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Abstract 
 

Atmospheric icing on mountainous terrain can produce catastrophic damages to transmission 

lines when incoming particles impinge and accrete on the cable surface of the system. The first 

challenge in wind-ice loading is determining joint statistics of wind and ice accretion on 

transmission lines. This study analyzes the weather characteristics for a specific site of study using 

15 years of historical data to use as inputs for ice accretion modeling. The joint wind and ice 

hazard is characterized by simulating 500 years of icing events from the fitted probability 

distributions of ice accretion and wind on ice velocities. The second challenge of wind and ice 

loading is to deal with the wind induced vibrations when the iced conductors present complex 

asymmetrical shapes. The vertical galloping, characterized by high amplitude and low frequency 

motions, produce extra tension to the transmission towers which is not considered in the 

Canadian standard (CSA-C22.3) for the design of wind and ice loads for overhead transmission 

lines. For the dynamic analysis, the Den Hartog’s principle is applied to identify potential 

instabilities and the linear theory of free vibrations of a suspended cable is performed for the 

estimation of the extra tension produced by the free stream velocity acting on the one-degree-

of-freedom iced conductor. The static and dynamic loading resulting from the present study are 

compared with the wind and ice design cases based on the Canadian standard (CSA-C22.3). 

 

Keywords 

Joint wind and ice hazard, Atmospheric icing, Probability distributions, Vertical galloping, 

Structural dynamics, Reliability based design 
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Summary for Lay Audience 
 

When transmission lines are exposed to harsh weather conditions, such as strong winds and 

intense ice storms, the system may experience serious damage if it is not previously design to 

withstand these conditions. The ice may accrete on the cable surface of the system giving place 

to undesired behavior of the wire, potentially creating overloading which may lead to 

transmission line failures. Failures may produce economic losses, long blackouts, and 

unfortunately human deaths in the worst scenario. There is thus a need to conduct research of 

the wind and ice effects on transmission lines located in mountainous terrain. Although the 

effects of wind speed and atmospheric icing have been widely studied separately, little attention 

has been given to both acting simultaneously. For this reason, the present work attempts to 

reduce uncertainties when dealing with the joint wind and ice hazard, by quantifying its 

contribution to the total tension transmitted to the transmission towers. The resulting effects 

from the present study are compared with existing guidelines for the design of wind and ice 

loading on overhead transmission lines (The Canadian standard CSA-C22.3). 
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Chapter 1 

 

1 Introduction 
 

The formation of different types of ice such as glaze, hard rime, and soft rime, can interfere with 

the normal operation of specific systems and produce catastrophic consequences in areas as 

diverse as aeronautic, automotive, and civil engineering. Atmospheric icing, or icing conditions, 

can be described as supercooled water droplets colliding with a surface creating an ice layer 

which modifies the original shape of the body under consideration and thus modifying the flow 

field around it (Janjua et al., 2018).  

In the aeronautic industry, icing aircraft research started at the beginning of the last century 

aiming to understand the ice accretion behavior and its impact in the aircraft performance (Cao 

et al., 2018). Depending on the thickness of the ice layer, four categories of severity have been 

proposed: trace, light, moderate, and severe, where the first can be assumed not hazardous, and 

the last can lead to fatal accidents (William & Wayne, 2000). Several papers among the literature 

can be found proposing solutions and trying to understand the nature of the ice accretion 

process. Ice accretion and anti-icing mathematical models have been described by Saeed, (2002), 

where anti-icing heat requirements have been analyzed. A mixed ice accretion model, 

considering a combination of rime and glaze have been proposed by Janjua et al., (2018) to 

understand its effect on aircraft wings. Diebold et al., (2013) described and summarized research 

carried out throughout the years about ice accretion for two-dimensional airfoils and tried to 

highlight the importance of the three-dimensional flow field in ice formation. 

In the automotive industry, recent efforts in the race to fully autonomous vehicles have 

encountered obstacles in countries where harsh weather is predominant. Fog, snow, heavy rain, 

and ice, impede LiDAR systems to work properly and advanced to the next level of autonomy   

(Filgueira et al., 2017; Rasshofer et al., 2011). 

Civil engineering is historically the first area in which ice research has been conducted. The ice 

accretion mostly affects wired structures like transmission lines or cable-stayed bridges. During 
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an ice storm, the water droplets frozen on the wires can produce extra vertical load highly 

increasing the tension transmitted to the towers and overcome the original design loads and thus 

produce a failure. As a reference, the maximum ice load for transmission lines in history was 

recorded in Norway and had a magnitude of 305  (kg/m) (Makkonen, 2000).  Another important 

consideration for atmospheric icing on transmission lines are the wind induced vibrations that 

the wire may experience when the ice deposit is not symmetric. The ice may accrete creating a 

crescent shape on the windward side of the wire modifying its circular geometric shape and 

experiencing aerodynamic lift which may lead to aerodynamic instabilities. 

 

 

Figure 1.1. 305 (kg/m) of rime ice accumulated on an overhead line in Norway the 18th of April 

of 1961 (Makkonen, 2000).  

 

1.1 Ice accretion on wires 
 

Historically, atmospheric icing has been a big concern for civil engineers due to the uncertainties 

when calculating design loads for structures. For instance, in Quebec and Ontario, during the 
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winter of 1998, a severe ice storm without precedents in recent history produced the collapse of 

1,300 power-line towers and 35,000 distribution towers leaving millions of people without 

electricity for weeks and severely affecting their lifestyles (Rossi, 2018). In Sweden in 1999, the 

power supply was interrupted for several hours in a 130-400 kv system due to ice accumulation 

on an insulator (Solangi, 2018). In 1990, 20 cm of radial ice accretion were reported in a 400 kv 

system located in the United Kingdom which produced several incidents and failures during the 

icing event (Solangi, 2018). In 2010 in Catalonia, where transmission lines are usually not design 

to withstand severe ice storms due to the low probability of the events, the extra vertical load 

produced by the ice accretion resulted in costly repairs which took six weeks to complete 

(Solangi, 2018). 

Unlike wind speeds records, ice accretion is rarely available from weather stations or any other 

source of historical data where the registers might be consulted. This lack of historical records 

has led to different approaches to estimate the ice hazard on overhead transmission lines. The 

state-of-the-art of estimating icing on conductors can be classified into five groups: 1) 

mathematical modeling, 2) empirical observations, 3) experimental observations, 4) probabilistic 

mapping, and 5) deicing mechanisms (Pohlman & Landers, 1982). Research have mainly focused 

on the three first categories and several icing models can be found in literature. Methods such 

as those described in Makkonen, (1984), Makkonen, (1998), Makkonen, (2000), Jones, (1998), 

Pohlman & Landers, (1982), and Pezard, (1995), to name a few, have become popular and 

adopted by many structural engineers to estimate the ice thickness during icing conditions. 

Probabilistic mappings provide too general information and find their weak point when data for 

a specific site or particular topography is needed, such as high elevated terrain (Pohlman & 

Landers, 1982). Deicing mechanisms often find their limitations when the icing rate during heavy 

ice storms exceed their deicing rate capacity, and engineers cannot completely relay on the 

mechanisms employed (Pohlman & Landers, 1982).  

McComber et al., (1983) performed tests in a refrigerated wind tunnel for different wind speed 

ranges and observed the ice accretion shape formed for the three different types of ice. They 

then estimated the resultant force from the vertical load, which is function of the ice weight, and 

the horizontal force, which is function of the wind speed. Krishnasamy & Kulendran, (1998) and 
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Hoffman, (1984) proposed methods that assume that only a certain percentage of the extreme 

wind velocity during non-icing conditions will be presented during the ice storm. They proposed 

a reduction factor for the extreme velocity and combined it with the extreme ice accretion to 

obtain the combined wind and ice loading. The National Standard of Canada for the design of 

overhead transmission lines (CSA-C22.3) proposes a similar method, where the resulting loads 

must be a combination of low probability ice accretion and high probability wind speed or vice-

versa. Then, the highest load is selected as the design wind and ice load. The low probability 

event (of ice or wind speed) is related to its 𝑡 (years) return period magnitude, while the high 

probability event is related to the average of the yearly maximum events (when historical data is 

available). However, the estimation of the design data pairs of wind speed and ice accretion for 

overhead transmission lines is still a matter of discussion. The presented methods assume the 

combined values where at least one of the two hazards is represented by its 𝑡 return level, and 

the other is strongly related with extreme occurrences. This assumption has been found to be 

overly conservative in recent studies where the joint hazards have been probabilistically 

characterized (Rosowsky & Wang, 2014; Sinh et al., 2016, 2019). Sinh et al., (2016) presented a 

methodology to characterize the joint wind and ice hazard during freezing rain by creating a 

superstation data base from observed freezing events of 8 weather stations in the Midwestern 

United States. They used hourly wind speed and precipitation records to simulate glaze ice 

accretion (type of ice formed during freezing rain) with the model described in Jones, (1998). 

They then presented a more sophisticated model by modeling 1000 years of temperature, wind 

speed, precipitation rate and ice accretion (Sinh et al., 2019). Once again, they concluded that 

the assumption of considering a 𝑡 return level event for one of the variables may be conservative. 

Rosowsky & Wang, (2014) characterized the joint wind and snow hazard by modelling 10000 

years of snow and wind time histories in Albany, New York. Their analysis concluded that the joint 

wind-snow hazard is overestimated in structural design codes. Nevertheless, these analyses were 

not performed for mountainous areas, which is the characteristic topography of the site of 

interest of the present thesis. For this reason, and because of the uncertainties described before 

when dealing with joint hazards in structural design codes and standards, the necessity of 

conducting research to characterize the joint wind and ice hazard in complex terrain is justified. 
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1.2  Wind induced vibrations 
 

Wind induced vibrations will occur when the ice accreted on the wires forms an asymmetric 

shape increasing the risk of instabilities due to the presence of aerodynamic lift and thus 

increasing the tension on the tower supports. The dynamic effects on iced conductors are difficult 

to characterize and are usually not taken into consideration in codes or standards for the design 

of overhead transmission lines. Instead, overly conservative data pairs of wind speed and ice 

accretion are proposed assuming a radial ice deposit aiming to cover the dynamic effects of the 

wind induced vibrations. These vibrations can be critical for the system when motion is induced 

by a certain wind speed and angle of attack, creating damages that can vary from conductor 

strand burn in most of the cases, to cascade failure of the system (Lilien et al., 2005). The dynamic 

characteristics of the motion can be grouped into three categories: 1) small amplitude and high 

frequency, 2) small amplitude and moderate frequency, and 3) high-amplitude and low 

frequency (Borna et al., 2012). The first and second category can be referred as aeolian vibrations 

and are induced by vortex shedding phenomena. Aeolian vibrations are motions with frequencies 

in the range of 3 – 100  Hz and amplitudes that reach conductor diameter in the range of its lower 

frequency (Borna et al., 2012; Guerard et al., 2011). The third category is known as galloping, and 

is a self-excited vibration produced by an unbalance between the structural and aerodynamic 

damping (Wang & Lou, 2009). Galloping was first explored by Den Hartog in 1932, when he 

introduced a single-degree-of-freedom mechanism by observing the change in the aerodynamic 

lift during or after an icing event (Den Hartog, 1932). When the effect of the negative slope of 

the lift curve with respect to the angle of attack is greater than the damping effects of the drag, 

the instability may occur (Den Hartog, 1932). This statement can be mathematically observed in 

Equation (1.1) and graphically in Figure 1.2.  

 

𝑎𝑔 = 𝐶𝑑 +
𝑑𝐶𝑙

𝑑𝛼
 

(1.1) 
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where 𝑎𝑔 is the Den Hartog’s coefficient, 𝐶𝑑 is the drag coefficient, 𝐶𝑙 is the lift coefficient, and 

𝛼 is the angle of attack of the free stream velocity with respect to the cross section of the cable.  

 

Figure 1.2. 𝐶𝑑 and 𝐶𝑙 curve with respect to the angle of attack for a non-circular profile (Den 

Hartog, 1932).  

Several models have been proposed since the first approximation to the galloping proposed by 

Den Hartog. A two-degree-of-freedom system was proposed by Macdonald & Larose, (2008) to 

identify the range of velocities and angles of attack which causes galloping for an inclined cable 

of a cable-stayed bridge. Their model allowed them to identify the minimum requirements for 

the structural damping within the critical Reynolds number range to mitigate galloping. Gjelstrup 

& Georgakis, (2011) proposed a quasi-steady three-degree-of-freedom system for the 

determination of aerodynamic instabilities on iced conductors. Their proposed model allowed 

them to identify instabilities on the onset of galloping and could estimate the special instability 

cases of the Den Hartog galloping, drag crisis, and dry inclined cable galloping.  

It is pertinent to mention that the identification of galloping depends on the behavior of the 

aerodynamic lift and drag coefficients and thus identifying the shape of the iced conductor is an 

important step of the process. The ice shape accreted on wires during an icing event depends on 
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a variety of factors such as wind speed, temperature, droplet size, liquid water content, and area 

of the cable, among others (Fu et al., 2006; Makkonen, 2000).  

 

1.3 Types of atmospheric icing 
 

Atmospheric icing can be classified into precipitation icing, in-cloud icing and hoarfrost (Pohlman 

& Landers, 1982). Precipitation icing is normally caused by freezing rain and the impinging water 

droplets are normally larger compared to in-cloud icing (Pohlman & Landers, 1982). The 

characteristic type of ice formation due to freezing rain is called glaze ice and its characteristics 

can be observed in Table 1.1. Note that Table 1.1 intends to give general information of the most 

common conditions where each type of ice have been observed and is not a strict rule that will 

always be fulfilled. For example, although glaze ice normally occurs within the range of 

temperatures between 0°C and -3°C, it is also probable to occur at considerably lower 

temperatures in the order of -20°C and as high as 5°C (Pohlman & Landers, 1982). For in-cloud 

icing, the resulting type of ice is normally rime, although glaze ice may also occur with less 

frequency. Rime ice can be divided into two subcategories named soft rime and hard rime 

(Pohlman & Landers, 1982). This type of process is characteristic of mountainous areas and are 

particularly dangerous for transmission line systems due to its frequent occurrence (Rossi, 2018). 

Hoarfrost is characterized for white ice crystals formation obtained by sublimation of the water 

vapor in the atmosphere (Rossi, 2018). Since the water vapor in the air is normally low at 

temperatures bellow the freezing point, hoarfrost rarely produce damages to the system 

(Pohlman & Landers, 1982).  

