features would be classified as hot or cold by chance alone (ESRI, 2019).

The next step is to perform Mann-Kendall trend test to detect temporal trends at each spatial location. Depending on the results of the Getis-Ord Gi* statistic and the trend direction from the Mann-Kendall test, there is a total of 17 possible answers, and their definitions are listed at https://pro.arcgis.com/en/pro-app/tool-reference/space-time-pattern-mining/ learnmoreemerging.htm (ESRI, 2019).

5.2.2 Local Outlier Analysis

Local outlier analysis is the space-time implementation of the Anselin Local Moran's I statistic. This tool identifies concentrations of high values (high-high), low values (low-low) in addition to spatial ouliers in which high values are surrounded by low values (high-low), and low values that are surrounded by high values (low-high). Unlike traditional Anselin Local Moran's I statistic, the local outlier analysis variant offers a 5th category, in which it flags bins that have different Anselin Local Moran's I statistic values during the timeframe.

5.3 United States of America

The first use of space-time analysis will focus on the United States as a whole, after which the basic analysis will be repeated on the five largest metro areas.

When creating the NetCDF file for the United States of America, the size of spatial bins was set at 50 km. This value was chosen since this permitted a local window with a radius of 300 km according to the ESRI implementations of Emerging hot spot Analysis and local outlier analysis. This latter figure is important since it would represent the longest possible day trip during a business day (Fritsch and Schilder, 2006). Furthermore, we should keep in mind

that the 50 km range band showed one of the highest level of change over time with regards to the K-function.

5.3.1 Count Data

Figure 5.3 shows the results of the emerging hotspot analysis using the address book database. These results should come as no surprise after reading the previous chapter, in which the vast majority of institutional investors are located in the New York, Boston, Chicago, Los Angeles and San Francisco regions. After all, institutional investment is a decidedly urban phenomenon despite being a theoretically footloose industry in an era of wireless telecommunications and computerized stock trading. In addition to these regions, there is some strong, but inconsistent growth in the Texas Triangle (a megaregion that encompasses San Antonio, Dallas-Fort Worth and Houston), the Miami-Dade region of South Florida, the Ohio Valley and the Raleigh Triangle (Raleigh, Durham and Chapel Hill, North Carolina).

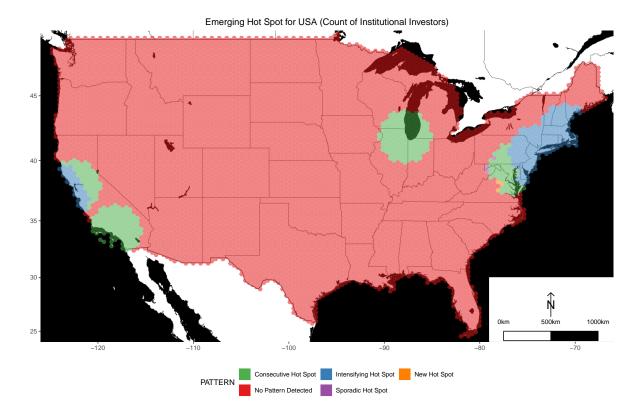


Figure 5.3: Emerging hot spot analysis of locations of institutional investors in the United States of America for the period of March 1999 to December 2018.

Painting a similar picture than Figure 5.3, the local outlier analysis (Figure 5.4) indicates that the cities of New York, Boston, Chicago, Los Angeles and San Francisco are high-high clusters.

What is also of interest, is the light sprinkling of high-low clusters in Figure 5.4. These light blue dots coincide with secondary and tertiary financial centres as well as State capitals where State-employee pension funds are managed. Low-high clusters appear to be confined to bridging the gaps between nearby high-high clusters, such as the peripheral areas of the North-East mega-region. These low-high clusters are not unexpected, since they are definitionally low areas surrounded on multiple sides by high areas.

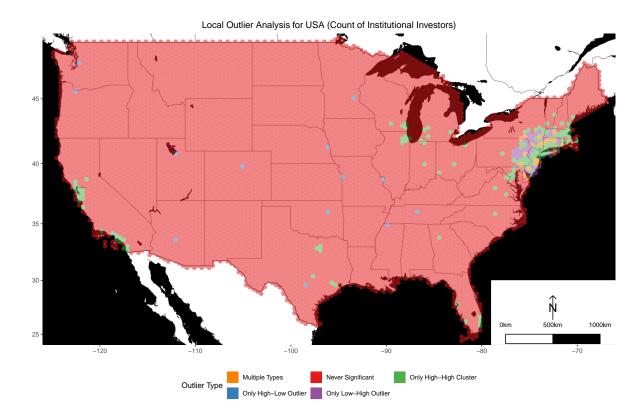


Figure 5.4: Local outlier analysis for number of institutional investors in the USA for the time period March 1999 to December 2018

5.3.2 Funds Under Management

Using the same technique on the holdings database presents a slightly different outcome as seen in Figure 5.5. Using money under management rather than count data puts more emphasis on New York and San Francisco, while at the same time removing all of the consecutive cold spot areas and turning them into regions with no detectable patterns.

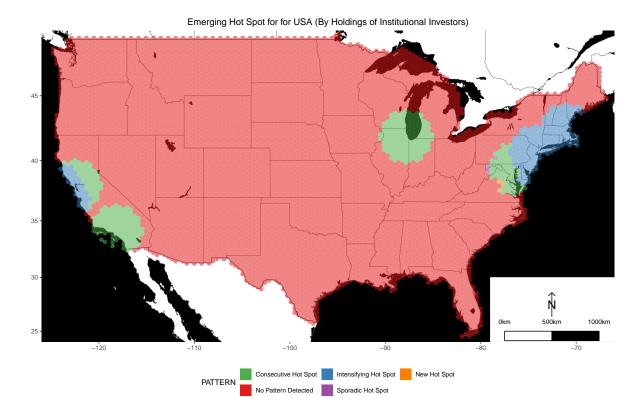
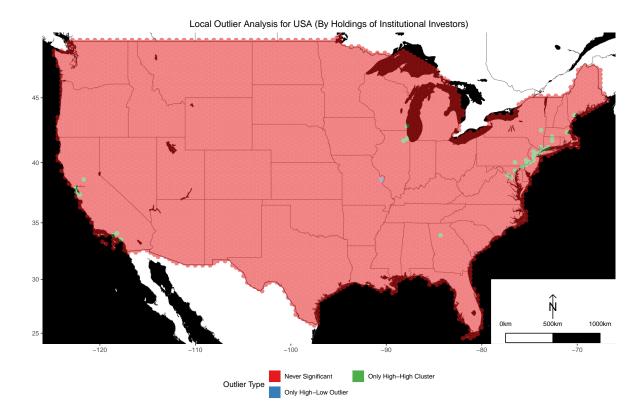
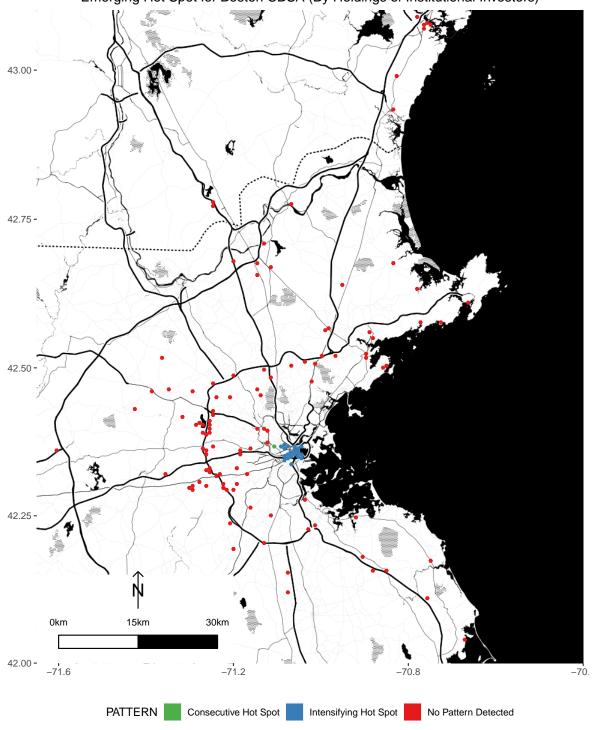


Figure 5.5: Hot spot analysis of USA-based institutional investors located in the United States of America for the period of June 2013 to December 2018.

As with Figure 5.5, which is based on the holdings database, the local outlier analysis (Figure 5.6) is much more restrained than the analysis done on the address book database. Immediately noticeable is the absence of the high-low hexes dotting the capitals of fly-over states, as well as the more restrained presence of low-high clusters in the Bos-NY-Wash. Lastly, as a lone bright spot in a sea of nothingness, Atlanta is the only place outside of the 5 largest US cities for institutional investment that is a high-high hex. This is consistent with the trend seen in Chapter 4.2.5 where Atlanta was becoming the financial centre of the US South-East.




Figure 5.6: Local outlier analysis for funds under management in the United States for the time period of June 2013 to December 2018.

5.4 Boston

As seen in the various tables and analysis in Chapter 4, Boston consistently ranks at the second most important metro area in terms of count of institutional investors and funds under management. The hex bins for the Boston analysis measure 1 km between horizontal parallels and use a local window radius of 8 km. In order to make the comparisons between cities meaningful, this scheme of hexagonal grid and local window size was kept across different metro areas (Chicago, Los Angeles, New York City, and San Francisco).

5.4.1 Count Data

Figure 5.7 identifies a large cluster covering the areas of Central Boston as well as the southern tip of the Massachusetts Route 128 corridor between the suburban cities of Dedham, Needham and Wellsley. This cluster essentially contains 3 different types of hot spots. The first area of central Boston is classified as an intensifying hot spot. This indicates a very high rate of increase in density of institutional investors by hex bin in the area around Boston Commons in downtown Boston. The second type of hot spot covers the outer periphery of central Boston, as well as the southern arc of Highway 128. Lastly, the southern part of the community of Dedham contains a sporadic hot spot indicating that this zone sees intermittent changes in institutional investor count over time. The inclusion of the southern part of the route 128 high tech corridor in the investment cluster isn't surprising considering the long history of partnership between high tech research and development and finance capital (Kenney and Von Burg, 1999).

Emerging Hot Spot for Boston CBSA (By Holdings of Institutional Investors)

Figure 5.7: Hot spot analysis of number of firms in Boston CBSA for the time period March 1999 to December 2018

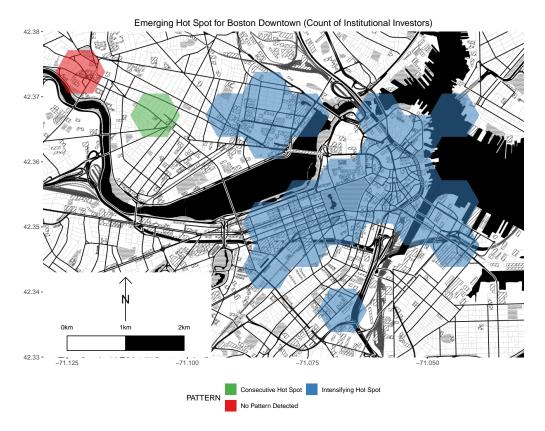
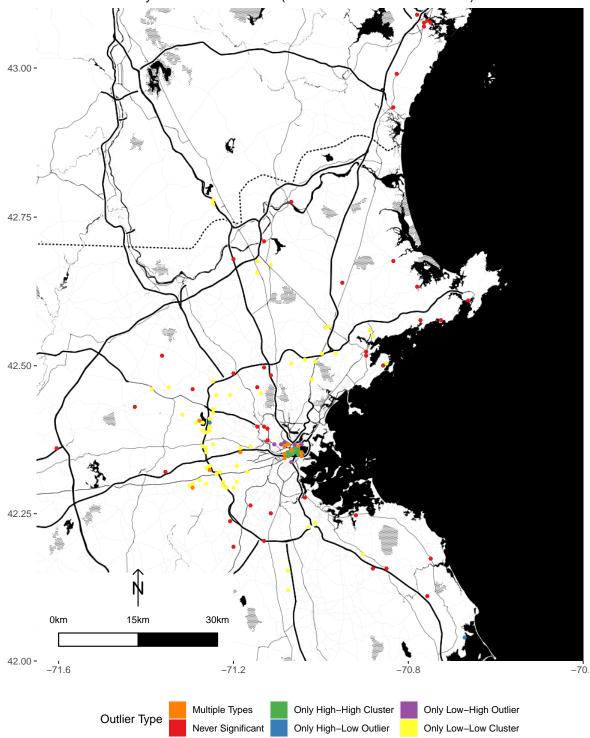



Figure 5.8: Hot spot analysis of number of firms in downtown Boston for the time period March 1999 to December 2018

Figure 5.9 displays of local outlier analysis confirms the importance of both central Boston as well as the southern arch of the route 128 corridor.

Local Outlier Analysis for Boston CBSA (Count of Institutional Investors)

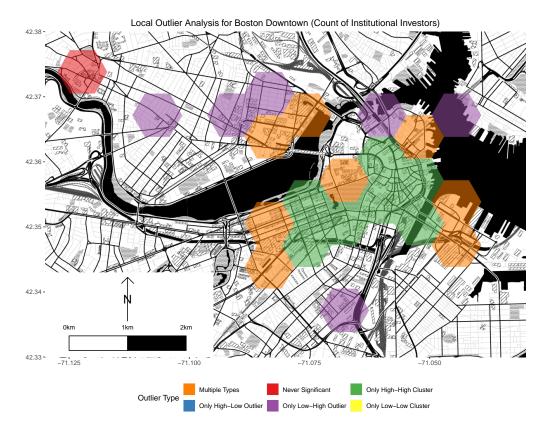


Figure 5.10: Downtown Boston local outlier analysis - count of institutional investors

5.4.2 Funds Under Management

Unlike Figure 5.7's larger cluster, the emerging hot spot analysis in Figure 5.11 using funds under management as a criteria is more exclusionary since it only contains central Boston and ignores the Massachusetts Route 128 corridor. A partial explanation for this is the high collection of bank and insurance based institutional investors located in Boston's financial district that abuts Boston Common .

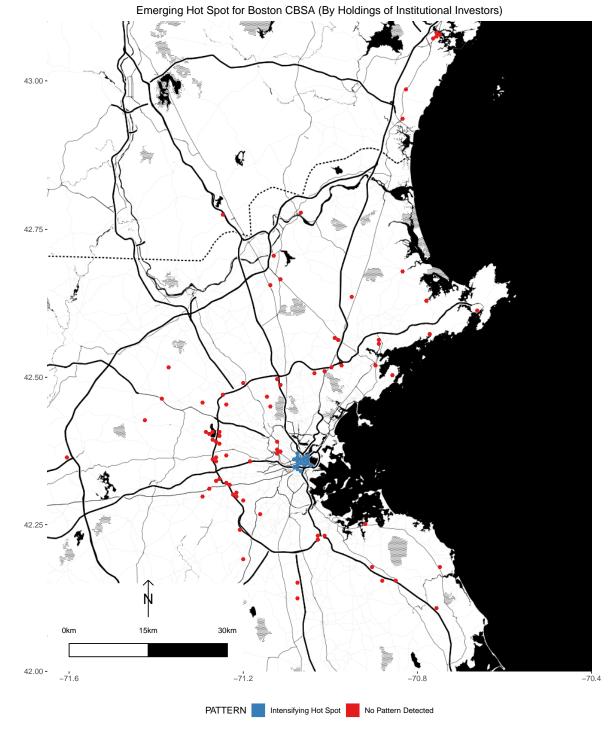


Figure 5.11: Emerging hot spot analysis of funds under management for Boston CBSA for period June 2013 to December 2018

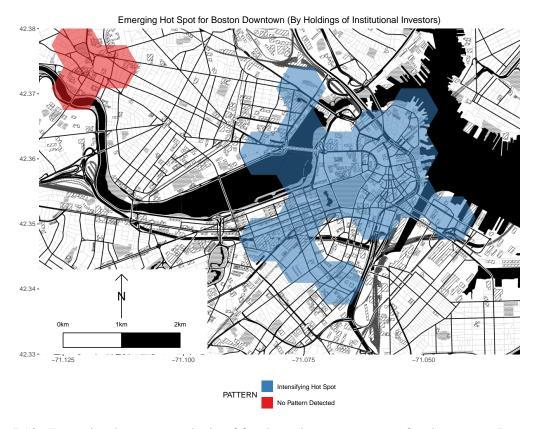
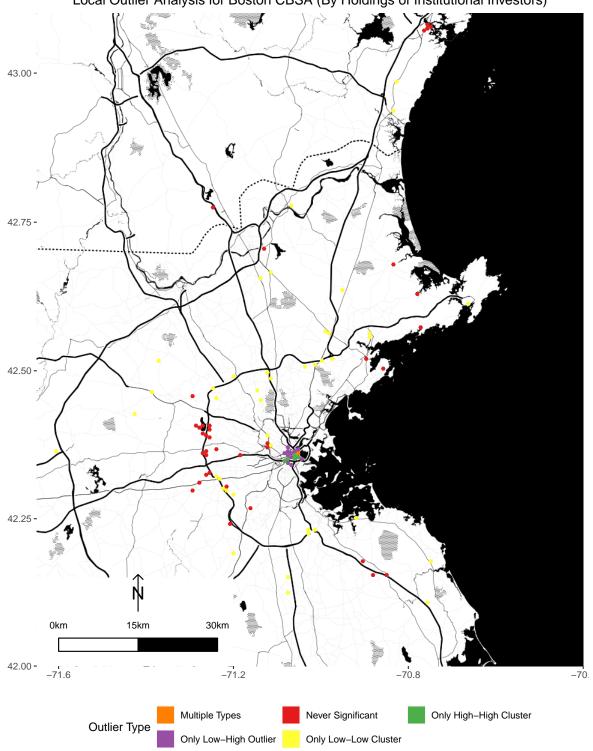



Figure 5.12: Emerging hot spot analysis of funds under management for downtown Boston for period June 2013 to December 2018

Following in a similar theme to Figure 5.11, the local outlier analysis only finds high-high clusters in central Boston. Interestingly, the model accurately picks out Boston Common as a non-cluster. A look at the region shows that many institutional investors surround this 25 hectare urban park, and this creates a discontinuity.

Local Outlier Analysis for Boston CBSA (By Holdings of Institutional Investors)

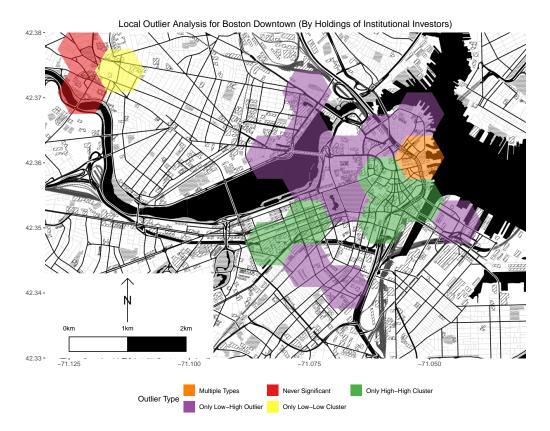


Figure 5.14: Boston Downtown local outlier analysis - funds under management

5.5 Chicago

5.5.1 Count Data

As displayed in Figure 5.15, Chicago contains one intensifying hot spot in the Chicago Loop neighbourhood, including satellite hot spots in the Napierville-Aurora suburb to the West, as well as Evanston and Highland Park to the North.

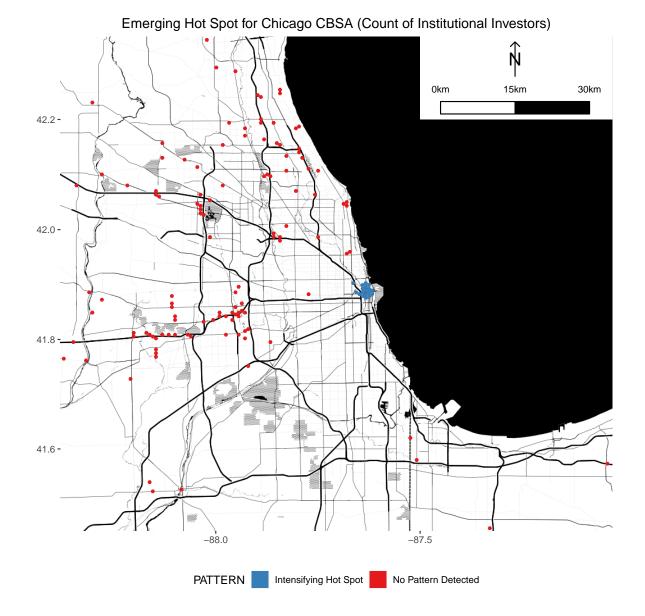


Figure 5.15: Hot spot analysis of number of firms in Chicago for the time period March 1999 to December 2018

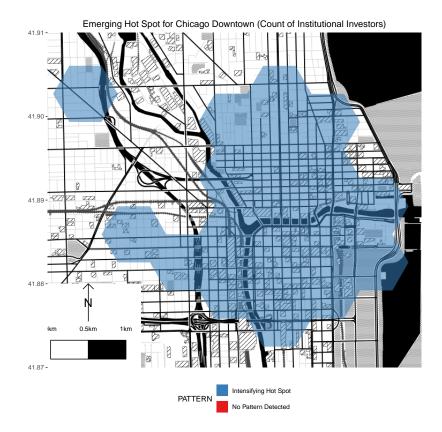
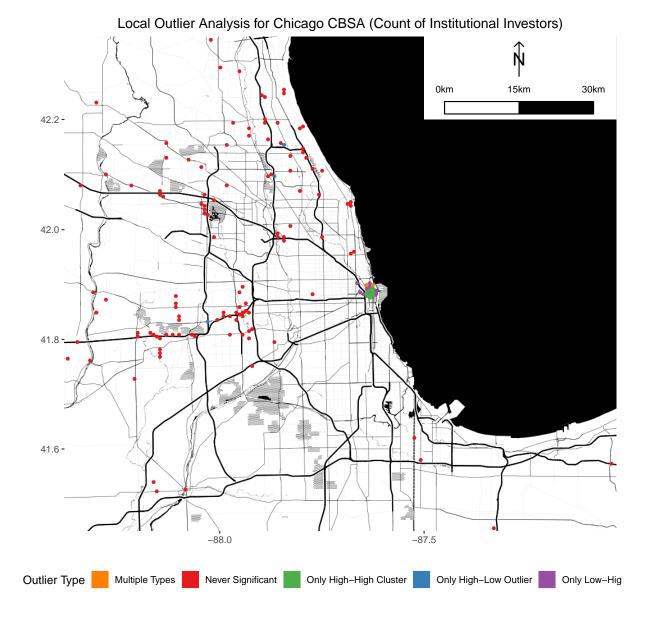
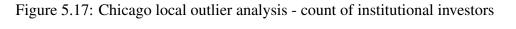




Figure 5.16: Hot spot analysis of number of firms in Chicago for the time period March 1999 to December 2018

Using local outlier analysis, only the Loop district contains high-high hexagons. This is consistent with institutional investors perfering CBDs. Futhermore, there is a conspicuous absence of investors on the South Side of Chicago, however this is not a region of Chicago known for having much financial capital.

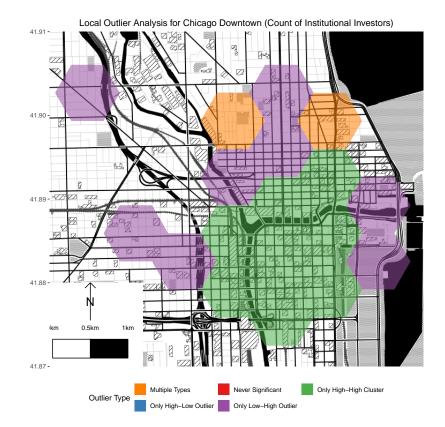
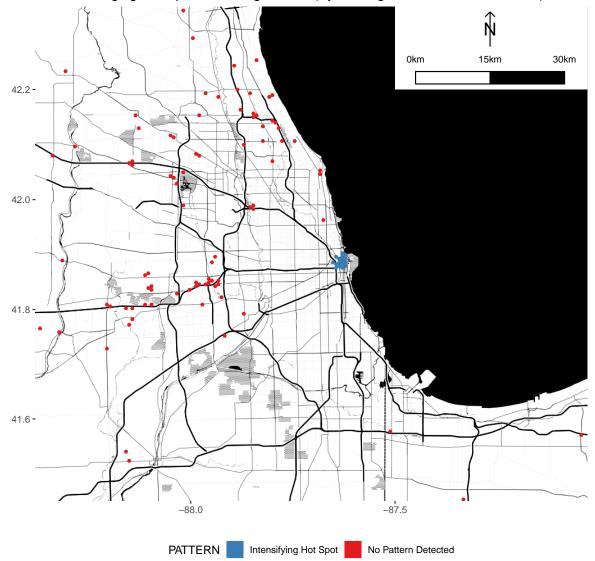



Figure 5.18: Chicago local outlier analysis - count of institutional investors

5.5.2 Funds Under Management

Figure 5.19 suggests a similar picture to the other emerging hot spot analysis maps where the key variable is funds under management, for there are less regions defined as a hot spot. In this case, the hot spots in Evanston and Highland Park disappear, and the Napierville-Aurora cluster is much smaller in size.

Emerging Hot Spot for Chicago CBSA (By Holdings of Institutional Investors)

Figure 5.19: Emerging hot spot analysis of funds under management for Chicago for period June 2013 to December 2018

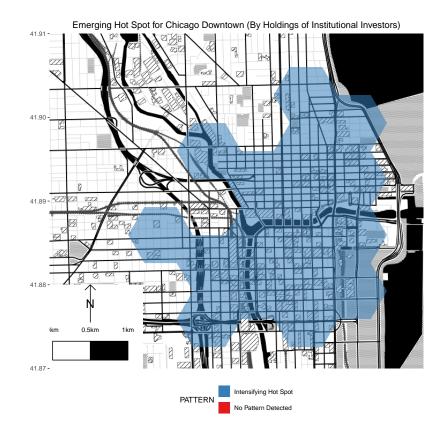
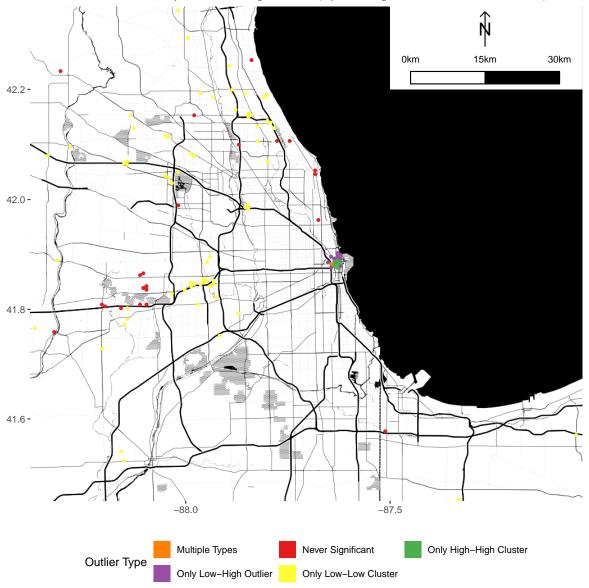



Figure 5.20: Emerging hot spot analysis of funds under management for Chicago for period June 2013 to December 2018

Figure 5.21 paints a similar story than Figure 5.19, for the main cluster of high-high hexagons is located in the Chicago Loop district. A secondary cluster of a single high-high hexagon exists in the Napierville-Aurora region. Furthermore, the cluster in the Loop neighbourhood of Chicago is much more defined in this analysis compared to the count map. This sharper cluster is not surprising considering the presence of the Chicago financial district, an-chored by the Chicago Mercantile Exchange, at the centre of the Loop.

Local Outlier Analysis for Chicago CBSA (By Holdings of Institutional Investors)

Figure 5.21: Chicago local outlier analysis - funds under management

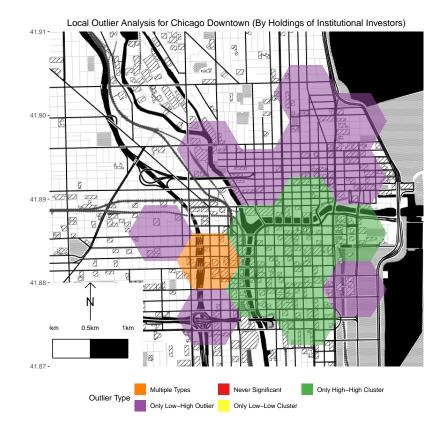


Figure 5.22: Chicago local outlier analysis - funds under management

5.6 Los Angeles

5.6.1 Count Data

Figure 5.23 indicates that there is an absence of a central financial district and that investors are more diffused. As such, unlike Boston and Chicago, the emerging hot spot analysis map for Los Angeles offers more categories. This broad spread of hot spots is not really surprising considering Los Angeles's history and reputation for urban sprawl and suburban office parks (Dear and Flusty, 1998; Harris and Lewis, 1998). The lack of a historic CBD comprised of skyscrapers on the scale of New York's Wall Street and Midtown or Chicago's Loop district and decentralized city administration certainly help in creating multiple small intensifying hot

spots around the city such as Downtown, Santa Monica, Beverly Hills, Costa Mesa and Irvine.

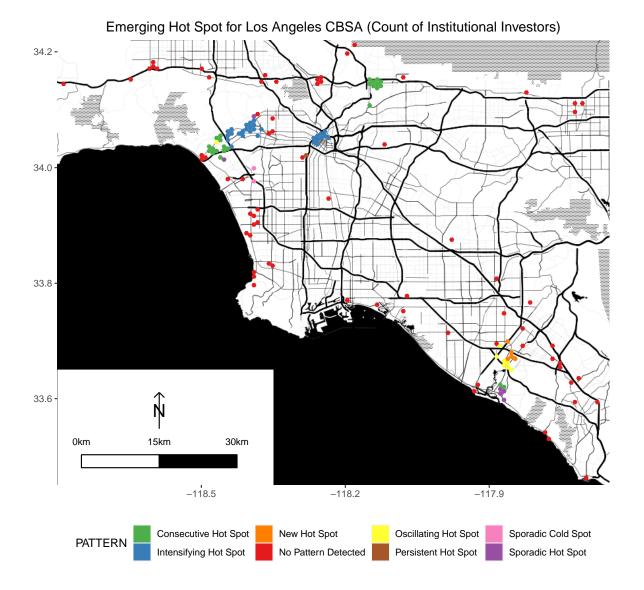


Figure 5.23: Hot spot analysis of number of firms in Los Angeles for the time period March 1999 to December 2018

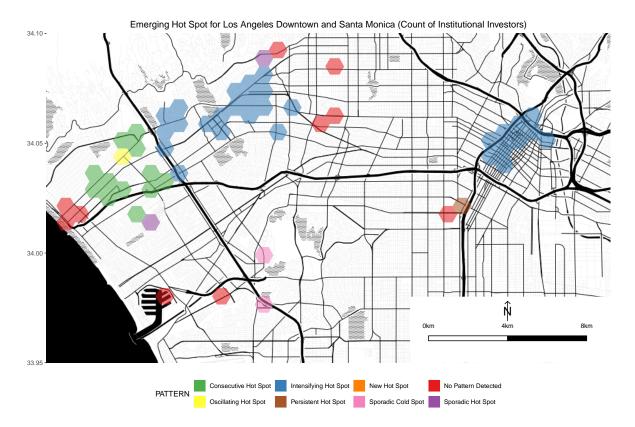
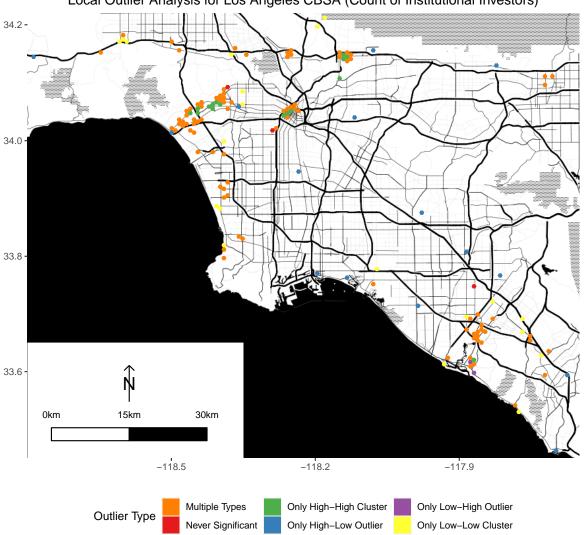



Figure 5.24: Hot spot analysis of number of firms in downtown Los Angeles and Santa Monica for the time period March 1999 to December 2018

These hot spot locations also show up in Figure 5.25 as local outliers. However, there is a large amount of hexagons displaying the mixed outlier type in Santa Monica. This can be partially explained by the diffuse nature of locations in Santa Monica compared to other clusters such that across time they might appear as high-highs or high-lows due to neighbourhood effects.

Local Outlier Analysis for Los Angeles CBSA (Count of Institutional Investors)

Figure 5.25: Los Angeles local outlier analysis - count of institutional investors

Figure 5.26: Downtown Los Angeles and Santa Monica local outlier analysis - count of institutional investors

5.6.2 Funds Under Management

Continuing the theme seen in all previous maps with regards to analysing funds under management, the map that is weighted by money rather then the mere presence of an investor reduces the importance of suburban investors. This suggests that while suburban investors are becoming more common, their portfolio of holdings are smaller than CBD-based investors.

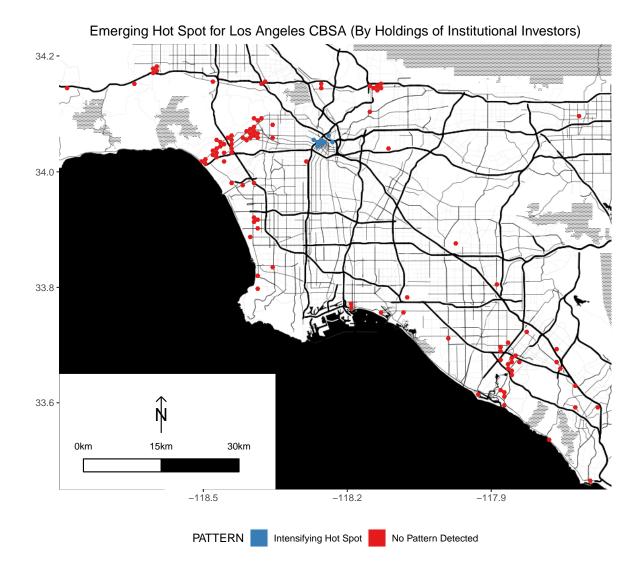
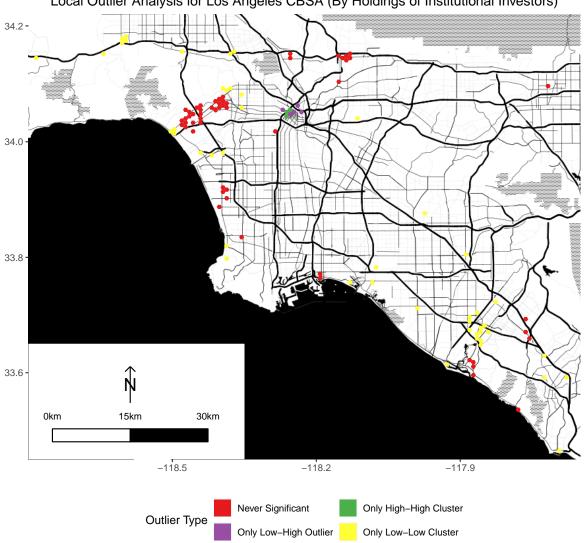



Figure 5.27: Emerging hot spot analysis of funds under management for Los Angeles for period June 2013 to December 2018

Figure 5.28: Emerging hot spot analysis of funds under management for downtown Los Angeles and Santa Monica for period June 2013 to December 2018

The emerging hot spot analysis for Figure 5.27 as well as the local outlier analysis in Figure 5.29 drops the Costa Mesa and Irvine hot spots. Furthermore, the Downtown Los Angeles hot spot remains the only one that is still an intensifying hot spot. This can be explained by the recent construction boom in high grade office towers being built in the Downtown after an influx of foreign capital and a planning mandate towards densification (Marino, 2019).

Local Outlier Analysis for Los Angeles CBSA (By Holdings of Institutional Investors)

Figure 5.29: Los Angeles local outlier analysis - funds under management

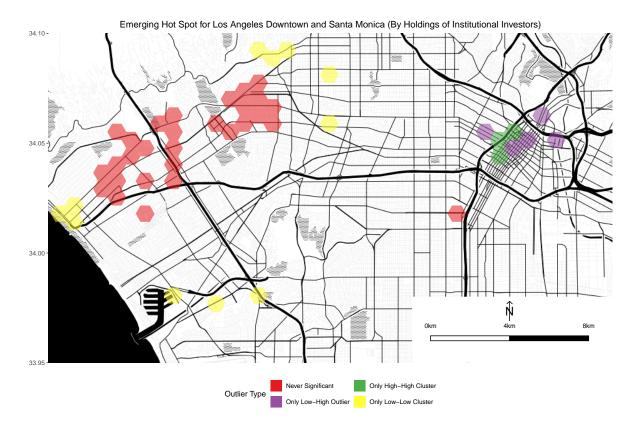
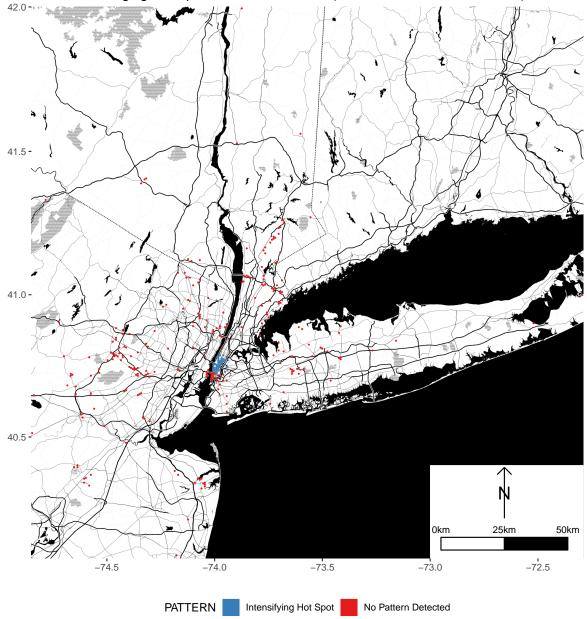
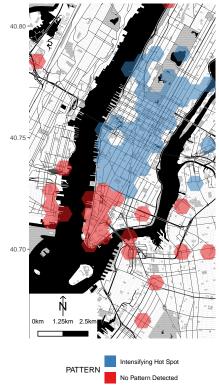


Figure 5.30: Downtown Los Angeles and Santa Monica local outlier analysis - funds under management


5.7 New York City

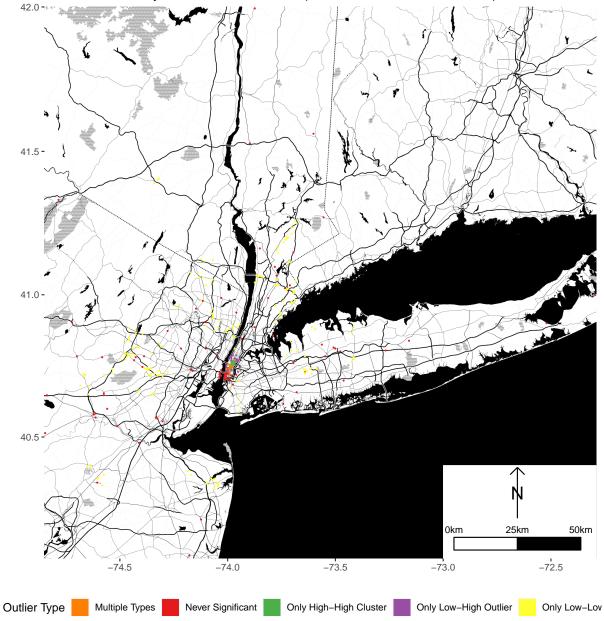
5.7.1 Count Data

Figure 5.31 displays the singular emerging hot spot cluster for the New York region. Unsurprisingly, this hot spot covers the heart of the US financial universe: the Financial District and Midtown on Manhattan Island, and extending somewhat into the Bronx, Brooklyn and Hudson County, New Jersey. Furthermore, the intensifying hotspot over Manhattan and the constant hot spot to the south of it is evidence in the shift northwards towards Midtown Manhattan due to the desire to be near the intercontinental exchange - that is to say where transatlantic fibre


5.7. New York City

optic cables come to shore in North America Bank Administration (1989).

Emerging Hot Spot for New York CBSA (Count of Institutional Investors)


Figure 5.31: Hot spot analysis of number of firms in New York for the time period March 1999 to December 2018

Emerging Hot Spot for New York Downtown (Count of Institutional Investors)

Figure 5.32: Hot spot analysis of number of firms in downtown New York for the time period March 1999 to December 2018

Providing more detailed spatial resolution on high-high hot spots, Figure 5.33 finds that most of the high-high hexes are located in Manhattan, and a few isolated hexes are located in Brooklyn, Bronx and Hudson Counties. Notable by its absence, the highly residential Stuyvesant Town neighbourhood on the east side of Manhattan is largely devoid of institutional investors.

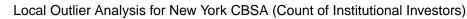
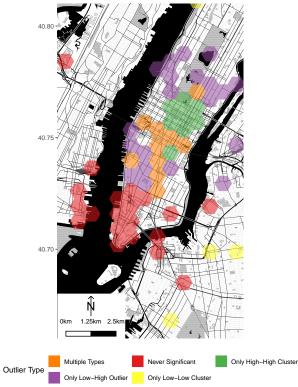
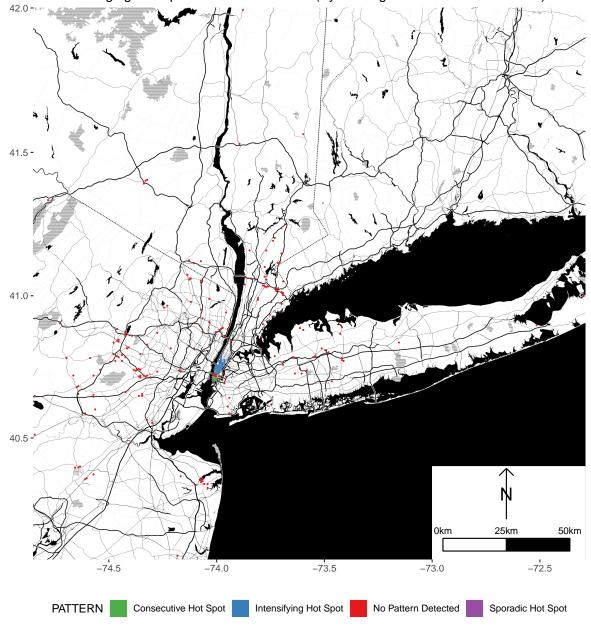



Figure 5.33: New York local outlier analysis - count of institutional investors



Local Outlier Analysis for New York Downtown (Count of Institutional Investors)

Figure 5.34: Downtown New York local outlier analysis - count of institutional investors

5.7.2 Funds Under Management

Once again, the use of funds under management as the unit of measure for emerging hot spot analysis shows a more restrictive hot spot. In fact, Figure 5.35 is simply a more restrictive version of Figure 5.31. The same can be said of Figure 5.37 treatment of local outlier analysis when compared to Figure 5.33. That being said, this more restrictive criteria removes most of the high-high clusters in Hudson County and Brooklyn County, suggesting once again that these investors located outside of the CBD have a smaller bankroll than the investors located in the CBD.

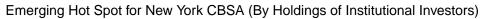
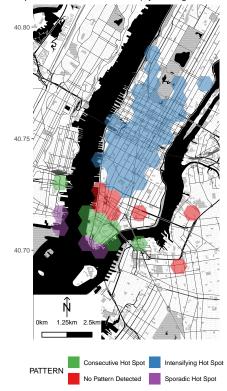
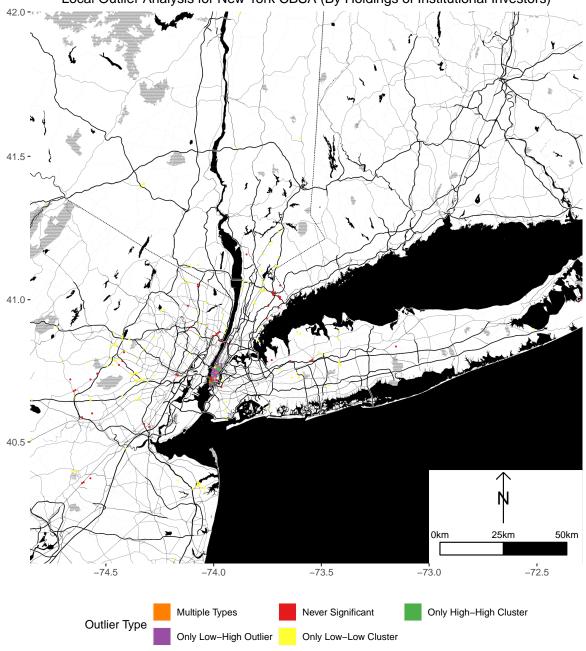
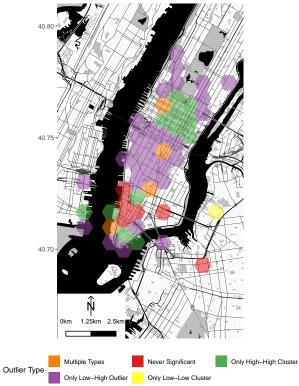




Figure 5.35: Emerging hot spot analysis of funds under management for New York for period June 2013 to December 2018



Emerging Hot Spot for New York Downtown (By Holdings of Institutional Investors)

Figure 5.36: Emerging hot spot analysis of funds under management for downtown New York for period June 2013 to December 2018

Local Outlier Analysis for New York CBSA (By Holdings of Institutional Investors)

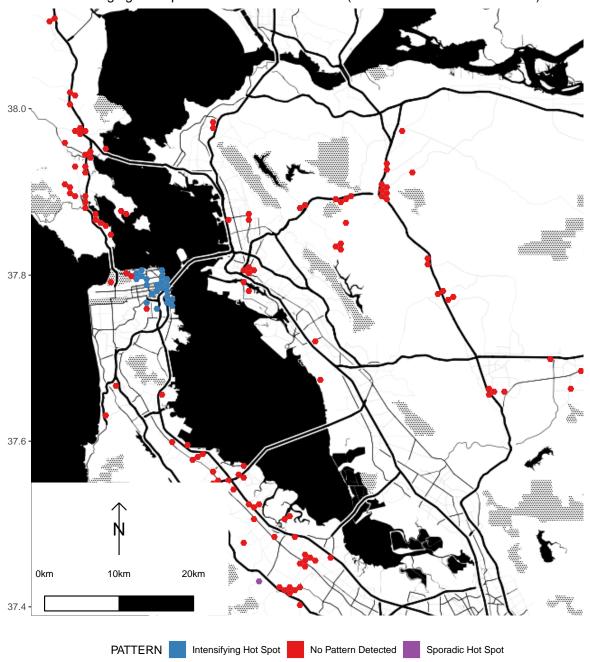

Local Outlier Analysis for New York Downtown (By Holdings of Institutional Investors)

Figure 5.38: Downtown New York local outlier analysis - funds under management

5.8 San Francisco

5.8.1 Count Data

Figure 5.39 displays five hot spots: an emerging hot spot in San Francisco's central business district, San Mateo, a small emerging centre north of the Golden Gate Bridge along with consecutive hot spots in Palo Alto and Walnut Creek.

