Differentiating real-world autobiographical experiences without recourse to behaviour

Document Type


Publication Date



Brain Sciences





URL with Digital Object Identifier



Investigating human consciousness based on brain activity alone is a key challenge in cognitive neuroscience. One of its central facets, the ability to form autobiographical memories, has been investigated through several fMRI studies that have revealed a pattern of activity across a network of frontal, parietal, and medial temporal lobe regions when participants view personal photographs, as opposed to when they view photographs from someone else’s life. Here, our goal was to attempt to decode when participants were re-experiencing an entire event, captured on video from a first-person perspective, relative to a very similar event experienced by someone else. Participants were asked to sit passively in a wheelchair while a researcher pushed them around a local mall. A small wearable camera was mounted on each participant, in order to capture autobiographical videos of the visit from a first-person perspective. One week later, participants were scanned while they passively viewed different categories of videos; some were autobiographical, while others were not. A machine-learning model was able to successfully classify the video categories above chance, both within and across participants, suggesting that there is a shared mechanism differentiating autobiographical experiences from non-autobiographical ones. Moreover, the classifier brain maps revealed that the fronto-parietal network, mid-temporal regions and extrastriate cortex were critical for differentiating between autobiographical and non-autobiographical memories. We argue that this novel paradigm captures the true nature of autobiographical memories, and is well suited to patients (e.g., with brain injuries) who may be unable to respond reliably to traditional experimental stimuli.