The maximum rate of icing due to the water droplets colliding with the cable surface is 

determined by the flux density of these droplets (Makkonen, 2000). When the heat flux from the 

accretion is too small to cause instantaneous freezing of the droplets at the time of collision, part 

of the mass flux is lost from the surface by run-off (Makkonen, 2000). In such case, a liquid layer 

exists on the surface of the ice accretion and the droplets freeze beneath the layer (Makkonen, 
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2000). Such process is called wet growth, and the resultant ice type is glaze. Figure 1.3a shows 

the wet growth process schematically. 

On the other hand, when there is no liquid layer on the surface, the growth process is dry (Figure 

1.3b), and the resultant ice may be hard or soft rime, depending on weather characteristics such 

as temperature and wind speed, as it can be observed in Table 1.1. Depending on the growth 

process, one could expect different ice profiles due to the ice accretion. The ice profile, as 

previously mention, will have great influence in the flow field around the cable and thus in the 

aerodynamic coefficients for stability analysis. The ice shapes and their characteristics used in 

the present work for the estimation of instabilities will be further justified and described. 

 

a) 

 

b) 

Figure 1.3. a) Wet growth process and b) Dry growth process (Makkonen, 2000). 

Table 1.1. Characteristics of the different types of ice accretion on overhead transmission lines 

(El-Fashny, 2002). 

Characteristics Soft Rime Hard Rime Glaze 

Density (𝑘𝑔/𝑚3) <600 600 - 900 900 

Adhesion Medium Strong Very Strong 

Appearance 

Whitish 
crusty snow 

forming 
needles  

Hard ice, 
white and 

opaque 

Icicles and 
smooth 

transparent 
ice  

Temperature (℃) -5 to -25 -3 to -8 0 to -3 

Wind Speed (𝑚/𝑠) 1 to 5 5 to 10 0 to 20 
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1.4 Scope 
 

The present work first attempts to characterize the joint hazard where limited data of weather 

characteristics is available. Historical data from 16 surrounding weather stations are used to 

estimate hourly wind speed, temperature, and precipitation rate at the site of interest. The 

techniques to estimate each variable depends on the level of complexity of its prediction. The 

Inverse Distance Weighting (IDW) interpolation method is used to estimate hourly temperature 

data, the K Nearest Neighbors Imputation algorithm (KNNI) is performed for the estimation of 

hourly precipitation rate, and a forward-back propagation Artificial Neural Network (ANN) is 

trained and tested for hourly wind speed predictions. The described weather characteristics are 

then used as inputs for the ice accretion modelling.  

The ice accretion model used in the present thesis is the one described in Makkonen, (2000), 

which is detailed in section 2.4. The mentioned model outputs the thickness of the ice deposit, 

ice density, and ice mass per unit length. The wind speed records are then fitted to a Weibull 

Distribution and the ice accretion is fitted to a Generalized Pareto Distribution. Five hundred 

years of simulated records using the inverse of their CDFs are obtained. The Joint Probability 

Density Function (JPDF), Joint Cumulative Density Function (JCDF), and hazard contours are built 

from the data pairs resulting from the analyses described to characterize the joint hazard for this 

specific site of study.  

For the dynamic analysis, both rime and glace ice profiles are assumed based on the outputs from 

the ice accretion model. Lift and Drag coefficients are obtained from steady state CFD simulations 

using RANS 𝑘 −  𝜔 SST turbulence model due to its good performance near the wall. The Den 

Hartog, (1932) principle is employed for identifying the critical range where instabilities may 

occur and the linear theory of free vibrations is used to transfer the loads acting on a one-degree-

of-freedom system produced on the onset of vertical galloping to the transmission tower. The 

total load is then calculated considering both the static conditions estimated in the first part of 

this research and the extra tension produced by the dynamic effects. A comparison with the 

procedure described in the Canadian Standard (CSA-C22.3) for the design of wind and ice loading 

on overhead transmission lines is carried out. 
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1.5 Site of study 
 

The transmission line system for the present study is located over complex terrain on Cascade 

Creek, in the proximity of Stewart, British Columbia, Canada (Figure 1.4a). It consists of a total of 

37 towers, 10 km long and 138 kV. The towers are single circuit single pole Y-frame steel 

structure, and the conductors are single aluminum clad steel wire with a diameter of 23.55 mm. 

The present study focuses on the weather characteristics and analysis of the highest elevated 

tower, which is located at 1485 masl (Figure 1.4b). At that elevation, the system is exposed to 

harsh weather conditions, characterized by strong wind gusts and large accumulations of 

atmospheric icing (Rossi et al., 2020).  

  

Figure 1.4. a) Location of the transmission line system and b) location of the highest elevated 

tower (from Google Earth). 

 

1.6 Organization of the thesis 
 

The present work follows the integrated article format as per thesis submission requirement of 

The University of Western Ontario. The articles to be submitted to the Journal of Wind 

Engineering and Industrial Aerodynamics are described in Chapter 2 and Chapter 3, respectively.  
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Chapter 1 provides an introduction of iced conductors and reviews the main studies related to 

the problem of ice accretion on overhead transmission lines. The literature review of wind 

induced vibrations is also presented. In addition, the site of study and the scope of this work are 

introduced to the reader. 

Chapter 2 presents the data analysis at the site location considering the 16 surrounding weather 

stations. The ice accretion model is performed in this chapter. The joint wind and ice hazard is 

probabilistically characterized considering a radial ice accretion and a comparison with the 

reliability levels proposed by the Canadian Standard (CSA-C22.3) is made. 

Chapter 3 describes the aerodynamic analysis for complex shapes of iced conductors. The 

stability analysis is performed based on Den Hartog’s criterion for vertical galloping, and the 

tension transmitted to the tower considering both the static effects from Chapter 2 and dynamic 

effects produced on the onset of galloping is presented. The corroborative results from Chapter 

2 and Chapter 3 are compared with the wind and ice design cases from the Canadian Standard 

(CSA-C22.3). 

Chapter 4 provides a summary of the present thesis, the overall conclusions, and 

recommendations for further research. 
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Chapter 2 

 

2 Joint wind and ice hazard for transmission lines in mountainous 

terrain 

 

This chapter presents the joint characterization of the wind and ice hazard on overhead 

transmission lines. The site of study described in section 1.5 will be referred as HE in the present 

thesis. An analysis of 16 weather stations surrounding HE is carried out. Three different 

algorithms for the estimation of temperature, wind speed, and precipitation rate at HE are 

performed using the data from the pre analyzed weather stations. The ice accretion model is 

performed taking into consideration the output from these algorithms. Fifteen years of historical 

hourly data pairs of wind speed and ice accretion are obtained after the ice accretion modelling. 

Five hundred years of data pairs are simulated in addition to the historical data. The wind speed 

simulated records are generated based on the Weibull Cumulative Distribution Function (CDF) 

while the Generalized Pareto CDF is used for the ice accretion simulation. The extreme wind 

speed data is fitted against Gumbel Probability Distribution Function (PDF), while the ice 

accretion extreme values are fitted with Generalized Pareto distribution. Joint wind and ice PDF 

(JPDF) and CDF (JCDF) are generated from the historical and simulated records and hazard 

contours are drawn. The results are then compared with the combined wind and ice values 

proposed in the CSA-C22.3 standard for different reliability levels. 

The ice accretion model considered here is the one described in Makkonen, (2000), for the 

estimation of rime and glaze. The model takes several atmospheric characteristics as inputs. The 

supercooled water droplets trajectories must be taken into consideration for the estimation of 

the collision efficiency on the conductor. In their seminal work Langmuir & Blodgett, (1946) 

developed mathematical equations of droplet motion in the airflow around circular cylinders. 

Later, Finstad et al., (1988) related empirically the water droplet trajectories and thus the 

collision efficiency to the free stream velocity and the water droplet median volume diameter. 
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The empirical fit described in Finstad et al., (1988) is considered in this thesis. Temperature data 

is needed for the calculations of the accretion efficiency or freezing fraction. This parameter will 

dictate the type of ice formation on the wire. Its calculation can be obtained by solving 

numerically the heat balance of icing surface equation (Makkonen, 1984, 2000). Precipitation 

data is needed for the estimation of the liquid water content (𝑊), which is another parameter 

for the ice accretion rate. Here, the empirical relationship between precipitation and water 

content presented by Best, (1950) was taken into consideration.  

 

2.1 Weather stations 
 

The first step of this project consisted of the pre analysis of the weather stations with enough 

historical data (i.e. less than 30% of missing data (MD)) for the estimation of three variables: 1) 

wind speed (𝑢 [m/s]), 2) temperature (𝑇 [°C]), and 3) hourly water precipitation rate (𝑝 [mm]). 

The data were taken from the Ministry of Transportation and Infrastructure (MTI) data base of 

British Columbia (https://prdoas3.pub-apps.th.gov.bc.ca/saw-paws/weatherstation). The data 

base contains 2-minute average velocities measured at the top of the hour. Although they may 

not be stationary, the velocities were assumed as hourly measured for the ice accretion model 

(Subsection 2.4) and converted to 3-second gust wind velocities for the joint hazard analysis 

(Subsection 2.6). All the weather stations available from the MTI data base were localized and 

are shown in Figure 2.1. A first radius (𝑅1) of 50 km around HE was drawn and a first attempt to 

estimate weather characteristics with the stations located within 𝑅1 was conducted. However, 

some stations did not fulfill the condition of MD < 30%, or one of the variables were not found 

(i.e. the station measurements included wind speed and temperature but not precipitation data). 

A second radius (𝑅2) of 120 km was drawn and stations within the 𝑅2 were included. 

Measurements were found to fulfill the MD < 30% condition in almost all the stations from 2005 

to 2020. Before 2005, stations with MD > 50% were frequently found because the measurements 

were not registered hourly, or due to different techniques of data collecting at that time. For 

these reasons, the analysis was limited to the time series between 2005 and 2020.  The stations 

were then cleaned of physically impossible values such as 𝑇 = -1000 °C, 𝑢 = 1000 m s⁄ , or 𝑝 =

https://prdoas3.pub-apps.th.gov.bc.ca/saw-paws/weatherstation
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 1000 mm/h, for example, and these values were assumed as MD. In all cases, these kinds of 

values represented a very low percentage of the total data and did not modify the MD < 30% 

condition. Figure 2.2 shows all the stations that were selected in the pre analysis phase for the 

estimation of the weather characteristics at HE. Table 2.1 summarizes relevant information about 

the selected weather stations. From the table, some observations can be made. Temperature 

data is available at all the weather stations and with very low percentage of MD. Wind speed 

hourly records could be found in thirteen of the sixteen analyzed weather stations with higher 

MD compared with the temperature. Nevertheless, the average MD is 4.10% which is still very 

acceptable. Precipitation data was only found in seven out of the sixteen weather stations 

analyzed. It was observed that the lack of precipitation data correlates with the stations above 

540 m of altitude. This tends to be a general problem for the northern part of Canada and 

specially in high elevated terrain where the water precipitation amounts are very difficult to 

measure (Mekis & Hogg, 1999; Smithson et al., 2002). 
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Figure 2.1. Top) All the weather stations in the MTI database (blue dots) and HE (small red circle). 

Bottom left corner) 50 km radius around HE, and Bottom right corner) 120 km radius around HE. 
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Figure 2.2. 16 selected weather stations after the pre analysis phase (MD < 30%). 
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Table 2.1. Weather Stations selected from the pre analysis phase.  

Code Label Name LAT LONG E (m) Years 
𝒑(𝒎𝒎) 

(% MD) 

𝒖(𝒎/𝒔) 

(% MD) 

𝑻 (°𝑪)  

(% MD) 

53127 1 Gamma High 56.95083 -130.095 1540 09 - 20 (--) (2.99) (3.02) 

53123 2 Gamma 56.94667 -130.10694 1175 05 - 20 (--) (10.77) (7.43) 

53126 3 Carl's Corner 56.92867 -130.0905 504 07 - 20 (3.95) (--) (3.46) 

53128 4 Revision 56.79544 -129.97519 1500 09 - 20 (--) (2.73) (3.67) 

53122 5 Snowbank Mid 56.77667 -129.97253 1065 05 - 20 (--) (5.00) (1.07) 

51123 6 Windy Point Lower 56.11017 -129.51522 1035 05 - 17 (--) (2.64) (3.40) 

51126 7 Endgoal 56.09987 -129.51218 370 05 - 20 (6.03) (3.38) (1.92) 

51124 8 Windy Point Upper 56.12 -129.52642 1490 05 - 20 (--) (2.37) (1.91) 

51128 9 Kettle Hole 56.10347 -129.63297 440 05 - 20 (3.61) (--) (2.18) 

51127 10 Summit Sluff Wind 56.10631 -129.65389 540 05 - 20 (--) (1.91) (1.81) 

51125 11 Disraeli 56.09972 -129.75167 2000 05 - 20 (--) (8.16) (2.73) 

51129 12 Stewart  55.94808 -129.98264 15 05 - 20 (8.81) (6.21) (6.47) 

51191 13 Cranberry Junction  55.63222 -128.67278 356 05 - 20 (1.48) (0.51) (0.19) 

52522 14 Iknouk Road  55.00186 -129.88126 30 10 - 20 (2.63) (--) (0.33) 

52521 15 Iknouk 55.01033 -129.77636 862 05 - 20 (--) (6.64) (6.62) 

52591 16 Grizzly Hill  55.01849 -129.61817 120 15 - 20 (0.21) (0.02) (0.27) 

HE HE Site of study 56.02095 -129.99366 1485 - - - - 

 

 

2.2 Goodness of fit 
 

In a previous study, weather analysis at the same site of interest as in the present study was 

performed (Agustsson & Nygaard, 2016). The authors estimated 20 years (1995 – 2015) of hourly 

weather characteristics by performing a Weather Research and Forecast (WRF) model for the 

location of the 37 towers that form the transmission line system, including HE. The present work, 
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as mentioned in the past section, attempts to obtain the weather characteristics at HE by using 

historical the data from the 16 surrounding weather stations as main source. For validation 

purposes, the accuracy of the predicted values from the analyses described in the next subsection 

is measured by their goodness of fit with the results from the WRF model. In this thesis, the Mean 

Absolute Error (MAE), the Mean Square Error (MSE), the Root Mean Square Error (RMSE), and 

the correlation coefficient (𝑟) are used as quantitative measures of comparison (El-Fashny, 2002).  