Emerging Hot Spot for San Francisco CBSA (Count of Institutional Investors)

Figure 5.39: Hot spot analysis of number of firms in San Francisco for the time period March 1999 to December 2018

5.8. SAN FRANCISCO

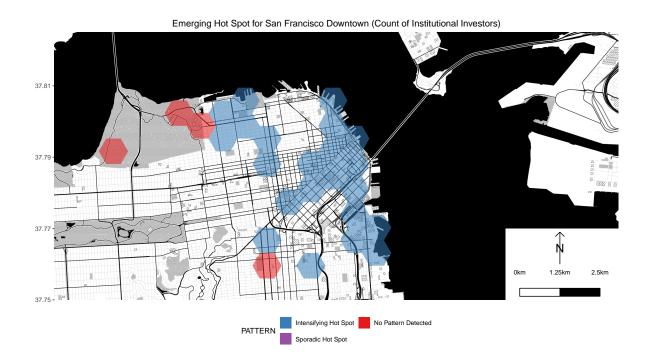



Figure 5.40: Hot spot analysis of number of firms in downtown San Francisco for the time period March 1999 to December 2018

Figure 5.41 displays the results of the local outlier analysis and finds the same five clusters.

Local Outlier Analysis for San Francisco CBSA (Count of Institutional Investors)

5.8. SAN FRANCISCO

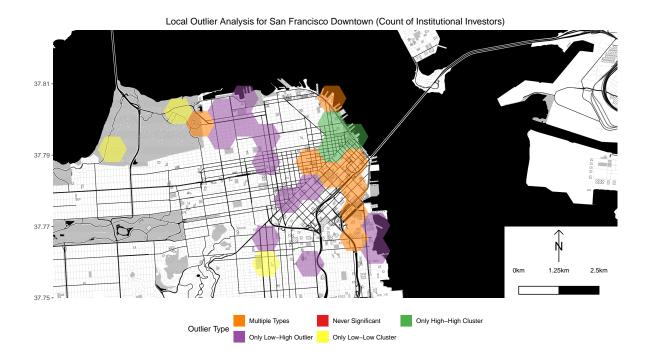
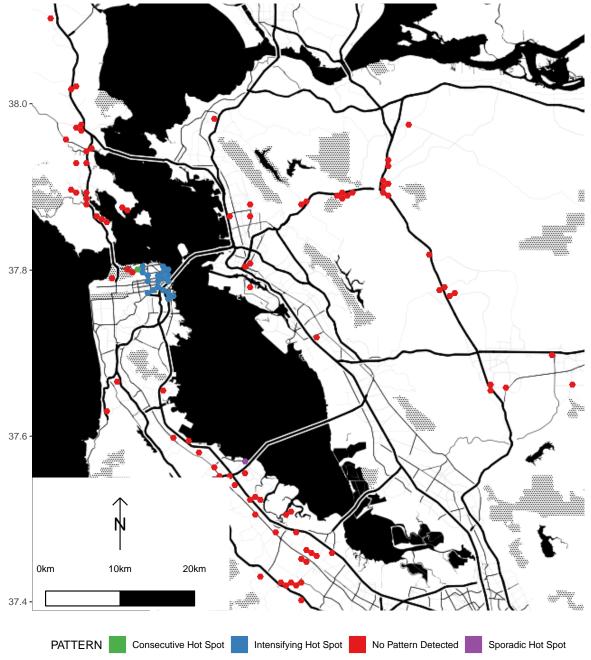



Figure 5.42: Downtown San Francisco local outlier analysis - count of institutional investors

5.8.2 Funds Under Management

In a continuing theme of having the funds under management Figures 5.43 and 5.45 show fewer hot spots than count data. These hot spots are located in San Francisco's CBD and in San Mateo.

Emerging Hot Spot for San Francisco CBSA (By Holdings of Institutional Investors)

Figure 5.43: Emerging hot spot analysis of funds under management for San Francisco for period June 2013 to December 2018

5.8. SAN FRANCISCO

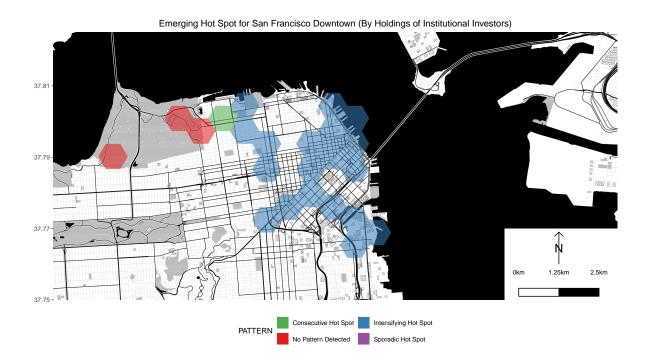



Figure 5.44: Emerging hot spot analysis of funds under management for downtown San Francisco for period June 2013 to December 2018

Local Outlier Analysis for San Francisco CBSA (By Holdings of Institutional Investors)

Figure 5.45: San Francisco local outlier analysis - funds under management

5.9. CONCLUSION

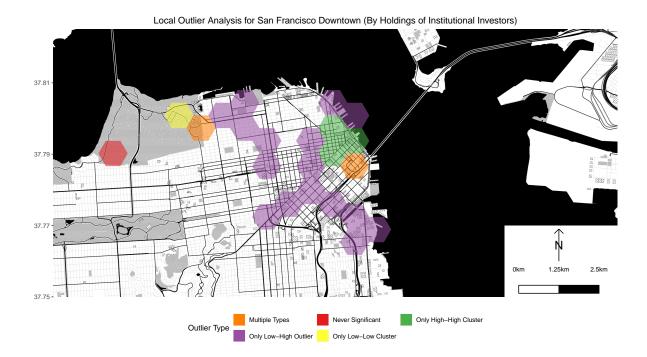


Figure 5.46: Downtown San Francisco local outlier analysis - funds under management

5.9 Conclusion

When looking at the Continental United States using space-time analysis, it appears that institutional investors are not evenly distributed across its vast surface. As a matter of fact, other than a few outlying homesteads of institutional investors located in State capitals, most of the investors are located in the major metro areas of Boston, Chicago, Los Angeles, New York and San Francisco. While one might be tempted to think that this is merely a collection of large US metro areas, the absence of population rich regions such as Dallas-Fort Worth, Houston, Philadelphia, Washington DC, Miami and Atlanta from the ranks of top cities is reassuring that the top 5 cities isn't simply a replication of XKCD Comic 1138 (Figure 4.16) using institutional Across these five cities, institutional investors exhibit a strong propensity to cluster, and more often than not these clusters are located in the downtown cores of cities. Even with Los Angeles lack of a highly developed CBD for a city of it's size, its sprawling nature and deliberately decentralized history, the existence of investor clusters somewhat pushes back against Graves's assertion that the benefits of co-location in an urban core were more than offset by the ever increasing cost of rents, and that investors of the future might seek more peripheral locations (Graves, 2003).

That being said, one should not forget that identifying clusters can be problematic. It is possible that new firms showing up on the periphery of a metro area's suburban spaces might not have the required density to show up as a cluster, even as the total ratio between CBD and suburbs may tilt evermore into the suburban office park's favour. This is probably the most likely explanation for reconciling this chapter with Chapter 4. There are some hints at suburban centres being centres of clustering, notably the Route 128 in Boston, Evenston and Highland Park in Chicago, Irvine CA, and Walnut Creek in San Francisco. However, it should be noted that these areas have a historically smaller bankroll than the investors that tend to aggregate into CBD, suggesting that there might be a size threshold where being in the CBD becomes more worthwhile than in suburban office parks.

The buyer's remorse over choosing low land costs over a central location can been seen in the saga of the Swiss bank UBS. This Swiss-headquartered multinational bank was attracted by Stamford Connecticut's low land prices and generous tax incentives. However, this out of the way location became a severe hindrance in attracting top tier talent from New York's financial sector due to long commutes, as well as chronic difficulties in meeting with Manhattan-based clients (Bagli, 2011). Therefore, the time-space analysis confirms that the locational preferences for urban locations did not significantly change over time.

Chapter 6

LDA of Investments in the United States

6.1 Introduction

While Chapter 5 explored the locational preferences of institutional investors in the US as a whole and in the five largest American metropolitan areas by total funds under management, this chapter will use a machine learning classification algorithm called Latend Dirichilet allocation (LDA) to explore whether geography can play a role in individual investors portfolio choices.

This innovative use of LDA allows for a more portfolio-centric analysis of investment patterns. The initial question centres around whether certain areas with historically deep knowledge pools will over-concentrate their holdings in order to exploit this tacit knowledge for investment advantage, as suggested by Coval and Moskowitz (1999), and whether this phenomenon can be measured in the state aggregates. For example, would the historic ties of Texas's oil industry focus Texas based investors into investing in portfolios that are heavily weighted to oil and gas exploration and production?

6.1. INTRODUCTION

While Modern Portfolio Theory (MPT), as established by Markowitz (1952) advocates for holding a broad and negatively correlated portfolio, the notion of "not putting all of one's eggs in a single basket" is an old one, for Lofthouse (1997) finds that such advice was formally practised by the British investment firm Investment Registry as far back as 1904.

In concert with MPT's emphasis on diversification, the reaction to the Crash of October 1987 placed renewed emphasis on risk management and the rise of "Value at Risk" (VAR) based investing in which firms would try to maximise returns while minimizing risk. This led to a homogenizing effect in investment strategies as explained by Andrew G. Haldane executive director of Financial Stability at the Bank of England at a conference on risk management:

Within the financial sector, diversity appears to have been reduced for two separate, but related, reasons: the pursuit of return; and the management of risk. The pursuit of yield resulted in a return on equity race among all types of financial firm. As they collectively migrated to high-yield activities, business strategies came to be replicated across the financial sector. Imitation became the sincerest form of flattery.

So savings cooperatives transformed themselves into private commercial banks. Commercial banks ventured into investment banking. Investment banks developed in-house hedge funds through large proprietary trading desks. Funds of hedge funds competed with traditional investment funds. And investment funds - pension, money market mutual, insurance - imported the risk the others were shedding. (Haldane, 2009, p.18)

As explored in Chapter 2, there is a substantial literature showing that stock pickers are

biased towards industries in which they are knowledgeable or have personal connections. In particular, Coval and Moskowitz (2001) find that investors can draw abnormally high returns from local knowledge, and another study by Cohen et al. (2008) makes a compelling case that stock pickers are biased towards selecting stocks of companies that their board of directors contain shared alumni networks.

Rather than looking at geographic differences of investors based on the type of institution they belong to such as but not limited to banks, hedge funds, pension funds, and insurance companies, this study will attempt to create functional portfolio archetypes using machine learning and aggregate these archetypes by geography in order to look for regional patterns.

6.2 Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) is a generative statistical technique developed by David Blei to find themes that are common across a corpus of texts (Blei et al., 2003). This technique is a derivation and refinement of Papadimitriou et al. (1998) and Papadimitriou et al. (2000) work on Latent Semantic Indexing.

LDA has made certain classification tasks feasible to conduct in a short time, such as analysing a large sample of digitized 18th century American newspapers for the topics of the day that would otherwise be unfeasible for any individual to read (Newman and Block, 2006). Another well known use of LDA is for finding in near-realtime the topics of controversy and/or debate at an academic conference via Twitter usage by the participants of the conference (Marwick, 2014).

In addition to text analysis, LDA has been used in multiple different fields such as finding

latent patterns in biodiversity data (Valle et al., 2014), genetic data, images, social networks (Blei, 2012) as well as remote sensing data (Lienou et al., 2010).

6.2.1 How does LDA work?

Ted Underwood, who studies the intersection of Information Science and English Literature, contends in his academic blog post entitled "Topic modeling made just simple enough[sic]" that academic papers make LDA look much harder than it is in practice, since their main goal is to show how and why their underlying formulas work and the mathematical proofs rely on highly advanced mathematics. If we take the algorithms to work as intended, the practice of LDA can be easily explained in practice (Underwood, 2012).

LDA assumes that each document being analyzed contains a multitude of different topics, and each of these topics are latent, that is to say they can't be directly observed, but can be defined indirectly. Edwin Chen's classic introduction to LDA example is quite straight forward (Chen, 2011). Take the following five sentences:

- 1. I like to eat broccoli and bananas.
- 2. I ate a banana and spinach smoothie for breakfast.
- 3. Chinchillas and kittens are cute.
- 4. My sister adopted a kitten yesterday.
- 5. Look at this cute hamster munching on a piece of broccoli.

If we treat each sentence as a document for LDA purposes, and we were to limit ourselves to two topics, we would see something to the effect of the following:

• Sentences 1 and 2: 100% topic A

- Sentences 3 and 4: 100% topic B
- Sentence 5: 60% topic A, 40% topic B

At this point, we see that the topics consists of:

- topic A: 30% broccoli, 15% bananas, 10% breakfast, 10% munching, etc...
- topic B: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, etc...

At which point, we can see that topic A consists mostly of food and food adjacent activities, whereas topic B is about animals and their general cuteness.

At this point, it is important to state that LDA assumes that language is a "bag of words". That is to say that for the purpose of the model, the order of words and punctuation isn't considered important information. While this may cause some miss-coding of information in a limited context, since grammar, punctuation and word order can relay important information, larger corpora smooth-out these ambiguities. For example, an LDA model would treat the following two sentences as being identical:

- Have you eaten, my child?
- Have you eaten my child!?!

This study will be using LDA on Stock unique identifiers (CUSIP). The "bag of words" methodology works to our advantage since the presented order of stocks in an institutional investor's portfolio will not influence the sorting algorithm. Relative location agnosticism is useful in this case since unlike earth movers' distance classification (Rubner et al., 2000) this method of classification isn't dependant on the initial relative distribution within the input

variables, and therefore there is no need for a special ordering of stock positions in the input file.

The LDA process is mapped out graphically in Figure 6.1 and written out in Equation 6.1.

$$P(Z|W,D) = \frac{\text{\# of words } W \text{ in topic } Z + \beta_w}{\text{total tokens in } Z + \beta} * (\text{\# of words in } D \text{ that belong to } Z + \alpha) \quad (6.1)$$

Figure 6.1: Graphical model of Latent Dirichlet allocation replicated from the graphic in Blei (2012), where K is the total number of topics, β_k is the topic, a distribution over the vocabulary, D is the total number of documents, Θ_d is the per-document topic proportions, N is the total number of words in a document, $Z_{d,n}$ is the per-word topic assignment, $W_{d,n}$ observed word, and finally α and n as dirichlet parameters.

6.3 Preparing the Data

A closer analogue to using LDA is using this technique to classifying card selection in games such as Magic: The Gathering (Hlynsson, 2017). This collectible card game uses 60 cards decks that are selected ahead of time by the player. Due to the game's complex resource system and multiple different strategies for attacking one's opponent, cards are not fungible, and thus the game consolidates towards certain discreet collection of cards. Similarly, the use LDA can be used to aggregate different stock portfolios into different investment strategies. In order to conduct an LDA analysis, the data was taken from the XBRL database of 13-F HR database for the period of the second quarter of 2013 to the end of 2018. The process used in collecting and cleaning this data was explained in Chapter 3.2.

Unfortunately the database had to be pruned of all holdings of less than 1 million dollars so that the matrix operations conducted by the LDA package would fit within the computer's available RAM (Random Access Memory)¹. This value of 1 million dollars was achieved in an iterative manner, with one computer starting with all transactions above 10 million dollars and reducing this threshold by 1 million USD every time the LDA converged on a solution and a second computer starting with all transactions and pruning by increments of 100 000 USD until the algorithm converged rather than crash the program due to overwhelming the available RAM. Furthermore, due to the nature of the LDA algorithm (needing full matrix operations), it was unfeasible to spread the workload across multiple computers, nor to slice the program into year-long slices and perform 5 LDA analyses, since this would give us the worst of both worlds - no time continuity and the multiple testing problem.

In practice, this reduces the size of the database from 92 702 to 91 270 filers/quarters. That being said, the pruning of the database focuses the analysis on stock positions that have substantial, if theoretical, corporate power² rather than holdings that are simply intended passively to accrue in value and render dividends as part of a diversification strategy under the modern portfolio theory.

Furthermore, in this LDA analysis each filer-quarter is treated as independent filers in the LDA model. Stock positions do shift over time to the point that acting on information 45 days

¹At the time, these computers contained 32gb of RAM.

²Such as but not limited to voting rights and the threat of lowering stock prices in a mass sell-off being the best alternative to a negotiated solution.

old can be ruinous, a fact that many whale watchers repeat in their newsletters and news reports (Brody, 2012; Brodie, 2013). Since stock positions shift over time to newer strategies, this should not pose a problem; for example this would treat a caterpillar and a butterfly differently. While indubitably the same creature, the caterpillar and the butterfly look, act, and occupy different ecological niches. This returns to the lumper-splitter problem. In this case, do we value tracing the metamorphosis or the different niches both ends occupy? This treatment of investors and filing periods as discrete periods allows for the tracing of an investor's strategy shifting from predominantly X to predominantly Y. However, since the follow-on analysis will take time into effect, not having it in the original training model is simply a nod to feasibility.

Literary-based LDA suggests removing stop words. These words comprise grammatical objects such as but not limited to pronouns, common adjectives and articles that make text understandable, but don't necessarily convey the latent topic. For example, any LDA analysis that uses English language prose would be overwhelmed by articles such as "the". The inclusion of such a word would saturate any analysis of Sherlock Holmes books by Arthur Conan Doyle (Silge, 2018). That being said, there are no "words" - that is to say stock CUISP - that are as common as the word "the" in this analysis. In fact the most common CUSIP in the training database is CUSIP 037833100 (Apple Inc.) accounting for approximately one percent of all positions in the pruned database. While this popularity should not be surprising considering Apple's status in the investing world during the late aughts and the early to mid twenty-tens, this is nowhere as common as "the" or "they" in English prose.

Another practice that is common in literary-based uses of LDA is stemming words. This removes prefixes and suffixes of words such that only their roots are used. For example, faster and fastest relate the same idea – fast. However, since the words used in this analysis are in-

fact CUSIP numbers, there is no need for stemming. A case can be made that various class of stocks could have been stemmed since they are related to the same company, however this was not chosen since different class of stocks can be held for different reasons, such as using preferred stocks in a manner similar to bonds with the reduced voting rights exchanged for higher dividends and seniority. In other words, while different classes of stocks may be tied to the same company, they operate in different segments of portfolio allocation. For example, due to their promise to never force a stock split on their shareholders, Berkshire Hathaway was finding that their stock was getting into unwieldly large stock price, for investors would have to liquidate more stock value than they would usually need by selling one share. As such, partly to offer a more manageable stock denomination in order to ease buying into the fund by smaller investors, as well as scare-off index funds that would coast on Berkshire Hathaway's 13-F HR reports which chairperson Warren Buffet mused would lead to loss of goodwill due to the lower performance of these imitation index funds, Berkshire Hathaway renamed their existing stocks into Berkshire Hathaway A and offered a newer stock with 1/30 the face value of Berkshire Hathaway A and lessor voting rights as Berkshire Hathaway B (Buffet, 1997). The class B stock was further split at a 1/50 ratio in 2010 to make the Berkshire Hathaway Class B stock to be equivalent to 1/1500th of a Berkshire Hathaway Class A stock (Crippen, 2010).

6.4 Number of Topics

LDA requires the user to determine *a priori* the number of topics used in the topic model. This leads to the lumper vs splitter problem. Where one has to classify n objects, the optimal number of categories will exist between 1 and n, for 1 category encompasses the ensemble of things to be classified, and n categories will have perfect fit, but is utterly meaningless since it does not reduce data into a meaningful form. As such, classification is an art as well as a science since many categories can exist as part of a continuum.

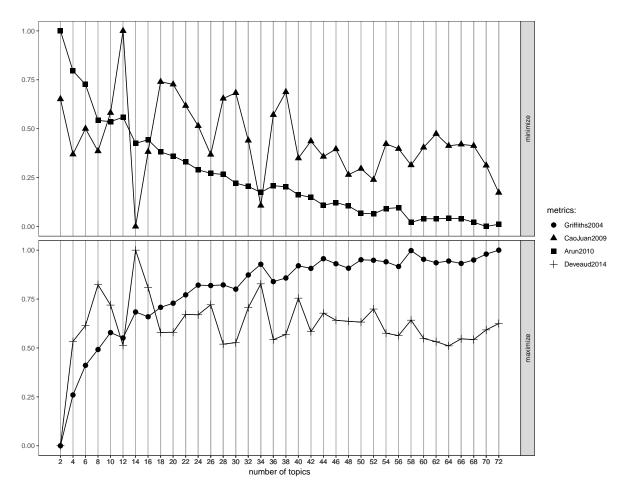


Figure 6.2: LDAtuning ensemble for determining the number of topics in LDA. As can be seen from the short distance between Deveaud (2014) and CaoJuan (2009) around 14 topics and the close agreement between the Griffiths (2004) and Arun (2010) measure as the number of topics increases - especially after 58. This suggests that a number of topics should be between 14 and 58. Within this band, all 4 metrics are in closest agreement at 34 topics, therefore 34 topics will be used in the LDA analysis.

In this case, the optimal number of topics selected was facilitated by the R package LDAtuning (Nikita, 2019). This package takes the Document-Term matrix and runs an ensemble of four different information criteria in order to find the optimal number of topics. These methods were established by Arun et al. (2010); Cao et al. (2009); Griffiths and Steyvers (2004) and Deveaud et al. (2014). From these four information criterion techniques, the suggested number of topics occurs where differences between these methods are minimized. Figure 6.2 displays the results of LDAtunings' estimates for the number of topics. This resultant plot shows that the numbers of topics where the differences are minimized occur at 8, 14, 34 and 72 topics. However, we can further refine this for a better fit. A n of 8 and 14 offer a poor fit under Griffiths and Steyvers (2004), and thus this method suggest a much larger optimal number. By contrast, Cao et al. (2009) and Deveaud et al. (2014) suggest topics at 8, 14 and 34, with Deveaud et al. (2014) offering poorer solutions as the number of topics increases. As such, 34 topics offers the best compromise between the different tuning methods and was chosen.

6.5 Applying the Model to the Data

After the model is trained, the LDA provides two tables: beta table and gamma table. The first table, beta table, gives the probability of each stock belonging to each topic, whereas the second table, gamma table, contains the probability of each investor belonging to each topic.

6.5.1 Per-Topic Probabilities

Figures 6.3 to 6.6 display the 10 stocks with the highest probability of being assigned to each topic. It should be noted that the order of each topic number is purely arbitrary, and nothing should be read in the rank-order of the different topics, nor the relative distance between topic numbers (Silge, 2018).

Within these topics, some are easier to label than others. For example, topic 7 appears

to be concentrated in Canadian banks as well as energy companies, topic 9 suggests to be a smorgasbord of various ETF and indexed securities, whereas topic 25 appears to be a strong collection of bluechip staples.

On the other hand, this 34 topic LDA gives us topics that would appear superficially similar, but are treated as different topics. For example, topics 10 and 13 are anchored by Berkshire Hathaway stock, but the main difference between the two is that topic 13 puts a much larger importance on the acumen of Warren Buffet than topic 10's more diversified approach.

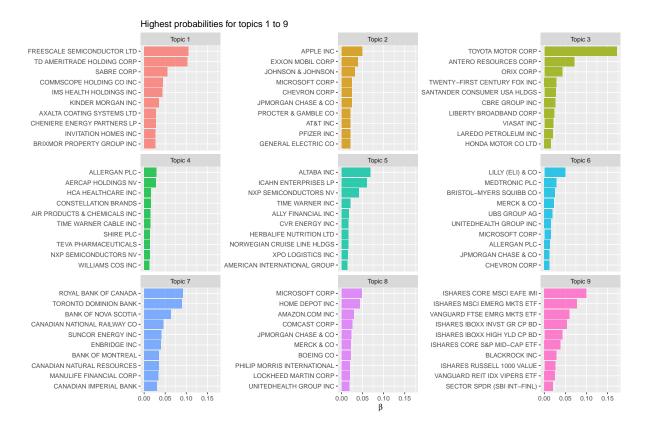


Figure 6.3: Topic model with 34 topics, topics 1 thought 9. This represents the 10 most likely stocks being associated to a particular portfolio archetype.

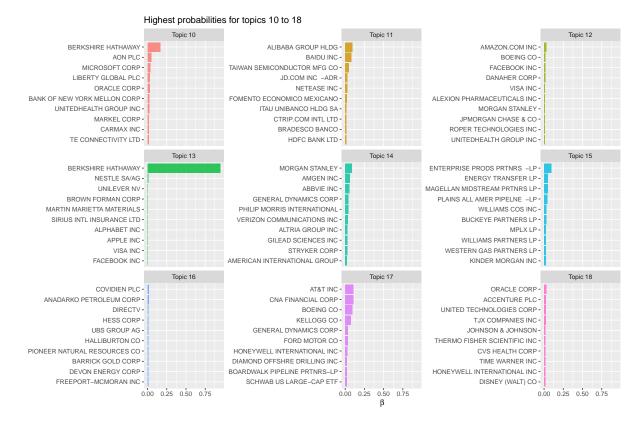


Figure 6.4: Topic model with 34 topics, topics 10 thought 19. This represents the 10 most likely stocks being associated to a particular portfolio archetype.

6.5.2 Per-Document-Per-Topic Probabilities

The per-document-per-topic probabilities are found in gamma table of the output. This table aggregates each stock's probability of belonging to a topic for each investor and thus gives the probability of each investor of belonging to each topic. The aggregate probability of each topic is displayed in Tables D.1 to D.3, giving us an idea of how the popularity of each topic fares over time. For example, topic 26 saw a precipitous decline from 172.40 to 14.15 aggregate investor probability of belonging to this topic, conversely topic 23 grew from 3.58 to 198.21 in this same metric.

Given that the investors were already geocoded in a previous chapter, the investors' topic probability was aggregated by State, and Figures D.1 to D.34 were created using the geofacet

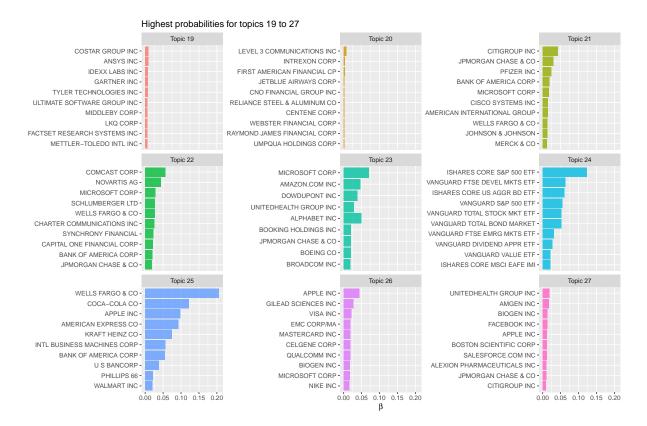


Figure 6.5: Topic model with 34 topics, topics 19 thought 27. This represents the 10 most likely stocks being associated to a particular portfolio archetype.

package in R. These geofacet maps allows for the thematic representation of line graphs in a geometric patters that resembles the adjacency of US States, facilitating an easier to conceptualize and understand representation of the data than a series of choropleth maps representing different time slices.

Looking deeply at the aggregate investor probability tables offer hints at why certain seemingly related topics, such as topics 10 and 13 – high concentrations of ETFs – as mentioned earlier might have a high thematic similarity, however these investors are given high probability classification to one topic and have a correspondingly low probability classification for the other topic. Going back to the fundamentals of Modern Portfolio Theory (MPT) might give insights into this outcome, and we are simply seeing two broadly similar strategies that are con-

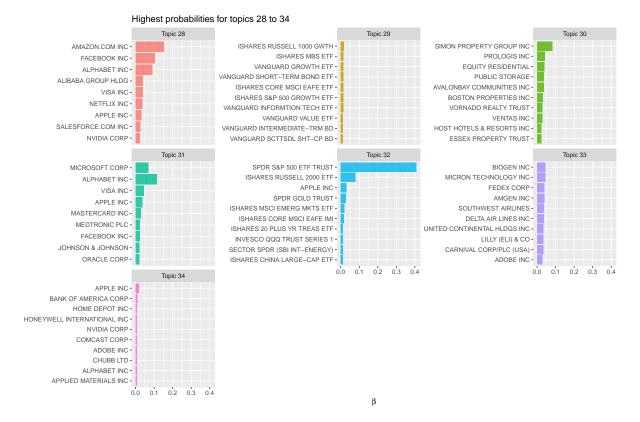


Figure 6.6: Topic model with 34 topics, topics 28 thought 34. This represents the 10 most likely stocks being associated to a particular portfolio archetype.

ceptually similar, but use different securities in the process. Furthermore, a look at the tables D.1 to D.3 indicates that these topics are getting more followers over time, however figures D.10 and D.13 show that this growth is geographically uneven, given that topic 13 has most of its growth coming from investors located outside of New York State than is the case with topic 10.

In a more general sense, the maps from Figure D.1 to D.34 are a reflection of the national locational trends seen in Chapter 3 (Exploring the Data), in that institutional investor firms prefer to locate in places where there are already other institutional investors (mainly NY and to some extent California, Massachusetts and Texas). Furthermore, this fractional accounting of investment firms by percentage probability of belonging to an investment strategy will reflect

this reality. That being said, this isn't really surprising in light of the literature on location decisions. Coval and Moskowitz (2001) show that it was the smaller investors that had outsized returns from pursuing locality-based investment strategies, and that these strategies – due to the required personal interaction – would be very hard to scale up. Secondly, the reliance of HQ location for tying an investor to their location does not preclude an investor having an oil specialist in Houston or Calgary for their oil portfolio research.

Overall, what does this mean? Best practices and strategies tend to homogenize portfolios. Some strategies might be geographically concentrated to a certain extent, but the nature of trading as it is currently practiced has reduced the friction of information transfer, and thus while not quite unshackling the geography of trading, has added additional links to the chains.

6.6 Shift-Share

Shift-share is a technique used in econometrics and regional studies developed by Edgar Dunn Jr. to ascribe changes in the share of a particular sector of the local economy into 3 main factors: a national factor - how well the global economy is doing; an industry factor - how well a particular industry is doing relative to the global economy; and a regional factor - how well the region is doing taking into account the national and industry trends (Dunn Jr, 1960). This last factor is important, since it allows various regions to see how they are doing relative to the set of global and industry headwinds. Similarly, the use of regional shifts to measure how well a region is doing with regards to an investment topic is useful for determining the health a given strategy when keeping with the investment topic as a whole and the national trends. The equation for shift share is as follows:

$$e_i^{t+n} - e_i^t = NS_i + IM_i + RS_i$$
(6.2)

Where *e* is the shift-share in industry *i* between the time periods *t* and t + n. This shift-share is the sum of the three effects: national growth effect (NS_i) , the industry mix effect (IM_i) and the local shift (RS_i) .

The national share is calculated as follows:

$$NS = e_i^r g^n \tag{6.3}$$

The industry mix is calculated as follows:

$$IM = e_i^r (g_i^n - g^n) \tag{6.4}$$

and the regional shift is calculated as follows:

$$RS = e_i^r (g_i^r - g_i^n)$$
(6.5)

Where e_i^r is the value in Sector *i* in Region *r* at the beginning of the period, g^n is the growth rate for the value for the total area under study over the time period, g_i^n is the growth rate of Sector *i* for the total area under study for the time period, and g_i^r growth rate in sector *i* in Region *r* for the time period (Houston, 1967).

6.6.1 Dynamic Shift-Share

However, as the release of data became more granular, both in terms of time period and geography, a more nuanced version of shift-share was developed: the dynamic shift-share. This version of shift-share takes into account the period to period fluctuations by performing the shift-share in a time-series and adding together all of the shifts (Barff and Knight III, 1988). Since this model uses a time-series, it is less vulnerable to effects caused by choosing the start and end years. Furthermore, Barff and Knight III (1988) as well as Harris (1994) show that the use of a dynamic shift-share with regular reporting periods (as is the case of 13F-HR data) means that there is less of a compounding effect. That is to say that one abnormally large change in a short period of time in the data creates a change in regional-shift that is disproportional to the underlying trend. In this case, this could be exemplified by the start-up of one large fund entering the data-set and having a profound quarter-to-quarter change in the data during the quarter it entered and then returning to a national growth rate. The dynamic shift-share is better prepared to deal with this type of data intrusion.

The dynamic shift-share is written as follows:

$$e_i^{t+n} - e_i^t = NS_i + IM_i + RS_i \tag{6.6}$$

If the study period ranges from year t to year t + n, the traditional shift-share effects are calculated for every year k, where k spans from t + 1 to t + n.

$$NS_{i} = \sum_{k=t+1}^{t+n} [e_{i}^{k-1}(G^{k})]$$
(6.7)

$$IM_{i} = \sum_{k=t+1}^{t+n} [e_{i}^{k-1}(G_{i}^{k} - G^{k})]$$
(6.8)

$$RS_{i} = \sum_{k=t+1}^{t+n} [e_{i}^{k-1}(g_{i}^{k} - G_{i}^{k})]$$
(6.9)

For the dynamic model shift-share, Equation 6.7 replaces Equation 6.3 for the national share, Equation 6.8 replaces Equation 6.4 for the industry mix and Equation 6.9 replaces Equation 6.5 for the regional share. The dynamic model shift-share is then calculated at the sum of the annual effects (Barff and Knight III, 1988).

In this case, rather than calculate yearly effects for k, this application of the dynamic shiftshare used each quarterly filing between the second quarter of 2013 to the fourth quarter of 2018, therefore creating 23 discreet time steps.

The analysis was performed using Soudis (2019) R package implementation for dynamic shift-share. The holdings of each portfolio was weighted by the β of each topic/portfolio archetype as determined by the 34 topic LDA analysis, and summed by relevant geography. The results in tabular form are in Appendix C.

By taking the regional shift values and then mapping them onto a map of the USA, this displays the local/regional effects of a given topic/portfolio archetype in a given geography while keeping the overall growth of the stock market and the varying popularity of a particular strategy constant. In order to minimize the role of outlier-values over-exposing the linear scale of the regional-shift, the regional shifts were binned into 10 categories using the Jenks method via the ClassInt package in R (Bivand, 2013). The Jenks natural-breaks method classifies continuous data by grouping them iteratively into k groups such that it maximizes the square

of variance between groups and minimizes the square of variance within groups (Jenks, 1967).

6.7 Regional Results

Throughout the ensemble of the 34 maps displaying the regional shifts for the continental USA, a re-occurring theme is that New York State and the State of California are often at odds with one-another. In the majority of these cases, New York State has a positive regional-shift value, and California has a corresponding negative shift value, whereas the reverse is only true in two cases: topic 13 (majority Berkshire Hathaway) and topic 32 (mostly broad sector and indexed ETFs). The question then becomes, why is California suffering such as persistent subordinate position to New York despite being ranked second in the number of firms and firm growth during the time period of 1999 to 2018?

Assuming a scenario in which New York State isn't at the centre of the US financial system would strain the credulity of the credulous considering that Wall Street has been a synonym of the US financial and business concerns for nearly a hundred years. New York is not only number 1 in terms of absolute number of new firms, but also these firms proportionally handle more money (see Chapter 3). While California's tech sector might be a massive economic engine, these investment firms growing in San Francisco and Los Angeles are smaller than the new firms in New York City and Manhattan in particular. This may be explained by leaning into New York City's historic role as the United States' financial centre as well as California's history as a centre of venture capital driven investment.

First of all, the preeminent position of Wall Street and the Financial District is further cemented by the wave of consolidation in the aftermath of the Great Financial Crisis of 2008 (Wheelock et al., 2011). In fact, New York is home to 5 of the 8 systemically important banks located in the USA³, and 2 of the 3 other banks have substantial operations in New York⁴, while the remaining is State Street headquartered out of Boston Massachusetts (Financial Stability Board, 2019).

As to why California lags behind may well be an artifact of the dataset, for California is quite famous for its venture capital investment culture (Green, 2004) and its large herd of unicorns⁵ (Kenney and Zysman, 2019). This long history of venture capital-backed firm creation model gives an enticing hint that there is a substantial pool of money in California that exists largely outside of the 13F-HR universe, since privately held corporations as well as stocks for firms that are not publicly listed do not show up in 13F-HR reports. Furthermore, due to recent changes in American regulations for start-ups, 2012's JOBs Act in particular allowing for greater number of qualified investors in a company before requiring companies to go public, has incentivized institutional capital to invest in star-ups prior to their initial public offering (IPO), as well as delaying the need for firms to create an IPO in order to access the capital needed to grow their company (Kenney and Zysman, 2019).

As per Florida and Mellander (2016), California contains four of the top 6 metro areas for venture capital, with the San Francisco Bay area (San Francisco and San Jose) accounting for nearly one of every four dollars invested in venture capital nationwide, and Southern California (Los Angeles, San Diego and Orange County) when taken collectively outranks New York City. Furthermore, Adams (2018) shows that the investment culture of the San Francisco Bay

³Morgan Stanley, JPMorgan Chase, Goldman Sachs, Citigroup and Bank of NY Mellon

⁴Wells Fargo has its official Headquarters in San Francisco and a substantial operation in the Seagram Building on Park Avenue, Bank of America has substantial operations in New York in the Bank of America Tower on Sixth Avenue

⁵A unicorn is a private start-up with a valuation above one billion USD. (Lee, 2013)

area prioritized plowing back the capital gained from previous ventures such as gold mining, shipping and the military-industrial complex into new ventures directly rather than invest in the stock market.

In their most recent report the National Venture Capital Association(2020a) – a national trade and lobbying organization for venture capital firms – found that for the years of this study (2013 to 2018), the total funds under management for venture capital firms headquartered in California grew from 128.7 billion to 241.9 billion USD (annual average growth of 22.24 billion USD), whereas in the same time period, New York grew from 26.9 billion to 56.3 billion (annual average growth of 4.925 billion USD). While the National Venture Capital Association data shows a strong growth trend for venture capital investing for VC firms located in California, it should be re-iterated that capital will flow like water towards where it anticipates future returns. As such, there is no mechanism preventing a VC fund in California from investing in a NY based start-up, and similarly, there is no mechanism preventing a NY based institutional investor from investing in a Silicone Valley tech giant. That being said, the report notes that there is a strong local bias in venture capital investment patterns.

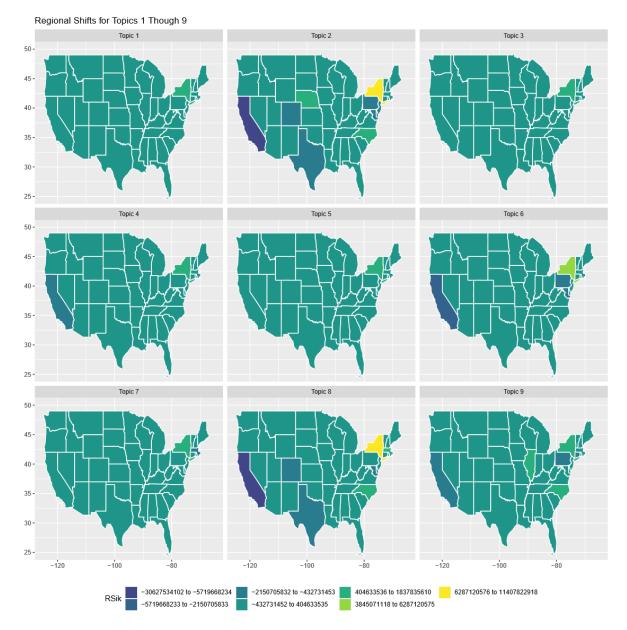


Figure 6.7: Regional shifts for topics 1 though 9 of the 34 topic LDA for the Continental USA.

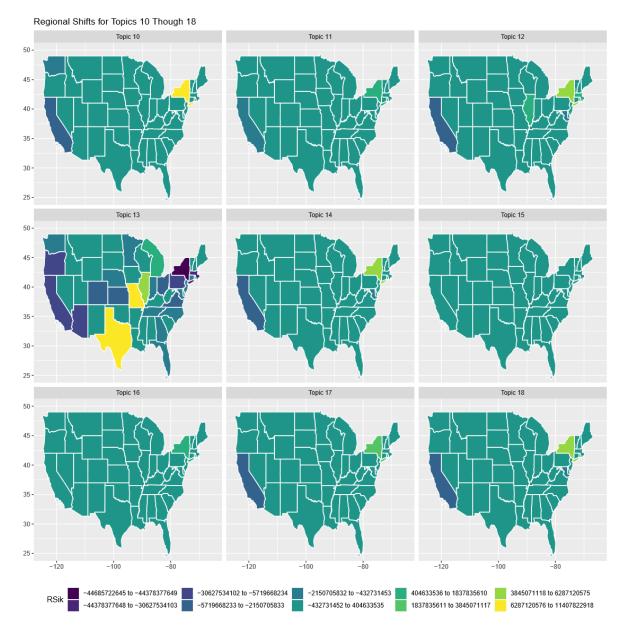


Figure 6.8: Regional shifts for topics 10 though 18 of the 34 topic LDA for the Continental USA.

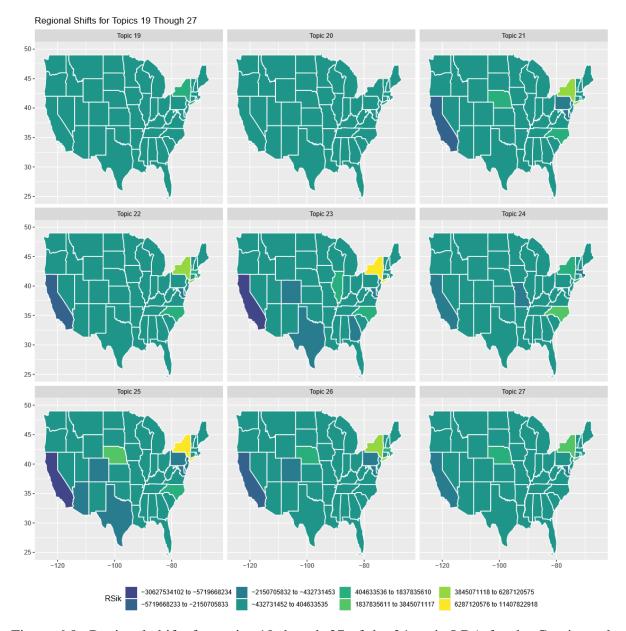


Figure 6.9: Regional shifts for topics 19 though 27 of the 34 topic LDA for the Continental USA.

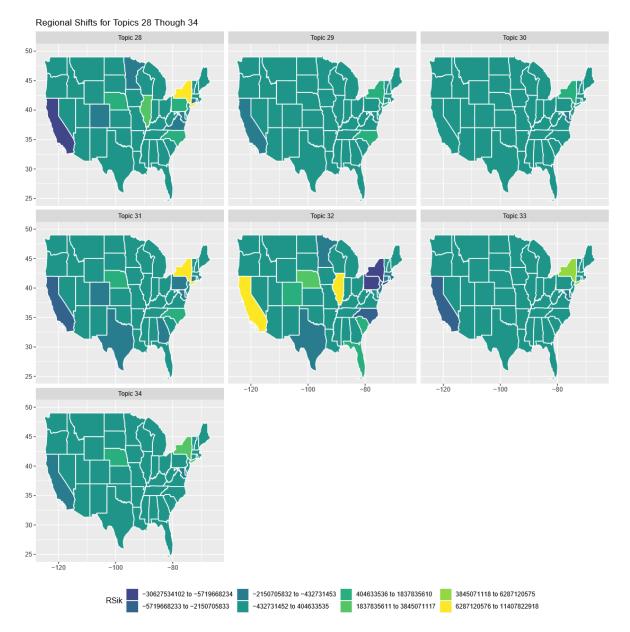


Figure 6.10: Regional shifts for topics 28 though 34 of the 34 topic LDA for the Continental USA.

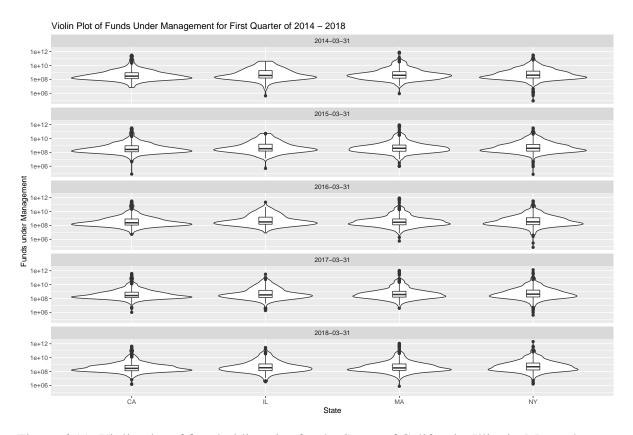


Figure 6.11: Violin plot of firm holding size for the States of California, Illinois, Massachusetts and New York.

In light of this marked difference between New York and California, Boston and Chicago have firm size distribution that is similar to New York and California (Figure 6.11), however these two large second tier cities drive the middle road between California's penchant for VC investment and New York's role as a stock-trading nexus.

6.8 Conclusion

Overall, the LDA analysis approach helped determine that there wasn't much geographical segregation, but did give an interesting insight of the institutional investors portfolio choices and preferences. This is to be somewhat expected given the homogenization of investment

best-practices, and the long shadow of the Efficient Market Hypothesis. That being said, the shift-share analysis on the resulting LDA topics underscores the massive difference in stock investing funds under management growth over time between New York and California. While not obvious in term of top line numbers for funds under management, number of firms, and the distribution of size of firms by funds under management, this LDA analysis and shift-share show a massive difference between New York and California. This discrepancy between New York and California is a potent reminder that unlike the seminal work of Botts and Patterson (1987), the 13F-HR database only offers a glimpse at an institutional investor's holdings. While it may be true that the publicly revealed holdings often represent some corporate power via shareholder voting, this glimpse omits non-convertible bonds, commodities, real estate and other non-traditional investment vehicles.

Furthermore, while the democratization of institutional investor locations in the United States made it possible to run an institutional investor firm outside of New York City, New York State's very strong growth for funds under management across the multitude of different investment strategies belies New York City's strength as a financial nexus. Or put another way, California's weakness in the institutional investor game is akin to the odd perturbations of Jupiter and Saturn's orbits that could not be explained until the discovery of Uranus and Neptune during the later half of the 19th century.

Chapter 7

Conclusion

In the end, it would be fair for the esteemed geographer mentioned in Chapter 1 to conclude that in the words of the French journalist and publisher Jean-Baptiste Alphonse Karr, *plus ça change, plus c'est la même chose* (Karr, 1864, p.278).

