BrainsCAN Publications

Document Type

Article

Publication Date

11-21-2017

Journal

Neurology

Volume

89

First Page

2157

Last Page

2166

URL with Digital Object Identifier

https://doi.org/10.1212/WNL.0000000000004669

Abstract

Objective: To determine whether multiparametric MRI data can provide insight into the acute and long-lasting neuronal sequelae after a concussion in adolescent athletes.

Methods: Players were recruited from Bantam hockey leagues in which body checking is first introduced (male, age 11–14 years). Clinical measures, diffusion metrics, resting-state network and region-to-region functional connectivity patterns, and magnetic resonance spectroscopy absolute metabolite concentrations were analyzed from an independent, age-matched control group of hockey players (n 5 26) and longitudinally in concussed athletes within 24 to 72 hours (n 5 17) and 3 months (n 5 14) after a diagnosed concussion.

Results: There were diffusion abnormalities within multiple white matter tracts, functional hyperconnectivity, and decreases in choline 3 months after concussion. Tract-specific spatial statistics revealed a large region along the superior longitudinal fasciculus with the largest decreases in diffusivity measures, which significantly correlated with clinical deficits. This region also spatially intersected with probabilistic tracts connecting cortical regions where we found acute functional connectivity changes. Hyperconnectivity patterns at 3 months after concussion were present only in players with relatively less severe clinical outcomes, higher choline concentrations, and diffusivity indicative of relatively less axonal disruption.

Conclusions: Changes persisted well after players’ clinical scores had returned to normal and they had been cleared to return to play. Ongoing white matter maturation may make adolescent athletes particularly vulnerable to brain injury, and they may require extended recovery periods. The consequences of early brain injury for ongoing brain development and risk of more serious conditions such as second impact syndrome or neural degenerative processes need to be elucidated.

Notes

Summary of this research is available as "Persistent post-concussion brain changes in adolescent hockey players" in BrainsCAN Research Summaries

Version of Record available, open access, at https://doi.org/10.1212/WNL.0000000000004669

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Find in your library

Included in

Neurosciences Commons

Share

COinS