 

𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

  
(2.1) 

 

 

𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑥𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 
(2.2) 

 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

  

(2.3) 

 

 

𝑟 =  
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

[∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 ∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1 ]
1
2

 
(2.4) 

 

 

where 𝑥𝑖  is the WRF observation, 𝑦𝑖 is the predicted value, and 𝑛 is the number of total 

observations. 

 

2.3 Data analysis 
 

Three different techniques were employed for the estimation of the weather characteristics at 

HE. In this study, the Inverse Distance Weighted (IDW) interpolation method was performed for 

hourly temperature estimation, the K Nearest Neighbors Imputation (KNNI) method was used for 
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precipitation, and a forward-back propagation Artificial Neural Network (ANN) was used for wind 

speed predictions. The reasons of the different techniques employed are explained in the 

following subsections. 

 

2.3.1 Inverse Distance Weighted interpolations 
 

Inverse Distance Weighted (IDW) is a spatial interpolation model based on the assumption that 

the closer a station is, the more influence it will have on the estimated values at the site location 

(Apaydin et al., 2004). IDW have been widely used because its relative simplicity and good results 

comparing with more sophisticated models. Apaydin et al., (2004) compared six spatial 

interpolation methods for the estimation of six weather parameters and concluded that IDW 

performed well against Local and Global polynomial interpolation, Completely regularized spline, 

and the well-known Kriging model in three of its variants: Ordinary, Simple, and Universal. Similar 

analyses where carried out by Chen & Liu, (2012) for the estimation of rainfall distribution in the 

middle of Taiwan. Their results in terms of 𝑟, MAE, MSE, and RMSE showed that the key for 

satisfactory results resides in the correct estimation of the ratio of influence (𝑅𝑖) and the order 

of the control parameter (𝛼𝑖) in the IDW model. In this work, for the reasons previously discussed 

and due to its relatively low computational cost, IDW was performed for the estimation of hourly 

𝑇. The following equations represent the IDW interpolation: 

 

𝑦𝑝 =  ∑ 𝑤𝑖 𝑥𝑖

𝑁

𝑖=1

 
(2.5) 

 

 

𝑤𝑖 =
𝑑𝑖

−𝛼𝑖

∑ 𝑑𝑖
−𝛼𝑖𝑁

𝑖=1

 
(2.6) 

 
 

where 𝑦𝑝 ( 𝑇𝑝) is the unknown weather variable at HE, 𝑥𝑖  ( 𝑇𝑖) represents the known weather 

variables of the nearby weather stations, 𝑤𝑖 is the weighting of each nearby station, 𝑑𝑖 (m) is the 
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Euclidean distance from each weather station to HE, 𝑁 is the number of weather stations 

considered, and 𝛼𝑖 is the control parameter. The estimation of the control parameter has been 

discussed in previous studies with similar aims than the present study. While it is true that there 

is not a general parameter that works for all cases, there have been some approximations 

depending on the variable in study. Fan et al., (2015) used an 𝛼𝑖 = 2 for wind speed forecasting 

in Europe showing satisfactory results when comparing IDW with Kriging and Auto Regressive 

models. On the other hand, Gemmer et al., (2004) have set the control parameter to six for the 

estimation of monthly precipitation trends in China. Chen & Liu, (2012) decided to vary 𝛼𝑖 within 

a range from 0 – 5 with a delta of 0.1. They also performed IDW for a range of 𝑅𝑖 between 10 and 

70 km. While a combination of specific 𝛼𝑖 and  𝑅𝑖 values gave them good results, they concluded 

that it is not possible to assume a value that can performed equally good for all the studies 

conducted. For this reason, the procedure described in Chen & Liu, (2012) were taken into 

consideration in the present thesis. The value of 𝛼𝑖 was varied within a range from 0 to 5 with a 

delta of 0.5. 

Because IDW is an interpolation method that do not take into account the elevation of the 

measured point, a spatial de-trending must be done before performing Equation (2.5) and 

Equation (2.6) for the variable in study (Fan et al., 2015). Temperature de- trend can be applied 

by calculating the laps rate (𝐿) and using the elevation as the predictor. The lapse rate 𝐿 is 

defined as the decrease in temperature with respect to altitude over a vertical profile of the 

atmosphere (He & Wang, 2020). This trend can be calculated with linear regression and its 

goodness of fit can be estimated with 𝑟2. Because different laps rates can be expected depending 

on the season of the year, it is good practice to do a monthly segmentation of the data (Kurtzman 

& Kadmon, 1999). The monthly mean of each year considered in this study was estimated and 

used to fit the linear regression models. At the end of the temperature de-trending analysis, 12 

different 𝐿 values correspondent to the 12 months of the year were obtained and used to convert 

the values of temperature to 𝐸 = 0 m. At the end of the interpolations, the trend was added again 

to its correspondent elevation (HE). Figure 2.3a and b shows the fitted linear regression models 

correspondent to the month of February and March, respectively, for the sixteen weather 

stations within 𝑅2, while Figure 2.4 shows the correspondent Lapse rate for each month. The rest 
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of the linear regression models for the construction of the Lapse rate plot can be consulted in 

Appendix  A. 

 

 

a) 

 

b) 

Figure 2.3. Spatial trend and weather stations (blue dots) for the month of a) February (𝐿 = 0.45 

°C/100 m), 𝑟2 = 0.80, and b) March (𝐿 = 0.59 °C/100 m), 𝑟2 = 0.93. 
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Figure 2.4. Laps rate (𝐿) per 100 m of elevation for each month. 

 

 

2.3.2 K Nearest Neighbors Imputation  
 

As previously discussed, 𝑝 was the most difficult variable to find in the analyzed weather stations. 

The highest elevated station that contains 𝑝 records is station 3 at 𝐻 = 504 m. Above that altitude, 

the estimation of water precipitation is quite challenging due to the presence of drizzle, ice 

pallets, hail, and snow, among other types of precipitation. The lack of information at higher 

elevations made not possible to obtain a spatial trend that corresponds to HE. Furthermore, in 

the case of 𝑝, data from the WRF model at HE is not available, and no comparison could be made 

in this case. For this reason, HE and its closest station (station 12) were assumed part of the same 

basin, and the analysis focused on filling MD of station 12 by performing the KNNI method. KNNI 

is a simple imputation methodology that have been observed to perform well when MD < 10% 

(Aieb et al., 2019). It takes into consideration the records in the most correlated nearby stations, 

such that: 
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𝑝𝑝 =
∑ 𝑝𝑖

𝐾
𝑖=1

𝐾
 

(2.7) 

 

where 𝑝𝑝 (mm) is the missing precipitation record at station 12, 𝑝𝑖(mm) is the observed record 

at the nearby weather stations, and 𝐾 is the number of neighbor stations. From Figure 2.5 is 

possible to observe that stations 9 and 7 are the most correlated with station 12. This was 

expected due to the relatively small Euclidean distance between the stations. Equation (2.7) was 

performed taking those stations into consideration. If one of the stations had a missing record at 

the same hour than station 12, then just the value of the station with records was imputed. If the 

two neighbor stations had missing records, that hour was leaved as MD. At the end, 24 hours 

were missing for station 12, corresponding to MD = 0.02%, and with 3 continuous hours as the 

maximum gap. Those missing values were then filled with linear interpolation to complete the 

station such that MD = 0%. 

 

Figure 2.5. Precipitation data and its correlation with the nearby weather stations, Prcp n, where 

n is the number of the weather stations indicated in Table 2.1. 
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2.3.3 Artificial Neural Network 
 

Artificial Neural Networks (ANN) are powerful machine learning algorithms inspired from the 

functioning of the human brain (Philippopoulos & Deligiorgi, 2012). This approach has been 

successfully applied in the field of wind engineering for wind speed and wind-power predictions 

(Afshar, 2016; Filik & Filik, 2017; Lawan et al., 2020; Philippopoulos & Deligiorgi, 2012). The 

advantage of applying this method for wind speed forecasting relies in its ability to identify 

nonlinear patterns between the surrounding weather stations (inputs) and the site of interest 

(targets) and thus outperform traditional interpolation methods in complex terrain 

(Philippopoulos & Deligiorgi, 2012). An ANN is composed of mainly three parts: the input layer, 

the hidden layers, and the output layer. Each layer contains a number of neurons, or nodes, which 

receives the inputs variables and by applying mathematical transformations they pass 

information to the next layer (Afshar, 2016).  

Equation (2.8) is the general formula which will output the predictions of an ANN (Philippopoulos 

& Deligiorgi, 2012). 

 

𝑦 = 𝑓 (∑ 𝑥𝑖  𝑤𝑖 + 𝑏𝑖

𝑛

𝑖=1

) 
(2.8) 

 

 

where 𝑥𝑖  are the input variables, 𝑤𝑖 are the weights, 𝑏𝑖 are offset parameters, 𝑛 is the number 

of neurons in the last hidden layer, and 𝑓 is the activation function which will transform the values 

at each node. The selection of the activation function depends on the kind of predictions one 

would like to measure. Table 2.2, for example, shows a list of the most popular activation 

functions (Afshar, 2016). 
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Table 2.2. Most popular activation functions (Afshar, 2016). 

Activation Function Equation Graphical Representation 

Linear  𝑓(𝑥) = 𝑥 

 

  

Logistic sigmoid  𝑓(𝑥) =
1

1+ 𝑒−𝑥 

 

   

Hyperbolic tangent  𝑓(𝑥) =
1−𝑒−𝑥

1 +𝑒2𝑥 

 

   
 

In this thesis, to capture the nonlinear relationship between the inputs and the targets, a 

hyperbolic tangent (tanh) activation function is considered for the input and hidden layers, while 

a linear activation function is selected for the output layer.  

The following subsections briefly describe the characteristics of the ANN used in the present 

study: 

2.3.3.1 The dataset 
 

To train the ANN, the data must be divided into the training and test set (Afshar, 2016). The 

dataset considered to train the network consists of the weather characteristics from the weather 
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stations from 2005 – 2015 as the predictors, and the WRF model records from 2005 – 2015 as 

the targets. The dataset was divided into 70% for the training set and the remaining 30% of the 

data was divided into 50% for the validation set and 50% for the test set to avoid overfitting. 

Cross validation was applied between the predictions and the validation set during the training 

stage. 

2.3.3.2 Loss function  
 

As previously mentioned, the input variables are modified by the activation function at the input 

layer and the updated values are passed to the hidden layers and eventually to the output layer. 

This first step of the process is called forward propagation. The predicted values are then 

compared with the targets and the error between them is computed. This error is measured by 

the loss function, which can be any metric of goodness of fit introduced in Section 2.2 

(Philippopoulos & Deligiorgi, 2012). In the present thesis, the MAE is selected as the loss function, 

as recommended by Willmott & Matsuura, (2005) for the evaluation of the network 

performance. At the backpropagation stage, the error computed is propagated  backward from 

the input layer through the hidden layers and finally to the input layer (Basheer & Hajmeer, 2000). 

Backpropagation networks are widely used due to its ability to identify the contribution of each 

weight to the total error and calculate the proper changes to reduce the loss function at the next 

epoch. An epoch in machine learning is defined as the process of completing the forward and 

back propagation one time. For a better understanding on the full mathematical procedure to 

compute backpropagation, please refer to Krose & Van Der Smagt, (1996). 

2.3.3.3 Optimization algorithm 
 

During the backpropagation stage, the network attempts to update the parameters 𝑤 and 𝑏 to 

minimize the loss function (Afshar, 2016). For this to be possible, the gradient descent algorithm 

is applied. This algorithm calculates the gradient of the loss function with respect to the 

parameters 𝑤 and 𝑏 by applying the following equations (Pereira & Borysov, 2019): 
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𝑤𝑖+1 = 𝑤𝑖 −  𝜂
𝜕𝐿𝑜𝑠𝑠

𝜕𝑤𝑖
 

(2.9) 

 

 

𝑏𝑖+1 = 𝑏𝑖 −  𝜂
𝜕𝐿𝑜𝑠𝑠

𝜕𝑏𝑖
 

(2.10) 

 

 

where 𝜂 is the learning rate. A schematic representation of the gradient descent of the loss 

function is shown in Figure 2.6 (Pereira & Borysov, 2019). The choose of 𝜂 should be carefully 

analyzed, science a big 𝜂 may compute faster solutions but may never find the optimal minimum 

point of the loss function curve, while a small 𝜂 will eventually find the optimal point but may 

compute the solution in a considerably greater amount of time. One problem of the plain 

gradient descent from Equations (2.9) and (2.10) is that the probability of getting stuck in a local 

minimum point of the loss function is high and thus the optimal solution will not be found, as 

illustrated in Figure 2.6. Stochastic gradient descent is a simple solution for this problem, where 

the gradients errors are calculated considering mini-batches or subsets of the complete dataset 

introducing noise to the estimated gradients allowing the parameters 𝑤 and 𝑏 to escape from 

local minimums of the loss function (Pereira & Borysov, 2019). Several optimization algorithms 

can be found in the literature implementing stochastic gradient descent to update the 

parameters. The most used and popular optimization algorithms due to its good computational 

efficiency are the momentum, RMSprop, and the recently introduced Adam optimizer, which is 

a combination of the momentum and RMSprop gradient descent. Adam stands for adaptive 

moment estimation and is an adaptive learning rate method which considers individual values of 

𝜂 for the network parameters (Bushaev, 2018). If the gradient of the loss function is assumed to 

be a random variable, then its first and second moment related to the expected value and the 

variance of the distribution, respectively, can be computed as follows (Kingma & Ba, 2017): 

 

𝑚𝑖+1 = 𝛽1 𝑚𝑖 + (1 −  𝛽1)𝑔𝑡 (2.11) 
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𝑣𝑖+1 = 𝛽2 𝑚𝑖 + (1 −  𝛽2)𝑔𝑡
2 (2.12) 

 

where 𝑚𝑖+1 and 𝑣𝑖+1 are the first and second moment at the 𝑖𝑡ℎ + 1 timestep, respectively, 𝛽1 

and 𝛽2 are exponential decay rates for the moments set to 0.9 and 0.999, respectively, and 𝑔𝑡 is 

the loss function gradient at the current minibatch or data subset. As the moments are initialized 

as zero vectors, they need to be bias-corrected by applying the following equations: 

 

�̂�𝑖+1 =
𝑚𝑡

1 −  𝛽1
𝑖
 (2.13) 

 

 

𝑣𝑖+1 =
𝑣𝑡

1 −  𝛽2
𝑖
 (2.14) 

 

 

Finally, the updated parameters from the Adam optimizer can be computed as follows: 

𝜓𝑖+1 =  𝜓𝑖 −  
𝜂 �̂�𝑖+1

√𝑣𝑡+1 +  𝜀
  

(2.15) 

 

 

where 𝜓𝑖+1 represents the updated parameters 𝑤 or 𝑏 at the 𝑖𝑡ℎ + 1 timestep, and 𝜀 is a 

parameter set to 10−8 to avoid dividing by zero in the above equation. 
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Figure 2.6. Loss function gradient descent (Pereira & Borysov, 2019). 