In order to find possible paths moving forward after the field of Geography-based institutional investment was to read and synthesise the previous works. The existing literature, especially from a Geography perspective declines precipitously after the mid 1990s, reflecting the culture turn in geographic research. The culture turn's emphasis on the human decision making processes and how humans interact with their environment coincided with a period of intellectual colonization by economists, who once again discovered the role of distance in their trade models (Scott, 2004). This second source of research from Economics, Business and Financial professionals is more up to date than the geography literature, but often elides over or omits important considerations for the geographer, and stands in the stifling shadow of the Efficient Market Hypothesis. A third source for the decline of geographic research is tied to the so called "death of distance" hypothesis that is the hallmark of certain techno-futurists (O'Brien, 1992). Their belief is that the telecommunications revolution has effectively replaced "space" with "place", and that social networks are more important than proximity, falls somewhat short as practiced during this study period. While the telecommunications revolution of the 1970s and 1980s unshackled financial operations from city centres that were then undergoing a wave of urban blight¹ and dis-investment², the data examined here shows that the 21st century partially reversed that trend of suburbanization of financial institutions.

While Gong and Keenan (2012) showed that New York's FIRE sector was very resilient in the face of the 9/11 terrorist attack on the World Trade Centre in New York, there was still that underlying belief that the trend of suburbanization and fleeing to lower-tax jurisdiction would ultimately doom New York's financial sector. The exploratory data analysis using graphing techniques proposed by Tufte et al. (1998), as well as the spherical application of Ripley's K and the Gravity Model of Trade done in Chapter 4 confirm Gong and Keenan's finding of a resilient New York, for no other jurisdiction was remotely close in terms of adding new institutional investors in absolute numbers. That being said, this same data does show that New York is losing pace to a multitude of regional centres in relative number of investors. If one were to ignore New York's continued edge in absolute terms of new institutional investors, this would nearly be a perfect example of stage III of Quaternary Location Theory, where the regional headquarters are catching up to the national headquarter (Semple and Phipps, 1982). Finally, the Gravity Model of Trade is applied to inter-county investment flows data for the United States of America for the years 2013 to 2018. The model's output shows that

¹Feigenbaum and Muller (2016) and Aizer and Currie (2017) suggest that wave of urban crime in the 1970s-90s is substantially explained by the presence of environmental pollution caused by the combustion of leaded gasoline.

²The only increases in spending, when adjusted for inflation, that North-Eastern and Mid-West cities have seen is in the police budget (Derenoncourt, 2019).

population count in the home and host county is a key factor in determining the amount of investment flows between these counties. This stands in contrast to Green (1993) and Green et al. (2015), however this study's application of the Gravity Model of Trade included a much larger swath of the population, and thus showing the importance of the mid-tier cities and their "stadium-scale banks" as well as other financial firms in this size range. This poses the question as to why certain lower-tier large cities such as Miami have a comparatively small institutional investor presence for their population.

A key tenet in Paul Krugmans's New Economic Geography was the role of increasing returns to scale (Krugman, 1991). That is to say that early advantage snowballs into continued prosperity. Similarly, Davis and Weinstein (2002) find compelling evidence that these early advantages need large shocks, such as but not limited to fundamental changes in underling patterns of trade, in order to disrupt the long-term growth of a sector. For example, their paper finds that many of the key cities in Japan's economy today were mostly the same cities that were fundamental to Japan's economy during the Sengoku period (1467 – 1615). Massive disruptions, such as those cause by Curtis LeMay's aerial campaign during World War II, did not significantly change the long-term economic growth of Japan. Similarly, a point density map of US-based financial investors for the year 2018 would not bring that many surprises to somebody who was familiar with the location of institutional investment in the 1990s. This observation helps answer the question posed in Green et al. (2015) - whether the generative process of new investment firms will help cement or undermine the current spatial pattern of institutional investment. On a macro scale, this question appears to be answered by the observations in Chapter 4 which demonstrate that new points mostly reflect the existing pattern, except for a relative decline of New York City, and an increase in the sunbelt as well as an increase in the number of internationally located institutional investors. However, with regards to internationally based 13-F HR investors, Lefebvre (2014) shows that foreign-based investors are drawn from a different distribution with regards to funds under management - the average foreign-based fund is larger than the average domestic institutional investor. One can see the logic, considering the scale needed to compensate for the extra effort needed to collect and act on information that is by definition not in your home country (Malloy, 2005). That being said, within this overarching theme of continuity much change can lie hidden. Therefore, in order to tease out patterns in the creation of new institutional investors, ESRI's time-cube analysis module can offer insights about emerging data by looking at space as well as time.

The national hot-spot analysis highlights the location of State capitals in the flyover states which as mentioned previously are home to "stadium sized banks" as well as State employee pension funds. That being said, while these veritable islands of high concentrations of funds under management among the vast American landscape were expected, they still paled in comparison to the major hot-spots of the BOS-NY-Wash metropolis, as well as the San Francisco Bay area and Southern California. Digging deeper into the cities of Boston, Chicago, Los Angeles, New York and San Francisco, it is apparent that while these cities may have a multitude of suburban office parks in which institutional investment is carried out, the largest hot-spots of investors are located in the Downtown core of these cities, and this remained true whether one looked at the longer scale phone book database or the funds under management database. This is consistent with the Ripley's K and Gini coefficient analyses done in previous chapters, thus confirming that this advanced command and control function of the economy is of a decidedly urban nature.

The last chapter takes a bit of a departure from the classical institutional investor literature.

Since there is broad homogenization of best practices among different types of institutional investors, from banks, hedge funds and insurance companies, this paper explored whether a classification scheme based on investor portfolio archetypes would provide novel insights into the geography of institutional investment. The Latent Dirichlet allocation Topic Model of the holdings of institutional investors for the time period of 2013-2018 shows that there isn't a large pattern of regional specialization in investment strategies. However, a shift-share analysis of the holdings when weighted by investment strategy reveals a sharp contrast between New York State and California. New York showed a very commanding position at the centre of the American investment world, showing very high levels of returns when adjusting for the performance of their peers, and California on the other hand showed dismal performance. This edges along a major weakness of the 13F-HR database, in that it only contains information on the holdings of publicly traded companies by institutional investors, and not their private equity or venture capital activities. Viewing this data in light of California-based investors penchant for venture capital investing, this provides an easy explanation for California's poor performance (the money was outside the scope of view of the database).

The esteemed geographer then asks how will the reactions to the COVID-19 global pandemic affect investing? The self-isolation bought about by the coronavirus has accelerated plans for employees working from home. How much will this affect the benefits of co-location, especially in high rent spaces such as Manhattan? Will the emptying out of Manhattan due to the self isolation's affect plans to choose Manhattan as a destination for new firms? Time will tell, but looking at the past 50 years of location choices, and the theoretical frameworks developed by Krugman (1991) and Davis and Weinstein (2002), calls for Manhattan's decline may once again be premature.

Bibliography

- Adams, S. B. (2018). A Diversified Portfolio: Resources Fueling Silicon Valley Before Venture Capital. In Business History Conference. Business and Economic History On-line: Papers Presented at the BHC Annual Meeting, Volume 16, pp. 1–14. Business History Conference.
- Aizer, A. and J. Currie (2017, May). Lead and Juvenile Delinquency: New Evidence from Linked Birth, School and Juvenile Detention Records. Working Paper 23392, National Bureau of Economic Research.
- Appelbaum, B., D. S. Hilzenrath, and A. R. Paley (2008). 'All Just One Big Lie'. Washington Post http://www.washingtonpost.com/wp-dyn/content/article/2008/12/ 12/AR2008121203970.html.
- Arun, R., V. Suresh, C. E. Veni Madhavan, and M. N. Narasimha Murthy (2010). On Finding the Natural Number of Topics with Latent Dirichlet Allocation: Some Observations. In M. J. Zaki, J. X. Yu, B. Ravindran, and V. Pudi (Eds.), *Advances in Knowledge Discovery* and Data Mining, Berlin, Heidelberg, pp. 391–402. Springer Berlin Heidelberg.
- Bachelier, L. (1900). Théorie de la Spéculation. Annales Scientifiques de l'É.N.S. 3e Série Tome 17, p. 21–86.
- Baddeley, A., E. Rubak, and R. Turner (2015). *Spatial Point Patterns: Methodology and Applications with R.* London: Chapman and Hall/CRC.
- Bagli, C. V. (2011). Regretting Move, Bank May Return to Manhattan. New York Times http://www.nytimes.com/2011/06/09/nyregion/ ubs-may-move-back-to-manhattan-from-stamford.html.

Bank Administration (1989). A Worldwide Network. (Vol. 65).

- BarclayHedge (2018). Hedge Fund Assets Under Management. https: //www.barclayhedge.com/solutions/assets-under-management/ hedge-fund-assets-under-management/hedge-fund-industry/ (Acessed on 2018-12-22).
- Barff, R. A. and P. L. Knight III (1988). Dynamic Shift-Share Analysis. *Growth and Change 19*(2), 1–10.

- Birch, C. P., S. P. Oom, and J. A. Beecham (2007). Rectangular And Hexagonal Grids Used For Observation, Experiment And Simulation In Ecology. *Ecological modelling* 206(3-4), 347–359.
- Bivand, R. (2013). classInt: Choose Univariate Class Intervals. R package. version 0.1-21.
- Bivand, R., T. Keitt, and B. Rowlingson (2015). *rgdal: Bindings for the Geospatial Data Abstraction Library*. R package version 0.9-2.
- Blei, D., A. Ng, and M. Jordan (2003). Latent Dirichlet allocation Journal of Machine Learning Research (3).
- Blei, D. M. (2012, April). Probabilistic Topic Models. Commun. ACM 55(4), 77-84.
- Blume, M. E. and D. B. Keim (2012). Institutional Investors and Stock Market Liquidity: Trends and Relationships.
- Bodenman, J. E. (1998). The Suburbanization of the Institutional Investment Advisory Industry: Metropolitan Philadelphia, 1983–1993. *The Professional Geographer* 50(1), 112–126.
- Bodenman, J. E. (2000). Firm Characteristics and Location: The Case of the Institutional Investment Advisory Industry in the United States, 1983 – 1996. *Papers in Regional Science* 79(1), 33–56.
- Botts, H. and J. Patterson (1987). Pension Fund Investment: an Initial Geographic Assessment. *Professional Geographer 39*, 416–427.
- Bradley, D., C. Pantzalis, and X. Yuan (2016). The Influence Of Political Bias In State Pension Funds. *Journal of Financial Economics 119*(1), 69–91.
- Brodie, L. (2013, May). Cramer: Don't Fall for Whale Watching 'Nonsense'! http://www.cnbc.com/id/100744278.
- Brody, H., M. R. Rip, P. Vinten-Johansen, N. Paneth, and S. Rachman (2000). Map-Making and Myth-Making In Broad Street: The London Cholera Epidemic, 1854. *The Lancet 356*(9223), 64–68.
- Brody, L. (2012). Wall Street Whale Watching: 13F Filings Flood Street.
- Brunsdon, C. and L. Comber (2015). An Introduction To R For Spatial Analysis And Mapping. Sage.
- Bryson, J., N. Henry, D. Keeble, and R. Martin (1999). *The Economic Geography Reader: Producing And Consuming Global Capitalism.* Wiley.

Buffet, W. (1997). BERKSHIRE HATHAWAY INC. Chairman's Letter.

Calomiris, C. W. (2000). U.S. Bank Deregulation In Historical Perspective. New York: Cambridge University Press. 359 pages.

Calomiris, C. W. (2013). Reforming Banks Without Destroying Their Productivity and Value. *Journal of Applied Corporate Finance* 25(4), 14–20.

Calomiris, C. W. and S. H. Haber (2014). Fragile by Design. 576 pages.

- Canadian Deposit Insurance Cooperation (2020). List of Members. https://www.cdic.ca/ your-coverage/list-of-member-institutions/.
- Cao, J., T. Xia, J. Li, Y. Zhang, and S. Tang (2009). A Density-Based Method For Adaptive Lda Model Selection. *Neurocomputing* 72(7), 1775 1781. Advances in Machine Learning and Computational Intelligence.
- Capital IQ Compustat (2019). Compustat Data.
- Cashman, G. D., D. M. Harrison, M. J. Seiler, and H. Sheng (2017). The Impact of Geographic and Cultural Dispersion on Information Opacity. *Journal of Real Estate Finance and Economics*, 1–43.
- Chen, E. (2011). Introduction to Latent Dirichlet Allocation.
- Choe, H., B.-C. Kho, and R. M. Stulz (2005). Do Domestic Investors Have an Edge? The Trading Experience of Foreign Investors in Korea. *Review of Financial Studies* 18(3), 795–829.
- Chow, G. C. (1960). Tests of Equality Between Sets of Coefficients in Two Linear Regressions. *Econometrica* 28(3), 591–605.
- Clark, G. L. (2005). Money Flows Like Mercury: The Geography of Global Finance. *Geografiska Annaler: Series B, Human Geography* 87(2), 99–112.
- Cohen, L., A. Frazzini, and C. Malloy (2008). The Small World of Investing: Board Connections and Mutual Fund Returns. *Journal of Political Economy* 116(5), 951–979.
- Courtault, J.-M., Y. Kabanov, B. Bru, P. Crépel, I. Lebon, and A. Le Marchand (2000). Louis Bachelier On The Centenary Of "Théorie De La Spéculation". *Mathematical Finance 10*(3), 341–353.
- Coval, J. D. and T. J. Moskowitz (1999). Home Bias at Home: Local Equity Preference in Domestic Portfolios. *The Journal of Finance* 54(6), 2045–2073.
- Coval, J. D. and T. J. Moskowitz (2001). The Geography of Investment: Informed Trading and Asset Prices. *Journal of Political Economy 109*(4), pp. 811–841.
- Crippen, A. (2010). Berkshire Hathaway 'B' Shares Soar After Split. https://www.cnbc. com/2010/01/21/berkshire-hathaway-b-shares-soar-after-split.html.
- Crymble, A. (2019). Introduction to Gravity Models of Migration & Trade. *The Programming Historian* 8. https://programminghistorian.org/en/lessons/gravity-model.

- Dallos, R. E. (1974a, Dec 07). Bad Times Thin Herd at Broker Convention. Copyright Copyright Times Mirror Company Dec 7, 1974; Last updated 2010-05-31.
- Dallos, R. E. (1974b, Dec 06). Securities Leaders Rapped for Killing Industry Overhaul. Copyright Copyright Times Mirror Company Dec 6, 1974; Last updated 2010-05-31.
- Davis, D. R. and D. E. Weinstein (2002). Bones, Bombs, And Break Points: The Geography Of Economic Activity. *American Economic Review* 92(5), 1269–1289.
- Davis, E. P. and B. Steil (2001). *Institutional Investors*. Cambridge, Mass.: MIT Press. 524 pages.
- Dear, M. and S. Flusty (1998). Postmodern Urbanism. Annals of the Association of American Geographers 88(1), 50–72.
- Derenoncourt, E. (2019). Can You Move To Opportunity? Evidence From The Great Migration. https://scholar.harvard.edu/files/elloraderenoncourt/files/ derenoncourt_jmp_2018.pdf.
- Deveaud, R., E. SanJuan, and P. Bellot (2014). Accurate And Effective Latent Concept Modeling For Ad Hoc Information Retrieval. *Document numérique 17*(1), 61–84.
- Dixon, P. M. (2014). R ipley's K Function. Wiley StatsRef: Statistics Reference Online.
- Dunn Jr, E. S. (1960). A Statistical And Analytical Technique For Regional Analysis. *Papers* in Regional Science 6(1), 97–112.
- Dvořák, T. (2005). Do Domestic Investors Have an Information Advantage? Evidence from Indonesia. *The Journal of Finance* 60(2), 817–839.
- Easley, D. and M. O'Hara (2011). Opaque Trading and Asset Prices. papers.ssrn.com.
- Eckel, S., G. Löffler, A. Maurer, and V. Schmidt (2011). Measuring The Effects Of Geographical Distance On Stock Market Correlation. *Journal of Empirical Finance* 18(2), 237–247.
- ESRI (2019). ArcGIS Desktop: Release 10.6. Redlands, CA.
- Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. *The Journal of Finance* 25(2), 383.
- Fama, E. F. (1991). Efficient Capital Markets: II. The Journal of Finance 46(5), 1575.
- Farooq, O. (2013). Who Was Informative? Performance Of Foreign And Local Analysts' Stock Recommendations During The Asian Financial Crisis. *Research in International Business* and Finance 29(1), 61–76.
- Federal Deposit Insurance Corporation (2020). Statistics At A Glance As of March 31, 2020. https://www.fdic.gov/bank/statistical/stats/2020mar/industry.pdf.
- Feigenbaum, J. J. and C. Muller (2016). Lead Exposure And Violent Crime In The Early Twentieth Century. *Explorations in economic history* 62, 51–86.

- Feinerer, I., K. Hornik, and D. Meyer (2008, March). Text Mining Infrastructure in R. *Journal* of Statistical Software 25(5), 1–54.
- Financial Stability Board (2019). 2019 list of global systemically important banks (G-SIBs).
- Fischer, M. M. and A. Getis (2009). *Handbook Of Applied Spatial Analysis: Software Tools, Methods And Applications.* Springer Science & Business Media.
- Florida, R. and C. Mellander (2016). Rise Of The Startup City: The Changing Geography Of The Venture Capital Financed Innovation. *California Management Review* 59(1), 14–38.
- Fotheringham, A. S. and D. W. S. Wong (1991). The Modifiable Areal Unit Problem in Multivariate Statistical Analysis. *Environment and Planning A: Economy and Space 23*(7), 1025– 1044.
- Friedman, B. (1996). Economic Implications of Changing Share Ownership. Journal of Portfolio Management 22(3), 59–70.
- Fritsch, M. and D. Schilder (2006, 11). Is Venture Capital A Regional Business? The Role Of Syndication.
- Geisst, C. R. (1997). Wall Street: a history. Oxford University Press.
- Gershman, B. (1982). ABSCAM, the Judiciary, and the Ethics of Entrapment. *Yale Law Journal 91*, 1565–1591.
- Getis, A. and J. K. Ord (2010). The Analysis Of Spatial Association By Use Of Distance Statistics. In *Perspectives on Spatial Data Analysis*, pp. 127–145. Springer.
- Gong, H. and K. Keenan (2012). The Impact of 9/11 on the Geography of Financial Services in New York: A Few Years Later. *The Professional Geographer* 64(3), 370–388.
- Graves, W. (1998). The Geography of Mutual Fund Assets. *The Professional Geographer* 50(2), 243–255.
- Graves, W. (2003). Financing Flexibility in a Global Market: The Metropolitan Distribution of Equity Investment ¹. Urban Geography 24(7), 611–635.
- Green, M. B. (1993). A Geography of Institutional Stock Ownership in the United States. *Annals of the Association of American Geographers* 83(1), 66–89.
- Green, M. B. (1995). A Geography of U.S. Institutional Investment, 1990. Urban Geography 16(1), 46–69.
- Green, M. B. (2004). Venture Capital Investment in the United States 1995-2002. *The Industrial Geographer* 2(1), 2–30.
- Green, M. B., S. O'Hagan, and M. Lefebvre (2015). The Economic Geography Of Institutional Investment In The United States, 2010. *Urban Geography 36*(6), 798–822.

- Griffin, J. M. and J. Xu (2009). How Smart Are the Smart Guys? A Unique View from Hedge Fund Stock Holdings. *Review of Financial Studies* 22(7), 2531–2570.
- Griffiths, T. L. and M. Steyvers (2004). Finding Scientific Topics. *Proceedings of the National Academy of Sciences 101*(suppl 1), 5228–5235.
- Haldane, A. (2009). Rethinking The Financial Network. Speech Delivered At The Financial Student Association, Amsterdam. http://www.bis.org/review/r100909e.pdf.
- Harris, R. and R. Lewis (1998). Constructing a Fault(y) Zone: Misrepresentations of American Cities and Suburbs 1900 - 1950. Annals of the Association of American Geographers 88(4), 622–639.
- Harris, T. R. (1994). Dynamic Shift-Share Analysis Of The Nevada Economy.
- Hau, H. (2001). Location Matters: An Examination of Trading Profits. *The Journal of Finance* 56(5), 1959–1983.
- Hlavac, M. (2018). *stargazer: Well-Formatted Regression and Summary Statistics Tables*. Bratislava, Slovakia: Central European Labour Studies Institute (CELSI). R package version 5.2.2.
- Hlynsson, H. D. (2017). Finding Magic: The Gathering archetypes with Latent Dirichlet Allocation.
- Hoaglin, D. C., F. Mosteller, and J. W. Tukey (1983). *Understanding Robust and Exploratory Data Analysis*. New York, Toronto: Wiley. 447 pages.
- Houston, D. B. (1967). The Shift and Share Analysis of Regional Growth: A Critique. *Southern Economic Journal 33*(4), 577–581.
- Huberman, G. (2001). Familiarity Breeds Investment. *Review of Financial Studies 14*(3), 659–680.
- Ingram, D. and S. Franco (2014). Urban-Rural Classification Scheme for Counties.
- Jenks, G. F. (1967). The Data Model Concept In Statistical Mapping. *International yearbook* of cartography 7, 186–190.
- Karr, A. (1864). Les Guèpes.
- Kenney, M. and U. Von Burg (1999). Technology, Entrepreneurship And Path Dependence: Industrial Clustering In Silicon Valley And Route 128. *Industrial and corporate change* 8(1), 67–103.
- Kenney, M. and J. Zysman (2019). Unicorns, Cheshire Cats, And The New Dilemmas Of Entrepreneurial Finance. *Venture Capital 21*(1), 35–50.
- Krugman, P. (1991). Increasing Returns And Economic Geography. Journal of political economy 99(3), 483–499.

- Lang, R. E. and A. C. Nelson (2007). America 2040: The rise of the megapolitans. *Planning* 73(1), 7–12.
- Lee, A. (2013). Welcome to the Unicorn Club. https://techcrunch.com/2013/11/02/ welcome-to-the-unicorn-club/.
- Lefebvre, M. R. (2014). A Spatial Exploration of Institutional Investment in Canada for the year 2010. Master's thesis, University of Western Ontario.
- Lerner, J., J. Mao, A. Schoar, and N. R. Zhang (2019). Investing Outside the Box: Evidence from Alternative Vehicles in Private Equity. *Harvard Business School Entrepreneurial Man*agement Working Paper (19-012), 19–012.
- Library of Congress (1975). S.249 An Act To Amend The Securities Exchange Act Of 1934 To Remove Barriers To Competition, To Foster The Development Of A National Securities Market System And A National Clearance And Settlement System, To Make Uniform The Securities And Exchange Commission's Authority Over Self-Regulatory Organizations, To Provide For The Regulation Of Brokers, Dealers And Banks Trading In Municipal Securities, To Facilitate The Collection And Public Dissemination Of Information Concerning The Holdings Of And Transactions In Securities By Institutional Investment Managers, And For Other Purposes. https://www.congress.gov/bill/94th-congress/senate-bill/249.
- Lienou, M., H. Maitre, and M. Datcu (2010). Semantic Annotation of Satellite Images Using Latent Dirichlet Allocation. *IEEE Geoscience and Remote Sensing Letters* 7(1), 28–32.
- Lo, A. W. (2016). What Is an Index? The Journal of Portfolio Management 42(2), 21-36.
- Lofthouse, S. (1997). International Diversification. *The Journal of Portfolio Management* 24(1), 53–56.
- Lynch, H. J. and P. R. Moorcroft (2008). A Spatiotemporal Ripley's K-Function To Analyze Interactions Between Spruce Budworm And Fire In British Columbia, Canada. *Canadian Journal of Forest Research* 38(12), 3112–3119.
- Malloy, C. J. (2005). The Geography of Equity Analysis. *The Journal of Finance* 60(2), 719–755.
- Marino, V. (2019). Revitalization Projects Reawaken Downtown Los Angeles. *New York Times*.
- Markopolos, H. (2009). Testimony of Harry Markopolos, CFA, CFE, Before the U.S. House of Representatives Committee on Financial Services Wednesday February 4, 2009. Note = Available online at http://online.wsj.com/public/resources/documents/ MarkopolosTestimony20090203.pdf.

Markowitz, H. (1952). Portfolio Selection*. The Journal of Finance 7(1), 77–91.

- Marwick, B. (2014). Chapter 3 Discovery of Emergent Issues and Controversies in Anthropology Using Text Mining, Topic Modeling, and Social Network Analysis of Microblog Content. In Y. Zhao and Y. Cen (Eds.), *Data Mining Applications with R*, pp. 63 93. Boston: Academic Press.
- Meyer, S. P. (2006). A Spatial Analysis Of Small- And Medium-Sized Information Technology Firms In Canada And The Importance Of Local Connections To Institutions Of Higher Education. *Canadian Geographer / Le Géographe canadien 50*(1), 114–134.
- Meyer, S. P. and M. B. Green (1996). Foreign Direct Investment From Canada: An Overview. *Canadian Geographer / Le GÃ* \bigcirc *ographe canadien 40*(3), 219–237.
- Millard, S. P. (2013). *EnvStats: An R Package for Environmental Statistics*. New York: Springer.
- Ministry of Justice (2018). Fact sheet on the UK's relationship with the Crown Dependencies.
- Mitchell, S. (2019). London Calling? Agglomeration Economies in Literature since 1700. J Urban Econ 112, 16–32.
- Monk, A. H. (2009). The Geography Of Pension Liabilities And Fund Governance In The United States. *Environment and Planning A* 41(4), 859–878.
- Moriset, B. and E. J. Malecki (2009). Organization versus Space: The Paradoxical Geographies of the Digital Economy. *Geography Compass* 3(1), 256–274.
- Munroe, R. (2012). XKCD 1138.

NASDAQ. NASDAQ Composite Eligibility Criteria.

National Venture Capital Association (2020a). NVCA 2020 Yearbook.

National Venture Capital Association (2020b). NVCA 2020 Yearbook: Public Data Pack.

- Newman, D. J. and S. Block (2006). Probabilistic Topic Decomposition Of An Eighteenth-Century American Newspaper. *Journal of the American Society for Information Science* and Technology 57(6), 753–767.
- Nikita, M. (2019). *ldatuning: Tuning of the Latent Dirichlet Allocation Models Parameters*. R package version 1.0.0.
- O'Brien, R. (1992). *Global Financial Integration: The End of Geography*. Council of Foreign Relations. 120 pages.
- Papadimitriou, C. H., P. Raghavan, H. Tamaki, and S. Vempala (2000). Latent Semantic Indexing: A Probabilistic Analysis. *Journal of Computer and System Sciences* 61(2), 217 – 235.

- Papadimitriou, C. H., H. Tamaki, P. Raghavan, and S. Vempala (1998). Latent Semantic Indexing: A Probabilistic Analysis. In *Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems*, PODS '98, New York, NY, USA, pp. 159–168. Association for Computing Machinery.
- Pohl, N. (2004). Where is Wall Street? Financial Geography after 09/11. *Industrial Geographer* 2(1), 72–93.
- Pred, A. (1977). City-systems in Advanced Economies. Past Growth, Present Processes and Future Options. Hutchinson.
- Ravenstein, E. G. (1885). The laws of migration. *Journal of the statistical society of London* 48(2), 167–235.
- Rhoades, S. A. (1982). Size and rank stability of the 100 largest commercial banks, 1925–1978. *Journal of Economics and Business 34*(2), 123–128.
- Ripley, B. D. (1976). The Second-Order Analysis Of Stationary Point Processes. *Journal of applied probability*, 255–266.
- Robert, H., G. Robert J., P. James, R. Valerie, R. Christina, R. David, S. James, and W. Mark W. (2020). The NBER's Business Cycle Dating Committee.
- Robeson, S., A. Li, and C. Huang (2015). *SphericalK: Spherical K-Function*. R package version 1.2.
- Rubner, Y., C. Tomasi, and L. J. Guibas (2000). The Earth Mover's Distance As A Metric For Image Retrieval. *International journal of computer vision 40*(2), 99–121.
- Samuelson, P. (1966). Science and Stocks. Newsweek.
- Savard, G. (1993, Autumn). The Caisee: a Balancing Act; the Caisse de Depot & Placement du Quebec Achieves Strong Financial Performance While Supporting Local Development. *Business Quarterly* 58(1), 30–37.
- Scott, A. J. (2004). A Perspective of Economic Geography. *Journal of Economic Geography* 4(5), 479–499.
- Semple, R. K. (1985). Toward A Quaternary Place Theory. Urban Geography 6(4), 285–296.
- Semple, R. K. and A. G. Phipps (1982). THE SPATIAL EVOLUTION OF CORPORATE HEADQUARTERS WITHIN AN URBAN SYSTEM. *Urban Geography 3*(3), 258–279.
- Shaw, M. (1981). Congress in the 1970s: A Decade of Reform. *Parliamentary Affairs XXXIV*(3), 272–290.
- Sievert, C. and K. Shirley (2015). *LDAvis: Interactive Visualization of Topic Models*. R package version 0.3.2.
- Silge, J. (2018). The Game Is Afoot! Topic Modeling Of Sherlock Holmes Stories.

Soudis, D. (2019). A Package To Performe Shift Share Analysis In R. R package.

S&P Dow Jones Indecies (2020a). Dow Jones Industrial Average.

S&P Dow Jones Indecies (2020b). Dow Jones Industrial Average.

- Teo, M. (2009). The Geography of Hedge Funds. *Review of Financial Studies* 22(9), 3531–3561.
- Tobin, J. (1969). A General Equilibrium Approach To Monetary Theory. *Journal of Money, Credit and Banking 1*(1), 15–29.
- Tobler, W. (1995). Migration: Ravenstein, Thornthwaite, And Beyond. Urban Geography 16(4), 327–343.
- Tobler, W. (2002). Global spatial analysis. 26(6), 493–500.
- Tufte, E. R., S. R. McKay, W. Christian, and J. R. Matey (1998). Visual Explanations: Images And Quantities, Evidence And Narrative.
- Tukey, J. W. (1977). Exploratory Data Analysis (First Edition ed.). Addison-Wesley Publishing Company. 688 pages.
- Underwood, T. (2012). Topic Modeling Made Just Simple Enough.
- United States Congress House Committee on Banking and Currency (1971). Banking Reform Act of 1971: Hearings before the Committee on Banking and Currency, House of Representatives, on H.R. 5700, H.R. 3287, and H.R. 7440. accessed Oct 6, 2014 from FRASER, http://fraser.stlouisfed.org/publication/?pid=227.
- United States Securities and Exchange Commission (2013, October). Form 13F Confidential Treatment Requests Based on a Claim of Ongoing Acquisition/Disposition Program. Available online at http://www.sec.gov/divisions/investment/guidance/ im-guidance-2013-08.pdf.
- U.S. Census Bureau (2013). 2013 TIGER/Line Shapefiles [machine-readable data files].
- US Census Bureau (2016). Core-Based Statistical Areas.
- U.S. Securities and Exchange Commission (1971). Institutional Investor Study Report of the Securities and Exchange Commission, Volumes 1-3. *19*(92), 1–83.
- Valle, D., B. Baiser, C. W. Woodall, and R. Chazdon (2014). Decomposing Biodiversity Data Using The Latent Dirichlet Allocation Model, A Probabilistic Multivariate Statistical Method. *Ecology Letters* 17(12), 1591–1601.
- Westaway, J. (1974). The Spatial Hierarchy Of Business Organizations And Its Implications For The British Urban System. *Regional Studies* 8(2), 145–155.
- Wheeler, J. (1988). The Corperate Role of Large Metropolitan Areas in the United States. *Growth and Change 19*(2), 75–86.

- Wheeler, J. O. and R. L. Mitchelson (1989a). Atlanta's Role as an Information Center: Intermetropolitan Spatial Links. *The Professional Geographer* 41(2), 162–172.
- Wheeler, J. O. and R. L. Mitchelson (1989b). Information Flows among Major Metropolitan Areas in the United States. *Annals of the Association of American Geographers* 79(4), 523–543.
- Wheelock, D. C. et al. (2011). Banking Industry Consolidation And Market Structure: Impact Of The Financial Crisis And Recession. *Federal Reserve Bank of St. Louis Review* 93(6), 419–438.
- WilmerHale (2013, January). Report of JPMorgan Chase & Co. Management Task Force Regarding 2012 CIO Losses. Available online at http://files.shareholder.com/downloads/ONE/2272984969x0x628656/ 4cb574a0-0bf5-4728-9582-625e4519b5ab/Task_Force_Report.pdf.
- Wilschut, L. I., A. Laudisoit, N. K. Hughes, E. A. Addink, S. M. de Jong, H. A. Heesterbeek, J. Reijniers, S. Eagle, V. M. Dubyanskiy, and M. Begon (2015). Spatial Distribution Patterns Of Plague Hosts: Point Pattern Analysis Of The Burrows Of Great Gerbils In Kazakhstan. *Journal of Biogeography* 42(7), 1281–1292.
- Zhu, N. (2002, oct). The Local Bias of Individual Investors. SSRN Electronic Journal, 1–59.
- Zimmerman, F. L. (1971). House Panel Set To Mull Curbing Bank Trust Units: Patman Bill to Include Rules On Ownership. *Wall Streeet Journal February* 8, 2.

Appendix A

Total of Investors in US Counties by Year

Table A.1: 7	Total investors b	v county and a	juarter 1999-2002

New York County, New York329Suffolk County, Massachusetts94Cook County, Illinois76Fairfield County, Connecticut59San Francisco County, California55Los Angeles County, California60Harris County, Texas22Dallas County, Texas18Hennepin County, Minnesota26King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Midlesex County, Massachusetts10Hamilton County, Missouri8Montgomery County, Maryland6Denver County, California7Baltimore County, California7Baltimore County, California7Baltimore County, California7Marin County, California7Marin County, California7Marin County, California7Marin County, California7Marin County, California7Chester County, Pennsylvania10Oakland County, Maryland10Oakland County, Mensylvania13New Castle County, Pennsylvania13New Castle County, Pennsylvania14Philadelphia County, Pennsylvania9	1 1999Q2 328 105 77 63 54 69 21 17 26 15 13 17 17 15 16 10 16 14 8 7 11 7 21 19	2 1999Q3 333 101 78 61 56 67 24 16 26 15 12 16 17 13 15 9 15 14 8 8 11 7 21	365 106 82 66 73 72 30 19 25 18 13 28 21 18 15 10 16 15 10 9 13 11	2000Q1 360 108 80 65 73 66 27 17 26 18 14 28 21 17 12 10 16 14 12 10 13 11	20000Q2 371 106 83 63 72 69 27 21 24 17 16 28 21 18 18 9 15 15 13 10 14	2000Q3 375 110 86 62 73 71 27 18 25 18 14 29 22 17 14 10 14 14 13 12 13	2000Q4 414 113 83 65 82 71 29 23 32 21 18 40 21 21 15 13 16 14 16 11	400 113 87 66 81 73 28 24 32 21 18 38 20 19 17 12 18 14 16	402 118 90 68 79 71 26 23 29 21 18 37 22 19 17 13 19 12 17	403 115 83 66 79 69 26 23 29 21 16 36 25 19 18 13 17 14 17	436 118 99 70 84 71 23 20 30 20 18 26 25 20 18 15 19 15 18	2002Q1 429 120 91 66 83 68 24 19 27 21 17 25 27 19 17 16 20 14 17 14	2002Q2 422 122 90 66 82 73 23 18 26 21 18 26 21 18 25 24 17 19 15 20 16 16 14	2002Q3 418 119 89 67 83 67 22 18 26 19 19 25 24 19 17 14 20 15 17 13	3 2002 433 12 999 77 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20
New York County, New York329Suffolk County, Massachusetts94Cook County, Illinois76Fairfield County, Connecticut59San Francisco County, California55Los Angeles County, California60Harris County, Texas22Dallas County, Texas18Hennepin County, Minnesota26King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Missouri8Montgomery County, Wisconsin15Milwaukee County, Missouri8Montgomery County, Maryland6Denver County, California7Baltimore County, California7Baltimore County, California7Baltimore County, California7Marin County, California7Cuyahoga County, California7Marin County, California7Marin County, California7Chester County, California7Chester County, Pennsylvania10Oakland County, Michigan8Tarrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Pennsylvania13New Castle County, Pennsylvania14Montgomery County, Pennsylvania14	328 105 77 63 54 69 21 17 26 15 13 17 17 15 16 10 16 14 8 7 11 7 21	$\begin{array}{c} 333\\ 101\\ 78\\ 61\\ 56\\ 67\\ 24\\ 16\\ 26\\ 15\\ 12\\ 16\\ 17\\ 13\\ 15\\ 9\\ 15\\ 14\\ 8\\ 8\\ 11\\ 7\end{array}$	365 106 82 66 73 72 30 19 25 18 13 28 21 18 15 10 16 15 10 9 13 11	360 108 80 65 73 66 27 17 26 18 14 28 21 17 12 10 16 14 12 10 13	371 106 83 63 72 69 27 21 24 17 16 28 21 18 18 9 15 15 13 10	375 110 86 62 73 71 27 18 25 18 14 29 22 17 14 10 14 14 13 12	414 113 83 65 82 71 29 23 32 21 18 40 21 21 15 13 16 14 16	400 113 87 66 81 73 28 24 32 21 18 38 20 19 17 12 18 14 16	402 118 90 68 79 71 26 23 29 21 18 37 22 19 17 13 19 12 17	403 115 83 66 79 69 26 23 29 21 16 36 25 19 18 13 17 14 17	436 118 99 70 84 71 23 20 30 20 18 26 25 20 18 15 19 15 18	429 120 91 66 83 68 24 19 27 21 17 25 27 19 17 16 20 14 17	422 122 90 66 82 73 23 18 26 21 18 25 24 17 19 15 20 16 16	418 119 89 67 83 67 22 18 26 19 19 25 24 19 17 14 20 15 17	433 1229 9999777777777777777777777777777777
Cook County, Illinois76Fairfield County, Connecticut59San Francisco County, California55Los Angeles County, California60Harris County, Texas22Dallas County, Texas18Hennepin County, Minnesota26King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, Galifornia12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Minsouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, California7Baltimore County, California7Baltimore County, California7Orange County, California7Chester County, California7Chester County, California7Chester County, California7Arrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Pennsylvania13New Castle County, Pennsylvania13New Castle County, Pennsylvania9	77 63 54 69 21 17 26 15 13 17 15 16 10 16 14 8 7 11 7 21	78 61 56 67 24 16 26 15 12 16 17 13 15 9 15 14 8 8 11 7	82 66 73 72 30 19 25 18 13 28 21 18 15 10 16 15 10 9 13 11	80 65 73 66 27 17 26 18 14 28 21 17 12 10 16 14 12 10 13	83 63 72 69 27 21 24 17 16 28 21 18 18 9 15 15 13 10	86 62 73 71 27 18 25 18 25 18 14 29 22 17 14 10 14 14 13 12	 83 65 82 71 29 23 32 21 18 40 21 21 15 13 16 14 16 	87 66 81 73 28 24 32 21 18 38 20 19 17 12 18 14 16	90 68 79 71 26 23 29 21 18 37 22 19 17 13 19 12 17	83 66 79 69 26 23 29 21 16 36 25 19 18 13 17 14 17	99 70 84 71 23 20 30 20 18 26 25 20 18 15 19 15 18	91 66 83 68 24 19 27 21 17 25 27 19 17 16 20 14 17	90 66 82 73 23 18 26 21 18 25 24 17 19 15 20 16 16	89 67 83 67 22 18 26 19 19 25 24 19 17 14 20 15 17	95 72 80 73 23 16 20 20 20 20 20 20 20 20 20 20 20 20 20
Fairfield County, Connecticut59San Francisco County, California55Los Angeles County, California60Harris County, Texas22Dallas County, Texas18Hennepin County, Minnesota26King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Missouri8Montgomery County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, California7Baltimore County, California7Baltimore County, California7Cuyahoga County, California7Chester County, Pennsylvania10Oakland County, Michigan8Tarrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Pennsylvania13New Castle County, Pennsylvania9	63 54 69 21 17 26 15 13 17 15 16 10 16 14 8 7 11 7 21	61 56 67 24 16 26 15 12 16 17 13 15 9 15 14 8 8 11 7	66 73 72 30 19 25 18 13 28 21 18 15 10 16 15 10 9 13 11	65 73 66 27 17 26 18 14 28 21 17 12 10 16 14 12 10 13	63 72 69 27 21 24 17 16 28 21 18 18 9 15 15 13 10	62 73 71 27 18 25 18 25 18 14 29 22 17 14 10 14 14 13 12	65 82 71 29 23 32 21 18 40 21 21 15 13 16 14	66 81 73 28 24 32 21 18 38 20 19 17 12 18 14 16	68 79 71 26 23 29 21 18 37 22 19 17 13 19 12 17	66 79 69 26 23 29 21 16 36 25 19 18 13 17 14 17	70 84 71 23 20 30 20 18 26 25 20 18 15 19 15 18	66 83 68 24 19 27 21 17 25 27 19 17 16 20 14 17	66 82 73 23 18 26 21 18 25 24 17 19 15 20 16 16	67 83 67 22 18 26 19 19 25 24 19 17 14 20 15 17	72 80 73 23 16 26 20 20 20 21 25 17 16 16 16 20 21 25 17 16 16 16 20 20 21 25 17 17 16 26 20 20 20 20 20 20 20 20 20 20 20 20 20
San Francisco County, California55Los Angeles County, California60Harris County, Texas22Dallas County, Texas18Hennepin County, Minnesota26King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Missouri8Montgomery County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, Maryland20Cuyahoga County, California7Baltimore County, California7Baltimore County, California7Chester County, Pennsylvania10Oakland County, Michigan8Tarrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Pennsylvania13New Castle County, Pennsylvania14Philadelphia County, Pennsylvania9	54 69 21 17 26 15 13 17 15 16 10 16 14 8 7 11 7 21	56 67 24 16 26 15 12 16 17 13 15 9 15 14 8 8 11 7	73 72 30 19 25 18 13 28 21 18 15 10 16 15 10 9 13 11	73 66 27 17 26 18 14 28 21 17 12 10 16 14 12 10 13	72 69 27 21 24 17 16 28 21 18 18 9 15 15 13 10	73 71 27 18 25 18 14 29 22 17 14 10 14 14 13 12	82 71 29 23 32 21 18 40 21 21 15 13 16 14 16	81 73 28 24 32 21 18 38 20 19 17 12 18 14 16	79 71 26 23 29 21 18 37 22 19 17 13 19 12 17	79 69 26 23 29 21 16 36 25 19 18 13 17 14 17	84 71 23 20 30 20 18 26 25 20 18 15 19 15 18	83 68 24 19 27 21 17 25 27 19 17 16 20 14 17	82 73 23 18 26 21 18 25 24 17 19 15 20 16 16	83 67 22 18 26 19 19 25 24 19 17 14 20 15 17	80 73 23 16 26 20 20 20 20 21 25 17 16 16 20 15 16
Los Angeles County, California60Harris County, Texas22Dallas County, Texas18Hennepin County, Minnesota26King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Ohio15Milwaukee County, Missouri8Montgomery County, Maryland6Denver County, California7Baltimore County, California7Baltimore County, California7Cuyahoga County, California7Chester County, California7Chester County, California7Chester County, California7Chester County, California7Chester County, Merylania10Dakland County, Michigan8Karant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	69 21 17 26 15 13 17 17 15 16 10 16 14 8 7 11 7 21	67 24 16 26 15 12 16 17 13 15 9 15 14 8 8 11 7	72 30 19 25 18 13 28 21 18 15 10 16 15 10 9 13 11	66 27 17 26 18 14 28 21 17 12 10 16 14 12 10 13	69 27 21 24 17 16 28 21 18 18 9 15 15 13 10	71 27 18 25 18 14 29 22 17 14 10 14 14 13 12	71 29 23 32 21 18 40 21 21 15 13 16 14 16	73 28 24 32 21 18 38 20 19 17 12 18 14 16	71 26 23 29 21 18 37 22 19 17 13 19 12 17	69 26 23 29 21 16 36 25 19 18 13 17 14 17	71 23 20 30 20 18 26 25 20 18 15 19 15 18	68 24 19 27 21 17 25 27 19 17 16 20 14 17	73 23 18 26 21 18 25 24 17 19 15 20 16 16	67 22 18 26 19 19 25 24 19 17 14 20 15 17	73 23 16 26 20 20 20 20 20 20 20 20 20 20 20 20 20
Los Angeles County, California60Harris County, Texas22Dallas County, Texas18Hennepin County, Minnesota26King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Georgia15Milwaukee County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, Maryland20Cuyahoga County, California7Baltimore County, California7Chester County, California7Chester County, California7Chester County, Pennsylvania10Oakland County, Michigan8Allegheny County, Mernsylvania13New Castle County, Pennsylvania13New Castle County, Pennsylvania9Philadelphia County, Pennsylvania9	21 17 26 15 13 17 17 15 16 10 16 14 8 7 11 7 21	24 16 26 15 12 16 17 13 15 9 15 14 8 8 11 7	30 19 25 18 13 28 21 18 15 10 16 15 10 9 13 11	27 17 26 18 14 28 21 17 12 10 16 14 12 10 13	27 21 24 17 16 28 21 18 18 18 9 15 15 13 10	27 18 25 18 14 29 22 17 14 10 14 14 13 12	29 23 32 21 18 40 21 21 15 13 16 14 16	28 24 32 21 18 38 20 19 17 12 18 14 16	26 23 29 21 18 37 22 19 17 13 19 12 17	26 23 29 21 16 36 25 19 18 13 17 14	23 20 30 20 18 26 25 20 18 15 19 15 18	24 19 27 21 17 25 27 19 17 16 20 14 17	23 18 26 21 18 25 24 17 19 15 20 16 16	22 18 26 19 19 25 24 19 17 14 20 15 17	23 10 20 20 20 20 20 20 20 20 20 20 20 20 20
Dallas County, Texas18Deallas County, Texas18Hennepin County, Minnesota26King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Massachusetts15Milwaukee County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, Maryland20Cuyahoga County, California7Baltimore County, California7Chester County, California7Chester County, California7Chester County, Mensylvania10Dakland County, Michigan8Allegheny County, Mensylvania13New Castle County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	17 26 15 13 17 17 15 16 10 16 10 16 14 8 7 11 7 21	16 26 15 12 16 17 13 15 9 15 14 8 8 11 7	19 25 18 13 28 21 18 15 10 16 15 10 9 13 11	17 26 18 14 28 21 17 12 10 16 14 12 10 13	21 24 17 16 28 21 18 18 9 15 15 13 10	18 25 18 14 29 22 17 14 10 14 14 13 12	23 32 21 18 40 21 21 15 13 16 14 16	24 32 21 18 38 20 19 17 12 18 14 16	23 29 21 18 37 22 19 17 13 19 12 17	23 29 21 16 36 25 19 18 13 17 14 17	20 30 20 18 26 25 20 18 15 19 15 18	19 27 21 17 25 27 19 17 16 20 14 17	18 26 21 18 25 24 17 19 15 20 16 16	18 26 19 19 25 24 19 17 14 20 15 17	10 20 20 22 22 22 21 10 10 10 20 11 10
Dallas County, Texas18Dallas County, Texas18Hennepin County, Minnesota26King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Massachusetts15St. Louis County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, Maryland20Cuyahoga County, California7Baltimore County, California7Chester County, California7Chester County, California7Chester County, Pennsylvania10Oakland County, Michigan8Ararant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	26 15 13 17 17 15 16 10 16 14 8 7 11 7 21	26 15 12 16 17 13 15 9 15 14 8 8 11 7	25 18 13 28 21 18 15 10 16 15 10 9 13 11	26 18 14 28 21 17 12 10 16 14 12 10 13	24 17 16 28 21 18 18 18 9 15 15 15 13 10	25 18 14 29 22 17 14 10 14 14 13 12	32 21 18 40 21 21 15 13 16 14 16	32 21 18 38 20 19 17 12 18 14 16	29 21 18 37 22 19 17 13 19 12 17	29 21 16 36 25 19 18 13 17 14 17	30 20 18 26 25 20 18 15 19 15 18	27 21 17 25 27 19 17 16 20 14 17	26 21 18 25 24 17 19 15 20 16 16	26 19 19 25 24 19 17 14 20 15 17	20 20 20 21 22 22 22 10 10 10 20 10 10 20 10 10 10 10 10 10
Hennepin County, Minnesota26King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Massachusetts15St. Louis County, Missouri8Montgomery County, Maryland6Denver County, California7Baltimore County, Maryland20Cuyahoga County, California7Baltimore County, California7Chester County, California7Chester County, California8Farrant County, Mensylvania10Oakland County, Michigan8Rarrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	26 15 13 17 17 15 16 10 16 14 8 7 11 7 21	15 12 16 17 13 15 9 15 14 8 8 11 7	25 18 13 28 21 18 15 10 16 15 10 9 13 11	26 18 14 28 21 17 12 10 16 14 12 10 13	24 17 16 28 21 18 18 18 9 15 15 15 13 10	25 18 14 29 22 17 14 10 14 14 13 12	32 21 18 40 21 21 15 13 16 14 16	32 21 18 38 20 19 17 12 18 14 16	29 21 18 37 22 19 17 13 19 12 17	29 21 16 36 25 19 18 13 17 14 17	20 18 26 25 20 18 15 19 15 18	27 21 17 25 27 19 17 16 20 14 17	26 21 18 25 24 17 19 15 20 16 16	26 19 19 25 24 19 17 14 20 15 17	20 20 20 22 22 10 10 10 20 21 10 10 20 21 21 10 10 20 21 21 21 21 21 21 21 21 21 21 21 21 21
King County, Washington16Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Massachusetts10Hamilton County, Missouri15St. Louis County, Missouri8Montgomery County, Maryland6Denver County, California7Baltimore County, Maryland20Cuyahoga County, California7Clugahoga County, California7Chester County, California7Chester County, Nennyland10Datland County, California7Saltimore County, California7Chester County, Pennsylvania10Dakland County, Micligan8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	15 13 17 17 15 16 10 16 14 8 7 11 7 21	15 12 16 17 13 15 9 15 14 8 8 11 7	18 13 28 21 18 15 10 16 15 10 9 13 11	18 14 28 21 17 12 10 16 14 12 10 13	16 28 21 18 18 9 15 15 15 13 10	18 14 29 22 17 14 10 14 14 13 12	21 18 40 21 21 15 13 16 14 16	18 38 20 19 17 12 18 14 16	18 37 22 19 17 13 19 12 17	21 16 36 25 19 18 13 17 14 17	18 26 25 20 18 15 19 15 18	21 17 25 27 19 17 16 20 14 17	21 18 25 24 17 19 15 20 16 16	19 19 25 24 19 17 14 20 15 17	20 20 22 22 17 10 10 20 10 10 10 10 10 10
Montgomery County, Pennsylvania13San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Massachusetts10Hamilton County, Missouri15Midukee County, Wisconsin15St. Louis County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, California7Baltimore County, California9Marin County, California7Cuyahoga County, California7Chester County, Pennsylvania10Oakland County, Meryland8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	13 17 15 16 10 16 14 8 7 11 7 21	12 16 17 13 15 9 15 14 8 8 11 7	13 28 21 18 15 10 16 15 10 9 13 11	$ \begin{array}{c} 14\\ 28\\ 21\\ 17\\ 12\\ 10\\ 16\\ 14\\ 12\\ 10\\ 13\\ \end{array} $	16 28 21 18 18 9 15 15 15 13 10	14 29 22 17 14 10 14 14 13 12	18 40 21 21 15 13 16 14 16	18 38 20 19 17 12 18 14 16	18 37 22 19 17 13 19 12 17	16 36 25 19 18 13 17 14 17	18 26 25 20 18 15 19 15 18	17 25 27 19 17 16 20 14 17	18 25 24 17 19 15 20 16 16	19 25 24 19 17 14 20 15 17	20 2 2 1 1 10 10 20 10 10 20 11 10 10
San Mateo County, California17Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Massachusetts10Hamilton County, Missouri15Mitwaukee County, Wisconsin15St. Louis County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, California7Baltimore County, California9Marin County, California7Chayanga County, California7Chester County, Neinsylvania10Dakland County, Michigan8Farrant County, Texas18Allegheny County, Pennsylvania13Vew Castle County, Delaware12Philadelphia County, Pennsylvania9	17 17 15 16 10 16 14 8 7 11 7 21	17 13 15 9 15 14 8 8 11 7	28 21 18 15 10 16 15 10 9 13 11	28 21 17 12 10 16 14 12 10 13	21 18 18 9 15 15 13 10	22 17 14 10 14 14 13 12	40 21 21 15 13 16 14 16	38 20 19 17 12 18 14 16	37 22 19 17 13 19 12 17	25 19 18 13 17 14 17	26 25 20 18 15 19 15 18	25 27 19 17 16 20 14 17	25 24 17 19 15 20 16 16	24 19 17 14 20 15 17	2: 11 10 10 20 11 10
Westchester County, New York18San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Ohio15Milwaukee County, Wisconsin15St. Louis County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, Maryland20Cuyahoga County, California7Baltimore County, California9Marin County, California7Chester County, Michigan8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	17 15 16 10 16 14 8 7 11 7 21	17 13 15 9 15 14 8 8 11 7	21 18 15 10 16 15 10 9 13 11	21 17 12 10 16 14 12 10 13	21 18 18 9 15 15 13 10	22 17 14 10 14 14 13 12	21 21 15 13 16 14 16	20 19 17 12 18 14 16	22 19 17 13 19 12 17	25 19 18 13 17 14 17	25 20 18 15 19 15 18	27 19 17 16 20 14 17	24 17 19 15 20 16 16	24 19 17 14 20 15 17	2: 11 10 10 20 11 10
San Diego County, California12Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Ohio15Milwaukee County, Wisconsin15St. Louis County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, Maryland20Cuyahoga County, California7Baltimore County, California7Chester County, California7Chester County, California7Chester County, Meryland10Oakland County, Michigan8Tarrant County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	15 16 10 16 14 8 7 11 7 21	13 15 9 15 14 8 8 11 7	18 15 10 16 15 10 9 13 11	17 12 10 16 14 12 10 13	18 18 9 15 15 15 13 10	17 14 10 14 14 13 12	21 15 13 16 14 16	19 17 12 18 14 16	19 17 13 19 12 17	19 18 13 17 14 17	20 18 15 19 15 18	19 17 16 20 14 17	17 19 15 20 16 16	19 17 14 20 15 17	11 10 10 20 11 10
Fulton County, Georgia17Middlesex County, Massachusetts10Hamilton County, Ohio15Milwaukee County, Wisconsin15Milwaukee County, Wisconsin15St. Louis County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, California7Baltimore County, Maryland20Cuyahoga County, California9Marin County, California7Chester County, California10Dakland County, Michigan8Earrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	16 10 16 14 8 7 11 7 21	15 9 15 14 8 8 11 7	15 10 16 15 10 9 13 11	12 10 16 14 12 10 13	18 9 15 15 13 10	14 10 14 14 13 12	15 13 16 14 16	17 12 18 14 16	17 13 19 12 17	18 13 17 14 17	18 15 19 15 18	17 16 20 14 17	19 15 20 16 16	17 14 20 15 17	1 1 2 1 1
Middlesex County, Massachusetts10Hamilton County, Ohio15Milwaukee County, Wisconsin15St. Louis County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, California7Baltimore County, Maryland20Cuyahoga County, California9Marin County, California7Chester County, California7Chester County, California7Chester County, Valifornia10Dakland County, Michigan8Farrant County, Texas18Allegheny County, Delaware12Philadelphia County, Pennsylvania9	10 16 14 8 7 11 7 21	9 15 14 8 8 11 7	10 16 15 10 9 13 11	10 16 14 12 10 13	9 15 15 13 10	10 14 14 13 12	13 16 14 16	12 18 14 16	13 19 12 17	13 17 14 17	15 19 15 18	16 20 14 17	15 20 16 16	14 20 15 17	1 2 1 1
Hamilton County, Ohio15Mainiton County, Ohio15Milwaukee County, Wisconsin15St. Louis County, Missouri8Montgomery County, Maryland6Denver County, Colorado10anta Clara County, California7Baltimore County, California20Cuyahoga County, California9Marin County, California7Chester County, California7Chester County, Mensylvania10Dakland County, Michigan8Carrant County, Texas18Allegheny County, Pennsylvania13Vew Castle County, Delaware12Philadelphia County, Pennsylvania9	16 14 8 7 11 7 21	15 14 8 8 11 7	16 15 10 9 13 11	16 14 12 10 13	15 15 13 10	14 14 13 12	16 14 16	18 14 16	19 12 17	17 14 17	19 15 18	20 14 17	20 16 16	20 15 17	2 1 1
Milwaukee County, Wisconsin15Adilwaukee County, Missouri8Aontgomery County, Maryland6Denver County, Colorado10Santa Clara County, California7Saltimore County, Maryland20Cuyahoga County, Ohio20Drange County, California9Marin County, California7Chester County, Pennsylvania10Dakland County, Michigan8Carrant County, Texas18Illegheny County, Pennsylvania13Sew Castle County, Delaware12Philadelphia County, Pennsylvania9	14 8 7 11 7 21	14 8 8 11 7	15 10 9 13 11	14 12 10 13	15 13 10	14 13 12	14 16	14 16	12 17	14 17	15 18	14 17	16 16	15 17	1 1
St. Louis County, Missouri8Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, California7Baltimore County, Maryland20Cuyahoga County, Ohio20Drange County, California9Marin County, California7Chester County, Pennsylvania10Dakland County, Michigan8Airrant County, Texas18Allegheny County, Delaware12Philadelphia County, Pennsylvania9	8 7 11 7 21	8 8 11 7	10 9 13 11	12 10 13	13 10	13 12	16	16	17	17	18	17	16	17	1
Montgomery County, Maryland6Denver County, Colorado10Santa Clara County, California7Baltimore County, Maryland20Cuyahoga County, Ohio20Drange County, California9Marin County, California7Chester County, Pennsylvania10Dakland County, Michigan8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	7 11 7 21	8 11 7	9 13 11	10 13	10	12									
Denver County, Colorado10Santa Clara County, California7Baltimore County, Maryland20Cuyahoga County, Ohio20Drange County, California9Marin County, California7Chester County, Pennsylvania10Dakland County, Michigan8Farrant County, Texas18Allegheny County, Delaware12Philadelphia County, Pennsylvania9	11 7 21	11 7	13 11	13				11	11	12	13	14		15	
Santa Clara County, California7Baltimore County, Maryland20Cuyahoga County, Ohio20Drange County, California9Marin County, California7Chester County, Pennsylvania10Dakland County, Michigan8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	7 21	7	11		17		15	12	10	10	10	9	11	10	ç
Baltimore County, Maryland20Cuyahoga County, Ohio20Drange County, California9Marin County, California7Chester County, Pennsylvania10Dakland County, Michigan8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	21				13	12	18	12	10	10	18	16	16	10	1
Cuyahoga County, Ohio20Orange County, California9Marin County, California7Chester County, Pennsylvania10Oakland County, Michigan8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9			22	18	20	20	20	21	21	21	21	21	20	20	1
Drange County, California9Marin County, California7Chester County, Pennsylvania10Dakland County, Michigan8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	1)	17	17	17	19	20	20 24	26	21	20	21	20	20	18	1
Marin County, California7Chester County, Pennsylvania10Dakland County, Michigan8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	11	12	12	13	13	14	13	13	13	12	14	15	20 14	14	1
Chester County, Pennsylvania10Dakland County, Michigan8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	8	8	12	13	12	14	13	13	13	12	14	15	14	14	1
Dakland County, Michigan8Farrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	12	° 12	12	15	12	15	15	17	13	15	14	13	13	13	1
Tarrant County, Texas18Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	9	8	9	10	10	10	9	13	10	10	9	9	9	9	1
Allegheny County, Pennsylvania13New Castle County, Delaware12Philadelphia County, Pennsylvania9	18	8 18	19	10	10	10	19	17	10	10	21	21	22	22	1
New Castle County, Delaware12Philadelphia County, Pennsylvania9	18	18	19	18	18	18	19	17	17	17	16	15	15	13	1
Philadelphia County, Pennsylvania 9	13	12	14	13	9	13	12	13	14	14	10	13	13	10	1
	10	15	14	12	13	12	11	13	11	12	12	12	12	10	1
		7		8		9	9	9	14 9	9	14	14	10	10	1
Mecklenburg County, North Carolina8Hartford County, Connecticut14	8 12	/ 14	8	8 14	8 14			9 16		9 17		10		10 14	
•			15			15	16		16		15		13		1
	4	4	6	5	5 12	6 9	6	5 12	5	5	5	5	5	4	(
	14	12	12	11			13		11	11	11	11	12	12	1
Shelby County, Tennessee 9	7	9	9	9	9	9	9	8	8	9	10	10	10	10	1
Fravis County, Texas 6	7	7	6	7	7	6	7	8	7	9	7	7	7	7	6
Morris County, New Jersey 8	8	8	7	8	8	7	7	8	8	8	10	10	12	11	1
District of Columbia 9	10	10	15	14	13	13	14	15	13	14	14	15	15	15	1
Bergen County, New Jersey 11	12	11	12	11	11	10	10	10	9	8	9	8	10	9	1
Douglas County, Nebraska 7	6	7	8	8	8	8	9	9	8	8	7	7	7	7	8
Johnson County, Kansas3Palm Beach County, Florida6	3	3	4	4	3	4	4	4	4	4	5	5 5	5 4	5 4	2

