Western University

Scholarship@Western

Computer Science Publications Computer Science Department

6-2007

Agent Design of SmATrt License Management
System Using Gaia Methodology

Qian Zhao

University of Western Ontario, qianzhao@csd.uwo.ca

Yu Zhou

University of Western Ontario, yazhou@alumni.uwo.ca

Mark Perry

University of Western Ontario, mperry@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/csdpub

b Part of the Computer Sciences Commons, and the Contracts Commons

Citation of this paper:

Zhao, Qian; Zhou, Yu; and Perry, Mark, "Agent Design of SmArt License Management System Using Gaia Methodology" (2007).
Computer Science Publications. 1.
https://irlibuwo.ca/csdpub/1

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csd?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/591?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/csdpub/1?utm_source=ir.lib.uwo.ca%2Fcsdpub%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

Agent Design of SmArt License Management
System Using Gaia Methodology

Qian Zhao, Yu Zhou, Mark Perry
Department of Computer Science
University of Western Ontario
London, ON, Canada
Email: {qianzhao@csd|yuzhou@alumni|markp@csd}.uwo.ca

Abstract— Modern software services and data centers require
a license management system to regulate the agreements that
have been reached between subscriber and provider. License
management helps to track usage and protect service from
abuse. License agreements provide the basis for enforcement and
regulation. The automation of license agreements is desired by
providers and subscribers to improve transaction efficiency, give
flexibility, and minimize unwanted cost.

We have proposed a framework, called SmArt (Semantic
Agreement) system, that enables agreement automation in the
autonomic computing context using ontology and agent tech-
nologies. This paper applies the SmArt system to the domain
of license management and presents its agent design with Gaia
methodology.

I. INTRODUCTION

To increase revenue and give more flexibility to users, the
“on demand” concept has been adopted by the Information
Technology (IT) industry. Analogous to their counterparts in
other industries, such as cable, phone and hydro, IT vendors
provide their customers the possibility of leasing software,
storage, and/or hardware at a relatively low expense or even
on a pay-per-use basis. Setting up a data center is a common
example in IT leasing. IT vendors and customers negotiate,
and eventually agree on how to use an IT service provided by
the data center. The result of negotiation is then articulated in
an agreement and signed by both parties. As in a traditional
leasing/subscribing scenario, it is easy to see that it is a basic
requirement for the management of a data center to include
license control and apply it effectively and accurately. The
cost of skilled personnel in this field makes automation of the
interpretation and enforcement of these license agreements a
very attractive proposition.

License agreement contains license terms and provisions
of a varying complexity. During the automation of license
agreements, one key challenge is: how to make automatic
management decision based on license agreements?

The SmArt framework in [1] leverages ontology concepts
to represent license agreement and other shared knowledge.
Ontology is a set of subject-property-object tuples, where
both subject and object are concepts (also called vocabulary
or class) and property (or predicate) relates the subject and
object together. As all necessary concepts of the domain are
defined and their relations are shown as tuples, ontology dis-
closes semantics of these concepts so that computer programs

can “understand” the meaning of knowledge written in this
way. By combining ontology with agent technologies, agents
understand the ontology-based domain knowledge, including
that of license agreements, and carry out management tasks
autonomously based on what they understand, with little or no
interruption from human. As we can see, the SmArt framework
is able to meet the key challenges of agreement automation
and thus can be adopted to build a license management system
for data centers. This paper focuses on using the Gaia [2]
methodology for the agent analysis and design of a SmArt
license management system and shows how the task ontology
guides the agent design.

The rest of this paper is organized as follows: Section 2
discusses the ontology of license management, focusing on
the task ontology that expresses the workflow of reusable tasks
using a set of associated relations between concepts; Section
3 addresses the agent design and analysis using Gaia; Section
4 briefly talks about the implementation; and the last section
wraps up this paper with the conclusion and suggested future
work.

II. ONTOLOGY OF LICENSE MANAGEMENT

In the SmArt framework, ontology is used to represent
knowledge that can be shared among multiple agents and/or
programs. One important part of knowledge is modeling
concepts in the license control domain as domain ontology.
Domain ontology is the result of taxonomy. There are five
basic concepts in the agreement automation as discussed in [1]:
Agreement, Service, Resource, Constraint, and Request. Their
definitions and other related concepts in license management
scenario are discussed in [3]. To better explain the agent design
and its foundation — task ontology, we summarize the concept
of LA (License Agreement) here briefly in BNF (Backus-Naur
Form).