2.3.3.4 Regularization 
 

Regularization prevents the ANN to capture the noise and “memorize” the validation data to 

avoid the risk of overfitting. A characteristic of overfitting is typically observed when an 

outstanding performance is obtained in the validation set but a seriously poor performance is 

obtained in the test set. In this work, the dropout technique is used in each hidden layer. With 

this technique, a specified number of hidden neurons are randomly omitted from the ANN and a 

hidden node cannot rely on the omitted hidden units being present (Hinton et al., 2012). In this 

way, practically a different ANN is trained at each epoch and the loss function is reduced due to 

the average predictions produced by each trained ANN (Hinton et al., 2012). A dropout rate of 

20% is applied in this work, meaning that 1 out of 5 hidden neurons of each hidden layer will be 

randomly excluded from the network.  

2.3.3.5 Architecture of the ANN 
 

The wind speed, wind direction, atmospheric pressure, and temperature were considered the 

predictors. In this case, just the 7 weather stations with complete records were considered (2005 
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– 2020) so that the stations are contributing with 28 predictors. In addition, the hour of the day 

and month of the year were included in the input parameters to capture wind speed diurnal and 

seasonal trends. Thus, the network is fed with a total of 30 predictors at the input layer. 

Normalizing the data is not strictly necessary for ANNs, but it is recommendable for a faster 

learning process (Afshar, 2016; Philippopoulos & Deligiorgi, 2012). The data were normalized 

using the min-max scaler technique in the range between 0 and 1, except for the temperature, 

which was normalized between -1 and 1 by applying the following equation (Afshar, 2016): 

 

�̂� = 𝑙𝑜𝑤 +  
(ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤)(𝑥 − min 𝑋)

max 𝑋 − min 𝑋
 

(2.16) 

 

 

where �̂� is the transformed value, 𝑥 is the original observation from the 𝑋 sample, and 𝑙𝑜𝑤 and 

ℎ𝑖𝑔ℎ refers to the minimum and maximum value of the min-max scaler normalization. 

Finding the optimal architecture of the network is an empirical process, however, the number of 

neurons in the hidden layers is typically recommended to be between the numbers of neurons 

in the output and input layers (Afshar, 2016). For this reason, 3 hidden layers of 20 neurons were 

selected for this network. The output layer consists of just one neuron, which will predict the 

hourly wind speed records at HE. The network was developed in the open source TensorFlow 2.0 

and Keras 2.3.0 libraries by using a Sequential model. A schematic representation of the network 

used in this thesis is shown in Figure 2.7, while Table 2.3 shows a summary of its characteristics 

described along subsection 2.3.3.  
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Figure 2.7. Architecture of the network. 

 

Table 2.3. Characteristics of the network. 

Training set 70% 

Validation set 15% 

Test set 15% 

Loss function MAE 

Optimization algorithm Adam 

Regularization Dropout (20%) 

Normalization Min-max scaler 

Number of neurons in the input layer 30 

Number of hidden layers 3 

Number of neurons in the hidden layers 20 

Number of neurons in the output layer 1 

Activation function in the input layer  tanh 

Activation function in the hidden layers tanh 

Activation function in the output layer  linear 

 

The wind speed values from the weather stations were elevated to 20 m. above ground (location 

of the cable) before the training process by applying the power low (Simiu & Scanlan, 1996). 
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𝑢

𝑢𝑟𝑒𝑓
= (

𝑧

𝑧𝑟𝑒𝑓
)

𝐼𝑢

 
(2.17) 

 

 

𝐼𝑢 =
1

ln (
𝑧
𝑧𝑜

)
 

(2.18) 

 

 

where 𝑢 (m/s) is wind speed, 𝑧 (m) is the height at which the measurements were made (10m 

above ground), 𝑢𝑟𝑒𝑓 (m/s) is the reference velocity, 𝐼𝑢 is the turbulence intensity, and 𝑧𝑜 (m) is 

the characteristic roughness length at each weather station location. The number of epochs were 

set to 500, and the remaining 5 years (2015 – 2020) of records from the weather stations were 

used to forecast the wind speeds at HE. 

 

2.4 Ice accretion model 
 

The weather data acquired from the analysis described in section 3 were then used as inputs to 

simulate ice accretion rate on a single conductor. Here, the model described in (Makkonen, 2000) 

was used due to its relative simplicity and formerly acknowledge accuracy in the predictions. 

According to the model, the rate of icing is obtained as follows: 

 

𝑑𝑀

𝑑𝑡
=  𝛼1𝛼2𝛼3𝑊𝑢𝐴 

(2.19) 

 

 

where 𝑊 = 0.067𝑝𝑖
0.846 (g/m3) is the liquid water content (Jones, 1998) 𝐴 is the cross section 

of the cable, and 𝛼1, 𝛼2, and 𝛼3 are variables ranging from 0 to 1, known as the collision, sticking, 

and accretion efficiency, respectively. Equation (2.19) needs to be solved according to the kind 

of ice formation on the conductor. Details of the development of the empirical solutions and 
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numerical simulations can be found in Fu, (2004), Ličar, (2016), Makkonen, (1984), or Makkonen 

(2000), among others, and thus are not developed here. However, the estimations of the 

variables of Equation (2.19) are described along this section. 

The collision efficiency 𝛼1 is defined as the ratio of the particles (droplets) that hit the object to 

the total of particles (Makkonen, 2000). To know the collision efficiency, the trajectories of the 

water droplets and the velocity vectors at the time of collision with the cable must be solved. 

However, if a radial ice accretion shape is assumed, then, for practical proposes, the overall 

collision efficiency 𝛼1 can be solved numerically following the empirical procedure described in 

Finstad et al., (1988). The assumption of a radial ice accretion shape is due to the finite torsional 

stiffness of the cable (Roberge, 2005). When the ice eccentricity is large enough, the wire will 

eventually rotate around its axis and the accretion will become a cylindrical sleeve (Roberge, 

2005). At the early stage of the growth process, before the cable rotation and thus before the 

radial ice accretion shape is formed, the rime and glaze may form different ice profiles due to its 

different physical growth conditions on the windward side of the wire. Modelling those shapes 

are crucial when the effects of the vertical galloping are required. The study of complex ice shapes 

requires detailed aerodynamic analyses, which are not included in this thesis. The procedure to 

estimate 𝛼1 is described in the following equations: 

 

𝛼1 = 𝐴 −  0.028 − 𝐶(𝐵 − 0.0454) (2.20) 

 

 

𝐴 = 1.066𝐾𝑛
−0.00616𝑒−1.103𝐾𝑛

−0.688
 

 

𝐵 = 3.641𝐾𝑛
−0.498𝑒−1.497𝐾𝑛

−0.694
 

 
𝐶 = 0.00637(𝜑 − 100)0.381 

 

 

(2.21) 

 

 

𝐾𝑛 =  
𝜌𝑤𝑑2𝑢

9𝜇𝐷
 

(2.22) 
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𝜑 =
𝑅𝑒𝑑

2

𝐾𝑛
 

(2.23) 

 

 

𝑅𝑒 =
𝜌𝑎𝑑𝑢

𝜇
 

(2.24) 

 

 

where 𝐾𝑛 and 𝜑 are the inertia and Langmuir parameter, respectively, 𝜌𝑤  (kg/m3) is the water 

density, 𝑑 is the droplet median volume diameter, 𝜇 (kg/m ∙ s) is the absolute viscosity of air, 

𝐷 (m) is the cable diameter, and 𝑅𝑒𝑑 is the droplet Reynolds number. In this paper, the droplet 

median volume diameter was taken as 𝑑 = 25 (𝜇m) as it has been observed as a good 

representation of the droplet distribution spectrum during freezing conditions (Thompson et al., 

2017). The sticking efficiency 𝛼2 is reduced from 1 when the water droplets bounce after the 

impact with the surface. In the case of rime and glaze ice it is possible to assume no bounce of 

the water droplets and thus taking 𝛼2 = 1 at every time step (Makkonen, 2000). The accretion 

efficiency 𝛼3 depends on the type of ice formation. For rime ice, the supercooled water droplets 

froze instantaneously after the impact and 𝛼3 = 1 can be assumed. In the case of glaze ice (wet 

growth), the water droplets are observed to run off the cable surface and 𝛼3 can be solved from 

the heat balance on the icing surface shown in the following equation (Makkonen, 2000): 

 

𝛼3 =
1

𝐹(1 − 𝜆)𝐿𝑓
  [(ℎ + 6𝑎𝑖)(𝑡𝑠 − 𝑇)  + 

ℎ𝜀𝑖𝐿𝑒

𝐶𝑝𝑃𝑖

(𝑒𝑠 − 𝑒𝑎)  −  
ℎ𝑟𝑖𝑢

2

2𝐶𝑝
+  𝐹𝐶𝑤(𝑡𝑠 − 𝑇)] 

(2.25) 

 

 

where 𝐹 =  𝛼1𝛼2𝑤𝑢, 𝜆 is the liquid fraction taken as 0.3, 𝐿𝑓 is the latent heat of fusion at 0 ℃, 

ℎ is the heat transfer coefficient, 𝑎𝑖 is the radiation linearization constant (8.1 𝑋 107 (𝐾3)), 𝑡𝑠 is 

the cable surface temperature, 𝜀𝑖 is the ratio of molecular weights of dry air and water vapor 

(0.622), 𝐿𝑒 is the latent heat of evaporation at 0 ℃, 𝐶𝑝 is the specific heat of air, 𝑃𝑖  is the air 
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pressure, 𝑒𝑠 is the saturation water vapor pressure at 0 ℃ (6.17 (mbar)), 𝑒𝑎 is the saturation 

water vapor pressure at 𝑇𝑖, 𝑟𝑖 is the recovery factor for viscous heating (0.79 in the case of a 

cylinder), and 𝐶𝑤 is the specific heat of water. Equation (2.25) can be solved numerically, first 

assuming wet growth so that  𝑡𝑠 = 0 ℃, if the outcome from the equation is not 0 < 𝛼3 < 1, then 

the wet growth assumption is proven to be wrong, and 𝑡𝑠 can be solved numerically for dry 

growth (𝛼3 = 1) (Ličar, 2016; Makkonen, 2000).  

The ice density depending on the type of ice can also be obtained numerically at each time step. 

The resultant ice density is an important factor due to its influence in the accretion diameter. For 

its calculation in g/cm3 , the following procedure was performed (Macklin, 1962): 

 

𝜌𝑖 = 0.11𝑅0.76 
 

for 𝑅 ≤ 10 

𝜌𝑖 = 𝑅(𝑅 + 5.61)−1 for 10 < 𝑅 ≤ 60 

𝜌𝑖 = 0.92 
 

for 𝑅 > 60 

𝑅 =  −
𝑢0𝑑

2𝑡𝑠
 

 

 

(2.26) 

 

 

where 𝑅 is the Macklin’s density parameter, and 𝑢0 is the impact droplet velocity.  

For the ice mass reduction, two physical processes were taken into consideration: evaporation 

and sublimation rate. Evaporation will take place when 𝑇 > 0 ℃ and ice will start melting relatively 

fast (Harstveit & Vindteknikk, 2009). However, for winters where 𝑇 can stay below 0 ℃ for long 

time, sublimation rate needs to be included in the deicing rate modelling. Sublimation is defined 

as the change of phase directly from solid to vapor and the deicing rate occurs slowly if comparing 

with ice melting (Agustsson & Nygaard, 2016; Druez et al., 1995). Although evaporation and 

sublimation rate can be estimated by evaluating the energy balance model, here, for simplicity, 

a typical melting rate of 0.3 kg/m ∙ h, and sublimation rate of 0.02 kg/m ∙ h when 𝑇 > 0℃, and 

at dry hours (i.e. 𝑝𝑖 = 0), respectively, were included in the model (Druez et al., 1995). After the 

simulation, 15 years of hourly data pairs of wind speed and ice accretion diameter were obtained. 
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All the storms within that period were identified and used to obtain their probability distribution 

in terms of duration (hours) and intensity (radial thickness). A storm here is considered an icing 

event in which the accreted mass exceeded 0.1 kg/m for at least three consecutive hours. The 

maximum hourly wind speed recorded during the icing event (wind on ice velocity) was identified 

and selected as the data pair for the maximum radial ice accretion (𝑅𝑒𝑞). Hence, the maximum 

hourly velocity and maximum radial ice accretion during an icing event were assumed concurrent 

and used to characterize the joint wind and ice hazard. 

 

2.5 Probability distributions 
 

The results from the analyses described in the previous subsections were fitted to different 

probability distributions according to their characteristics. The wind speed values from the WRF 

model and the ANN were fitted to a Weibull distribution and their scale and shape parameters 

were compared to check if there was good agreement. Similarly, their extreme values were fitted 

with the well-known Gumbel distribution and the 𝑡-year return period velocities were estimated. 

The Weibull probability distribution function is shown in Equation (2.27), followed by the by the 

Gumbel extreme value distribution in Equation (2.28) (Gumbel, 1954; Weibull, 1939).  

 

𝑓(𝑥) =
𝑘

𝑎
 (

𝑥

𝑎
)

𝑘−1

𝑒(−𝑥 𝑎) ⁄ 𝑘

 
(2.27) 

 

 

𝑉𝑡 = 𝑈 +
1

𝑏
 (−ln (− ln(1 − 𝑃)))  

(2.28) 

 

 

where 𝑘 and 𝑎 are the shape and scale parameters of the Weibull distribution, respectively, in 

this case, 𝑥 represents the wind speeds 𝑢 from the ANN and WRF model, 𝑉𝑡 (m/s) is the 𝑡-year 
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return period velocity, 𝑈 is the mode of the extreme value distribution, 
1

𝑏
 is the dissipation, and 

𝑃 is the probability of the event occurring once every 𝑡 years (𝑃 =
1

𝑡
). 