Multnomah County, Oregon	11	11	11	13	13	14	13	13	10	10	10	10	10	10	10	10	
Contra Costa County, California	4	5	5	7	5	5	6	7	6	6	6	6	5	5	5	5	
Jefferson County, Kentucky	8	8	8	9	9	9	9	9	9	8	8	10	9	9	9	8	
Richmond County, Virginia	7	9	9	8	7	6	7	7	7	9	9	8	8	8	8	8	
Mercer County, New Jersey	5	5	5	8	8	9	10	8	10	8	8	6	5	6	5	4	
Providence County, Rhode Island	9	9	7	9	7	6	6	6	6	6	6	6	6	6	6	5	
Jackson County, Missouri	10	8	10	10	9	10	10	12	10	10	10	9	9	10	10	10	
New Haven County, Connecticut	8	9	9	9	7	8	8	8	9	9	9	11	10	9	9	9	
Norfolk County, Massachusetts	6	9 7	6	9 7	6	8	9	10	11	9	10	10	9	9 7	10	10	
Maricopa County, Arizona	3	3	3	5	7	8 4	6	8	9	9 7	7	7	9 7	7	10 7	6	
Monroe County, New York	6	5	6	6	6	6	6	8 6	5	7	6	6	8	6	6	5	
	2	2	2	5	5	6	6	8	3 7	7	8	7	8 7	6	6	5	
Essex County, Massachusetts	2 5	2 5	6		5 5			8 7				7	7			5	
Pinellas County, Florida	5	5 4	6 4	6		6	5	,	7	7	7 4			6	6	0	
Hudson County, New Jersey	U	-		4	4	3	3	3	3	4	-	5	5	6	6	5	
Jefferson County, Alabama	5	7	6	7	7	7	6	6	6	7	7	7	6	6	6	6	
Henrico County, Virginia	3	3	3	3	3	4	4	4	4	6	6	5	5	5	5	5	
Franklin County, Ohio	9	11	10	7	7	7	8	7	6	7	7	7	6	8	6	7	
Cumberland County, Maine	7	6	6	7	7	7	7	6	4	3	4	5	5	5	4	7	
Nassau County, New York	4	3	4	4	4	4	4	3	3	3	3	3	4	3	5	4	
Baltimore County, Maryland	2	1	2	2	2	3	2	2	3	3	3	3	3	3	3	3	
Arlington County, Virginia	7	7	7	6	7	7	8	6	6	6	7	9	8	8	7	8	
Dane County, Wisconsin	6	6	6	6	6	6	6	7	7	7	7	7	7	7	7	7	
Davidson County, Tennessee	4	5	5	3	3	2	2	3	3	4	3	4	4	4	4	5	
Duval County, Florida	2	3	2	4	4	4	4	5	5	5	5	6	6	6	5	6	
Pulaski County, Arkansas	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	
Fairfax County, Virginia	3	5	3	4	3	4	4	4	3	3	3	3	3	4	2	3	
Bexar County, Texas	4	3	3	3	3	3	3	3	3	5	5	3	3	3	3	3	
Somerset County, New Jersey	3	4	4	4	3	4	4	4	5	5	5	5	4	5	5	5	
Union County, New Jersey	0	0	0	0	0	0	0	0	0	0	1	2	2	2	2	3	
Salt Lake County, Utah	4	15	9	9	9	9	9	9	9	5	5	5	5	5	5	5	
Wake County, North Carolina	0	2	1	1	1	0	2	1	2	2	3	5	5	5	5	5	
Butler County, Ohio	1	2	1	3	2	2	3	2	4	3	3	3	3	3	3	3	
Miami-Dade County, Florida	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	
Lake County, Illinois	2	2	2	2	2	2	2	2	2	1	3	3	3	3	3	3	
Arapahoe County, Colorado	4	5	4	4	4	5	4	5	6	6	6	6	5	6	6	6	
Tulsa County, Oklahoma	3	4	3	3	3	3	3	3	3	3	3	4	4	4	4	4	
Essex County, New Jersey	4	4	4	7	7	7	7	7	7	6	5	7	6	6	6	6	
Marion County, Indiana	4	4	4	3	3	3	4	6	5	7	6	7	7	8	8	8	
Forsyth County, North Carolina	2	6	5	6	6	6	7	7	7	7	6	5	6	5	4	5	
Wayne County, Michigan	3	3	3	5	4	4	4	5	5	5	5	5	4	4	4	4	
Alameda County, California	4	4	4	4	4	4	3	3	3	3	3	3	3	3	3	3	
Lancaster County, Pennsylvania	3	3	3	3	3	3	3	3	3	4	4	4	4	3	4	4	
Ramsey County, Minnesota	7	6	5	6	6	6	6	5	5	4	5	5	5	5	4	5	
Charlottesville County, Virginia	1	2	2	3	3	3	3	5	5	5	4	4	5	5	5	5	
Ozaukee County, Wisconsin	4	5	4	5	5	5	5	5	6	6	6	5	6	6	6	5	
Polk County, Iowa	7	6	6	5	5	5	5	5	4	2	3	4	4	4	4	4	
Cobb County, Georgia	4	5	5	6	6	6	6	5	4	4	4	5	5	5	4	6	
Cool County, Ocorgia	-	5	5	0	0	0	0	5	-	-	-	5	5	5	-	0	

Albany County, New York	3	3	3	1	2	2	2	2	2	2	2	2	2	2	2	2
Collier County, Florida	1	2	1	1	1	1	1	1	1	1	1	2	2	3	3	3
Kent County, Michigan	4	5	5	5	5	5	5	6	6	5	5	4	4	4	4	4
Rockingham County, New Hampshire	3	3	3	4	4	4	5	7	4	4	4	5	5	5	5	5
Erie County, New York	4	4	4	4	4	4	4	5	4	4	4	4	5	5	5	4
Plymouth County, Massachusetts	2	2	2	3	3	1	4	3	3	3	3	1	2	2	2	2
Montgomery County, Ohio	5	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5
Merrimack County, New Hampshire	3	3	3	4	4	4	4	4	6	6	6	5	6	5	5	5
Orange County, Florida	4	5	5	4	5	5	5	6	6	5	5	5	5	4	4	4

County	2003Q1	2003Q2	2003Q3	2003Q4	2004Q1	2004Q2	2004Q3	2004Q4	2005Q1	2005Q2	2005Q3	2005Q4	2006Q1	2006Q2	2006Q3	2006Q4
New York County, New York	425	425	413	461	456	406	492	512	507	500	489	562	554	555	559	611
Suffolk County, Massachusetts	123	123	124	126	124	119	125	133	128	126	130	144	143	143	143	155
Cook County, Illinois	95	96	96	105	103	96	106	104	103	101	99	111	109	111	108	117
Fairfield County, Connecticut	74	75	71	83	82	75	87	92	89	91	91	105	103	105	103	123
San Francisco County, California	74	71	72	81	82	79	84	94	91	91	90	96	96	94	90	89
Los Angeles County, California	70	73	70	78	76	75	74	79	81	80	77	87	86	87	88	101
Harris County, Texas	23	21	22	22	25	24	24	27	28	29	29	30	31	31	30	36
Dallas County, Texas	15	16	17	22	22	20	23	32	33	33	32	34	35	34	35	40
Hennepin County, Minnesota	27	27	27	32	33	33	32	35	35	34	35	36	36	36	36	40
King County, Washington	20	20	21	25	24	24	25	23	25	24	23	23	25	24	24	25
Montgomery County, Pennsylvania	23	23	23	27	28	28	27	31	32	29	34	36	34	34	36	37
San Mateo County, California	20	19	22	19	19	19	19	18	18	17	18	21	21	20	20	27
Westchester County, New York	25	25	23	22	21	22	21	29	28	29	30	28	28	27	26	28
San Diego County, California	17	17	17	19	19	20	20	21	20	21	21	21	23	22	22	28
Fulton County, Georgia	16	17	17	17	17	17	16	15	16	14	17	16	17	17	17	19
Middlesex County, Massachusetts	16	16	16	16	17	17	17	19	19	20	18	18	19	19	18	21
Hamilton County, Ohio	20	20	20	19	19	17	19	19	22	22	23	23	23	23	22	24
Milwaukee County, Wisconsin	16	18	16	18	17	17	23	23	23	23	23	22	21	21	20	24
St. Louis County, Missouri	16	16	16	15	16	15	15	16	14	14	14	16	15	14	17	17
Montgomery County, Maryland	14	14	14	16	17	17	17	19	18	18	18	18	18	19	20	21
Denver County, Colorado	9	10	9	13	14	14	13	15	16	14	14	16	16	15	15	19
Santa Clara County, California	15	15	16	16	15	15	14	18	16	15	16	17	16	16	17	17
Baltimore County, Maryland	18	18	17	17	16	17	17	16	16	16	16	18	18	16	16	19
Cuyahoga County, Ohio	17	18	17	19	19	19	19	18	18	19	19	19	18	18	17	17
Orange County, California	13	13	13	13	12	10	13	14	14	15	13	15	13	13	13	19
Marin County, California	13	13	13	15	16	16	17	18	17	17	16	16	18	18	18	22
Chester County, Pennsylvania	15	15	15	17	16	18	18	17	18	17	17	18	21	21	21	24
Oakland County, Michigan	9	9	9	10	10	10	11	11	11	12	12	12	11	12	12	17
Tarrant County, Texas	16	16	16	15	15	15	15	16	16	16	16	15	15	15	15	18
Allegheny County, Pennsylvania	14	14	14	16	14	15	15	15	15	14	15	14	14	14	15	15
New Castle County, Delaware	10	10	10	11	10	10	10	9	10	14	10	11	12	13	13	10
Philadelphia County, Pennsylvania	15	15	15	15	15	15	13	14	12	11	11	12	12	12	13	14
Mecklenburg County, North Carolina		12	12	13	12	13	11	12	14	14	13	15	14	14	14	14
Hartford County, Connecticut	14	14	13	13	13	13	11	12	12	11	10	14	13	14	14	15
DuPage County, Illinois	6	6	6	9	9	9	9	12	11	11	12	14	13	13	13	14
Delaware County, Pennsylvania	9	10	9	11	11	12	12	11	11	12	10	10	11	11	10	9
Shelby County, Tennessee	11	10	9	11	11	11	11	10	10	10	10	11	11	11	11	11
Travis County, Texas	7	7	7	7	7	7	7	7	7	7	7	8	8	8	8	9
Morris County, New Jersey	13	13	12	14	13	12	13	12	12	13	13	13	13	13	13	14
District of Columbia	16	16	16	17	16	14	14	15	15	14	14	16	15	15	13	17
Bergen County, New Jersey	10	10	10	9	9	6	8	11	10	11	12	12	11	12	11	15
Douglas County, Nebraska	8	8	8	8	8	8	10	10	10	10	10	12	11	11	11	13
Johnson County, Kansas	5	5	5	5	5	5	5	6	6	6	6	6	6	6	6	7
Palm Beach County, Florida	4	4	5	5	6	7	7	7	8	8	6	7	8	8	9	10

Table A.2: Total investors by county and quarter 2003-2006

	10	10	0	-	-	-	0	0	0	0	0	0	0	0	0	10
Multnomah County, Oregon	10	10	9	7	7	7	8	8	8	8	8	8	8	8	8	10
Contra Costa County, California	5	5	5	6	6	6	6	6	7	7	7	9	8	9	9	11
Jefferson County, Kentucky	9	9	9	9	8	9	9	11	12	12	12	14	13	13	12	13
Richmond County, Virginia	8	7	7	8	9	9	9	10	10	10	10	12	11	10	10	9
Mercer County, New Jersey	4	5	5	5	6	6	6	8	8	8	8	8	8	8	7	8
Providence County, Rhode Island	4	5	5	7	7	7	7	8	8	7	8	9	9	9	9	11
Jackson County, Missouri	10	10	10	10	10	10	9	9	9	9	9	10	10	10	10	10
New Haven County, Connecticut	9	9	10	10	9	11	10	11	8	7	16	12	11	11	12	12
Norfolk County, Massachusetts	10	10	10	10	10	10	10	11	11	11	11	12	12	10	10	8
Maricopa County, Arizona	7	7	7	3	3	3	3	5	5	8	6	7	6	6	6	7
Monroe County, New York	6	6	6	8	8	8	8	8	8	9	8	9	9	9	8	8
Essex County, Massachusetts	5	5	6	6	6	6	6	7	7	7	7	6	6	7	7	8
Pinellas County, Florida	6	6	6	6	5	6	6	8	9	10	10	10	10	9	9	8
Hudson County, New Jersey	4	5	6	7	7	7	7	6	6	7	8	5	7	7	7	7
Jefferson County, Alabama	6	6	6	6	6	6	6	5	6	6	6	6	6	6	6	7
Henrico County, Virginia	5	5	5	5	5	5	5	5	5	5	5	5	5	6	6	8
Franklin County, Ohio	7	6	6	7	7	7	7	7	6	7	5	7	8	7	7	8
Cumberland County, Maine	5	6	6	6	6	6	6	6	6	6	6	7	7	8	7	7
Nassau County, New York	4	4	4	5	5	6	6	8	8	8	8	7	7	8	6	8
Baltimore County, Maryland	3	3	3	4	4	5	5	5	5	5	5	5	6	6	6	6
Arlington County, Virginia	8	8	8	10	9	9	9	9	11	10	10	11	11	10	10	10
Dane County, Wisconsin	7	7	7	7	8	8	8	8	8	8	8	8	8	8	8	8
Davidson County, Tennessee	5	5	5	6	6	6	8 7	8 7	9	8	8	8	8 7	8	8	8
Duval County, Florida	5	3 7	8	8	8	6	8	7	9 7	8 7	8 7	10	9	10	8 11	8 10
	1			8 4				3		5				5		
Pulaski County, Arkansas	4	4	4		6	4	4		5	5	5	5	5		5	8
Fairfax County, Virginia	3	3	3	2	3	4	4	4	4	•	4	4	5	4	4	6
Bexar County, Texas	3	3	3	4	4	4	4	5	5	5	5	5	5	5	5	5
Somerset County, New Jersey	5	5	5	5	4	4	4	4	4	4	4	4	4	4	4	5
Union County, New Jersey	2	2	2	2	3	3	3	5	5	4	6	5	5	5	5	7
Salt Lake County, Utah	5	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5
Wake County, North Carolina	4	4	4	6	5	5	5	5	5	5	5	5	5	4	4	5
Butler County, Ohio	3	3	3	8	8	8	8	8	8	8	8	8	8	9	9	8
Miami-Dade County, Florida	2	2	2	2	2	1	3	1	1	1	1	1	2	2	2	5
Lake County, Illinois	2	2	3	4	4	5	5	6	6	6	6	6	6	6	6	6
Arapahoe County, Colorado	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	7
Tulsa County, Oklahoma	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4
Essex County, New Jersey	6	6	5	4	4	4	4	5	5	5	5	6	6	6	5	5
Marion County, Indiana	8	8	8	6	6	6	6	6	6	5	5	5	4	4	4	4
Forsyth County, North Carolina	4	4	4	5	4	4	4	6	6	6	6	6	6	5	5	6
Wayne County, Michigan	4	4	4	4	4	4	4	5	4	4	4	5	5	5	5	5
Alameda County, California	3	2	2	2	2	2	3	3	3	3	3	3	3	3	3	5
Lancaster County, Pennsylvania	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	6
Ramsey County, Minnesota	5	5	5	6	5	6	6	6	6	6	6	8	7	7	7	7
Charlottesville County, Virginia	5	5	5	4	4	4	4	4	3	3	3	4	4	4	4	4
Ozaukee County, Wisconsin	5	5	5	5	5	5	5	4	4	4	4	4	4	4	4	5
Polk County, Iowa	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5
Cobb County, Georgia	5	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4
Cool County, Ocorgia	5	5	5	5	5	5	5	-	-	-	-	-	-	-	-	-

Albany County, New York	3	3	3	3	4	4	4	5	5	6	5	7	6	6	6	6	
Collier County, Florida	3	3	2	2	3	3	3	3	2	2	2	2	2	2	2	3	
Kent County, Michigan	4	4	4	4	5	4	5	5	5	5	4	5	4	4	4	4	
Rockingham County, New Hampshire	5	5	4	5	5	5	5	5	5	5	5	4	5	6	5	5	
Erie County, New York	5	5	5	5	5	5	5	6	6	5	5	5	5	5	5	5	
Plymouth County, Massachusetts	3	2	1	2	2	2	2	2	2	2	2	2	2	3	3	4	
Montgomery County, Ohio	5	5	5	5	5	4	4	5	5	5	5	5	5	5	5	5	
Merrimack County, New Hampshire	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	
Orange County, Florida	4	4	4	4	4	3	3	3	3	3	3	5	4	5	5	4	

Table A.3: Total investors by county and quarter 2007-2010

County	2007Q1	2007Q2	2007Q3	2007Q4	2008Q1	2008Q2	2008Q3	2008Q4	2009Q1	2009Q2	2009Q3	2009Q4	2010Q1	2010Q2	2010Q3	2010Q4
New York County, New York	612	603	602	676	660	657	635	628	613	603	596	569	569	560	562	645
Suffolk County, Massachusetts	154	152	154	164	159	163	162	160	154	158	159	156	154	152	150	160
Cook County, Illinois	114	117	114	128	132	130	125	137	129	134	130	136	132	133	132	137
Fairfield County, Connecticut	120	116	115	130	132	131	129	127	129	122	123	118	114	115	114	120
San Francisco County, California	89	87	89	97	97	98	96	95	92	92	93	97	98	100	100	106
Los Angeles County, California	100	103	99	110	110	109	110	108	101	94	91	91	92	88	88	98
Harris County, Texas	36	36	38	44	42	42	40	41	41	41	41	39	41	39	40	41
Dallas County, Texas	40	40	40	44	44	45	46	44	42	43	44	38	37	37	38	41
Hennepin County, Minnesota	39	38	39	43	43	43	43	43	43	42	41	39	39	39	40	39
King County, Washington	25	25	24	28	28	28	27	32	31	29	29	30	30	31	29	32
Montgomery County, Pennsylvania	35	36	34	34	33	32	34	33	33	32	31	31	30	30	28	30
San Mateo County, California	26	26	26	27	27	26	28	25	23	21	22	22	23	24	23	25
Westchester County, New York	28	28	29	32	31	31	29	28	27	30	28	27	30	29	30	32
San Diego County, California	27	27	25	28	28	29	30	27	26	26	25	26	26	25	25	27
Fulton County, Georgia	19	20	20	24	22	25	24	26	26	27	26	28	28	28	28	29
Middlesex County, Massachusetts	19	20	20	25	27	24	26	23	22	22	21	23	23	23	23	25
Hamilton County, Ohio	23	21	22	24	24	24	25	24	24	23	23	23	25	24	24	24
Milwaukee County, Wisconsin	21	23	24	23	23	23	24	25	26	25	25	26	25	25	25	25
St. Louis County, Missouri	16	17	17	20	20	20	20	20	19	21	20	23	23	23	22	28
Montgomery County, Maryland	21	20	21	21	24	22	22	23	23	24	24	23	25	23	21	22
Denver County, Colorado	19	19	19	19	19	19	19	19	19	20	20	22	21	22	21	22
Santa Clara County, California	17	17	17	19	17	18	17	19	17	17	17	17	15	15	16	18
Baltimore County, Maryland	17	17	17	23	23	23	22	21	21	20	21	15	26	14	20	21
Cuyahoga County, Ohio	15	14	15	16	15	13	14	13	13	12	13	14	16	15	16	17
Orange County, California	18	18	17	20	18	19	17	17	16	17	18	17	17	16	15	21
Marin County, California	20	20	19	19	19	18	20	19	18	17	15	18	16	16	16	19
Chester County, Pennsylvania	24	24	23	25	24	23	23	23	21	21	21	21	19	17	16	17
Oakland County, Michigan	17	17	17	18	18	20	19	22	22	22	21	21	22	22	21	23
Tarrant County, Texas	18	18	18	18	18	18	19	21	20	20	20	16	17	18	18	20
Allegheny County, Pennsylvania	15	15	13	14	13	12	14	13	13	12	14	13	15	15	15	15
New Castle County, Delaware	10	12	13	14	13	13	14	16	16	15	14	18	18	18	19	20
Philadelphia County, Pennsylvania	14	14	14	14	13	13	11	11	13	14	14	12	16	14	15	15
Mecklenburg County, North Carolina		14	14	16	16	15	16	15	16	15	14	16	16	16	16	18
Hartford County, Connecticut	16	16	16	16	17	17	17	15	15	14	14	13	13	13	13	12
DuPage County, Illinois	14	14	15	16	15	15	16	15	15	15	15	13	14	13	14	16
Delaware County, Pennsylvania	10	10	12	10	12	11	11	10	9	9	9	10	10	10	10	11
Shelby County, Tennessee	11	11	10	13	11	12	12	12	12	11	11	14	15	15	15	17
Travis County, Texas	9	9	9	13	13	12	14	12	12	12	12	12	13	13	14	14
Morris County, New Jersey	14	14	14	14	14	12	13	13	13	13	12	12	12	11	11	12
District of Columbia	18	19	18	19	18	18	18	16	15	16	14	14	13	12	12	15
Bergen County, New Jersey	12	11	9	13	13	13	13	7	9	9	9	11	11	11	11	13
Douglas County, Nebraska	12	11	11	11	11	10	12	12	10	11	11	12	12	12	12	12
Johnson County, Kansas	7 11	7	7 11	9	9	10 12	10	10	11 12	11 11	10 9	12 12	12	12	12	13 14
Palm Beach County, Florida	11	13	11	11	11	12	12	12	12	11	9	12	13	13	13	14

Multnomah County, Oregon	10	10	10	11	11	11	11	11	11	11	11	12	12	10	10	10	
Contra Costa County, California	10	11	10	10	10	10	9	11	10	9	8	8	9	10	10	10	
Jefferson County, Kentucky	13	13	13	13	13	12	12	13	11	10	10	11	9	9	9	11	
Richmond County, Virginia	10	10	10	10	10	10	10	10	8	8	8	8	8	8	8	8	
Mercer County, New Jersey	8	8	7	9	9	9	10	8	7	8	10	15	14	14	14	14	
Providence County, Rhode Island	11	11	11	11	11	11	10	10	10	10	10	10	11	10	10	10	
Jackson County, Missouri	10	10	10	10	10	10	10	10	10	10	10	9	10	10	10	10	
New Haven County, Connecticut	10	10	11	10	10	13	10	10	10	10	10	12	10	10	10	8	
Norfolk County, Massachusetts	8	8	8	7	6	6	6	5	5	4	5	5	5	5	5	5	
Maricopa County, Arizona	7	6	6	8	7	7	7	6	5	4	3	4	4	4	4	5	
Monroe County, New York	8	8	8	9	9	10	10	8	9	8	8	8	8	8	7	8	
Essex County, Massachusetts	8	8	8	10	9	9	8	8	9	10	10	10	10	11	10	10	
Pinellas County, Florida	9	9	9	9	9	9	8	8	8	7	7	7	7	7	9	9	
Hudson County, New Jersey	8	8	9	9	9	9	9	10	10	10	10	10	10	10	10	12	
Jefferson County, Alabama	7	6	6	6	5	7	7	7	7	9	9	8	8	8	8	9	
Henrico County, Virginia	8	8	8	9	8	9	9	10	11	11	11	10	10	10	10	10	
Franklin County, Ohio	8	8	7	8	7	7	8	7	9	9	9	9	9	8	8	9	
Cumberland County, Maine	8 7	8	8	10	10	10	10	10	9	9	9	9	9	9	8	10	
Nassau County, New York	10	8 10	8 10	9	9	9	10	10	11	9 11	10	8	9	9	9	8	
Baltimore County, Maryland	10 7	7	7	8	8	8	8	8	8	8	8	10	10	10	9	8 11	
Arlington County, Virginia	10	10	9	9	8	8	8 7	8 5	8 5	6	8 6	6	6	6	6	6	
Dane County, Wisconsin	8	8	8	9	9	9	9	9	9	8	8	7	7	9	8	7	
Davidson County, Tennessee	8 7	8 7	8 7	9	9	8	8	8	8	8	8	7	7	8	8	8	
Duval County, Florida	9	9	9	8	8	8 7	8 7	8 6	8 6	6	° 5	4	5	5	8 5	8 5	
Pulaski County, Arkansas	9 7	9 7	9 7	8 7	8 7	7	7	7	0 7	7	3 7	4 7	8	8	8	8	
Fairfax County, Virginia	6	7	7	9	9	9	8	8	7	7	7	6	8 6	° 6	8 6	8 5	
Bexar County, Texas	5	5	5	9	9 6	6	6	8 6	6	6	7	7	7	7	7	3 7	
Somerset County, New Jersey	6	6	6	6	6	6	6	7	7	7	7	8	8	8	8	8	
	6	6	6	9		8	8	7	7	7	7	° 5	° 5	° 5	o 5	8 6	
Union County, New Jersey Salt Lake County, Utah	6 4	6 5	6	9 4	8 4	8 4	8 4	4	4	4	4	5 4	5 4	5 4	5 4	6 5	
Wake County, North Carolina	4 5	5	6		4 7	4	4 7	4	4	4	4	4	4	4	4	8	
Butler County, Ohio	8	8	7	6 9	9	9	9	9	8	8 7	8 7	8 7	8	8	8 8	8 7	
	8 6	8 6	6	-	9 7	9 7		5	8 5	5		3	8 3	8 4	8 4	8	
Miami-Dade County, Florida	-			6			6	5 4			5						
Lake County, Illinois	6	6 7	6 7	6	4	4	4		4	3	3 8	4 8	4	4	5 8	7 9	
Arapahoe County, Colorado	7 4	4	4	8 5	8 5	8 5	8 5	8 6	8	8 8	8 8	-	8	8	8	8	
Tulsa County, Oklahoma	4	4	4	5	3	3	3	3	6 3	8 3	8 4	8 5	8 5	8 5	8 5	8 5	
Essex County, New Jersey	-	-						3 4			-				5 4	5 4	
Marion County, Indiana	3	3	3	4	4	4	4	•	4	4	4	4	4	4	-	•	
Forsyth County, North Carolina	6	6	6	5	5	5	5	5	5	5	5	5	5	5	5	6	
Wayne County, Michigan	5	6	6	6	6	6	5	5	4	4	4	4	5	4	4	5	
Alameda County, California	5	5	5	5	6	6	6	6	6	6	6	7	7	7	7	7	
Lancaster County, Pennsylvania	6	6	6	5	5	5	5	5	5	5	5	6	6	6	6	6	
Ramsey County, Minnesota	7	7	6	8	8	8	7	5	5	5	5	4	5	5	5	4	
Charlottesville County, Virginia	4	4	4	6	6	6	6	6	6	6	6	7	7	7	7	7	
Ozaukee County, Wisconsin	5	5	5	6	6	6	6	6	5	5	5	5	5	5	5	5	
Polk County, Iowa	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
Cobb County, Georgia	4	4	4	4	4	4	4	4	5	5	4	5	5	5	5	6	

Albany County, New York	5	5	5	6	6	6	5	7	6	6	6	6	6	6	6	5
Collier County, Florida	3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	4
Kent County, Michigan	3	3	3	3	3	3	3	3	3	3	3	3	4	4	4	4
Rockingham County, New Hampshire	5	5	5	6	6	5	4	4	4	4	4	3	3	3	3	4
Erie County, New York	5	5	5	5	5	5	5	5	5	5	5	5	4	4	4	4
Plymouth County, Massachusetts	4	4	4	4	4	4	4	5	7	5	6	5	6	6	6	8
Montgomery County, Ohio	5	5	5	4	4	4	4	5	4	4	4	4	4	4	4	4
Merrimack County, New Hampshire	3	4	5	3	3	4	4	4	4	4	4	4	4	4	4	4
Orange County, Florida	5	5	4	5	5	5	5	6	6	6	6	5	5	4	4	4

Table A.4: Tota	al investors by	county and	quarter 2011-2014

County	201101	201102	201103	201104	201201	2012:02	2012Q3	201204	201301	201302	201303	201304	201401	201402	201403	201404
New York County, New York	635	637	630	649	645	639	636	672	664	663	665	703	698	699	695	762
Suffolk County, Massachusetts	154	153	154	155	156	155	155	162	163	158	157	162	161	163	164	178
Cook County, Illinois	138	138	136	136	134	130	130	135	135	131	132	139	138	141	144	150
Fairfield County, Connecticut	119	120	122	132	133	136	134	128	127	122	123	135	136	135	133	140
San Francisco County, California	103	102	100	103	98	96	96	102	103	99	103	107	106	106	105	118
Los Angeles County, California	96	96	97	100	98	96	97	102	102	103	102	108	105	105	104	108
Harris County, Texas	41	40	41	45	45	45	44	48	48	50	51	51	52	53	52	58
Dallas County, Texas	39	42	44	48	47	48	47	50	52	51	52	58	58	58	56	59
Hennepin County, Minnesota	39	39	40	41	40	41	41	43	41	40	40	48	47	47	46	53
King County, Washington	32	35	34	38	38	40	40	43	44	43	43	42	42	43	44	47
Montgomery County, Pennsylvania	30	30	30	30	29	29	29	32	33	33	33	36	36	36	36	36
San Mateo County, California	27	26	28	29	29	29	29	32	32	31	31	36	36	38	38	47
Westchester County, New York	31	30	30	35	36	36	36	38	38	37	37	34	32	32	32	34
San Diego County, California	26	26	26	29	29	29	28	34	33	34	34	39	39	38	38	42
Fulton County, Georgia	30	30	30	32	32	31	31	31	31	31	30	35	36	37	37	43
Middlesex County, Massachusetts	20	25	25	28	28	29	29	34	32	31	29	33	34	34	34	38
Hamilton County, Ohio	24	24	24	24	24	23	24	24	24	25	26	29	29	29	29	30
Milwaukee County, Wisconsin	24	25	25	26	26	26	26	26	26	27	27	26	26	26	26	25
St. Louis County, Missouri	27	27	26	28	28	28	28	28	28	27	27	31	31	31	31	31
Montgomery County, Maryland	22	22	22	24	24	24	24	24	24	25	25	28	27	27	25	34
Denver County, Colorado	21	22	22	30	28	25	25	26	25	25	25	29	30	31	31	33
Santa Clara County, California	19	19	19	19	20	20	19	21	20	19	19	26	26	26	26	31
Baltimore County, Maryland	20	19	24	19	19	20	19	20	20	19	19	21	20	19	20	18
Cuyahoga County, Ohio	16	15	16	16	16	16	16	17	17	16	17	24	24	25	25	26
Orange County, California	22	22	20	20	22	19	20	21	20	20	20	25	25	25	25	29
Marin County, California	18	18	19	18	18	18	17	20	20	20	18	22	23	23	23	23
Chester County, Pennsylvania	17	15	15	16	15	14	15	17	17	18	17	18	17	16	17	20
Oakland County, Michigan	22	22	23	24	24	24	24	26	26	26	26	28	28	27	27	26
Tarrant County, Texas	20	19	17	22	22	22	22	18	16	14	14	14	14	14	15	16
Allegheny County, Pennsylvania	14	14	14	14	14	14	16	18	18	18	18	22	22	22	22	23
New Castle County, Delaware	19	19	20	20	20	20	20	27	27	26	26	23	21	23	19	20
Philadelphia County, Pennsylvania	13	14	15	18	18	18	18	17	17	18	18	20	20	21	21	21
Mecklenburg County, North Carolina	17	17	17	17	16	16	16	18	16	16	16	18	18	18	18	20
Hartford County, Connecticut	12	12	13	12	11	11	11	11	11	11	13	15	16	16	16	16
DuPage County, Illinois	16	18	18	17	17	17	17	20	20	19	20	23	23	23	23	24
Delaware County, Pennsylvania	11	11	11	13	13	13	14	17	18	19	19	21	21	21	20	21
Shelby County, Tennessee	17	17	17	17	17	18	17	17	16	16	15	18	18	19	18	19
Travis County, Texas	15	15	17	16	16	18	18	18	17	18	18	21	20	20	20	20
Morris County, New Jersey	12	12	13	13	13	12	12	11	11	11	12	15	17	17	17	17
District of Columbia	15	13	13	13	13	11	11	11	11	9	7	8	8	7	7	8
Bergen County, New Jersey	13	12	12	13	12	12	12	11	10	12	12	13	14	14	15	16
Douglas County, Nebraska	11	11	11	13	13	13	12	11	11	12	13	15	15	15	15	18
Johnson County, Kansas	13	13	13	17	16	17	17	17	17	17	18	20	20	20	20	23
Palm Beach County, Florida	14	14	15	16	15	15	17	20	21	19	19	19	18	18	16	16

