Electronic Thesis and Dissertation Repository

Degree

Master of Engineering Science

Program

Electrical and Computer Engineering

Supervisor

Dr. Remus Tutunea-Fatan, Dr. Roy Eagleson

Abstract

The effective role of virtual reality simulators in surgical operations has been demonstrated during the last decades. The proposed work has been done to give a perspective of the actual orthopeadic surgeries such as a total shoulder arthroplasty with low incidence and visibility of the operation to the surgeon. The research in this thesis is focused on the design and implementation of a web-based graphical feedback for a total shoulder arthroplasty (TSA) surgery. For portability of the simulation and powerful 3D programming features, WebGL is being applied. To simulate the reaming process of the shoulder bone, multiple steps has been passed to be able to remove the volumetric amount of bone which was touched by the reamer tool. A fast and accurate collision detection algorithm utilizing Möller –Trumbore ray-triangle method was implemented to detect the first collision of the bone and the tool in order to accelerate the computations for the bone removal process. Once the collision detected, a mesh Boolean operation using CSG method is being invoked to calculate the volumetric amount of bone which is intersected with the tool and should be removed. This work involves the user interaction to transform the tool in a Three.js scene for the simulated operation.

Available for download on Saturday, September 01, 2018


Share

COinS