Electronic Thesis and Dissertation Repository

Degree

Master of Engineering Science

Program

Biomedical Engineering

Supervisor

Dr. Roy Eagleson

2nd Supervisor

Dr. Aaron Fenster

Joint Supervisor

Abstract

The following work focuses on the objective evaluation of human performance for two different interventional tasks; targeted prostate biopsy tasks using a tracked biopsy device, and external ventricular drain placement tasks using a mobile-based augmented reality device for visualization and guidance. In both tasks, a human performance methodology was utilized which respects the trade-off between speed and accuracy for users conducting a series of targeting tasks using each device. This work outlines the development and application of performance evaluation methods using these devices, as well as details regarding the implementation of the mobile AR application. It was determined that the Fitts’ Law methodology can be applied for evaluation of tasks performed in each surgical scenario, and was sensitive to differentiate performance across a range which spanned experienced and novice users. This methodology is valuable for future development of training modules for these and other medical devices, and can provide details about the underlying characteristics of the devices, and how they can be optimized with respect to human performance.