	10	10	10										4.2		10	
Multnomah County, Oregon	10	10	10	11	11	11	11	12	11	12	12	12	13	13	13	16
Contra Costa County, California	10	10	9	10	11	12	14	13	13	14	15	16	17	16	16	18
Jefferson County, Kentucky	10	10	10	11	9	9	10	11	10	11	11	11	10	10	10	11
Richmond County, Virginia	8	8	9	9	8	7	8	7	7	8	8	11	12	12	12	14
Mercer County, New Jersey	14	14	14	12	13	13	13	13	14	15	15	16	16	14	14	14
Providence County, Rhode Island	9	9	9	10	10	10	10	11	11	11	11	14	14	14	14	14
Jackson County, Missouri	10	9	9	9	9	8	8	8	8	8	8	9	9	10	10	10
New Haven County, Connecticut	7	7	6	7	7	7	6	6	6	7	6	6	6	6	6	7
Norfolk County, Massachusetts	5	5	6	7	7	7	7	9	9	8	9	11	11	11	11	13
Maricopa County, Arizona	5	6	5	7	7	7	7	7	8	9	9	13	11	11	11	15
Monroe County, New York	8	8	8	8	8	8	8	8	9	10	10	10	9	9	10	11
		8 10								9	9	9	9	9	9	
Essex County, Massachusetts	10		10	11	11	11	11	11	11							11
Pinellas County, Florida	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Hudson County, New Jersey	12	12	12	11	11	11	11	11	11	10	11	12	12	11	10	9
Jefferson County, Alabama	9	8	10	10	10	10	10	12	12	10	10	12	12	12	12	11
Henrico County, Virginia	10	10	10	11	11	11	10	12	12	12	11	12	12	12	12	10
Franklin County, Ohio	9	9	9	9	9	9	9	9	9	9	8	8	7	7	7	9
Cumberland County, Maine	10	11	11	11	12	10	10	10	10	10	10	9	9	9	9	9
Nassau County, New York	9	8	8	9	10	10	10	11	11	11	11	11	11	11	11	11
Baltimore County, Maryland	11	11	11	11	11	10	10	10	9	10	10	12	13	13	11	12
Arlington County, Virginia	6	5	6	7	7	6	6	8	7	7	7	8	7	7	7	7
Dane County, Wisconsin	7	7	7	6	6	6	6	7	7	8	9	8	7	7	7	9
Davidson County, Tennessee	8	7	7	8	7	8	7	8	7	9	9	10	10	10	9	10
Duval County, Florida	5	5	5	7	7	7	7	7	7	7	7	8	9	9	9	9
	8	8		8	7	8	8	9	9	9	9		11	-	-	
Pulaski County, Arkansas			8					-				11		11	11	11
Fairfax County, Virginia	5	5	5	5	5	5	5	6	8	8	8	11	11	11	12	14
Bexar County, Texas	6	6	6	8	7	7	7	8	8	8	9	12	11	11	11	11
Somerset County, New Jersey	8	8	9	10	10	10	10	12	11	11	11	11	10	10	10	9
Union County, New Jersey	6	6	6	6	7	8	8	10	10	10	10	12	12	12	12	12
Salt Lake County, Utah	5	5	5	5	5	6	6	8	8	9	9	9	8	8	8	8
Wake County, North Carolina	9	9	9	10	10	9	9	8	8	8	8	8	8	8	8	8
Butler County, Ohio	7	7	8	8	8	8	8	8	8	7	7	7	7	7	7	7
Miami-Dade County, Florida	8	8	8	10	10	10	10	10	10	10	10	9	9	9	9	10
Lake County, Illinois	7	6	8	8	7	7	7	9	9	8	8	8	8	8	8	11
Arapahoe County, Colorado	9	8	8	4	4	4	4	4	4	5	4	4	4	3	3	3
Tulsa County, Oklahoma	7	7	7	8	8	8	8	8	8	8	8	8	8	8	8	9
Essex County, New Jersey	6	6	6	5	5	5	5	6	5	5	5	5	5	6	6	9
Marion County, Indiana	4	4	4	4	5	5	4	4	4	4	4	6	6	6	6	8
Forsyth County, North Carolina	6	6	6	6	6	6	6	6	6	6	6	5	5	5	5	6
Wayne County, Michigan	5	5	3	4	4	3	4	4	4	4	4	7	7	7	7	7
	5	6	6	6	4 6	6	6	5	4 5	5	4 5	7	7	8	8	9
Alameda County, California				°,												
Lancaster County, Pennsylvania	6	6	6	6	6	6	6	6	6	6	6	7	8	8	8	8
Ramsey County, Minnesota	4	4	4	5	5	5	5	5	4	4	4	4	4	4	4	4
Charlottesville County, Virginia	7	7	6	5	4	4	4	5	5	5	5	7	7	7	7	7
Ozaukee County, Wisconsin	5	5	5	5	5	5	6	7	7	6	6	5	5	5	5	5
Polk County, Iowa	5	5	5	5	6	6	6	6	6	7	7	7	7	7	6	6
Cobb County, Georgia	5	5	5	5	5	5	5	6	5	7	7	6	6	7	6	7

Albany County, New York	5	5	5	5	5	5	5	6	7	6	6	6	6	6	6	7	
Collier County, Florida	4	4	4	7	7	7	7	9	7	8	8	9	8	8	8	10	
Kent County, Michigan	4	4	4	5	5	5	5	5	6	6	6	7	7	7	7	7	
Rockingham County, New Hampshire	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	6	
Erie County, New York	4	5	5	5	4	4	4	4	4	4	4	4	4	4	4	5	
Plymouth County, Massachusetts	8	8	8	8	7	8	7	8	5	5	5	5	6	6	6	6	
Montgomery County, Ohio	4	4	4	3	3	3	3	4	3	4	4	6	6	6	6	6	
Merrimack County, New Hampshire	4	4	4	4	5	5	5	5	5	5	5	5	6	5	5	6	
Orange County, Florida	5	5	4	3	3	3	3	3	3	3	3	5	5	6	6	6	

County	2015Q1	2015Q2	2015Q3	2015Q4	2016Q1	20126Q2	2016Q3	2016Q4	2017Q1	2017Q2	2017Q3	2017Q4	2018Q1
New York County, New York	760	757	752	783	760	755	762	782	764	755	751	783	769
Suffolk County, Massachusetts	178	179	179	188	186	182	186	188	184	184	183	190	186
Cook County, Illinois	151	151	152	155	152	157	156	169	169	167	165	171	172
Fairfield County, Connecticut	141	140	143	152	149	148	148	147	145	142	142	145	141
San Francisco County, California	114	116	114	119	115	117	114	131	129	128	127	136	138
Los Angeles County, California	109	108	109	117	117	117	117	121	119	117	117	122	119
Harris County, Texas	58	57	56	57	57	58	60	63	63	65	64	66	61
Dallas County, Texas	59	60	57	58	56	56	57	63	65	67	63	69	68
Hennepin County, Minnesota	53	53	53	53	54	52	51	53	53	54	53	52	55
King County, Washington	48	48	48	55	53	54	52	54	52	50	50	52	52
Montgomery County, Pennsylvania	35	36	35	40	35	36	36	39	39	40	38	40	42
San Mateo County, California	44	44	43	45	43	44	43	42	43	42	41	48	52
Westchester County, New York	34	34	32	32	32	31	30	32	31	31	31	37	37
San Diego County, California	43	43	42	46	43	42	42	44	42	41	41	50	49
Fulton County, Georgia	44	44	44	45	45	46	45	48	48	48	47	53	53
Middlesex County, Massachusetts	36	35	32	35	34	35	32	37	34	35	35	41	42
Hamilton County, Ohio	30	29	29	29	30	29	29	29	29	29	29	29	29
Milwaukee County, Wisconsin	26	26	26	27	27	26	26	24	24	24	25	25	25
St. Louis County, Missouri	31	29	30	33	32	32	32	33	33	35	35	35	35
Montgomery County, Maryland	34	35	35	34	34	34	34	34	33	33	33	37	36
Denver County, Colorado	33	33	32	31	28	28	27	28	29	29	30	34	34
Santa Clara County, California	29	28	29	30	33	32	32	29	30	30	30	36	31
Baltimore County, Maryland	18	18	18	19	18	18	18	20	20	19	19	19	17
Cuyahoga County, Ohio	26	26	26	26	26	26	27	24	23	23	23	24	23
Orange County, California	28	28	28	28	27	28	29	31	31	32	32	39	38
Marin County, California	24	24	23	24	25	25	26	26	27	27	27	33	33
Chester County, Pennsylvania	23	23	23	23	23	23	23	25	24	23	22	21	21
Oakland County, Michigan	28	28	28	28	29	28	28	26	25	25	25	25	25
Tarrant County, Texas	16	16	15	15	15	15	15	17	19	18	18	22	22
Allegheny County, Pennsylvania	24	24	24	25	24	23	23	24	24	24	23	29	28
New Castle County, Delaware	20	20	20	20	19	20	19	19	18	17	17	18	18
Philadelphia County, Pennsylvania	20	19	19	17	17	17	17	21	21	21	21	23	22
Mecklenburg County, North Carolina		21	20	20	20	20	20	21	21	22	22	24	22
Hartford County, Connecticut	15	15	15	16	16	16	16	21	21	21	21	20	21
DuPage County, Illinois	25	25	25	24	24	24	24	24	23	22	21	24	24
Delaware County, Pennsylvania	22	22	22	21	21	21	21	24	24	24	25	24	26
Shelby County, Tennessee	20	20	20	20	21	19	20	19	19	19	19	21	19
Travis County, Texas	21	21	21	23	23	23	23	24	24	24	24	26	27
Morris County, New Jersey	18	18	18	17	16	16	16	20	20	19	18	20	20
District of Columbia	7	7	7	8	8	8	9	10	9	9	9	11	10
Bergen County, New Jersey	16	16	16	16	17	17	17	16	17	18	18	20	20
Douglas County, Nebraska	19	19	17	19	18	19	19	18	19	19	19	22	21
Johnson County, Kansas	24	23	24	23	22	22	23	21	23	24	24	30	29
Palm Beach County, Florida	17	17	17	17	17	18	19	20	20	20	18	20	20

Table A.5: Total investors by county and quarter 2015-2018

Multnomah County, Oregon	16	15	16	16	16	16	15	15	15	15	15	16	16
Contra Costa County, California	10	19	10	16 21	10	10	19	21	22	22	22	16 25	16 25
Jefferson County, Kentucky	19	19	19	12	19	19	19	13	13	13	13	13	13
Richmond County, Virginia													
,	14	14	15	16	16	17	17	18	18	18	17	19	19
Mercer County, New Jersey	14	13	13	15	15	16	16	14	12	12	11	12	13
Providence County, Rhode Island	14	14	14	15	15	14	15	16	16	16	16	15	15
Jackson County, Missouri	10	11	11	11	11	11	10	11	10	10	10	10	11
New Haven County, Connecticut	6	7	7	7	7	7	7	8	9	9	9	9	10
Norfolk County, Massachusetts	13	13	12	14	14	14	12	10	9	10	9	14	13
Maricopa County, Arizona	14	14	15	18	18	18	18	21	22	22	23	26	27
Monroe County, New York	11	11	11	13	13	13	13	13	13	13	13	14	14
Essex County, Massachusetts	11	11	11	11	12	12	11	11	11	13	13	15	14
Pinellas County, Florida	9	9	9	9	9	10	10	11	12	12	13	16	15
Hudson County, New Jersey	9	10	10	11	11	11	10	10	11	11	10	10	9
Jefferson County, Alabama	11	10	10	10	10	10	10	12	12	12	11	14	13
Henrico County, Virginia	10	10	9	11	11	11	11	11	11	11	11	12	12
Franklin County, Ohio	9	9	9	8	9	8	8	9	9	9	9	14	14
Cumberland County, Maine	9	9	9	9	9	9	9	9	9	8	9	12	12
Nassau County, New York	11	10	11	10	10	10	10	9	9	9	9	11	11
Baltimore County, Maryland	12	12	12	12	13	12	12	13	14	14	13	13	13
Arlington County, Virginia	7	7	7	8	8	8	8	8	8	8	8	8	8
Dane County, Wisconsin	8	8	8	8	8	8	9	9	9	9	9	10	10
Davidson County, Tennessee	10	9	9	9	9	9	10	10	11	11	11	12	11
Duval County, Florida	9	9	9	9	9	9	9	11	11	11	11	12	12
Pulaski County, Arkansas	11	11	11	11	11	11	11	11	11	11	11	12	12
Fairfax County, Virginia	13	13	13	12	12	13	13	14	14	14	14	17	17
Bexar County, Texas	11	11	11	12	12	12	12	13	13	13	13	14	14
Somerset County, New Jersey	9	8	8	8	7	7	7	8	9	8	8	9	9
Union County, New Jersey	12	13	12	12	13	12	13	15	14	15	15	16	16
Salt Lake County, Utah	8	8	8	9	9	9	9	10	14	13	13	13	13
Wake County, North Carolina	8	8	8	9	9	9	10	10	10	11	10	13	13
5,	8 7	8 7	8 7	9 7	9 7	9 7	7	7	7		7		14 7
Butler County, Ohio										7		7	
Miami-Dade County, Florida	10	10	10	13	12	12	12	19	19	19	21	23	24
Lake County, Illinois	11	11	11	13	13	13	13	13	14	15	13	14	15
Arapahoe County, Colorado	4	4	5	6	6	7	7	8	8	8	8	9	9
Tulsa County, Oklahoma	9	9	9	10	10	10	10	10	10	10	10	11	11
Essex County, New Jersey	8	8	9	8	8	8	8	10	10	11	11	12	11
Marion County, Indiana	8	8	8	8	8	8	10	9	9	9	10	12	12
Forsyth County, North Carolina	6	6	6	6	6	6	6	6	6	6	6	6	6
Wayne County, Michigan	8	8	8	10	10	10	10	10	9	10	10	10	10
Alameda County, California	9	9	9	9	9	9	9	9	9	8	8	10	11
Lancaster County, Pennsylvania	9	8	7	7	7	7	7	7	7	7	7	7	7
Ramsey County, Minnesota	4	4	5	5	5	5	5	5	5	5	5	6	6
Charlottesville County, Virginia	7	7	7	8	8	8	8	8	7	7	8	8	8
Ozaukee County, Wisconsin	5	6	6	6	6	6	6	6	6	5	5	6	6
Polk County, Iowa	6	6	6	6	6	6	6	7	7	7	7	8	8
Cobb County, Georgia	6	6	6	7	7	7	7	8	8	8	8	10	10

Albany County, New York	7	7	8	7	7	7	7	7	7	7	7	7	7
Collier County, Florida	10	10	10	11	11	11	11	11	11	11	11	13	13
Kent County, Michigan	6	6	7	7	7	7	6	6	6	6	6	6	5
Rockingham County, New Hampshire	6	6	6	6	6	6	5	5	5	5	6	7	7
Erie County, New York	5	5	5	5	5	5	5	5	5	5	4	7	7
Plymouth County, Massachusetts	7	7	7	7	7	7	8	8	8	8	8	8	8
Montgomery County, Ohio	6	6	6	6	6	5	5	5	5	5	5	5	5
Merrimack County, New Hampshire	6	6	6	6	5	6	6	6	6	6	6	6	5
Orange County, Florida	7	5	4	5	5	5	5	5	5	5	5	5	6

Appendix B

Gravity Model

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.65***	-7.40***	-6.31***	-29.51***	-6.10***	-28.74***
	(0.10)	(0.10)	(0.10)	(0.18)	(0.10)	(0.18)
dist_log	-0.10^{***}	-0.14***	-0.24***	-0.33***	-0.28***	-0.34***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.23***	0.22***	0.17***	0.15***	0.16***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.20***	0.20***	0.15***	0.12***	0.15***	0.12***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		1.88***			1.82***	1.48***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		0.96***			0.71***	0.19***
-		(0.04)			(0.03)	(0.04)
Origin_Population			0.00^{***}		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
-			(0.00)		(0.00)	
Origin_Population_log				2.43***		2.31***
				(0.02)		(0.02)
Destination_Population_log				2.40***		2.38***
				(0.02)		(0.02)
R ²	0.24	0.25	0.33	0.31	0.34	0.32
Adj. R ²	0.24	0.25	0.33	0.31	0.34	0.32
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.18	5.15	4.86	4.94	4.82	4.92

Table B.1: Gravity model of trade applied to institutional investment for the third quarter of 2013

Table B.2: Gravity model of trade applied to institutional investment for the fourth quarter of 2013

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.49***	-7.25***	-6.13***	-29.90***	-5.93***	-29.09***
-	(0.10)	(0.10)	(0.10)	(0.18)	(0.10)	(0.18)
dist_log	-0.14***	-0.17^{***}	-0.28***	-0.37***	-0.31***	-0.38***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.23***	0.22***	0.18***	0.15***	0.16***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.21***	0.20***	0.16***	0.12***	0.15***	0.12***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		1.92***			1.85***	1.49***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.02***			0.76***	0.22***
_		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.47***		2.36***
				(0.02)		(0.02)
Destination_Population_log				2.48***		2.45***
				(0.02)		(0.02)
R ²	0.24	0.25	0.33	0.31	0.34	0.32
Adj. R ²	0.24	0.25	0.33	0.31	0.34	0.32
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.23	5.19	4.90	4.97	4.86	4.96

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.47***	-7.22***	-6.13***	-29.99***	-5.92***	-29.16***
(intercept)	(0.10)	(0.10)	(0.10)	(0.18)	(0.10)	(0.18)
dist_log	-0.15^{***}	-0.19^{***}	-0.29^{***}	-0.37***	-0.32^{***}	-0.39^{***}
C C	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.24***	0.22***	0.18***	0.15***	0.16***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.21***	0.20***	0.16***	0.12***	0.16***	0.12***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		1.94***			1.88***	1.52***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.05***			0.79***	0.25***
-		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
-			(0.00)		(0.00)	
Origin_Population_log				2.48***		2.36***
				(0.02)		(0.02)
Destination_Population_log				2.50***		2.47***
				(0.02)		(0.02)
\mathbb{R}^2	0.24	0.26	0.34	0.31	0.34	0.32
Adj. R ²	0.24	0.26	0.34	0.31	0.34	0.32
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.25	5.21	4.92	5.00	4.89	4.98

Table B.3: Gravity model of trade applied to institutional investment for the first quarter of 2014

 $^{***}p < 0.001, \, ^{**}p < 0.01, \, ^{*}p < 0.05$

Table B.4: Gravity model of trade applied to institutional investment for the second quarter of 2014

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.50***	-7.25***	-6.14***	-30.26***	-5.93***	-29.42***
_	(0.11)	(0.10)	(0.10)	(0.18)	(0.10)	(0.18)
dist_log	-0.15***	-0.19***	-0.29***	-0.38***	-0.33***	-0.40^{***}
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.24***	0.22***	0.18***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.21***	0.21***	0.16***	0.12***	0.16***	0.12***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		1.90***			1.83***	1.48***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.09***			0.83***	0.29***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00^{***}		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.50***		2.38***
				(0.02)		(0.02)
Destination_Population_log				2.54***		2.51***
				(0.02)		(0.02)
R ²	0.25	0.26	0.34	0.32	0.35	0.32
Adj. R ²	0.25	0.26	0.34	0.32	0.35	0.32
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.28	5.24	4.95	5.02	4.92	5.01

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.48***	-7.23***	-6.13***	-29.73***	-5.93***	-28.93***
	(0.11)	(0.10)	(0.10)	(0.18)	(0.10)	(0.18)
dist_log	-0.15***	-0.18***	-0.29***	-0.38***	-0.32***	-0.39***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.24***	0.22***	0.18***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.21***	0.21***	0.16***	0.13***	0.16***	0.12***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		1.84***			1.78***	1.44***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.06***			0.81***	0.28***
_		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.42***		2.31***
				(0.02)		(0.02)
Destination_Population_log				2.51***		2.48***
				(0.02)		(0.02)
\mathbb{R}^2	0.25	0.26	0.34	0.32	0.35	0.32
Adj. R ²	0.25	0.26	0.34	0.32	0.35	0.32
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.26	5.22	4.94	5.01	4.91	4.99
*** n < 0.001 ** n < 0.01 * n < 0.05						

Table B.5: Gravity model of trade applied to institutional investment for the third quarter of 2014

Table B.6: Gravity model of trade applied to institutional investment for the fourth quarter of 2014

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.38***	-7.14***	-6.03***	-30.82***	-5.83***	-29.92***
-	(0.11)	(0.11)	(0.10)	(0.18)	(0.10)	(0.19)
dist_log	-0.18***	-0.22***	-0.32***	-0.41***	-0.35***	-0.42***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.24***	0.22***	0.18***	0.15***	0.16***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.22***	0.21***	0.17***	0.13***	0.16***	0.13***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		1.97***			1.88***	1.50***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.13***			0.87***	0.30***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.51***		2.38***
				(0.02)		(0.02)
Destination_Population_log				2.66***		2.63***
				(0.02)		(0.02)
R^2	0.24	0.26	0.34	0.32	0.35	0.32
Adj. R ²	0.24	0.26	0.34	0.32	0.35	0.32
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.35	5.30	5.01	5.07	4.97	5.06

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.35***	-7.12***	-5.99***	-30.93***	-5.80***	-30.10***
	(0.11)	(0.11)	(0.10)	(0.18)	(0.10)	(0.19)
dist_log	-0.18***	-0.22***	-0.32***	-0.41^{***}	-0.35***	-0.43***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.23***	0.22***	0.18***	0.15***	0.16***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.22***	0.21***	0.16***	0.12***	0.16***	0.12***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		1.85***			1.74***	1.36***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.11***			0.84***	0.27***
-		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.51***		2.39***
				(0.02)		(0.02)
Destination_Population_log				2.69***		2.66***
				(0.02)		(0.02)
R^2	0.24	0.25	0.34	0.32	0.34	0.32
Adj. R ²	0.24	0.25	0.34	0.32	0.34	0.32
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.35	5.31	5.01	5.08	4.98	5.06

Table B.7: Gravity model of trade applied to institutional investment for the first quarter of 2015

Table B.8: Gravity model of trade applied to institutional investment for the second quarter of 2015

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.55***	-7.31***	-6.15***	-31.62***	-5.95***	-30.72***
	(0.11)	(0.11)	(0.10)	(0.18)	(0.10)	(0.19)
dist_log	-0.17^{***}	-0.21***	-0.31***	-0.40^{***}	-0.34***	-0.42^{***}
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.24***	0.22***	0.18***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.22***	0.22***	0.17***	0.13***	0.16***	0.13***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		1.97***			1.86***	1.46***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.15***			0.87***	0.28***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.57***		2.44***
				(0.02)		(0.02)
Destination_Population_log				2.74***		2.71***
				(0.02)		(0.02)
	0.24	0.26	0.34	0.32	0.35	0.33
Adj. R ²	0.24	0.26	0.34	0.32	0.35	0.33
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.38	5.34	5.04	5.10	5.00	5.08

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.64***	-7.39***	-6.22***	-31.74***	-6.01***	-30.79***
	(0.11)	(0.11)	(0.10)	(0.18)	(0.10)	(0.19)
dist_log	-0.16***	-0.20^{***}	-0.30***	-0.40^{***}	-0.34***	-0.41^{***}
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.24***	0.22***	0.18***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.22***	0.22***	0.17***	0.13***	0.16***	0.13***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.02***			1.91***	1.52***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.20***			0.92***	0.32***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.59***		2.45***
				(0.02)		(0.02)
Destination_Population_log				2.75***		2.71***
				(0.02)		(0.02)
	0.24	0.26	0.34	0.32	0.35	0.33
Adj. R ²	0.24	0.26	0.34	0.32	0.35	0.33
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.38	5.33	5.03	5.09	4.99	5.07
*** 0.001 ** 0.01 * 0.07						

Table B.9: Gravity model of trade applied to institutional investment for the third quarter of 2015

Table B.10: Gravity model of trade applied to institutional investment for the fourth quarter of 2015

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.57***	-7.30***	-6.12***	-32.13***	-5.90***	-31.20***
	(0.11)	(0.11)	(0.10)	(0.18)	(0.10)	(0.19)
dist_log	-0.18***	-0.22***	-0.32***	-0.42^{***}	-0.36***	-0.44^{***}
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.24***	0.22***	0.18***	0.15***	0.16***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.23***	0.22***	0.17***	0.13***	0.17***	0.13***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.07***			1.97***	1.58***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.20***			0.91***	0.30***
_		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
_			(0.00)		(0.00)	
Origin_Population_log				2.63***		2.50***
				(0.02)		(0.02)
Destination_Population_log				2.81***		2.77***
				(0.02)		(0.02)
R^2	0.24	0.26	0.34	0.32	0.35	0.33
Adj. R ²	0.24	0.26	0.34	0.32	0.35	0.33
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.42	5.37	5.06	5.12	5.02	5.10

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.36***	-7.08***	-5.92***	-31.88***	-5.69***	-31.01***
	(0.11)	(0.11)	(0.10)	(0.19)	(0.10)	(0.19)
dist_log	-0.21***	-0.25***	-0.35***	-0.45***	-0.39***	-0.46^{***}
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.24***	0.22***	0.18***	0.15***	0.16***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.23***	0.22***	0.17***	0.13***	0.17***	0.13***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.02***			1.95***	1.56***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.15***			0.87***	0.29***
_		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.66***		2.54***
				(0.02)		(0.02)
Destination_Population_log				2.77***		2.74***
				(0.02)		(0.02)
	0.24	0.26	0.34	0.32	0.35	0.33
Adj. R ²	0.24	0.26	0.34	0.32	0.35	0.33
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.43	5.39	5.07	5.14	5.03	5.12
*** = < 0.001 ** = < 0.01 * = < 0.05						

Table B.11: Gravity model of trade applied to institutional investment for the first quarter of 2016

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.54***	-7.25***	-6.10***	-32.09***	-5.86***	-31.12***
	(0.11)	(0.11)	(0.10)	(0.19)	(0.10)	(0.19)
dist_log	-0.19***	-0.24***	-0.34***	-0.44^{***}	-0.38***	-0.46***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.24***	0.23***	0.19***	0.15***	0.17***	0.15***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.23***	0.22***	0.18***	0.13***	0.17***	0.13***
C	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital	. ,	2.21***	. ,		2.10***	1.70***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.13***			0.86***	0.28***
L L		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
1			(0.00)		(0.00)	
Origin_Population_log			· · · ·	2.65***	· · · ·	2.51***
				(0.02)		(0.02)
Destination_Population_log				2.79***		2.75***
1				(0.02)		(0.02)
R ²	0.25	0.26	0.34	0.33	0.35	0.33
Adj. R ²	0.25	0.26	0.34	0.33	0.35	0.33
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.47	5.42	5.12	5.18	5.08	5.15

Table B.12: Gravity model of trade applied to institutional investment for the second quarter of 2016

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.56***	-7.26***	-6.14***	-32.41***	-5.89***	-31.43***
	(0.11)	(0.11)	(0.10)	(0.19)	(0.10)	(0.19)
dist_log	-0.20***	-0.24***	-0.34***	-0.44^{***}	-0.38***	-0.46***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.25***	0.23***	0.19***	0.16***	0.17***	0.14^{***}
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.23***	0.23***	0.18***	0.13***	0.17***	0.13***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.25***			2.18***	1.78***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.18***			0.89***	0.30***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.71***		2.57***
				(0.02)		(0.02)
Destination_Population_log				2.79***		2.75***
				(0.02)		(0.02)
\mathbb{R}^2	0.25	0.26	0.34	0.33	0.36	0.34
Adj. R ²	0.25	0.26	0.34	0.33	0.36	0.34
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.52	5.46	5.16	5.22	5.11	5.19

Table B.13: Gravity model of trade applied to institutional investment for the third quarter of 2016

 $^{***}p < 0.001, \, ^{**}p < 0.01, \, ^{*}p < 0.05$

Table B.14: Gravity model of trade applied to institutional investment for the fourth quarter of 2016

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.48***	-7.17***	-6.04***	-33.28***	-5.78***	-32.25***
	(0.11)	(0.11)	(0.10)	(0.19)	(0.10)	(0.19)
dist_log	-0.24***	-0.28***	-0.37***	-0.47^{***}	-0.41***	-0.49***
	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.25***	0.23***	0.19***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.24***	0.23***	0.18***	0.14***	0.18***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.41***			2.34***	1.95***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.20***			0.91***	0.30***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.77***		2.62***
				(0.03)		(0.03)
Destination_Population_log				2.93***		2.89***
				(0.02)		(0.02)
	0.25	0.26	0.34	0.33	0.36	0.34
Adj. R ²	0.25	0.26	0.34	0.33	0.36	0.34
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.61	5.55	5.24	5.30	5.18	5.26

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.50***	-7.19***	-6.06***	-33.03***	-5.80***	-31.99***
	(0.11)	(0.11)	(0.10)	(0.19)	(0.10)	(0.19)
dist_log	-0.23***	-0.27***	-0.37***	-0.46^{***}	-0.40^{***}	-0.48^{***}
	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.25***	0.23***	0.19***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.24***	0.23***	0.18***	0.13***	0.18***	0.13***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.38***			2.31***	1.93***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.24***			0.94***	0.33***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.68***		2.54***
				(0.03)		(0.03)
Destination_Population_log				2.95***		2.91***
				(0.02)		(0.02)
R^2	0.25	0.26	0.34	0.33	0.36	0.34
Adj. R ²	0.25	0.26	0.34	0.33	0.36	0.34
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.61	5.55	5.23	5.30	5.18	5.27

Table B.15: Gravity model of trade applied to institutional investment for the first quarter of 2017

 $^{***}p < 0.001, \, ^{**}p < 0.01, \, ^{*}p < 0.05$

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.62***	-7.30***	-6.17***	-33.34***	-5.90***	-32.29***
	(0.11)	(0.11)	(0.10)	(0.19)	(0.10)	(0.19)
dist_log	-0.21***	-0.25***	-0.35***	-0.45***	-0.39***	-0.46***
	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.25***	0.23***	0.19***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.24***	0.23***	0.18***	0.13***	0.17***	0.13***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.44***			2.38***	1.99***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.24***			0.94***	0.31***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00^{***}	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.73***		2.58***
				(0.03)		(0.03)
Destination_Population_log				2.95***		2.91***
				(0.02)		(0.02)
R^2	0.25	0.26	0.34	0.33	0.36	0.34
Adj. R ²	0.25	0.26	0.34	0.33	0.36	0.34
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.61	5.55	5.24	5.30	5.18	5.26

Table B.16: Gravity model of trade applied to institutional investment for the second quarter of 2017

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.50***	-7.17***	-6.03***	-33.19***	-5.75***	-32.14***
	(0.11)	(0.11)	(0.11)	(0.19)	(0.10)	(0.19)
dist_log	-0.22***	-0.27***	-0.37***	-0.47^{***}	-0.41***	-0.49^{***}
	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.25***	0.23***	0.19***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.24***	0.23***	0.18***	0.14***	0.18***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.51***			2.45***	2.06***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.19***			0.89***	0.28***
_		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.79***		2.64***
				(0.03)		(0.03)
Destination_Population_log				2.90***		2.86***
				(0.02)		(0.02)
R^2	0.25	0.26	0.34	0.33	0.36	0.34
Adj. R ²	0.25	0.26	0.34	0.33	0.36	0.34
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.62	5.56	5.25	5.31	5.20	5.27
**** 0.001 ** 0.01 * 0.07						

Table B.17: Gravity model of trade applied to institutional investment for the third quarter of 2017

Table B.18: Gravity model of trade applied to institutional investment for the fourth quarter of 2017

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.69***	-7.36***	-6.15***	-35.00***	-5.87***	-33.88***
	(0.11)	(0.11)	(0.11)	(0.19)	(0.11)	(0.19)
dist_log	-0.24***	-0.29***	-0.39***	-0.49^{***}	-0.43***	-0.51^{***}
	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.25***	0.23***	0.19***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.25***	0.24***	0.19***	0.14***	0.18***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.60***			2.49***	2.05***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.23***			0.92***	0.28***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.99***		2.82***
				(0.03)		(0.03)
Destination_Population_log				3.05***		3.02***
				(0.02)		(0.03)
R^2	0.25	0.26	0.35	0.34	0.36	0.35
Adj. R ²	0.25	0.26	0.35	0.34	0.36	0.35
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.73	5.67	5.33	5.38	5.27	5.35

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.59***	-7.26***	-6.05***	-34.49***	-5.78***	-33.32***
× • • •	(0.11)	(0.11)	(0.11)	(0.19)	(0.11)	(0.19)
dist_log	-0.25***	-0.30***	-0.40***	-0.51***	-0.44***	-0.52***
-	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.25***	0.23***	0.19***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.25***	0.24***	0.19***	0.15***	0.19***	0.15***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.66***			2.53***	2.10***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.26***			0.93***	0.30***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				2.95***		2.77***
				(0.03)		(0.03)
Destination_Population_log				3.01***		2.97***
				(0.02)		(0.02)
\mathbb{R}^2	0.25	0.27	0.35	0.34	0.37	0.35
Adj. R ²	0.25	0.27	0.35	0.34	0.37	0.35
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.73	5.66	5.33	5.38	5.27	5.35

Table B.19: Gravity model of trade applied to institutional investment for the first quarter of 2018

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.61***	-7.26***	-6.10***	-35.08***	-5.80***	-33.88***
((0.11)	(0.11)	(0.11)	(0.19)	(0.11)	(0.19)
dist_log	-0.25***	-0.30***	-0.40***	-0.50***	-0.44***	-0.52***
C	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.26***	0.23***	0.20***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.25***	0.24***	0.19***	0.15***	0.19***	0.15***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.72***			2.63***	2.18***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.31***			1.00***	0.36***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00^{***}		0.00^{***}	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				3.05***		2.88***
				(0.03)		(0.03)
Destination_Population_log				3.01***		2.97***
				(0.02)		(0.02)
R ²	0.25	0.27	0.35	0.34	0.37	0.35
Adj. R ²	0.25	0.27	0.35	0.34	0.37	0.35
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.76	5.69	5.36	5.40	5.29	5.36

Table B.20: Gravity model of trade applied to institutional investment for the second quarter of 2018

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-7.68***	-7.32***	-6.21***	-34.60***	-5.91***	-33.33***
(intercept)	(0.11)	(0.11)	(0.11)	(0.19)	(0.11)	(0.19)
dist_log	-0.21^{***}	-0.26***	-0.36***	-0.47***	-0.40^{***}	-0.49^{***}
e	(0.02)	(0.02)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.26***	0.23***	0.20***	0.15***	0.17***	0.14***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.24***	0.24***	0.19***	0.15***	0.19***	0.15***
-	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		2.80***			2.72***	2.28***
		(0.04)			(0.04)	(0.04)
Destination_Is_Capital		1.36***			1.02***	0.41***
		(0.04)			(0.04)	(0.04)
Origin_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
-			(0.00)		(0.00)	
Origin_Population_log				2.99***		2.82***
				(0.03)		(0.03)
Destination_Population_log				2.94***		2.89***
				(0.02)		(0.03)
\mathbb{R}^2	0.26	0.28	0.36	0.35	0.37	0.36
Adj. R ²	0.26	0.28	0.36	0.35	0.37	0.36
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	5.73	5.66	5.35	5.39	5.28	5.35

Table B.21: Gravity model of trade applied to institutional investment for the third quarter of 2018

Table B.22: Gravity model of trade applied to institutional investment for the fourth quarter of 2018

	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
(Intercept)	-5.39***	-5.35***	-5.24***	-8.20***	-5.20***	-8.04***
-	(0.05)	(0.05)	(0.05)	(0.09)	(0.05)	(0.09)
dist_log	-0.03***	-0.03***	-0.04***	-0.05^{***}	-0.05***	-0.05***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
inc_o_log	0.05***	0.05***	0.04***	0.03***	0.04***	0.03***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
inc_d_log	0.21***	0.21***	0.20***	0.21***	0.20***	0.21***
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Origin_Is_Capital		0.44***			0.44***	0.37***
		(0.02)			(0.02)	(0.02)
Destination_Is_Capital		0.06***			0.03	0.02
		(0.02)			(0.02)	(0.02)
Origin_Population			0.00^{***}		0.00^{***}	
			(0.00)		(0.00)	
Destination_Population			0.00***		0.00***	
			(0.00)		(0.00)	
Origin_Population_log				0.49***		0.46***
				(0.01)		(0.01)
Destination_Population_log				0.12***		0.12***
				(0.01)		(0.01)
R^2	0.24	0.24	0.25	0.25	0.25	0.25
Adj. R ²	0.24	0.24	0.25	0.25	0.25	0.25
Num. obs.	214832	214832	214832	214832	214832	214832
RMSE	2.53	2.53	2.52	2.52	2.51	2.52

Appendix C

Shift Share

C.1 Dynamic Shift Share of the States

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik	
Alabama	01	9381938	4246846	-3219830	Alaska	01	301958.5	39702.34	549913.6	
Alabama	02	87122220	-2.5E+07	49168126	Alaska	02	7065141	-3062784	27947843	
Alabama	03	4630689	-3814769	8761547	Alaska	03	111449.4	-162126	1196745	
Alabama	04	9329579	-9807377	13217817	Alaska	04	2291757	-1052198	-348041	
Alabama	05	4744915	-1276702	-2697642	Alaska	05	485474.5	-431056	652607.5	
Alabama	06	42402460	-6151090	26061820	Alaska	06	3359060	-338510	12256168	
Alabama	07	7179100	-4044443	4418807	Alaska	07	2790365	-1560997	-2299808	
Alabama	08	57867150	1648924	54558448	Alaska	08	6375559	166747.2	19381208	
Alabama	09	40916317	-8223203	8942599	Alaska	09	3487196	-1451642	-3588281	
Alabama	10	53444088	18800856	34978689	Alaska	10	1244863	1726677	18679851	
Alabama	11	6281087	3375336	-3204321	Alaska	11	5952080	2076162	-6470174	
Alabama	12	35716690	7107049	38991563	Alaska	12	3865636	795833.8	10201216	
Alabama	13	19442327	1.95E+08	-1.7E+08	Alaska	13	233395.5	4057038	-3513129	
Alabama	14	44761384	-1.9E+07	37313087	Alaska	14	4429698	-2549420	10039198	
Alabama	15	2747641	-1936033	966860.9	Alaska	15	346461.7	-230408	840027.2	
Alabama	16	4824719	-6666604	5716061	Alaska	16	901662.6	-1441372	537515	
Alabama	17	38118563	-7533871	-1905427	Alaska	17	1430652	-1129575	7340472	
Alabama	18	66914379	-4.5E+07	39410931	Alaska	18	3206248	-3027983	10656139	
Alabama	19	3432453	-680567	2419548	Alaska	19	450634.5	-99111.7	623826.7	
Alabama	20	2917201	-2258085	4859808	Alaska	20	352286	-230958	173107.2	
Alabama	21	51918211	-2E+07	27891050	Alaska	21	3578708	-2429965	11503608	
Alabama	22	39566980	-1E+07	28124162	Alaska	22	3851058	-1535867	8336579	
Alabama	23	54362119	61323292	77364967	Alaska	23	7605590	7438502	19861914	
Alabama	24	28439528	55776558	9728817	Alaska	24	4700191	6902859	-8881496	
Alabama	25	90712036	-4.4E+07	25717474	Alaska	25	6777968	-8501483	25950856	
Alabama	26	44511165	-2E+07	48542356	Alaska	26	4553259	-2905799	8888658	
Alabama	27	21408995	-5077024	23303890	Alaska	27	2658862	-908269	5179252	
Alabama	28	49825998	63169102	1.67E+08	Alaska	28	10739620	13299557	20668182	
Alabama	29	12562994	1932376	3164711	Alaska	29	2140125	383290.1	1687612	
Alabama	30	4783254	-4028552	11358332	Alaska	30	5846965	-2963583	267317	

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik	
Alabama	31	92253242	50598548	74562887	Alaska	31	8562757	4323638	22698254	
Alabama	32	45813269	-1.5E+07	-5.4E+07	Alaska	32	16902096	-3610099	27762114	
Alabama	33	31030818	2058181	25067814	Alaska	33	3042031	18707.7	7814492	
Alabama	34	21647638	1402802	16904242	Alaska	34	3050213	-95230.9	6513064	
Arizona	01	4258601	-1639897	-1999684	Arkansas	01	228450.3	-150903	746402	
Arizona	02	1.08E+08	-3.6E+07	-7.6E+07	Arkansas	02	13943781	-3972088	-1409656	
Arizona	03	5219966	-1483320	-1.2E+07	Arkansas	03	464139.4	-418490	763681	
Arizona	04	12751414	-4685738	-2.5E+07	Arkansas	04	1298651	-1085356	2055562	
Arizona	05	7568915	-1212533	-1.5E+07	Arkansas	05	993882	329748.5	-1261233	
Arizona	06	58519362	-7131912	-8E+07	Arkansas	06	7329744	-324131	-2582798	
Arizona	07	18826134	-5141745	-6E+07	Arkansas	07	1601287	-889083	-211789	
Arizona	08	1.26E+08	-6678321	-1.4E+08	Arkansas	08	8630244	172905.2	-2782716	
Arizona	09	3491825	-1470017	46667647	Arkansas	09	8767323	-2212047	6104436	
Arizona	10	1.38E+08	5660380	-2.4E+08	Arkansas	10	8373239	2079597	-3179830	
Arizona	11	10821890	-3990016	53966318	Arkansas	11	21020575	-1.5E+07	-3729990	
Arizona	12	77581435	14284919	-7.1E+07	Arkansas	12	5650403	1132775	-3573614	
Arizona	13	8.77E+08	5.69E+09	-7.3E+09	Arkansas	13	11662632	3.16E+08	-3.2E+08	
Arizona	14	51463962	-1.4E+07	-5.5E+07	Arkansas	14	5741062	-2023550	1922743	
Arizona	15	1085776	-139986	649136.2	Arkansas	15	1357844	-949098	1324094	
Arizona	16	10587349	-1.3E+07	-5169196	Arkansas	16	1304312	-2210476	634497.7	
Arizona	17	14706879	-7616161	10750663	Arkansas	17	5309313	-2323124	569550.7	
Arizona	18	91427785	-6.4E+07	-1.7E+08	Arkansas	18	4975295	-3451948	3308428	
Arizona	19	3165243	-277354	-4275925	Arkansas	19	4642310	-875845	5869408	
Arizona	20	1692087	-883355	-2732234	Arkansas	20	1078994	-653001	257847.2	
Arizona	21	78988961	-4.1E+07	-6.9E+07	Arkansas	21	7184304	-3019873	-1735493	
Arizona	22	1.28E+08	-3.7E+07	-1.5E+08	Arkansas	22	5488947	-1159718	-668494	
Arizona	23	1.45E+08	1.21E+08	-1.6E+08	Arkansas	23	9802062	6591820	-8437402	
Arizona	24	-1441170	29269608	1.3E+08	Arkansas	24	9106428	11869035	-3784430	
Arizona	25	3.75E+08	-2.1E+08	-6.9E+08	Arkansas	25	10550752	-6731935	6505870	
Arizona	26	42449617	-1.5E+07	-5.7E+07	Arkansas	26	4980694	-2296949	228881.1	

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Arizona	27	37722884	-3518652	-4.7E+07	Arkansas	27	3872175	-604009	-1346188
Arizona	28	2.19E+08	3.03E+08	-1.5E+08	Arkansas	28	13394767	15871160	-3.5E+07
Arizona	29	10482992	3875498	13365313	Arkansas	29	4902666	1216443	-913539
Arizona	30	12566778	-6086101	-1.6E+07	Arkansas	30	1551599	-746358	-80479.5
Arizona	31	1.2E+08	53065484	-1E+08	Arkansas	31	7274259	5053640	-4012479
Arizona	32	7960496	-1.6E+07	96286682	Arkansas	32	10995021	-2479795	15887317
Arizona	33	67049150	1743565	-9.1E+07	Arkansas	33	6337268	-476863	-1033664
Arizona	34	28417773	3741493	-2.5E+07	Arkansas	34	3440393	373175.8	553696.5
California	01	3E+08	-1.3E+08	-1.9E+08	Colorado	01	16945633	-2.6E+07	-5594983
California	02	8.94E+09	-2.7E+09	-7.4E+09	Colorado	02	3.19E+08	-1.1E+08	-7E+08
California	03	4.83E+08	-2.4E+08	-4.1E+08	Colorado	03	13580036	-9454424	-2.4E+07
California	04	1.19E+09	-7E+08	-5.2E+08	Colorado	04	65579098	-8026565	-1.7E+08
California	05	7.32E+08	-3E+08	-3.7E+08	Colorado	05	24506875	-2067632	-6.8E+07
California	06	4.87E+09	-9E+08	-2.8E+09	Colorado	06	1.66E+08	-1.4E+07	-3.9E+08
California	07	1.28E+09	-6.4E+08	-2.3E+08	Colorado	07	33522119	-1.1E+07	-8.6E+07
California	08	8.7E+09	-6.8E+08	-6.4E+09	Colorado	08	2.45E+08	-2790925	-5.8E+08
California	09	1.57E+09	-2.5E+08	-8E+08	Colorado	09	57962056	-1.8E+07	-1E+07
California	10	4.36E+09	4.91E+08	-3.6E+09	Colorado	10	1.46E+08	-3724915	-2.5E+08
California	11	1.9E+09	6.02E+08	-9.4E+08	Colorado	11	87392545	77608909	-4E+08
California	12	3.87E+09	6.24E+08	-3.2E+09	Colorado	12	1.48E+08	25394823	-3.4E+08
California	13	3.65E+09	3.41E+10	-3.1E+10	Colorado	13	3.68E+08	3.12E+09	-3.1E+09
California	14	5.83E+09	-1.8E+09	-3.7E+09	Colorado	14	1.59E+08	-3.2E+07	-3.7E+08
California	15	3.56E+08	-1.7E+08	-2.3E+08	Colorado	15	2.19E+08	-1.8E+08	-1.3E+08
California	16	6.69E+08	-9.8E+08	-3.2E+08	Colorado	16	27480154	-4.4E+07	-5.7E+07
California	17	2.8E+09	-1.3E+09	-2.4E+09	Colorado	17	87606449	-5.1E+07	-1.5E+08
California	18	3.56E+09	-2.4E+09	-2.2E+09	Colorado	18	1.57E+08	-1E+08	-3.3E+08
California	19	3.12E+08	-3.9E+07	-1.9E+08	Colorado	19	33868833	-1.4E+07	-3.6E+07
California	20	1.83E+08	-7.4E+07	-1.8E+08	Colorado	20	12323359	-7963277	-1.2E+07
California	21	4.73E+09	-2.3E+09	-2.9E+09	Colorado	21	1.56E+08	-6.6E+07	-4E+08
California	22	5.94E+09	-1.8E+09	-3.5E+09	Colorado	22	1.54E+08	-2.2E+07	-3.8E+08

