Electronic Thesis and Dissertation Repository


Master of Engineering Science


Mechanical and Materials Engineering


Dr. Samuel F. Asokanthan


Use of inertial sensory systems to monitor and detect seizure episodes in patients suffering from epilepsy is investigated via numerical simulations and experiments. Numerical simulations employ a mathematical model that is able to predict human body dynamic responses during a typical epileptic seizure. An optimized inertial sensor placement procedure is developed to address achievement of highest possible sensing resolution in determining angular accelerations with minimal errors. In addition, a joint torque estimation procedure is formulated to assist in the future development of a possible detection scheme. Experimental motion data obtained from an epileptic seizure patient as well as a healthy subject via a cluster of inertial measurement sensors formed a basis for proposing a suitable detection scheme based on non-linear response analysis. In particular, preliminary experimental data analysis has shown that the proposed modified Poincaré Map based scheme can become an effective tool in detecting of seizure via inertial measurements.