The ice radial thickness 𝑅𝑒𝑞 was fitted to a Generalized Pareto distribution, since it has been 

observed to be a good fit for ice accretion extreme values distribution (El-Fashny, 2002). 500 

years of icing events were simulated by generating random, or pseudo values of wind speed or 

ice accretion from the inverse of their fitted cumulative density functions. The Weibull 

cumulative density function (CDF) shown in Equation (2.29) was used to generate the hourly wind 

speed pseudo records while the Generalized Pareto (GP) CDF shown in Equation (2.30) was used 

for the ice accretion radial shape (Sinh et al., 2016).  

 

𝑃(𝑉 ≤ 𝑉0) = 1 − 𝑒
−(

𝑉0
𝑎

)
𝑘

 
(2.29) 

 

 

𝑃(𝑋 ≤ 𝑥|𝜃) = 1 − [1 + 
𝜏(𝑥 −  𝜃)

𝜎
]

−
1
𝜏

 

(2.30) 

 

 

where 𝑉 is the wind speed in this case, 𝑉0 is a specific wind speed, 𝑥 is the radial ice accretion, 𝜃 

is the threshold parameter, and 𝜏 and 𝜎 are the shape and scale parameters of the GP 

distribution, respectively. 

 

2.6 Results and discussion 
 

The results from the data analysis of the weather characteristics are shown in Figure 2.8. The 

maximum correlation coefficient obtained between the WRF and IDW models was 𝑟 = 0.92 with 

a control parameter 𝛼𝑖 = 1.5. This good agreement reinforced the hypothesis of the linear 

relationship between low and high elevated terrain hourly temperature records for the analyzed 

weather stations with relatively the same longitude and latitude coordinates. For the wind speed 
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analysis, the ANN achieved a correlation coefficient of 𝑟 = 0.81. The ANN was able to identify the 

nonlinear relationship between the surrounding weather stations and HE in general but failed to 

identify the outliers above the 99 percentile, as it can be observed in Figure 2.8. The reason for 

its difficult modelling is the complex terrain where HE is located, the randomness and nature of 

wind speed decorrelates rapidly in space and makes its prediction quite challenging. The Weibull 

parameters of the distributions and the goodness of fit are shown in Table 2.4.  

 

 

a) 

 

b) 

 

c) 

 

d) 

Figure 2.8. a) Fitted Weibull distribution for wind speed historical records, b) Box plots for wind 

speed historical records, c) Fitted Normal distributions for temperature historical records, and d) 

Box plots for temperature historical records. 
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Table 2.4. Goodness of fit and probability distribution parameters. 

Variable 𝛼𝑖 𝑟 MAE MSE RMSE 
Weibull 

Parameters 
(𝑘, 𝑎) 

𝑇 (℃) 1.5 0.92 2.01 7.45 2.73 -- 

𝑢 (𝑚/𝑠) -- 0.81 2.46 10.95 3.31 
ANN: (1.92, 7.32) 
WRF: (1.48, 7.60) 

 

From the ice accretion model, several observations can be made. All the storms within the 15 

years of historical records were identified and their intensity in terms of 𝑅𝑒𝑞 and duration were 

registered. A total of 385 icing events were identified for a storm recurrence rate of 385/15 years 

= 25.67 events per year. Table 2.5 contains information of the 5 most severe storms modelled. 

The evolution of the 5 storms reported in Table 2.5 can be consulted in Appendix  A. The wind 

speeds during icing conditions from Table 2.5 were compared with the design velocities reported 

in Jubayer & Hangan, (2018). In their analysis, the authors obtained design wind and gust speeds 

for snow covered surfaces (characteristic of the wintertime) and for three different wind 

directions at 10 m above ground for the same HE as in the present thesis by performing numerical 

and experimental simulations. The most conservative design wind and gust speeds from their 

analysis were taken as reference and were elevated at 20m above ground by applying Equation 

(2.17) and Equation (2.18). Here, the design wind speed was considered as the average of the 

maximum velocities reported in Table 2.5, and the design gust wind speed was obtained by 

applying a factor of 1.36 based on the Durst Curve (ASCE 7). The mentioned comparison is shown 

in Table 2.6. Note that this comparison does not intend to provide the wind data pair for the joint 

analysis, instead, the comparison is made for consistency purposes of the wind speeds magnitude 

presented at HE. 

It is pertinent to remember that this analysis assumes a radial ice accretion on the conductor 

based on the overall collision efficiency, as previously discussed. For aerodynamic analysis where 

galloping may occur, modelling the shape of the ice accretion is needed instead of assuming a 

radial shape. This can be done by modelling the local collision efficiency on the conductor, using 

the information from Table 2.5 as inputs. Such models can be found in Fu et al., (2006), and 
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McComber & Touzot, (1981), for example, or by using commercial ice accretion software like 

LEWICE or Ansys FENSAP-Ice. Other authors have assumed a simplified ice accretion shape to 

perform aerodynamic analysis, since an axial growth on the windward side of the conductor 

during icing events has been observed to be in good agreement with field observations where 

rime ice or wet snow may accrete (Poots & Skelton, 1995; Rossi et al., 2020). The results for the 

ice density indicate that most of the ice formation may be soft rime for this specific case of study, 

and is consistent with the analysis presented in Rossi et al., (2020). at HE based on the analysis 

from the WRF model. A mean ice density of 𝜌
𝑖

≈ 300 kg/m3 was obtained for all the icing events 

identified in the analysis. This density can be used for the estimation of the wind and ice load 

when considering rime ice formation. Figure 2.9 shows the histogram of occurrence of ice 

formation from the ice accretion model. The few events where the ice density was 𝜌𝑖 >

900 kg/m3 (glaze ice) corresponds to all the cases when the Macklin’s density parameter was 

𝑅 > 60, as stated in Equation (2.26). The ice accretion extreme values analysis is shown in Figure 

2.10. A good fit to the Generalized Pareto distribution for 𝑅𝑒𝑞 in terms of the PDF, CDF, Quantile-

Quintile (Q-Q) plot and return levels can be observed. This observation is consistent with previous 

studies where the GP distributions are recommended to fit ice accretion extreme values (El-

Fashny, 2002). The GP parameters and the measure of its goodness of fit from the Q-Q plot are 

reported in Table 2.7. The Peak Over Threshold (POT) method was used for the selection of 𝜃. 

This was done by trial and error, with the hypothesis that the extreme values of 𝑅𝑒𝑞 follow a GP 

distribution. The quintile 0.7 were used as a first guess and the goodness of fit both qualitatively 

(Figure 2.10) and quantitatively (Table 2.7) where measured until the best fit was found. The 90 

percentile showed the best results and was selected as the threshold 𝜃 in the analysis, with 38 

out of 385 storms categorized as extreme events (𝑅𝑒𝑞 >  𝜃) for an extreme recurrence rate of 

38/15 = 2.53/year.  
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Table 2.5. Information of the most severe storms. 𝑢𝑚𝑎𝑥) Maximum velocity presented during the 

evolution of the storm, 𝑢) Mean velocity presented, 𝑇) Mean temperature presented, 𝑝) Mean 

precipitation presented. 

Storm 
No. 

Duration 
(hours) 𝑅𝑒𝑞 (cm) 

𝑢𝑚𝑎𝑥  
(m/s) 𝑢 (m/s) 𝑇 (°C) 𝑝 (mm) 

1 146 12.48 30.73 14.92 -20.19 0.69 

2 463 8.93 31.66 12.27 -13.28 0.47 

3 111 7.81 15.09 9.20 -14.91 1.58 

4 184 7.5 31.71 19.51 -16.87 0.25 

5 95 6.89 31.01 21.74 -23.78 0.34 

 

Table 2.6. Wind and Gust velocities from physical and ANN analyses. 

Analysis 𝑢 (m/s)  𝐺𝑢𝑠𝑡 (m/s) 

(Jubayer & Hangan, 2018) 27.87 40.33 

ANN 28.04 38.13 

 

 

Figure 2.9. Ice density (𝜌𝑖) and types of ice histogram based on the classifications reported in  

Table 1.1. 



 
 

45 
 

 

a) 

 

b) 

 

c) 

 

d) 

Figure 2.10. a) Generalized Pareto PDF, b) Generalized Pareto CDF, c) Q-Q plot, and d) Theoretical 

return levels vs fitted Generalized Pareto return levels. 

 

Table 2.7. Distribution parameters and goodness of fit measured in terms of 𝑟) Correlation 

coefficient, MAE) Mean Absolute Error, MSE) Mean Square Error, RMSE) Root Mean Square Error. 

Distribution Parameters 𝑟 MAE MSE RMSE 

GP 
𝜏 = 0.48  
𝜎 = 0.74            
𝜃 = 3.88 

0.98 0.12 0.05 0.23 
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The 50-year return levels for wind speed (𝑉50)  and ice radial thickness (𝑅𝑒𝑞50
) are reported in 

Table 2.8. Overall, there is good agreement between the results from the WRF model and the 

analysis from the present work. The differences between the two models are of the order of 12% 

for 𝑉50 and 4% for 𝑅𝑒𝑞50
. The ANN predictions are lower compared to the WRF modelled values 

due to the underestimation of the peak values previously discussed.  

 

Table 2.8. 50-year return levels for wind speed and ice accretion. 

Model 𝑉50 (m/s) 𝑅𝑒𝑞50 (cm) 

ANN, Ice accretion model 36.71 12.52 

WRF, Ice accretion model 42 12 

 

 

Finally, similarly to Rosowsky & Wang, (2014) and Sinh et al., (2016), the records were combined 

in order to characterize the wind and ice hazard. A joint scatter plot was built from the historical 

and simulated records (Figure 2.12). The wind speed values were converted to 3 second gust 

wind speed by a factor of 1.36, for structural design purpose. The joint frequency histogram is 

shown in Figure 2.11a The joint complementary cumulative density function (JCCDF) or 

probability of exceedance curve was obtained from the product of their marginals’ CDFs (Figure 

2.11b). The hazard contours were drawn by projecting the JCCDF curve in the x-y plane for a given 

probability of exceedance and were taken as a reference for selecting the data pairs according to 

their hazard level (Figure 2.13). Each hazard contour in the figure corresponds to a different 

hazard level. Hazard levels are represented by the probability of exceeding a certain value in 𝑡 

years. Since the hazard contours are characterizing a joint hazard in this study, they indicate the 

probability of exceeding both values (𝑅𝑒𝑞 and 𝑢) at the same time in 𝑡 years. The CSA-C22.3 

considers 3 reliability levels for the design, being related to 50, 150, and 500 years return period, 

respectively. Two combinations are proposed in the standard: 

• C1: The low probability 𝑅𝑒𝑞 related to its reliability level return period (50, 150 or 500 

years), and high probability 𝑢, related to the average of yearly maximum events. 
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• C2: The low probability 𝑢 related to its reliability level return period (50, 150 or 500 years), 

and high probability 𝑅𝑒𝑞, related to the average of yearly maximum events. 

Thus, the contours presented correspond to the hazard levels of 2, 0.67, and 0.2% probability of 

exceedance, for 50, 150, and 500 mean year recurrence interval, respectively. From the hazard 

contours, it is possible to select the data pair which represents the worst case scenario when 

calculating the loads, and take those values into consideration for the design (Sinh et al., 2016). 

The combination C1 an C2 for the three reliability levels is also shown in Figure 2.13. It can be 

observed that the combinations are above all contours, even higher than the 0.2%, 500 hazard 

level. This is due to the assumption of combining two values which are strongly related to their 

extreme events, for which the probability of occurrence at the same time is extremely low. Table 

2.9 contains information of the three reliability levels and both C1, and C2 combinations. 

 

 

a) 

 

b) 

Figure 2.11. a) Joint Frequency histogram and b) Joint Probability of Exceedance curve. 
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Figure 2.12. Joint scatter plot for the historical and simulated data pairs. 
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Figure 2.13. Hazard contours characterizing the joint wind and ice hazard.  

 

Table 2.9. Reliability levels and C1 and C2 combined values from the CSA-C22.3. 

Combination 𝑅𝑒𝑞 (cm) 𝑢 (m/s)  𝑡 (years) 

C1 12.52 29.75 
50 

C2 5.71 36.71 

C1 19.65 29.75 
150 

C2 5.71 39 

C1 33.27 29.75 
500 

C2 5.71 41.47 
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2.7 Conclusions  
 

Historical data from 16 weather stations for a mountainous terrain in British Columbia, Canada, 

were analyzed. Temperature data from IDW interpolations were in good agreement with WRF 

simulations. Wind speed hourly records based on the ANN analysis were found to have a good 

correlation with the WRF model, however, the ANN underpredicted the peak values above the 

99 percentile. Nevertheless, Neural Networks are powerful tools which are gaining usage in the 

wind engineering field due to its good cost-performance ratio, providing wind speed in 

considerably less time than more complex methods. The ice accretion modelling resulted in 385 

ice storms within a period of 15 years or an average of 25.67 storms per year, and an extreme 

storm recurrence rate of 38/15 = 2.53/year. Their characteristic in terms of duration and intensity 

were estimated and used to select the wind speed and ice accretion data pairs and determine 

hazard levels from the GP distributions, respectively. The ice density to take into consideration 

in the design of the line corresponded to soft time with a value of 𝜌𝑖 ≈ 300 (kg/m3). This ice 

density value in combination with the selected data pairs from the reliability levels hazard 

contours that that lead to the worst-case scenario can be taken into consideration for the system 

design. In this analysis, the combined values proposed in the CSA-C22.3 were found to be 

conservative. The data pairs for the 50-year return period reliability level were found to be far 

from the 2%, 50 hazard level and closer to the 0.2%, 500 hazard contour. The rest of the 

combinations were found to be far from all the contours.  