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik	
California	23	7.87E+09	6.12E+09	-6E+09	Colorado	23	2.09E+08	2.19E+08	-5.5E+08	
California	24	1.74E+09	1.54E+09	-7.7E+08	Colorado	24	77242087	98010530	-1.3E+08	
California	25	9.85E+09	-4.4E+09	-8E+09	Colorado	25	3.53E+08	-2.1E+08	-7.3E+08	
California	26	4.52E+09	-1.4E+09	-4E+09	Colorado	26	2.03E+08	-6.8E+07	-5.1E+08	
California	27	2.65E+09	-3.1E+08	-1.8E+09	Colorado	27	1.19E+08	-1E+07	-2.9E+08	
California	28	7.59E+09	9.68E+09	-7.5E+09	Colorado	28	2.58E+08	5.13E+08	-7.6E+08	
California	29	1.08E+09	1.42E+08	-8.3E+08	Colorado	29	51152410	2514502	-9.1E+07	
California	30	9.68E+08	-7.4E+08	-1.9E+08	Colorado	30	51758901	-3.5E+07	-6.7E+07	
California	31	7.96E+09	3.93E+09	-5.7E+09	Colorado	31	2.8E+08	3.33E+08	-8.4E+08	
California	32	8.7E+09	-3.2E+09	7.88E+09	Colorado	32	2.26E+08	-1.2E+08	6.85E+08	
California	33	5.01E+09	99381872	-3E+09	Colorado	33	1.42E+08	6891119	-3.7E+08	
California	34	2.34E+09	3.49E+08	-2.2E+09	Colorado	34	1.06E+08	21411347	-2.6E+08	
Connecticut	01	36986709	-2.2E+07	-1.6E+07	Delaware	01	13598432	-5496908	-2.8E+07	
Connecticut	02	6.11E+08	-2.5E+08	-2.2E+08	Delaware	02	2.11E+08	-7.5E+07	-8.1E+08	
Connecticut	03	58799934	-3.2E+07	-2.4E+07	Delaware	03	10802214	-1529465	-3.4E+07	
Connecticut	04	2.48E+08	-9.1E+07	-2E+08	Delaware	04	35543521	-1.1E+07	-1E+08	
Connecticut	05	1.3E+08	-8.2E+07	-5155921	Delaware	05	10848519	1904083	-4.5E+07	
Connecticut	06	3.33E+08	-3.7E+07	-1.3E+08	Delaware	06	1.08E+08	-3.9E+07	-4.1E+08	
Connecticut	07	1.14E+08	-7.2E+07	30190228	Delaware	07	33007295	-7278913	-9.4E+07	
Connecticut	08	5.56E+08	-4.9E+07	-2.5E+08	Delaware	08	1.67E+08	-4.1E+07	-6.4E+08	
Connecticut	09	4.05E+08	-1.9E+08	-4.5E+08	Delaware	09	43854411	2389708	-1.5E+08	
Connecticut	10	3.08E+08	58855162	-8E+07	Delaware	10	1.04E+08	-9323317	-2.9E+08	
Connecticut	11	2.55E+08	1.53E+08	-4E+07	Delaware	11	21404520	27013773	-1E+08	
Connecticut	12	3.82E+08	36734122	-2.3E+08	Delaware	12	88844236	15628211	-3.2E+08	
Connecticut	13	2.12E+08	1.9E+09	-1.9E+09	Delaware	13	52076376	1.27E+08	-1.9E+08	
Connecticut	14	3.23E+08	-1.1E+08	-1.8E+08	Delaware	14	96062686	-1.3E+07	-3.6E+08	
Connecticut	15	88795421	-4E+07	-2.9E+07	Delaware	15	38306995	-7730608	-6E+07	
Connecticut	16	87031644	-1.6E+08	-2.7E+07	Delaware	16	20143057	-1.6E+07	-8.6E+07	
Connecticut	17	1.81E+08	-1.1E+08	-9.6E+07	Delaware	17	32790836	-1.8E+07	-1.2E+08	
Connecticut	18	3.09E+08	-2.3E+08	-2.3E+08	Delaware	18	1.09E+08	-6.5E+07	-3.9E+08	

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Connecticut	19	40414540	-7335341	-2.8E+07	Delaware	19	13312166	-856265	-3.6E+07
Connecticut	20	28599714	-1.8E+07	-3020777	Delaware	20	5573073	-1012969	-1.6E+07
Connecticut	21	3.68E+08	-1.9E+08	-1.5E+08	Delaware	21	1.13E+08	-6.8E+07	-4.9E+08
Connecticut	22	4.46E+08	-1.2E+08	-3.6E+08	Delaware	22	99127790	-2.5E+07	-4.4E+08
Connecticut	23	6.16E+08	4.6E+08	-2.4E+08	Delaware	23	1.49E+08	72423598	-5E+08
Connecticut	24	1.49E+08	1.73E+08	-2E+08	Delaware	24	43280106	43170636	-1.6E+08
Connecticut	25	7.59E+08	-4.9E+08	-3.8E+08	Delaware	25	2.24E+08	-9.2E+07	-9.1E+08
Connecticut	26	4.24E+08	-1.9E+08	-3.1E+08	Delaware	26	1.13E+08	-1.1E+07	-4E+08
Connecticut	27	2.33E+08	-4E+07	-1.1E+08	Delaware	27	63975291	5331969	-2.3E+08
Connecticut	28	1.1E+09	1.18E+09	-1E+09	Delaware	28	1.47E+08	1.84E+08	-4.1E+08
Connecticut	29	69832591	4151821	-5E+07	Delaware	29	23404573	431413.1	-9.6E+07
Connecticut	30	51059296	-1.9E+07	-3.9E+07	Delaware	30	23571015	-2.2E+07	-2.7E+07
Connecticut	31	7.46E+08	4.13E+08	-4.8E+08	Delaware	31	1.86E+08	1.04E+08	-6.2E+08
Connecticut	32	2.86E+09	-5.3E+08	-1.2E+09	Delaware	32	55894609	16398003	-2E+08
Connecticut	33	3.59E+08	21728444	-8.5E+07	Delaware	33	79607699	2343479	-3E+08
Connecticut	34	2.35E+08	22686923	-1.2E+08	Delaware	34	60612374	14281031	-2E+08
D.C.	01	27757518	1.25E+08	-4.7E+08	Florida	01	22422451	-3.8E+07	33687733
D.C.	02	8085489	-2409230	4424844	Florida	02	4.48E+08	-1.4E+08	2.77E+08
D.C.	03	3385270	1092992	-2.4E+07	Florida	03	16972041	-1.5E+07	44825297
D.C.	04	2066669	-245543	-4556677	Florida	04	67336709	-3.9E+07	7389535
D.C.	05	1078180	271433.9	-2224101	Florida	05	35176025	-6943194	-2.1E+07
D.C.	06	4873523	-236584	321886.2	Florida	06	2.1E+08	-1.7E+07	1.33E+08
D.C.	07	680816.9	-383742	660009.5	Florida	07	43427590	-3E+07	49289407
D.C.	08	7854742	-112429	-311057	Florida	08	3.03E+08	29931142	2.97E+08
D.C.	09	8199425	678754.5	4587133	Florida	09	1.42E+08	-3E+07	65907024
D.C.	10	10338679	1917540	-5763898	Florida	10	2.9E+08	67930842	1.35E+08
D.C.	11	1093785	1046110	3325823	Florida	11	86850404	17914636	56562666
D.C.	12	4734599	1175843	480215.8	Florida	12	1.71E+08	39290162	1.61E+08
D.C.	13	8995236	35623755	-6.1E+07	Florida	13	1.91E+08	1.15E+09	-5.6E+08
D.C.	14	3976913	-1131859	-3062329	Florida	14	2.06E+08	-6.7E+07	-2958748

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
D.C.	15	1254020	-612828	-100483	Florida	15	24083170	-2E+07	26105399
D.C.	16	1096732	-1623271	-463902	Florida	16	28974621	-5.4E+07	19076131
D.C.	17	1231818	-584885	527539.7	Florida	17	1.46E+08	-7.1E+07	76645665
D.C.	18	6952273	-4605638	1798440	Florida	18	1.94E+08	-1.4E+08	1.62E+08
D.C.	19	1913242	339427	-7294722	Florida	19	39170555	-2.4E+07	43514590
D.C.	20	492950.6	-62637	-2392315	Florida	20	18093122	-1.8E+07	8875637
D.C.	21	4943168	-2294201	-616729	Florida	21	2.18E+08	-1E+08	66771987
D.C.	22	5947340	-1728643	-1740763	Florida	22	1.95E+08	-4.8E+07	1.61E+08
D.C.	23	7114372	7765026	7830363	Florida	23	2.91E+08	3.8E+08	3.09E+08
D.C.	24	3525038	4662650	-2435056	Florida	24	6E+08	9611983	1.38E+08
D.C.	25	19286993	-9107939	-2.9E+07	Florida	25	5.04E+08	-3.3E+08	1.56E+08
D.C.	26	6129177	-2749304	2993892	Florida	26	2.33E+08	-1.2E+08	2.4E+08
D.C.	27	2193419	12837.24	-2169540	Florida	27	1.3E+08	-3.1E+07	1.06E+08
D.C.	28	4705169	7441410	5859442	Florida	28	3.61E+08	4.98E+08	2.92E+08
D.C.	29	1054817	338864.2	1901949	Florida	29	1.26E+08	-1253905	80282854
D.C.	30	1413266	-622640	867881	Florida	30	45288401	-2.2E+07	20440027
D.C.	31	10883684	7020843	4191956	Florida	31	4.16E+08	3.38E+08	4.04E+08
D.C.	32	5932693	-855159	33169537	Florida	32	4.62E+08	-3.4E+08	1.31E+09
D.C.	33	4078001	169331	3483950	Florida	33	1.83E+08	18233345	1.97E+08
D.C.	34	2565749	609204.1	-2184225	Florida	34	1.25E+08	11975275	1.06E+08
Georgia	01	43368908	-3.2E+07	40578572	Hawaii	01	121277.7	229958	-216653
Georgia	02	1.2E+09	-4E+08	-3.9E+08	Hawaii	02	2502678	-642912	227904.2
Georgia	03	51983545	-2.9E+07	-96538.7	Hawaii	03	217741.8	-158781	88717.07
Georgia	04	1.71E+08	-8.6E+07	-1.2E+07	Hawaii	04	232953.7	-42802.9	-85308.8
Georgia	05	66265710	-1.5E+07	-2.5E+07	Hawaii	05	68025.72	52676.71	-296460
Georgia	06	6.27E+08	-5.2E+07	-2.4E+08	Hawaii	06	1406271	198134.6	-1389082
Georgia	07	2.1E+08	-1.1E+08	-6.1E+07	Hawaii	07	163650.9	-46667.1	107327.7
Georgia	08	9.4E+08	3363081	-3.1E+08	Hawaii	08	1354479	599601.4	2046205
Georgia	09	1.39E+08	-2.1E+07	-2.3E+07	Hawaii	09	1368004	68180.86	3669996
Georgia	10	5.29E+08	1.12E+08	-3.1E+08	Hawaii	10	3950756	928140.8	-2223174

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Georgia	11	2.64E+08	1.19E+08	-1.2E+08	Hawaii	11	106257.1	153971.2	-91270.2
Georgia	12	5.31E+08	1.23E+08	-1.3E+08	Hawaii	12	735132.3	622545.4	1394618
Georgia	13	2.47E+08	1.16E+09	-1.5E+09	Hawaii	13	756788.3	5370366	-5512689
Georgia	14	6.01E+08	-1.8E+08	-2.3E+08	Hawaii	14	615078.2	57494.77	860658.2
Georgia	15	84894268	-4.8E+07	3962513	Hawaii	15	31855.08	43067.62	118737.7
Georgia	16	91535575	-1.7E+08	10024801	Hawaii	16	172665	-418997	-216410
Georgia	17	2.81E+08	-1.3E+08	-2.6E+07	Hawaii	17	42377.52	-6406.02	671706.8
Georgia	18	4.55E+08	-3.2E+08	-7.5E+07	Hawaii	18	1288765	-1049790	126865.2
Georgia	19	50656787	-4205276	24624154	Hawaii	19	86507.1	-8889.71	162683.7
Georgia	20	35329531	-2.1E+07	2119534	Hawaii	20	50251.69	-27767.4	109849.3
Georgia	21	7.02E+08	-3.4E+08	-2.3E+08	Hawaii	21	1043123	-616808	725499.5
Georgia	22	6.86E+08	-1.9E+08	-2.9E+08	Hawaii	22	747759.8	-46463.9	-78137
Georgia	23	9.29E+08	9.32E+08	-4.8E+08	Hawaii	23	745385.6	3028782	3860525
Georgia	24	1.76E+08	3.11E+08	-2.2E+08	Hawaii	24	6949551	25043670	27321118
Georgia	25	1.45E+09	-9.1E+08	-1.1E+07	Hawaii	25	1744881	-1400940	-3705990
Georgia	26	7.01E+08	-3.4E+08	-2E+08	Hawaii	26	470841.8	-267050	2658460
Georgia	27	3.96E+08	-6.2E+07	-1.6E+08	Hawaii	27	548509.2	4019.801	1523097
Georgia	28	1.06E+09	1.68E+09	-2.5E+08	Hawaii	28	568274.4	3217497	6421159
Georgia	29	1.42E+08	27069224	-6E+07	Hawaii	29	393700.1	901747.1	4457042
Georgia	30	3.73E+08	-1.6E+08	-3.3E+08	Hawaii	30	248665.1	44080.41	110113
Georgia	31	1.19E+09	7.58E+08	-5.5E+08	Hawaii	31	872867.5	2928993	5130377
Georgia	32	5.49E+08	-6.2E+07	-9.6E+07	Hawaii	32	-881269	5683675	29424874
Georgia	33	6.23E+08	30152644	-2.2E+08	Hawaii	33	661930.6	487089.3	1527354
Georgia	34	3.77E+08	49403808	-1.2E+08	Hawaii	34	484568	271390.3	1217547
Idaho	01	566127.4	92399.67	-613147	Illinois	01	1.17E+08	-5.3E+07	-1.4E+07
Idaho	02	4271122	-1090563	-461821	Illinois	02	2.04E+09	-7.1E+08	7814311
Idaho	03	473571.2	-199572	-363577	Illinois	03	1.02E+08	-6.2E+07	-897396
Idaho	04	3037303	-4165537	5825345	Illinois	04	3.25E+08	-2.7E+08	71875761
Idaho	05	253617	21474.59	-356767	Illinois	05	2.25E+08	-1.4E+08	-4937085
Idaho	06	2056639	-265416	-241849	Illinois	06	1E+09	-1.8E+08	-1.1E+08

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik	
Idaho	07	1019548	-375851	-53553.1	Illinois	07	2.07E+08	-1.2E+08	71619638	
Idaho	08	2964885	41130.48	-242775	Illinois	08	1.46E+09	49370777	3.15E+08	
Idaho	09	3449640	-1096647	1187087	Illinois	09	3.98E+08	-8.5E+07	5.06E+08	
Idaho	10	2296431	451628.1	-561061	Illinois	10	7.36E+08	1.65E+08	-3.2E+08	
Idaho	11	485861.2	195214.1	-316531	Illinois	11	4.13E+08	84812329	1.91E+08	
Idaho	12	2357611	347230.3	-653137	Illinois	12	8.23E+08	2.35E+08	4.32E+08	
Idaho	13	16365307	13655935	-2.9E+07	Illinois	13	-6.8E+08	7.27E+09	3.85E+09	
Idaho	14	1610808	-577259	394594.6	Illinois	14	1.1E+09	-4.2E+08	3.71E+08	
Idaho	15	379105	30992.49	-327703	Illinois	15	1.35E+08	-6.9E+07	-4.1E+07	
Idaho	16	691805	-1368318	565920.1	Illinois	16	1.87E+08	-3.6E+08	-2.2E+07	
Idaho	17	1070937	-360287	1041576	Illinois	17	8.63E+08	-4.1E+08	3.59E+08	
Idaho	18	3319321	-2186490	371621.9	Illinois	18	8.66E+08	-6.6E+08	-1.2E+08	
Idaho	19	941553.7	-143506	-345904	Illinois	19	1.35E+08	-1.4E+07	-6.7E+07	
Idaho	20	146087.3	-97990.7	144328.1	Illinois	20	87583779	-5.3E+07	-1.8E+07	
Idaho	21	1813038	-628327	-63372.5	Illinois	21	1.13E+09	-5.8E+08	-1.7E+08	
Idaho	22	1849185	-384996	-319224	Illinois	22	9.29E+08	-3.1E+08	-1E+08	
Idaho	23	2974901	2472845	-1465996	Illinois	23	1.36E+09	1.56E+09	6.53E+08	
Idaho	24	4427694	5308618	934753	Illinois	24	6.52E+08	1.12E+09	-1E+08	
Idaho	25	5442900	-2429970	-2057471	Illinois	25	2.16E+09	-1.3E+09	-1.4E+07	
Idaho	26	2166722	-1030803	187320.2	Illinois	26	9.7E+08	-4.9E+08	-2.9E+07	
Idaho	27	1495922	-285180	-96327.7	Illinois	27	6.12E+08	-1.4E+08	96432.15	
Idaho	28	1963643	1994402	-629691	Illinois	28	1.39E+09	2.55E+09	3.06E+09	
Idaho	29	1586035	212433.8	-108568	Illinois	29	2.66E+08	74804376	1.31E+08	
Idaho	30	236327.1	-91145	-8710.15	Illinois	30	4.22E+08	-2.2E+08	-2E+08	
Idaho	31	4391125	1897578	-1934877	Illinois	31	1.68E+09	7.81E+08	1.75E+08	
Idaho	32	18276553	-1.3E+07	17041537	Illinois	32	3.71E+09	-3.3E+09	1.04E+10	
Idaho	33	1656905	-5921.55	-63231	Illinois	33	8.77E+08	78250566	1.13E+08	
Idaho	34	1319520	135231.3	-91954.9	Illinois	34	6.09E+08	51924014	-1858526	
Indiana	01	448146.6	-817798	2088338	Iowa	01	10269434	-9208238	24828215	
Indiana	02	61489356	-1.8E+07	27933883	Iowa	02	2.37E+08	-7.4E+07	54527511	

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik	
Indiana	03	910276	-246715	-2362555	Iowa	03	20665792	-1.9E+07	23106385	
Indiana	04	2924829	-2119600	1786063	Iowa	04	44079702	-3.1E+07	16152216	
Indiana	05	914132.6	-352935	-350990	Iowa	05	10623186	-2879493	-6281920	
Indiana	06	3.03E+08	-1.3E+07	81748078	Iowa	06	1.13E+08	-1.1E+07	19815968	
Indiana	07	3319338	-1960340	2085102	Iowa	07	33223418	-2.2E+07	35812405	
Indiana	08	24885788	610746.4	5948988	Iowa	08	1.61E+08	10632515	36500996	
Indiana	09	17472646	-4213893	5360720	Iowa	09	38089097	-1.2E+07	-2.2E+07	
Indiana	10	10954044	3264154	6883679	Iowa	10	1.99E+08	31565719	31507739	
Indiana	11	1363435	305470.2	1669463	Iowa	11	27976778	8758022	8524081	
Indiana	12	18459333	4014545	3288928	Iowa	12	1E+08	21226437	24974117	
Indiana	13	79280684	1.11E+09	-8E+08	Iowa	13	10706922	1.34E+08	-1.1E+08	
Indiana	14	11488701	-4305205	4670693	Iowa	14	1.02E+08	-3.4E+07	4508422	
Indiana	15	1146993	-761129	985427	Iowa	15	11995944	-7388790	7926755	
Indiana	16	1130492	-1788807	-30710.5	Iowa	16	15554666	-2.7E+07	4855619	
Indiana	17	8146743	-3566236	7584383	Iowa	17	65897749	-3E+07	20789520	
Indiana	18	13392233	-9258476	4038824	Iowa	18	1.01E+08	-7.1E+07	28760658	
Indiana	19	675669	-114768	196316	Iowa	19	18020565	-5239506	26145933	
Indiana	20	568918.2	-352519	67325.46	Iowa	20	11571370	-9058001	7135717	
Indiana	21	12273869	-5644814	6137428	Iowa	21	1.19E+08	-5.1E+07	16573363	
Indiana	22	30291449	-7168561	12868147	Iowa	22	1.03E+08	-2.5E+07	3131324	
Indiana	23	16287969	16247832	3179325	Iowa	23	1.48E+08	1.78E+08	8146446	
Indiana	24	44432364	53135008	-5.7E+07	Iowa	24	1.01E+08	1.19E+08	-2.3E+08	
Indiana	25	27817962	-1.7E+07	11084046	Iowa	25	2.71E+08	-1.8E+08	74569197	
Indiana	26	11322086	-5224140	6667101	Iowa	26	1.08E+08	-5.8E+07	58702105	
Indiana	27	6644647	-1725818	3528510	Iowa	27	67194557	-1.6E+07	12436870	
Indiana	28	10029818	12539368	7748807	Iowa	28	1.54E+08	2.47E+08	71841980	
Indiana	29	7498154	674923.6	2965274	Iowa	29	32161030	4051869	-2.2E+07	
Indiana	30	2499501	-3078564	3423043	Iowa	30	1.65E+08	-7.7E+07	42762251	
Indiana	31	21861301	11811963	3156774	Iowa	31	1.9E+08	1.54E+08	5519450	
Indiana	32	37222496	-3.2E+07	98125831	Iowa	32	76546604	-3.3E+07	54966190	

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Indiana	33	2.1E+08	15322091	35690440	Iowa	33	89399697	3179632	12245450
Indiana	34	12856896	1538673	3320811	Iowa	34	72692853	5086386	16596727
Kansas	01	9399344	-5307043	15969619	Kentucky	01	1931015	542861.6	3887771
Kansas	02	2.37E+08	-8.6E+07	-8.3E+07	Kentucky	02	1E+08	-3.4E+07	-5.6E+07
Kansas	03	13939988	-7698416	-7963522	Kentucky	03	4975512	-2827729	-690954
Kansas	04	58397759	-1.3E+07	-8.2E+07	Kentucky	04	11622435	-8812518	3421809
Kansas	05	22103208	-5761661	-2.1E+07	Kentucky	05	4216508	609421	-5572898
Kansas	06	1.25E+08	-1.2E+07	-7.2E+07	Kentucky	06	46664182	-5594386	-3.6E+07
Kansas	07	28779813	-1.7E+07	-839441	Kentucky	07	11566954	-5889478	-5694736
Kansas	08	2.28E+08	-7056522	-1.3E+08	Kentucky	08	70589480	-2469447	-5.4E+07
Kansas	09	1.16E+08	-4.4E+07	27931375	Kentucky	09	15261204	-3210420	-6574660
Kansas	10	1.14E+08	21821167	48908632	Kentucky	10	64287959	12031647	-2.3E+07
Kansas	11	66693988	25620402	-9.4E+07	Kentucky	11	11365388	5790980	-1.1E+07
Kansas	12	1.24E+08	21588877	-1.1E+08	Kentucky	12	34371329	6856565	-2.6E+07
Kansas	13	1.89E+08	3.8E+09	-3.9E+09	Kentucky	13	23278291	1.72E+08	-1.8E+08
Kansas	14	1.21E+08	-3.8E+07	-1.3E+08	Kentucky	14	43512573	-1.3E+07	-2.7E+07
Kansas	15	1.9E+08	-2.2E+08	1.34E+08	Kentucky	15	2962434	-1587794	3997535
Kansas	16	22892840	-4E+07	339035.8	Kentucky	16	5399556	-9413455	-3062550
Kansas	17	63314825	-3E+07	-2.2E+07	Kentucky	17	20090689	-9684584	-8156843
Kansas	18	88213926	-6.1E+07	-4.9E+07	Kentucky	18	46854257	-3.3E+07	-2.5E+07
Kansas	19	23677029	-2494567	-1.7E+07	Kentucky	19	3967863	-652711	1195700
Kansas	20	6512209	-3260204	-3226195	Kentucky	20	2876171	-1506023	-2606870
Kansas	21	1.22E+08	-6.4E+07	-7.4E+07	Kentucky	21	50868780	-2.6E+07	-2.9E+07
Kansas	22	1.23E+08	-3.9E+07	-5E+07	Kentucky	22	45759322	-1.4E+07	-2.2E+07
Kansas	23	2.25E+08	1.91E+08	-1.8E+08	Kentucky	23	62879471	54833682	-6.6E+07
Kansas	24	2.96E+08	3.76E+08	-2.3E+07	Kentucky	24	26189017	32904418	-2.5E+07
Kansas	25	2.36E+08	-1.4E+08	-1E+08	Kentucky	25	1.13E+08	-6.7E+07	-1.9E+07
Kansas	26	1.75E+08	-8.8E+07	-1.1E+08	Kentucky	26	43346327	-2E+07	-1.5E+07
Kansas	27	91152488	-1.6E+07	-7.1E+07	Kentucky	27	26896469	-4838330	-6940045
Kansas	28	2.77E+08	3.61E+08	-3.9E+08	Kentucky	28	49465770	66942281	-3.6E+07

State Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Kansas 29 74	4532572 3	8818293 -	-8728320	Kentucky	29	11641494	2054675	-5130994
Kansas 30 10	0094264 -3	3851533	120612.9	Kentucky	30	6998143	-3040771	-802418
Kansas 31 2.	.73E+08 1.5	58E+08	-2E+08	Kentucky	31	76055334	44580933	-6.2E+07
Kansas 32 2.	.03E+08 -8	8.5E+07 6	65029646	Kentucky	32	41962999	-1.3E+07	56480731
Kansas 33 1.	.39E+08 -8	3271390 -	-8.6E+07	Kentucky	33	41549067	1739319	-1.7E+07
Kansas 34 84	4441327 8	8594781 -	-6.8E+07	Kentucky	34	24263867	2347056	-1.2E+07
Louisiana 01	513177 -4	43108.4	137365.9	Maine	01	642769.5	-151138	-3746678
Louisiana 02 18	8949739 -5	5810663 1	12982239	Maine	02	44384300	-2.9E+07	-1.5E+08
Louisiana 03	1424792 -	-838702	-316451	Maine	03	927721.3	135876	-3726556
Louisiana 04	1467193 -	-978808	846691.9	Maine	04	3898937	1108694	-2.4E+07
Louisiana 05 3	361606.9 -	76179.8	-287020	Maine	05	1314238	652529.7	-7524119
Louisiana 06	8335549 -	-770014	6329161	Maine	06	22231700	-1.5E+07	-9.1E+07
Louisiana 07	1011677 -	-749261	2223205	Maine	07	4967133	-8158696	-3E+07
Louisiana 08 12	2273055	996068	9067702	Maine	08	27585165	-1.3E+07	-1.2E+08
Louisiana 09	1652040 -	-441222 1	11922674	Maine	09	12615772	1397120	-4.2E+07
Louisiana 10	6408626 2	2967949	7198809	Maine	10	16494159	-4326884	-3.7E+07
Louisiana 11 9	986305.8 70	62243.2	-896719	Maine	11	11461833	19973511	-1.1E+08
Louisiana 12	6431335 1	487808	4044050	Maine	12	14190770	6819542	-6.4E+07
Louisiana 13 10	6395968 1.:	52E+08 -	-1.4E+08	Maine	13	6714978	64937793	-7.8E+07
Louisiana 14 '	7646068 -3	3022484	6446249	Maine	14	17917310	-1877382	-8.7E+07
Louisiana 15 8	317880.5 -	-505778	940179.2	Maine	15	1175724	-353313	-3048486
Louisiana 16	1179056 -2	2259838	1473788	Maine	16	3578768	-3927478	-2.2E+07
Louisiana 17	4734182 -2	2145248	4107605	Maine	17	7204103	-5210473	-2.2E+07
Louisiana 18	8175130 -6	5223080	7660372	Maine	18	23720840	-1.9E+07	-6.4E+07
Louisiana 19	1996227 -	-314716	-194330	Maine	19	2241245	381301.4	-8477493
Louisiana 20 7	705394.8 -	-397962	-201074	Maine	20	1077479	-229343	-7789591
Louisiana 21	7622110 -3	3532009	8546300	Maine	21	20964177	-2.3E+07	-9.2E+07
Louisiana 22	6498071 -1	931468	4410982	Maine	22	17942725	-8612116	-8.5E+07
Louisiana 23 1	1035102 12	2331184	3993298	Maine	23	25815713	12260385	-1.1E+08
Louisiana 24	3764892 8	3981045 1	13599407	Maine	24	17837998	31860477	-1.1E+08

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Louisiana	25	17156170	-1.2E+07	10742355	Maine	25	44517910	-2.3E+07	-1.6E+08
Louisiana	26	9209638	-5291219	3911899	Maine	26	19455124	-2974965	-6.5E+07
Louisiana	27	3990185	-941458	3831149	Maine	27	9515909	857490.6	-4.3E+07
Louisiana	28	11675909	19405923	-6275183	Maine	28	15376791	35338318	-6.4E+07
Louisiana	29	2199399	1012545	6526879	Maine	29	6468629	508213	-1.8E+07
Louisiana	30	1223164	-381941	1328627	Maine	30	1398832	-1151524	-895596
Louisiana	31	16441694	11227868	-1366841	Maine	31	36234897	13602175	-1.1E+08
Louisiana	32	5234033	-1.1E+07	98505068	Maine	32	34994123	15880153	-1.3E+08
Louisiana	33	6529962	557253.1	2354214	Maine	33	13810030	-664927	-5.9E+07
Louisiana	34	4148333	532784.6	2308471	Maine	34	9361142	949178.5	-3.8E+07
Maryland	01	2.27E+08	-1.9E+07	-1.4E+08	Massachusetts	01	3.34E+08	-2.2E+08	3.42E+08
Maryland	02	1.55E+09	-4.6E+08	-1.6E+09	Massachusetts	02	1.05E+10	-3.5E+09	23161224
Maryland	03	71909633	-3.8E+07	-3.9E+07	Massachusetts	03	3.69E+08	-2.3E+08	65951292
Maryland	04	3.36E+08	-2.3E+08	-1.6E+08	Massachusetts	04	1.47E+09	-1E+09	3.24E+08
Maryland	05	1.55E+08	-1.6E+07	-7.1E+07	Massachusetts	05	5.78E+08	-2E+08	-2.9E+08
Maryland	06	9.06E+08	-4.7E+07	-7.1E+08	Massachusetts	06	5.86E+09	-6.5E+08	2.59E+08
Maryland	07	1.44E+08	-6.8E+07	-6177880	Massachusetts	07	1.63E+09	-9E+08	-5.1E+08
Maryland	08	1.52E+09	91983337	-7.5E+08	Massachusetts	08	7.67E+09	1.64E+08	7.78E+08
Maryland	09	61760565	-1.7E+07	-1.4E+07	Massachusetts	09	7.18E+08	-2E+08	-1.1E+08
Maryland	10	7.86E+08	2.42E+08	-3.6E+08	Massachusetts	10	4.92E+09	1.08E+09	2.5E+08
Maryland	11	4.76E+08	98889734	-1.6E+08	Massachusetts	11	1.44E+09	2.24E+08	-8.2E+07
Maryland	12	1.48E+09	2.64E+08	-1.1E+09	Massachusetts	12	4.4E+09	8.96E+08	4.54E+08
Maryland	13	1.18E+08	7.61E+08	-8.4E+08	Massachusetts	13	4.77E+09	4.42E+10	-4.4E+10
Maryland	14	1.03E+09	-3.2E+08	-7.4E+08	Massachusetts	14	4.79E+09	-1.7E+09	-4.1E+07
Maryland	15	36772904	-1.6E+07	-6916310	Massachusetts	15	3.23E+08	-2E+08	48286542
Maryland	16	1.28E+08	-2.2E+08	-2.4E+08	Massachusetts	16	6.7E+08	-1.2E+09	1.28E+08
Maryland	17	5.68E+08	-3.7E+08	-2.4E+08	Massachusetts	17	2.54E+09	-1.2E+09	1.77E+08
Maryland	18	7.51E+08	-5E+08	-9.9E+08	Massachusetts	18	4.73E+09	-3.4E+09	1.49E+08
Maryland	19	1.64E+08	-2.5E+07	-1.5E+08	Massachusetts	19	4E+08	-7E+07	70548776
Maryland	20	41300269	-2.2E+07	-3.5E+07	Massachusetts	20	2.09E+08	-1.3E+08	11550989

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Maryland	21	8.27E+08	-3.6E+08	-7.2E+08	Massachusetts	21	5.25E+09	-2.5E+09	1.39E+08
Maryland	22	8.36E+08	-1.9E+08	-4.6E+08	Massachusetts	22	4.93E+09	-1.5E+09	7.95E+08
Maryland	23	1.8E+09	1.95E+09	-4.8E+08	Massachusetts	23	7.48E+09	7.63E+09	1.2E+08
Maryland	24	59192992	90715243	-4.2E+07	Massachusetts	24	5.91E+08	7.73E+08	-7.9E+08
Maryland	25	1.51E+09	-9E+08	-1.8E+09	Massachusetts	25	1.19E+10	-7.4E+09	-2.9E+08
Maryland	26	1.06E+09	-4E+08	-1.4E+09	Massachusetts	26	5.24E+09	-2.7E+09	7.61E+08
Maryland	27	6.57E+08	-9.2E+07	-7.1E+08	Massachusetts	27	3.59E+09	-7.9E+08	1.63E+08
Maryland	28	2.85E+09	4.27E+09	-1.8E+09	Massachusetts	28	9.28E+09	1.31E+10	-7.2E+07
Maryland	29	1.49E+08	24987252	-2.4E+08	Massachusetts	29	9.6E+08	1.37E+08	-3.9E+08
Maryland	30	4.28E+08	-2E+08	-4.7E+08	Massachusetts	30	1.45E+09	-6.6E+08	78846496
Maryland	31	2.08E+09	1.24E+09	-7.4E+08	Massachusetts	31	9.58E+09	5.5E+09	-1.4E+08
Maryland	32	4.59E+08	-1E+08	-3.7E+08	Massachusetts	32	3.56E+09	-9E+08	-1E+09
Maryland	33	8.77E+08	96255223	-7.6E+08	Massachusetts	33	4.36E+09	99759920	3.19E+08
Maryland	34	5.89E+08	72141533	-4.3E+08	Massachusetts	34	2.91E+09	2.36E+08	1.42E+08
Michigan	01	2160197	112709.7	14282.62	Minnesota	01	27932760	-1.3E+07	-2.5E+07
Michigan	02	1.47E+08	-5E+07	-5.6E+07	Minnesota	02	8.86E+08	-3.2E+08	-3.3E+08
Michigan	03	7702991	-4036244	-2316471	Minnesota	03	25559505	-1.2E+07	-1.4E+07
Michigan	04	12832073	-5541974	-5944980	Minnesota	04	1.05E+08	-5.6E+07	-3E+07
Michigan	05	6057618	-1401466	-6182405	Minnesota	05	50098297	-3.3E+07	16205177
Michigan	06	65324266	-6194023	-3.6E+07	Minnesota	06	4.73E+08	-8.7E+07	-1.7E+08
Michigan	07	12244942	-5903517	-6849392	Minnesota	07	78541400	-4.3E+07	-1.8E+07
Michigan	08	93372652	-1993201	-4E+07	Minnesota	08	7.01E+08	-7.7E+07	-2.5E+08
Michigan	09	49978326	-1E+07	15485446	Minnesota	09	2.07E+08	-8.4E+07	72944891
Michigan	10	90443075	15211134	-3.9E+07	Minnesota	10	4.06E+08	-8088373	-2.1E+07
Michigan	11	9160514	5991510	-1E+07	Minnesota	11	1.45E+08	13567579	-6.2E+07
Michigan	12	57598971	10742678	-2.9E+07	Minnesota	12	4.06E+08	42311003	-2E+08
Michigan	13	1.53E+08	-1.2E+09	1.07E+09	Minnesota	13	1.38E+08	1.12E+09	-1.2E+09
Michigan	14	1.2E+08	-3.9E+07	-2.1E+07	Minnesota	14	4.28E+08	-1.6E+08	-2.1E+08
Michigan	15	3771306	8041365	-1.1E+07	Minnesota	15	35593509	-2E+07	-2.7E+07
Michigan	16	8309685	-1.6E+07	-3783197	Minnesota	16	59404236	-1E+08	-8930725
					1				

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Michigan	17	82518529	-4.9E+07	-3.8E+08	Minnesota	17	2.9E+08	-1.5E+08	-3.9E+07
Michigan	18	76222305	-5.4E+07	-2.1E+07	Minnesota	18	3.93E+08	-2.8E+08	-1.4E+08
Michigan	19	5764818	-646122	-1955758	Minnesota	19	53018854	-9430077	-1.5E+07
Michigan	20	4274045	-2135515	-3525380	Minnesota	20	25875213	-1.6E+07	-4322724
Michigan	21	68793274	-3.3E+07	-3.1E+07	Minnesota	21	4.93E+08	-2.5E+08	-1.4E+08
Michigan	22	59464634	-1.7E+07	-3.4E+07	Minnesota	22	4.48E+08	-1.5E+08	-1.3E+08
Michigan	23	91018914	82400121	-6.8E+07	Minnesota	23	6.38E+08	4.66E+08	-2.3E+08
Michigan	24	84781376	1.19E+08	-2E+07	Minnesota	24	2.54E+08	1.64E+08	86131686
Michigan	25	1.86E+08	-1.1E+08	-5.6E+07	Minnesota	25	7.25E+08	-4.5E+08	-3.2E+08
Michigan	26	73496539	-3.7E+07	-1.1E+07	Minnesota	26	4.58E+08	-2.1E+08	-1.9E+08
Michigan	27	41081632	-6535082	-1.9E+07	Minnesota	27	2.76E+08	-5.2E+07	-1.3E+08
Michigan	28	86649638	1.28E+08	-7.1E+07	Minnesota	28	8.01E+08	9.58E+08	-5.8E+08
Michigan	29	24211693	4341207	2386853	Minnesota	29	1.48E+08	-4995322	7441422
Michigan	30	8951759	-2728018	-4528850	Minnesota	30	1.07E+08	-6.4E+07	-9190455
Michigan	31	1.25E+08	72869001	-8.2E+07	Minnesota	31	8E+08	3.78E+08	-3E+08
Michigan	32	2.68E+08	-6.2E+07	-8.4E+07	Minnesota	32	1.74E+09	-5.1E+08	-1.3E+09
Michigan	33	49528940	2656954	-1.6E+07	Minnesota	33	3.94E+08	-1.7E+07	-1.1E+08
Michigan	34	36743135	4356905	-1.9E+07	Minnesota	34	2.71E+08	12143756	-1.1E+08
Mississippi	01	177492.7	571809	-1237083	Missouri	01	13751471	-1.3E+07	14473101
Mississippi	02	2310262	-950342	-1716723	Missouri	02	4.71E+08	-1.5E+08	-1.3E+08
Mississippi	03	120963.2	-34277.4	-169075	Missouri	03	18654183	-1.1E+07	-1.4E+07
Mississippi	04	306581.9	-114478	-396636	Missouri	04	64767736	-3.6E+07	-2.1E+07
Mississippi	05	163589	76725.86	-306126	Missouri	05	27365340	-5710303	-2.3E+07
Mississippi	06	1118682	-270553	-973088	Missouri	06	2.24E+08	-2.2E+07	-3.6E+07
Mississippi	07	403555.9	-244552	-324781	Missouri	07	34387661	-1.8E+07	-6616056
Mississippi	08	1402118	-205872	-1402193	Missouri	08	3.11E+08	8123528	-4.5E+07
Mississippi	09	924217.1	-34222.7	-226074	Missouri	09	3.14E+08	-8.3E+07	59431194
Mississippi	10	439398	-21715.5	-247332	Missouri	10	1.98E+08	39546753	-1.1E+08
Mississippi	11	568046.6	-38485.6	-691222	Missouri	11	68499000	32770320	-4.4E+07
Mississippi	12	1617340	102432.9	-2365729	Missouri	12	1.98E+08	46240459	-5989691

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Mississippi	13	281154.2	4345111	-4348470	Missouri	13	-3.7E+10	-1.2E+11	1.56E+11
Mississippi	14	1407268	-521804	-1142411	Missouri	14	1.77E+08	-5.6E+07	-8.5E+07
Mississippi	15	179613.5	-136376	1728.448	Missouri	15	21769124	-1.7E+07	30936760
Mississippi	16	478919.5	-705971	-405464	Missouri	16	34440945	-5.5E+07	8763647
Mississippi	17	879180.6	-476218	-1254616	Missouri	17	1.27E+08	-6.1E+07	-4418882
Mississippi	18	888559.4	-604699	-355976	Missouri	18	2.24E+08	-1.6E+08	-1.7E+07
Mississippi	19	468159.6	-81199.2	-481029	Missouri	19	26291659	-4098529	-1018232
Mississippi	20	587415.9	-281321	-389388	Missouri	20	15206626	-9425159	1728240
Mississippi	21	1449220	-762717	-1775256	Missouri	21	2.14E+08	-1E+08	-2.4E+07
Mississippi	22	726678.2	-273331	-674127	Missouri	22	2.01E+08	-5.5E+07	-4.3E+07
Mississippi	23	1558857	755916.3	-2299978	Missouri	23	2.94E+08	3.17E+08	-3.3E+07
Mississippi	24	1700177	1218344	8027331	Missouri	24	5.59E+08	8.26E+08	-4.9E+08
Mississippi	25	2536359	-1372305	-1651594	Missouri	25	4.57E+08	-2.8E+08	70931227
Mississippi	26	1997656	-1002399	-2159486	Missouri	26	2.81E+08	-1.4E+08	-6.7E+07
Mississippi	27	1170228	-216070	-1353823	Missouri	27	1.61E+08	-3.5E+07	3926945
Mississippi	28	3075429	2560364	-5988405	Missouri	28	3.91E+08	6.03E+08	-3.2E+07
Mississippi	29	489020.6	46621.08	521875.2	Missouri	29	1.41E+08	40890196	-1.1E+07
Mississippi	30	202603.4	-99326.8	-124047	Missouri	30	59119475	-2.7E+07	-2.1E+07
Mississippi	31	2608997	655619.1	-3501583	Missouri	31	4.51E+08	2.75E+08	-1.1E+08
Mississippi	32	2569737	-909601	-1889560	Missouri	32	3.81E+08	-1.2E+08	2.15E+08
Mississippi	33	1006867	-79166.8	-1030643	Missouri	33	1.69E+08	8529641	-2.1E+07
Mississippi	34	1103716	34512.38	-1328967	Missouri	34	1.43E+08	15649885	-1.8E+07
Montana	01	183075.4	-59376.7	205845.5	Nebraska	01	11819391	-1.4E+07	20703095
Montana	02	10550860	-4653576	24094923	Nebraska	02	6.32E+08	-2E+08	1.6E+09
Montana	03	470183.2	-205986	-375700	Nebraska	03	14721894	-1.1E+07	20541848
Montana	04	886894	-591536	1426877	Nebraska	04	35508577	-3.5E+07	41165522
Montana	05	216517.5	207887.2	-121668	Nebraska	05	8623190	-3536683	2534945
Montana	06	5130591	-982872	10198587	Nebraska	06	2.07E+08	3156983	2.55E+08
Montana	07	1050154	-387036	614218.8	Nebraska	07	39818672	-2.1E+07	25647945
Montana	08	7340320	-916320	14567265	Nebraska	08	5.21E+08	1376115	-1.6E+08

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Montana	09	1471214	472854.2	5329053	Nebraska	09	55105472	-1.4E+07	-4.7E+07
Montana	10	7400383	1183116	12602712	Nebraska	10	1.31E+08	48038670	-6755946
Montana	11	963500.5	1303652	-521850	Nebraska	11	13415456	5594898	-2298112
Montana	12	3418853	478270.9	5697314	Nebraska	12	1.52E+08	56733676	3.11E+08
Montana	13	1852045	11824009	19194171	Nebraska	13	7.35E+08	1.7E+09	-1.5E+09
Montana	14	3798576	-1098361	5130364	Nebraska	14	43873435	-6950716	-3.9E+07
Montana	15	818579.9	-447213	147144.4	Nebraska	15	9335200	-3655508	-1251782
Montana	16	789659.3	-1427175	688034.9	Nebraska	16	31609867	-5.4E+07	-1.7E+07
Montana	17	1594640	-962783	8414476	Nebraska	17	22153865	-6914755	18762402
Montana	18	7036239	-5214708	7615356	Nebraska	18	4.25E+08	-3.1E+08	-1.2E+07
Montana	19	577021.8	-89128.2	199845.5	Nebraska	19	6752460	-925895	-702424
Montana	20	274629.6	-125739	-17178.3	Nebraska	20	2922350	-2110810	2696228
Montana	21	5453270	-2463375	9224002	Nebraska	21	3.04E+08	-1.4E+08	4.23E+08
Montana	22	5914777	-1551331	10617931	Nebraska	22	6.5E+08	-2E+08	2.68E+08
Montana	23	7018096	6254909	12593767	Nebraska	23	1.75E+08	2.38E+08	1.31E+08
Montana	24	2549411	9259253	36510877	Nebraska	24	1.23E+08	1.18E+08	-1.7E+08
Montana	25	9891193	-5596682	11207364	Nebraska	25	7.52E+09	-4.8E+09	3.7E+09
Montana	26	5536652	-3233395	10535703	Nebraska	26	89319618	-1.2E+08	1.75E+09
Montana	27	2610261	-280899	4301301	Nebraska	27	1.11E+08	-5.5E+07	6.95E+08
Montana	28	3330602	4539998	10073479	Nebraska	28	76102886	2.43E+08	1.25E+09
Montana	29	1841229	508247.3	16159951	Nebraska	29	54175792	17798823	21383879
Montana	30	265408.8	-65981.5	934213.8	Nebraska	30	1382621	-425803	3925230
Montana	31	10563647	5888054	16270505	Nebraska	31	83794149	1.99E+08	1.2E+09
Montana	32	2973382	-16458.2	14467611	Nebraska	32	1.98E+08	-2.9E+08	1.84E+09
Montana	33	4099722	302193.1	7707052	Nebraska	33	2.03E+08	14535900	2.54E+08
Montana	34	2179519	421054.4	3777077	Nebraska	34	80527781	-1.7E+07	8.53E+08
Nevada	01	176347.4	-147858	-59940.1	New Hampshire	01	273658.7	-132805	-1176.03
Nevada	02	6108131	-2623386	-3886023	New Hampshire	02	19223334	-6758510	2784370
Nevada	03	342129.7	-16795.7	-1402073	New Hampshire	03	1475828	-970432	-679676
Nevada	04	649125.4	382084	-3606768	New Hampshire	04	2088256	-1162809	-803066

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Nevada	05	364547.2	-201672	-759179	New Hampshire	05	2212359	473051.1	-3018834
Nevada	06	1728690	-71587.8	-2800012	New Hampshire	06	8158778	-1098723	82252.62
Nevada	07	361676	-120901	-444228	New Hampshire	07	2224858	-1389405	782336.4
Nevada	08	4369289	-217094	-6589099	New Hampshire	08	12381565	-807063	-2048606
Nevada	09	3118877	-1028579	1583352	New Hampshire	09	3402424	-2149006	18950206
Nevada	10	1168126	356913.5	623868.3	New Hampshire	10	11486125	98699.85	-2264359
Nevada	11	318777.4	446379.8	-1200691	New Hampshire	11	1493674	768415.7	-2493075
Nevada	12	1369249	373079.2	-3348530	New Hampshire	12	6743926	725933.3	-2183787
Nevada	13	3357452	28812079	-2.9E+07	New Hampshire	13	2432407	30462344	-3.1E+07
Nevada	14	1695409	-428235	-2615293	New Hampshire	14	6908887	-2347902	-2154621
Nevada	15	163372.6	54513.26	-539370	New Hampshire	15	849052.4	-327579	-346830
Nevada	16	237323.2	-441640	-612954	New Hampshire	16	1442176	-2365467	-322285
Nevada	17	1143465	-691621	-1342023	New Hampshire	17	6595428	-3139460	-706146
Nevada	18	2049232	-1571696	-5701647	New Hampshire	18	9140887	-6692307	3220507
Nevada	19	275675.7	-59015.9	-690033	New Hampshire	19	830799.5	-168630	-469045
Nevada	20	114707	-55902.4	-136391	New Hampshire	20	549876.6	-376992	-278174
Nevada	21	1365447	-844058	-1129413	New Hampshire	21	7961151	-3873394	-293856
Nevada	22	1558925	-343577	-4338919	New Hampshire	22	7872661	-2464693	-3182659
Nevada	23	2754046	2665712	-4117093	New Hampshire	23	12982374	9717534	-7058523
Nevada	24	1734343	2413419	-937215	New Hampshire	24	4198620	10553566	25033237
Nevada	25	4248404	-2779146	-1016334	New Hampshire	25	16445399	-9858414	-3030239
Nevada	26	3274880	-1966377	-4842742	New Hampshire	26	10121924	-5386111	-680418
Nevada	27	1103048	121708.6	-3321251	New Hampshire	27	4501354	-1035019	-794150
Nevada	28	2438641	5266609	-5814784	New Hampshire	28	11272390	14005852	-9841582
Nevada	29	907241.9	146703.7	345724.9	New Hampshire	29	3312762	560922.1	1731786
Nevada	30	405395.7	-203002	-918835	New Hampshire	30	1513830	-604537	-108953
Nevada	31	5410745	5115508	-1.3E+07	New Hampshire	31	18737475	9121286	-1E+07
Nevada	32	21980596	-4488336	21151354	New Hampshire	32	5240179	-5465191	44529838
Nevada	33	3029516	766007.2	-9629690	New Hampshire	33	6553580	-349973	283783.9
Nevada	34	1020662	243890.9	-2368752	New Hampshire	34	4610261	20566.44	-806654

