Electronic Thesis and Dissertation Repository

Degree

Master of Engineering Science

Program

Electrical and Computer Engineering

Supervisor

McIsaac, Kenneth

Abstract

In this thesis, we aim to improve the outcomes of students learning Computer Architecture and Embedded Systems topics within Software and Computer Engineering programs. We develop a simulation of processors that attempts to improve the visibility of hardware within the simulation environment and replace existing solutions in use within the classroom. We designate a series of requirements of a successful simulation suite based on current state-of-the-art simulations within literature. Provided these requirements, we build a quantitative rating of the same set of simulations. Additionally, we rate our previously implemented tool, hc12sim, with current solutions. Using the gaps in implementations from our state-of-the-art survey, we develop two solutions. First, we developed a web-based solution using the Scala.js compiler for Scala with an event-driven simulation engine through Akka. This Scala model implements a VHDL-like DSL for instruction control definition. Next we propose tools for developing cross-platform native applications through a project-based build system within CMake and a continuous integration pipeline using Vagrant, Oracle VirtualBox and Jenkins. Lastly, we propose a configuration-driven processor simulation built from the original hc12sim project that utilizes a Lua-based scripting interface for processor configuration. While we considered other high-level languages, Lua best fit our requirements allowing students to use a modern high-level programming language for processor configuration. Instruction controls are defined through Lua functions using high-level constructs that implicitly trigger low-level simulation events. Lastly, we conclude with suggestions for building a new solution that would better meet requirements set forth in our research question building from successful aspects from this work.


Share

COinS