Document Type

Article

Publication Date

4-1-2018

Journal

Nature Neuroscience

Volume

21

Issue

4

First Page

552

Last Page

563

URL with Digital Object Identifier

10.1038/s41593-018-0113-5

Abstract

© 2018 The Author(s). Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) constitutes a devastating disease spectrum characterized by 43-kDa TAR DNA-binding protein (TDP-43) pathology. Understanding how TDP-43 contributes to neurodegeneration will help direct therapeutic efforts. Here we have created a TDP-43 knock-in mouse with a human-equivalent mutation in the endogenous mouse Tardbp gene. TDP-43Q331K mice demonstrate cognitive dysfunction and a paucity of parvalbumin interneurons. Critically, TDP-43 autoregulation is perturbed, leading to a gain of TDP-43 function and altered splicing of Mapt, another pivotal dementia-associated gene. Furthermore, a new approach to stratify transcriptomic data by phenotype in differentially affected mutant mice revealed 471 changes linked with improved behavior. These changes included downregulation of two known modifiers of neurodegeneration, Atxn2 and Arid4a, and upregulation of myelination and translation genes. With one base change in murine Tardbp, this study identifies TDP-43 misregulation as a pathogenic mechanism that may underpin ALS-FTD and exploits phenotypic heterogeneity to yield candidate suppressors of neurodegenerative disease.

Notes

This is an author-accepted manuscript made available through PMC.

This article has been corrected and updated.

The publisher's version is available at:

White, M.A., Kim, E., Duffy, A. et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat Neurosci 21, 552–563 (2018). https://doi.org/10.1038/s41593-018-0113-5

Find in your library

Share

COinS