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
New Jersey	01	35160319	-1.9E+07	1751922	New Mexico	01	1715403	1037761	-4392909
New Jersey	02	7.22E+08	-2.1E+08	-5.3E+08	New Mexico	02	47613815	-1.6E+07	-3.7E+07
New Jersey	03	34835809	-2E+07	-7370316	New Mexico	03	5671325	3560346	-3.7E+07
New Jersey	04	1.2E+08	-6.1E+07	-9.9E+07	New Mexico	04	12623194	-6461033	-6414908
New Jersey	05	64419418	-2.9E+07	-4.5E+07	New Mexico	05	1578532	620317.4	1795985
New Jersey	06	3.5E+08	-6.3E+07	-2.5E+08	New Mexico	06	26426353	-2768518	-2.5E+07
New Jersey	07	62978073	-2.5E+07	-5.2E+07	New Mexico	07	8019997	-4542915	-4440032
New Jersey	08	4.98E+08	-3.3E+07	-3.2E+08	New Mexico	08	50506935	-2552182	-4.8E+07
New Jersey	09	1.5E+08	-7E+07	-1.3E+08	New Mexico	09	437148.3	117669.7	2677460
New Jersey	10	3.09E+08	49219525	-2.6E+08	New Mexico	10	19579700	1514094	-1.8E+07
New Jersey	11	1.55E+08	55205009	61713263	New Mexico	11	31111969	34997087	-1.4E+08
New Jersey	12	2.78E+08	46518421	-2E+08	New Mexico	12	21374512	3520531	-2.1E+07
New Jersey	13	1.23E+08	1.24E+09	-1E+09	New Mexico	13	1186536	9265527	-1.2E+07
New Jersey	14	3.29E+08	-1E+08	-2.6E+08	New Mexico	14	16839320	-4780722	-1.5E+07
New Jersey	15	29577747	-1.4E+07	-2351616	New Mexico	15	5726034	-4610117	5092336
New Jersey	16	62822265	-9.9E+07	-4.5E+07	New Mexico	16	4768434	-6530390	-5238990
New Jersey	17	1.83E+08	-8.3E+07	-1.1E+08	New Mexico	17	20278877	-8324075	-792392
New Jersey	18	3.04E+08	-2.1E+08	-2E+08	New Mexico	18	15415639	-1.1E+07	-3.1E+07
New Jersey	19	37897917	-6239811	-3.3E+07	New Mexico	19	1660737	-225748	-1896719
New Jersey	20	29757681	-1.6E+07	-2.2E+07	New Mexico	20	1267659	-669011	-1034603
New Jersey	21	3.82E+08	-2E+08	-2.9E+08	New Mexico	21	38009796	-1.7E+07	-1.7E+07
New Jersey	22	3.41E+08	-9.8E+07	-2.5E+08	New Mexico	22	32300437	-7776912	-6.1E+07
New Jersey	23	4.53E+08	3.74E+08	-3.2E+08	New Mexico	23	37796385	29206111	-6.9E+07
New Jersey	24	1.57E+08	1.68E+08	-2E+08	New Mexico	24	305543.1	335422.2	7017502
New Jersey	25	7.45E+08	-3.6E+08	-6.7E+08	New Mexico	25	28973905	-1.7E+07	-2.5E+07
New Jersey	26	3.52E+08	-1.2E+08	-2.6E+08	New Mexico	26	26029742	-9306938	-2.7E+07
New Jersey	27	2.07E+08	-2.6E+07	-1.7E+08	New Mexico	27	18359589	-2977702	-9755821
New Jersey	28	5.15E+08	6.7E+08	-3E+08	New Mexico	28	35378044	49040554	-4.1E+07
New Jersey	29	81953237	9957135	-8.3E+07	New Mexico	29	6579326	821533.3	-6971029
New Jersey	30	1.12E+08	-6E+07	-6.6E+07	New Mexico	30	5721282	-1391676	-4736792

Now Lease $21.5.99E + 09.2.12E + 09.4E + 09. Now Maying 21.4$	0344117 20656757 -5.5E+07
New Jersey 31 5.88E+08 3.12E+08 -4E+08 New Mexico 31 4	0344117 20030737 -3.3E+07
New Jersey 32 6.5E+08 -1.2E+08 -1.1E+09 New Mexico 32	8077895 475617.2 -7506811
New Jersey 33 2.77E+08 3888256 -2.1E+08 New Mexico 33 1	9148737 530053.5 -2.8E+07
New Jersey 34 2.01E+08 32885971 -1.7E+08 New Mexico 34 1	3274163 1532167 -7995730
New York 01 7.69E+08 -6.6E+08 6.1E+08 N. Carolina 01 1	9983169 -513657 15995113
New York 02 9.82E+09 -5.7E+09 1.13E+10 N. Carolina 02	7.1E+08 -3.2E+08 8.64E+08
New York 03 6.66E+08 -5.5E+08 4.6E+08 N. Carolina 03 1	8386092 -6652221 6525549
New York 04 2.39E+09 -1.8E+09 8.26E+08 N. Carolina 04 6	4210048 -5.7E+07 72389638
New York 05 1.77E+09 -1.2E+09 8.7E+08 N. Carolina 05 7	2056633 -8.3E+07 1.3E+08
New York 06 5.08E+09 -1.4E+09 5.4E+09 N. Carolina 06 3	.31E+08 -5.6E+07 4E+08
New York 07 1E+09 -7.2E+08 8.49E+08 N. Carolina 07 9	9977387 -1E+08 66333060
New York 08 7.57E+09 -9.1E+08 8.94E+09 N. Carolina 08 5	.35E+08 14216272 6.43E+08
New York 09 2.74E+09 -1E+09 7.22E+08 N. Carolina 09 1	.53E+08 -2.1E+08 8.92E+08
New York 10 5.4E+09 33127500 6.29E+09 N. Carolina 10 2	.78E+08 1.18E+08 2.68E+08
New York 11 2.78E+09 2.31E+08 1.65E+09 N. Carolina 11 3	1530153 -3.5E+07 2.57E+08
New York 12 4.73E+09 8.69E+08 4.47E+09 N. Carolina 12 2	.16E+08 82810233 2.86E+08
New York 13 5.41E+09 3.99E+10 -4.5E+10 N. Carolina 13 1	.27E+08 1.87E+09 -1.7E+09
New York 14 5.61E+09 -3E+09 6.05E+09 N. Carolina 14 3	.15E+08 -1.8E+08 3.87E+08
New York 15 1.18E+09 -7.5E+08 1.57E+08 N. Carolina 15 2	1895507 -4.6E+07 303336
New York 16 9.46E+08 -1.9E+09 6.11E+08 N. Carolina 16 3	3855353 -9.9E+07 41136851
New York 17 4.53E+09 -3.2E+09 2.95E+09 N. Carolina 17 1	.92E+08 -1.2E+08 2.77E+08
New York 18 4.41E+09 -4.1E+09 4.52E+09 N. Carolina 18 2	.68E+08 -2.6E+08 3.45E+08
New York 19 5.78E+08 -1.1E+08 4.45E+08 N. Carolina 19 1	6896131 306802.7 25809328
New York 20 3.26E+08 -2.8E+08 2.89E+08 N. Carolina 20 1	2799463 -9371830 13464456
New York 21 5.31E+09 -3.8E+09 5.48E+09 N. Carolina 21	3.5E+08 -1.9E+08 4.27E+08
New York 22 5.5E+09 -2.7E+09 5.28E+09 N. Carolina 22 2	.97E+08 -1.1E+08 4.05E+08
New York 23 7.91E+09 7.5E+09 8.76E+09 N. Carolina 23 4	.08E+08 5.36E+08 5.43E+08
New York 24 2.04E+09 2.25E+09 4.59E+08 N. Carolina 24 -	4.8E+07 7.46E+08 2.47E+09
New York 25 1.09E+10 -9.3E+09 1.14E+10 N. Carolina 25 6	.94E+08 -3.6E+08 5.96E+08
New York 26 5.57E+09 -3.5E+09 5E+09 N. Carolina 26 2	.62E+08 -1.3E+08 2.73E+08

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
New York	27	3.31E+09	-1.1E+09	2.98E+09	N. Carolina	27	1.59E+08	-3.7E+07	2.81E+08
New York	28	1.04E+10	1.52E+10	8.16E+09	N. Carolina	28	3.12E+08	5.62E+08	7.71E+08
New York	29	1.21E+09	1.54E+08	8.47E+08	N. Carolina	29	1.47E+08	96943456	8.69E+08
New York	30	2.1E+09	-1.6E+09	1.29E+09	N. Carolina	30	52621736	-8815510	60254656
New York	31	9.85E+09	4.31E+09	1.01E+10	N. Carolina	31	4.46E+08	2.8E+08	6.5E+08
New York	32	3.63E+10	-1.6E+10	-7.3E+09	N. Carolina	32	2.55E+09	-1.5E+09	-2.7E+09
New York	33	4.46E+09	-1.9E+08	4.44E+09	N. Carolina	33	2.45E+08	35299573	3.48E+08
New York	34	3.27E+09	-1.6E+08	2.83E+09	N. Carolina	34	1.52E+08	8970382	2.54E+08
N. Dakota	01	639028.8	-293012	-412307	Ohio	01	15209064	-4198367	8188331
N. Dakota	02	6156603	-1600131	-1373420	Ohio	02	6.57E+08	-2.2E+08	-3E+08
N. Dakota	03	245487.8	-130695	-134747	Ohio	03	19767708	-1.2E+07	-5744261
N. Dakota	04	668897.9	-261063	-339777	Ohio	04	62580442	-3.9E+07	-1312754
N. Dakota	05	167328.7	19056.41	-287372	Ohio	05	23527944	-3097149	-2.3E+07
N. Dakota	06	2547959	-484860	-444305	Ohio	06	3E+08	-3.6E+07	-1.4E+08
N. Dakota	07	1254761	-732378	-95717.6	Ohio	07	46540234	-2.4E+07	-1.4E+07
N. Dakota	08	3672777	-196223	-963246	Ohio	08	4.39E+08	-1.7E+07	-1.8E+08
N. Dakota	09	3147258	-398273	-3697124	Ohio	09	2.31E+08	-6.8E+07	-5.8E+07
N. Dakota	10	1836329	394338.6	368875.3	Ohio	10	3.08E+08	69448158	8132000
N. Dakota	11	385753.3	267583.3	-863036	Ohio	11	35172551	24532620	-3.9E+07
N. Dakota	12	1584096	185631.6	-354490	Ohio	12	2.22E+08	43930130	-9.4E+07
N. Dakota	13	82625.42	607320.1	-598370	Ohio	13	4.97E+08	6.76E+09	-2.4E+09
N. Dakota	14	2642843	-803104	-1754629	Ohio	14	2.71E+08	-8.5E+07	-1.1E+08
N. Dakota	15	1196430	-989495	-308548	Ohio	15	23173849	-1.2E+07	-2.1E+07
N. Dakota	16	1010475	-1928787	-132353	Ohio	16	31152171	-5.7E+07	1741983
N. Dakota	17	2752679	-921483	-1661989	Ohio	17	2.42E+08	-1.1E+08	-1.2E+08
N. Dakota	18	1961902	-1213246	-250046	Ohio	18	2.83E+08	-1.9E+08	-6.5E+07
N. Dakota	19	98166.53	-12773	-42312.1	Ohio	19	25053650	-2524155	-6905029
N. Dakota	20	131346.1	-51806.4	-198629	Ohio	20	15707746	-9027727	282948.3
N. Dakota	21	2382819	-903648	95285.19	Ohio	21	3.16E+08	-1.5E+08	-1E+08
N. Dakota	22	1998752	-508955	-373073	Ohio	22	2.8E+08	-8.3E+07	-1.1E+08

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
N. Dakota	23	2657065	2049659	-537185	Ohio	23	3.99E+08	3.56E+08	-2.3E+08
N. Dakota	24	9063817	8808280	-1.1E+07	Ohio	24	2.52E+08	3.58E+08	-1.2E+08
N. Dakota	25	5611054	-2159930	-1036589	Ohio	25	6.47E+08	-3.6E+08	-3.6E+08
N. Dakota	26	2501619	-838437	-1304138	Ohio	26	2.93E+08	-1.3E+08	-1E+08
N. Dakota	27	1270016	-193554	-362729	Ohio	27	1.66E+08	-2.8E+07	-4.8E+07
N. Dakota	28	2105185	2020558	-191905	Ohio	28	3.52E+08	4.95E+08	-1.1E+08
N. Dakota	29	2969723	149085.5	-2565770	Ohio	29	1.16E+08	15033255	-4.2E+07
N. Dakota	30	332203.4	-159968	26159.61	Ohio	30	75764328	-3040554	-4.9E+07
N. Dakota	31	3346024	1184567	479592.4	Ohio	31	5.25E+08	2.89E+08	-2.7E+08
N. Dakota	32	12380570	-4340753	31397899	Ohio	32	3.63E+08	-9.7E+07	-1.4E+07
N. Dakota	33	1107807	68879.61	-39726.4	Ohio	33	2.27E+08	15031917	-8.4E+07
N. Dakota	34	1250342	164118.5	-611601	Ohio	34	1.55E+08	17796271	-6.3E+07
Oklahoma	01	222597.8	-316418	455427.6	Oregon	01	1270780	-610802	1034499
Oklahoma	02	13457094	-4325072	2399340	Oregon	02	93777018	-3.5E+07	43893510
Oklahoma	03	329933.5	-310115	828611.8	Oregon	03	2572303	-1718506	538150.2
Oklahoma	04	734261.4	-719972	2251434	Oregon	04	5952672	-4425364	3839077
Oklahoma	05	-97977.5	-817282	2246025	Oregon	05	3262398	-202840	-3469034
Oklahoma	06	4884505	-732607	877281.8	Oregon	06	48172127	-4736530	10304744
Oklahoma	07	860385.8	-515646	736846	Oregon	07	7613331	-5254567	6083246
Oklahoma	08	5818246	108147.9	3701046	Oregon	08	68504380	-304315	16758101
Oklahoma	09	3207053	-1229154	917911.7	Oregon	09	8801248	-1931914	9255302
Oklahoma	10	5303116	1369718	3969726	Oregon	10	48577855	8853890	1273664
Oklahoma	11	581662.9	-28540.2	1588853	Oregon	11	5933259	5499319	-9661886
Oklahoma	12	3605725	814881.7	1724811	Oregon	12	31146427	9362162	9857007
Oklahoma	13	3766935	29851508	-3.2E+07	Oregon	13	3.78E+08	6.68E+09	-6E+09
Oklahoma	14	4111194	-1402147	1703477	Oregon	14	38229291	-1.3E+07	12439999
Oklahoma	15	1835309	-853165	1248553	Oregon	15	931922.5	-685485	691354.1
Oklahoma	16	1059584	-2356399	-766054	Oregon	16	3609836	-7034729	2959774
Oklahoma	17	2832163	-1215181	-452032	Oregon	17	18726053	-9976107	24358479
Oklahoma	18	3143684	-2252244	1197268	Oregon	18	69048281	-5.5E+07	12047976

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik	
Oklahoma	19	661637.5	-73064.8	216368.3	Oregon	19	3724742	102309.2	-686162	
Oklahoma	20	321022	-210756	161937.6	Oregon	20	1718866	-1326177	1593639	
Oklahoma	21	4222274	-1981960	3419181	Oregon	21	43132428	-2.3E+07	32669224	
Oklahoma	22	3719893	-1055827	968773.8	Oregon	22	38426405	-1.4E+07	18918242	
Oklahoma	23	5521073	5638893	2740274	Oregon	23	73776967	75924560	-2.1E+07	
Oklahoma	24	5244969	5687557	-2291100	Oregon	24	22885929	33223563	-1.4E+07	
Oklahoma	25	11216707	-6987965	4428833	Oregon	25	87874658	-6.5E+07	39277314	
Oklahoma	26	5535780	-2542567	512229.5	Oregon	26	49402767	-2.5E+07	26285047	
Oklahoma	27	2595844	-473308	724802.6	Oregon	27	24547277	-6002543	8590682	
Oklahoma	28	5717704	9063761	2136575	Oregon	28	43805890	77747098	3193998	
Oklahoma	29	2263827	170871	159423.4	Oregon	29	13444682	2324420	-740756	
Oklahoma	30	558437.1	-293794	1326979	Oregon	30	4251657	-2743545	3879752	
Oklahoma	31	7465796	4099298	1733804	Oregon	31	1.13E+08	63997739	-1.6E+07	
Oklahoma	32	6844984	-3967143	13077563	Oregon	32	20917902	-7256875	25242203	
Oklahoma	33	3482318	-330961	2544925	Oregon	33	38611411	2252958	12407665	
Oklahoma	34	2167857	187191.8	877663	Oregon	34	22564621	1639672	7731065	
Pennsylvania	01	45376300	-1.5E+07	-1.9E+07	Rhode Island	01	128140.4	-246263	356224.4	
Pennsylvania	02	1.62E+09	-5.9E+08	-1.1E+09	Rhode Island	02	25081765	-7891872	2026235	
Pennsylvania	03	63984326	-2.8E+07	-6.2E+07	Rhode Island	03	317692.7	-188764	102653.2	
Pennsylvania	04	1.95E+08	-1.1E+08	-7.1E+07	Rhode Island	04	2379222	-1342319	-445236	
Pennsylvania	05	1.1E+08	-8.5E+07	16329115	Rhode Island	05	926021.7	37549.88	-1144729	
Pennsylvania	06	6.6E+08	-7.9E+07	-5.7E+08	Rhode Island	06	11563535	-1056574	-2555454	
Pennsylvania	07	1.21E+08	-6.1E+07	-4504717	Rhode Island	07	2385907	-1266517	42935.96	
Pennsylvania	08	9.35E+08	10338975	-1.1E+08	Rhode Island	08	15176330	220283.4	1222579	
Pennsylvania	09	6.24E+08	-2.2E+08	-5.7E+08	Rhode Island	09	6600003	-1861714	3518604	
Pennsylvania	10	5.27E+08	1.1E+08	-5.4E+07	Rhode Island	10	10118132	3151299	2871365	
Pennsylvania	11	2.6E+08	-324807	3.36E+08	Rhode Island	11	1203626	782375.8	-1158880	
Pennsylvania	12	6.03E+08	1.56E+08	1.85E+08	Rhode Island	12	7224261	1527739	1307038	
Pennsylvania	13	1.37E+09	1.06E+10	-1E+10	Rhode Island	13	48464988	4.33E+08	-4E+08	
Pennsylvania	-									

Pennsylvania152.35E+08-1.3E+081.62E+08Rhode Island15849713-695172-294760Pennsylvania1697835528-1.9E+08-4409742Rhode Island161102851-2060093-211266Pennsylvania175.79E+08-2.8E+08-1E+08Rhode Island178134337-36497272669983Pennsylvania184.74E+08-3.3E+08-2.2E+08Rhode Island1810974271-75456863923846Pennsylvania1943455535-5233302-1.4E+07Rhode Island19891074.9-37088-2072781Pennsylvania2033135898-1.8E+07-1.4E+07Rhode Island20210850.6-12677258379.5Pennsylvania217.12E+08-3.4E+08-4.4E+08Rhode Island2111112247-4943807803162.1Pennsylvania225.68E+08-1.6E+08-2.6E+08Rhode Island2210195085-242893447204.7Pennsylvania239.54E+081.05E+091.64E+08Rhode Island231318944613241116-76687.7	
Pennsylvania175.79E+08-2.8E+08-1E+08Rhode Island178134337-36497272669983Pennsylvania184.74E+08-3.3E+08-2.2E+08Rhode Island1810974271-75456863923846Pennsylvania1943455535-5233302-1.4E+07Rhode Island19891074.9-37088-2072781Pennsylvania2033135898-1.8E+07-1.4E+07Rhode Island20210850.6-12677258379.5Pennsylvania217.12E+08-3.4E+08-4.4E+08Rhode Island2111112247-4943807803162.1Pennsylvania225.68E+08-1.6E+08-2.6E+08Rhode Island2210195085-242893447204.7	
Pennsylvania184.74E+08-3.3E+08-2.2E+08Rhode Island1810974271-75456863923846Pennsylvania1943455535-5233302-1.4E+07Rhode Island19891074.9-37088-2072781Pennsylvania2033135898-1.8E+07-1.4E+07Rhode Island20210850.6-12677258379.5Pennsylvania217.12E+08-3.4E+08-4.4E+08Rhode Island2111112247-4943807803162.1Pennsylvania225.68E+08-1.6E+08-2.6E+08Rhode Island2210195085-242893447204.7	
Pennsylvania1943455535-5233302-1.4E+07Rhode Island19891074.9-37088-2072781Pennsylvania2033135898-1.8E+07-1.4E+07Rhode Island20210850.6-12677258379.5Pennsylvania217.12E+08-3.4E+08-4.4E+08Rhode Island2111112247-4943807803162.1Pennsylvania225.68E+08-1.6E+08-2.6E+08Rhode Island2210195085-242893447204.7	
Pennsylvania2033135898-1.8E+07-1.4E+07Rhode Island20210850.6-12677258379.5Pennsylvania217.12E+08-3.4E+08-4.4E+08Rhode Island2111112247-4943807803162.1Pennsylvania225.68E+08-1.6E+08-2.6E+08Rhode Island2210195085-242893447204.7	
Pennsylvania217.12E+08-3.4E+08-4.4E+08Rhode Island2111112247-4943807803162.1Pennsylvania225.68E+08-1.6E+08-2.6E+08Rhode Island2210195085-242893447204.7	
Pennsylvania 22 5.68E+08 -1.6E+08 -2.6E+08 Rhode Island 22 10195085 -2428934 47204.7	
Pennsylvania 23 9.54E+08 1.05E+09 1.64E+08 Rhode Island 23 13189446 13241116 -76687.7	
Pennsylvania 24 4.08E+08 5.96E+08 -2.6E+08 Rhode Island 24 5976625 10289763 1485175	
Pennsylvania 25 2.01E+09 -1.2E+09 -1.4E+09 Rhode Island 25 24726357 -1.4E+07 -2704739	
Pennsylvania 26 8.54E+08 -4.2E+08 -5.4E+08 Rhode Island 26 10612296 -5033395 3109083	
Pennsylvania 27 4.79E+08 -6.8E+07 -3.2E+08 Rhode Island 27 6081336 -863230 -969176	
Pennsylvania 28 1.58E+09 2.71E+09 1.19E+09 Rhode Island 28 9636323 13241353 5784851	
Pennsylvania 29 1.89E+08 34041282 -7.3E+07 Rhode Island 29 3624018 668143.8 238478.3	
Pennsylvania 30 2.72E+08 -1.3E+08 -1.2E+08 Rhode Island 30 2317130 -504144 -1102978	
Pennsylvania 31 1.29E+09 7.56E+08 -1E+09 Rhode Island 31 18641298 11288928 262359.1	
Pennsylvania 32 9E+09 -3.5E+09 -7.6E+09 Rhode Island 32 43919364 -1E+07 9813092	
Pennsylvania 33 5.17E+08 25433217 -1E+08 Rhode Island 33 7429451 779999.6 3538469	
Pennsylvania 34 4.39E+08 55426554 -3.2E+08 Rhode Island 34 5763338 779684.6 -950905	
S. Carolina 01 279567.9 -183809 1214068 S. Dakota 01 159143 -58112.7 243533.6	
S. Carolina 02 27840777 -7375042 56618574 S. Dakota 02 19563247 -5198318 15371227	
S. Carolina 03 485113.3 -538868 1097895 S. Dakota 03 542404.5 -382959 586784.2	
S. Carolina 04 2597910 -2315129 4076840 S. Dakota 04 2200440 -2098355 3636817	
S. Carolina 05 851146 -339975 296736.8 S. Dakota 05 1028812 -344171 101277.2	
S. Carolina 06 14082128 -2442060 21979812 S. Dakota 06 9437565 399302.5 6055975	
S. Carolina 07 4894984 -3262915 4340363 S. Dakota 07 1395801 -915843 1671033	
S. Carolina 08 20193855 876899.5 35648403 S. Dakota 08 13454592 1165607 7855803	
S. Carolina 09 28459300 -1.5E+07 1.37E+08 S. Dakota 09 4697606 -802640 5546779	
S. Carolina 10 16536102 3085267 24075056 S. Dakota 10 11749611 2861638 11965894	

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik	
S. Carolina	11	2347286	-965374	5612719	S. Dakota	11	1032531	100294.3	526256.8	
S. Carolina	12	9040812	2158325	21870198	S. Dakota	12	5979430	1677650	4143034	
S. Carolina	13	39435356	-5137951	-2E+08	S. Dakota	13	3625595	21194336	-2.1E+07	
S. Carolina	14	11321711	-5784411	26477442	S. Dakota	14	8688426	-3265111	4878185	
S. Carolina	15	10457747	-5794366	2344465	S. Dakota	15	238737.1	-100793	-108260	
S. Carolina	16	1395088	-2293865	1870120	S. Dakota	16	1934492	-3346748	4244677	
S. Carolina	17	9526073	-4110920	28487479	S. Dakota	17	2953638	-604707	2496295	
S. Carolina	18	13399239	-9916106	16528936	S. Dakota	18	8022575	-5190246	7843452	
S. Carolina	19	1045212	-275909	193673	S. Dakota	19	312614.8	-29178.7	299007	
S. Carolina	20	467694.3	-383211	742861.9	S. Dakota	20	460714.7	-249256	500158.2	
S. Carolina	21	13235701	-6422986	20160607	S. Dakota	21	13181663	-4662694	8450917	
S. Carolina	22	12370830	-4633527	17183387	S. Dakota	22	11237961	-3449523	10324522	
S. Carolina	23	18579957	19906905	34673779	S. Dakota	23	13528335	13419648	1624605	
S. Carolina	24	64999261	1.04E+08	3.21E+08	S. Dakota	24	2817244	3714071	-353282	
S. Carolina	25	29168538	-2.2E+07	56599688	S. Dakota	25	26602451	-1.5E+07	26087041	
S. Carolina	26	13999135	-6004680	25902406	S. Dakota	26	9826556	-6036237	13239346	
S. Carolina	27	8616266	-2901746	18604814	S. Dakota	27	5983614	-1365339	4991014	
S. Carolina	28	11016599	16318337	69859097	S. Dakota	28	7129742	9459435	10957042	
S. Carolina	29	14046971	7693111	87992732	S. Dakota	29	1415709	275603.2	414516.5	
S. Carolina	30	1157230	-684432	3445663	S. Dakota	30	365567.3	-75953.2	887408.7	
S. Carolina	31	24647677	10505747	40549185	S. Dakota	31	17728026	10730584	8826451	
S. Carolina	32	70831364	-6.2E+07	4.21E+08	S. Dakota	32	4993037	-3017533	57999408	
S. Carolina	33	11265034	74292.35	17540002	S. Dakota	33	8106210	-295425	5858757	
S. Carolina	34	7490156	-470324	15057793	S. Dakota	34	4605206	758431.2	3075912	
Tennessee	01	1756199	-2587033	5254179	Texas	01	3.41E+08	-3.2E+08	-2.5E+08	
Tennessee	02	99487774	-3.4E+07	74503142	Texas	02	1.47E+09	-4.9E+08	-6E+08	
Tennessee	03	9714344	-1E+07	10640539	Texas	03	93418358	-6.2E+07	41001444	
Tennessee	04	16034951	-1.2E+07	15198016	Texas	04	2.23E+08	-1.6E+08	69745198	
Tennessee	05	10144740	-2106303	-6467754	Texas	05	1.57E+08	-9.2E+07	22524018	
Tennessee	06	45619530	-2403601	25342246	Texas	06	7.34E+08	-8.3E+07	-3.7E+08	

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Tennessee	07	27976040	-1.6E+07	20853633	Texas	07	1.25E+08	-7.3E+07	73514375
Tennessee	08	65324451	3300183	51493564	Texas	08	1.07E+09	-3.4E+07	-5.9E+08
Tennessee	09	25757343	-5498561	7568172	Texas	09	1.67E+08	-4.3E+07	-2.5E+08
Tennessee	10	75338176	15007424	-7E+07	Texas	10	5.25E+08	1.47E+08	84101188
Tennessee	11	15289945	11794409	-2.4E+07	Texas	11	1.43E+08	67360557	-3.2E+07
Tennessee	12	41412749	6927764	15267071	Texas	12	5.04E+08	95831272	-2.3E+08
Tennessee	13	57928661	5.28E+08	-5.3E+08	Texas	13	-2.5E+09	-8.2E+09	1.08E+10
Tennessee	14	43339472	-1.9E+07	31611141	Texas	14	7.08E+08	-2.3E+08	-2.7E+08
Tennessee	15	40829244	-3.4E+07	54210482	Texas	15	3.19E+08	-1.9E+08	-7.2E+07
Tennessee	16	12686291	-2.3E+07	-905131	Texas	16	1.17E+08	-2.2E+08	49965260
Tennessee	17	27649873	-1.3E+07	23133891	Texas	17	4.76E+08	-2.2E+08	-1.3E+08
Tennessee	18	48285357	-3.9E+07	27161712	Texas	18	6.53E+08	-4.6E+08	-3.5E+07
Tennessee	19	7786386	-4485644	-1248691	Texas	19	54905636	-8382940	5997503
Tennessee	20	17082130	-1.6E+07	-5071635	Texas	20	75437547	-4.6E+07	8922992
Tennessee	21	46122282	-2.1E+07	36759090	Texas	21	9.71E+08	-4.6E+08	-4.3E+08
Tennessee	22	44407842	-1.3E+07	25019586	Texas	22	8.31E+08	-2.4E+08	-2.6E+08
Tennessee	23	64144837	69348181	20914146	Texas	23	8.65E+08	7.69E+08	-6.6E+08
Tennessee	24	38818414	55596530	-2.5E+07	Texas	24	89871564	2.44E+08	67997464
Tennessee	25	1.04E+08	-7E+07	1.11E+08	Texas	25	1.77E+09	-1E+09	-4.5E+08
Tennessee	26	47359812	-3E+07	43229210	Texas	26	5.65E+08	-2.6E+08	-8.4E+07
Tennessee	27	29935900	-7296566	16910999	Texas	27	3.62E+08	-6.9E+07	-9.3E+07
Tennessee	28	67755559	99175174	24633971	Texas	28	6.88E+08	9.21E+08	-2.8E+08
Tennessee	29	13991660	2772402	7532541	Texas	29	1.8E+08	20124599	-1.3E+08
Tennessee	30	8019101	-2825609	13309388	Texas	30	1.92E+08	-8.5E+07	59330032
Tennessee	31	80894102	49219755	31642975	Texas	31	1.06E+09	5.96E+08	-7.2E+08
Tennessee	32	66978480	-2.9E+07	40541966	Texas	32	1.48E+09	-3.3E+08	-8E+08
Tennessee	33	46961197	3588688	-1811310	Texas	33	5.33E+08	13231916	-1.9E+08
Tennessee	34	30676093	1990616	9438069	Texas	34	3.59E+08	37527614	-1.4E+08
Utah	01	802456.8	-267763	-838987	Vermont	01	369437.7	358884.5	404930.6
Utah	02	34301492	-1.2E+07	-6683092	Vermont	02	22074540	-6111661	-2.7E+07

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik	
Utah	03	1024392	-848716	2548893	Vermont	03	632883.1	-242368	-868783	
Utah	04	4724728	-2980643	833812.9	Vermont	04	2286460	-952081	-86533.2	
Utah	05	2948719	-1042188	-890699	Vermont	05	1115420	358875.8	-2544248	
Utah	06	15046040	-1187187	-4162071	Vermont	06	15323648	-1101022	-1.8E+07	
Utah	07	2285370	-1208466	598197.2	Vermont	07	3433712	-1124379	-6589648	
Utah	08	20394444	-85363.1	-6090017	Vermont	08	17080750	-1003519	-2.5E+07	
Utah	09	3176733	-837107	3958202	Vermont	09	7000483	341245.9	-5690574	
Utah	10	35793195	9628473	-5164648	Vermont	10	8378433	1109104	-8557238	
Utah	11	4977424	1210377	-174178	Vermont	11	2059827	1734047	-4176060	
Utah	12	12755843	2690660	-3608293	Vermont	12	9772950	1645011	-1.1E+07	
Utah	13	15768302	87457112	-1E+08	Vermont	13	29747264	1.95E+08	-1.8E+08	
Utah	14	12069327	-4114765	-32226.5	Vermont	14	13338798	-2786789	-1.9E+07	
Utah	15	841548.3	-625595	80828.77	Vermont	15	464767	-302774	-122154	
Utah	16	2635705	-4993923	-2729278	Vermont	16	1739652	-3591510	-1882667	
Utah	17	8010146	-4970927	-6029554	Vermont	17	7763835	-3431266	-1.3E+07	
Utah	18	14427914	-1E+07	2504983	Vermont	18	17248574	-1E+07	-1.2E+07	
Utah	19	8106030	-1117965	474926.8	Vermont	19	7849046	-238213	-864844	
Utah	20	1594060	-1007875	-121604	Vermont	20	3047891	-1358704	-1342140	
Utah	21	15671371	-7957014	-7699946	Vermont	21	10165922	-3903041	-1.2E+07	
Utah	22	14095842	-3890700	-6011906	Vermont	22	11021594	-1872090	-1.6E+07	
Utah	23	21276367	20259556	-9808110	Vermont	23	14981948	10441290	-2.7E+07	
Utah	24	3742822	6701283	7322342	Vermont	24	2402923	3432137	-969186	
Utah	25	40927082	-2.4E+07	9267648	Vermont	25	22979728	-1E+07	-3.2E+07	
Utah	26	19009524	-8908125	-3895327	Vermont	26	12770159	-5137650	-1.4E+07	
Utah	27	10945083	-1706983	-3092565	Vermont	27	7634964	-684269	-7604786	
Utah	28	23963237	34511076	-3734369	Vermont	28	8430177	10227749	-1.1E+07	
Utah	29	3984011	394421.3	-22770	Vermont	29	3477467	529949	-2601412	
Utah	30	2881008	-1034281	660090.5	Vermont	30	511179.4	-222108	-174538	
Utah	31	30980194	19583900	-1.5E+07	Vermont	31	22778739	12567406	-3.7E+07	
Utah	32	10286577	-3171088	57131186	Vermont	32	29586358	-1.1E+07	56984515	

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Utah	33	11335619	745512.3	-5153159	Vermont	33	10998249	518296.7	-1.6E+07
Utah	34	9549660	1068816	-3078730	Vermont	34	6861867	1210686	-6426970
Virginia	01	16486773	-5778376	7243728	Washington	01	21528654	-7892551	3211146
Virginia	02	2.44E+08	-7.6E+07	-6713180	Washington	02	8.07E+08	-2.8E+08	2.1E+08
Virginia	03	15356817	-1.1E+07	11335148	Washington	03	30118302	-714545	-5625007
Virginia	04	35539357	-1.8E+07	4799412	Washington	04	76974678	-4.6E+07	-1.2E+07
Virginia	05	17009759	-5351666	4441816	Washington	05	27340785	-6295273	-1.9E+07
Virginia	06	1.47E+08	-1.6E+07	-1.1E+07	Washington	06	3.38E+08	-4.4E+07	56971141
Virginia	07	32632288	-1.8E+07	11882646	Washington	07	1.69E+08	-9.5E+07	-6.2E+07
Virginia	08	2.21E+08	-6518054	-8.4E+07	Washington	08	5.54E+08	-1.1E+07	1.2E+08
Virginia	09	1.72E+08	-4.3E+07	-7.9E+07	Washington	09	1.36E+08	-3.7E+07	53903449
Virginia	10	2.13E+08	40378831	11253513	Washington	10	1.61E+09	2.31E+08	-8E+08
Virginia	11	2.51E+08	58246721	-1.3E+08	Washington	11	2.28E+08	28585122	99166910
Virginia	12	2.1E+08	34114985	-1.4E+08	Washington	12	2.72E+08	49501671	58444991
Virginia	13	3.18E+08	1.64E+09	-4.4E+09	Washington	13	64709682	8.03E+08	-8.1E+08
Virginia	14	1.52E+08	-5.3E+07	-3802064	Washington	14	2.55E+08	-8.8E+07	17925023
Virginia	15	10227639	-5626847	-3826595	Washington	15	28817338	-9062862	-2.8E+07
Virginia	16	19646383	-3.5E+07	-8407004	Washington	16	32781959	-5.9E+07	9027445
Virginia	17	62926963	-2.3E+07	11992035	Washington	17	1.32E+08	-6.1E+07	-8715267
Virginia	18	1.19E+08	-8.4E+07	11971003	Washington	18	2.98E+08	-2.2E+08	96773787
Virginia	19	22821472	-3764294	10654680	Washington	19	25464254	-4071825	-8284815
Virginia	20	12133764	-6735398	-2861700	Washington	20	17810074	-1E+07	-2248018
Virginia	21	1.17E+08	-5E+07	19063776	Washington	21	3.73E+08	-1.9E+08	1.1E+08
Virginia	22	1.42E+08	-4.4E+07	-4.5E+07	Washington	22	4.08E+08	-1.3E+08	1.52E+08
Virginia	23	2.79E+08	2.38E+08	-1.8E+08	Washington	23	6.02E+08	5.35E+08	-1E+08
Virginia	24	1.42E+08	2.06E+08	-3.1E+07	Washington	24	1.84E+08	2.73E+08	71850903
Virginia	25	2.44E+08	-1.4E+08	58351307	Washington	25	6.99E+08	-4.5E+08	1.8E+08
Virginia	26	2.06E+08	-1E+08	-7.8E+07	Washington	26	3.04E+08	-1.6E+08	2E+08
Virginia	27	1.23E+08	-2.1E+07	-6.6E+07	Washington	27	1.83E+08	-3.8E+07	11664528
Virginia	28	6.71E+08	8.97E+08	-1.1E+09	Washington	28	5.93E+08	8E+08	12369868

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik
Virginia	29	77095349	12746955	5801562	Washington	29	83317040	14220907	14528652
Virginia	30	26913986	-1.1E+07	28725201	Washington	30	84700547	-4.2E+07	-2.2E+07
Virginia	31	3.59E+08	1.93E+08	-1.8E+08	Washington	31	6.5E+08	3.17E+08	1.82E+08
Virginia	32	2.51E+08	-6.6E+07	61797599	Washington	32	2.07E+08	-7.4E+07	2.03E+08
Virginia	33	1.78E+08	-2254391	-6.6E+07	Washington	33	3.08E+08	2845067	68068925
Virginia	34	78217396	7382635	-1481516	Washington	34	1.64E+08	13513353	23835992
West Virginia	01	97985.3	3612.588	4462.831	Wisconsin	01	21666501	-1.8E+07	9399430
West Virginia	02	3703907	-1126345	-718544	Wisconsin	02	3.25E+08	-1E+08	-6E+07
West Virginia	03	149386.4	-137407	-53025.3	Wisconsin	03	17842784	-1.4E+07	32559254
West Virginia	04	555030.8	-399983	333844.1	Wisconsin	04	49801672	-3.5E+07	55151881
West Virginia	05	128869.5	-60170.5	-11391.7	Wisconsin	05	18091555	-8551750	24028585
West Virginia	06	1955848	-139164	-279863	Wisconsin	06	1.99E+08	-1.1E+07	16000519
West Virginia	07	348826.7	-161534	-422529	Wisconsin	07	56578662	-3E+07	-2746932
West Virginia	08	2328487	26699.68	-552601	Wisconsin	08	2.56E+08	1109370	-8.5E+07
West Virginia	09	2019195	-925634	-742678	Wisconsin	09	1.28E+08	-2.5E+07	73210353
West Virginia	10	1255023	230875	-151631	Wisconsin	10	4.26E+08	65615435	-3.5E+08
West Virginia	11	513417.7	58585.25	-220597	Wisconsin	11	1.43E+08	64552289	-1.4E+08
West Virginia	12	1196963	225468.6	-67238.9	Wisconsin	12	1.58E+08	31950244	-2.7E+07
West Virginia	13	347813.8	9334625	-7549217	Wisconsin	13	18528142	2.62E+08	-2.4E+08
West Virginia	14	1958212	-661208	-176089	Wisconsin	14	1.48E+08	-5E+07	-2.6E+07
West Virginia	15	271167.3	-176233	-171258	Wisconsin	15	7919136	-5332817	24585871
West Virginia	16	232841.8	-437087	92031.26	Wisconsin	16	32841566	-6E+07	-1.7E+07
West Virginia	17	963936.2	-422112	-160306	Wisconsin	17	85512326	-3.5E+07	17298625
West Virginia	18	2052698	-1379657	537315.7	Wisconsin	18	1.98E+08	-1.4E+08	-2.7E+07
West Virginia	19	146677.9	-25266.9	-36469	Wisconsin	19	41346727	-6965357	-3.5E+07
West Virginia	20	125356.3	-77040.4	64389.28	Wisconsin	20	13656334	-6825578	-1.4E+07
West Virginia	21	1533428	-671002	-91652.9	Wisconsin	21	1.88E+08	-8E+07	-2.1E+07
West Virginia	22	1403508	-383124	-477835	Wisconsin	22	2.12E+08	-5.3E+07	-9.8E+07
West Virginia	23	1968578	1830170	-520851	Wisconsin	23	2.78E+08	2.58E+08	-1.8E+08
West Virginia	24	2074258	2950252	-1886173	Wisconsin	24	2.17E+08	3.12E+08	3.38E+08

State	Topic	NSik	IMik	RSik	State	Topic	NSik	IMik	RSik	
West Virginia	25	3098763	-1941618	1326836	Wisconsin	25	3.29E+08	-2.1E+08	-2.1E+07	
West Virginia	26	1579239	-848841	198316.4	Wisconsin	26	1.88E+08	-9.2E+07	-2.5E+07	
West Virginia	27	1137768	-229474	433839.3	Wisconsin	27	1.13E+08	-2.4E+07	26697643	
West Virginia	28	1894387	2348650	276073.3	Wisconsin	28	2.73E+08	3.46E+08	-2.6E+07	
West Virginia	29	1161867	153740	-787604	Wisconsin	29	57033267	11475579	28853651	
West Virginia	30	196012.3	-72456.9	-18936	Wisconsin	30	27894647	-9807681	20010546	
West Virginia	31	2821152	1533477	-681316	Wisconsin	31	3.71E+08	2.16E+08	-9.5E+07	
West Virginia	32	5481522	-2064232	9017639	Wisconsin	32	4.63E+08	-9.3E+07	19156304	
West Virginia	33	1437628	8434.802	172849.2	Wisconsin	33	1.55E+08	7708896	-3.9E+07	
West Virginia	34	967412.9	93856.26	-68505.2	Wisconsin	34	1.09E+08	9804064	-6731052	
Wyoming	01	13462348	-6538222	20614262						
Wyoming	02	995774.3	-755729	3882659						
Wyoming	03	151783.1	-94880.7	-226438						
Wyoming	04	745468.9	-270388	-698218						
Wyoming	05	251148.1	-211971	-97919.6						
Wyoming	06	1112000	-39299.4	835616.3						
Wyoming	07	68709.84	-60809	208482.3						
Wyoming	08	1251775	369182.3	3534857						
Wyoming	09	27859.37	-34075.4	3067604						
Wyoming	10	568128.2	734669.6	4350483						
Wyoming	11	347917.2	41691.89	298876.4						
Wyoming	12	2172835	401192.3	1397079						
Wyoming	13	3831341	50186029	-4.7E+07						
Wyoming	14	810739	-389239	1261213						
Wyoming	15	44397.11	-80343.8	432717.4						
Wyoming	16	310771.8	-393854	-342774						
Wyoming	17	102419.6	-104040	856054.7						
Wyoming	18	789654.5	-623850	898864.1						
Wyoming	19	380684.6	-38640.6	-673380						
Wyoming	20	256597.9	-162058	-40785.5						

State	Topic	NSik	IMik	RSik	Sta	ate	ate	ate Topic	ate Topic NSik	ate Topic NSik IMik
Wyoming	21	739157.3	-336679	335366.6				_	_	-
Wyoming	22	982616.5	-318187	1479011						
Wyoming	23	1487998	2615364	4856816						
Wyoming	24	-933559	2146056	17534686						
Wyoming	25	354006	-964394	3464845						
Wyoming	26	1238465	-938109	561354.8						
Wyoming	27	878990.3	-127326	411479.9						
Wyoming	28	4090227	8064984	-1908986						
Wyoming	29	123239.1	132569.3	2575145						
Wyoming	30	214830.8	-11101.5	-518897						
Wyoming	31	2301061	2245317	1966424						
Wyoming	32	35275.43	-83161.8	3200369						
Wyoming	33	1210649	-59776.8	613593.3						
Wyoming	34	1037103	92142.19	105684.3						