<LA>:= <Agreement>
<Agreement>::= <Service><Customer> < Vendor>
{<Provisionltem>}

<Provisionltem>::= <LATerm>> | ... //Provisionltem derives
different agreement terms

<LATerm>::= <LATerm><AggregatingOperator><LATerm>> |

<LicenseTerm>
<AggregatingOperator>::= and | or
<LicenseTerm>::= <LicenseMetrics>[then {<Action>} [else
{<Action>}]]

Another important part of knowledge is the task ontology. A. Role Model

Task ontology expresses reusable workflows of license man-
agement processes and is the foundation of the agent design.
When applying SmArt framework in the domain of license
management, the SmArt-based license agreement automation
has four task ontologies that model four subsystems respec-
tively: Service Management, Service Subscription, Service
Configuration and Service Observation [1][3].

o Service Management works as the interface between
customers and the SmArt-based system. It dispatches
different customer request to corresponding functional
component inside the system.

o Service Subscription handles service subscription request
from customers and updates SKC (SmArt Knowledge
Core) every time a subscription is made.

o Service Configuration responses to a user’s request of
service. It verifies the request against relate license agree-
ment from SKC before bringing the service into the
ready-to-serve state.

o Service Observation monitors a service, analyzes its us-
age data and controls the service according to the related
license agreement from SKC, preventing service abuse
and generating usage report.

The example in Figure 1 shows the task ontology for Service
Configuration. This task ontology is built on relations between
concept pairs, in the form of subject-property-object tuples,
and models the workflow of the configuration process after a
service request is received and dispatched to the configuration
subsystem.

Some relations can be further broken down to show more
details at lower level processes, bringing a hierarchy of task
ontologies. However, here we stop at this level of granularity
to avoid losing task generality, and to also give developers
the freedom to choose how each property-mapping-its-two-
concepts can work.

III. AGENT DESIGN

Al research has shown agent technologies closely integrat-
ing with ontology [4][5]. As agreement automation requires
a certain level of intelligence and Al practices already show
some machine intelligence can be created by combining agent
and ontology together, it is natural that this research adopts
agent technologies to fulfill the implementation.

This section uses the Gaia methodology to analyze each
task ontology that represents the workflow of a subsystem of
SmArt system, and carry out the agent design. We use the
service configuration subsystem as the example throughout
this analysis and design to illustrate how agents cooperate with
task ontology of the subsystem it works for.

Following Gaia’s notation, this section starts with the role
model definition and then defines the associated interaction
model. These two models form the analysis phase of Gaia
methodology, which is then followed by the design phase
that generates the agent model, the service model and the
acquaintance model. In short, the analysis phase is from roles’
view while the design phase is from agents’ view.

Role Model introduces all necessary roles existing in the ser-
vice configuration. Each is expressed in a role schema where
its individual properties such as protocols and activities are
presented. Among these properties, protocols are actions that
contain interactions with other roles, and activities, indicated
by the underline, are actions where no interaction with other
roles is involved. Permissions specify the resources that a role
has access to. Though some of these resources can only be read
without modification, others can be changed and some are new
resources generated during a role’s life cycle. Responsibilities
define what a role can do. It has two aspects: liveness tells what
a role will do, using an expression where ’-> means happening
in sequence, ’|” means either one before or after ‘|” happens
but not both, and ’[]’ means actions inside are optional; and
safety shows preconditions that have to be maintained to make
a role alive.

The task ontology of service configuration shown in Figure
1 contains 9 task concepts of the subsystem, which correspond
to 9 roles. As a result, properties between two task concepts
are going to be mapped to the initiating role’s protocols
and properties between task concept and domain concept are
data processing that could be included as part of the task
concept’s activities or protocols. The role of SvcConfigurer
works as the mediator and carries out a major part of the
service configuration task ontology. This subsection uses it as
an example. The role schema of SvcConfigurer is shown in
Table L.

