Electronic Thesis and Dissertation Repository

Degree

Master of Engineering Science

Program

Electrical and Computer Engineering

Supervisor

Dr. Mehrdad R. Kermani

Abstract

In recent years, many developments in the field of the physical human robot interaction (pHRI) have been witnessed and significant attentions have been given to the subject of safety within the interactive environments. Ensuring the safety has led to the design of the robots that are physically unable to hurt humans. However, Such systems commonly suffer from the safety-performance trade-off. Magneto-Rheological (MR) fluids are a special class of fluids that exhibit variable yield stress with respect to an applied magnetic field. Devices developed with such fluids are known to provide the prerequisite requirements of intrinsic safe actuation while maintaining the dynamical performance of the actuator.

In this study, a new concept for generating magnetic field in Magneto-Rheological (MR) clutches is presented. The main rationale behind this concept is to divide the magnetic field generation into two parts using an electromagnetic coil and a permanent magnet. The main rationale behind this concept is to utilize a hybrid combination of electromagnetic coil and a permanent magnet. The combination of permanent magnets and electromagnetic coils in Hybrid Magneto-Rheological (HMR) clutches allows to distribute the magnetic field inside an MR clutch more uniformly. Moreover, The use of a permanent magnet dramatically reduces the mass of MR clutches for a given value of the nominal torque that results in developing higher torque-to-mass ratio. High torque-to-mass and torque-to-inertia ratios in HMR clutches promotes the use of these devices in human-friendly actuation.

Available for download on Saturday, December 30, 2017


Share

COinS