Title

Metalloproteinases Are Involved in Lipopolysaccharide- and Tumor Necrosis Factor-alpha-mediated Regulation of CXCR1 and CXCR2 Chemokine Receptor Expression

Document Type

Article

Publication Date

4-1-1999

Journal

Blood

Volume

93

Issue

7

First Page

2173

Last Page

2185

Abstract

The neutrophil-specific G-protein-coupled chemokine receptors, CXCR1 and CXCR2, bind with high affinity to the potent chemoattractant interleukin-8 (IL-8). The mechanisms of IL-8 receptor regulation are not well defined, although previous studies have suggested a process of ligand-promoted internalization as a putative regulatory pathway. Herein, we provide evidence for two distinct processes of CXCR1 and CXCR2 regulation. Confocal microscopy data showed a redistribution of CXCR1 expression from the cell surface of neutrophils to internal compartments after stimulation with IL-8, whereas stimulation with bacterial lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) did not induce CXCR1 internalization but instead mediated a significant loss of membrane-proximal CXCR1 staining intensity. To investigate whether proteolytic cleavage was the mechanism responsible for LPS- and TNF-alpha-induced downmodulation of IL-8 receptors, we tested a panel of proteinase inhibitors. The downmodulation of CXCR1 and CXCR2 by LPS and TNF-alpha was most dramatically inhibited by metalloproteinase inhibitors; 1, 10-phenanthroline and EDTA significantly attenuated LPS- and TNF-alpha-induced loss of CXCR1 and CXCR2 cell surface expression. Metalloproteinase inhibitors also blocked the release of CXCR1 cleavage fragments into the cell supernatants of LPS- and TNF-alpha-stimulated neutrophils. In addition, while treatment of neutrophils with LPS and TNF-alpha inhibited IL-8 receptor-mediated calcium mobilization and IL-8-directed neutrophil chemotaxis, both 1, 10-phenanthroline and EDTA blocked these inhibitory processes. In contrast, metalloproteinase inhibitors did not affect IL-8-mediated downmodulation of CXCR1 and CXCR2 cell surface expression or receptor signaling. Thus, these findings may provide further insight into the mechanisms of leukocyte regulation during immunologic and inflammatory responses.