Other roles are:

o AgreementRegistry: This role manages agreements rep-
resented in the domain ontology and is able to register
new agreements.

o AgreementParser: This role parses an agreement to ex-
tract the license agreement term (LATerm) and verifies
a request before starting up the requested service. Note
this role is generalized so that it is able to derive parsers
for various agreement types.

o LicenseTermDispatcher: This role is responsible for cor-
relating/consolidating responses of an aggregated LAT-
erm associated with the service, and propagating actions
in its consisting atomic terms (LicenseTerm).

o LicenseTermVerifier: This is an generalized role that
verifies a license term. Different license terms may have
their perticular verifiers derived from this one. It provides
the potential of accommodating more license terms that
emerge later.

o ServiceRegistry: This role manages services, maintain
their state and is able to register new services.

o ResourceMgr: This role is in charge of resource manage-
ment, including registration, retrieval, assigning, return-
ing and information updating of resource.

« ConstraintsVerifier: This role verifies if using a resource
is acceptable, or if adding a consisting resource to a ser-
vice/agreement is acceptable. The latter situation occurs
during the service subscription when the customer wants

m

LicenseTerm
LicenseTerm Dispatcher reads
H LATerm
reads takesAction .. iverifies
LicenseTerm |- jRequest
Verifier | e H extracts
................ ; o atch Agreement
verifies LicenseTerm Parser parses
Service ‘4
Request SveMgr FasksFor Agreement
= * walidation
verifies H E locates
) i responds identifies
receives H user
Constraint / \
S-. ~~"1dentifies Agr
VE | e)
looksU Configurer [asksForagreement)
—rm—e e — Constraint . ! _ asksFor . B
| Task concept in | ‘;erlﬁer ; i "'--._‘_Sen.rice identifies identifies
;| this subsystem NasksFor HsksFar)
i Constraint H
| | i verffication 4 Ea0urce S looksU i
Domain concept A y ., Registry ooksUp Service
| Resource
Task concept of | Mar ", _
- | other subsystems| :
| . %, updates
L —> | assians kY ., “ServiceData
* Property between locates| g notifies? Star‘tsfstops"-.,“ 5 starts)
| task concept and | Observer % Service ", % stops
: domain concept identifies ’A_
..................... identifies : ServiceFacto
| ' | . A | 4
+ Property between . Swve
| task concepts J Fesource Ohserser

Fig. 1. The task ontology of service configuration

TABLE I
SCHEMA FOR ROLE SVCCONFIGURER

Role Schema: SvcConfigurer

Description:
This role accepts the request of service and brings the service to the state of ‘ready‘ at the end of processing.
Protocols and Activities:
LocateAgreement, VerifyRequest, LocateService, RequestResource, StartService, NotifyObserver,
RespondRequest, StopService
Permissions:
reads serviceRequest // user wants to use a service
serviceRequestlsLegal // the request to service is legal
generates servicelsReady // the requested service is ready to serve requests
Responsibilities
Liveness:
SvcConfigurer = (LocateAgreement - VerifyRequest - [LocateService -
NotifyObserver] - RespondRequest) | (StopService - [RespondRequest])
Safety:
eservice.isLegal() = true

[RequestResource] - StartService -

to build a new service or a new agreement, of which the B. Interaction Model
details are not covered in this research, although a stub
activity (VerifyAdding) is created to make it possible to
accommodate this scenario later.

ServiceFactory: This role controls the life cycle of ser-
vices. It has the knowledge of how to start or stop a

service.

Interaction model explains the interaction between roles
introduced in the role model. Related information like initiator,
responder, input and output of an interaction is presented
in this model. Here we focus on the interactions of role
SvcConfigurer, shown in Figure 2, which happens during the
service configuration. For each interaction, the top block shows
its purpose. The left of the middle level block is the initiator
of an interaction while the right one is the responder. The

bottom block briefly addresses the process being performed
in the interaction. The line between top and middle blocks
indicates the input and the one between middle and bottom
blocks indicates the output. Some interactions will trigger
other interactions and this triggering is indicated by an arrow.