However, further aerodynamic analysis at the early stage of the ice accretion process before the 

eventual rotation of the wire is needed for complex ice shapes for both rime and glaze ice before 

concluding that the standard provides overly conservative data pairs. Those complex shapes 

accreted on the windward side of the conductor are prone to galloping and may increase the 

wind and ice loading on the system exceeding the loads estimated from the contours. The 

present chapter provided the probabilistic characterization of the wind and ice hazard and the 

weather characteristics at the site.  
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Chapter 3 

 

3 Vertical galloping on complex shapes of iced conductors 
 

In this chapter, for aerodynamic analyses, the asymmetric ice profile at the early stage of the 

accretion during an icing event need to be taken into consideration instead of the radial ice 

accretion considered in the Chapter 2. In the case of rime ice, a crescent shape by axial growth 

following a cosine law in the windward side of the conductor have been proposed and observed 

to be a good representation of real rime ice accretion shape (Poots & Skelton, 1995). The reason 

behind this process is due to the instantaneous freezing of the supercooled water droplet after 

the collision with the cable. Due to its well representation of the real rime ice deposit, several 

authors have considered this shape to perform aerodynamic analysis on iced conductors. Liu et 

al., (2015) performed wind tunnel tests and computational fluid dynamics (CFD) simulations for 

a single conductor and studied the effect of the wake on a bundle conductor. Rossi et al., (2020) 

obtained aerodynamic coefficients from a force balance wind tunnel experiments considering a 

range of eccentricities of the crescent shape ice deposit and obtained the tension transmitted to 

the tower on the onset of galloping. Borna et al., (2012) identified instabilities on the same ice 

shape by performing a two-dimensional two-way fluid structure interaction (FSI) model aiming 

to capture the maximum displacements produced by the vertical galloping and the horizontal 

displacements within a range of wind velocities.  

Glaze ice, on the other hand, is more difficult to characterize due to its wet growth process. For 

this case, assuming the crescent shape by axial growth may not be accurate because the droplets 

do not freeze instantaneously after collision. Instead, the freezing rate is controlled by the latent 

heat release and a fraction of the impinging water droplet runs off the cable due to gravity 

(Makkonen, 2000). For this reason, the mass may concentrate beneath the surface creating more 

complex shapes. The airflow past the cylindrical shape of the cable must be modelled keeping 

track of the water droplets trajectories, evaluating the local collision efficiency, and solving the 

heat balance equation to eventually estimate the new ice shape at each time step of the process 
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(Fu et al., 2006). Modelling complex ice shapes is a complex iterative process whose details can 

be found in Fu, (2004), Fu et al., (2006), or McComber & Touzot, (1981), for example. In addition, 

this procedure can be performed by using icing software such as the Nasa LEWICE, the CANICE 

model, or the Ansys FENSAP-ICE, to name a few (Fu et al., 2006). 

In this chapter, both rime and glace ice shapes are considered for stability analysis. The rime ice 

analysis performed by Rossi et al., (2020) is taken as a reference for comparison purposes with 

two more complex ice shapes. The complex glaze ice shapes are taken from previous analysis 

published by Fu et al., (2006). The shapes are selected based on the similarity between the 

characteristics (wind speed and temperature) considered in Fu et al., (2006) for the estimation 

of the ice shape and the characteristics observed in Chapter 2. The Den Hartog, (1932) principle 

is applied for the identification of critical ranges where instabilities may occur and the linear 

theory of free vibrations of a suspended cable is used to transfer the loads acting on a one-

degree-of-freedom system produced on the onset of vertical galloping to the transmission tower.  

 

3.1 Ice profiles 
 

The ice profiles for rime and glaze were selected based on previous observations and considering 

the physical process where they may form: 

 

3.1.1 Rime ice profile 
 

Poots & Skelton, (1995) have demonstrated that assuming a unity accretion efficiency, the ice 

deposit on the windward side of the conductor follows a cosine low shown in Figure 3.1. This 

shape has been well accepted for a dry growth process due to its good agreement with field 

observations (Poots & Skelton, 1995). The ice profile is assumed to be uniformly distributed along 

the entire length of the cable and no rotation conditions for the one-degree-of-freedom system 
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analysis. The ice eccentricity considered here for the rime ice profile is set to 𝑡/𝑑=1 (see Figure 

3.1). 

 

 

Figure 3.1. Rime ice profile (Poots & Skelton, 1995). 

 

The profile form Figure 3.1 follows Equation (3.1) proposed by Poots & Skelton, (1995). 

 

𝜎𝑖 =  𝜎0 cos 𝛾(𝑟𝐵) (3.1) 

 
 

where 𝜎𝑖  denotes the local fraction of the incoming particle, 𝜎0 < 1 is a constant, and 𝛾(𝑟𝐵) is the 

angle between the impinging trajectory and the normal to the surface at the point 𝑟𝐵.  

 

3.1.2 Glaze ice profile 
 

From the most severe storms in terms of icing intensity 𝑅𝑒𝑞 (radial ice deposit) and its weather 

characteristics shown in Table 2.5, it is possible to observe that the average of the mean velocities 

𝑢 presented during the length of the icing events is 15.46 m/s. Glaze ice shapes produced by 

water droplets flowing with the streamlines considering a similar free stream velocity were found 

in the literature and used for this analysis. The selected profiles are those modelled for wet and 
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semi wet growth conditions presented in Fu et al., (2006) (Figure 3.2). Both profiles correspond 

to icing simulations considering a wind speed 𝑢 = 10 m/s, and temperature (𝑇) conditions of -10 

°C and -5 °C for Figure 3.2a (S1) and Figure 3.2b (S2), respectively. The eccentricity for the S1 

profile is 𝑡/𝑑= 0.72, while for the S2 profile is 𝑡/𝑑= 0.36. Since the S1 profile is characteristic of 

semi wet growth conditions, it can be considered a combination of rime and glaze ice formation 

(Fu et al., 2006).  

 

 

 

a) S1 

 

b) S2 

Figure 3.2. a) S1 profile for 𝑢 = 10 m/s, and  𝑇 = -10 °C in semi wet growth conditions, and b) S2 

profile for 𝑢 = 10 m/s, and 𝑇 = -5 °C in wet growth conditions (Fu et al., 2006). 
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3.2 CFD Setup 
 

The ice profiles described in the past subsections were analyzed by performing Computational 

Fluid Dynamics (CFD) simulations to obtain the aerodynamic lift (𝐶𝑙) and drag (𝐶𝑑) coefficients. 

The simulations were performed in the Fluent module of Ansys 18.1, and the recommendations 

from Rossi, (2018) were followed for the analysis setup. Steady state simulations were performed 

using the RANS 𝑘 − 𝜔 SST turbulence model due to its good prediction of 𝐶𝑑 and 𝐶𝑙 at the 

proximity of the wall which in this case is the ice profile. The boundary conditions were located 

far from the profile to let the flow develop along the domain as shown in Figure 3.4a. A circular 

shape around the profile was set to act as a body of influence to refine the mesh in the zone of 

interest and a mesh growth rate of 1.05 was applied. In this way, the mesh density decreases as 

the elements get farther from the profile to considerably reduce the computational cost, which 

was an important goal of the analysis. Additionally, to keep the computational cost as low as 

possible, a sensitivity analysis was carried out by varying the value of the first layer thickness. 

Theoretically, to achieve reliable 𝐶𝑑 and 𝐶𝑙 from RANS models, the value of 𝑦+ should be within 

the viscous sublayer range of the boundary layer profile (Figure 3.3). Nevertheless, to achieve a 

value of 𝑦+ in the viscous sublayer, 𝑦+ should be < 1, which is very difficult to accomplish due to 

the small value of the first layer thickness needed which tends to increase the number of mesh 

elements. For this reason, a preliminary study was performed setting the values of 𝑦+ to 1, 5 and 

10 by performing the following calculations (Sijal, 2019): 

 

𝐶𝑓 = 0.058/𝑅𝑒
0.2  (3.2) 

 
 

𝑅𝑒 =
𝜌𝑎𝑢𝑑𝑐

𝜇
 

(3.3) 

 

 

 



 
 

62 
 

𝜏𝑤 = 0.5 𝐶𝑓 𝜌𝑎 𝑢2 (3.4) 

 
 

𝑢𝜏 =  √
𝜏𝑤

𝜌𝑎
 

(3.5) 

 

 

𝑦+ =
𝑢𝜏 𝑦 𝜌𝑎

𝜇
 (3.6) 

 
 

where 𝐶𝑓 is the skin friction coefficient, 𝑅𝑒 is the Reynolds number, 𝑑𝑐 is the characteristic length 

of the iced conductor, 𝜇 is the air viscosity, 𝜏𝑤 is the wall shear stress, 𝑢𝜏 is the friction velocity, 

𝑦+ is the non-dimensional height, and 𝑦 is the first layer thickness. Table 3.1 shows the results 

from the sensitivity analysis considering the rime ice profile and tested for three different wind 

velocities. From the table, it can be observed that the number of mesh elements drastically 

increases when decreasing the value of 𝑦+, while the differences in 𝐶𝑑 and 𝐶𝑙 are in average 5% 

comparing the results for 𝑦+ = 10 and 𝑦+ = 1. Hence, it was accepted that for the purpose of 

this study using a value of 𝑦+ = 10 ensures the best cost-effective ratio. This analysis was taken 

into consideration for the three ice profiles and 𝑦+ was set to 10 for each case. The final mesh 

and the detail of first layer thickness for the rime profile are shown in Figure 3.4b. The mesh 

quality was also evaluated by monitoring two quality metrics such as the element quality and 

cells skewness. From Figure 3.5a and b, it can be observed that the described procedure resulted 

in high quality elements and low cell skewness for the rime ice profile. The mesh and quality 

metrics for S1 and S2 profiles can be consulted in Appendix  B.  

For the validation analysis, the results from the present study and those from wind tunnel tests 

reported in Rossi, (2018) for the same rime ice profile and wind velocity were compared and are 

detailed in subsection 3.4 of this chapter. The overall differences between the CFD simulations 

and the wind tunnel tests form Rossi et al., (2020) were of the order of 5% for 𝐶𝑑 and 8% for 𝐶𝑙. 

The ice profiles were rotated considering three different sections. Section one was considered 

from the angle of attack 𝛼 = 0° to 30° with ∆𝛼 = 5°, section two from 𝛼 = 30° to 150° with ∆𝛼 = 
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10°, and section three from 𝛼 = 150° to 180° with ∆𝛼 = 5°. The direction from where 𝛼 was 

measured is illustrated in Figure 3.6. A total of 25 data points for the construction of 𝐶𝑙 and 𝐶𝑑 

curves with respect to 𝛼 were obtain for each profile after the CFD simulations. The outcome of 

the analysis is shown in subsection 3.4. 

 

Table 3.1. Sensitivity analysis for the rime ice profile. 

𝒚+ 𝒖 (
𝒎

𝒔
) 𝑪𝒅 𝑪𝒍 Elements 

10 

7.92 0.4206 1.426097 

60,000 12.87 0.5099 1.617076 

18.81 0.5013 1.582942 

5 

7.92 0.4249 1.456055 

100,000 12.87 0.498339 1.588819 

18.81 0.463913 1.536678 

1 

7.92 0.402645 1.49563 

260,000 12.87 0.4882 1.5492 

18.81 0.4622 1.5334 

 

 

 

Figure 3.3. Boundary Layer near the wall (Sijal, 2019). 
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a) 

 

b) 

Figure 3.4. a) Boundary conditions and b) final mesh considered for the rime ice profile with a 

total of ≈ 60, 000 elements,  𝑦+ = 10, average element quality = 0.97, and average skewness = 

0.03. 
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a) 

 
b) 

 

Figure 3.5. Mesh metrics for the rime ice profile: a) Element Quality, and b) Cells Skewness. 
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Figure 3.6. Rotation of the ice profiles. 

 

3.3 Structural Analysis 
 

This section is divided into 4 parts. First, the calculations of the static loads produced by both the 

ice mass accreted on the cable and the wind speed are described. The eigen value analysis for 

the estimation of the natural frequencies of the system is carried out in the second part. Third, 

the necessary conditions for galloping to occur are presented. Finally, the procedure for 

estimating the extra tension transmitted to the tower on the onset of galloping is developed. 

 

3.3.1 Static loads 
 

The horizontal component of the tension transmitted to the tower due to the vertical load can 

be calculated as follows (Irvine & Caughey, 1974): 

 

𝐻 =
𝑚𝑡𝑜𝑡 𝑔 𝐿𝑖

2

8 𝑠
 

(3.7) 

 
 

where 𝑚𝑡𝑜𝑡 represents the mass per unit length considering the ice deposit and the cable itself, 

𝑔 = 9.81 (m/s2) , 𝐿𝑖  = 172.4 (m) is the length of the span, and 𝑠 = 3.39 (m) is the sag at the mid 

span. For the calculation of 𝑚𝑡𝑜𝑡 , a mass per unit length of 𝑤𝑐 = 1.3 (kg/m) was assumed for the 

cable. For rime ice, the density distribution from Figure 2.9 showed that 𝜌𝑖  = 400 (kg/m3) may 
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be a reasonable value to take into consideration for the design. For S1 and S2 profiles, a value of 

𝜌𝑖  = 900 (kg/m3) was taken into consideration, which is characteristic of glaze ice. 

For the horizontal wind load, the correspondent tension can be obtained by applying the CSA-

C22.3 standard. 

 

𝐴𝑐 = 𝑞0 𝐶𝑑 𝐺𝑐  𝐺𝐿 𝑑𝑐 𝐿𝑖  (3.8) 

 

 

where 𝑞0 =
1

2
 𝜌𝑎  𝑢2, 𝜌𝑎 = 1.225 (kg/m3) is the air density, 𝐶𝑑 = 1.2 is the drag coefficient, 𝐺𝑐 = 

2.1 is the combined wind factor which depends on the height and terrain categories of the line 

location, and 𝐺𝐿 = 1is the span factor. The combined data pairs of ice accretion and wind speed 

were taken from Section 2. The correspondent ice accretion shape for a 10 m/s wind gust was 

selected from each hazard contour presented in Figure 3.7 and both values were considered in 

the calculations of Equation (3.7) and Equation (3.8). Note that the ice accretion (𝑅𝑒𝑞) from Figure 

3.7 considers a radial ice thickness along the length of the cable instead of a crescent ice deposit 

in the windward side. The fact of considering a radial shape for the static analysis and then adding 

its contribution to the dynamic effects may lead to conservative load estimations. However, for 

design purposes, this action was considered adequate in covering the possible uncertainties 

when dealing with the joint wind and ice hazard. 
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Figure 3.7. Selected ice accretion data pair for a 10 m/s wind gust velocity. 