Appendix D

LDA Gamma Table Counts

Topic	Q2 2013	Q3 2013	Q4 2013	Q1 2014	Q2 2014	Q3 2014	Q4 2014
1	23.28	25.19	26.70	22.95	21.42	20.61	24.40
2	524.14	498.34	531.56	521.16	523.32	529.29	540.23
3	25.33	24.56	25.92	32.59	30.87	29.15	40.45
4	100.68	103.79	127.26	135.15	141.69	149.83	171.77
5	36.42	39.78	44.60	49.04	56.87	57.24	80.39
6	9.78	8.92	9.20	10.78	10.60	10.55	13.38
7	54.09	52.64	50.46	52.10	55.12	56.98	54.73
8	33.46	31.23	33.02	32.55	32.72	35.74	39.68
9	141.96	151.32	165.15	163.62	156.84	143.17	162.96
10	61.79	61.33	65.02	67.02	68.78	72.84	79.48
11	62.61	66.60	75.55	77.50	80.50	82.38	95.93
12	16.50	16.65	18.58	19.40	19.52	19.89	25.48
13	21.13	18.48	23.50	24.51	27.70	29.80	34.57
14	38.39	37.11	36.74	42.38	41.08	45.31	49.11
15	68.72	69.16	82.88	86.14	87.46	90.61	86.85
16	314.44	306.63	304.31	278.40	270.54	222.80	195.87
17	28.82	29.63	33.21	32.24	32.65	32.64	41.71
18	201.16	201.06	207.73	211.25	200.58	190.57	203.84
19	116.77	117.30	129.18	129.30	125.47	129.02	144.79
20	225.17	234.10	258.97	261.05	261.07	262.57	297.43
21	152.19	140.96	155.17	153.09	147.40	150.96	158.72
22	55.67	58.09	63.41	65.36	65.55	62.08	60.02
23	3.58	3.98	3.26	4.58	4.49	4.43	5.02
24	148.99	148.63	179.08	184.07	186.73	194.47	233.87
25	57.60	54.75	63.14	63.35	60.36	61.09	67.52
26	172.40	191.17	201.08	192.10	193.55	196.29	195.40
27	29.79	32.62	46.62	48.24	51.02	54.32	75.91
28	38.87	42.97	46.61	40.85	44.96	50.41	62.17
29	126.87	132.25	145.09	152.00	156.54	158.16	186.48
30	51.39	50.32	47.21	52.13	51.82	50.47	57.45
31	52.70	49.37	58.75	53.43	51.97	59.30	79.55
32	171.44	171.29	192.07	188.81	200.29	198.54	219.59
33	32.34	33.35	38.56	41.29	42.78	42.60	55.69
34	4.54	4.44	5.40	6.58	6.73	7.88	12.54

Table D.1: Topics by quarter, 2013-2014, all investors

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.13 26.4 16.30 506.8 40.56 39.2 71.88 191.3 87.58 85.8 20.32 22.6 50.90 49.8	5507.28238.626187.00688.22	26.54 523.89 40.69 185.08 97.16	26.95 546.08 40.92	28.13 554.90 44.19	30.19 531.17	28.33 543.47
3 4 4 17 5 8 6 2 7 5 8 3 9 16	40.56 39.2 71.88 191.3 87.58 85.8 20.32 22.6	2 38.62 6 187.00 6 88.22	40.69 185.08	40.92			543.47
4 17 5 8 6 2 7 5 8 3 9 16	71.88191.387.5885.820.3222.6	6 187.00 6 88.22	185.08		44.19		
5 8 6 2 7 5 8 3 9 16	87.5885.820.3222.6	6 88.22		170 55	/	48.77	55.10
6 22 7 55 8 33 9 16	20.32 22.6		07 14	178.55	160.10	149.76	133.41
7 5 8 3 9 16		0 02.12	97.10	97.66	101.11	108.55	151.89
8 3 9 16	50.90 49.8	8 23.12	25.03	20.82	25.11	21.92	21.07
9 16		3 47.13	44.43	49.01	48.57	48.61	51.43
	39.02 35.3	6 40.03	44.28	46.07	47.61	47.69	53.99
10 8	64.33 156.3	5 149.01	160.29	157.56	154.78	157.18	172.26
	83.29 82.7	2 85.98	85.62	89.65	84.94	86.48	93.87
11 9	99.89 94.2	5 91.63	106.29	103.10	97.14	101.98	107.83
12 2	28.80 28.8	9 25.88	22.06	18.83	20.95	16.23	14.71
13 3	31.41 32.3	2 28.29	28.73	29.35	27.62	31.14	30.50
14 4	47.98 48.8	1 47.90	46.53	43.53	45.84	43.58	43.71
15 8	87.00 87.9	6 81.17	83.66	82.54	90.57	87.94	91.83
16 16	69.74 135.3	0 93.49	72.15	79.01	75.34	74.03	75.51
17 4	43.43 45.4	5 45.75	48.42	48.97	49.52	47.34	51.45
18 19	97.96 190.3	9 178.98	164.27	166.64	168.18	156.14	155.66
19 14	47.56 151.3	3 153.79	152.52	146.15	151.20	149.44	145.89
20 29	93.93 298.6	3 293.38	283.69	275.65	264.32	262.36	288.36
21 15	58.67 155.5	6 146.09	142.56	122.91	112.74	112.66	123.31
22 5	59.43 60.2	7 59.94	58.63	54.05	60.04	60.76	64.28
23	5.16 5.2	1 5.81	7.35	8.82	8.43	11.32	15.15
	38.37 246.9	8 253.88	295.12	301.59	312.74	318.78	372.18
25 6	65.41 68.8	6 73.60	70.74	66.61	59.62	61.13	69.52
26 17	73.34 178.8	1 150.48	129.11	91.12	75.38	58.07	36.58
27 8	80.25 82.2	7 75.56	86.01	78.39	79.13	87.30	86.31
28 6	62.31 75.4	2 89.68	131.34	120.93	129.94	148.62	146.65
29 20	03.02 204.0		235.16	231.49	232.18	232.93	252.08
30 5	59.76 56.3	1 60.65	63.52	62.56	66.39	61.51	59.17
31 9	95.24 108.4	8 156.89	228.83	240.11	222.59	233.94	228.07
	10.18 205.9		201.25	212.73	219.33	215.00	231.19
33 5	51.17 41.5	8 46.17	48.70	41.19	35.86	39.59	42.21
34 1		8 28.32		50.48	66.51	82.86	98.05

Table D.2: Topics by quarter, 2015-2016, all investors

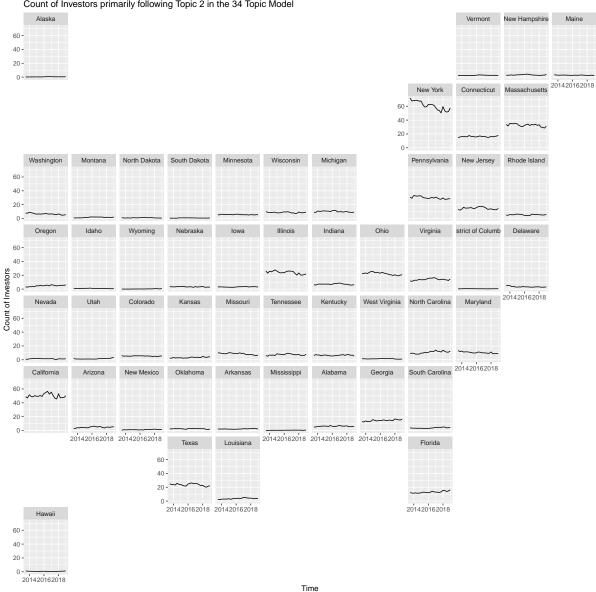

Topic	Q1 2017	Q2 2017	Q3 2017	Q4 2017	Q1 2018	Q2 2018	Q3 2018	Q4 2018
1	27.30	25.32	24.35	26.40	23.24	28.09	27.07	26.59
2	516.69	490.06	474.48	525.98	480.04	464.32	471.88	508.19
3	55.84	59.95	62.50	73.66	74.86	81.66	83.73	94.92
4	121.44	96.19	82.03	80.20	71.90	66.18	66.38	69.51
5	176.62	222.77	238.15	259.60	267.49	260.67	260.97	256.51
6	21.96	23.24	22.44	21.42	22.02	21.59	22.04	24.72
7	55.38	53.28	55.31	59.92	55.16	55.66	53.22	57.53
8	55.81	56.19	42.63	42.17	39.32	38.37	35.12	35.07
9	167.90	173.77	174.70	182.46	182.08	162.74	150.53	152.56
10	96.29	95.63	96.78	100.97	99.12	95.22	97.28	108.95
11	114.22	115.64	116.82	127.19	128.91	120.49	115.29	122.39
12	15.12	13.60	12.59	14.24	13.35	13.80	13.21	17.49
13	30.80	29.40	30.85	33.59	32.89	29.60	33.17	39.17
14	42.89	42.69	39.30	39.86	37.75	31.90	32.40	34.15
15	88.69	85.27	83.70	82.24	77.72	76.29	78.18	79.92
16	69.98	59.84	58.90	60.33	58.14	56.98	53.38	55.93
17	47.48	46.09	49.04	55.66	55.90	56.49	53.74	57.51
18	145.68	139.61	124.85	130.97	125.08	111.38	112.29	114.10
19	143.82	144.71	143.91	155.47	154.01	157.54	154.36	161.59
20	265.34	252.92	248.15	251.82	235.83	226.80	220.00	227.90
21	111.46	107.90	101.63	104.71	101.60	90.67	89.19	83.76
22	62.09	57.84	57.89	61.54	57.80	52.81	51.35	56.24
23	16.36	20.22	55.64	86.46	125.99	152.78	172.37	198.21
24	384.19	398.24	404.35	483.80	477.37	455.02	455.27	528.56
25	68.77	64.23	61.75	66.34	60.22	61.59	55.23	59.91
26	30.51	26.37	17.83	19.98	18.43	14.82	13.49	14.15
27	88.36	90.44	94.44	98.13	97.82	96.57	98.16	109.14
28	164.97	179.88	183.62	207.48	221.05	244.46	236.75	235.23
29	249.24	247.97	247.60	292.55	311.47	359.03	369.76	449.72
30	58.49	57.42	55.08	51.36	54.26	56.41	50.57	60.80
31	239.51	245.86	236.46	253.31	247.29	251.41	260.68	299.54
32	215.92	202.15	205.74	231.47	239.90	249.66	241.78	253.67
33	40.13	42.39	42.95	46.24	44.00	40.19	42.33	44.43
34	118.76	127.90	139.54	151.45	154.00	148.79	144.84	135.91

Table D.3: Topics by quarter, 2017-2018, all investors

Count of Investors primarily following Topic 1 in the 34 Topic Model

Figure D.1: Count of firms by highest likely topic in the 34 topic LDA for topic 1

Count of Investors primarily following Topic 2 in the 34 Topic Model

Figure D.2: Count of firms by highest likely topic in the 34 topic LDA for topic 2

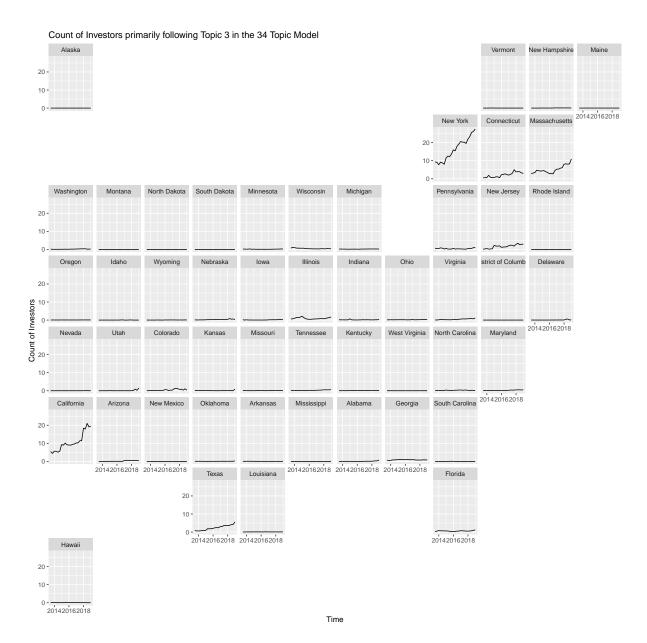
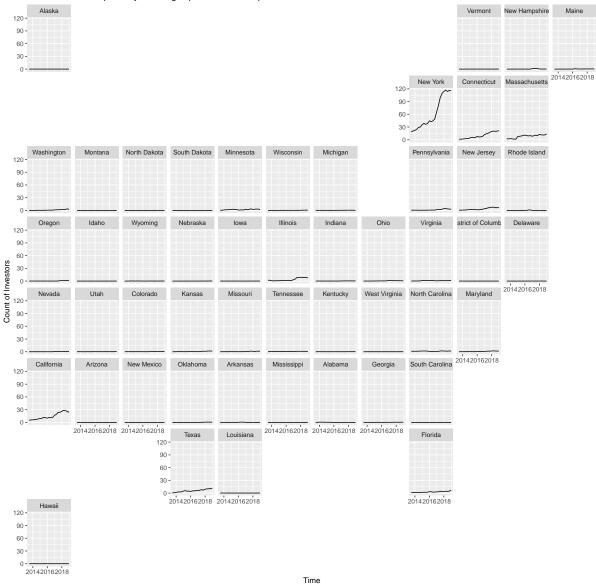



Figure D.3: Count of firms by highest likely topic in the 34 topic LDA for topic 3

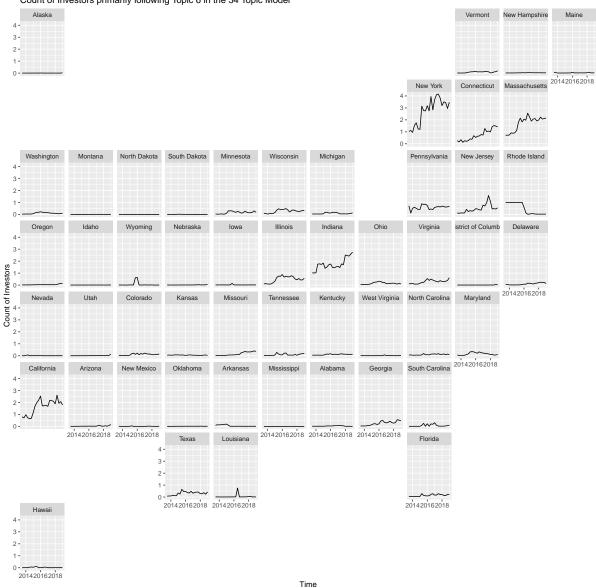

Count of Investors primarily following Topic 4 in the 34 Topic Model

Figure D.4: Count of firms by highest likely topic in the 34 topic LDA for topic 4

Count of Investors primarily following Topic 5 in the 34 Topic Model

Figure D.5: Count of firms by highest likely topic in the 34 topic LDA for topic 5

Count of Investors primarily following Topic 6 in the 34 Topic Model

Figure D.6: Count of firms by highest likely topic in the 34 topic LDA for topic 6

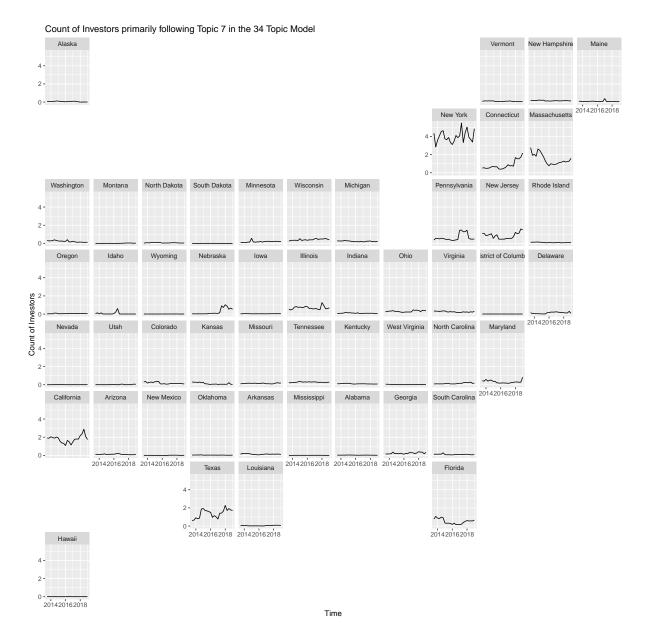



Figure D.7: Count of firms by highest likely topic in the 34 topic LDA for topic 7

Count of Investors primarily following Topic 8 in the 34 Topic Model

Figure D.8: Count of firms by highest likely topic in the 34 topic LDA for topic 8

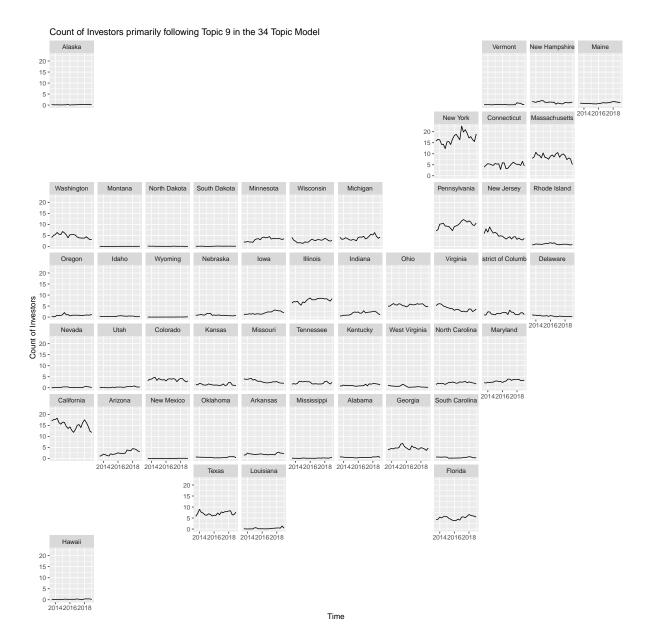
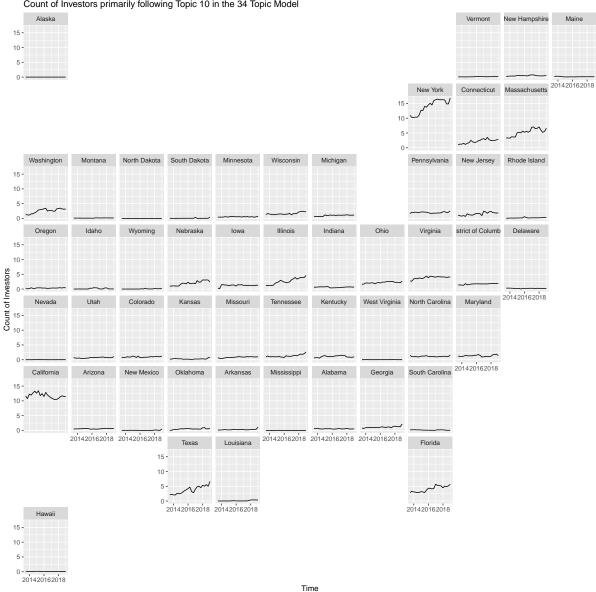
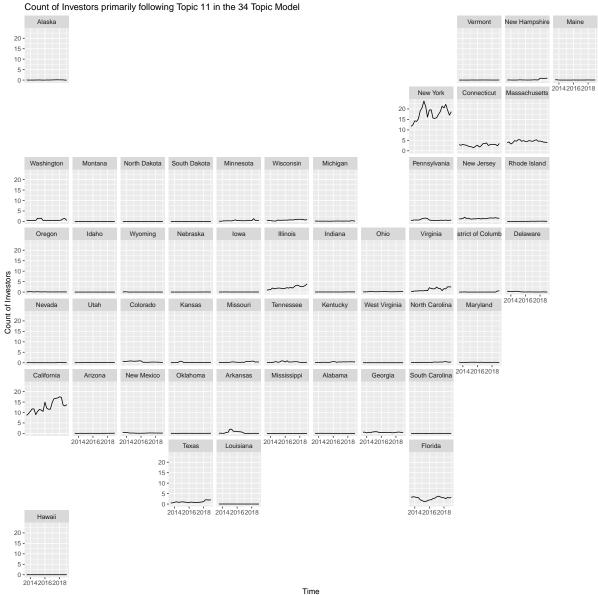




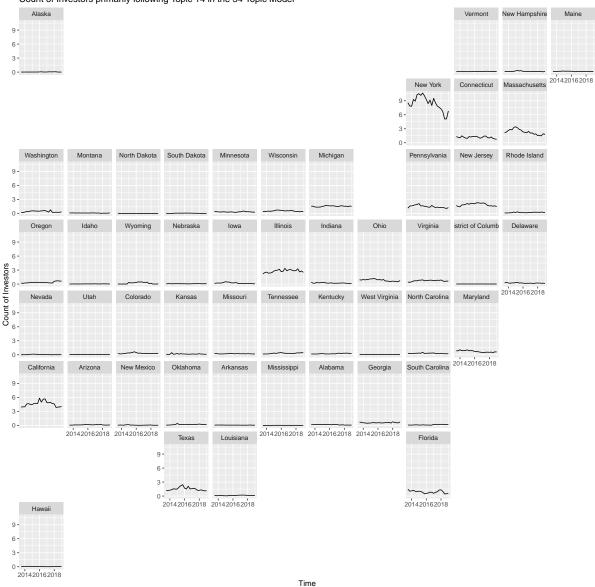
Figure D.9: Count of firms by highest likely topic in the 34 topic LDA for topic 9

Count of Investors primarily following Topic 10 in the 34 Topic Model

Figure D.10: Count of firms by highest likely topic in the 34 topic LDA for topic 10

Count of Investors primarily following Topic 11 in the 34 Topic Model

Figure D.11: Count of firms by highest likely topic in the 34 topic LDA for topic 11



Count of Investors primarily following Topic 12 in the 34 Topic Model

Figure D.12: Count of firms by highest likely topic in the 34 topic LDA for topic 12

Figure D.13: Count of firms by highest likely topic in the 34 topic LDA for topic 13

Count of Investors primarily following Topic 14 in the 34 Topic Model

Figure D.14: Count of firms by highest likely topic in the 34 topic LDA for topic 14

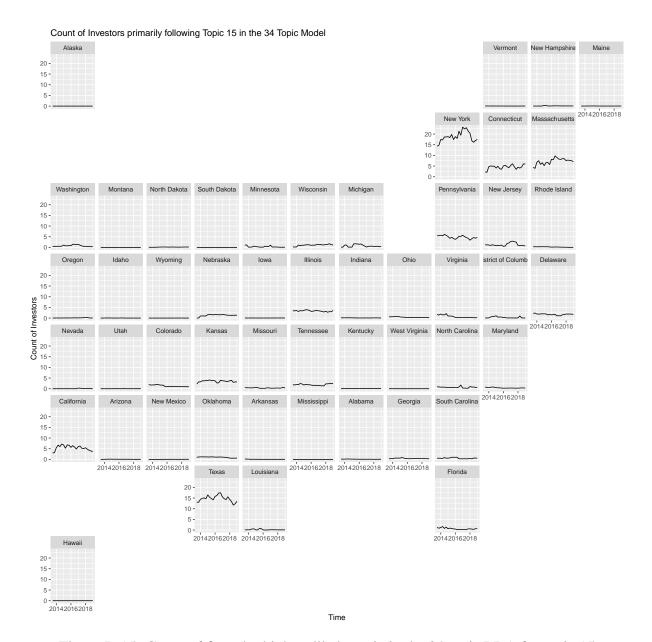
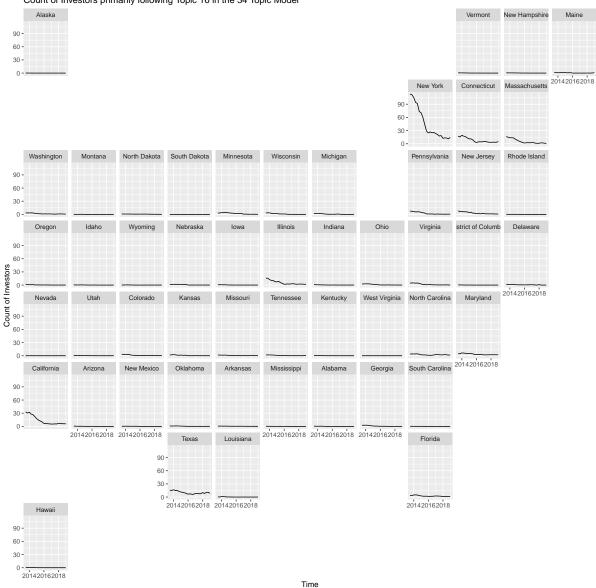



Figure D.15: Count of firms by highest likely topic in the 34 topic LDA for topic 15

Count of Investors primarily following Topic 16 in the 34 Topic Model

Figure D.16: Count of firms by highest likely topic in the 34 topic LDA for topic 16

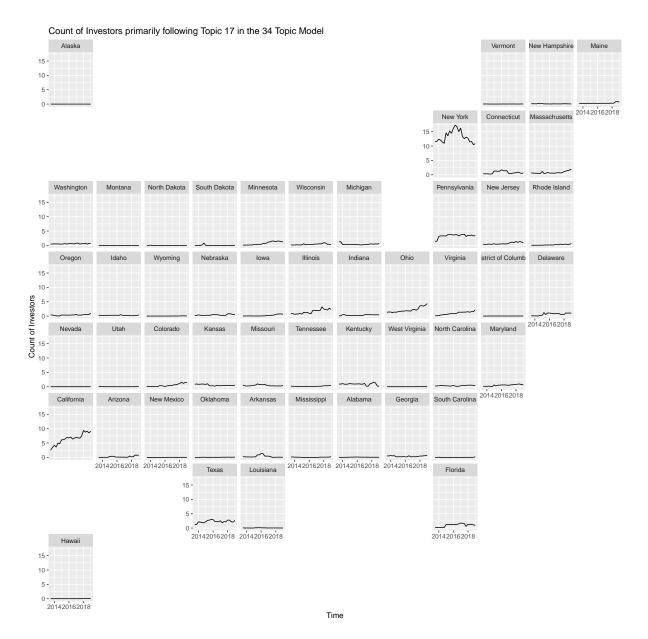
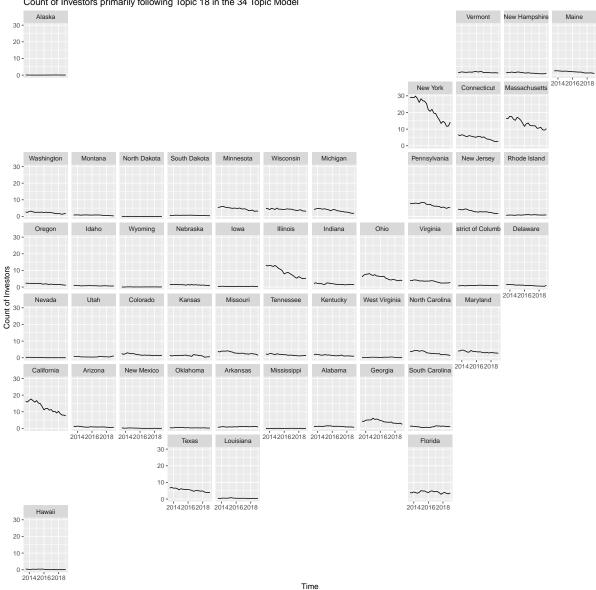



Figure D.17: Count of firms by highest likely topic in the 34 topic LDA for topic 17

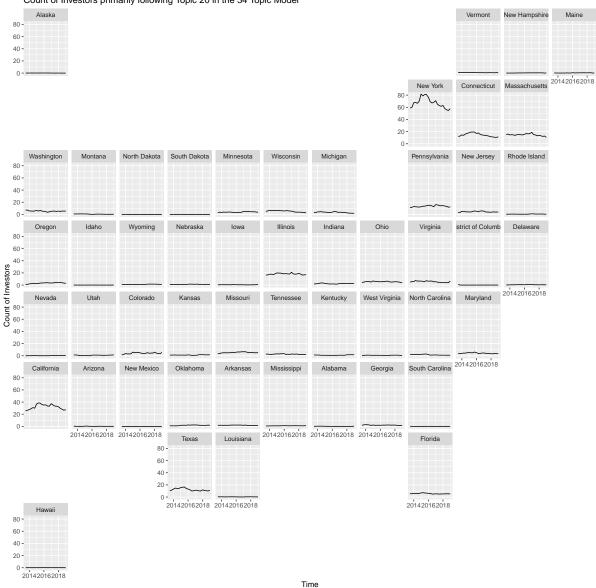

Count of Investors primarily following Topic 18 in the 34 Topic Model

Figure D.18: Count of firms by highest likely topic in the 34 topic LDA for topic 18

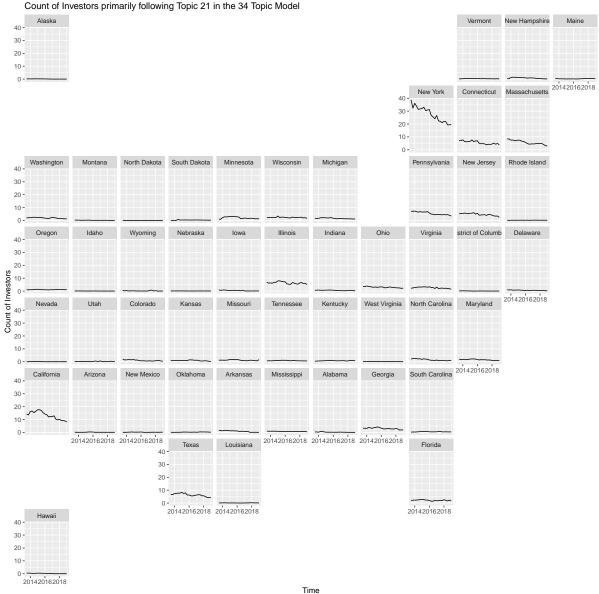

Count of Investors primarily following Topic 19 in the 34 Topic Model

Figure D.19: Count of firms by highest likely topic in the 34 topic LDA for topic 19

Count of Investors primarily following Topic 20 in the 34 Topic Model

Figure D.20: Count of firms by highest likely topic in the 34 topic LDA for topic 20

Count of Investors primarily following Topic 21 in the 34 Topic Model

Figure D.21: Count of firms by highest likely topic in the 34 topic LDA for topic 21

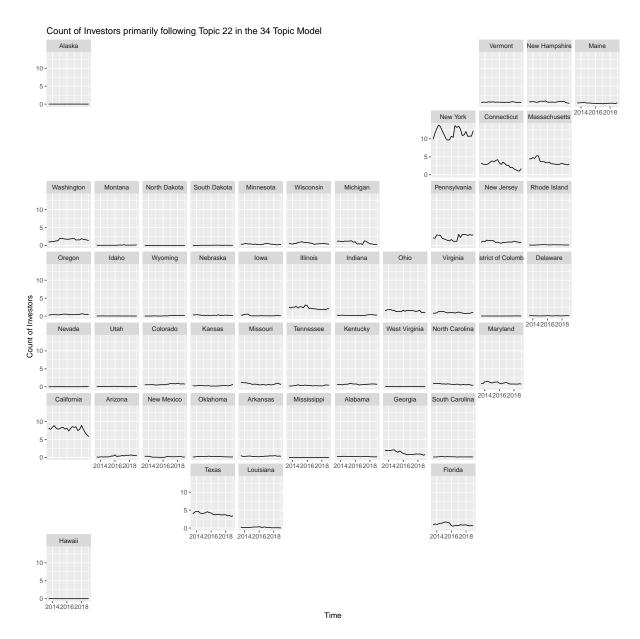


Figure D.22: Count of firms by highest likely topic in the 34 topic LDA for topic 22

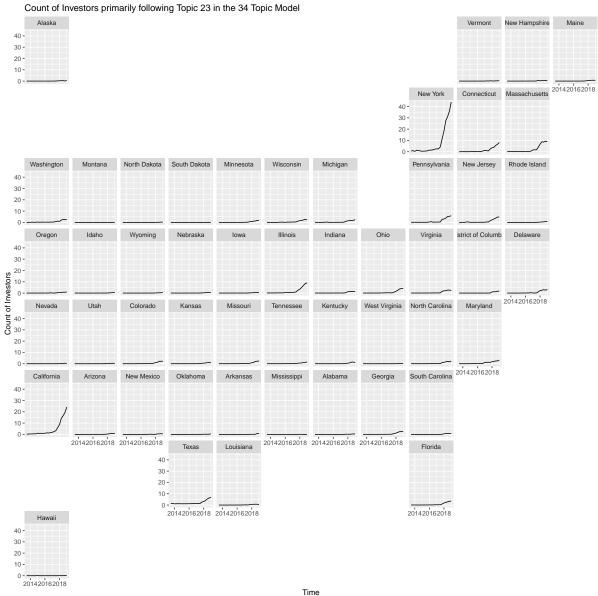
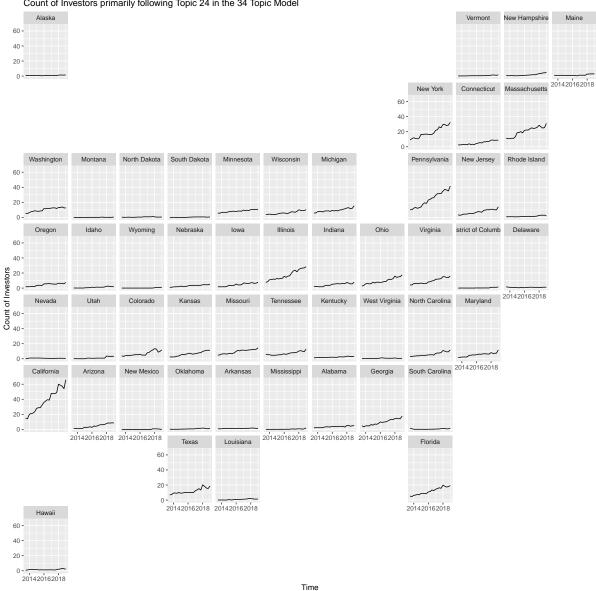
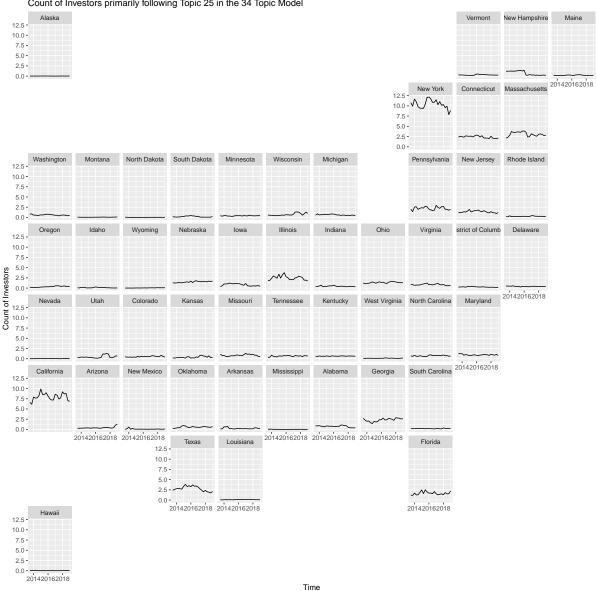




Figure D.23: Count of firms by highest likely topic in the 34 topic LDA for topic 23

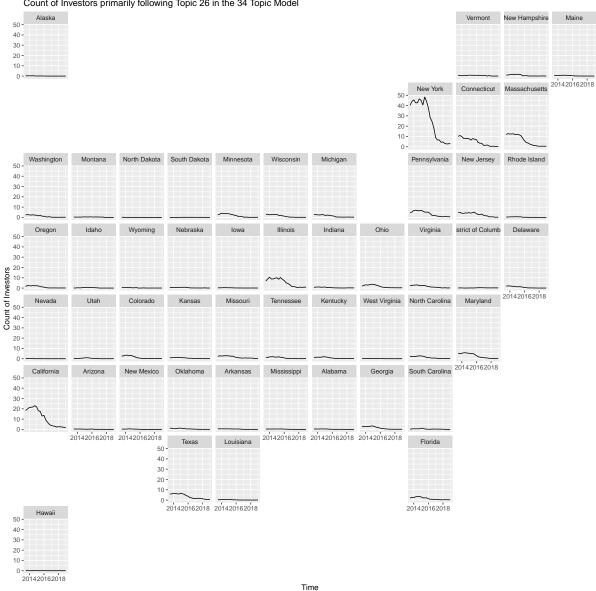

Count of Investors primarily following Topic 24 in the 34 Topic Model

Figure D.24: Count of firms by highest likely topic in the 34 topic LDA for topic 24

Count of Investors primarily following Topic 25 in the 34 Topic Model

Figure D.25: Count of firms by highest likely topic in the 34 topic LDA for topic 25

Count of Investors primarily following Topic 26 in the 34 Topic Model

Figure D.26: Count of firms by highest likely topic in the 34 topic LDA for topic 26

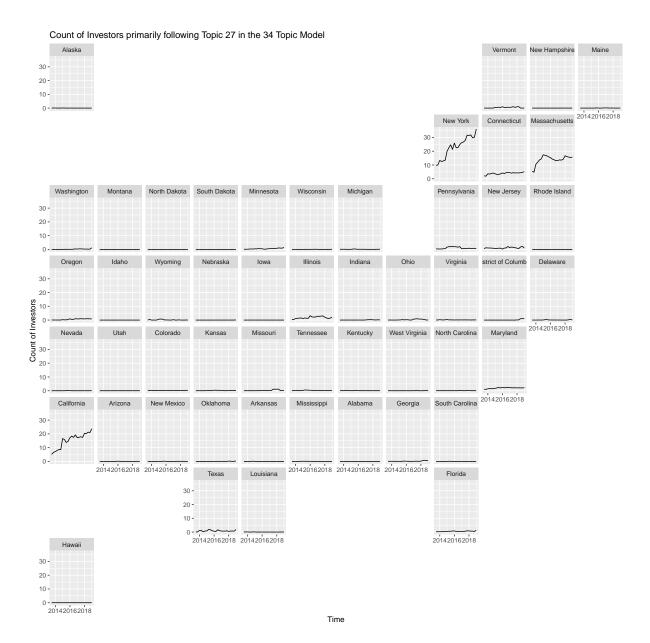
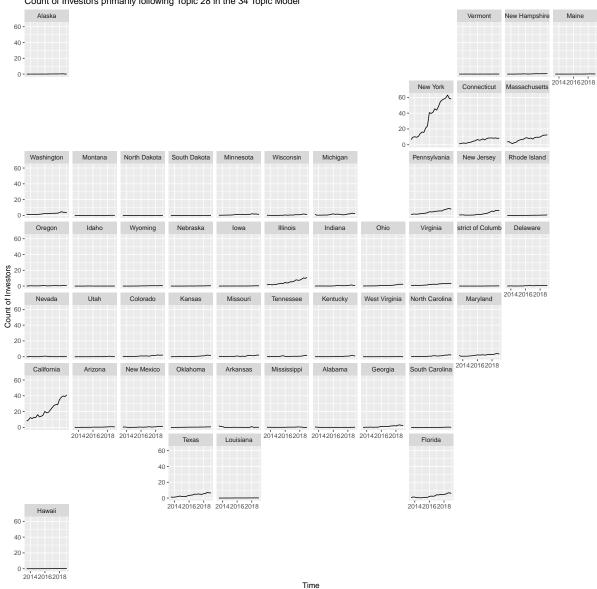
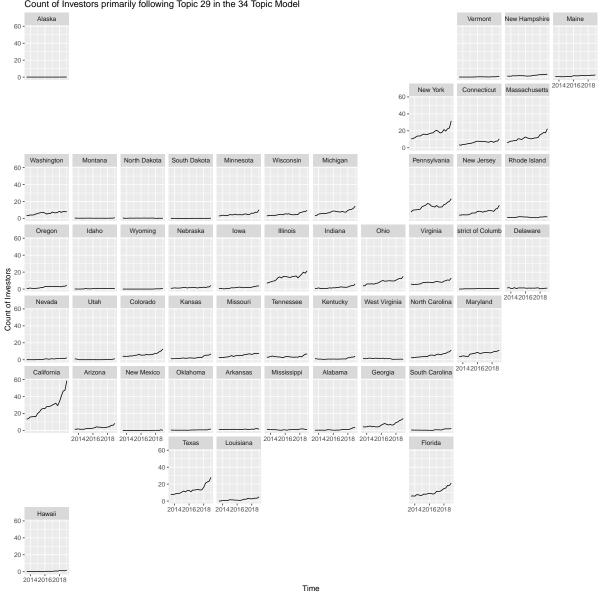




Figure D.27: Count of firms by highest likely topic in the 34 topic LDA for topic 27

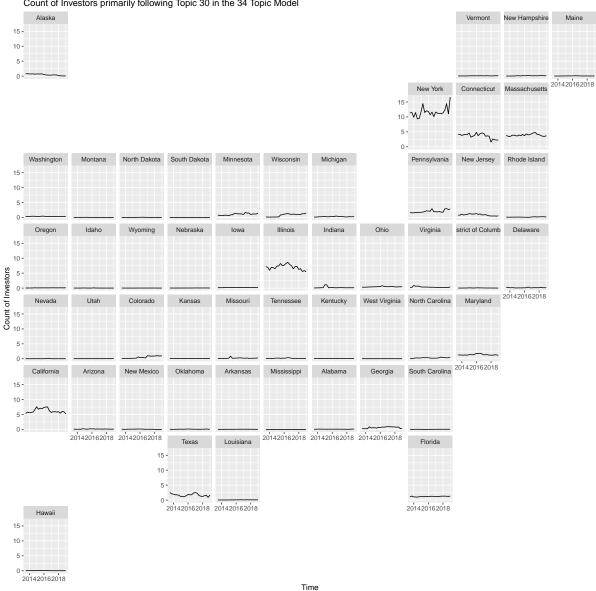

Count of Investors primarily following Topic 28 in the 34 Topic Model

Figure D.28: Count of firms by highest likely topic in the 34 topic LDA for topic 28

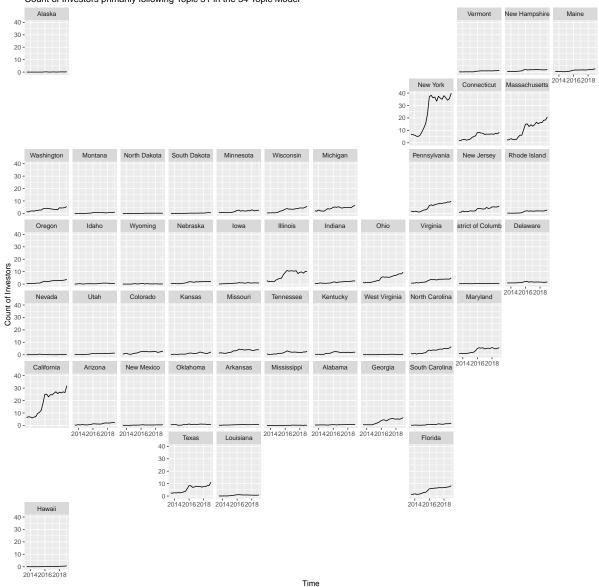

Count of Investors primarily following Topic 29 in the 34 Topic Model

Figure D.29: Count of firms by highest likely topic in the 34 topic LDA for topic 29

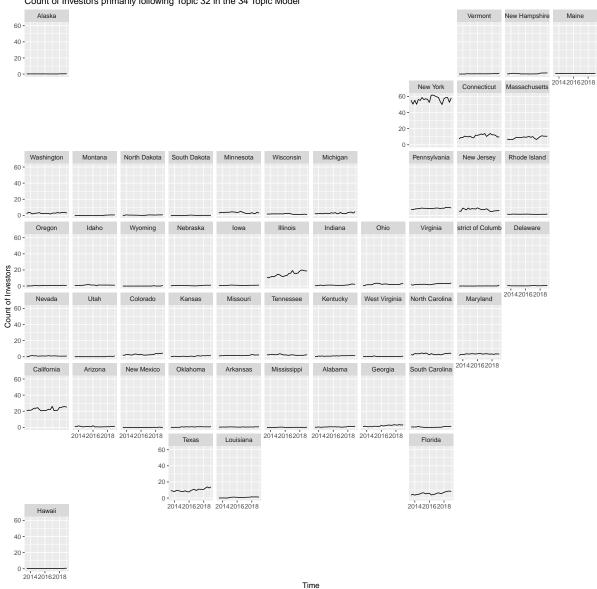

Count of Investors primarily following Topic 30 in the 34 Topic Model

Figure D.30: Count of firms by highest likely topic in the 34 topic LDA for topic 30

Count of Investors primarily following Topic 31 in the 34 Topic Model

Figure D.31: Count of firms by highest likely topic in the 34 topic LDA for topic 31

Count of Investors primarily following Topic 32 in the 34 Topic Model

Figure D.32: Count of firms by highest likely topic in the 34 topic LDA for topic 32

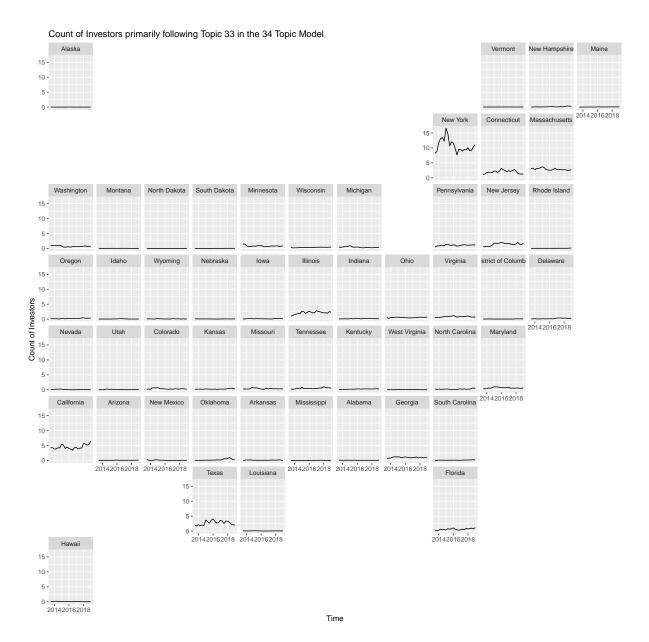
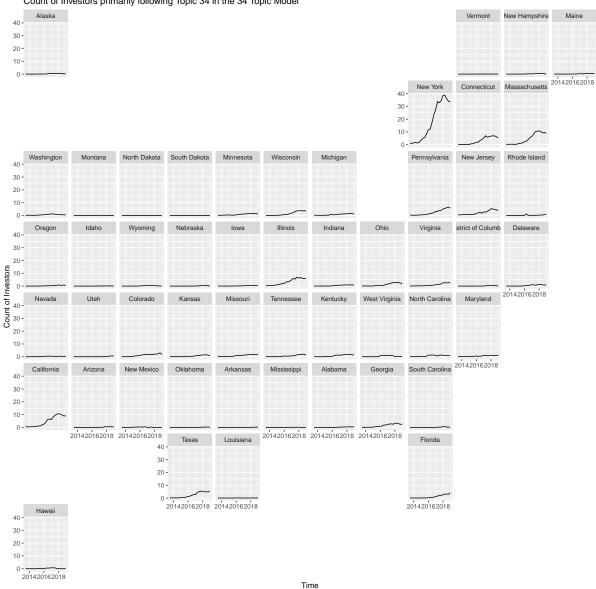



Figure D.33: Count of firms by highest likely topic in the 34 topic LDA for topic 33

Count of Investors primarily following Topic 34 in the 34 Topic Model

Figure D.34: Count of firms by highest likely topic in the 34 topic LDA for topic 34

Curriculum Vitae

Name:	Martin Lefebvre
Post-Secondary	Université Laurentienne (B.A. Hon)
Education and	Sudbury, ON
Degrees:	2011
	University of Western Ontario (MA)
	London, ON
	2014
	University of Western Ontario (PhD))
	London, ON
	2020
Related Work	Sessional Lecturer Department Geography
	Geography 2143: Geography of World Business
Experience:	The University of Western Ontario
	Summer 2017 and Fall 2018
Related Work	Teaching Assistant
Experience:	The University of Western Ontario
	2011 - 2020

Publications:

The Economic Geography Of Institutional Investment In The United States, 2010 Urban Geography, 2015, **36**, 798-822

Presentations:

Spaces and Flows Conference 2012 Association of Canadian Geographers - Ontario 2016