(al (c)

LocateAgreement LocateService

service

serviceRequest
Sve Agreement Sve Service
Configurer |Registry Configurer | Registry serviceMotReady
agreement servicelR]
Retrieves the agreement Asks if the requested
that is associated with service is aleady in
the serviceRequest the state of ready
(b) l
verifyRequest ReguestResource
greement esourceRequest
Svc Agreement Svc Resource
Configurer |Parser Configurer | Mgr
El laTerm J resourceGranted
Pal;jsesta.n agrtehement Asks to get hold of
and retrieves the a resource
license agreement term
l (d)
ParseProvisionitem StartService/StopService
senviceRequest
Agreement|LicenseTerm)| laTerm Swc Service
Parser Dispatcher Configurer | Factory serviceState
serviceUR|

Asks for static verificatio ServiceRequestisLegal
of the request against
the agreement term

Changes the state of
a senvice

(e) (f)
NotifyObserver) RespondRequest
observationRequest ervicelsReady
Swvc Swvc Sve Sueh
Configurer | Observer Configurer verlar

observationstate Responds with the
state of service:

ready or inactive

Starts observation on
a senice

Fig. 2. Interaction of SvcConfigurer role: (a) LocateAgreement, (b) VerifyRe-
quest, (c) RequestResource, (d) StartService/StopService, (e) NotifyObserver,
(f) RespondRequest

C. Agent Model

As the first step in the design phase, the agent model shows
all necessary agent types for the configuration subsystem and
the roles they assume. Normally it is a one-to-one relation
between a role and an agent type, but this does not always
have to be the case. Depending on specific circumstances, an
agent type may assume more than one roles. An agent type
may have many instances during the running of system. The
qualifier decides how many agent instances a role type can
have. Qualifier is represented in a similar way of cardinality
in UML diagram: “n” means n instances; “m--n” means the
number of instance is between m and n; “+” means one or
more instances; %’ means zero or more instances.

In this subsystem, each role corresponds to an agent type
and thus there are nine agent types involved, shown in Figure
3. The SvcConfigurerAgent may have one or more instances
where more than one instances may help balance the load. The
AgreementParserAgent, LicenseTermDispatcherAgent and Li-
censeTermVerifierAgent may have zero instance when there is
no license agreement is attached with requested service.

SvcConfigurerAgent AgreementParserAgent LicenseTermDispatcheragent
T+ T 0.1 T *
SvecConfigurer AgreementParser LicenseTermDispatcher

LicenseTermiverifiergent ServiceRegistryAgent — AgreementRegistryAgent

I ; §
ServiceRegist
LicenseTermverifier gistry AgreementRegistry

ResourceMgragent ConstraintsverifierAgent

fn 1

ResourceMgr Constraintsverifer

ServiceFactoryAgent

fro

ServiceFactory

Fig. 3. The agent model of service configuration

D. Service Model

The service model lists all the functions an agent type
engages, which come mostly from the protocols and activities
and liveness of the roles this agent carries but not limited to
them. For each function (service of the service model), Table 11
shows its input, output, precondition and postcondition. Here
again, only the service model of the SvcConfigurerAgent are
listed in the table below.

E. Acquaintance Model

At last, the acquaintance model presents how the commu-
nication among these agents take place. The communication
paths of roles in the configuration subsystem are shown below
in Figure 4. SvcConfigurerAgent interacts with five other
agent types, while LicenseTerm VerifierAgent interacts with Li-
censeTermDispatcherAgent only and ConstraintsVerifierAgent
interacts with ResourceMgrAgent only.

Agreement Service

Registry Factory

Agent Agent \
Agreement \ /

Service

Parser #— SvcConfigurerdgent ——p Registry

Agent Agent

LicenseTerm Resource
Dispatcher Mgr
Agent Agent

| |

LicenseTerm Constraints
werifier ‘erifier
Agent Agent

Fig. 4. The acquaintance model of service configuration

After the acquaintance model is generated, these two phases
of Gaia methodology, producing five models, complete the
agent design.