 

3.3.2 Natural Frequencies of the system 
 

The linear theory of free vibrations of a suspended cable proposed by Irvine & Caughey, (1974) 

is capable to describe the dynamic behaviour of transmission line systems which present a ratio 

sag to span of 1:8 or less. The mode shapes of the system and its natural frequencies can be 

obtained by applying the following equations (Irvine & Caughey, 1974): 

 

𝜑(𝑥) = 1 − tan (
1

2
 𝛽 𝐿) sin(𝛽𝑥) − cos(𝛽𝑥) 

(3.9) 
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𝛽 = (
𝑚𝑠𝜔𝑛

2

𝐻
)

1
2

 

(3.10) 

 

where 𝜔𝑛 is the 𝑛𝑡ℎ angular natural frequency (rad s⁄ ), 𝑚𝑠 is the structural mass, 𝐻 is the 

horizontal tension component considering just the mass of the cable in Equation (3.7), and 𝛽𝐿 

specifies the particular symmetric vertical modal component which can be graphically estimated 

(Figure 3.8) by finding the non-zero roots of Equation (3.11).  

 

tan (
1

2
𝛽𝐿) = (

1

2
𝛽𝐿) − (

4

𝜆2
) (

1

2
𝛽𝐿)

3

 
(3.11) 

 

 

𝜆2 = (
8𝑠

𝐿
)

2 𝐿𝑖

(𝐻𝐿𝑒/𝐸𝑐𝐴𝑐)
 

(3.12) 

 
 

where 𝜆 is a parameter involving cable geometry and elasticity, 𝐿𝑒 = 𝐿𝑖  (1 + 8[𝑠 𝐿⁄
𝑖]

2
), 𝐸𝑐 is 

the modulus of elasticity of the cable, and 𝐴𝑐 is the area of the cable. Note that this analysis is 

limited to the symmetric vertical modal components of the system since the antisymmetric 

vertical modal components are not contributing to the tension transmitted to the tower due to 

the motion of the cable (Irvine & Caughey, 1974). In addition, according to Lilien et al., (2005), 

the oscillations produced by the vertical galloping have frequencies lower than 1 Hz and thus the 

analysis is limited to the first two symmetric vertical modal components of the line. From Figure 

3.8, the value of 
1

2
 𝛽 𝐿 for the first two symmetric modes are found when the red curve 

representing the right side of Equation (3.11) intersects the blue curves representing the left side 

of the equation. The intersections are represented by the black broken lines in the figure. Finding 

1

2
 𝛽 𝐿 from Figure 3.8 and solving for Equation (3.10), the two symmetric natural frequencies for 

the one-degree-of-freedom system shown in Table 3.2 were obtained. Note that even though 

the two natural frequencies are close from each other, here, the effect of close modes was 

neglected and each mode was treated independently. 
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Table 3.2. Natural frequencies of the conductor.  

 𝜑𝑛 
1

2
𝛽𝐿 

𝜔𝑛  
(rad/s)  𝑓𝑛 (Hz) 

1st  3.76 4.53 0.72 

2nd  5.10 6.13 0.98 

 

 

 

Figure 3.8. Graphic representation of the non-zero roots of Equation (3.11). 

 

3.3.3 Galloping Conditions 
 

There are three necessary conditions that must be fulfilled for the galloping to occur. First, the 

Den Hartog’s coefficient from Equation (1.1) must be negative (Den Hartog, 1932). The 

interpretation behind this statement is that the effect of the negative slope of the lift curve with 

respect to the angle of attack must be greater than the damping effects of the drag to present 
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aerodynamic instabilities (Den Hartog, 1932). When 𝑎𝑔 stays negative for a large range of ∆𝛼, the 

contribution to the maximum modal amplitude will increase, as will be discussed in the following 

subsection. The second condition depends on the wind speed and the structural properties of 

the transmission line system. When the free stream velocity surpasses the critical wind speed, 

the risk of experience vertical galloping will be presented (Scruton & Flint, 1964). 

 

𝑉𝑐 =
2 𝑆𝑐 𝑓𝑛 𝑑𝑐

𝑎𝑔
 

(3.13) 

 

 

where 𝑉𝑐 is the critical wind speed, 𝑆𝑐 =
4𝜋 𝜉𝑠 𝑚𝑠

𝜌0 𝑑𝑐
2  is the Scruton number,  𝑓𝑛 is the natural 

frequency (Hz) of the structure, 𝜉𝑠 = 0.005 is a typical structural damping ratio for transmission 

lines taken from literature and considered for the two mode shapes (Borna, 2014; Rossi, 2018), 

and 𝑚𝑠 is the structural mass per unit length. The third and final condition refers to the unbalance 

between the aerodynamic and structural damping. 

 

𝜉𝑠 + 𝜉𝑎 < 0 (3.14) 

 

where 

 

𝜉𝑎 =
𝜌0𝑑𝑐𝑢

4𝑚𝑠𝜔𝑛
 𝑎𝑔 

(3.15) 

 

 

is the aerodynamic damping ratio. At this point, the structure is not capable of mitigating the 

aerodynamic damping force, and it stays in a self-excited oscillatory motion characterized by high 

amplitudes and low frequencies. If the three conditions are fulfilled, galloping is assumed to fully 

develop. 
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3.3.4 Extra tension on the onset of galloping 
 

The final purpose of the structural design is to obtain the design loads considering all the possible 

events acting on the system. In the case of the vertical galloping, its contribution to the total 

tension can be obtained by applying the following procedure (Rossi, 2018): 

 

𝑚𝑛 = ∫ 𝑚𝑠

𝐿𝑖

0

 𝜑𝑛
2(𝑥) 

(3.16) 

 

𝑀𝑃𝐹𝑛 =
∫ 𝑚𝑠

𝐿𝑖

0
 𝜑𝑛(𝑥) 𝑑𝑥

𝑚𝑛
 

(3.17) 

 
 

𝑣𝑛(𝑥) = 𝐴𝑛 𝜑𝑛(𝑥) 𝑀𝑃𝐹𝑛 (3.18) 

 
 

𝐴𝑛 =
Δ𝛼 𝑢

𝜔𝑛
 

(3.19) 

 
 

𝑣(𝑥) =  √∑ 𝑣𝑛
2(𝑥)

𝑁

𝑛=1

 

(3.20) 

 

 

ℎ =
𝐸𝑐 𝐴𝑐  8𝑠

𝐿𝑒 𝐿𝑖
2  ∫ 𝑣(𝑥) 𝑑𝑥

𝐿𝑖

0

 
(3.21) 

 
 

where 𝑚𝑛 is the modal mass, 𝑀𝑃𝐹𝑛 is the modal participation factor, 𝑣𝑛(𝑥) are the 

displacements for the 𝑛𝑡ℎ mode, 𝐴𝑛 is the maximum modal amplitude, Δ𝛼 is the range where 

𝑎𝑔 < 0, 𝑣(𝑥) is the total displacement of the cable (considering both symmetric modes), and ℎ 

is the extra tension produced on the onset of the instability. 
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3.4 Results and discussion 
 

The results from the CFD analysis are shown in Figure 3.9 for the three ice profiles considered. 

Figure 3.9a shows a comparison with the aerodynamic coefficients reported in Rossi et al., (2020) 

(WT) for the rime profile and overall a good fit can be observed. The aerodynamic coefficients 

from the CFD analysis underestimated the 𝐶𝑙 peak values at 𝛼 = 20° and 170° obtained from the 

wind tunnel tests. These specific zones of the 𝐶𝑙 curve are critical since instabilities may occur 

within the Δ𝛼 range where the slope changes drastically from positive to negative. For this 

reason, the peak values from the wind tunnel tests reported in Rossi et al., (2020) were taken 

into consideration for the 𝑎𝑔 calculations shown in Equation (1.1). The 𝐶𝑑 curve from Figure 3.9a 

also shows a general good fit between both analyses. As expected, the maximum 𝐶𝑑 was 

obtained between 𝛼 = 70° - 90° due to the vertical position of the profile at this wind angle of 

attack. Figure 3.9b and c show the coefficients for the S1 and S2 profiles, respectively. In this 

case, the interpretation of the trends for the 𝐶𝑑 and 𝐶𝑙 curves are not as intuitive as for the rime 

profile due to their irregular shapes. The 𝐶𝑑 curves seems to have a flatter shape, specially for 

the S2 profile. The S1 profile has the change in the 𝐶𝑙 slope at 𝛼 = 70°, while two drastic changes 

can be observed for the S2 profile at 𝛼 = 70° and 140°.  

The Den Hartog’s coefficient is shown in Figure 3.10 for the three tested profiles. From the figure, 

it can be observed that the effect of the negative slope resulted in a greater negative peak for 

the rime ice profile than for S1 and S2. The three profiles were found to have two different ranges 

where instabilities may occur. For rime ice the potential risk of instabilities is in the range of 𝛼 = 

21.2° and 30.2°, and the second range between 𝛼 = 174.6° and 180°. For the S1 profile the 

instabilities may occur between 𝛼 = 0° and 7.5° and between 76.4° and 102.8°. Finally, for the S2 

profile, the vulnerable ranges were found to be between 43.3° and 52.8°, and 148.5° and 180°, 

respectively.  

All the identified ranges which fulfilled the first galloping condition, also fulfilled the second and 

third condition from Equation (3.13) and Equation (3.14). The critical velocities 𝑉𝑐 at which 

galloping will cut off were found to be lower compared with the velocity of 10 m/s considered 



 
 

74 
 

for this analysis. Table 3.3 shows 𝑉𝑐 and 𝜉𝑎 for the three profiles and both mode shapes. From 

the table, it can be concluded that galloping will occur at all the ranges previously discussed. 

 

 

a) Rime profile 

 

b) S1 profile 
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c) S2 profile 

Figure 3.9. Aerodynamic lift and drag coefficients for the different profiles tested. 

 

 

Figure 3.10. Den Hartog’s coefficient vs angle of attack for the three different ice profiles. 
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Table 3.3. Galloping conditions analysis. 

      𝑉𝑐 (𝑚/𝑠) 𝜉𝑎 

 Profile ∆𝛼 𝑎𝑔 𝜑1 𝜑2 𝜑1 𝜑2 

Rime 
21.2° – 30.2° -9.17 0.89 1.20 -0.112 -0.082 

174.6° – 180° -10.04 0.81 1.10 -0.122 -0.090 

S1 
0° – 7.5° -5.79 1.41 1.91 -0.070 -0.052 

76.4° – 102.8° -3.41 2.39 3.24 -0.041 -0.030 

S2 
43.3° – 52.8° -1.26 6.46 8.75 -0.015 -0.011 

148.5° – 180° -2.66 3.07 4.16 -0.032 -0.024 

 

 

The tension transmitted to the towers for the three profiles produced by the static (𝐴𝑐 + 𝐻) 

(considering the radial ice accretion) and dynamic (ℎ) loads are shown in Figure 3.11 and Table 

3.4. The loads 𝐻 calculated from the CSA-C22.3 standard procedure are shown in Table 3.5. For 

the ice load, a 𝜌𝑖  = 900 kg/m3 is considered for both C1 and C2 combinations, as stated in the 

standard. 

From Figure 3.11, it can be observed that the contribution of the static load to the total load is 

greater for all the profiles tested, specially for the 150 (Figure 3.11b) and 500 years (Figure 3.11c). 

reliability levels. This is due to the increase in the data pairs magnitude considered for the static 

loads when increasing the reliability level, while for the dynamic effects the ice profile remains 

the same and thus the dynamic load is not increasing as function of the reliability level. Both S1 

and S2 profiles registered considerably higher magnitudes than for the rime profile due to the ice 

density characteristic of glaze ice. The C1 combination was found to cover the static loads and 

dynamic effects for all the reliability levels. In average, considering all the reliability levels, the C2 

combination tends to overestimate the rime ice, and glaze profiles S1 and S2 by a factor of 2.61, 

1.39, and 1.35, respectively. The contrary was found for C2, which seriously underestimated the 

loading for all cases. For this reason, it can be concluded that for this specific case, the ice load is 
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dominant, and C1, which is related to the low probability 𝑅𝑒𝑞 is a better option to cover the static 

and dynamic effects produced at the onset of galloping.  

 

a) 50 MRI 

 

b) 150 MRI 
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c) 500 MRI 

Figure 3.11. Static and dynamic loads for the three profiles tested and three reliability levels. 

 

Table 3.4. Static and dynamic loads for the three profiles tested and three reliability levels. 

  Reliability level   

  50 150 500   

Profile 𝐻 + 𝐴𝐶  (𝑘𝑁) 𝐻 + 𝐴𝑐 (𝑘𝑁) 𝐻 + 𝐴𝑐 (𝑘𝑁) ℎ (𝑘𝑁) 

Rime 121.40 405.25 1098.48 103.42 

S1 266.21 899.64 2451.97 94.25 

S2 266.21 899.64 2451.97 111.04 
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Table 3.5. Static loads calculated from the standard (CSA-C22.3) procedure. 

  Reliability level 

  50 150 500 

Combination 𝐻 + 𝐴𝑐 (𝑘𝑁) 𝐻 + 𝐴𝑐 (𝑘𝑁) 𝐻 + 𝐴𝑐(𝑘𝑁) 

C1 541.00 1271.83 3527.00 

C2 148.49 154.84 162.13 

 

3.5 Conclusions 
 

Stability analysis for three different ice profiles have been carried out. The three profiles were 

found to be susceptible to vertical galloping within two different ranges of angle of attack. Rime 

ice presented potential risk of instabilities in the range of 𝛼 = 21.2° and 30.2°, and the second 

range between 𝛼 = 174.6° and 180°. For the S1 profile these ranges resulted within 𝛼 = 0° and 

7.5° and between 76.4° and 102.8°. The S2 profile presented risk of instabilities between 43.3° 

and 52.8°, and 148.5° and 180°. The analysis revealed that the complex ice profile S2 transmitted 

greater tension to the towers, followed by the Rime profile and S1 profile, in that order. However, 

in all the cases, the extra tension produced on the onset of galloping was found to be small 

compare with the static load calculated from the hazard contours, except for the rime ice profile 

for the first level of reliability, for which dynamic effects represented 46% of the total tension. 

The combination C1 from the CSA-C22.3 standard have been found to always cover the static and 

dynamic wind effects on the iced conductors. In average, the C1 combination was 2.61, 1.39, and 

1.35 times greater than the wind and ice loading for the Rime, S1, and S2 profiles, respectively. 

The C2 combination was found to be inaccurate for this specific site of study since it drastically 

underestimated the tension for all the profiles and all the reliability levels.  
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Chapter 4 

 

4 Conclusions and future work 
 

This thesis presented ice accretion analysis for mountainous terrain divided into two parts. First, 

the wind and ice acting jointly on the transmission line system have been probabilistically 

characterized. The approach uses probability distributions to build joint hazard contours to select 

data pairs of wind speed and ice accretion occurring simultaneously during an icing event. 

