University of Western Ontario - Electronic Thesis and Dissertation Repository

Degree

Master of Engineering Science

Program

Biomedical Engineering

Supervisor

Dr. Abbas Samani

Abstract

A novel technique is proposed to develop a biomechanical model for estimating lung’s tumor position as a function of respiration cycle time. Continuous tumor motion is a major challenge in lung cancer treatment techniques where the tumor needs to be targeted; e.g. in external beam radiotherapy and brachytherapy. If not accounted for, this motion leads to areas of radiation over and/or under dosage for normal tissue and tumors. In this thesis, biomechanical models were developed for lung tumor motion predication in two distinct cases of lung brachytherapy and lung external beam radiotherapy. The lung and other relevant surrounding organs geometries, loading, boundary conditions and mechanical properties were considered and incorporated properly for each case. While using material model with constant incompressibility is sufficient to model the lung tissue in the brachytherapy case, in external beam radiation therapy the tissue incompressibility varies significantly due to normal breathing. One of the main issues tackled in this research is characterizing lung tissue incompressibility variations and measuring its corresponding parameters as a function of respiration cycle time. Results obtained from an ex-vivo porcine deflated lung indicated feasibility and reliability of using the developed biomechanical model to predict tumor motion during brachytherapy. For external beam radiotherapy, in-silico studies indicated very significant impact of considering the lung tissue incompressibility on the accuracy of predicting tumor motion. Furthermore, ex-vivo porcine lung experiments demonstrated the capability and reliability of the proposed approach for predicting tumor motion as a function of cyclic time. As such, the proposed models have a good potential to be incorporated effectively in computer assisted lung radiotherapy treatment systems.