TABLE I
SERVICE MODEL FOR SVCCONFIGURERAGENT

[Service [Input [Output | Pre-condition | Post-condition]
parse service request serviceRequest user, service serviceRequest # nil user # nil A service # nil
locate agreement user, service agreement user # nil A service # nil | agreement # nil
verify request statically agreement serviceRequestIsLegal | agreement 7 nil serviceRequestIsLegal € (true, false)
serviceNotReady (—serviceNotReady A
locate service service serviceURI service # nil serviceURI # nil)
V serviceNotReady
identify resource service resource serviceNotReady resource 7 nil
(—resourceGranted A
request resource for service | resource resourceGranted resource # nil resourceURI = nil) v
resourcesURI (resourceGranted A
resourceURI # nil)
. resourceURI serviceURI serviceNotReady A serviceURI # nil A
start service . . .
service serviceState resourceGranted serviceState = ready
start service observation serviceURI oberservationState serviceURI # nil observationState € (started, ended)
stop service obsgrvat1onState serviceState oberservationState = ended | serviceState € (ready, inactive)
serviceURI
serviceURI (serviceURI Z# nil A
respond with result . observa.tlonStat(‘: = started) true
serviceState V (service # nil A
service observationState = ended)

IV. IMPLEMENTATION

For the implementation of the SmArt License Management
System, we started on the IBM Agent Building and Learning
Environment (ABLE) [6] that provides a multiple agent system
(MAS) platform with tools and a variety of implemented
algorithms as building blocks to build the MAS. It also
complies with the FIPA [7] standard of agent, which means
that an ABLE agent will be able to communicate with other
FIPA-compliant agents even if they are not based on ABLE.

We discuss some implementation and designs in this section,
starting with the underlying mechanisms, and then explaining
the implementation from two essential aspects of the agent —
knowledge and bahavior. Discussion is kept brief as many de-
tails will not fit in this paper, but will cover various approaches
of integrating ontology into MAS, applying Gaia analysis in
MAS design, and implementing agents under guidance of task
ontology and the Gaia desgin.

A. Knowledge Model and Ontology Manipulation

Most of the knowledge is represented as ontologies, e.g.
SmArt Domain Ontology and SmArt Task Ontology, in OWL
[S/RDF [9]. OWL/RDF are XML [10] based, easy to ex-
tend, and make ontology expansion both possible and easy.
The XML-basis also makes the ontology useable throughout
networks, which is a must for management systems of data
centers that provide services online.

This brought up an interesting question: how to let SmArt
Agents understand and use ontologies effectively? The sim-
plest approach may be to interpret OWL statements in real-
time using toolkit like Jena [11] when implementing agents.
However, this approach has obvious limits in many aspects,
e.g. unnecessary complexity for low level OWL manipulation
in MAS development.

Therefore we adopt another approach: extending ABLE
with a set of essential ontology manipulation classes as the
Ontology Extension (OE) for ABLE, which allows us to build
a Knowledge Model (KM) for each agent in a MAS with ease.
An overview of this approach is shown in Figure 5, where
the OE is based on ABLE and each individual SmArt agent
that holds the KM as its belief and has some behavior as its
functionalities is built on top.

SmArtAgent

..... 1

ontology - | Knowledge |
Domain Model

ontology -

: Agent .!4
| Behavior
SmArtAgent | e # t —r n |

Ontology Ontology Object | | kKnowledge |
Extension (OE) . Constructs - . Model Manager]
.. Lo.—..—..J
| ABLE Platform
Fig. 5. The overview of implementation

Inside the OE, there are a series of abstract classes that can
be used to construct ontology objects, which are actually java
objects representing the Concept and the Property (Predicate)
from OWL tuples, and representing the Action that is a special
type of concept about doing things. These ontology objects can
be manipulated directly as normal Java Beans. The KM in an
agent consists of these ontology objects and reflects the belif
and knowledge of the associated agent. By this means, when
building agents MAS developers can work at a higher level
of abstraction without having to worry about the manipulation

and interpretation of OWL statements at the lower level.
Another important component in OE is the KM Manager
(KMM) that is capable of reading and interpreting an OWL
document, and then creating KM on-the-fly based on the
knowledge in that document. This will help to hide from MAS
developers the complexity of transferring knowledge from an
OWL document into ontology objects. Developers are able
to work at the ontology object level. Also, KMM helps to
serialize and deserialize ontology objects in a KM back and
forth, translating knowledge to and from various formats, e.g.
OWL, Plain Text, XML, or agent commmunication language
(ACL) [12] as standardized in FIPA. In other words, KMM
can help regulate communication among multiple agents.

