Electronic Thesis and Dissertation Repository

Degree

Master of Science

Program

Geology

Supervisor

Dr. Gordon Osinski

Abstract

While lidar has been historically used for generating digital terrain maps and as a navigation tool, recent research demonstrates that lidar has many potential scientific applications, including high resolution analysis of geological outcrops. Case studies were completed at the Tunnunik impact structure, Victoria Island, Arctic Canada, and the Nickel Rim South mine, Sudbury, Canada, to assess the fidelity of characterizing and differentiating mineralogical and lithological units remotely by integrating passive visible imagery with lidar intensity data. Unsupervised classification via k-means clustering was performed on the fused datasets, with results indicating that lithologies can indeed be successfully differentiated with minor a priori knowledge of the setting. Semi-quantitative analysis through XRD of Tunnunik samples demonstrates that distance-corrected intensity is linked in a linear relationship with both dolomite and clay content. The simultaneous acquisition of both geospatial and scientific data greatly increases the applications and value of using lidar, especially for mining, geological mapping in remote environments, and for future planetary missions.


Included in

Geology Commons

Share

COinS