Second, the dynamic effects of the wind speed on the iced conductors is performed. The ice 

profiles are selected based on similarity between the present work and previous studies 

regarding the weather characteristics at the site of study. Comparisons between the outcome of 

this analysis and the wind and ice loads proposed by the Canadian standard CSA-C22.3 are 

presented. 

 

4.1 Summary 
 

Chapter 2 presents the weather characteristics at the site of study. 16 weather stations are used 

for the estimation of hourly temperature, precipitation, and wind speed. IDW interpolations are 

performed taking into consideration the 16 surrounding weather stations. The KNNI algorithm is 

used for precipitation rate estimation. Station 12 and the stie of interest are assumed part of the 

same basin and station 12 is completed using the most correlated neighbor stations (stations 7 

and 9). An ANN is used for wind speed prediction. The 7 weather stations with complete records 

(2005 - 2015) and the WRF model velocities from Agustsson & Nygaard, (2016) are used to train-

test the model. A total of 30 predictors including the wind speed, wind direction, atmospheric 

pressure, and temperature from the seven complete weather stations, in addition to the hour of 

the day and month of the year are used to feed the network. The ice accretion model from 

Makkonen, (2000) is performed for a radial ice accretion estimation. The ice load is selected 

based on the maximum ice accretion registered for each icing event, and the wind on ice load is 
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selected by choosing the maximum velocity presented during the evolution of each storm. The 

ice accretion and wind speed are fitted to their correspondent probability distributions and 500 

years of icing events are simulated based on these distributions. The wind and ice joint histogram 

is built with the data pairs considering both, historical and simulated events, and the joint 

probability of exceedance (JCDF) curve is built with the product of the marginal cumulative 

density functions of ice accretion and wind speed. Joint hazard contours are drawn by projecting 

the JCCDF curve in the x-y plane for a given probability of exceedance, which indicate the data 

pairs occurring simultaneously for a given reliability level.  

Chapter 3 presents the ice profiles considered for the dynamic analysis. For the rime ice profile, 

the well accepted crescent shape by axial growth described in Poots & Skelton, (1995) is 

considered. The glaze ice profiles are selected based on similarity between the weather 

characteristics at the site of study from Chapter 2, and the characteristics used in Fu et al., (2006) 

for a two-dimensional modelling of ice accretion. CFD simulations are carried out to obtain 

aerodynamic lift and drag coefficients for a given angle of attack, and 25 data points are obtained 

to build the lift and drag curve for each profile. The Den Hartog’s criterion is applied for the 

identification of potential aerodynamic instabilities, and the critical velocity and aerodynamic 

damping ratio are calculated to assume galloping to fully develop if the three galloping conditions 

are fulfilled. 

 

4.2 Conclusions 
 

The overall conclusions from Chapter 2 are the following: 

 

• Temperature data from the IDW interpolations were in good agreement with the WRF 

model, achieving a correlation coefficient of 0.92. The low control parameter 𝛼𝑖 = 1.5 

reveled the stronger influence of the stations closer to the site of interest. IDW is an 

adequate method to estimate temperature records at mountainous terrain using the 

linear relationship with respect to height and using the Lapse rate to detrend the records. 
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• The wind speeds predicted by the ANN were found to underestimate the peak values 

above the 99 percentile from the WRF model wind speeds.  This is reflected in the 

estimation of the 50-year return period velocity, where a difference of 12% between them 

were found. However, an overall good fit bellow the 99 percentile were obtained and a 

correlation coefficient of 0.81 was achieved.  

 

• The wind speed values from the network were also find in good agreement with a mixed 

numerical and experimental simulation of the same site topography by Jubayer & Hangan, 

(2018), where differences between the design wind velocity and wind gust for the same 

site of study were found to be 4% and 6%, respectively. 

 

• The results form the ice accretion model resulted in a total of 385 icing events within the 

15-year period, for an average of 25.67 storms per year. A total of 38 storms were 

categorized as extreme events, for an extreme recurrence rate of 2.53 per year. 

 

• The data pairs consider in the standard CSA-C22.3 for the design of wind and ice loading 

for overhead transmission lines were found to be conservative. The reliability level for a 

50-year return period was found to be a combination of data pairs belonging to the 0.2%, 

500-year hazard contour. The rest of the combinations were found to be far more 

conservative compared to all the predicted hazard contours. 

 

The overall conclusions from Chapter 3 are the following: 

 

• The CFD simulations for the rime ice profile underpredicted the peak values of the 𝐶𝑙 

curve from the wind tunnel experiments reported in Rossi et al., (2020). Differences of 

17% for the angle of attack 𝛼 = 20°, and 24% for the second local peak at 𝛼 = 170°were 

found. 
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• There were two ranges of angle of attack with potential risk of instabilities for all the 

profiles tested. The Den Hartog’s coefficient were found negative at 𝛼 = 21.2° -  30.2°, and 

between 𝛼 = 174.6° - 180°, with a negative peak value of  𝑎𝑔 = -9.71 and 𝑎𝑔 = -10.14, 

respectively, for the rime ice profile.  

 

• For the S1 profile, the ranges of potential instabilities resulted within 𝛼 = 0° and 7.5° and 

between 76.4° and 102.8°, with 𝑎𝑔 = -5.79 and 𝑎𝑔 = -3.41, respectively. In the case of 

the S2 profile, the ranges were 43.3° and 52.8°, and 148.5° and 180°, with 𝑎𝑔 = -1.26 and 

𝑎𝑔 = -2.66. 

 

• For all the ranges identified with a negative 𝑎𝑔, the second and third condition of galloping 

related to 𝑢 > 𝑉𝑐, and 𝜉𝑠 + 𝜉𝑎 < 0 were also fulfilled. 

 

• The C1 combination proposed by the standard were found to cover the sum of the static 

effects considering a radial ice deposit and the dynamic effects considering the complex 

shapes for all the profiles, rime, glaze S1, and glaze S2, and for all the reliability levels. In 

average, the C1 combination were found to overpredict the total load by a factor of 2.61, 

1.39, and 1.35 for the rime, S1, and S2 profiles, respectively. In addition, the dynamic 

effects for a free stream velocity of 𝑢 = 10 m/s were found to be small compared with 

the static load effects calculated from the hazard contours, except for the rime ice profile 

in the 50-year reliability level, where the dynamic effects represented 46% of the total 

load. 

 

• The C2 combination unpredicted the static and dynamic effects for all the profiles and 

reliability levels tested. The 𝑡-year return period ice load, related to the C1 combination, 

increases a lot compare to the 𝑡-year return period wind speed, related to C2. The ice 

accretion data pair for a 50, 150, and 500-year reliability level corresponds to 𝑅𝑒𝑞 =

 12.52, 19.65, and 33.27 cm. Assuming 𝑝𝑖 = 900 kg/m3 recommended in the standard, 

the ice load resulted in 476, 1173, and 3364 kN, respectively. This corresponds to an 

increasing factor of 2.46 from the 50-year to the 150-year reliability level, and 2.86 from 
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the 150-year to the 500-year reliability level. The wind speed data dominant pair, on the 

other hand, is not increasing as much as the ice dominant data pair. The wind speed 

values are 36.71, 39, and 41.47 m/s for the three reliability levels. These values resulted 

in 64, 98, and 162 kN. This corresponds to an increasing factor of 1.5 from the 50-year to 

the 150-year reliability level, and 1.65 from the 150-year to the 500-year reliability level. 

Furthermore, the contribution to the total tension of the ice load compare with the wind 

load is considerably greater. For this reason, C1 seems to be the accurate combination to 

take into consideration for the structural design of the system for the studied site of 

interest. 

 

4.3 Future work 
 

• Further analysis to improve the peak predictions of the wind speed values is 

recommended. This can be done using data sets from different sources than in the 

present thesis, including relative humidity as one of the inputs, as it has been observed 

to be a good predictor for this kind of analysis. Moreover, more weather stations with 

complete records are recommended to be used for training the network. In addition, 

other machine learning algorithms such as random forest, which has been applied in 

previous studies (Veronesi et al., 2016) for wind speed estimations can be performed and 

compared with the network performance.  

 

• It is pertinent to mention that galloping produces oscillatory motions which may lead to 

failure for fatigue, and it seems worthy to conduct further research in this topic.  

 

• Aerodynamic analysis for wind speeds greater than 10 m/s are also recommended to be 

tested to estimate the increasing rate of the dynamic tension as function of the free 

stream velocity. An aerodynamic analysis considering a bundle conductor is also 

recommended. 
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• Recommendations of more complex methods to estimate aerodynamic instabilities such 

as a finite element model to perform 2-way fluid-structure interaction using LES 

simulations are proposed. In this way, more detailed time-history analysis can lead to 

more complete conclusions of the wind and ice effects on the system. 

 

4.4 References 

 

Agustsson, H., & Nygaard, B. E. (2016). Long Lake transmission line, British Columbia, Canada: 

Calculation of climatic loads (KVT/HA/2016/R025; p. 20). Kjeller Vindteknikk. 

Den Hartog, J. P. (1932). Transmission Line Vibration Due to Sleet. Transactions of the American 

Institute of Electrical Engineers, 51(4), 1074–1076. https://doi.org/10.1109/T-

AIEE.1932.5056223 

Fu, P., Farzaneh, M., & Bouchard, G. (2006). Two-dimensional modelling of the ice accretion 

process on transmission line wires and conductors. Cold Regions Science and 

Technology, 46(2), 132–146. https://doi.org/10.1016/j.coldregions.2006.06.004 

Makkonen, L. (2000). Models for the growth of rime, glaze, icicles and wet snow on structures. 

Philosophical Transactions of the Royal Society of London. Series A: Mathematical, 

Physical and Engineering Sciences, 358(1776), 2913–2939. 

https://doi.org/10.1098/rsta.2000.0690 

National Standard of Canada, (2010). Design criteria of overhead transmission lines (CAN/CSA-

C22.3). Ontario, Canada 

Poots, G., & Skelton, P. L. I. (1995). Simulation of wet-snow accretion by axial growth on a 

transmission line conductor. Applied Mathematical Modelling, 19(9), 514–518. 

https://doi.org/10.1016/0307-904X(95)00012-9 



 
 

89 
 

Veronesi, F., Grassi, S., & Raubal, M. (2016). Statistical learning approach for wind resource 

assessment. Renewable and Sustainable Energy Reviews, 56, 836–850. 

https://doi.org/10.1016/j.rser.2015.11.099 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

90 
 

 Appendices 
 

 

Appendix  A: Figures supporting the lapse rate and the most intense 

icing events from Chapter 2 

 

Figure A  1. Spatial trend and weather stations (blue dots) for the month of January (𝐿 =

0.38 °𝐶/100𝑚), 𝑟2 = 0.73. 

 

 

Figure A  2. Spatial trend and weather stations (blue dots) for the month of April (𝐿 =

0.6 °𝐶/100𝑚), 𝑟2 = 0.97. 
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Figure A  3. Spatial trend and weather stations (blue dots) for the month of May (𝐿 =

0.56 °𝐶/100𝑚), 𝑟2 = 0.98. 

 

 

 

Figure A  4. Spatial trend and weather stations (blue dots) for the month of June (𝐿 =

0.55 °𝐶/100𝑚), 𝑟2 = 0.96. 
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Figure A  5. Spatial trend and weather stations (blue dots) for the month of July (𝐿 =

0.49 °𝐶/100𝑚), 𝑟2 = 0.94. 

 

 

 

Figure A  6. Spatial trend and weather stations (blue dots) for the month of August (𝐿 =

0.48°𝐶/100𝑚), 𝑟2 = 0.95. 
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Figure A  7. Spatial trend and weather stations (blue dots) for the month of September (𝐿 =

0.49 °𝐶/100𝑚), 𝑟2 = 0.97. 

 

 

 

Figure A  8. Spatial trend and weather stations (blue dots) for the month of October (𝐿 =

0.52 °𝐶/100𝑚), 𝑟2 = 0.95. 
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Figure A  9. Spatial trend and weather stations (blue dots) for the month of November (𝐿 =

0.53 °𝐶/100𝑚), 𝑟2 = 0.92. 

 

 

 

Figure A  10. Spatial trend and weather stations (blue dots) for the month of March (𝐿 =

0.37 °𝐶/100𝑚), 𝑟2 = 0.71. 
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Figure A  11. Evolution of the first most intense icing event from Table 2.5. 𝑤) liquid water 

content, 𝑢) wind speed, 𝑇) temperature and 𝑅𝑒𝑞) radial ice accretion. 
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Figure A  12. Evolution of the second most intense icing event from Table 2.5. 𝑤) liquid water 

content, 𝑢) wind speed, 𝑇) temperature and 𝑅𝑒𝑞) radial ice accretion. 
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Figure A  13. Evolution of the third most intense icing event from Table 2.5. 𝑤) liquid water 

content, 𝑢) wind speed, 𝑇) temperature and 𝑅𝑒𝑞) radial ice accretion. 
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Figure A  14. Evolution of the fourth most intense icing event from Table 2.5. 𝑤) liquid water 

content, 𝑢) wind speed, 𝑇) temperature and 𝑅𝑒𝑞) radial ice accretion. 
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Figure A  15. Evolution of the fifth most intense icing event from Table 2.5. 𝑤) liquid water 

content, 𝑢) wind speed, 𝑇) temperature and 𝑅𝑒𝑞) radial ice accretion. 
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Appendix  B: Figures of the mesh and metrics for S1 and S2 profiles 

from Chapter 3 

 

a) 

 

b) 

Figure B  1.  a) Boundary conditions and b) final mesh considered for the S1 profile with a total of 

≈ 600, 000 elements,  𝑦+ = 10, average element quality = 0.94, and average skewness = 0.09. 
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a) 

 

b) 

Figure B  2 Mesh metrics for the rime S1 profile: a) Element Quality, and b) Cells Skewness. 
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a) 

 

b) 

Figure B  3. a) Boundary conditions and b) final mesh considered for the S2 profile with a total of 

≈ 370, 000 elements,  𝑦+ = 10, average element quality = 0.94, and average skewness = 0.09. 
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a) 

 

b) 

 

Figure B  4. Mesh metrics for the rime S2 profile: a) Element Quality, and b) Cells Skewness. 
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