B. From Domain Ontology to Agent Knowledge Model

When OE for ABLE is in place, we started to build our
experimental SmArt MAS. One thing is to build for each
SmArt agent a KM that represents its belief and knowledge
according to the SmArt Domain Ontology. After an agent is
built based on its role model and agent model from the Gaia
analysis above, corresponding knowledge should be loaded
at the very beginning of its lifecycle and such knowledge
maintains and evolves throughout the whole lifecycle of this
agent.

For the license management system, a variety of SmArt
agents are being built upon the five models of Gaia method-
ology. SmArt agreements, along with the rest of the SmArt
Domain Ontology and their concrete instances, are broken
down into pieces. These knowledge pieces are to be loaded
into related SmArt agents by the KMM, residing inside the
agent’s KM in the form of ontology object.

If one agent wants another to do something for it, the former
can build an inquiry with details represented as ontology ob-
jects. As mentioned above, KMM is able to translate ontology
objects into different formats for inter-agents communication.
This means KMM helps to translate the inquiry containing
ontology objects from the first agent’s KM into appropriate
ACL, and vice versa, translate ACL-based inquiry back to on-
tology objects and put them in the second agent’s KM. Thus, in
turn, an agent can understand inquiries from fellow agents by
simply navigating through its own KM via direct interactions
with ontology objects inside. Here, Domain Ontology, mainly
as the type system, will be used as the guideline to create and
parse these inquiries.

C. From Task Ontology to Agent Behaviors

SmArt MAS requires the construction of agent behavior.
As shown in the implementation overview, each agent has
some unique behavior. Behavior is based on the workflows
described in the Role Liveness (RL) and the Service Model
(SM) of that agent, and the RL and SM, at the same time,
are compliant with the task ontology to which this agent is
committed. When an agent is loaded with knowledge and put
into the runtime enviroment, it is capable of responding to an
inquiry by taking those steps of the workflow supported by
the loaded knowledge.

So, agent behaviors are expressed on three levels of granu-
larity, task ontology, agent design, and agent programming, at
each of which flexibility needs to be considered and achieved
as much as possible.

First, SmArt Task Ontology is the highest level abstrac-
tion of agent behaviors. Task ontology itself, as mentioned
above, may have different levels of granularity, but no matter
what abstraction level it is at, to its committed agents, the
task ontology represents the basic workflows that consist of
most roughly divided steps. At the Task Ontology level, the
flexibility is inherent from the nature of ontology technology
and OWL.

Secondly, during Gaia analysis and design of agent, task
ontology based behavior is refined. Some complicated high
level tasks from the task ontology are broken down and explicit
sequencial information of workflows is added when RL and
SM are produced. Therefore the RL and SM represent the
refined workflows of an agent behavior. At the same time, to
better serve the need of modeling RL and SM flexibly, we
designed a data structure, the WorkFlow Model (WFM) as
shown in Figure 5, which includes structs to represent tasks,
control flows, data flows and conditions. The WFM is written
in XML to express models from Gaia design, especially the
RL and SM, which allows the RL/SM information to be used
in developement easily. Based on WFM, we are in the process
of building a rich client editing environment of modeling RL
and SM based on task ontology and other Gaia models. Also,
we are exploring the possibility of extending our base WFM
into an RL/SM ontology.

Finally, after being refined from task ontology level to agent
design level, agent behavior has to be further developed into
implementable workflow and integrate detailed business logics
of individual steps in the RL/SM-based workflow. A flexible
mechanism is desired to facilitate possible changes of detailed
business logic, which means updating the business logic of a
workflow step after the system is deployed is possible. Such
a flexible mechanism may be realized in the following ways:

1) Writing detailed logic directly in host language, e.g.
Java;

2) Writing detailed logic in scripting languages, e.g.
Javascript, Python, etc.;

3) Using REI (Rule Engine Integration) proposed in [13]
and [14] that maps terms in a business logic rule to java
objects using an XML-based mapping schema.

We started with the first approach and evolved the system
with the other two. For the latter two approaches, atomic
operations are implemented separatedly as functions or object
methods and are made available for scripting languages or rule
engines and a series of mapping schemas are also designed
to integrate these method-based atomic operations into rule
engines dynamically.

V. CONCLUSIONS AND FUTURE WORKS

This paper use Gaia methodology to analyze and design a
license management MAS based on our SmArt framework.
Though it could not present all the details of design and

implementation due to space limitations, the paper gives a
broad picture of how the ontology and agents work together
to provide the intelligent license management. The service
configuration subsystem and the role of SvcConfigurer is used
as an example, although the system can be used for a variety
of setups.

Although we are getting encouraging results, this research
is still developing. More challenging work is planned:

Language to specify rules as ontology to make agents
smarter and more generic.

Generating agreements with conflicts between agreement
items detected automatically.

User friendly interface for service subscription.

More license types to be defined and incorporated in the
ontology.

ACKNOWLEDGMENT

The authors thank Natural Science and Engineering Re-
search council of Canada and IBM Center for Advanced
Studies for their support and cooperation for this research.

[1]

[2

—

[3

[t}

[4

=

[6]

[7]
[8

—_

[9]

[10]
[11]
[12]
[13]

[14]

REFERENCES

Q. Zhao, Y. Zhou, and M. Perry, “Agreement-aware Semantic Man-
agement of Services,” in Proceedings of International Conference on
Autonomic and Autonomous Systems, International Conference on Au-
tonomic and Autonomous Systems 2006. IEEE, 2006.

M. Wooldridge, N. Jennings, and D. Kinny, “The Gaia Methodology for
Agent-Oriented Analysis and Design,” Journal of Autonomous Agents
and Multi-Agent Systems, vol. 3, no. 3, pp. 285-312, 2000.

Q. Zhao, Y. Zhou, and M. Perry, “Ontology of SmArt License Manage-
ment System,” 2007, prepublished manuscript.

G. Capraro, G. Berdan, R. Liuzzi, and M. Wicks, “Artificial Intelligence
and Sensor Fusion,” in Proceedings of International Conference on
Integration of Knowledge Intensive Multi-Agent Systems, International
Conference on Integration of Knowledge Intensive Multi-Agent Sys-
tems. IEEE, 2003, pp. 591- 595.

M. Panteleyev, D. Puzankov, P. Sazykin, and D. Sergeyev, “Intelligent
Educational Environments Based on the Semantic Web Technologies,”
in Proceedings of the 2002 IEEE International Conference on Artifi-
cial Intelligence Systems, the 2002 IEEE International Conference on
Artificial Intelligence Systems. IEEE, 2002, pp. 457-462.

M. Meyer, “The features and facets of the Agent Building and Learning
Environment (ABLE),” International Business Machines Corporation,
Tech. Rep., 2004.

F. S. Organization, “FIPA Specifications,” The Foundation for Intelligent
Physical Agents, Tech. Rep., 2005.

P. F. Patel-Schneider, P. Hayes, and 1. H. eds., “OWL Web Ontology
Language Semantics and Abstract Syntax,” W3C Recommendation,
Tech. Rep., 2004.

G. Klyne and J. C. eds., “Resource Description Framework (RDF):
Concepts and Abstract Syntax,” W3C Recommendation, Tech. Rep.,
2004.

T. Bray, J. Paoli, and C. M. S.-M. eds., “Extensible Markup Language
(XML) 1.0,” W3C Recommendation, Tech. Rep., 1998.

B. McBride, “Jena: Implementing the RDF Model and Syntax Specifi-
cation,” in Semantic Web Workshop. WWW2001, 2001.

F. S. Organization, “Agent Communication Language Specifications,”
The Foundation for Intelligent Physical Agents, Tech. Rep., 2002.

Y. Zhou, “On Demand Service Level Agreement: Architecture and
Eforcement,” Master’s thesis, The University of Western Ontario, 2004.
Y. Zhou, Q. Zhao, and M. Perry, “Reasoning over Ontologies for SLAs,”
in Proceedings of The IEEE International Conference on e-Technology,
e-Commerce and e-Service, EEE2005. 1EEE, 2005.

	Western University
	Scholarship@Western
	6-2007

	Agent Design of SmArt License Management System Using Gaia Methodology
	Qian Zhao
	Yu Zhou
	Mark Perry
	Citation of this paper:

	tmp.1231275154.pdf.2kx37

